remove most ifdef STACK_GROWS_DOWNWARD
[gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "rtl-error.h"
36 #include "tm_p.h"
37 #include "insn-config.h"
38 #include "insn-attr.h"
39 #include "hard-reg-set.h"
40 #include "recog.h"
41 #include "regs.h"
42 #include "addresses.h"
43 #include "hashtab.h"
44 #include "function.h"
45 #include "rtl.h"
46 #include "flags.h"
47 #include "statistics.h"
48 #include "real.h"
49 #include "fixed-value.h"
50 #include "expmed.h"
51 #include "dojump.h"
52 #include "explow.h"
53 #include "calls.h"
54 #include "emit-rtl.h"
55 #include "varasm.h"
56 #include "stmt.h"
57 #include "expr.h"
58 #include "predict.h"
59 #include "dominance.h"
60 #include "cfg.h"
61 #include "cfgrtl.h"
62 #include "cfgbuild.h"
63 #include "cfgcleanup.h"
64 #include "basic-block.h"
65 #include "reload.h"
66 #include "target.h"
67 #include "tree-pass.h"
68 #include "df.h"
69 #include "insn-codes.h"
70
71 #ifndef STACK_PUSH_CODE
72 #if STACK_GROWS_DOWNWARD
73 #define STACK_PUSH_CODE PRE_DEC
74 #else
75 #define STACK_PUSH_CODE PRE_INC
76 #endif
77 #endif
78
79 #ifndef STACK_POP_CODE
80 #if STACK_GROWS_DOWNWARD
81 #define STACK_POP_CODE POST_INC
82 #else
83 #define STACK_POP_CODE POST_DEC
84 #endif
85 #endif
86
87 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
88 static void validate_replace_src_1 (rtx *, void *);
89 static rtx_insn *split_insn (rtx_insn *);
90
91 struct target_recog default_target_recog;
92 #if SWITCHABLE_TARGET
93 struct target_recog *this_target_recog = &default_target_recog;
94 #endif
95
96 /* Nonzero means allow operands to be volatile.
97 This should be 0 if you are generating rtl, such as if you are calling
98 the functions in optabs.c and expmed.c (most of the time).
99 This should be 1 if all valid insns need to be recognized,
100 such as in reginfo.c and final.c and reload.c.
101
102 init_recog and init_recog_no_volatile are responsible for setting this. */
103
104 int volatile_ok;
105
106 struct recog_data_d recog_data;
107
108 /* Contains a vector of operand_alternative structures, such that
109 operand OP of alternative A is at index A * n_operands + OP.
110 Set up by preprocess_constraints. */
111 const operand_alternative *recog_op_alt;
112
113 /* Used to provide recog_op_alt for asms. */
114 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
115 * MAX_RECOG_ALTERNATIVES];
116
117 /* On return from `constrain_operands', indicate which alternative
118 was satisfied. */
119
120 int which_alternative;
121
122 /* Nonzero after end of reload pass.
123 Set to 1 or 0 by toplev.c.
124 Controls the significance of (SUBREG (MEM)). */
125
126 int reload_completed;
127
128 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
129 int epilogue_completed;
130
131 /* Initialize data used by the function `recog'.
132 This must be called once in the compilation of a function
133 before any insn recognition may be done in the function. */
134
135 void
136 init_recog_no_volatile (void)
137 {
138 volatile_ok = 0;
139 }
140
141 void
142 init_recog (void)
143 {
144 volatile_ok = 1;
145 }
146
147 \f
148 /* Return true if labels in asm operands BODY are LABEL_REFs. */
149
150 static bool
151 asm_labels_ok (rtx body)
152 {
153 rtx asmop;
154 int i;
155
156 asmop = extract_asm_operands (body);
157 if (asmop == NULL_RTX)
158 return true;
159
160 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
161 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
162 return false;
163
164 return true;
165 }
166
167 /* Check that X is an insn-body for an `asm' with operands
168 and that the operands mentioned in it are legitimate. */
169
170 int
171 check_asm_operands (rtx x)
172 {
173 int noperands;
174 rtx *operands;
175 const char **constraints;
176 int i;
177
178 if (!asm_labels_ok (x))
179 return 0;
180
181 /* Post-reload, be more strict with things. */
182 if (reload_completed)
183 {
184 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
185 rtx_insn *insn = make_insn_raw (x);
186 extract_insn (insn);
187 constrain_operands (1, get_enabled_alternatives (insn));
188 return which_alternative >= 0;
189 }
190
191 noperands = asm_noperands (x);
192 if (noperands < 0)
193 return 0;
194 if (noperands == 0)
195 return 1;
196
197 operands = XALLOCAVEC (rtx, noperands);
198 constraints = XALLOCAVEC (const char *, noperands);
199
200 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
201
202 for (i = 0; i < noperands; i++)
203 {
204 const char *c = constraints[i];
205 if (c[0] == '%')
206 c++;
207 if (! asm_operand_ok (operands[i], c, constraints))
208 return 0;
209 }
210
211 return 1;
212 }
213 \f
214 /* Static data for the next two routines. */
215
216 typedef struct change_t
217 {
218 rtx object;
219 int old_code;
220 rtx *loc;
221 rtx old;
222 bool unshare;
223 } change_t;
224
225 static change_t *changes;
226 static int changes_allocated;
227
228 static int num_changes = 0;
229
230 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
231 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
232 the change is simply made.
233
234 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
235 will be called with the address and mode as parameters. If OBJECT is
236 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
237 the change in place.
238
239 IN_GROUP is nonzero if this is part of a group of changes that must be
240 performed as a group. In that case, the changes will be stored. The
241 function `apply_change_group' will validate and apply the changes.
242
243 If IN_GROUP is zero, this is a single change. Try to recognize the insn
244 or validate the memory reference with the change applied. If the result
245 is not valid for the machine, suppress the change and return zero.
246 Otherwise, perform the change and return 1. */
247
248 static bool
249 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
250 {
251 rtx old = *loc;
252
253 if (old == new_rtx || rtx_equal_p (old, new_rtx))
254 return 1;
255
256 gcc_assert (in_group != 0 || num_changes == 0);
257
258 *loc = new_rtx;
259
260 /* Save the information describing this change. */
261 if (num_changes >= changes_allocated)
262 {
263 if (changes_allocated == 0)
264 /* This value allows for repeated substitutions inside complex
265 indexed addresses, or changes in up to 5 insns. */
266 changes_allocated = MAX_RECOG_OPERANDS * 5;
267 else
268 changes_allocated *= 2;
269
270 changes = XRESIZEVEC (change_t, changes, changes_allocated);
271 }
272
273 changes[num_changes].object = object;
274 changes[num_changes].loc = loc;
275 changes[num_changes].old = old;
276 changes[num_changes].unshare = unshare;
277
278 if (object && !MEM_P (object))
279 {
280 /* Set INSN_CODE to force rerecognition of insn. Save old code in
281 case invalid. */
282 changes[num_changes].old_code = INSN_CODE (object);
283 INSN_CODE (object) = -1;
284 }
285
286 num_changes++;
287
288 /* If we are making a group of changes, return 1. Otherwise, validate the
289 change group we made. */
290
291 if (in_group)
292 return 1;
293 else
294 return apply_change_group ();
295 }
296
297 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
298 UNSHARE to false. */
299
300 bool
301 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
302 {
303 return validate_change_1 (object, loc, new_rtx, in_group, false);
304 }
305
306 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
307 UNSHARE to true. */
308
309 bool
310 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
311 {
312 return validate_change_1 (object, loc, new_rtx, in_group, true);
313 }
314
315
316 /* Keep X canonicalized if some changes have made it non-canonical; only
317 modifies the operands of X, not (for example) its code. Simplifications
318 are not the job of this routine.
319
320 Return true if anything was changed. */
321 bool
322 canonicalize_change_group (rtx_insn *insn, rtx x)
323 {
324 if (COMMUTATIVE_P (x)
325 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
326 {
327 /* Oops, the caller has made X no longer canonical.
328 Let's redo the changes in the correct order. */
329 rtx tem = XEXP (x, 0);
330 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
331 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
332 return true;
333 }
334 else
335 return false;
336 }
337
338
339 /* This subroutine of apply_change_group verifies whether the changes to INSN
340 were valid; i.e. whether INSN can still be recognized.
341
342 If IN_GROUP is true clobbers which have to be added in order to
343 match the instructions will be added to the current change group.
344 Otherwise the changes will take effect immediately. */
345
346 int
347 insn_invalid_p (rtx_insn *insn, bool in_group)
348 {
349 rtx pat = PATTERN (insn);
350 int num_clobbers = 0;
351 /* If we are before reload and the pattern is a SET, see if we can add
352 clobbers. */
353 int icode = recog (pat, insn,
354 (GET_CODE (pat) == SET
355 && ! reload_completed
356 && ! reload_in_progress)
357 ? &num_clobbers : 0);
358 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
359
360
361 /* If this is an asm and the operand aren't legal, then fail. Likewise if
362 this is not an asm and the insn wasn't recognized. */
363 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
364 || (!is_asm && icode < 0))
365 return 1;
366
367 /* If we have to add CLOBBERs, fail if we have to add ones that reference
368 hard registers since our callers can't know if they are live or not.
369 Otherwise, add them. */
370 if (num_clobbers > 0)
371 {
372 rtx newpat;
373
374 if (added_clobbers_hard_reg_p (icode))
375 return 1;
376
377 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
378 XVECEXP (newpat, 0, 0) = pat;
379 add_clobbers (newpat, icode);
380 if (in_group)
381 validate_change (insn, &PATTERN (insn), newpat, 1);
382 else
383 PATTERN (insn) = pat = newpat;
384 }
385
386 /* After reload, verify that all constraints are satisfied. */
387 if (reload_completed)
388 {
389 extract_insn (insn);
390
391 if (! constrain_operands (1, get_preferred_alternatives (insn)))
392 return 1;
393 }
394
395 INSN_CODE (insn) = icode;
396 return 0;
397 }
398
399 /* Return number of changes made and not validated yet. */
400 int
401 num_changes_pending (void)
402 {
403 return num_changes;
404 }
405
406 /* Tentatively apply the changes numbered NUM and up.
407 Return 1 if all changes are valid, zero otherwise. */
408
409 int
410 verify_changes (int num)
411 {
412 int i;
413 rtx last_validated = NULL_RTX;
414
415 /* The changes have been applied and all INSN_CODEs have been reset to force
416 rerecognition.
417
418 The changes are valid if we aren't given an object, or if we are
419 given a MEM and it still is a valid address, or if this is in insn
420 and it is recognized. In the latter case, if reload has completed,
421 we also require that the operands meet the constraints for
422 the insn. */
423
424 for (i = num; i < num_changes; i++)
425 {
426 rtx object = changes[i].object;
427
428 /* If there is no object to test or if it is the same as the one we
429 already tested, ignore it. */
430 if (object == 0 || object == last_validated)
431 continue;
432
433 if (MEM_P (object))
434 {
435 if (! memory_address_addr_space_p (GET_MODE (object),
436 XEXP (object, 0),
437 MEM_ADDR_SPACE (object)))
438 break;
439 }
440 else if (/* changes[i].old might be zero, e.g. when putting a
441 REG_FRAME_RELATED_EXPR into a previously empty list. */
442 changes[i].old
443 && REG_P (changes[i].old)
444 && asm_noperands (PATTERN (object)) > 0
445 && REG_EXPR (changes[i].old) != NULL_TREE
446 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
447 && DECL_REGISTER (REG_EXPR (changes[i].old)))
448 {
449 /* Don't allow changes of hard register operands to inline
450 assemblies if they have been defined as register asm ("x"). */
451 break;
452 }
453 else if (DEBUG_INSN_P (object))
454 continue;
455 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
456 {
457 rtx pat = PATTERN (object);
458
459 /* Perhaps we couldn't recognize the insn because there were
460 extra CLOBBERs at the end. If so, try to re-recognize
461 without the last CLOBBER (later iterations will cause each of
462 them to be eliminated, in turn). But don't do this if we
463 have an ASM_OPERAND. */
464 if (GET_CODE (pat) == PARALLEL
465 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
466 && asm_noperands (PATTERN (object)) < 0)
467 {
468 rtx newpat;
469
470 if (XVECLEN (pat, 0) == 2)
471 newpat = XVECEXP (pat, 0, 0);
472 else
473 {
474 int j;
475
476 newpat
477 = gen_rtx_PARALLEL (VOIDmode,
478 rtvec_alloc (XVECLEN (pat, 0) - 1));
479 for (j = 0; j < XVECLEN (newpat, 0); j++)
480 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
481 }
482
483 /* Add a new change to this group to replace the pattern
484 with this new pattern. Then consider this change
485 as having succeeded. The change we added will
486 cause the entire call to fail if things remain invalid.
487
488 Note that this can lose if a later change than the one
489 we are processing specified &XVECEXP (PATTERN (object), 0, X)
490 but this shouldn't occur. */
491
492 validate_change (object, &PATTERN (object), newpat, 1);
493 continue;
494 }
495 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
496 || GET_CODE (pat) == VAR_LOCATION)
497 /* If this insn is a CLOBBER or USE, it is always valid, but is
498 never recognized. */
499 continue;
500 else
501 break;
502 }
503 last_validated = object;
504 }
505
506 return (i == num_changes);
507 }
508
509 /* A group of changes has previously been issued with validate_change
510 and verified with verify_changes. Call df_insn_rescan for each of
511 the insn changed and clear num_changes. */
512
513 void
514 confirm_change_group (void)
515 {
516 int i;
517 rtx last_object = NULL;
518
519 for (i = 0; i < num_changes; i++)
520 {
521 rtx object = changes[i].object;
522
523 if (changes[i].unshare)
524 *changes[i].loc = copy_rtx (*changes[i].loc);
525
526 /* Avoid unnecessary rescanning when multiple changes to same instruction
527 are made. */
528 if (object)
529 {
530 if (object != last_object && last_object && INSN_P (last_object))
531 df_insn_rescan (as_a <rtx_insn *> (last_object));
532 last_object = object;
533 }
534 }
535
536 if (last_object && INSN_P (last_object))
537 df_insn_rescan (as_a <rtx_insn *> (last_object));
538 num_changes = 0;
539 }
540
541 /* Apply a group of changes previously issued with `validate_change'.
