recog.h: Rename struct recog_data to Recog_data.
[gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "insn-attr.h"
29 #include "hard-reg-set.h"
30 #include "recog.h"
31 #include "regs.h"
32 #include "addresses.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "target.h"
39 #include "tree-pass.h"
40 #include "df.h"
41 #include "insn-codes.h"
42
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
46 #else
47 #define STACK_PUSH_CODE PRE_INC
48 #endif
49 #endif
50
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
54 #else
55 #define STACK_POP_CODE POST_DEC
56 #endif
57 #endif
58
59 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
60 static void validate_replace_src_1 (rtx *, void *);
61 static rtx split_insn (rtx);
62
63 /* Nonzero means allow operands to be volatile.
64 This should be 0 if you are generating rtl, such as if you are calling
65 the functions in optabs.c and expmed.c (most of the time).
66 This should be 1 if all valid insns need to be recognized,
67 such as in reginfo.c and final.c and reload.c.
68
69 init_recog and init_recog_no_volatile are responsible for setting this. */
70
71 int volatile_ok;
72
73 struct Recog_data recog_data;
74
75 /* Contains a vector of operand_alternative structures for every operand.
76 Set up by preprocess_constraints. */
77 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
78
79 /* On return from `constrain_operands', indicate which alternative
80 was satisfied. */
81
82 int which_alternative;
83
84 /* Nonzero after end of reload pass.
85 Set to 1 or 0 by toplev.c.
86 Controls the significance of (SUBREG (MEM)). */
87
88 int reload_completed;
89
90 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
91 int epilogue_completed;
92
93 /* Initialize data used by the function `recog'.
94 This must be called once in the compilation of a function
95 before any insn recognition may be done in the function. */
96
97 void
98 init_recog_no_volatile (void)
99 {
100 volatile_ok = 0;
101 }
102
103 void
104 init_recog (void)
105 {
106 volatile_ok = 1;
107 }
108
109 \f
110 /* Return true if labels in asm operands BODY are LABEL_REFs. */
111
112 static bool
113 asm_labels_ok (rtx body)
114 {
115 rtx asmop;
116 int i;
117
118 asmop = extract_asm_operands (body);
119 if (asmop == NULL_RTX)
120 return true;
121
122 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
123 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
124 return false;
125
126 return true;
127 }
128
129 /* Check that X is an insn-body for an `asm' with operands
130 and that the operands mentioned in it are legitimate. */
131
132 int
133 check_asm_operands (rtx x)
134 {
135 int noperands;
136 rtx *operands;
137 const char **constraints;
138 int i;
139
140 if (!asm_labels_ok (x))
141 return 0;
142
143 /* Post-reload, be more strict with things. */
144 if (reload_completed)
145 {
146 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
147 extract_insn (make_insn_raw (x));
148 constrain_operands (1);
149 return which_alternative >= 0;
150 }
151
152 noperands = asm_noperands (x);
153 if (noperands < 0)
154 return 0;
155 if (noperands == 0)
156 return 1;
157
158 operands = XALLOCAVEC (rtx, noperands);
159 constraints = XALLOCAVEC (const char *, noperands);
160
161 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
162
163 for (i = 0; i < noperands; i++)
164 {
165 const char *c = constraints[i];
166 if (c[0] == '%')
167 c++;
168 if (! asm_operand_ok (operands[i], c, constraints))
169 return 0;
170 }
171
172 return 1;
173 }
174 \f
175 /* Static data for the next two routines. */
176
177 typedef struct change_t
178 {
179 rtx object;
180 int old_code;
181 rtx *loc;
182 rtx old;
183 bool unshare;
184 } change_t;
185
186 static change_t *changes;
187 static int changes_allocated;
188
189 static int num_changes = 0;
190
191 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
192 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
193 the change is simply made.
194
195 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
196 will be called with the address and mode as parameters. If OBJECT is
197 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
198 the change in place.
199
200 IN_GROUP is nonzero if this is part of a group of changes that must be
201 performed as a group. In that case, the changes will be stored. The
202 function `apply_change_group' will validate and apply the changes.
203
204 If IN_GROUP is zero, this is a single change. Try to recognize the insn
205 or validate the memory reference with the change applied. If the result
206 is not valid for the machine, suppress the change and return zero.
207 Otherwise, perform the change and return 1. */
208
209 static bool
210 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
211 {
212 rtx old = *loc;
213
214 if (old == new_rtx || rtx_equal_p (old, new_rtx))
215 return 1;
216
217 gcc_assert (in_group != 0 || num_changes == 0);
218
219 *loc = new_rtx;
220
221 /* Save the information describing this change. */
222 if (num_changes >= changes_allocated)
223 {
224 if (changes_allocated == 0)
225 /* This value allows for repeated substitutions inside complex
226 indexed addresses, or changes in up to 5 insns. */
227 changes_allocated = MAX_RECOG_OPERANDS * 5;
228 else
229 changes_allocated *= 2;
230
231 changes = XRESIZEVEC (change_t, changes, changes_allocated);
232 }
233
234 changes[num_changes].object = object;
235 changes[num_changes].loc = loc;
236 changes[num_changes].old = old;
237 changes[num_changes].unshare = unshare;
238
239 if (object && !MEM_P (object))
240 {
241 /* Set INSN_CODE to force rerecognition of insn. Save old code in
242 case invalid. */
243 changes[num_changes].old_code = INSN_CODE (object);
244 INSN_CODE (object) = -1;
245 }
246
247 num_changes++;
248
249 /* If we are making a group of changes, return 1. Otherwise, validate the
250 change group we made. */
251
252 if (in_group)
253 return 1;
254 else
255 return apply_change_group ();
256 }
257
258 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
259 UNSHARE to false. */
260
261 bool
262 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
263 {
264 return validate_change_1 (object, loc, new_rtx, in_group, false);
265 }
266
267 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
268 UNSHARE to true. */
269
270 bool
271 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
272 {
273 return validate_change_1 (object, loc, new_rtx, in_group, true);
274 }
275
276
277 /* Keep X canonicalized if some changes have made it non-canonical; only
278 modifies the operands of X, not (for example) its code. Simplifications
279 are not the job of this routine.
280
281 Return true if anything was changed. */
282 bool
283 canonicalize_change_group (rtx insn, rtx x)
284 {
285 if (COMMUTATIVE_P (x)
286 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
287 {
288 /* Oops, the caller has made X no longer canonical.
289 Let's redo the changes in the correct order. */
290 rtx tem = XEXP (x, 0);
291 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
292 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
293 return true;
294 }
295 else
296 return false;
297 }
298
299
300 /* This subroutine of apply_change_group verifies whether the changes to INSN
301 were valid; i.e. whether INSN can still be recognized.
302
303 If IN_GROUP is true clobbers which have to be added in order to
304 match the instructions will be added to the current change group.
305 Otherwise the changes will take effect immediately. */
306
307 int
308 insn_invalid_p (rtx insn, bool in_group)
309 {
310 rtx pat = PATTERN (insn);
311 int num_clobbers = 0;
312 /* If we are before reload and the pattern is a SET, see if we can add
313 clobbers. */
314 int icode = recog (pat, insn,
315 (GET_CODE (pat) == SET
316 && ! reload_completed && ! reload_in_progress)
317 ? &num_clobbers : 0);
318 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
319
320
321 /* If this is an asm and the operand aren't legal, then fail. Likewise if
322 this is not an asm and the insn wasn't recognized. */
323 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
324 || (!is_asm && icode < 0))
325 return 1;
326
327 /* If we have to add CLOBBERs, fail if we have to add ones that reference
328 hard registers since our callers can't know if they are live or not.
329 Otherwise, add them. */
330 if (num_clobbers > 0)
331 {
332 rtx newpat;
333
334 if (added_clobbers_hard_reg_p (icode))
335 return 1;
336
337 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
338 XVECEXP (newpat, 0, 0) = pat;
339 add_clobbers (newpat, icode);
340 if (in_group)
341 validate_change (insn, &PATTERN (insn), newpat, 1);
342 else
343 PATTERN (insn) = pat = newpat;
344 }
345
346 /* After reload, verify that all constraints are satisfied. */
347 if (reload_completed)
348 {
349 extract_insn (insn);
350
351 if (! constrain_operands (1))
352 return 1;
353 }
354
355 INSN_CODE (insn) = icode;
356 return 0;
357 }
358
359 /* Return number of changes made and not validated yet. */
360 int
361 num_changes_pending (void)
362 {
363 return num_changes;
364 }
365
366 /* Tentatively apply the changes numbered NUM and up.
367 Return 1 if all changes are valid, zero otherwise. */
368
369 int
370 verify_changes (int num)
371 {
372 int i;
373 rtx last_validated = NULL_RTX;
374
375 /* The changes have been applied and all INSN_CODEs have been reset to force
376 rerecognition.
377
378 The changes are valid if we aren't given an object, or if we are
379 given a MEM and it still is a valid address, or if this is in insn
380 and it is recognized. In the latter case, if reload has completed,
381 we also require that the operands meet the constraints for
382 the insn. */
383
384 for (i = num; i < num_changes; i++)
385 {
386 rtx object = changes[i].object;
387
388 /* If there is no object to test or if it is the same as the one we
389 already tested, ignore it. */
390 if (object == 0 || object == last_validated)
391 continue;
392
393 if (MEM_P (object))
394 {
395 if (! memory_address_addr_space_p (GET_MODE (object),
396 XEXP (object, 0),
397 MEM_ADDR_SPACE (object)))
398 break;
399 }
400 else if (REG_P (changes[i].old)
401 && asm_noperands (PATTERN (object)) > 0
402 && REG_EXPR (changes[i].old) != NULL_TREE
403 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
404 && DECL_REGISTER (REG_EXPR (changes[i].old)))
405 {
406 /* Don't allow changes of hard register operands to inline
407 assemblies if they have been defined as register asm ("x"). */
408 break;
409 }
410 else if (DEBUG_INSN_P (object))
411 continue;
412 else if (insn_invalid_p (object, true))
413 {
414 rtx pat = PATTERN (object);
415
416 /* Perhaps we couldn't recognize the insn because there were
417 extra CLOBBERs at the end. If so, try to re-recognize
418 without the last CLOBBER (later iterations will cause each of
419 them to be eliminated, in turn). But don't do this if we
420 have an ASM_OPERAND. */
421 if (GET_CODE (pat) == PARALLEL
422 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
423 && asm_noperands (PATTERN (object)) < 0)
424 {
425 rtx newpat;
426
427 if (XVECLEN (pat, 0) == 2)
428 newpat = XVECEXP (pat, 0, 0);
429 else
430 {
431 int j;
432
433 newpat
434 = gen_rtx_PARALLEL (VOIDmode,
435 rtvec_alloc (XVECLEN (pat, 0) - 1));
436 for (j = 0; j < XVECLEN (newpat, 0); j++)
437 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
438 }
439
440 /* Add a new change to this group to replace the pattern
441 with this new pattern. Then consider this change
442 as having succeeded. The change we added will
443 cause the entire call to fail if things remain invalid.
444
445 Note that this can lose if a later change than the one
446 we are processing specified &XVECEXP (PATTERN (object), 0, X)
447 but this shouldn't occur. */
448
449 validate_change (object, &PATTERN (object), newpat, 1);
450 continue;
451 }
452 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
453 || GET_CODE (pat) == VAR_LOCATION)
454 /* If this insn is a CLOBBER or USE, it is always valid, but is
455 never recognized. */
456 continue;
457 else
458 break;
459 }
460 last_validated = object;
461 }
462
463 return (i == num_changes);
464 }
465
466 /* A group of changes has previously been issued with validate_change
467 and verified with verify_changes. Call df_insn_rescan for each of
468 the insn changed and clear num_changes. */
469
470 void
471 confirm_change_group (void)
472 {
473 int i;
474 rtx last_object = NULL;
475
476 for (i = 0; i < num_changes; i++)
477 {
478 rtx object = changes[i].object;
479
480 if (changes[i].unshare)
481 *changes[i].loc = copy_rtx (*changes[i].loc);
482
483 /* Avoid unnecessary rescanning when multiple changes to same instruction
484 are made. */
485 if (object)
486 {
487 if (object != last_object && last_object && INSN_P (last_object))
488 df_insn_rescan (last_object);
489 last_object = object;
490 }
491 }
492
493 if (last_object && INSN_P (last_object))
494 df_insn_rescan (last_object);
495 num_changes = 0;
496 }
497
498 /* Apply a group of changes previously issued with `validate_change'.
499 If all changes are valid, call confirm_change_group and return 1,
500 otherwise, call cancel_changes and return 0. */
501
502 int
503 apply_change_group (void)
504 {
505 if (verify_changes (0))
506 {
507 confirm_change_group ();
508 return 1;
509 }
510 else
511 {
512 cancel_changes (0);
513 return 0;
514 }
515 }
516
517
518 /* Return the number of changes so far in the current group. */
519
520 int
521 num_validated_changes (void)
522 {
523 return num_changes;
524 }
525
526 /* Retract the changes numbered NUM and up. */
527
528 void
529 cancel_changes (int num)
530 {
531 int i;
532
533 /* Back out all the changes. Do this in the opposite order in which
534 they were made. */
535 for (i = num_changes - 1; i >= num; i--)
536 {
537 *changes[i].loc = changes[i].old;
538 if (changes[i].object && !MEM_P (changes[i].object))
539 INSN_CODE (changes[i].object) = changes[i].old_code;
540 }
541 num_changes = num;
542 }
543
544 /* Reduce conditional compilation elsewhere. */
545 #ifndef HAVE_extv
546 #define HAVE_extv 0
547 #define CODE_FOR_extv CODE_FOR_nothing
548 #endif
549 #ifndef HAVE_extzv
550 #define HAVE_extzv 0
551 #define CODE_FOR_extzv CODE_FOR_nothing
552 #endif
553
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
555 rtx. */
556
557 static void
558 simplify_while_replacing (rtx *loc, rtx to, rtx object,
559 enum machine_mode op0_mode)
560 {
561 rtx x = *loc;
562 enum rtx_code code = GET_CODE (x);
563 rtx new_rtx;
564
565 if (SWAPPABLE_OPERANDS_P (x)
566 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
567 {
568 validate_unshare_change (object, loc,
569 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
570 : swap_condition (code),
571 GET_MODE (x), XEXP (x, 1),
572 XEXP (x, 0)), 1);
573 x = *loc;
574 code = GET_CODE (x);
575 }
576
577 switch (code)
578 {
579 case PLUS:
580 /* If we have a PLUS whose second operand is now a CONST_INT, use
581 simplify_gen_binary to try to simplify it.
582 ??? We may want later to remove this, once simplification is
583 separated from this function. */
584 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
585 validate_change (object, loc,
586 simplify_gen_binary
587 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
588 break;
589 case MINUS:
590 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
591 validate_change (object, loc,
592 simplify_gen_binary
593 (PLUS, GET_MODE (x), XEXP (x, 0),
594 simplify_gen_unary (NEG,
595 GET_MODE (x), XEXP (x, 1),
596 GET_MODE (x))), 1);
597 break;
598 case ZERO_EXTEND:
599 case SIGN_EXTEND:
600 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
601 {
602 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
603 op0_mode);
604 /* If any of the above failed, substitute in something that
605 we know won't be recognized. */
606 if (!new_rtx)
607 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
608 validate_change (object, loc, new_rtx, 1);
609 }
610 break;
611 case SUBREG:
612 /* All subregs possible to simplify should be simplified. */
613 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
614 SUBREG_BYTE (x));
615
616 /* Subregs of VOIDmode operands are incorrect. */
617 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
618 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
619 if (new_rtx)
620 validate_change (object, loc, new_rtx, 1);
621 break;
622 case ZERO_EXTRACT:
623 case SIGN_EXTRACT:
624 /* If we are replacing a register with memory, try to change the memory
625 to be the mode required for memory in extract operations (this isn't
626 likely to be an insertion operation; if it was, nothing bad will
627 happen, we might just fail in some cases). */
628
629 if (MEM_P (XEXP (x, 0))
630 && CONST_INT_P (XEXP (x, 1))
631 && CONST_INT_P (XEXP (x, 2))
632 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
633 MEM_ADDR_SPACE (XEXP (x, 0)))
634 && !MEM_VOLATILE_P (XEXP (x, 0)))
635 {
636 enum machine_mode wanted_mode = VOIDmode;
637 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
638 int pos = INTVAL (XEXP (x, 2));
639
640 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
641 {
642 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
643 if (wanted_mode == VOIDmode)
644 wanted_mode = word_mode;
645 }
646 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
647 {
648 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
649 if (wanted_mode == VOIDmode)
650 wanted_mode = word_mode;
651 }
652
653 /* If we have a narrower mode, we can do something. */
654 if (wanted_mode != VOIDmode
655 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
656 {
657 int offset = pos / BITS_PER_UNIT;
658 rtx newmem;
659
660 /* If the bytes and bits are counted differently, we
661 must adjust the offset. */
662 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
663 offset =
664 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
665 offset);
666
667 gcc_assert (GET_MODE_PRECISION (wanted_mode)
668 == GET_MODE_BITSIZE (wanted_mode));
669 pos %= GET_MODE_BITSIZE (wanted_mode);
670
671 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
672
673 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
674 validate_change (object, &XEXP (x, 0), newmem, 1);
675 }
676 }
677
678 break;
679
680 default:
681 break;
682 }
683 }
684
685 /* Replace every occurrence of FROM in X with TO. Mark each change with
686 validate_change passing OBJECT. */
687
688 static void
689 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
690 bool simplify)
691 {
692 int i, j;
693 const char *fmt;
694 rtx x = *loc;
695 enum rtx_code code;
696 enum machine_mode op0_mode = VOIDmode;
697 int prev_changes = num_changes;
698
699 if (!x)
700 return;
701
702 code = GET_CODE (x);
703 fmt = GET_RTX_FORMAT (code);
704 if (fmt[0] == 'e')
705 op0_mode = GET_MODE (XEXP (x, 0));
706
707 /* X matches FROM if it is the same rtx or they are both referring to the
708 same register in the same mode. Avoid calling rtx_equal_p unless the
709 operands look similar. */
710
711 if (x == from
712 || (REG_P (x) && REG_P (from)
713 && GET_MODE (x) == GET_MODE (from)
714 && REGNO (x) == REGNO (from))
715 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
716 && rtx_equal_p (x, from)))
717 {
718 validate_unshare_change (object, loc, to, 1);
719 return;
720 }
721
722 /* Call ourself recursively to perform the replacements.
723 We must not replace inside already replaced expression, otherwise we
724 get infinite recursion for replacements like (reg X)->(subreg (reg X))
725 done by regmove, so we must special case shared ASM_OPERANDS. */
726
727 if (GET_CODE (x) == PARALLEL)
728 {
729 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
730 {
731 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
732 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
733 {
734 /* Verify that operands are really shared. */
735 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
736 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
737 (x, 0, j))));
738 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
739 from, to, object, simplify);
740 }
741 else
742 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
743 simplify);
744 }
745 }
746 else
747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
748 {
749 if (fmt[i] == 'e')
750 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
751 else if (fmt[i] == 'E')
752 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
753 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
754 simplify);
755 }
756
757 /* If we didn't substitute, there is nothing more to do. */
758 if (num_changes == prev_changes)
759 return;
760
761 /* Allow substituted expression to have different mode. This is used by
762 regmove to change mode of pseudo register. */
763 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
764 op0_mode = GET_MODE (XEXP (x, 0));
765
766 /* Do changes needed to keep rtx consistent. Don't do any other
767 simplifications, as it is not our job. */
768 if (simplify)
769 simplify_while_replacing (loc, to, object, op0_mode);
770 }
771
772 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
773 with TO. After all changes have been made, validate by seeing
774 if INSN is still valid. */
775
776 int
777 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
778 {
779 validate_replace_rtx_1 (loc, from, to, insn, true);
780 return apply_change_group ();
781 }
782
783 /* Try replacing every occurrence of FROM in INSN with TO. After all
784 changes have been made, validate by seeing if INSN is still valid. */
785
786 int
787 validate_replace_rtx (rtx from, rtx to, rtx insn)
788 {
789 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
790 return apply_change_group ();
791 }
792
793 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
794 is a part of INSN. After all changes have been made, validate by seeing if
795 INSN is still valid.
796 validate_replace_rtx (from, to, insn) is equivalent to
797 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
798
799 int
800 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
801 {
802 validate_replace_rtx_1 (where, from, to, insn, true);
803 return apply_change_group ();
804 }
805
806 /* Same as above, but do not simplify rtx afterwards. */
807 int
808 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
809 rtx insn)
810 {
811 validate_replace_rtx_1 (where, from, to, insn, false);
812 return apply_change_group ();
813
814 }
815
816 /* Try replacing every occurrence of FROM in INSN with TO. This also
817 will replace in REG_EQUAL and REG_EQUIV notes. */
818
819 void
820 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
821 {
822 rtx note;
823 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
824 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
825 if (REG_NOTE_KIND (note) == REG_EQUAL
826 || REG_NOTE_KIND (note) == REG_EQUIV)
827 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
828 }
829
830 /* Function called by note_uses to replace used subexpressions. */
831 struct validate_replace_src_data
832 {
833 rtx from; /* Old RTX */
834 rtx to; /* New RTX */
835 rtx insn; /* Insn in which substitution is occurring. */
836 };
837
838 static void
839 validate_replace_src_1 (rtx *x, void *data)
840 {
841 struct validate_replace_src_data *d
842 = (struct validate_replace_src_data *) data;
843
844 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
845 }
846
847 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
848 SET_DESTs. */
849
850 void
851 validate_replace_src_group (rtx from, rtx to, rtx insn)
852 {
853 struct validate_replace_src_data d;
854
855 d.from = from;
856 d.to = to;
857 d.insn = insn;
858 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
859 }
860
861 /* Try simplify INSN.