542 If all changes are valid, call confirm_change_group and return 1,
543 otherwise, call cancel_changes and return 0. */
544
545 int
546 apply_change_group (void)
547 {
548 if (verify_changes (0))
549 {
550 confirm_change_group ();
551 return 1;
552 }
553 else
554 {
555 cancel_changes (0);
556 return 0;
557 }
558 }
559
560
561 /* Return the number of changes so far in the current group. */
562
563 int
564 num_validated_changes (void)
565 {
566 return num_changes;
567 }
568
569 /* Retract the changes numbered NUM and up. */
570
571 void
572 cancel_changes (int num)
573 {
574 int i;
575
576 /* Back out all the changes. Do this in the opposite order in which
577 they were made. */
578 for (i = num_changes - 1; i >= num; i--)
579 {
580 *changes[i].loc = changes[i].old;
581 if (changes[i].object && !MEM_P (changes[i].object))
582 INSN_CODE (changes[i].object) = changes[i].old_code;
583 }
584 num_changes = num;
585 }
586
587 /* Reduce conditional compilation elsewhere. */
588 #ifndef HAVE_extv
589 #define HAVE_extv 0
590 #define CODE_FOR_extv CODE_FOR_nothing
591 #endif
592 #ifndef HAVE_extzv
593 #define HAVE_extzv 0
594 #define CODE_FOR_extzv CODE_FOR_nothing
595 #endif
596
597 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
598 rtx. */
599
600 static void
601 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
602 machine_mode op0_mode)
603 {
604 rtx x = *loc;
605 enum rtx_code code = GET_CODE (x);
606 rtx new_rtx = NULL_RTX;
607
608 if (SWAPPABLE_OPERANDS_P (x)
609 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
610 {
611 validate_unshare_change (object, loc,
612 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
613 : swap_condition (code),
614 GET_MODE (x), XEXP (x, 1),
615 XEXP (x, 0)), 1);
616 x = *loc;
617 code = GET_CODE (x);
618 }
619
620 /* Canonicalize arithmetics with all constant operands. */
621 switch (GET_RTX_CLASS (code))
622 {
623 case RTX_UNARY:
624 if (CONSTANT_P (XEXP (x, 0)))
625 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
626 op0_mode);
627 break;
628 case RTX_COMM_ARITH:
629 case RTX_BIN_ARITH:
630 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
631 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
632 XEXP (x, 1));
633 break;
634 case RTX_COMPARE:
635 case RTX_COMM_COMPARE:
636 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
637 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
638 XEXP (x, 0), XEXP (x, 1));
639 break;
640 default:
641 break;
642 }
643 if (new_rtx)
644 {
645 validate_change (object, loc, new_rtx, 1);
646 return;
647 }
648
649 switch (code)
650 {
651 case PLUS:
652 /* If we have a PLUS whose second operand is now a CONST_INT, use
653 simplify_gen_binary to try to simplify it.
654 ??? We may want later to remove this, once simplification is
655 separated from this function. */
656 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
657 validate_change (object, loc,
658 simplify_gen_binary
659 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
660 break;
661 case MINUS:
662 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
663 validate_change (object, loc,
664 simplify_gen_binary
665 (PLUS, GET_MODE (x), XEXP (x, 0),
666 simplify_gen_unary (NEG,
667 GET_MODE (x), XEXP (x, 1),
668 GET_MODE (x))), 1);
669 break;
670 case ZERO_EXTEND:
671 case SIGN_EXTEND:
672 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
673 {
674 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
675 op0_mode);
676 /* If any of the above failed, substitute in something that
677 we know won't be recognized. */
678 if (!new_rtx)
679 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
680 validate_change (object, loc, new_rtx, 1);
681 }
682 break;
683 case SUBREG:
684 /* All subregs possible to simplify should be simplified. */
685 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
686 SUBREG_BYTE (x));
687
688 /* Subregs of VOIDmode operands are incorrect. */
689 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
690 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
691 if (new_rtx)
692 validate_change (object, loc, new_rtx, 1);
693 break;
694 case ZERO_EXTRACT:
695 case SIGN_EXTRACT:
696 /* If we are replacing a register with memory, try to change the memory
697 to be the mode required for memory in extract operations (this isn't
698 likely to be an insertion operation; if it was, nothing bad will
699 happen, we might just fail in some cases). */
700
701 if (MEM_P (XEXP (x, 0))
702 && CONST_INT_P (XEXP (x, 1))
703 && CONST_INT_P (XEXP (x, 2))
704 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
705 MEM_ADDR_SPACE (XEXP (x, 0)))
706 && !MEM_VOLATILE_P (XEXP (x, 0)))
707 {
708 machine_mode wanted_mode = VOIDmode;
709 machine_mode is_mode = GET_MODE (XEXP (x, 0));
710 int pos = INTVAL (XEXP (x, 2));
711
712 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
713 {
714 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
715 if (wanted_mode == VOIDmode)
716 wanted_mode = word_mode;
717 }
718 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
719 {
720 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
721 if (wanted_mode == VOIDmode)
722 wanted_mode = word_mode;
723 }
724
725 /* If we have a narrower mode, we can do something. */
726 if (wanted_mode != VOIDmode
727 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
728 {
729 int offset = pos / BITS_PER_UNIT;
730 rtx newmem;
731
732 /* If the bytes and bits are counted differently, we
733 must adjust the offset. */
734 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
735 offset =
736 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
737 offset);
738
739 gcc_assert (GET_MODE_PRECISION (wanted_mode)
740 == GET_MODE_BITSIZE (wanted_mode));
741 pos %= GET_MODE_BITSIZE (wanted_mode);
742
743 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
744
745 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
746 validate_change (object, &XEXP (x, 0), newmem, 1);
747 }
748 }
749
750 break;
751
752 default:
753 break;
754 }
755 }
756
757 /* Replace every occurrence of FROM in X with TO. Mark each change with
758 validate_change passing OBJECT. */
759
760 static void
761 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
762 bool simplify)
763 {
764 int i, j;
765 const char *fmt;
766 rtx x = *loc;
767 enum rtx_code code;
768 machine_mode op0_mode = VOIDmode;
769 int prev_changes = num_changes;
770
771 if (!x)
772 return;
773
774 code = GET_CODE (x);
775 fmt = GET_RTX_FORMAT (code);
776 if (fmt[0] == 'e')
777 op0_mode = GET_MODE (XEXP (x, 0));
778
779 /* X matches FROM if it is the same rtx or they are both referring to the
780 same register in the same mode. Avoid calling rtx_equal_p unless the
781 operands look similar. */
782
783 if (x == from
784 || (REG_P (x) && REG_P (from)
785 && GET_MODE (x) == GET_MODE (from)
786 && REGNO (x) == REGNO (from))
787 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
788 && rtx_equal_p (x, from)))
789 {
790 validate_unshare_change (object, loc, to, 1);
791 return;
792 }
793
794 /* Call ourself recursively to perform the replacements.
795 We must not replace inside already replaced expression, otherwise we
796 get infinite recursion for replacements like (reg X)->(subreg (reg X))
797 so we must special case shared ASM_OPERANDS. */
798
799 if (GET_CODE (x) == PARALLEL)
800 {
801 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
802 {
803 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
804 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
805 {
806 /* Verify that operands are really shared. */
807 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
808 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
809 (x, 0, j))));
810 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
811 from, to, object, simplify);
812 }
813 else
814 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
815 simplify);
816 }
817 }
818 else
819 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
820 {
821 if (fmt[i] == 'e')
822 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
823 else if (fmt[i] == 'E')
824 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
825 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
826 simplify);
827 }
828
829 /* If we didn't substitute, there is nothing more to do. */
830 if (num_changes == prev_changes)
831 return;
832
833 /* ??? The regmove is no more, so is this aberration still necessary? */
834 /* Allow substituted expression to have different mode. This is used by
835 regmove to change mode of pseudo register. */
836 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
837 op0_mode = GET_MODE (XEXP (x, 0));
838
839 /* Do changes needed to keep rtx consistent. Don't do any other
840 simplifications, as it is not our job. */
841 if (simplify)
842 simplify_while_replacing (loc, to, object, op0_mode);
843 }
844
845 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
846 with TO. After all changes have been made, validate by seeing
847 if INSN is still valid. */
848
849 int
850 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
851 {
852 validate_replace_rtx_1 (loc, from, to, insn, true);
853 return apply_change_group ();
854 }
855
856 /* Try replacing every occurrence of FROM in INSN with TO. After all
857 changes have been made, validate by seeing if INSN is still valid. */
858
859 int
860 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
861 {
862 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
863 return apply_change_group ();
864 }
865
866 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
867 is a part of INSN. After all changes have been made, validate by seeing if
868 INSN is still valid.
869 validate_replace_rtx (from, to, insn) is equivalent to
870 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
871
872 int
873 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
874 {
875 validate_replace_rtx_1 (where, from, to, insn, true);
876 return apply_change_group ();
877 }
878
879 /* Same as above, but do not simplify rtx afterwards. */
880 int
881 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
882 rtx_insn *insn)
883 {
884 validate_replace_rtx_1 (where, from, to, insn, false);
885 return apply_change_group ();
886
887 }
888
889 /* Try replacing every occurrence of FROM in INSN with TO. This also
890 will replace in REG_EQUAL and REG_EQUIV notes. */
891
892 void
893 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
894 {
895 rtx note;
896 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
897 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
898 if (REG_NOTE_KIND (note) == REG_EQUAL
899 || REG_NOTE_KIND (note) == REG_EQUIV)
900 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
901 }
902
903 /* Function called by note_uses to replace used subexpressions. */
904 struct validate_replace_src_data
905 {
906 rtx from; /* Old RTX */
907 rtx to; /* New RTX */
908 rtx_insn *insn; /* Insn in which substitution is occurring. */
909 };
910
911 static void
912 validate_replace_src_1 (rtx *x, void *data)
913 {
914 struct validate_replace_src_data *d
915 = (struct validate_replace_src_data *) data;
916
917 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
918 }
919
920 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
921 SET_DESTs. */
922
923 void
924 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
925 {
926 struct validate_replace_src_data d;
927
928 d.from = from;
929 d.to = to;
930 d.insn = insn;
931 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
932 }
933
934 /* Try simplify INSN.
935 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
936 pattern and return true if something was simplified. */
937
938 bool
939 validate_simplify_insn (rtx_insn *insn)
940 {
941 int i;
942 rtx pat = NULL;
943 rtx newpat = NULL;
944
945 pat = PATTERN (insn);
946
947 if (GET_CODE (pat) == SET)
948 {
949 newpat = simplify_rtx (SET_SRC (pat));
950 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
951 validate_change (insn, &SET_SRC (pat), newpat, 1);
952 newpat = simplify_rtx (SET_DEST (pat));
953 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
954 validate_change (insn, &SET_DEST (pat), newpat, 1);
955 }
956 else if (GET_CODE (pat) == PARALLEL)
957 for (i = 0; i < XVECLEN (pat, 0); i++)
958 {
959 rtx s = XVECEXP (pat, 0, i);
960
961 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
962 {
963 newpat = simplify_rtx (SET_SRC (s));
964 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
965 validate_change (insn, &SET_SRC (s), newpat, 1);
966 newpat = simplify_rtx (SET_DEST (s));
967 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
968 validate_change (insn, &SET_DEST (s), newpat, 1);
969 }
970 }
971 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
972 }
973 \f
974 /* Return 1 if the insn using CC0 set by INSN does not contain
975 any ordered tests applied to the condition codes.
976 EQ and NE tests do not count. */
977
978 int
979 next_insn_tests_no_inequality (rtx_insn *insn)
980 {
981 rtx_insn *next = next_cc0_user (insn);
982
983 /* If there is no next insn, we have to take the conservative choice. */
984 if (next == 0)
985 return 0;
986
987 return (INSN_P (next)
988 && ! inequality_comparisons_p (PATTERN (next)));
989 }
990 \f
991 /* Return 1 if OP is a valid general operand for machine mode MODE.
992 This is either a register reference, a memory reference,
993 or a constant. In the case of a memory reference, the address
994 is checked for general validity for the target machine.
995
996 Register and memory references must have mode MODE in order to be valid,
997 but some constants have no machine mode and are valid for any mode.
998
999 If MODE is VOIDmode, OP is checked for validity for whatever mode
1000 it has.
1001
1002 The main use of this function is as a predicate in match_operand
1003 expressions in the machine description. */
1004
1005 int
1006 general_operand (rtx op, machine_mode mode)
1007 {
1008 enum rtx_code code = GET_CODE (op);
1009
1010 if (mode == VOIDmode)
1011 mode = GET_MODE (op);
1012
1013 /* Don't accept CONST_INT or anything similar
1014 if the caller wants something floating. */
1015 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1016 && GET_MODE_CLASS (mode) != MODE_INT
1017 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1018 return 0;
1019
1020 if (CONST_INT_P (op)
1021 && mode != VOIDmode
1022 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1023 return 0;
1024
1025 if (CONSTANT_P (op))
1026 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1027 || mode == VOIDmode)
1028 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1029 && targetm.legitimate_constant_p (mode == VOIDmode
1030 ? GET_MODE (op)
1031 : mode, op));
1032
1033 /* Except for certain constants with VOIDmode, already checked for,
1034 OP's mode must match MODE if MODE specifies a mode. */
1035
1036 if (GET_MODE (op) != mode)
1037 return 0;
1038
1039 if (code == SUBREG)
1040 {
1041 rtx sub = SUBREG_REG (op);
1042
1043 #ifdef INSN_SCHEDULING
1044 /* On machines that have insn scheduling, we want all memory
1045 reference to be explicit, so outlaw paradoxical SUBREGs.
1046 However, we must allow them after reload so that they can
1047 get cleaned up by cleanup_subreg_operands. */
1048 if (!reload_completed && MEM_P (sub)
1049 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
1050 return 0;
1051 #endif
1052 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1053 may result in incorrect reference. We should simplify all valid
1054 subregs of MEM anyway. But allow this after reload because we
1055 might be called from cleanup_subreg_operands.
1056
1057 ??? This is a kludge. */
1058 if (!reload_completed && SUBREG_BYTE (op) != 0
1059 && MEM_P (sub))
1060 return 0;
1061
1062 #ifdef CANNOT_CHANGE_MODE_CLASS
1063 if (REG_P (sub)
1064 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1065 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1066 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1067 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1068 /* LRA can generate some invalid SUBREGS just for matched
1069 operand reload presentation. LRA needs to treat them as
1070 valid. */
1071 && ! LRA_SUBREG_P (op))
1072 return 0;
1073 #endif
1074
1075 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1076 create such rtl, and we must reject it. */
1077 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1078 /* LRA can use subreg to store a floating point value in an
1079 integer mode. Although the floating point and the
1080 integer modes need the same number of hard registers, the
1081 size of floating point mode can be less than the integer
1082 mode. */
1083 && ! lra_in_progress
1084 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1085 return 0;
1086
1087 op = sub;
1088 code = GET_CODE (op);
1089 }
1090
1091 if (code == REG)
1092 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1093 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1094
1095 if (code == MEM)
1096 {
1097 rtx y = XEXP (op, 0);
1098
1099 if (! volatile_ok && MEM_VOLATILE_P (op))
1100 return 0;
1101
1102 /* Use the mem's mode, since it will be reloaded thus. LRA can
1103 generate move insn with invalid addresses which is made valid
1104 and efficiently calculated by LRA through further numerous
1105 transformations. */
1106 if (lra_in_progress
1107 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1108 return 1;
1109 }
1110
1111 return 0;
1112 }
1113 \f
1114 /* Return 1 if OP is a valid memory address for a memory reference
1115 of mode MODE.