862 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
863 pattern and return true if something was simplified. */
864
865 bool
866 validate_simplify_insn (rtx insn)
867 {
868 int i;
869 rtx pat = NULL;
870 rtx newpat = NULL;
871
872 pat = PATTERN (insn);
873
874 if (GET_CODE (pat) == SET)
875 {
876 newpat = simplify_rtx (SET_SRC (pat));
877 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
878 validate_change (insn, &SET_SRC (pat), newpat, 1);
879 newpat = simplify_rtx (SET_DEST (pat));
880 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
881 validate_change (insn, &SET_DEST (pat), newpat, 1);
882 }
883 else if (GET_CODE (pat) == PARALLEL)
884 for (i = 0; i < XVECLEN (pat, 0); i++)
885 {
886 rtx s = XVECEXP (pat, 0, i);
887
888 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
889 {
890 newpat = simplify_rtx (SET_SRC (s));
891 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
892 validate_change (insn, &SET_SRC (s), newpat, 1);
893 newpat = simplify_rtx (SET_DEST (s));
894 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
895 validate_change (insn, &SET_DEST (s), newpat, 1);
896 }
897 }
898 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
899 }
900 \f
901 #ifdef HAVE_cc0
902 /* Return 1 if the insn using CC0 set by INSN does not contain
903 any ordered tests applied to the condition codes.
904 EQ and NE tests do not count. */
905
906 int
907 next_insn_tests_no_inequality (rtx insn)
908 {
909 rtx next = next_cc0_user (insn);
910
911 /* If there is no next insn, we have to take the conservative choice. */
912 if (next == 0)
913 return 0;
914
915 return (INSN_P (next)
916 && ! inequality_comparisons_p (PATTERN (next)));
917 }
918 #endif
919 \f
920 /* Return 1 if OP is a valid general operand for machine mode MODE.
921 This is either a register reference, a memory reference,
922 or a constant. In the case of a memory reference, the address
923 is checked for general validity for the target machine.
924
925 Register and memory references must have mode MODE in order to be valid,
926 but some constants have no machine mode and are valid for any mode.
927
928 If MODE is VOIDmode, OP is checked for validity for whatever mode
929 it has.
930
931 The main use of this function is as a predicate in match_operand
932 expressions in the machine description. */
933
934 int
935 general_operand (rtx op, enum machine_mode mode)
936 {
937 enum rtx_code code = GET_CODE (op);
938
939 if (mode == VOIDmode)
940 mode = GET_MODE (op);
941
942 /* Don't accept CONST_INT or anything similar
943 if the caller wants something floating. */
944 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
945 && GET_MODE_CLASS (mode) != MODE_INT
946 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
947 return 0;
948
949 if (CONST_INT_P (op)
950 && mode != VOIDmode
951 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
952 return 0;
953
954 if (CONSTANT_P (op))
955 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
956 || mode == VOIDmode)
957 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
958 && targetm.legitimate_constant_p (mode == VOIDmode
959 ? GET_MODE (op)
960 : mode, op));
961
962 /* Except for certain constants with VOIDmode, already checked for,
963 OP's mode must match MODE if MODE specifies a mode. */
964
965 if (GET_MODE (op) != mode)
966 return 0;
967
968 if (code == SUBREG)
969 {
970 rtx sub = SUBREG_REG (op);
971
972 #ifdef INSN_SCHEDULING
973 /* On machines that have insn scheduling, we want all memory
974 reference to be explicit, so outlaw paradoxical SUBREGs.
975 However, we must allow them after reload so that they can
976 get cleaned up by cleanup_subreg_operands. */
977 if (!reload_completed && MEM_P (sub)
978 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
979 return 0;
980 #endif
981 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
982 may result in incorrect reference. We should simplify all valid
983 subregs of MEM anyway. But allow this after reload because we
984 might be called from cleanup_subreg_operands.
985
986 ??? This is a kludge. */
987 if (!reload_completed && SUBREG_BYTE (op) != 0
988 && MEM_P (sub))
989 return 0;
990
991 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
992 create such rtl, and we must reject it. */
993 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
994 /* LRA can use subreg to store a floating point value in an
995 integer mode. Although the floating point and the
996 integer modes need the same number of hard registers, the
997 size of floating point mode can be less than the integer
998 mode. */
999 && ! lra_in_progress
1000 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1001 return 0;
1002
1003 op = sub;
1004 code = GET_CODE (op);
1005 }
1006
1007 if (code == REG)
1008 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1009 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1010
1011 if (code == MEM)
1012 {
1013 rtx y = XEXP (op, 0);
1014
1015 if (! volatile_ok && MEM_VOLATILE_P (op))
1016 return 0;
1017
1018 /* Use the mem's mode, since it will be reloaded thus. */
1019 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1020 return 1;
1021 }
1022
1023 return 0;
1024 }
1025 \f
1026 /* Return 1 if OP is a valid memory address for a memory reference
1027 of mode MODE.
1028
1029 The main use of this function is as a predicate in match_operand
1030 expressions in the machine description. */
1031
1032 int
1033 address_operand (rtx op, enum machine_mode mode)
1034 {
1035 return memory_address_p (mode, op);
1036 }
1037
1038 /* Return 1 if OP is a register reference of mode MODE.
1039 If MODE is VOIDmode, accept a register in any mode.
1040
1041 The main use of this function is as a predicate in match_operand
1042 expressions in the machine description. */
1043
1044 int
1045 register_operand (rtx op, enum machine_mode mode)
1046 {
1047 if (GET_MODE (op) != mode && mode != VOIDmode)
1048 return 0;
1049
1050 if (GET_CODE (op) == SUBREG)
1051 {
1052 rtx sub = SUBREG_REG (op);
1053
1054 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1055 because it is guaranteed to be reloaded into one.
1056 Just make sure the MEM is valid in itself.
1057 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1058 but currently it does result from (SUBREG (REG)...) where the
1059 reg went on the stack.) */
1060 if (! reload_completed && MEM_P (sub))
1061 return general_operand (op, mode);
1062
1063 #ifdef CANNOT_CHANGE_MODE_CLASS
1064 if (REG_P (sub)
1065 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1066 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1067 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1068 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1069 /* LRA can generate some invalid SUBREGS just for matched
1070 operand reload presentation. LRA needs to treat them as
1071 valid. */
1072 && ! LRA_SUBREG_P (op))
1073 return 0;
1074 #endif
1075
1076 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1077 create such rtl, and we must reject it. */
1078 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1079 /* LRA can use subreg to store a floating point value in an
1080 integer mode. Although the floating point and the
1081 integer modes need the same number of hard registers, the
1082 size of floating point mode can be less than the integer
1083 mode. */
1084 && ! lra_in_progress
1085 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1086 return 0;
1087
1088 op = sub;
1089 }
1090
1091 return (REG_P (op)
1092 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1093 || in_hard_reg_set_p (operand_reg_set,
1094 GET_MODE (op), REGNO (op))));
1095 }
1096
1097 /* Return 1 for a register in Pmode; ignore the tested mode. */
1098
1099 int
1100 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1101 {
1102 return register_operand (op, Pmode);
1103 }
1104
1105 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1106 or a hard register. */
1107
1108 int
1109 scratch_operand (rtx op, enum machine_mode mode)
1110 {
1111 if (GET_MODE (op) != mode && mode != VOIDmode)
1112 return 0;
1113
1114 return (GET_CODE (op) == SCRATCH
1115 || (REG_P (op)
1116 && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
1117 }
1118
1119 /* Return 1 if OP is a valid immediate operand for mode MODE.
1120
1121 The main use of this function is as a predicate in match_operand
1122 expressions in the machine description. */
1123
1124 int
1125 immediate_operand (rtx op, enum machine_mode mode)
1126 {
1127 /* Don't accept CONST_INT or anything similar
1128 if the caller wants something floating. */
1129 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1130 && GET_MODE_CLASS (mode) != MODE_INT
1131 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1132 return 0;
1133
1134 if (CONST_INT_P (op)
1135 && mode != VOIDmode
1136 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1137 return 0;
1138
1139 return (CONSTANT_P (op)
1140 && (GET_MODE (op) == mode || mode == VOIDmode
1141 || GET_MODE (op) == VOIDmode)
1142 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1143 && targetm.legitimate_constant_p (mode == VOIDmode
1144 ? GET_MODE (op)
1145 : mode, op));
1146 }
1147
1148 /* Returns 1 if OP is an operand that is a CONST_INT. */
1149
1150 int
1151 const_int_operand (rtx op, enum machine_mode mode)
1152 {
1153 if (!CONST_INT_P (op))
1154 return 0;
1155
1156 if (mode != VOIDmode
1157 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1158 return 0;
1159
1160 return 1;
1161 }
1162
1163 /* Returns 1 if OP is an operand that is a constant integer or constant
1164 floating-point number. */
1165
1166 int
1167 const_double_operand (rtx op, enum machine_mode mode)
1168 {
1169 /* Don't accept CONST_INT or anything similar
1170 if the caller wants something floating. */
1171 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1172 && GET_MODE_CLASS (mode) != MODE_INT
1173 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1174 return 0;
1175
1176 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1177 && (mode == VOIDmode || GET_MODE (op) == mode
1178 || GET_MODE (op) == VOIDmode));
1179 }
1180
1181 /* Return 1 if OP is a general operand that is not an immediate operand. */
1182
1183 int
1184 nonimmediate_operand (rtx op, enum machine_mode mode)
1185 {
1186 return (general_operand (op, mode) && ! CONSTANT_P (op));
1187 }
1188
1189 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1190
1191 int
1192 nonmemory_operand (rtx op, enum machine_mode mode)
1193 {
1194 if (CONSTANT_P (op))
1195 return immediate_operand (op, mode);
1196
1197 if (GET_MODE (op) != mode && mode != VOIDmode)
1198 return 0;
1199
1200 if (GET_CODE (op) == SUBREG)
1201 {
1202 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1203 because it is guaranteed to be reloaded into one.
1204 Just make sure the MEM is valid in itself.
1205 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1206 but currently it does result from (SUBREG (REG)...) where the
1207 reg went on the stack.) */
1208 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1209 return general_operand (op, mode);
1210 op = SUBREG_REG (op);
1211 }
1212
1213 return (REG_P (op)
1214 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1215 || in_hard_reg_set_p (operand_reg_set,
1216 GET_MODE (op), REGNO (op))));
1217 }
1218
1219 /* Return 1 if OP is a valid operand that stands for pushing a
1220 value of mode MODE onto the stack.
1221
1222 The main use of this function is as a predicate in match_operand
1223 expressions in the machine description. */
1224
1225 int
1226 push_operand (rtx op, enum machine_mode mode)
1227 {
1228 unsigned int rounded_size = GET_MODE_SIZE (mode);
1229
1230 #ifdef PUSH_ROUNDING
1231 rounded_size = PUSH_ROUNDING (rounded_size);
1232 #endif
1233
1234 if (!MEM_P (op))
1235 return 0;
1236
1237 if (mode != VOIDmode && GET_MODE (op) != mode)
1238 return 0;
1239
1240 op = XEXP (op, 0);
1241
1242 if (rounded_size == GET_MODE_SIZE (mode))
1243 {
1244 if (GET_CODE (op) != STACK_PUSH_CODE)
1245 return 0;
1246 }
1247 else
1248 {
1249 if (GET_CODE (op) != PRE_MODIFY
1250 || GET_CODE (XEXP (op, 1)) != PLUS
1251 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1252 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1253 #ifdef STACK_GROWS_DOWNWARD
1254 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1255 #else
1256 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1257 #endif
1258 )
1259 return 0;
1260 }
1261
1262 return XEXP (op, 0) == stack_pointer_rtx;
1263 }
1264
1265 /* Return 1 if OP is a valid operand that stands for popping a
1266 value of mode MODE off the stack.