1116
1117 The main use of this function is as a predicate in match_operand
1118 expressions in the machine description. */
1119
1120 int
1121 address_operand (rtx op, machine_mode mode)
1122 {
1123 return memory_address_p (mode, op);
1124 }
1125
1126 /* Return 1 if OP is a register reference of mode MODE.
1127 If MODE is VOIDmode, accept a register in any mode.
1128
1129 The main use of this function is as a predicate in match_operand
1130 expressions in the machine description. */
1131
1132 int
1133 register_operand (rtx op, machine_mode mode)
1134 {
1135 if (GET_CODE (op) == SUBREG)
1136 {
1137 rtx sub = SUBREG_REG (op);
1138
1139 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1140 because it is guaranteed to be reloaded into one.
1141 Just make sure the MEM is valid in itself.
1142 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1143 but currently it does result from (SUBREG (REG)...) where the
1144 reg went on the stack.) */
1145 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1146 return 0;
1147 }
1148 else if (!REG_P (op))
1149 return 0;
1150 return general_operand (op, mode);
1151 }
1152
1153 /* Return 1 for a register in Pmode; ignore the tested mode. */
1154
1155 int
1156 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1157 {
1158 return register_operand (op, Pmode);
1159 }
1160
1161 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1162 or a hard register. */
1163
1164 int
1165 scratch_operand (rtx op, machine_mode mode)
1166 {
1167 if (GET_MODE (op) != mode && mode != VOIDmode)
1168 return 0;
1169
1170 return (GET_CODE (op) == SCRATCH
1171 || (REG_P (op)
1172 && (lra_in_progress
1173 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1174 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1175 }
1176
1177 /* Return 1 if OP is a valid immediate operand for mode MODE.
1178
1179 The main use of this function is as a predicate in match_operand
1180 expressions in the machine description. */
1181
1182 int
1183 immediate_operand (rtx op, machine_mode mode)
1184 {
1185 /* Don't accept CONST_INT or anything similar
1186 if the caller wants something floating. */
1187 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1188 && GET_MODE_CLASS (mode) != MODE_INT
1189 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1190 return 0;
1191
1192 if (CONST_INT_P (op)
1193 && mode != VOIDmode
1194 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1195 return 0;
1196
1197 return (CONSTANT_P (op)
1198 && (GET_MODE (op) == mode || mode == VOIDmode
1199 || GET_MODE (op) == VOIDmode)
1200 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1201 && targetm.legitimate_constant_p (mode == VOIDmode
1202 ? GET_MODE (op)
1203 : mode, op));
1204 }
1205
1206 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1207
1208 int
1209 const_int_operand (rtx op, machine_mode mode)
1210 {
1211 if (!CONST_INT_P (op))
1212 return 0;
1213
1214 if (mode != VOIDmode
1215 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1216 return 0;
1217
1218 return 1;
1219 }
1220
1221 #if TARGET_SUPPORTS_WIDE_INT
1222 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1223 of mode MODE. */
1224 int
1225 const_scalar_int_operand (rtx op, machine_mode mode)
1226 {
1227 if (!CONST_SCALAR_INT_P (op))
1228 return 0;
1229
1230 if (CONST_INT_P (op))
1231 return const_int_operand (op, mode);
1232
1233 if (mode != VOIDmode)
1234 {
1235 int prec = GET_MODE_PRECISION (mode);
1236 int bitsize = GET_MODE_BITSIZE (mode);
1237
1238 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1239 return 0;
1240
1241 if (prec == bitsize)
1242 return 1;
1243 else
1244 {
1245 /* Multiword partial int. */
1246 HOST_WIDE_INT x
1247 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1248 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1249 }
1250 }
1251 return 1;
1252 }
1253
1254 /* Returns 1 if OP is an operand that is a constant integer or constant
1255 floating-point number of MODE. */
1256
1257 int
1258 const_double_operand (rtx op, machine_mode mode)
1259 {
1260 return (GET_CODE (op) == CONST_DOUBLE)
1261 && (GET_MODE (op) == mode || mode == VOIDmode);
1262 }
1263 #else
1264 /* Returns 1 if OP is an operand that is a constant integer or constant
1265 floating-point number of MODE. */
1266
1267 int
1268 const_double_operand (rtx op, machine_mode mode)
1269 {
1270 /* Don't accept CONST_INT or anything similar
1271 if the caller wants something floating. */
1272 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1273 && GET_MODE_CLASS (mode) != MODE_INT
1274 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1275 return 0;
1276
1277 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1278 && (mode == VOIDmode || GET_MODE (op) == mode
1279 || GET_MODE (op) == VOIDmode));
1280 }
1281 #endif
1282 /* Return 1 if OP is a general operand that is not an immediate
1283 operand of mode MODE. */
1284
1285 int
1286 nonimmediate_operand (rtx op, machine_mode mode)
1287 {
1288 return (general_operand (op, mode) && ! CONSTANT_P (op));
1289 }
1290
1291 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1292
1293 int
1294 nonmemory_operand (rtx op, machine_mode mode)
1295 {
1296 if (CONSTANT_P (op))
1297 return immediate_operand (op, mode);
1298 return register_operand (op, mode);
1299 }
1300
1301 /* Return 1 if OP is a valid operand that stands for pushing a
1302 value of mode MODE onto the stack.
1303
1304 The main use of this function is as a predicate in match_operand
1305 expressions in the machine description. */
1306
1307 int
1308 push_operand (rtx op, machine_mode mode)
1309 {
1310 unsigned int rounded_size = GET_MODE_SIZE (mode);
1311
1312 #ifdef PUSH_ROUNDING
1313 rounded_size = PUSH_ROUNDING (rounded_size);
1314 #endif
1315
1316 if (!MEM_P (op))
1317 return 0;
1318
1319 if (mode != VOIDmode && GET_MODE (op) != mode)
1320 return 0;
1321
1322 op = XEXP (op, 0);
1323
1324 if (rounded_size == GET_MODE_SIZE (mode))
1325 {
1326 if (GET_CODE (op) != STACK_PUSH_CODE)
1327 return 0;
1328 }
1329 else
1330 {
1331 if (GET_CODE (op) != PRE_MODIFY
1332 || GET_CODE (XEXP (op, 1)) != PLUS
1333 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1334 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1335 || INTVAL (XEXP (XEXP (op, 1), 1))
1336 != ((STACK_GROWS_DOWNWARD ? -1 : 1) * (int) rounded_size))
1337 return 0;
1338 }
1339
1340 return XEXP (op, 0) == stack_pointer_rtx;
1341 }
1342
1343 /* Return 1 if OP is a valid operand that stands for popping a
1344 value of mode MODE off the stack.
1345
1346 The main use of this function is as a predicate in match_operand
1347 expressions in the machine description. */
1348
1349 int
1350 pop_operand (rtx op, machine_mode mode)
1351 {
1352 if (!MEM_P (op))
1353 return 0;
1354
1355 if (mode != VOIDmode && GET_MODE (op) != mode)
1356 return 0;
1357
1358 op = XEXP (op, 0);
1359
1360 if (GET_CODE (op) != STACK_POP_CODE)
1361 return 0;
1362
1363 return XEXP (op, 0) == stack_pointer_rtx;
1364 }
1365
1366 /* Return 1 if ADDR is a valid memory address
1367 for mode MODE in address space AS. */
1368
1369 int
1370 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1371 rtx addr, addr_space_t as)
1372 {
1373 #ifdef GO_IF_LEGITIMATE_ADDRESS
1374 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1375 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1376 return 0;
1377
1378 win:
1379 return 1;
1380 #else
1381 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1382 #endif
1383 }
1384
1385 /* Return 1 if OP is a valid memory reference with mode MODE,
1386 including a valid address.
1387
1388 The main use of this function is as a predicate in match_operand
1389 expressions in the machine description. */
1390
1391 int
1392 memory_operand (rtx op, machine_mode mode)
1393 {
1394 rtx inner;
1395
1396 if (! reload_completed)
1397 /* Note that no SUBREG is a memory operand before end of reload pass,
1398 because (SUBREG (MEM...)) forces reloading into a register. */
1399 return MEM_P (op) && general_operand (op, mode);
1400
1401 if (mode != VOIDmode && GET_MODE (op) != mode)
1402 return 0;
1403
1404 inner = op;
1405 if (GET_CODE (inner) == SUBREG)
1406 inner = SUBREG_REG (inner);
1407
1408 return (MEM_P (inner) && general_operand (op, mode));
1409 }
1410
1411 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1412 that is, a memory reference whose address is a general_operand. */
1413
1414 int
1415 indirect_operand (rtx op, machine_mode mode)
1416 {
1417 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1418 if (! reload_completed
1419 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1420 {
1421 int offset = SUBREG_BYTE (op);
1422 rtx inner = SUBREG_REG (op);
1423
1424 if (mode != VOIDmode && GET_MODE (op) != mode)
1425 return 0;
1426
1427 /* The only way that we can have a general_operand as the resulting
1428 address is if OFFSET is zero and the address already is an operand
1429 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1430 operand. */
1431
1432 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1433 || (GET_CODE (XEXP (inner, 0)) == PLUS
1434 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1435 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1436 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1437 }
1438
1439 return (MEM_P (op)
1440 && memory_operand (op, mode)
1441 && general_operand (XEXP (op, 0), Pmode));
1442 }
1443
1444 /* Return 1 if this is an ordered comparison operator (not including
1445 ORDERED and UNORDERED). */
1446
1447 int
1448 ordered_comparison_operator (rtx op, machine_mode mode)
1449 {
1450 if (mode != VOIDmode && GET_MODE (op) != mode)
1451 return false;
1452 switch (GET_CODE (op))
1453 {
1454 case EQ:
1455 case NE:
1456 case LT:
1457 case LTU:
1458 case LE:
1459 case LEU:
1460 case GT:
1461 case GTU:
1462 case GE:
1463 case GEU:
1464 return true;
1465 default:
1466 return false;
1467 }
1468 }
1469
1470 /* Return 1 if this is a comparison operator. This allows the use of
1471 MATCH_OPERATOR to recognize all the branch insns. */
1472
1473 int
1474 comparison_operator (rtx op, machine_mode mode)
1475 {
1476 return ((mode == VOIDmode || GET_MODE (op) == mode)
1477 && COMPARISON_P (op));
1478 }
1479 \f
1480 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1481
1482 rtx
1483 extract_asm_operands (rtx body)
1484 {
1485 rtx tmp;
1486 switch (GET_CODE (body))
1487 {
1488 case ASM_OPERANDS:
1489 return body;
1490
1491 case SET:
1492 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1493 tmp = SET_SRC (body);
1494 if (GET_CODE (tmp) == ASM_OPERANDS)
1495 return tmp;
1496 break;
1497
1498 case PARALLEL:
1499 tmp = XVECEXP (body, 0, 0);
1500 if (GET_CODE (tmp) == ASM_OPERANDS)
1501 return tmp;
1502 if (GET_CODE (tmp) == SET)
1503 {
1504 tmp = SET_SRC (tmp);
1505 if (GET_CODE (tmp) == ASM_OPERANDS)
1506 return tmp;
1507 }
1508 break;
1509
1510 default:
1511 break;
1512 }
1513 return NULL;
1514 }
1515
1516 /* If BODY is an insn body that uses ASM_OPERANDS,
1517 return the number of operands (both input and output) in the insn.
1518 Otherwise return -1. */
1519
1520 int
1521 asm_noperands (const_rtx body)
1522 {
1523 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1524 int n_sets = 0;
1525
1526 if (asm_op == NULL)
1527 return -1;
1528
1529 if (GET_CODE (body) == SET)
1530 n_sets = 1;
1531 else if (GET_CODE (body) == PARALLEL)
1532 {
1533 int i;
1534 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1535 {
1536 /* Multiple output operands, or 1 output plus some clobbers:
1537 body is
1538 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1539 /* Count backwards through CLOBBERs to determine number of SETs. */
1540 for (i = XVECLEN (body, 0); i > 0; i--)
1541 {
1542 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1543 break;
1544 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1545 return -1;
1546 }
1547
1548 /* N_SETS is now number of output operands. */
1549 n_sets = i;
1550
1551 /* Verify that all the SETs we have
1552 came from a single original asm_operands insn
1553 (so that invalid combinations are blocked). */
1554 for (i = 0; i < n_sets; i++)
1555 {
1556 rtx elt = XVECEXP (body, 0, i);
1557 if (GET_CODE (elt) != SET)
1558 return -1;
1559 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1560 return -1;
1561 /* If these ASM_OPERANDS rtx's came from different original insns
1562 then they aren't allowed together. */
1563 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1564 != ASM_OPERANDS_INPUT_VEC (asm_op))
1565 return -1;
1566 }
1567 }
1568 else
1569 {
1570 /* 0 outputs, but some clobbers:
1571 body is [(asm_operands ...) (clobber (reg ...))...]. */
1572 /* Make sure all the other parallel things really are clobbers. */
1573 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1574 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1575 return -1;
1576 }
1577 }
1578
1579 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1580 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1581 }
1582
1583 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1584 copy its operands (both input and output) into the vector OPERANDS,
1585 the locations of the operands within the insn into the vector OPERAND_LOCS,
1586 and the constraints for the operands into CONSTRAINTS.
1587 Write the modes of the operands into MODES.
1588 Return the assembler-template.
1589
1590 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1591 we don't store that info. */
1592
1593 const char *
1594 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1595 const char **constraints, machine_mode *modes,
1596 location_t *loc)
1597 {
1598 int nbase = 0, n, i;
1599 rtx asmop;
1600
1601 switch (GET_CODE (body))
1602 {
1603 case ASM_OPERANDS:
1604 /* Zero output asm: BODY is (asm_operands ...). */
1605 asmop = body;
1606 break;
1607
1608 case SET:
1609 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1610 asmop = SET_SRC (body);
1611
1612 /* The output is in the SET.
1613 Its constraint is in the ASM_OPERANDS itself. */
1614 if (operands)
1615 operands[0] = SET_DEST (body);
1616 if (operand_locs)
1617 operand_locs[0] = &SET_DEST (body);
1618 if (constraints)
1619 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1620 if (modes)
1621 modes[0] = GET_MODE (SET_DEST (body));
1622 nbase = 1;
1623 break;
1624
1625 case PARALLEL:
1626 {
1627 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1628
1629 asmop = XVECEXP (body, 0, 0);
1630 if (GET_CODE (asmop) == SET)
1631 {
1632 asmop = SET_SRC (asmop);
1633
1634 /* At least one output, plus some CLOBBERs. The outputs are in
1635 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1636 for (i = 0; i < nparallel; i++)
1637 {
1638 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1639 break; /* Past last SET */
1640 if (operands)
1641 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1642 if (operand_locs)
1643 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1644 if (constraints)
1645 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1646 if (modes)
1647 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1648 }
1649 nbase = i;
1650 }
1651 break;
1652 }
1653
1654 default:
1655 gcc_unreachable ();
1656 }
1657
1658 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1659 for (i = 0; i < n; i++)
1660 {
1661 if (operand_locs)
1662 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1663 if (operands)
1664 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1665 if (constraints)
1666 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1667 if (modes)
1668 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1669 }
1670 nbase += n;
1671
1672 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1673 for (i = 0; i < n; i++)
1674 {
1675 if (operand_locs)
1676 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1677 if (operands)
1678 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1679 if (constraints)
1680 constraints[nbase + i] = "";
1681 if (modes)
1682 modes[nbase + i] = Pmode;
1683 }
1684
1685 if (loc)
1686 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1687
1688 return ASM_OPERANDS_TEMPLATE (asmop);
1689 }
1690
1691 /* Parse inline assembly string STRING and determine which operands are
1692 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1693 to true if operand I is referenced.
1694
1695 This is intended to distinguish barrier-like asms such as:
1696
1697 asm ("" : "=m" (...));
1698
1699 from real references such as:
1700
1701 asm ("sw\t$0, %0" : "=m" (...)); */
1702
1703 void
1704 get_referenced_operands (const char *string, bool *used,
1705 unsigned int noperands)
1706 {
1707 memset (used, 0, sizeof (bool) * noperands);
1708 const char *p = string;
1709 while (*p)
1710 switch (*p)
1711 {
1712 case '%':
1713 p += 1;
1714 /* A letter followed by a digit indicates an operand number. */
1715 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1716 p += 1;
1717 if (ISDIGIT (*p))
1718 {
1719 char *endptr;
1720 unsigned long opnum = strtoul (p, &endptr, 10);
1721 if (endptr != p && opnum < noperands)
1722 used[opnum] = true;
1723 p = endptr;
1724 }
1725 else
1726 p += 1;
1727 break;
1728
1729 default:
1730 p++;
1731 break;
1732 }
1733 }
1734
1735 /* Check if an asm_operand matches its constraints.
1736 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1737
1738 int
1739 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1740 {
1741 int result = 0;
1742 #ifdef AUTO_INC_DEC
1743 bool incdec_ok = false;
1744 #endif
1745
1746 /* Use constrain_operands after reload. */
1747 gcc_assert (!reload_completed);
1748
1749 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1750 many alternatives as required to match the other operands. */
1751 if (*constraint == '\0')
1752 result = 1;
1753
1754 while (*constraint)
1755 {
1756 enum constraint_num cn;
1757 char c = *constraint;
1758 int len;
1759 switch (c)
1760 {
1761 case ',':
1762 constraint++;
1763 continue;
1764
1765 case '0': case '1': case '2': case '3': case '4':
1766 case '5': case '6': case '7': case '8': case '9':
1767 /* If caller provided constraints pointer, look up
1768 the matching constraint. Otherwise, our caller should have
1769 given us the proper matching constraint, but we can't
1770 actually fail the check if they didn't. Indicate that
1771 results are inconclusive. */
1772 if (constraints)
1773 {
1774 char *end;
1775 unsigned long match;
1776
1777 match = strtoul (constraint, &end, 10);
1778 if (!result)
1779 result = asm_operand_ok (op, constraints[match], NULL);
1780 constraint = (const char *) end;
1781 }
1782 else
1783 {
1784 do
1785 constraint++;
1786 while (ISDIGIT (*constraint));
1787 if (! result)
1788 result = -1;
1789 }
1790 continue;
1791
1792 /* The rest of the compiler assumes that reloading the address
1793 of a MEM into a register will make it fit an 'o' constraint.
1794 That is, if it sees a MEM operand for an 'o' constraint,
1795 it assumes that (mem (base-reg)) will fit.
1796
1797 That assumption fails on targets that don't have offsettable
1798 addresses at all. We therefore need to treat 'o' asm
1799 constraints as a special case and only accept operands that
1800 are already offsettable, thus proving that at least one
1801 offsettable address exists. */
1802 case 'o': /* offsettable */
1803 if (offsettable_nonstrict_memref_p (op))
1804 result = 1;
1805 break;
1806
1807 case 'g':
1808 if (general_operand (op, VOIDmode))
1809 result = 1;
1810 break;
1811
1812 #ifdef AUTO_INC_DEC
1813 case '<':
1814 case '>':
1815 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1816 to exist, excepting those that expand_call created. Further,
1817 on some machines which do not have generalized auto inc/dec,
1818 an inc/dec is not a memory_operand.
1819
1820 Match any memory and hope things are resolved after reload. */
1821 incdec_ok = true;
1822 #endif
1823 default:
1824 cn = lookup_constraint (constraint);
1825 switch (get_constraint_type (cn))
1826 {
1827 case CT_REGISTER:
1828 if (!result
1829 && reg_class_for_constraint (cn) != NO_REGS
1830 && GET_MODE (op) != BLKmode
1831 && register_operand (op, VOIDmode))
1832 result = 1;
1833 break;
1834
1835 case CT_CONST_INT:
1836 if (!result
1837 && CONST_INT_P (op)
1838 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1839 result = 1;
1840 break;
1841
1842 case CT_MEMORY:
1843 /* Every memory operand can be reloaded to fit. */
1844 result = result || memory_operand (op, VOIDmode);
1845 break;
1846
1847 case CT_ADDRESS:
1848 /* Every address operand can be reloaded to fit. */
1849 result = result || address_operand (op, VOIDmode);
1850 break;
1851
1852 case CT_FIXED_FORM:
1853 result = result || constraint_satisfied_p (op, cn);
1854 break;
1855 }
1856 break;
1857 }
1858 len = CONSTRAINT_LEN (c, constraint);
1859 do
1860 constraint++;
1861 while (--len && *constraint);
1862 if (len)
1863 return 0;
1864 }
1865
1866 #ifdef AUTO_INC_DEC
1867 /* For operands without < or > constraints reject side-effects. */
1868 if (!incdec_ok && result && MEM_P (op))
1869 switch (GET_CODE (XEXP (op, 0)))
1870 {
1871 case PRE_INC:
1872 case POST_INC:
1873 case PRE_DEC:
1874 case POST_DEC:
1875 case PRE_MODIFY:
1876 case POST_MODIFY:
1877 return 0;
1878 default:
1879 break;
1880 }
1881 #endif
1882
1883 return result;
1884 }
1885 \f
1886 /* Given an rtx *P, if it is a sum containing an integer constant term,
1887 return the location (type rtx *) of the pointer to that constant term.
1888 Otherwise, return a null pointer. */
1889
1890 rtx *
1891 find_constant_term_loc (rtx *p)
1892 {
1893 rtx *tem;
1894 enum rtx_code code = GET_CODE (*p);
1895
1896 /* If *P IS such a constant term, P is its location. */
1897
1898 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1899 || code == CONST)
1900 return p;
1901
1902 /* Otherwise, if not a sum, it has no constant term. */
1903
1904 if (GET_CODE (*p) != PLUS)
1905 return 0;
1906
1907 /* If one of the summands is constant, return its location. */
1908
1909 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1910 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1911 return p;
1912
1913 /* Otherwise, check each summand for containing a constant term. */
1914
1915 if (XEXP (*p, 0) != 0)
1916 {
1917 tem = find_constant_term_loc (&XEXP (*p, 0));
1918 if (tem != 0)
1919 return tem;
1920 }
1921
1922 if (XEXP (*p, 1) != 0)
1923 {
1924 tem = find_constant_term_loc (&XEXP (*p, 1));
1925 if (tem != 0)
1926 return tem;
1927 }
1928
1929 return 0;
1930 }
1931 \f
1932 /* Return 1 if OP is a memory reference
1933 whose address contains no side effects
1934 and remains valid after the addition
1935 of a positive integer less than the
1936 size of the object being referenced.
1937
1938 We assume that the original address is valid and do not check it.
1939
1940 This uses strict_memory_address_p as a subroutine, so
1941 don't use it before reload. */
1942
1943 int
1944 offsettable_memref_p (rtx op)
1945 {
1946 return ((MEM_P (op))
1947 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1948 MEM_ADDR_SPACE (op)));
1949 }
1950
1951 /* Similar, but don't require a strictly valid mem ref:
1952 consider pseudo-regs valid as index or base regs. */
1953
1954 int
1955 offsettable_nonstrict_memref_p (rtx op)
1956 {
1957 return ((MEM_P (op))
1958 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1959 MEM_ADDR_SPACE (op)));
1960 }
1961
1962 /* Return 1 if Y is a memory address which contains no side effects
1963 and would remain valid for address space AS after the addition of
1964 a positive integer less than the size of that mode.
1965
1966 We assume that the original address is valid and do not check it.
1967 We do check that it is valid for narrower modes.
1968
1969 If STRICTP is nonzero, we require a strictly valid address,
1970 for the sake of use in reload.c. */
1971
1972 int
1973 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1974 addr_space_t as)
1975 {
1976 enum rtx_code ycode = GET_CODE (y);
1977 rtx z;
1978 rtx y1 = y;
1979 rtx *y2;
1980 int (*addressp) (machine_mode, rtx, addr_space_t) =
1981 (strictp ? strict_memory_address_addr_space_p
1982 : memory_address_addr_space_p);
1983 unsigned int mode_sz = GET_MODE_SIZE (mode);
1984
1985 if (CONSTANT_ADDRESS_P (y))
1986 return 1;
1987
1988 /* Adjusting an offsettable address involves changing to a narrower mode.
1989 Make sure that's OK. */
1990
1991 if (mode_dependent_address_p (y, as))
1992 return 0;
1993
1994 machine_mode address_mode = GET_MODE (y);
1995 if (address_mode == VOIDmode)
1996 address_mode = targetm.addr_space.address_mode (as);
1997 #ifdef POINTERS_EXTEND_UNSIGNED
1998 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1999 #endif
2000
2001 /* ??? How much offset does an offsettable BLKmode reference need?
2002 Clearly that depends on the situation in which it's being used.
2003 However, the current situation in which we test 0xffffffff is
2004 less than ideal. Caveat user. */
2005 if (mode_sz == 0)
2006 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
2007
2008 /* If the expression contains a constant term,
2009 see if it remains valid when max possible offset is added. */
2010
2011 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
2012 {
2013 int good;
2014
2015 y1 = *y2;
2016 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
2017 /* Use QImode because an odd displacement may be automatically invalid
2018 for any wider mode. But it should be valid for a single byte. */
2019 good = (*addressp) (QImode, y, as);
2020
2021 /* In any case, restore old contents of memory. */
2022 *y2 = y1;
2023 return good;
2024 }
2025
2026 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
2027 return 0;
2028
2029 /* The offset added here is chosen as the maximum offset that
2030 any instruction could need to add when operating on something
2031 of the specified mode. We assume that if Y and Y+c are
2032 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2033 go inside a LO_SUM here, so we do so as well. */
2034 if (GET_CODE (y) == LO_SUM
2035 && mode != BLKmode
2036 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2037 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2038 plus_constant (address_mode, XEXP (y, 1),
2039 mode_sz - 1));
2040 #ifdef POINTERS_EXTEND_UNSIGNED
2041 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2042 else if (POINTERS_EXTEND_UNSIGNED > 0
2043 && GET_CODE (y) == ZERO_EXTEND
2044 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2045 z = gen_rtx_ZERO_EXTEND (address_mode,
2046 plus_constant (pointer_mode, XEXP (y, 0),
2047 mode_sz - 1));
2048 #endif
2049 else
2050 z = plus_constant (address_mode, y, mode_sz - 1);
2051
2052 /* Use QImode because an odd displacement may be automatically invalid
2053 for any wider mode. But it should be valid for a single byte. */
2054 return (*addressp) (QImode, z, as);
2055 }
2056
2057 /* Return 1 if ADDR is an address-expression whose effect depends
2058 on the mode of the memory reference it is used in.
2059
2060 ADDRSPACE is the address space associated with the address.
2061
2062 Autoincrement addressing is a typical example of mode-dependence
2063 because the amount of the increment depends on the mode. */
2064
2065 bool
2066 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2067 {
2068 /* Auto-increment addressing with anything other than post_modify
2069 or pre_modify always introduces a mode dependency. Catch such
2070 cases now instead of deferring to the target. */
2071 if (GET_CODE (addr) == PRE_INC
2072 || GET_CODE (addr) == POST_INC
2073 || GET_CODE (addr) == PRE_DEC
2074 || GET_CODE (addr) == POST_DEC)
2075 return true;
2076
2077 return targetm.mode_dependent_address_p (addr, addrspace);
2078 }
2079 \f
2080 /* Return true if boolean attribute ATTR is supported. */
2081
2082 static bool
2083 have_bool_attr (bool_attr attr)
2084 {
2085 switch (attr)
2086 {
2087 case BA_ENABLED:
2088 return HAVE_ATTR_enabled;
2089 case BA_PREFERRED_FOR_SIZE:
2090 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2091 case BA_PREFERRED_FOR_SPEED:
2092 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2093 }
2094 gcc_unreachable ();
2095 }
2096
2097 /* Return the value of ATTR for instruction INSN. */
2098
2099 static bool
2100 get_bool_attr (rtx_insn *insn, bool_attr attr)
2101 {
2102 switch (attr)
2103 {
2104 case BA_ENABLED:
2105 return get_attr_enabled (insn);
2106 case BA_PREFERRED_FOR_SIZE:
2107 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2108 case BA_PREFERRED_FOR_SPEED:
2109 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2110 }
2111 gcc_unreachable ();
2112 }
2113
2114 /* Like get_bool_attr_mask, but don't use the cache. */
2115
2116 static alternative_mask
2117 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2118 {
2119 /* Temporarily install enough information for get_attr_<foo> to assume
2120 that the insn operands are already cached. As above, the attribute
2121 mustn't depend on the values of operands, so we don't provide their
2122 real values here. */
2123 rtx_insn *old_insn = recog_data.insn;
2124 int old_alternative = which_alternative;
2125
2126 recog_data.insn = insn;
2127 alternative_mask mask = ALL_ALTERNATIVES;
2128 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2129 for (int i = 0; i < n_alternatives; i++)
2130 {
2131 which_alternative = i;
2132 if (!get_bool_attr (insn, attr))
2133 mask &= ~ALTERNATIVE_BIT (i);
2134 }
2135
2136 recog_data.insn = old_insn;
2137 which_alternative = old_alternative;
2138 return mask;
2139 }
2140
2141 /* Return the mask of operand alternatives that are allowed for INSN
2142 by boolean attribute ATTR. This mask depends only on INSN and on
2143 the current target; it does not depend on things like the values of
2144 operands. */
2145
2146 static alternative_mask
2147 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2148 {
2149 /* Quick exit for asms and for targets that don't use these attributes. */
2150 int code = INSN_CODE (insn);
2151 if (code < 0 || !have_bool_attr (attr))
2152 return ALL_ALTERNATIVES;
2153
2154 /* Calling get_attr_<foo> can be expensive, so cache the mask
2155 for speed. */
2156 if (!this_target_recog->x_bool_attr_masks[code][attr])
2157 this_target_recog->x_bool_attr_masks[code][attr]
2158 = get_bool_attr_mask_uncached (insn, attr);
2159 return this_target_recog->x_bool_attr_masks[code][attr];
2160 }
2161
2162 /* Return the set of alternatives of INSN that are allowed by the current
2163 target. */
2164
2165 alternative_mask
2166 get_enabled_alternatives (rtx_insn *insn)
2167 {
2168 return get_bool_attr_mask (insn, BA_ENABLED);
2169 }
2170
2171 /* Return the set of alternatives of INSN that are allowed by the current
2172 target and are preferred for the current size/speed optimization
2173 choice. */
2174
2175 alternative_mask
2176 get_preferred_alternatives (rtx_insn *insn)
2177 {
2178 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2179 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2180 else
2181 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2182 }
2183
2184 /* Return the set of alternatives of INSN that are allowed by the current
2185 target and are preferred for the size/speed optimization choice
2186 associated with BB. Passing a separate BB is useful if INSN has not
2187 been emitted yet or if we are considering moving it to a different
2188 block. */
2189
2190 alternative_mask
2191 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2192 {
2193 if (optimize_bb_for_speed_p (bb))
2194 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2195 else
2196 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2197 }
2198
2199 /* Assert that the cached boolean attributes for INSN are still accurate.