1267
1268 The main use of this function is as a predicate in match_operand
1269 expressions in the machine description. */
1270
1271 int
1272 pop_operand (rtx op, enum machine_mode mode)
1273 {
1274 if (!MEM_P (op))
1275 return 0;
1276
1277 if (mode != VOIDmode && GET_MODE (op) != mode)
1278 return 0;
1279
1280 op = XEXP (op, 0);
1281
1282 if (GET_CODE (op) != STACK_POP_CODE)
1283 return 0;
1284
1285 return XEXP (op, 0) == stack_pointer_rtx;
1286 }
1287
1288 /* Return 1 if ADDR is a valid memory address
1289 for mode MODE in address space AS. */
1290
1291 int
1292 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1293 rtx addr, addr_space_t as)
1294 {
1295 #ifdef GO_IF_LEGITIMATE_ADDRESS
1296 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1297 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1298 return 0;
1299
1300 win:
1301 return 1;
1302 #else
1303 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1304 #endif
1305 }
1306
1307 /* Return 1 if OP is a valid memory reference with mode MODE,
1308 including a valid address.
1309
1310 The main use of this function is as a predicate in match_operand
1311 expressions in the machine description. */
1312
1313 int
1314 memory_operand (rtx op, enum machine_mode mode)
1315 {
1316 rtx inner;
1317
1318 if (! reload_completed)
1319 /* Note that no SUBREG is a memory operand before end of reload pass,
1320 because (SUBREG (MEM...)) forces reloading into a register. */
1321 return MEM_P (op) && general_operand (op, mode);
1322
1323 if (mode != VOIDmode && GET_MODE (op) != mode)
1324 return 0;
1325
1326 inner = op;
1327 if (GET_CODE (inner) == SUBREG)
1328 inner = SUBREG_REG (inner);
1329
1330 return (MEM_P (inner) && general_operand (op, mode));
1331 }
1332
1333 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1334 that is, a memory reference whose address is a general_operand. */
1335
1336 int
1337 indirect_operand (rtx op, enum machine_mode mode)
1338 {
1339 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1340 if (! reload_completed
1341 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1342 {
1343 int offset = SUBREG_BYTE (op);
1344 rtx inner = SUBREG_REG (op);
1345
1346 if (mode != VOIDmode && GET_MODE (op) != mode)
1347 return 0;
1348
1349 /* The only way that we can have a general_operand as the resulting
1350 address is if OFFSET is zero and the address already is an operand
1351 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1352 operand. */
1353
1354 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1355 || (GET_CODE (XEXP (inner, 0)) == PLUS
1356 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1357 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1358 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1359 }
1360
1361 return (MEM_P (op)
1362 && memory_operand (op, mode)
1363 && general_operand (XEXP (op, 0), Pmode));
1364 }
1365
1366 /* Return 1 if this is an ordered comparison operator (not including
1367 ORDERED and UNORDERED). */
1368
1369 int
1370 ordered_comparison_operator (rtx op, enum machine_mode mode)
1371 {
1372 if (mode != VOIDmode && GET_MODE (op) != mode)
1373 return false;
1374 switch (GET_CODE (op))
1375 {
1376 case EQ:
1377 case NE:
1378 case LT:
1379 case LTU:
1380 case LE:
1381 case LEU:
1382 case GT:
1383 case GTU:
1384 case GE:
1385 case GEU:
1386 return true;
1387 default:
1388 return false;
1389 }
1390 }
1391
1392 /* Return 1 if this is a comparison operator. This allows the use of
1393 MATCH_OPERATOR to recognize all the branch insns. */
1394
1395 int
1396 comparison_operator (rtx op, enum machine_mode mode)
1397 {
1398 return ((mode == VOIDmode || GET_MODE (op) == mode)
1399 && COMPARISON_P (op));
1400 }
1401 \f
1402 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1403
1404 rtx
1405 extract_asm_operands (rtx body)
1406 {
1407 rtx tmp;
1408 switch (GET_CODE (body))
1409 {
1410 case ASM_OPERANDS:
1411 return body;
1412
1413 case SET:
1414 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1415 tmp = SET_SRC (body);
1416 if (GET_CODE (tmp) == ASM_OPERANDS)
1417 return tmp;
1418 break;
1419
1420 case PARALLEL:
1421 tmp = XVECEXP (body, 0, 0);
1422 if (GET_CODE (tmp) == ASM_OPERANDS)
1423 return tmp;
1424 if (GET_CODE (tmp) == SET)
1425 {
1426 tmp = SET_SRC (tmp);
1427 if (GET_CODE (tmp) == ASM_OPERANDS)
1428 return tmp;
1429 }
1430 break;
1431
1432 default:
1433 break;
1434 }
1435 return NULL;
1436 }
1437
1438 /* If BODY is an insn body that uses ASM_OPERANDS,
1439 return the number of operands (both input and output) in the insn.
1440 Otherwise return -1. */
1441
1442 int
1443 asm_noperands (const_rtx body)
1444 {
1445 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1446 int n_sets = 0;
1447
1448 if (asm_op == NULL)
1449 return -1;
1450
1451 if (GET_CODE (body) == SET)
1452 n_sets = 1;
1453 else if (GET_CODE (body) == PARALLEL)
1454 {
1455 int i;
1456 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1457 {
1458 /* Multiple output operands, or 1 output plus some clobbers:
1459 body is
1460 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1461 /* Count backwards through CLOBBERs to determine number of SETs. */
1462 for (i = XVECLEN (body, 0); i > 0; i--)
1463 {
1464 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1465 break;
1466 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1467 return -1;
1468 }
1469
1470 /* N_SETS is now number of output operands. */
1471 n_sets = i;
1472
1473 /* Verify that all the SETs we have
1474 came from a single original asm_operands insn
1475 (so that invalid combinations are blocked). */
1476 for (i = 0; i < n_sets; i++)
1477 {
1478 rtx elt = XVECEXP (body, 0, i);
1479 if (GET_CODE (elt) != SET)
1480 return -1;
1481 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1482 return -1;
1483 /* If these ASM_OPERANDS rtx's came from different original insns
1484 then they aren't allowed together. */
1485 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1486 != ASM_OPERANDS_INPUT_VEC (asm_op))
1487 return -1;
1488 }
1489 }
1490 else
1491 {
1492 /* 0 outputs, but some clobbers:
1493 body is [(asm_operands ...) (clobber (reg ...))...]. */
1494 /* Make sure all the other parallel things really are clobbers. */
1495 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1496 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1497 return -1;
1498 }
1499 }
1500
1501 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1502 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1503 }
1504
1505 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1506 copy its operands (both input and output) into the vector OPERANDS,
1507 the locations of the operands within the insn into the vector OPERAND_LOCS,
1508 and the constraints for the operands into CONSTRAINTS.
1509 Write the modes of the operands into MODES.
1510 Return the assembler-template.
1511
1512 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1513 we don't store that info. */
1514
1515 const char *
1516 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1517 const char **constraints, enum machine_mode *modes,
1518 location_t *loc)
1519 {
1520 int nbase = 0, n, i;
1521 rtx asmop;
1522
1523 switch (GET_CODE (body))
1524 {
1525 case ASM_OPERANDS:
1526 /* Zero output asm: BODY is (asm_operands ...). */
1527 asmop = body;
1528 break;
1529
1530 case SET:
1531 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1532 asmop = SET_SRC (body);
1533
1534 /* The output is in the SET.
1535 Its constraint is in the ASM_OPERANDS itself. */
1536 if (operands)
1537 operands[0] = SET_DEST (body);
1538 if (operand_locs)
1539 operand_locs[0] = &SET_DEST (body);
1540 if (constraints)
1541 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1542 if (modes)
1543 modes[0] = GET_MODE (SET_DEST (body));
1544 nbase = 1;
1545 break;
1546
1547 case PARALLEL:
1548 {
1549 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1550
1551 asmop = XVECEXP (body, 0, 0);
1552 if (GET_CODE (asmop) == SET)
1553 {
1554 asmop = SET_SRC (asmop);
1555
1556 /* At least one output, plus some CLOBBERs. The outputs are in
1557 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1558 for (i = 0; i < nparallel; i++)
1559 {
1560 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1561 break; /* Past last SET */
1562 if (operands)
1563 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1564 if (operand_locs)
1565 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1566 if (constraints)
1567 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1568 if (modes)
1569 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1570 }
1571 nbase = i;
1572 }
1573 break;
1574 }
1575
1576 default:
1577 gcc_unreachable ();
1578 }
1579
1580 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1581 for (i = 0; i < n; i++)
1582 {
1583 if (operand_locs)
1584 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1585 if (operands)
1586 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1587 if (constraints)
1588 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1589 if (modes)
1590 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1591 }
1592 nbase += n;
1593
1594 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1595 for (i = 0; i < n; i++)
1596 {
1597 if (operand_locs)
1598 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1599 if (operands)
1600 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1601 if (constraints)
1602 constraints[nbase + i] = "";
1603 if (modes)
1604 modes[nbase + i] = Pmode;
1605 }
1606
1607 if (loc)
1608 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1609
1610 return ASM_OPERANDS_TEMPLATE (asmop);
1611 }
1612
1613 /* Check if an asm_operand matches its constraints.
1614 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1615
1616 int
1617 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1618 {
1619 int result = 0;
1620 #ifdef AUTO_INC_DEC
1621 bool incdec_ok = false;
1622 #endif
1623
1624 /* Use constrain_operands after reload. */
1625 gcc_assert (!reload_completed);
1626
1627 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1628 many alternatives as required to match the other operands. */
1629 if (*constraint == '\0')
1630 result = 1;
1631
1632 while (*constraint)
1633 {
1634 char c = *constraint;
1635 int len;
1636 switch (c)
1637 {
1638 case ',':
1639 constraint++;
1640 continue;
1641 case '=':
1642 case '+':
1643 case '*':
1644 case '%':
1645 case '!':
1646 case '#':
1647 case '&':
1648 case '?':
1649 break;
1650
1651 case '0': case '1': case '2': case '3': case '4':
1652 case '5': case '6': case '7': case '8': case '9':
1653 /* If caller provided constraints pointer, look up
1654 the maching constraint. Otherwise, our caller should have
1655 given us the proper matching constraint, but we can't
1656 actually fail the check if they didn't. Indicate that
1657 results are inconclusive. */
1658 if (constraints)
1659 {
1660 char *end;
1661 unsigned long match;
1662
1663 match = strtoul (constraint, &end, 10);
1664 if (!result)
1665 result = asm_operand_ok (op, constraints[match], NULL);
1666 constraint = (const char *) end;
1667 }
1668 else
1669 {
1670 do
1671 constraint++;
1672 while (ISDIGIT (*constraint));
1673 if (! result)
1674 result = -1;
1675 }
1676 continue;
1677
1678 case 'p':
1679 if (address_operand (op, VOIDmode))
1680 result = 1;
1681 break;
1682
1683 case TARGET_MEM_CONSTRAINT:
1684 case 'V': /* non-offsettable */
1685 if (memory_operand (op, VOIDmode))
1686 result = 1;
1687 break;
1688
1689 case 'o': /* offsettable */
1690 if (offsettable_nonstrict_memref_p (op))
1691 result = 1;
1692 break;
1693
1694 case '<':
1695 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1696 excepting those that expand_call created. Further, on some
1697 machines which do not have generalized auto inc/dec, an inc/dec
1698 is not a memory_operand.
1699
1700 Match any memory and hope things are resolved after reload. */
1701
1702 if (MEM_P (op)
1703 && (1
1704 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1705 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1706 result = 1;
1707 #ifdef AUTO_INC_DEC
1708 incdec_ok = true;
1709 #endif
1710 break;
1711
1712 case '>':
1713 if (MEM_P (op)
1714 && (1
1715 || GET_CODE (XEXP (op, 0)) == PRE_INC
1716 || GET_CODE (XEXP (op, 0)) == POST_INC))
1717 result = 1;
1718 #ifdef AUTO_INC_DEC
1719 incdec_ok = true;
1720 #endif
1721 break;
1722
1723 case 'E':
1724 case 'F':
1725 if (CONST_DOUBLE_AS_FLOAT_P (op)
1726 || (GET_CODE (op) == CONST_VECTOR
1727 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1728 result = 1;
1729 break;
1730
1731 case 'G':
1732 if (CONST_DOUBLE_AS_FLOAT_P (op)
1733 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1734 result = 1;
1735 break;
1736 case 'H':
1737 if (CONST_DOUBLE_AS_FLOAT_P (op)
1738 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1739 result = 1;
1740 break;
1741
1742 case 's':
1743 if (CONST_SCALAR_INT_P (op))
1744 break;
1745 /* Fall through. */
1746
1747 case 'i':
1748 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1749 result = 1;
1750 break;
1751
1752 case 'n':
1753 if (CONST_SCALAR_INT_P (op))
1754 result = 1;
1755 break;
1756
1757 case 'I':
1758 if (CONST_INT_P (op)
1759 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1760 result = 1;
1761 break;
1762 case 'J':
1763 if (CONST_INT_P (op)
1764 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1765 result = 1;
1766 break;
1767 case 'K':
1768 if (CONST_INT_P (op)
1769 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1770 result = 1;
1771 break;
1772 case 'L':
1773 if (CONST_INT_P (op)
1774 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1775 result = 1;
1776 break;
1777 case 'M':
1778 if (CONST_INT_P (op)
1779 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1780 result = 1;
1781 break;
1782 case 'N':
1783 if (CONST_INT_P (op)
1784 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1785 result = 1;
1786 break;
1787 case 'O':
1788 if (CONST_INT_P (op)
1789 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1790 result = 1;
1791 break;
1792 case 'P':
1793 if (CONST_INT_P (op)
1794 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1795 result = 1;
1796 break;
1797
1798 case 'X':
1799 result = 1;
1800 break;
1801
1802 case 'g':
1803 if (general_operand (op, VOIDmode))
1804 result = 1;
1805 break;
1806
1807 default:
1808 /* For all other letters, we first check for a register class,
1809 otherwise it is an EXTRA_CONSTRAINT. */
1810 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1811 {
1812 case 'r':
1813 if (GET_MODE (op) == BLKmode)
1814 break;
1815 if (register_operand (op, VOIDmode))
1816 result = 1;
1817 }
1818 #ifdef EXTRA_CONSTRAINT_STR
1819 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1820 /* Every memory operand can be reloaded to fit. */
1821 result = result || memory_operand (op, VOIDmode);
1822 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1823 /* Every address operand can be reloaded to fit. */
1824 result = result || address_operand (op, VOIDmode);
1825 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1826 result = 1;
1827 #endif
1828 break;
1829 }
1830 len = CONSTRAINT_LEN (c, constraint);
1831 do
1832 constraint++;
1833 while (--len && *constraint);
1834 if (len)
1835 return 0;
1836 }
1837
1838 #ifdef AUTO_INC_DEC
1839 /* For operands without < or > constraints reject side-effects. */
1840 if (!incdec_ok && result && MEM_P (op))
1841 switch (GET_CODE (XEXP (op, 0)))
1842 {
1843 case PRE_INC:
1844 case POST_INC:
1845 case PRE_DEC:
1846 case POST_DEC:
1847 case PRE_MODIFY:
1848 case POST_MODIFY:
1849 return 0;
1850 default:
1851 break;
1852 }
1853 #endif
1854
1855 return result;
1856 }
1857 \f
1858 /* Given an rtx *P, if it is a sum containing an integer constant term,
1859 return the location (type rtx *) of the pointer to that constant term.
1860 Otherwise, return a null pointer. */
1861
1862 rtx *
1863 find_constant_term_loc (rtx *p)
1864 {
1865 rtx *tem;
1866 enum rtx_code code = GET_CODE (*p);
1867
1868 /* If *P IS such a constant term, P is its location. */
1869
1870 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1871 || code == CONST)
1872 return p;
1873
1874 /* Otherwise, if not a sum, it has no constant term. */
1875
1876 if (GET_CODE (*p) != PLUS)
1877 return 0;
1878
1879 /* If one of the summands is constant, return its location. */
1880
1881 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1882 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1883 return p;
1884
1885 /* Otherwise, check each summand for containing a constant term. */
1886
1887 if (XEXP (*p, 0) != 0)
1888 {
1889 tem = find_constant_term_loc (&XEXP (*p, 0));
1890 if (tem != 0)
1891 return tem;
1892 }
1893
1894 if (XEXP (*p, 1) != 0)
1895 {
1896 tem = find_constant_term_loc (&XEXP (*p, 1));
1897 if (tem != 0)
1898 return tem;
1899 }
1900
1901 return 0;
1902 }
1903 \f
1904 /* Return 1 if OP is a memory reference
1905 whose address contains no side effects
1906 and remains valid after the addition
1907 of a positive integer less than the
1908 size of the object being referenced.
1909
1910 We assume that the original address is valid and do not check it.
1911
1912 This uses strict_memory_address_p as a subroutine, so
1913 don't use it before reload. */
1914
1915 int
1916 offsettable_memref_p (rtx op)
1917 {
1918 return ((MEM_P (op))
1919 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1920 MEM_ADDR_SPACE (op)));
1921 }
1922
1923 /* Similar, but don't require a strictly valid mem ref:
1924 consider pseudo-regs valid as index or base regs. */
1925
1926 int
1927 offsettable_nonstrict_memref_p (rtx op)
1928 {
1929 return ((MEM_P (op))
1930 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1931 MEM_ADDR_SPACE (op)));
1932 }
1933
1934 /* Return 1 if Y is a memory address which contains no side effects
1935 and would remain valid for address space AS after the addition of
1936 a positive integer less than the size of that mode.
1937
1938 We assume that the original address is valid and do not check it.
1939 We do check that it is valid for narrower modes.
1940
1941 If STRICTP is nonzero, we require a strictly valid address,
1942 for the sake of use in reload.c. */
1943
1944 int
1945 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1946 addr_space_t as)
1947 {
1948 enum rtx_code ycode = GET_CODE (y);
1949 rtx z;
1950 rtx y1 = y;
1951 rtx *y2;
1952 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1953 (strictp ? strict_memory_address_addr_space_p
1954 : memory_address_addr_space_p);
1955 unsigned int mode_sz = GET_MODE_SIZE (mode);
1956 #ifdef POINTERS_EXTEND_UNSIGNED
1957 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1958 #endif
1959
1960 if (CONSTANT_ADDRESS_P (y))
1961 return 1;
1962
1963 /* Adjusting an offsettable address involves changing to a narrower mode.
1964 Make sure that's OK. */
1965
1966 if (mode_dependent_address_p (y, as))
1967 return 0;
1968
1969 /* ??? How much offset does an offsettable BLKmode reference need?
1970 Clearly that depends on the situation in which it's being used.
1971 However, the current situation in which we test 0xffffffff is
1972 less than ideal. Caveat user. */
1973 if (mode_sz == 0)
1974 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1975
1976 /* If the expression contains a constant term,
1977 see if it remains valid when max possible offset is added. */
1978
1979 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1980 {
1981 int good;
1982
1983 y1 = *y2;
1984 *y2 = plus_constant (GET_MODE (y), *y2, mode_sz - 1);
1985 /* Use QImode because an odd displacement may be automatically invalid
1986 for any wider mode. But it should be valid for a single byte. */
1987 good = (*addressp) (QImode, y, as);
1988
1989 /* In any case, restore old contents of memory. */
1990 *y2 = y1;
1991 return good;
1992 }
1993
1994 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1995 return 0;
1996
1997 /* The offset added here is chosen as the maximum offset that
1998 any instruction could need to add when operating on something
1999 of the specified mode. We assume that if Y and Y+c are
2000 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2001 go inside a LO_SUM here, so we do so as well. */
2002 if (GET_CODE (y) == LO_SUM
2003 && mode != BLKmode
2004 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2005 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
2006 plus_constant (GET_MODE (y), XEXP (y, 1),
2007 mode_sz - 1));
2008 #ifdef POINTERS_EXTEND_UNSIGNED
2009 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2010 else if (POINTERS_EXTEND_UNSIGNED > 0
2011 && GET_CODE (y) == ZERO_EXTEND
2012 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2013 z = gen_rtx_ZERO_EXTEND (GET_MODE (y),
2014 plus_constant (pointer_mode, XEXP (y, 0),
2015 mode_sz - 1));
2016 #endif
2017 else
2018 z = plus_constant (GET_MODE (y), y, mode_sz - 1);
2019
2020 /* Use QImode because an odd displacement may be automatically invalid
2021 for any wider mode. But it should be valid for a single byte. */
2022 return (*addressp) (QImode, z, as);
2023 }
2024
2025 /* Return 1 if ADDR is an address-expression whose effect depends
2026 on the mode of the memory reference it is used in.
2027
2028 ADDRSPACE is the address space associated with the address.
2029
2030 Autoincrement addressing is a typical example of mode-dependence
2031 because the amount of the increment depends on the mode. */
2032
2033 bool
2034 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2035 {
2036 /* Auto-increment addressing with anything other than post_modify
2037 or pre_modify always introduces a mode dependency. Catch such
2038 cases now instead of deferring to the target. */
2039 if (GET_CODE (addr) == PRE_INC
2040 || GET_CODE (addr) == POST_INC
2041 || GET_CODE (addr) == PRE_DEC
2042 || GET_CODE (addr) == POST_DEC)
2043 return true;
2044
2045 return targetm.mode_dependent_address_p (addr, addrspace);
2046 }
2047 \f
2048 /* Like extract_insn, but save insn extracted and don't extract again, when
2049 called again for the same insn expecting that recog_data still contain the
2050 valid information. This is used primary by gen_attr infrastructure that
2051 often does extract insn again and again. */
2052 void
2053 extract_insn_cached (rtx insn)
2054 {
2055 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2056 return;
2057 extract_insn (insn);
2058 recog_data.insn = insn;
2059 }
2060
2061 /* Do cached extract_insn, constrain_operands and complain about failures.