2200 The backend is required to define these attributes in a way that only
2201 depends on the current target (rather than operands, compiler phase,
2202 etc.). */
2203
2204 bool
2205 check_bool_attrs (rtx_insn *insn)
2206 {
2207 int code = INSN_CODE (insn);
2208 if (code >= 0)
2209 for (int i = 0; i <= BA_LAST; ++i)
2210 {
2211 enum bool_attr attr = (enum bool_attr) i;
2212 if (this_target_recog->x_bool_attr_masks[code][attr])
2213 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2214 == get_bool_attr_mask_uncached (insn, attr));
2215 }
2216 return true;
2217 }
2218
2219 /* Like extract_insn, but save insn extracted and don't extract again, when
2220 called again for the same insn expecting that recog_data still contain the
2221 valid information. This is used primary by gen_attr infrastructure that
2222 often does extract insn again and again. */
2223 void
2224 extract_insn_cached (rtx_insn *insn)
2225 {
2226 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2227 return;
2228 extract_insn (insn);
2229 recog_data.insn = insn;
2230 }
2231
2232 /* Do uncached extract_insn, constrain_operands and complain about failures.
2233 This should be used when extracting a pre-existing constrained instruction
2234 if the caller wants to know which alternative was chosen. */
2235 void
2236 extract_constrain_insn (rtx_insn *insn)
2237 {
2238 extract_insn (insn);
2239 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2240 fatal_insn_not_found (insn);
2241 }
2242
2243 /* Do cached extract_insn, constrain_operands and complain about failures.
2244 Used by insn_attrtab. */
2245 void
2246 extract_constrain_insn_cached (rtx_insn *insn)
2247 {
2248 extract_insn_cached (insn);
2249 if (which_alternative == -1
2250 && !constrain_operands (reload_completed,
2251 get_enabled_alternatives (insn)))
2252 fatal_insn_not_found (insn);
2253 }
2254
2255 /* Do cached constrain_operands on INSN and complain about failures. */
2256 int
2257 constrain_operands_cached (rtx_insn *insn, int strict)
2258 {
2259 if (which_alternative == -1)
2260 return constrain_operands (strict, get_enabled_alternatives (insn));
2261 else
2262 return 1;
2263 }
2264 \f
2265 /* Analyze INSN and fill in recog_data. */
2266
2267 void
2268 extract_insn (rtx_insn *insn)
2269 {
2270 int i;
2271 int icode;
2272 int noperands;
2273 rtx body = PATTERN (insn);
2274
2275 recog_data.n_operands = 0;
2276 recog_data.n_alternatives = 0;
2277 recog_data.n_dups = 0;
2278 recog_data.is_asm = false;
2279
2280 switch (GET_CODE (body))
2281 {
2282 case USE:
2283 case CLOBBER:
2284 case ASM_INPUT:
2285 case ADDR_VEC:
2286 case ADDR_DIFF_VEC:
2287 case VAR_LOCATION:
2288 return;
2289
2290 case SET:
2291 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2292 goto asm_insn;
2293 else
2294 goto normal_insn;
2295 case PARALLEL:
2296 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2297 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2298 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2299 goto asm_insn;
2300 else
2301 goto normal_insn;
2302 case ASM_OPERANDS:
2303 asm_insn:
2304 recog_data.n_operands = noperands = asm_noperands (body);
2305 if (noperands >= 0)
2306 {
2307 /* This insn is an `asm' with operands. */
2308
2309 /* expand_asm_operands makes sure there aren't too many operands. */
2310 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2311
2312 /* Now get the operand values and constraints out of the insn. */
2313 decode_asm_operands (body, recog_data.operand,
2314 recog_data.operand_loc,
2315 recog_data.constraints,
2316 recog_data.operand_mode, NULL);
2317 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2318 if (noperands > 0)
2319 {
2320 const char *p = recog_data.constraints[0];
2321 recog_data.n_alternatives = 1;
2322 while (*p)
2323 recog_data.n_alternatives += (*p++ == ',');
2324 }
2325 recog_data.is_asm = true;
2326 break;
2327 }
2328 fatal_insn_not_found (insn);
2329
2330 default:
2331 normal_insn:
2332 /* Ordinary insn: recognize it, get the operands via insn_extract
2333 and get the constraints. */
2334
2335 icode = recog_memoized (insn);
2336 if (icode < 0)
2337 fatal_insn_not_found (insn);
2338
2339 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2340 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2341 recog_data.n_dups = insn_data[icode].n_dups;
2342
2343 insn_extract (insn);
2344
2345 for (i = 0; i < noperands; i++)
2346 {
2347 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2348 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2349 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2350 /* VOIDmode match_operands gets mode from their real operand. */
2351 if (recog_data.operand_mode[i] == VOIDmode)
2352 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2353 }
2354 }
2355 for (i = 0; i < noperands; i++)
2356 recog_data.operand_type[i]
2357 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2358 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2359 : OP_IN);
2360
2361 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2362
2363 recog_data.insn = NULL;
2364 which_alternative = -1;
2365 }
2366
2367 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2368 N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2369 OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2370 has N_OPERANDS entries. */
2371
2372 void
2373 preprocess_constraints (int n_operands, int n_alternatives,
2374 const char **constraints,
2375 operand_alternative *op_alt_base)
2376 {
2377 for (int i = 0; i < n_operands; i++)
2378 {
2379 int j;
2380 struct operand_alternative *op_alt;
2381 const char *p = constraints[i];
2382
2383 op_alt = op_alt_base;
2384
2385 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2386 {
2387 op_alt[i].cl = NO_REGS;
2388 op_alt[i].constraint = p;
2389 op_alt[i].matches = -1;
2390 op_alt[i].matched = -1;
2391
2392 if (*p == '\0' || *p == ',')
2393 {
2394 op_alt[i].anything_ok = 1;
2395 continue;
2396 }
2397
2398 for (;;)
2399 {
2400 char c = *p;
2401 if (c == '#')
2402 do
2403 c = *++p;
2404 while (c != ',' && c != '\0');
2405 if (c == ',' || c == '\0')
2406 {
2407 p++;
2408 break;
2409 }
2410
2411 switch (c)
2412 {
2413 case '?':
2414 op_alt[i].reject += 6;
2415 break;
2416 case '!':
2417 op_alt[i].reject += 600;
2418 break;
2419 case '&':
2420 op_alt[i].earlyclobber = 1;
2421 break;
2422
2423 case '0': case '1': case '2': case '3': case '4':
2424 case '5': case '6': case '7': case '8': case '9':
2425 {
2426 char *end;
2427 op_alt[i].matches = strtoul (p, &end, 10);
2428 op_alt[op_alt[i].matches].matched = i;
2429 p = end;
2430 }
2431 continue;
2432
2433 case 'X':
2434 op_alt[i].anything_ok = 1;
2435 break;
2436
2437 case 'g':
2438 op_alt[i].cl =
2439 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2440 break;
2441
2442 default:
2443 enum constraint_num cn = lookup_constraint (p);
2444 enum reg_class cl;
2445 switch (get_constraint_type (cn))
2446 {
2447 case CT_REGISTER:
2448 cl = reg_class_for_constraint (cn);
2449 if (cl != NO_REGS)
2450 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2451 break;
2452
2453 case CT_CONST_INT:
2454 break;
2455
2456 case CT_MEMORY:
2457 op_alt[i].memory_ok = 1;
2458 break;
2459
2460 case CT_ADDRESS:
2461 op_alt[i].is_address = 1;
2462 op_alt[i].cl
2463 = (reg_class_subunion
2464 [(int) op_alt[i].cl]
2465 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2466 ADDRESS, SCRATCH)]);
2467 break;
2468
2469 case CT_FIXED_FORM:
2470 break;
2471 }
2472 break;
2473 }
2474 p += CONSTRAINT_LEN (c, p);
2475 }
2476 }
2477 }
2478 }
2479
2480 /* Return an array of operand_alternative instructions for
2481 instruction ICODE. */
2482
2483 const operand_alternative *
2484 preprocess_insn_constraints (int icode)
2485 {
2486 gcc_checking_assert (IN_RANGE (icode, 0, LAST_INSN_CODE));
2487 if (this_target_recog->x_op_alt[icode])
2488 return this_target_recog->x_op_alt[icode];
2489
2490 int n_operands = insn_data[icode].n_operands;
2491 if (n_operands == 0)
2492 return 0;
2493 /* Always provide at least one alternative so that which_op_alt ()
2494 works correctly. If the instruction has 0 alternatives (i.e. all
2495 constraint strings are empty) then each operand in this alternative
2496 will have anything_ok set. */
2497 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2498 int n_entries = n_operands * n_alternatives;
2499
2500 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2501 const char **constraints = XALLOCAVEC (const char *, n_operands);
2502
2503 for (int i = 0; i < n_operands; ++i)
2504 constraints[i] = insn_data[icode].operand[i].constraint;
2505 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt);
2506
2507 this_target_recog->x_op_alt[icode] = op_alt;
2508 return op_alt;
2509 }
2510
2511 /* After calling extract_insn, you can use this function to extract some
2512 information from the constraint strings into a more usable form.
2513 The collected data is stored in recog_op_alt. */
2514
2515 void
2516 preprocess_constraints (rtx_insn *insn)
2517 {
2518 int icode = INSN_CODE (insn);
2519 if (icode >= 0)
2520 recog_op_alt = preprocess_insn_constraints (icode);
2521 else
2522 {
2523 int n_operands = recog_data.n_operands;
2524 int n_alternatives = recog_data.n_alternatives;
2525 int n_entries = n_operands * n_alternatives;
2526 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2527 preprocess_constraints (n_operands, n_alternatives,
2528 recog_data.constraints, asm_op_alt);
2529 recog_op_alt = asm_op_alt;
2530 }
2531 }
2532
2533 /* Check the operands of an insn against the insn's operand constraints
2534 and return 1 if they match any of the alternatives in ALTERNATIVES.
2535
2536 The information about the insn's operands, constraints, operand modes
2537 etc. is obtained from the global variables set up by extract_insn.
2538
2539 WHICH_ALTERNATIVE is set to a number which indicates which
2540 alternative of constraints was matched: 0 for the first alternative,
2541 1 for the next, etc.
2542
2543 In addition, when two operands are required to match
2544 and it happens that the output operand is (reg) while the
2545 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2546 make the output operand look like the input.
2547 This is because the output operand is the one the template will print.
2548
2549 This is used in final, just before printing the assembler code and by
2550 the routines that determine an insn's attribute.
2551
2552 If STRICT is a positive nonzero value, it means that we have been
2553 called after reload has been completed. In that case, we must
2554 do all checks strictly. If it is zero, it means that we have been called
2555 before reload has completed. In that case, we first try to see if we can
2556 find an alternative that matches strictly. If not, we try again, this
2557 time assuming that reload will fix up the insn. This provides a "best
2558 guess" for the alternative and is used to compute attributes of insns prior
2559 to reload. A negative value of STRICT is used for this internal call. */
2560
2561 struct funny_match
2562 {
2563 int this_op, other;
2564 };
2565
2566 int
2567 constrain_operands (int strict, alternative_mask alternatives)
2568 {
2569 const char *constraints[MAX_RECOG_OPERANDS];
2570 int matching_operands[MAX_RECOG_OPERANDS];
2571 int earlyclobber[MAX_RECOG_OPERANDS];
2572 int c;
2573
2574 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2575 int funny_match_index;
2576
2577 which_alternative = 0;
2578 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2579 return 1;
2580
2581 for (c = 0; c < recog_data.n_operands; c++)
2582 {
2583 constraints[c] = recog_data.constraints[c];
2584 matching_operands[c] = -1;
2585 }
2586
2587 do
2588 {
2589 int seen_earlyclobber_at = -1;
2590 int opno;
2591 int lose = 0;
2592 funny_match_index = 0;
2593
2594 if (!TEST_BIT (alternatives, which_alternative))
2595 {
2596 int i;
2597
2598 for (i = 0; i < recog_data.n_operands; i++)
2599 constraints[i] = skip_alternative (constraints[i]);
2600
2601 which_alternative++;
2602 continue;
2603 }
2604
2605 for (opno = 0; opno < recog_data.n_operands; opno++)
2606 {
2607 rtx op = recog_data.operand[opno];
2608 machine_mode mode = GET_MODE (op);
2609 const char *p = constraints[opno];
2610 int offset = 0;
2611 int win = 0;
2612 int val;
2613 int len;
2614
2615 earlyclobber[opno] = 0;
2616
2617 /* A unary operator may be accepted by the predicate, but it
2618 is irrelevant for matching constraints. */
2619 if (UNARY_P (op))
2620 op = XEXP (op, 0);
2621
2622 if (GET_CODE (op) == SUBREG)
2623 {
2624 if (REG_P (SUBREG_REG (op))
2625 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2626 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2627 GET_MODE (SUBREG_REG (op)),
2628 SUBREG_BYTE (op),
2629 GET_MODE (op));
2630 op = SUBREG_REG (op);
2631 }
2632
2633 /* An empty constraint or empty alternative
2634 allows anything which matched the pattern. */
2635 if (*p == 0 || *p == ',')
2636 win = 1;
2637
2638 do
2639 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2640 {
2641 case '\0':
2642 len = 0;
2643 break;
2644 case ',':
2645 c = '\0';
2646 break;
2647
2648 case '#':
2649 /* Ignore rest of this alternative as far as
2650 constraint checking is concerned. */
2651 do
2652 p++;
2653 while (*p && *p != ',');
2654 len = 0;
2655 break;
2656
2657 case '&':
2658 earlyclobber[opno] = 1;
2659 if (seen_earlyclobber_at < 0)
2660 seen_earlyclobber_at = opno;
2661 break;
2662
2663 case '0': case '1': case '2': case '3': case '4':
2664 case '5': case '6': case '7': case '8': case '9':
2665 {
2666 /* This operand must be the same as a previous one.
2667 This kind of constraint is used for instructions such
2668 as add when they take only two operands.
2669
2670 Note that the lower-numbered operand is passed first.
2671
2672 If we are not testing strictly, assume that this
2673 constraint will be satisfied. */
2674
2675 char *end;
2676 int match;
2677
2678 match = strtoul (p, &end, 10);
2679 p = end;
2680
2681 if (strict < 0)
2682 val = 1;
2683 else
2684 {
2685 rtx op1 = recog_data.operand[match];
2686 rtx op2 = recog_data.operand[opno];
2687
2688 /* A unary operator may be accepted by the predicate,
2689 but it is irrelevant for matching constraints. */
2690 if (UNARY_P (op1))
2691 op1 = XEXP (op1, 0);
2692 if (UNARY_P (op2))
2693 op2 = XEXP (op2, 0);
2694
2695 val = operands_match_p (op1, op2);
2696 }
2697
2698 matching_operands[opno] = match;
2699 matching_operands[match] = opno;
2700
2701 if (val != 0)
2702 win = 1;
2703
2704 /* If output is *x and input is *--x, arrange later
2705 to change the output to *--x as well, since the
2706 output op is the one that will be printed. */
2707 if (val == 2 && strict > 0)
2708 {
2709 funny_match[funny_match_index].this_op = opno;
2710 funny_match[funny_match_index++].other = match;
2711 }
2712 }
2713 len = 0;
2714 break;
2715
2716 case 'p':
2717 /* p is used for address_operands. When we are called by
2718 gen_reload, no one will have checked that the address is
2719 strictly valid, i.e., that all pseudos requiring hard regs
2720 have gotten them. */
2721 if (strict <= 0
2722 || (strict_memory_address_p (recog_data.operand_mode[opno],
2723 op)))
2724 win = 1;
2725 break;
2726
2727 /* No need to check general_operand again;
2728 it was done in insn-recog.c. Well, except that reload
2729 doesn't check the validity of its replacements, but
2730 that should only matter when there's a bug. */
2731 case 'g':
2732 /* Anything goes unless it is a REG and really has a hard reg
2733 but the hard reg is not in the class GENERAL_REGS. */
2734 if (REG_P (op))
2735 {
2736 if (strict < 0
2737 || GENERAL_REGS == ALL_REGS
2738 || (reload_in_progress
2739 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2740 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2741 win = 1;
2742 }
2743 else if (strict < 0 || general_operand (op, mode))
2744 win = 1;
2745 break;
2746
2747 default:
2748 {
2749 enum constraint_num cn = lookup_constraint (p);
2750 enum reg_class cl = reg_class_for_constraint (cn);
2751 if (cl != NO_REGS)
2752 {
2753 if (strict < 0
2754 || (strict == 0
2755 && REG_P (op)
2756 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2757 || (strict == 0 && GET_CODE (op) == SCRATCH)
2758 || (REG_P (op)
2759 && reg_fits_class_p (op, cl, offset, mode)))
2760 win = 1;
2761 }
2762
2763 else if (constraint_satisfied_p (op, cn))
2764 win = 1;
2765
2766 else if (insn_extra_memory_constraint (cn)
2767 /* Every memory operand can be reloaded to fit. */
2768 && ((strict < 0 && MEM_P (op))
2769 /* Before reload, accept what reload can turn
2770 into a mem. */
2771 || (strict < 0 && CONSTANT_P (op))
2772 /* Before reload, accept a pseudo,
2773 since LRA can turn it into a mem. */
2774 || (strict < 0 && targetm.lra_p () && REG_P (op)
2775 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2776 /* During reload, accept a pseudo */
2777 || (reload_in_progress && REG_P (op)
2778 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2779 win = 1;
2780 else if (insn_extra_address_constraint (cn)
2781 /* Every address operand can be reloaded to fit. */
2782 && strict < 0)
2783 win = 1;
2784 /* Cater to architectures like IA-64 that define extra memory
2785 constraints without using define_memory_constraint. */
2786 else if (reload_in_progress
2787 && REG_P (op)
2788 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2789 && reg_renumber[REGNO (op)] < 0
2790 && reg_equiv_mem (REGNO (op)) != 0
2791 && constraint_satisfied_p
2792 (reg_equiv_mem (REGNO (op)), cn))
2793 win = 1;
2794 break;
2795 }
2796 }
2797 while (p += len, c);
2798
2799 constraints[opno] = p;
2800 /* If this operand did not win somehow,
2801 this alternative loses. */
2802 if (! win)
2803 lose = 1;
2804 }
2805 /* This alternative won; the operands are ok.
2806 Change whichever operands this alternative says to change. */
2807 if (! lose)
2808 {
2809 int opno, eopno;
2810
2811 /* See if any earlyclobber operand conflicts with some other
2812 operand. */
2813
2814 if (strict > 0 && seen_earlyclobber_at >= 0)
2815 for (eopno = seen_earlyclobber_at;
2816 eopno < recog_data.n_operands;
2817 eopno++)
2818 /* Ignore earlyclobber operands now in memory,
2819 because we would often report failure when we have
2820 two memory operands, one of which was formerly a REG. */
2821 if (earlyclobber[eopno]
2822 && REG_P (recog_data.operand[eopno]))
2823 for (opno = 0; opno < recog_data.n_operands; opno++)
2824 if ((MEM_P (recog_data.operand[opno])
2825 || recog_data.operand_type[opno] != OP_OUT)
2826 && opno != eopno
2827 /* Ignore things like match_operator operands. */
2828 && *recog_data.constraints[opno] != 0
2829 && ! (matching_operands[opno] == eopno
2830 && operands_match_p (recog_data.operand[opno],
2831 recog_data.operand[eopno]))
2832 && ! safe_from_earlyclobber (recog_data.operand[opno],
2833 recog_data.operand[eopno]))
2834 lose = 1;
2835
2836 if (! lose)
2837 {
2838 while (--funny_match_index >= 0)
2839 {
2840 recog_data.operand[funny_match[funny_match_index].other]
2841 = recog_data.operand[funny_match[funny_match_index].this_op];
2842 }
2843
2844 #ifdef AUTO_INC_DEC
2845 /* For operands without < or > constraints reject side-effects. */
2846 if (recog_data.is_asm)
2847 {
2848 for (opno = 0; opno < recog_data.n_operands; opno++)
2849 if (MEM_P (recog_data.operand[opno]))
2850 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2851 {
2852 case PRE_INC:
2853 case POST_INC:
2854 case PRE_DEC:
2855 case POST_DEC:
2856 case PRE_MODIFY:
2857 case POST_MODIFY:
2858 if (strchr (recog_data.constraints[opno], '<') == NULL
2859 && strchr (recog_data.constraints[opno], '>')
2860 == NULL)
2861 return 0;
2862 break;
2863 default:
2864 break;
2865 }
2866 }
2867 #endif
2868 return 1;
2869 }
2870 }
2871
2872 which_alternative++;
2873 }
2874 while (which_alternative < recog_data.n_alternatives);
2875
2876 which_alternative = -1;
2877 /* If we are about to reject this, but we are not to test strictly,
2878 try a very loose test. Only return failure if it fails also. */
2879 if (strict == 0)
2880 return constrain_operands (-1, alternatives);
2881 else
2882 return 0;
2883 }
2884
2885 /* Return true iff OPERAND (assumed to be a REG rtx)
2886 is a hard reg in class CLASS when its regno is offset by OFFSET
2887 and changed to mode MODE.
2888 If REG occupies multiple hard regs, all of them must be in CLASS. */
2889
2890 bool
2891 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2892 machine_mode mode)
2893 {
2894 unsigned int regno = REGNO (operand);
2895
2896 if (cl == NO_REGS)
2897 return false;
2898
2899 /* Regno must not be a pseudo register. Offset may be negative. */
2900 return (HARD_REGISTER_NUM_P (regno)
2901 && HARD_REGISTER_NUM_P (regno + offset)
2902 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2903 regno + offset));
2904 }
2905 \f
2906 /* Split single instruction. Helper function for split_all_insns and
2907 split_all_insns_noflow. Return last insn in the sequence if successful,
2908 or NULL if unsuccessful. */
2909
2910 static rtx_insn *
2911 split_insn (rtx_insn *insn)
2912 {
2913 /* Split insns here to get max fine-grain parallelism. */
2914 rtx_insn *first = PREV_INSN (insn);
2915 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2916 rtx insn_set, last_set, note;
2917
2918 if (last == insn)
2919 return NULL;
2920
2921 /* If the original instruction was a single set that was known to be
2922 equivalent to a constant, see if we can say the same about the last
2923 instruction in the split sequence. The two instructions must set
2924 the same destination. */
2925 insn_set = single_set (insn);
2926 if (insn_set)
2927 {
2928 last_set = single_set (last);
2929 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2930 {
2931 note = find_reg_equal_equiv_note (insn);
2932 if (note && CONSTANT_P (XEXP (note, 0)))
2933 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2934 else if (CONSTANT_P (SET_SRC (insn_set)))
2935 set_unique_reg_note (last, REG_EQUAL,
2936 copy_rtx (SET_SRC (insn_set)));
2937 }
2938 }
2939
2940 /* try_split returns the NOTE that INSN became. */
2941 SET_INSN_DELETED (insn);
2942
2943 /* ??? Coddle to md files that generate subregs in post-reload
2944 splitters instead of computing the proper hard register. */
2945 if (reload_completed && first != last)
2946 {
2947 first = NEXT_INSN (first);
2948 for (;;)
2949 {
2950 if (INSN_P (first))
2951 cleanup_subreg_operands (first);
2952 if (first == last)
2953 break;
2954 first = NEXT_INSN (first);
2955 }
2956 }
2957
2958 return last;
2959 }
2960
2961 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2962
2963 void
2964 split_all_insns (void)
2965 {
2966 sbitmap blocks;
2967 bool changed;
2968 basic_block bb;
2969
2970 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2971 bitmap_clear (blocks);
2972 changed = false;
2973
2974 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2975 {
2976 rtx_insn *insn, *next;
2977 bool finish = false;
2978
2979 rtl_profile_for_bb (bb);
2980 for (insn = BB_HEAD (bb); !finish ; insn = next)
2981 {
2982 /* Can't use `next_real_insn' because that might go across
2983 CODE_LABELS and short-out basic blocks. */
2984 next = NEXT_INSN (insn);
2985 finish = (insn == BB_END (bb));
2986 if (INSN_P (insn))
2987 {
2988 rtx set = single_set (insn);
2989
2990 /* Don't split no-op move insns. These should silently
2991 disappear later in final. Splitting such insns would
2992 break the code that handles LIBCALL blocks. */
2993 if (set && set_noop_p (set))
2994 {
2995 /* Nops get in the way while scheduling, so delete them
2996 now if register allocation has already been done. It
2997 is too risky to try to do this before register
2998 allocation, and there are unlikely to be very many
2999 nops then anyways. */
3000 if (reload_completed)
3001 delete_insn_and_edges (insn);
3002 }
3003 else
3004 {
3005 if (split_insn (insn))
3006 {
3007 bitmap_set_bit (blocks, bb->index);
3008 changed = true;
3009 }
3010 }
3011 }
3012 }
3013 }
3014
3015 default_rtl_profile ();
3016 if (changed)
3017 find_many_sub_basic_blocks (blocks);
3018
3019 #ifdef ENABLE_CHECKING
3020 verify_flow_info ();
3021 #endif
3022
3023 sbitmap_free (blocks);
3024 }
3025
3026 /* Same as split_all_insns, but do not expect CFG to be available.
3027 Used by machine dependent reorg passes. */
3028
3029 unsigned int
3030 split_all_insns_noflow (void)
3031 {
3032 rtx_insn *next, *insn;
3033
3034 for (insn = get_insns (); insn; insn = next)
3035 {
3036 next = NEXT_INSN (insn);
3037 if (INSN_P (insn))
3038 {
3039 /* Don't split no-op move insns. These should silently
3040 disappear later in final. Splitting such insns would
3041 break the code that handles LIBCALL blocks. */
3042 rtx set = single_set (insn);
3043 if (set && set_noop_p (set))
3044 {
3045 /* Nops get in the way while scheduling, so delete them
3046 now if register allocation has already been done. It
3047 is too risky to try to do this before register
3048 allocation, and there are unlikely to be very many
3049 nops then anyways.
3050
3051 ??? Should we use delete_insn when the CFG isn't valid? */
3052 if (reload_completed)
3053 delete_insn_and_edges (insn);
3054 }
3055 else
3056 split_insn (insn);
3057 }
3058 }
3059 return 0;
3060 }
3061 \f
3062 #ifdef HAVE_peephole2
3063 struct peep2_insn_data
3064 {
3065 rtx_insn *insn;
3066 regset live_before;
3067 };
3068
3069 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3070 static int peep2_current;
3071
3072 static bool peep2_do_rebuild_jump_labels;
3073 static bool peep2_do_cleanup_cfg;
3074
3075 /* The number of instructions available to match a peep2. */
3076 int peep2_current_count;
3077
3078 /* A marker indicating the last insn of the block. The live_before regset
3079 for this element is correct, indicating DF_LIVE_OUT for the block. */
3080 #define PEEP2_EOB invalid_insn_rtx
3081
3082 /* Wrap N to fit into the peep2_insn_data buffer. */
3083
3084 static int
3085 peep2_buf_position (int n)
3086 {
3087 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3088 n -= MAX_INSNS_PER_PEEP2 + 1;
3089 return n;
3090 }
3091
3092 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3093 does not exist. Used by the recognizer to find the next insn to match
3094 in a multi-insn pattern. */
3095
3096 rtx
3097 peep2_next_insn (int n)
3098 {
3099 gcc_assert (n <= peep2_current_count);
3100
3101 n = peep2_buf_position (peep2_current + n);
3102
3103 return peep2_insn_data[n].insn;
3104 }
3105
3106 /* Return true if REGNO is dead before the Nth non-note insn
3107 after `current'. */
3108
3109 int
3110 peep2_regno_dead_p (int ofs, int regno)
3111 {
3112 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3113
3114 ofs = peep2_buf_position (peep2_current + ofs);
3115
3116 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3117
3118 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3119 }
3120
3121 /* Similarly for a REG. */
3122
3123 int
3124 peep2_reg_dead_p (int ofs, rtx reg)
3125 {
3126 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3127
3128 ofs = peep2_buf_position (peep2_current + ofs);
3129
3130 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3131
3132 unsigned int end_regno = END_REGNO (reg);
3133 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3134 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3135 return 0;
3136 return 1;
3137 }
3138
3139 /* Regno offset to be used in the register search. */
3140 static int search_ofs;
3141
3142 /* Try to find a hard register of mode MODE, matching the register class in
3143 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3144 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3145 in which case the only condition is that the register must be available
3146 before CURRENT_INSN.