2062 Used by insn_attrtab. */
2063 void
2064 extract_constrain_insn_cached (rtx insn)
2065 {
2066 extract_insn_cached (insn);
2067 if (which_alternative == -1
2068 && !constrain_operands (reload_completed))
2069 fatal_insn_not_found (insn);
2070 }
2071
2072 /* Do cached constrain_operands and complain about failures. */
2073 int
2074 constrain_operands_cached (int strict)
2075 {
2076 if (which_alternative == -1)
2077 return constrain_operands (strict);
2078 else
2079 return 1;
2080 }
2081 \f
2082 /* Analyze INSN and fill in recog_data. */
2083
2084 void
2085 extract_insn (rtx insn)
2086 {
2087 int i;
2088 int icode;
2089 int noperands;
2090 rtx body = PATTERN (insn);
2091
2092 recog_data.n_operands = 0;
2093 recog_data.n_alternatives = 0;
2094 recog_data.n_dups = 0;
2095 recog_data.is_asm = false;
2096
2097 switch (GET_CODE (body))
2098 {
2099 case USE:
2100 case CLOBBER:
2101 case ASM_INPUT:
2102 case ADDR_VEC:
2103 case ADDR_DIFF_VEC:
2104 case VAR_LOCATION:
2105 return;
2106
2107 case SET:
2108 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2109 goto asm_insn;
2110 else
2111 goto normal_insn;
2112 case PARALLEL:
2113 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2114 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2115 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2116 goto asm_insn;
2117 else
2118 goto normal_insn;
2119 case ASM_OPERANDS:
2120 asm_insn:
2121 recog_data.n_operands = noperands = asm_noperands (body);
2122 if (noperands >= 0)
2123 {
2124 /* This insn is an `asm' with operands. */
2125
2126 /* expand_asm_operands makes sure there aren't too many operands. */
2127 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2128
2129 /* Now get the operand values and constraints out of the insn. */
2130 decode_asm_operands (body, recog_data.operand,
2131 recog_data.operand_loc,
2132 recog_data.constraints,
2133 recog_data.operand_mode, NULL);
2134 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2135 if (noperands > 0)
2136 {
2137 const char *p = recog_data.constraints[0];
2138 recog_data.n_alternatives = 1;
2139 while (*p)
2140 recog_data.n_alternatives += (*p++ == ',');
2141 }
2142 recog_data.is_asm = true;
2143 break;
2144 }
2145 fatal_insn_not_found (insn);
2146
2147 default:
2148 normal_insn:
2149 /* Ordinary insn: recognize it, get the operands via insn_extract
2150 and get the constraints. */
2151
2152 icode = recog_memoized (insn);
2153 if (icode < 0)
2154 fatal_insn_not_found (insn);
2155
2156 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2157 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2158 recog_data.n_dups = insn_data[icode].n_dups;
2159
2160 insn_extract (insn);
2161
2162 for (i = 0; i < noperands; i++)
2163 {
2164 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2165 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2166 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2167 /* VOIDmode match_operands gets mode from their real operand. */
2168 if (recog_data.operand_mode[i] == VOIDmode)
2169 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2170 }
2171 }
2172 for (i = 0; i < noperands; i++)
2173 recog_data.operand_type[i]
2174 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2175 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2176 : OP_IN);
2177
2178 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2179
2180 if (INSN_CODE (insn) < 0)
2181 for (i = 0; i < recog_data.n_alternatives; i++)
2182 recog_data.alternative_enabled_p[i] = true;
2183 else
2184 {
2185 recog_data.insn = insn;
2186 for (i = 0; i < recog_data.n_alternatives; i++)
2187 {
2188 which_alternative = i;
2189 recog_data.alternative_enabled_p[i]
2190 = HAVE_ATTR_enabled ? get_attr_enabled (insn) : 1;
2191 }
2192 }
2193
2194 recog_data.insn = NULL;
2195 which_alternative = -1;
2196 }
2197
2198 /* After calling extract_insn, you can use this function to extract some
2199 information from the constraint strings into a more usable form.
2200 The collected data is stored in recog_op_alt. */
2201 void
2202 preprocess_constraints (void)
2203 {
2204 int i;
2205
2206 for (i = 0; i < recog_data.n_operands; i++)
2207 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2208 * sizeof (struct operand_alternative)));
2209
2210 for (i = 0; i < recog_data.n_operands; i++)
2211 {
2212 int j;
2213 struct operand_alternative *op_alt;
2214 const char *p = recog_data.constraints[i];
2215
2216 op_alt = recog_op_alt[i];
2217
2218 for (j = 0; j < recog_data.n_alternatives; j++)
2219 {
2220 op_alt[j].cl = NO_REGS;
2221 op_alt[j].constraint = p;
2222 op_alt[j].matches = -1;
2223 op_alt[j].matched = -1;
2224
2225 if (!recog_data.alternative_enabled_p[j])
2226 {
2227 p = skip_alternative (p);
2228 continue;
2229 }
2230
2231 if (*p == '\0' || *p == ',')
2232 {
2233 op_alt[j].anything_ok = 1;
2234 continue;
2235 }
2236
2237 for (;;)
2238 {
2239 char c = *p;
2240 if (c == '#')
2241 do
2242 c = *++p;
2243 while (c != ',' && c != '\0');
2244 if (c == ',' || c == '\0')
2245 {
2246 p++;
2247 break;
2248 }
2249
2250 switch (c)
2251 {
2252 case '=': case '+': case '*': case '%':
2253 case 'E': case 'F': case 'G': case 'H':
2254 case 's': case 'i': case 'n':
2255 case 'I': case 'J': case 'K': case 'L':
2256 case 'M': case 'N': case 'O': case 'P':
2257 /* These don't say anything we care about. */
2258 break;
2259
2260 case '?':
2261 op_alt[j].reject += 6;
2262 break;
2263 case '!':
2264 op_alt[j].reject += 600;
2265 break;
2266 case '&':
2267 op_alt[j].earlyclobber = 1;
2268 break;
2269
2270 case '0': case '1': case '2': case '3': case '4':
2271 case '5': case '6': case '7': case '8': case '9':
2272 {
2273 char *end;
2274 op_alt[j].matches = strtoul (p, &end, 10);
2275 recog_op_alt[op_alt[j].matches][j].matched = i;
2276 p = end;
2277 }
2278 continue;
2279
2280 case TARGET_MEM_CONSTRAINT:
2281 op_alt[j].memory_ok = 1;
2282 break;
2283 case '<':
2284 op_alt[j].decmem_ok = 1;
2285 break;
2286 case '>':
2287 op_alt[j].incmem_ok = 1;
2288 break;
2289 case 'V':
2290 op_alt[j].nonoffmem_ok = 1;
2291 break;
2292 case 'o':
2293 op_alt[j].offmem_ok = 1;
2294 break;
2295 case 'X':
2296 op_alt[j].anything_ok = 1;
2297 break;
2298
2299 case 'p':
2300 op_alt[j].is_address = 1;
2301 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2302 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2303 ADDRESS, SCRATCH)];
2304 break;
2305
2306 case 'g':
2307 case 'r':
2308 op_alt[j].cl =
2309 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2310 break;
2311
2312 default:
2313 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2314 {
2315 op_alt[j].memory_ok = 1;
2316 break;
2317 }
2318 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2319 {
2320 op_alt[j].is_address = 1;
2321 op_alt[j].cl
2322 = (reg_class_subunion
2323 [(int) op_alt[j].cl]
2324 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2325 ADDRESS, SCRATCH)]);
2326 break;
2327 }
2328
2329 op_alt[j].cl
2330 = (reg_class_subunion
2331 [(int) op_alt[j].cl]
2332 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2333 break;
2334 }
2335 p += CONSTRAINT_LEN (c, p);
2336 }
2337 }
2338 }
2339 }
2340
2341 /* Check the operands of an insn against the insn's operand constraints
2342 and return 1 if they are valid.
2343 The information about the insn's operands, constraints, operand modes
2344 etc. is obtained from the global variables set up by extract_insn.
2345
2346 WHICH_ALTERNATIVE is set to a number which indicates which
2347 alternative of constraints was matched: 0 for the first alternative,
2348 1 for the next, etc.
2349
2350 In addition, when two operands are required to match
2351 and it happens that the output operand is (reg) while the
2352 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2353 make the output operand look like the input.
2354 This is because the output operand is the one the template will print.
2355
2356 This is used in final, just before printing the assembler code and by
2357 the routines that determine an insn's attribute.
2358
2359 If STRICT is a positive nonzero value, it means that we have been
2360 called after reload has been completed. In that case, we must
2361 do all checks strictly. If it is zero, it means that we have been called
2362 before reload has completed. In that case, we first try to see if we can
2363 find an alternative that matches strictly. If not, we try again, this
2364 time assuming that reload will fix up the insn. This provides a "best
2365 guess" for the alternative and is used to compute attributes of insns prior
2366 to reload. A negative value of STRICT is used for this internal call. */
2367
2368 struct funny_match
2369 {
2370 int this_op, other;
2371 };
2372
2373 int
2374 constrain_operands (int strict)
2375 {
2376 const char *constraints[MAX_RECOG_OPERANDS];
2377 int matching_operands[MAX_RECOG_OPERANDS];
2378 int earlyclobber[MAX_RECOG_OPERANDS];
2379 int c;
2380
2381 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2382 int funny_match_index;
2383
2384 which_alternative = 0;
2385 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2386 return 1;
2387
2388 for (c = 0; c < recog_data.n_operands; c++)
2389 {
2390 constraints[c] = recog_data.constraints[c];
2391 matching_operands[c] = -1;
2392 }
2393
2394 do
2395 {
2396 int seen_earlyclobber_at = -1;
2397 int opno;
2398 int lose = 0;
2399 funny_match_index = 0;
2400
2401 if (!recog_data.alternative_enabled_p[which_alternative])
2402 {
2403 int i;
2404
2405 for (i = 0; i < recog_data.n_operands; i++)
2406 constraints[i] = skip_alternative (constraints[i]);
2407
2408 which_alternative++;
2409 continue;
2410 }
2411
2412 for (opno = 0; opno < recog_data.n_operands; opno++)
2413 {
2414 rtx op = recog_data.operand[opno];
2415 enum machine_mode mode = GET_MODE (op);
2416 const char *p = constraints[opno];
2417 int offset = 0;
2418 int win = 0;
2419 int val;
2420 int len;
2421
2422 earlyclobber[opno] = 0;
2423
2424 /* A unary operator may be accepted by the predicate, but it
2425 is irrelevant for matching constraints. */
2426 if (UNARY_P (op))
2427 op = XEXP (op, 0);
2428
2429 if (GET_CODE (op) == SUBREG)
2430 {
2431 if (REG_P (SUBREG_REG (op))
2432 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2433 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2434 GET_MODE (SUBREG_REG (op)),
2435 SUBREG_BYTE (op),
2436 GET_MODE (op));
2437 op = SUBREG_REG (op);
2438 }
2439
2440 /* An empty constraint or empty alternative
2441 allows anything which matched the pattern. */
2442 if (*p == 0 || *p == ',')
2443 win = 1;
2444
2445 do
2446 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2447 {
2448 case '\0':
2449 len = 0;
2450 break;
2451 case ',':
2452 c = '\0';
2453 break;
2454
2455 case '?': case '!': case '*': case '%':
2456 case '=': case '+':
2457 break;
2458
2459 case '#':
2460 /* Ignore rest of this alternative as far as
2461 constraint checking is concerned. */
2462 do
2463 p++;
2464 while (*p && *p != ',');
2465 len = 0;
2466 break;
2467
2468 case '&':
2469 earlyclobber[opno] = 1;
2470 if (seen_earlyclobber_at < 0)
2471 seen_earlyclobber_at = opno;
2472 break;
2473
2474 case '0': case '1': case '2': case '3': case '4':
2475 case '5': case '6': case '7': case '8': case '9':
2476 {
2477 /* This operand must be the same as a previous one.
2478 This kind of constraint is used for instructions such
2479 as add when they take only two operands.
2480
2481 Note that the lower-numbered operand is passed first.
2482
2483 If we are not testing strictly, assume that this
2484 constraint will be satisfied. */
2485
2486 char *end;
2487 int match;
2488
2489 match = strtoul (p, &end, 10);
2490 p = end;
2491
2492 if (strict < 0)
2493 val = 1;
2494 else
2495 {
2496 rtx op1 = recog_data.operand[match];
2497 rtx op2 = recog_data.operand[opno];
2498
2499 /* A unary operator may be accepted by the predicate,
2500 but it is irrelevant for matching constraints. */
2501 if (UNARY_P (op1))
2502 op1 = XEXP (op1, 0);
2503 if (UNARY_P (op2))
2504 op2 = XEXP (op2, 0);
2505
2506 val = operands_match_p (op1, op2);
2507 }
2508
2509 matching_operands[opno] = match;
2510 matching_operands[match] = opno;
2511
2512 if (val != 0)
2513 win = 1;
2514
2515 /* If output is *x and input is *--x, arrange later
2516 to change the output to *--x as well, since the
2517 output op is the one that will be printed. */
2518 if (val == 2 && strict > 0)
2519 {
2520 funny_match[funny_match_index].this_op = opno;
2521 funny_match[funny_match_index++].other = match;
2522 }
2523 }
2524 len = 0;
2525 break;
2526
2527 case 'p':
2528 /* p is used for address_operands. When we are called by
2529 gen_reload, no one will have checked that the address is
2530 strictly valid, i.e., that all pseudos requiring hard regs
2531 have gotten them. */
2532 if (strict <= 0
2533 || (strict_memory_address_p (recog_data.operand_mode[opno],
2534 op)))
2535 win = 1;
2536 break;
2537
2538 /* No need to check general_operand again;
2539 it was done in insn-recog.c. Well, except that reload
2540 doesn't check the validity of its replacements, but
2541 that should only matter when there's a bug. */
2542 case 'g':
2543 /* Anything goes unless it is a REG and really has a hard reg
2544 but the hard reg is not in the class GENERAL_REGS. */
2545 if (REG_P (op))
2546 {
2547 if (strict < 0
2548 || GENERAL_REGS == ALL_REGS
2549 || (reload_in_progress
2550 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2551 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2552 win = 1;
2553 }
2554 else if (strict < 0 || general_operand (op, mode))
2555 win = 1;
2556 break;
2557
2558 case 'X':
2559 /* This is used for a MATCH_SCRATCH in the cases when
2560 we don't actually need anything. So anything goes
2561 any time. */
2562 win = 1;
2563 break;
2564
2565 case TARGET_MEM_CONSTRAINT:
2566 /* Memory operands must be valid, to the extent
2567 required by STRICT. */
2568 if (MEM_P (op))
2569 {
2570 if (strict > 0
2571 && !strict_memory_address_addr_space_p
2572 (GET_MODE (op), XEXP (op, 0),
2573 MEM_ADDR_SPACE (op)))
2574 break;
2575 if (strict == 0
2576 && !memory_address_addr_space_p
2577 (GET_MODE (op), XEXP (op, 0),
2578 MEM_ADDR_SPACE (op)))
2579 break;
2580 win = 1;
2581 }
2582 /* Before reload, accept what reload can turn into mem. */
2583 else if (strict < 0 && CONSTANT_P (op))
2584 win = 1;
2585 /* During reload, accept a pseudo */
2586 else if (reload_in_progress && REG_P (op)
2587 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2588 win = 1;
2589 break;
2590
2591 case '<':
2592 if (MEM_P (op)
2593 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2594 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2595 win = 1;
2596 break;
2597
2598 case '>':
2599 if (MEM_P (op)
2600 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2601 || GET_CODE (XEXP (op, 0)) == POST_INC))
2602 win = 1;
2603 break;
2604
2605 case 'E':
2606 case 'F':
2607 if (CONST_DOUBLE_AS_FLOAT_P (op)
2608 || (GET_CODE (op) == CONST_VECTOR
2609 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2610 win = 1;
2611 break;
2612
2613 case 'G':
2614 case 'H':
2615 if (CONST_DOUBLE_AS_FLOAT_P (op)
2616 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2617 win = 1;
2618 break;
2619
2620 case 's':
2621 if (CONST_SCALAR_INT_P (op))
2622 break;
2623 case 'i':
2624 if (CONSTANT_P (op))
2625 win = 1;
2626 break;
2627
2628 case 'n':
2629 if (CONST_SCALAR_INT_P (op))
2630 win = 1;
2631 break;
2632
2633 case 'I':
2634 case 'J':
2635 case 'K':
2636 case 'L':
2637 case 'M':
2638 case 'N':
2639 case 'O':
2640 case 'P':
2641 if (CONST_INT_P (op)
2642 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2643 win = 1;
2644 break;
2645
2646 case 'V':
2647 if (MEM_P (op)
2648 && ((strict > 0 && ! offsettable_memref_p (op))
2649 || (strict < 0
2650 && !(CONSTANT_P (op) || MEM_P (op)))
2651 || (reload_in_progress
2652 && !(REG_P (op)
2653 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2654 win = 1;
2655 break;
2656
2657 case 'o':
2658 if ((strict > 0 && offsettable_memref_p (op))
2659 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2660 /* Before reload, accept what reload can handle. */
2661 || (strict < 0
2662 && (CONSTANT_P (op) || MEM_P (op)))
2663 /* During reload, accept a pseudo */
2664 || (reload_in_progress && REG_P (op)
2665 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2666 win = 1;
2667 break;
2668
2669 default:
2670 {
2671 enum reg_class cl;
2672
2673 cl = (c == 'r'
2674 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2675 if (cl != NO_REGS)
2676 {
2677 if (strict < 0
2678 || (strict == 0
2679 && REG_P (op)
2680 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2681 || (strict == 0 && GET_CODE (op) == SCRATCH)
2682 || (REG_P (op)
2683 && reg_fits_class_p (op, cl, offset, mode)))
2684 win = 1;
2685 }
2686 #ifdef EXTRA_CONSTRAINT_STR
2687 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2688 win = 1;
2689
2690 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2691 /* Every memory operand can be reloaded to fit. */
2692 && ((strict < 0 && MEM_P (op))
2693 /* Before reload, accept what reload can turn
2694 into mem. */
2695 || (strict < 0 && CONSTANT_P (op))
2696 /* During reload, accept a pseudo */
2697 || (reload_in_progress && REG_P (op)
2698 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2699 win = 1;
2700 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2701 /* Every address operand can be reloaded to fit. */
2702 && strict < 0)
2703 win = 1;
2704 /* Cater to architectures like IA-64 that define extra memory
2705 constraints without using define_memory_constraint. */
2706 else if (reload_in_progress
2707 && REG_P (op)
2708 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2709 && reg_renumber[REGNO (op)] < 0
2710 && reg_equiv_mem (REGNO (op)) != 0
2711 && EXTRA_CONSTRAINT_STR
2712 (reg_equiv_mem (REGNO (op)), c, p))
2713 win = 1;
2714 #endif
2715 break;
2716 }
2717 }
2718 while (p += len, c);
2719
2720 constraints[opno] = p;
2721 /* If this operand did not win somehow,
2722 this alternative loses. */
2723 if (! win)
2724 lose = 1;
2725 }
2726 /* This alternative won; the operands are ok.
2727 Change whichever operands this alternative says to change. */
2728 if (! lose)
2729 {
2730 int opno, eopno;
2731
2732 /* See if any earlyclobber operand conflicts with some other
2733 operand. */
2734
2735 if (strict > 0 && seen_earlyclobber_at >= 0)
2736 for (eopno = seen_earlyclobber_at;
2737 eopno < recog_data.n_operands;
2738 eopno++)
2739 /* Ignore earlyclobber operands now in memory,
2740 because we would often report failure when we have
2741 two memory operands, one of which was formerly a REG. */
2742 if (earlyclobber[eopno]
2743 && REG_P (recog_data.operand[eopno]))
2744 for (opno = 0; opno < recog_data.n_operands; opno++)
2745 if ((MEM_P (recog_data.operand[opno])
2746 || recog_data.operand_type[opno] != OP_OUT)
2747 && opno != eopno
2748 /* Ignore things like match_operator operands. */
2749 && *recog_data.constraints[opno] != 0
2750 && ! (matching_operands[opno] == eopno
2751 && operands_match_p (recog_data.operand[opno],
2752 recog_data.operand[eopno]))
2753 && ! safe_from_earlyclobber (recog_data.operand[opno],
2754 recog_data.operand[eopno]))
2755 lose = 1;
2756
2757 if (! lose)
2758 {
2759 while (--funny_match_index >= 0)
2760 {
2761 recog_data.operand[funny_match[funny_match_index].other]
2762 = recog_data.operand[funny_match[funny_match_index].this_op];
2763 }
2764
2765 #ifdef AUTO_INC_DEC
2766 /* For operands without < or > constraints reject side-effects. */
2767 if (recog_data.is_asm)
2768 {
2769 for (opno = 0; opno < recog_data.n_operands; opno++)
2770 if (MEM_P (recog_data.operand[opno]))
2771 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2772 {
2773 case PRE_INC:
2774 case POST_INC:
2775 case PRE_DEC:
2776 case POST_DEC:
2777 case PRE_MODIFY:
2778 case POST_MODIFY:
2779 if (strchr (recog_data.constraints[opno], '<') == NULL
2780 && strchr (recog_data.constraints[opno], '>')
2781 == NULL)
2782 return 0;
2783 break;
2784 default:
2785 break;
2786 }
2787 }
2788 #endif
2789 return 1;
2790 }
2791 }
2792
2793 which_alternative++;
2794 }
2795 while (which_alternative < recog_data.n_alternatives);
2796
2797 which_alternative = -1;
2798 /* If we are about to reject this, but we are not to test strictly,
2799 try a very loose test. Only return failure if it fails also. */
2800 if (strict == 0)
2801 return constrain_operands (-1);
2802 else
2803 return 0;
2804 }
2805
2806 /* Return true iff OPERAND (assumed to be a REG rtx)
2807 is a hard reg in class CLASS when its regno is offset by OFFSET
2808 and changed to mode MODE.