3147 Registers that already have bits set in REG_SET will not be considered.
3148
3149 If an appropriate register is available, it will be returned and the
3150 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3151 returned. */
3152
3153 rtx
3154 peep2_find_free_register (int from, int to, const char *class_str,
3155 machine_mode mode, HARD_REG_SET *reg_set)
3156 {
3157 enum reg_class cl;
3158 HARD_REG_SET live;
3159 df_ref def;
3160 int i;
3161
3162 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3163 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3164
3165 from = peep2_buf_position (peep2_current + from);
3166 to = peep2_buf_position (peep2_current + to);
3167
3168 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3169 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3170
3171 while (from != to)
3172 {
3173 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3174
3175 /* Don't use registers set or clobbered by the insn. */
3176 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3177 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3178
3179 from = peep2_buf_position (from + 1);
3180 }
3181
3182 cl = reg_class_for_constraint (lookup_constraint (class_str));
3183
3184 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3185 {
3186 int raw_regno, regno, success, j;
3187
3188 /* Distribute the free registers as much as possible. */
3189 raw_regno = search_ofs + i;
3190 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3191 raw_regno -= FIRST_PSEUDO_REGISTER;
3192 #ifdef REG_ALLOC_ORDER
3193 regno = reg_alloc_order[raw_regno];
3194 #else
3195 regno = raw_regno;
3196 #endif
3197
3198 /* Can it support the mode we need? */
3199 if (! HARD_REGNO_MODE_OK (regno, mode))
3200 continue;
3201
3202 success = 1;
3203 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3204 {
3205 /* Don't allocate fixed registers. */
3206 if (fixed_regs[regno + j])
3207 {
3208 success = 0;
3209 break;
3210 }
3211 /* Don't allocate global registers. */
3212 if (global_regs[regno + j])
3213 {
3214 success = 0;
3215 break;
3216 }
3217 /* Make sure the register is of the right class. */
3218 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3219 {
3220 success = 0;
3221 break;
3222 }
3223 /* And that we don't create an extra save/restore. */
3224 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3225 {
3226 success = 0;
3227 break;
3228 }
3229
3230 if (! targetm.hard_regno_scratch_ok (regno + j))
3231 {
3232 success = 0;
3233 break;
3234 }
3235
3236 /* And we don't clobber traceback for noreturn functions. */
3237 if ((regno + j == FRAME_POINTER_REGNUM
3238 || regno + j == HARD_FRAME_POINTER_REGNUM)
3239 && (! reload_completed || frame_pointer_needed))
3240 {
3241 success = 0;
3242 break;
3243 }
3244
3245 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3246 || TEST_HARD_REG_BIT (live, regno + j))
3247 {
3248 success = 0;
3249 break;
3250 }
3251 }
3252
3253 if (success)
3254 {
3255 add_to_hard_reg_set (reg_set, mode, regno);
3256
3257 /* Start the next search with the next register. */
3258 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3259 raw_regno = 0;
3260 search_ofs = raw_regno;
3261
3262 return gen_rtx_REG (mode, regno);
3263 }
3264 }
3265
3266 search_ofs = 0;
3267 return NULL_RTX;
3268 }
3269
3270 /* Forget all currently tracked instructions, only remember current
3271 LIVE regset. */
3272
3273 static void
3274 peep2_reinit_state (regset live)
3275 {
3276 int i;
3277
3278 /* Indicate that all slots except the last holds invalid data. */
3279 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3280 peep2_insn_data[i].insn = NULL;
3281 peep2_current_count = 0;
3282
3283 /* Indicate that the last slot contains live_after data. */
3284 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3285 peep2_current = MAX_INSNS_PER_PEEP2;
3286
3287 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3288 }
3289
3290 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3291 starting at INSN. Perform the replacement, removing the old insns and
3292 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3293 if the replacement is rejected. */
3294
3295 static rtx_insn *
3296 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3297 {
3298 int i;
3299 rtx_insn *last, *before_try, *x;
3300 rtx eh_note, as_note;
3301 rtx_insn *old_insn;
3302 rtx_insn *new_insn;
3303 bool was_call = false;
3304
3305 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3306 match more than one insn, or to be split into more than one insn. */
3307 old_insn = peep2_insn_data[peep2_current].insn;
3308 if (RTX_FRAME_RELATED_P (old_insn))
3309 {
3310 bool any_note = false;
3311 rtx note;
3312
3313 if (match_len != 0)
3314 return NULL;
3315
3316 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3317 may be in the stream for the purpose of register allocation. */
3318 if (active_insn_p (attempt))
3319 new_insn = attempt;
3320 else
3321 new_insn = next_active_insn (attempt);
3322 if (next_active_insn (new_insn))
3323 return NULL;
3324
3325 /* We have a 1-1 replacement. Copy over any frame-related info. */
3326 RTX_FRAME_RELATED_P (new_insn) = 1;
3327
3328 /* Allow the backend to fill in a note during the split. */
3329 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3330 switch (REG_NOTE_KIND (note))
3331 {
3332 case REG_FRAME_RELATED_EXPR:
3333 case REG_CFA_DEF_CFA:
3334 case REG_CFA_ADJUST_CFA:
3335 case REG_CFA_OFFSET:
3336 case REG_CFA_REGISTER:
3337 case REG_CFA_EXPRESSION:
3338 case REG_CFA_RESTORE:
3339 case REG_CFA_SET_VDRAP:
3340 any_note = true;
3341 break;
3342 default:
3343 break;
3344 }
3345
3346 /* If the backend didn't supply a note, copy one over. */
3347 if (!any_note)
3348 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3349 switch (REG_NOTE_KIND (note))
3350 {
3351 case REG_FRAME_RELATED_EXPR:
3352 case REG_CFA_DEF_CFA:
3353 case REG_CFA_ADJUST_CFA:
3354 case REG_CFA_OFFSET:
3355 case REG_CFA_REGISTER:
3356 case REG_CFA_EXPRESSION:
3357 case REG_CFA_RESTORE:
3358 case REG_CFA_SET_VDRAP:
3359 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3360 any_note = true;
3361 break;
3362 default:
3363 break;
3364 }
3365
3366 /* If there still isn't a note, make sure the unwind info sees the
3367 same expression as before the split. */
3368 if (!any_note)
3369 {
3370 rtx old_set, new_set;
3371
3372 /* The old insn had better have been simple, or annotated. */
3373 old_set = single_set (old_insn);
3374 gcc_assert (old_set != NULL);
3375
3376 new_set = single_set (new_insn);
3377 if (!new_set || !rtx_equal_p (new_set, old_set))
3378 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3379 }
3380
3381 /* Copy prologue/epilogue status. This is required in order to keep
3382 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3383 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3384 }
3385
3386 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3387 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3388 cfg-related call notes. */
3389 for (i = 0; i <= match_len; ++i)
3390 {
3391 int j;
3392 rtx note;
3393
3394 j = peep2_buf_position (peep2_current + i);
3395 old_insn = peep2_insn_data[j].insn;
3396 if (!CALL_P (old_insn))
3397 continue;
3398 was_call = true;
3399
3400 new_insn = attempt;
3401 while (new_insn != NULL_RTX)
3402 {
3403 if (CALL_P (new_insn))
3404 break;
3405 new_insn = NEXT_INSN (new_insn);
3406 }
3407
3408 gcc_assert (new_insn != NULL_RTX);
3409
3410 CALL_INSN_FUNCTION_USAGE (new_insn)
3411 = CALL_INSN_FUNCTION_USAGE (old_insn);
3412 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3413
3414 for (note = REG_NOTES (old_insn);
3415 note;
3416 note = XEXP (note, 1))
3417 switch (REG_NOTE_KIND (note))
3418 {
3419 case REG_NORETURN:
3420 case REG_SETJMP:
3421 case REG_TM:
3422 add_reg_note (new_insn, REG_NOTE_KIND (note),
3423 XEXP (note, 0));
3424 break;
3425 default:
3426 /* Discard all other reg notes. */
3427 break;
3428 }
3429
3430 /* Croak if there is another call in the sequence. */
3431 while (++i <= match_len)
3432 {
3433 j = peep2_buf_position (peep2_current + i);
3434 old_insn = peep2_insn_data[j].insn;
3435 gcc_assert (!CALL_P (old_insn));
3436 }
3437 break;
3438 }
3439
3440 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3441 move those notes over to the new sequence. */
3442 as_note = NULL;
3443 for (i = match_len; i >= 0; --i)
3444 {
3445 int j = peep2_buf_position (peep2_current + i);
3446 old_insn = peep2_insn_data[j].insn;
3447
3448 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3449 if (as_note)
3450 break;
3451 }
3452
3453 i = peep2_buf_position (peep2_current + match_len);
3454 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3455
3456 /* Replace the old sequence with the new. */
3457 rtx_insn *peepinsn = peep2_insn_data[i].insn;
3458 last = emit_insn_after_setloc (attempt,
3459 peep2_insn_data[i].insn,
3460 INSN_LOCATION (peepinsn));
3461 before_try = PREV_INSN (insn);
3462 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3463
3464 /* Re-insert the EH_REGION notes. */
3465 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3466 {
3467 edge eh_edge;
3468 edge_iterator ei;
3469
3470 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3471 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3472 break;
3473
3474 if (eh_note)
3475 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3476
3477 if (eh_edge)
3478 for (x = last; x != before_try; x = PREV_INSN (x))
3479 if (x != BB_END (bb)
3480 && (can_throw_internal (x)
3481 || can_nonlocal_goto (x)))
3482 {
3483 edge nfte, nehe;
3484 int flags;
3485
3486 nfte = split_block (bb, x);
3487 flags = (eh_edge->flags
3488 & (EDGE_EH | EDGE_ABNORMAL));
3489 if (CALL_P (x))
3490 flags |= EDGE_ABNORMAL_CALL;
3491 nehe = make_edge (nfte->src, eh_edge->dest,
3492 flags);
3493
3494 nehe->probability = eh_edge->probability;
3495 nfte->probability
3496 = REG_BR_PROB_BASE - nehe->probability;
3497
3498 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3499 bb = nfte->src;
3500 eh_edge = nehe;
3501 }
3502
3503 /* Converting possibly trapping insn to non-trapping is
3504 possible. Zap dummy outgoing edges. */
3505 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3506 }
3507
3508 /* Re-insert the ARGS_SIZE notes. */
3509 if (as_note)
3510 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3511
3512 /* If we generated a jump instruction, it won't have
3513 JUMP_LABEL set. Recompute after we're done. */
3514 for (x = last; x != before_try; x = PREV_INSN (x))
3515 if (JUMP_P (x))
3516 {
3517 peep2_do_rebuild_jump_labels = true;
3518 break;
3519 }
3520
3521 return last;
3522 }
3523
3524 /* After performing a replacement in basic block BB, fix up the life
3525 information in our buffer. LAST is the last of the insns that we
3526 emitted as a replacement. PREV is the insn before the start of
3527 the replacement. MATCH_LEN is the number of instructions that were
3528 matched, and which now need to be replaced in the buffer. */
3529
3530 static void
3531 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3532 rtx_insn *prev)
3533 {
3534 int i = peep2_buf_position (peep2_current + match_len + 1);
3535 rtx_insn *x;
3536 regset_head live;
3537
3538 INIT_REG_SET (&live);
3539 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3540
3541 gcc_assert (peep2_current_count >= match_len + 1);
3542 peep2_current_count -= match_len + 1;
3543
3544 x = last;
3545 do
3546 {
3547 if (INSN_P (x))
3548 {
3549 df_insn_rescan (x);
3550 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3551 {
3552 peep2_current_count++;
3553 if (--i < 0)
3554 i = MAX_INSNS_PER_PEEP2;
3555 peep2_insn_data[i].insn = x;
3556 df_simulate_one_insn_backwards (bb, x, &live);
3557 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3558 }
3559 }
3560 x = PREV_INSN (x);
3561 }
3562 while (x != prev);
3563 CLEAR_REG_SET (&live);
3564
3565 peep2_current = i;
3566 }
3567
3568 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3569 Return true if we added it, false otherwise. The caller will try to match
3570 peepholes against the buffer if we return false; otherwise it will try to
3571 add more instructions to the buffer. */
3572
3573 static bool
3574 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3575 {
3576 int pos;
3577
3578 /* Once we have filled the maximum number of insns the buffer can hold,
3579 allow the caller to match the insns against peepholes. We wait until
3580 the buffer is full in case the target has similar peepholes of different
3581 length; we always want to match the longest if possible. */
3582 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3583 return false;
3584
3585 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3586 any other pattern, lest it change the semantics of the frame info. */
3587 if (RTX_FRAME_RELATED_P (insn))
3588 {
3589 /* Let the buffer drain first. */
3590 if (peep2_current_count > 0)
3591 return false;
3592 /* Now the insn will be the only thing in the buffer. */
3593 }
3594
3595 pos = peep2_buf_position (peep2_current + peep2_current_count);
3596 peep2_insn_data[pos].insn = insn;
3597 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3598 peep2_current_count++;
3599
3600 df_simulate_one_insn_forwards (bb, insn, live);
3601 return true;
3602 }
3603
3604 /* Perform the peephole2 optimization pass. */
3605
3606 static void
3607 peephole2_optimize (void)
3608 {
3609 rtx_insn *insn;
3610 bitmap live;
3611 int i;
3612 basic_block bb;
3613
3614 peep2_do_cleanup_cfg = false;
3615 peep2_do_rebuild_jump_labels = false;
3616
3617 df_set_flags (DF_LR_RUN_DCE);
3618 df_note_add_problem ();
3619 df_analyze ();
3620
3621 /* Initialize the regsets we're going to use. */
3622 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3623 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3624 search_ofs = 0;
3625 live = BITMAP_ALLOC (&reg_obstack);
3626
3627 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3628 {
3629 bool past_end = false;
3630 int pos;
3631
3632 rtl_profile_for_bb (bb);
3633
3634 /* Start up propagation. */
3635 bitmap_copy (live, DF_LR_IN (bb));
3636 df_simulate_initialize_forwards (bb, live);
3637 peep2_reinit_state (live);
3638
3639 insn = BB_HEAD (bb);
3640 for (;;)
3641 {
3642 rtx_insn *attempt, *head;
3643 int match_len;
3644
3645 if (!past_end && !NONDEBUG_INSN_P (insn))
3646 {
3647 next_insn:
3648 insn = NEXT_INSN (insn);
3649 if (insn == NEXT_INSN (BB_END (bb)))
3650 past_end = true;
3651 continue;
3652 }
3653 if (!past_end && peep2_fill_buffer (bb, insn, live))
3654 goto next_insn;
3655
3656 /* If we did not fill an empty buffer, it signals the end of the
3657 block. */
3658 if (peep2_current_count == 0)
3659 break;
3660
3661 /* The buffer filled to the current maximum, so try to match. */
3662
3663 pos = peep2_buf_position (peep2_current + peep2_current_count);
3664 peep2_insn_data[pos].insn = PEEP2_EOB;
3665 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3666
3667 /* Match the peephole. */
3668 head = peep2_insn_data[peep2_current].insn;
3669 attempt = safe_as_a <rtx_insn *> (
3670 peephole2_insns (PATTERN (head), head, &match_len));
3671 if (attempt != NULL)
3672 {
3673 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3674 if (last)
3675 {
3676 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3677 continue;
3678 }
3679 }
3680
3681 /* No match: advance the buffer by one insn. */
3682 peep2_current = peep2_buf_position (peep2_current + 1);
3683 peep2_current_count--;
3684 }
3685 }
3686
3687 default_rtl_profile ();
3688 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3689 BITMAP_FREE (peep2_insn_data[i].live_before);
3690 BITMAP_FREE (live);
3691 if (peep2_do_rebuild_jump_labels)
3692 rebuild_jump_labels (get_insns ());
3693 if (peep2_do_cleanup_cfg)
3694 cleanup_cfg (CLEANUP_CFG_CHANGED);
3695 }
3696 #endif /* HAVE_peephole2 */
3697
3698 /* Common predicates for use with define_bypass. */
3699
3700 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3701 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3702 must be either a single_set or a PARALLEL with SETs inside. */
3703
3704 int
3705 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3706 {
3707 rtx out_set, in_set;
3708 rtx out_pat, in_pat;
3709 rtx out_exp, in_exp;
3710 int i, j;
3711
3712 in_set = single_set (in_insn);
3713 if (in_set)
3714 {
3715 if (!MEM_P (SET_DEST (in_set)))
3716 return false;
3717
3718 out_set = single_set (out_insn);
3719 if (out_set)
3720 {
3721 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3722 return false;
3723 }
3724 else
3725 {
3726 out_pat = PATTERN (out_insn);
3727
3728 if (GET_CODE (out_pat) != PARALLEL)
3729 return false;
3730
3731 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3732 {
3733 out_exp = XVECEXP (out_pat, 0, i);
3734
3735 if (GET_CODE (out_exp) == CLOBBER)
3736 continue;
3737
3738 gcc_assert (GET_CODE (out_exp) == SET);
3739
3740 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3741 return false;
3742 }
3743 }
3744 }
3745 else
3746 {
3747 in_pat = PATTERN (in_insn);
3748 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3749
3750 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3751 {
3752 in_exp = XVECEXP (in_pat, 0, i);
3753
3754 if (GET_CODE (in_exp) == CLOBBER)
3755 continue;
3756
3757 gcc_assert (GET_CODE (in_exp) == SET);
3758
3759 if (!MEM_P (SET_DEST (in_exp)))
3760 return false;
3761
3762 out_set = single_set (out_insn);
3763 if (out_set)
3764 {
3765 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3766 return false;
3767 }
3768 else
3769 {
3770 out_pat = PATTERN (out_insn);
3771 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3772
3773 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3774 {
3775 out_exp = XVECEXP (out_pat, 0, j);
3776
3777 if (GET_CODE (out_exp) == CLOBBER)
3778 continue;
3779
3780 gcc_assert (GET_CODE (out_exp) == SET);
3781
3782 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3783 return false;
3784 }
3785 }
3786 }
3787 }
3788
3789 return true;
3790 }
3791
3792 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3793 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3794 or multiple set; IN_INSN should be single_set for truth, but for convenience
3795 of insn categorization may be any JUMP or CALL insn. */
3796
3797 int
3798 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3799 {
3800 rtx out_set, in_set;
3801
3802 in_set = single_set (in_insn);
3803 if (! in_set)
3804 {
3805 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3806 return false;
3807 }
3808
3809 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3810 return false;
3811 in_set = SET_SRC (in_set);
3812
3813 out_set = single_set (out_insn);
3814 if (out_set)
3815 {
3816 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3817 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3818 return false;
3819 }
3820 else
3821 {
3822 rtx out_pat;
3823 int i;
3824
3825 out_pat = PATTERN (out_insn);
3826 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3827
3828 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3829 {
3830 rtx exp = XVECEXP (out_pat, 0, i);
3831
3832 if (GET_CODE (exp) == CLOBBER)
3833 continue;
3834
3835 gcc_assert (GET_CODE (exp) == SET);
3836
3837 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3838 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3839 return false;
3840 }
3841 }
3842
3843 return true;
3844 }
3845 \f
3846 static unsigned int
3847 rest_of_handle_peephole2 (void)
3848 {
3849 #ifdef HAVE_peephole2
3850 peephole2_optimize ();
3851 #endif
3852 return 0;
3853 }
3854
3855 namespace {
3856
3857 const pass_data pass_data_peephole2 =
3858 {
3859 RTL_PASS, /* type */
3860 "peephole2", /* name */
3861 OPTGROUP_NONE, /* optinfo_flags */
3862 TV_PEEPHOLE2, /* tv_id */
3863 0, /* properties_required */
3864 0, /* properties_provided */
3865 0, /* properties_destroyed */
3866 0, /* todo_flags_start */
3867 TODO_df_finish, /* todo_flags_finish */
3868 };
3869
3870 class pass_peephole2 : public rtl_opt_pass
3871 {
3872 public:
3873 pass_peephole2 (gcc::context *ctxt)
3874 : rtl_opt_pass (pass_data_peephole2, ctxt)
3875 {}
3876
3877 /* opt_pass methods: */
3878 /* The epiphany backend creates a second instance of this pass, so we need
3879 a clone method. */
3880 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3881 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3882 virtual unsigned int execute (function *)
3883 {
3884 return rest_of_handle_peephole2 ();
3885 }
3886
3887 }; // class pass_peephole2
3888
3889 } // anon namespace
3890
3891 rtl_opt_pass *
3892 make_pass_peephole2 (gcc::context *ctxt)
3893 {
3894 return new pass_peephole2 (ctxt);
3895 }
3896
3897 namespace {
3898
3899 const pass_data pass_data_split_all_insns =
3900 {
3901 RTL_PASS, /* type */
3902 "split1", /* name */
3903 OPTGROUP_NONE, /* optinfo_flags */
3904 TV_NONE, /* tv_id */
3905 0, /* properties_required */
3906 0, /* properties_provided */
3907 0, /* properties_destroyed */
3908 0, /* todo_flags_start */
3909 0, /* todo_flags_finish */
3910 };
3911
3912 class pass_split_all_insns : public rtl_opt_pass
3913 {
3914 public:
3915 pass_split_all_insns (gcc::context *ctxt)
3916 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3917 {}
3918
3919 /* opt_pass methods: */
3920 /* The epiphany backend creates a second instance of this pass, so
3921 we need a clone method. */
3922 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3923 virtual unsigned int execute (function *)
3924 {
3925 split_all_insns ();
3926 return 0;
3927 }
3928
3929 }; // class pass_split_all_insns
3930
3931 } // anon namespace
3932
3933 rtl_opt_pass *
3934 make_pass_split_all_insns (gcc::context *ctxt)
3935 {
3936 return new pass_split_all_insns (ctxt);
3937 }
3938
3939 static unsigned int
3940 rest_of_handle_split_after_reload (void)
3941 {
3942 /* If optimizing, then go ahead and split insns now. */
3943 #ifndef STACK_REGS
3944 if (optimize > 0)
3945 #endif
3946 split_all_insns ();
3947 return 0;
3948 }
3949
3950 namespace {
3951
3952 const pass_data pass_data_split_after_reload =
3953 {
3954 RTL_PASS, /* type */
3955 "split2", /* name */
3956 OPTGROUP_NONE, /* optinfo_flags */
3957 TV_NONE, /* tv_id */
3958 0, /* properties_required */
3959 0, /* properties_provided */
3960 0, /* properties_destroyed */
3961 0, /* todo_flags_start */
3962 0, /* todo_flags_finish */
3963 };
3964
3965 class pass_split_after_reload : public rtl_opt_pass
3966 {
3967 public:
3968 pass_split_after_reload (gcc::context *ctxt)
3969 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3970 {}
3971
3972 /* opt_pass methods: */
3973 virtual unsigned int execute (function *)
3974 {
3975 return rest_of_handle_split_after_reload ();
3976 }
3977
3978 }; // class pass_split_after_reload
3979
3980 } // anon namespace
3981
3982 rtl_opt_pass *
3983 make_pass_split_after_reload (gcc::context *ctxt)
3984 {
3985 return new pass_split_after_reload (ctxt);
3986 }
3987
3988 namespace {
3989
3990 const pass_data pass_data_split_before_regstack =
3991 {
3992 RTL_PASS, /* type */
3993 "split3", /* name */
3994 OPTGROUP_NONE, /* optinfo_flags */
3995 TV_NONE, /* tv_id */
3996 0, /* properties_required */
3997 0, /* properties_provided */
3998 0, /* properties_destroyed */
3999 0, /* todo_flags_start */
4000 0, /* todo_flags_finish */
4001 };
4002
4003 class pass_split_before_regstack : public rtl_opt_pass
4004 {
4005 public:
4006 pass_split_before_regstack (gcc::context *ctxt)
4007 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
4008 {}
4009
4010 /* opt_pass methods: */
4011 virtual bool gate (function *);
4012 virtual unsigned int execute (function *)
4013 {
4014 split_all_insns ();
4015 return 0;
4016 }
4017
4018 }; // class pass_split_before_regstack
4019
4020 bool
4021 pass_split_before_regstack::gate (function *)
4022 {
4023 #if HAVE_ATTR_length && defined (STACK_REGS)
4024 /* If flow2 creates new instructions which need splitting
4025 and scheduling after reload is not done, they might not be
4026 split until final which doesn't allow splitting
4027 if HAVE_ATTR_length. */
4028 # ifdef INSN_SCHEDULING
4029 return (optimize && !flag_schedule_insns_after_reload);
4030 # else
4031 return (optimize);
4032 # endif
4033 #else
4034 return 0;
4035 #endif
4036 }
4037
4038 } // anon namespace
4039
4040 rtl_opt_pass *
4041 make_pass_split_before_regstack (gcc::context *ctxt)
4042 {
4043 return new pass_split_before_regstack (ctxt);
4044 }
4045
4046 static unsigned int
4047 rest_of_handle_split_before_sched2 (void)
4048 {
4049 #ifdef INSN_SCHEDULING
4050 split_all_insns ();
4051 #endif
4052 return 0;
4053 }
4054
4055 namespace {
4056
4057 const pass_data pass_data_split_before_sched2 =
4058 {
4059 RTL_PASS, /* type */
4060 "split4", /* name */
4061 OPTGROUP_NONE, /* optinfo_flags */
4062 TV_NONE, /* tv_id */
4063 0, /* properties_required */
4064 0, /* properties_provided */
4065 0, /* properties_destroyed */
4066 0, /* todo_flags_start */
4067 0, /* todo_flags_finish */
4068 };
4069
4070 class pass_split_before_sched2 : public rtl_opt_pass
4071 {
4072 public:
4073 pass_split_before_sched2 (gcc::context *ctxt)
4074 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4075 {}
4076
4077 /* opt_pass methods: */
4078 virtual bool gate (function *)
4079 {
4080 #ifdef INSN_SCHEDULING
4081 return optimize > 0 && flag_schedule_insns_after_reload;
4082 #else
4083 return false;
4084 #endif
4085 }
4086
4087 virtual unsigned int execute (function *)
4088 {
4089 return rest_of_handle_split_before_sched2 ();
4090 }
4091
4092 }; // class pass_split_before_sched2
4093
4094 } // anon namespace
4095
4096 rtl_opt_pass *
4097 make_pass_split_before_sched2 (gcc::context *ctxt)
4098 {
4099 return new pass_split_before_sched2 (ctxt);
4100 }
4101
4102 namespace {
4103
4104 const pass_data pass_data_split_for_shorten_branches =
4105 {
4106 RTL_PASS, /* type */
4107 "split5", /* name */
4108 OPTGROUP_NONE, /* optinfo_flags */
4109 TV_NONE, /* tv_id */
4110 0, /* properties_required */
4111 0, /* properties_provided */
4112 0, /* properties_destroyed */
4113 0, /* todo_flags_start */
4114 0, /* todo_flags_finish */
4115 };
4116
4117 class pass_split_for_shorten_branches : public rtl_opt_pass
4118 {
4119 public:
4120 pass_split_for_shorten_branches (gcc::context *ctxt)
4121 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4122 {}
4123
4124 /* opt_pass methods: */
4125 virtual bool gate (function *)
4126 {
4127 /* The placement of the splitting that we do for shorten_branches
4128 depends on whether regstack is used by the target or not. */
4129 #if HAVE_ATTR_length && !defined (STACK_REGS)
4130 return true;
4131 #else
4132 return false;
4133 #endif
4134 }
4135
4136 virtual unsigned int execute (function *)
4137 {
4138 return split_all_insns_noflow ();
4139 }
4140
4141 }; // class pass_split_for_shorten_branches
4142
4143 } // anon namespace
4144
4145 rtl_opt_pass *
4146 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4147 {
4148 return new pass_split_for_shorten_branches (ctxt);
4149 }
4150
4151 /* (Re)initialize the target information after a change in target. */
4152
4153 void
4154 recog_init ()
4155 {
4156 /* The information is zero-initialized, so we don't need to do anything
4157 first time round. */
4158 if (!this_target_recog->x_initialized)
4159 {
4160 this_target_recog->x_initialized = true;
4161 return;
4162 }
4163 memset (this_target_recog->x_bool_attr_masks, 0,
4164 sizeof (this_target_recog->x_bool_attr_masks));
4165 for (int i = 0; i < LAST_INSN_CODE; ++i)
4166 if (this_target_recog->x_op_alt[i])
4167 {
4168 free (this_target_recog->x_op_alt[i]);
4169 this_target_recog->x_op_alt[i] = 0;
4170 }
4171 }