2809 If REG occupies multiple hard regs, all of them must be in CLASS. */
2810
2811 bool
2812 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2813 enum machine_mode mode)
2814 {
2815 unsigned int regno = REGNO (operand);
2816
2817 if (cl == NO_REGS)
2818 return false;
2819
2820 /* Regno must not be a pseudo register. Offset may be negative. */
2821 return (HARD_REGISTER_NUM_P (regno)
2822 && HARD_REGISTER_NUM_P (regno + offset)
2823 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2824 regno + offset));
2825 }
2826 \f
2827 /* Split single instruction. Helper function for split_all_insns and
2828 split_all_insns_noflow. Return last insn in the sequence if successful,
2829 or NULL if unsuccessful. */
2830
2831 static rtx
2832 split_insn (rtx insn)
2833 {
2834 /* Split insns here to get max fine-grain parallelism. */
2835 rtx first = PREV_INSN (insn);
2836 rtx last = try_split (PATTERN (insn), insn, 1);
2837 rtx insn_set, last_set, note;
2838
2839 if (last == insn)
2840 return NULL_RTX;
2841
2842 /* If the original instruction was a single set that was known to be
2843 equivalent to a constant, see if we can say the same about the last
2844 instruction in the split sequence. The two instructions must set
2845 the same destination. */
2846 insn_set = single_set (insn);
2847 if (insn_set)
2848 {
2849 last_set = single_set (last);
2850 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2851 {
2852 note = find_reg_equal_equiv_note (insn);
2853 if (note && CONSTANT_P (XEXP (note, 0)))
2854 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2855 else if (CONSTANT_P (SET_SRC (insn_set)))
2856 set_unique_reg_note (last, REG_EQUAL,
2857 copy_rtx (SET_SRC (insn_set)));
2858 }
2859 }
2860
2861 /* try_split returns the NOTE that INSN became. */
2862 SET_INSN_DELETED (insn);
2863
2864 /* ??? Coddle to md files that generate subregs in post-reload
2865 splitters instead of computing the proper hard register. */
2866 if (reload_completed && first != last)
2867 {
2868 first = NEXT_INSN (first);
2869 for (;;)
2870 {
2871 if (INSN_P (first))
2872 cleanup_subreg_operands (first);
2873 if (first == last)
2874 break;
2875 first = NEXT_INSN (first);
2876 }
2877 }
2878
2879 return last;
2880 }
2881
2882 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2883
2884 void
2885 split_all_insns (void)
2886 {
2887 sbitmap blocks;
2888 bool changed;
2889 basic_block bb;
2890
2891 blocks = sbitmap_alloc (last_basic_block);
2892 bitmap_clear (blocks);
2893 changed = false;
2894
2895 FOR_EACH_BB_REVERSE (bb)
2896 {
2897 rtx insn, next;
2898 bool finish = false;
2899
2900 rtl_profile_for_bb (bb);
2901 for (insn = BB_HEAD (bb); !finish ; insn = next)
2902 {
2903 /* Can't use `next_real_insn' because that might go across
2904 CODE_LABELS and short-out basic blocks. */
2905 next = NEXT_INSN (insn);
2906 finish = (insn == BB_END (bb));
2907 if (INSN_P (insn))
2908 {
2909 rtx set = single_set (insn);
2910
2911 /* Don't split no-op move insns. These should silently
2912 disappear later in final. Splitting such insns would
2913 break the code that handles LIBCALL blocks. */
2914 if (set && set_noop_p (set))
2915 {
2916 /* Nops get in the way while scheduling, so delete them
2917 now if register allocation has already been done. It
2918 is too risky to try to do this before register
2919 allocation, and there are unlikely to be very many
2920 nops then anyways. */
2921 if (reload_completed)
2922 delete_insn_and_edges (insn);
2923 }
2924 else
2925 {
2926 if (split_insn (insn))
2927 {
2928 bitmap_set_bit (blocks, bb->index);
2929 changed = true;
2930 }
2931 }
2932 }
2933 }
2934 }
2935
2936 default_rtl_profile ();
2937 if (changed)
2938 find_many_sub_basic_blocks (blocks);
2939
2940 #ifdef ENABLE_CHECKING
2941 verify_flow_info ();
2942 #endif
2943
2944 sbitmap_free (blocks);
2945 }
2946
2947 /* Same as split_all_insns, but do not expect CFG to be available.
2948 Used by machine dependent reorg passes. */
2949
2950 unsigned int
2951 split_all_insns_noflow (void)
2952 {
2953 rtx next, insn;
2954
2955 for (insn = get_insns (); insn; insn = next)
2956 {
2957 next = NEXT_INSN (insn);
2958 if (INSN_P (insn))
2959 {
2960 /* Don't split no-op move insns. These should silently
2961 disappear later in final. Splitting such insns would
2962 break the code that handles LIBCALL blocks. */
2963 rtx set = single_set (insn);
2964 if (set && set_noop_p (set))
2965 {
2966 /* Nops get in the way while scheduling, so delete them
2967 now if register allocation has already been done. It
2968 is too risky to try to do this before register
2969 allocation, and there are unlikely to be very many
2970 nops then anyways.
2971
2972 ??? Should we use delete_insn when the CFG isn't valid? */
2973 if (reload_completed)
2974 delete_insn_and_edges (insn);
2975 }
2976 else
2977 split_insn (insn);
2978 }
2979 }
2980 return 0;
2981 }
2982 \f
2983 #ifdef HAVE_peephole2
2984 struct peep2_insn_data
2985 {
2986 rtx insn;
2987 regset live_before;
2988 };
2989
2990 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2991 static int peep2_current;
2992
2993 static bool peep2_do_rebuild_jump_labels;
2994 static bool peep2_do_cleanup_cfg;
2995
2996 /* The number of instructions available to match a peep2. */
2997 int peep2_current_count;
2998
2999 /* A non-insn marker indicating the last insn of the block.
3000 The live_before regset for this element is correct, indicating
3001 DF_LIVE_OUT for the block. */
3002 #define PEEP2_EOB pc_rtx
3003
3004 /* Wrap N to fit into the peep2_insn_data buffer. */
3005
3006 static int
3007 peep2_buf_position (int n)
3008 {
3009 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3010 n -= MAX_INSNS_PER_PEEP2 + 1;
3011 return n;
3012 }
3013
3014 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3015 does not exist. Used by the recognizer to find the next insn to match
3016 in a multi-insn pattern. */
3017
3018 rtx
3019 peep2_next_insn (int n)
3020 {
3021 gcc_assert (n <= peep2_current_count);
3022
3023 n = peep2_buf_position (peep2_current + n);
3024
3025 return peep2_insn_data[n].insn;
3026 }
3027
3028 /* Return true if REGNO is dead before the Nth non-note insn
3029 after `current'. */
3030
3031 int
3032 peep2_regno_dead_p (int ofs, int regno)
3033 {
3034 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3035
3036 ofs = peep2_buf_position (peep2_current + ofs);
3037
3038 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3039
3040 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3041 }
3042
3043 /* Similarly for a REG. */
3044
3045 int
3046 peep2_reg_dead_p (int ofs, rtx reg)
3047 {
3048 int regno, n;
3049
3050 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3051
3052 ofs = peep2_buf_position (peep2_current + ofs);
3053
3054 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3055
3056 regno = REGNO (reg);
3057 n = hard_regno_nregs[regno][GET_MODE (reg)];
3058 while (--n >= 0)
3059 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3060 return 0;
3061 return 1;
3062 }
3063
3064 /* Try to find a hard register of mode MODE, matching the register class in
3065 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3066 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3067 in which case the only condition is that the register must be available
3068 before CURRENT_INSN.
3069 Registers that already have bits set in REG_SET will not be considered.
3070
3071 If an appropriate register is available, it will be returned and the
3072 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3073 returned. */
3074
3075 rtx
3076 peep2_find_free_register (int from, int to, const char *class_str,
3077 enum machine_mode mode, HARD_REG_SET *reg_set)
3078 {
3079 static int search_ofs;
3080 enum reg_class cl;
3081 HARD_REG_SET live;
3082 df_ref *def_rec;
3083 int i;
3084
3085 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3086 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3087
3088 from = peep2_buf_position (peep2_current + from);
3089 to = peep2_buf_position (peep2_current + to);
3090
3091 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3092 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3093
3094 while (from != to)
3095 {
3096 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3097
3098 /* Don't use registers set or clobbered by the insn. */
3099 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3100 *def_rec; def_rec++)
3101 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3102
3103 from = peep2_buf_position (from + 1);
3104 }
3105
3106 cl = (class_str[0] == 'r' ? GENERAL_REGS
3107 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3108
3109 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3110 {
3111 int raw_regno, regno, success, j;
3112
3113 /* Distribute the free registers as much as possible. */
3114 raw_regno = search_ofs + i;
3115 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3116 raw_regno -= FIRST_PSEUDO_REGISTER;
3117 #ifdef REG_ALLOC_ORDER
3118 regno = reg_alloc_order[raw_regno];
3119 #else
3120 regno = raw_regno;
3121 #endif
3122
3123 /* Don't allocate fixed registers. */
3124 if (fixed_regs[regno])
3125 continue;
3126 /* Don't allocate global registers. */
3127 if (global_regs[regno])
3128 continue;
3129 /* Make sure the register is of the right class. */
3130 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3131 continue;
3132 /* And can support the mode we need. */
3133 if (! HARD_REGNO_MODE_OK (regno, mode))
3134 continue;
3135 /* And that we don't create an extra save/restore. */
3136 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3137 continue;
3138 if (! targetm.hard_regno_scratch_ok (regno))
3139 continue;
3140
3141 /* And we don't clobber traceback for noreturn functions. */
3142 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3143 && (! reload_completed || frame_pointer_needed))
3144 continue;
3145
3146 success = 1;
3147 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3148 {
3149 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3150 || TEST_HARD_REG_BIT (live, regno + j))
3151 {
3152 success = 0;
3153 break;
3154 }
3155 }
3156 if (success)
3157 {
3158 add_to_hard_reg_set (reg_set, mode, regno);
3159
3160 /* Start the next search with the next register. */
3161 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3162 raw_regno = 0;
3163 search_ofs = raw_regno;
3164
3165 return gen_rtx_REG (mode, regno);
3166 }
3167 }
3168
3169 search_ofs = 0;
3170 return NULL_RTX;
3171 }
3172
3173 /* Forget all currently tracked instructions, only remember current
3174 LIVE regset. */
3175
3176 static void
3177 peep2_reinit_state (regset live)
3178 {
3179 int i;
3180
3181 /* Indicate that all slots except the last holds invalid data. */
3182 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3183 peep2_insn_data[i].insn = NULL_RTX;
3184 peep2_current_count = 0;
3185
3186 /* Indicate that the last slot contains live_after data. */
3187 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3188 peep2_current = MAX_INSNS_PER_PEEP2;
3189
3190 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3191 }
3192
3193 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3194 starting at INSN. Perform the replacement, removing the old insns and
3195 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3196 if the replacement is rejected. */
3197
3198 static rtx
3199 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3200 {
3201 int i;
3202 rtx last, eh_note, as_note, before_try, x;
3203 rtx old_insn, new_insn;
3204 bool was_call = false;
3205
3206 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3207 match more than one insn, or to be split into more than one insn. */
3208 old_insn = peep2_insn_data[peep2_current].insn;
3209 if (RTX_FRAME_RELATED_P (old_insn))
3210 {
3211 bool any_note = false;
3212 rtx note;
3213
3214 if (match_len != 0)
3215 return NULL;
3216
3217 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3218 may be in the stream for the purpose of register allocation. */
3219 if (active_insn_p (attempt))
3220 new_insn = attempt;
3221 else
3222 new_insn = next_active_insn (attempt);
3223 if (next_active_insn (new_insn))
3224 return NULL;
3225
3226 /* We have a 1-1 replacement. Copy over any frame-related info. */
3227 RTX_FRAME_RELATED_P (new_insn) = 1;
3228
3229 /* Allow the backend to fill in a note during the split. */
3230 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3231 switch (REG_NOTE_KIND (note))
3232 {
3233 case REG_FRAME_RELATED_EXPR:
3234 case REG_CFA_DEF_CFA:
3235 case REG_CFA_ADJUST_CFA:
3236 case REG_CFA_OFFSET:
3237 case REG_CFA_REGISTER:
3238 case REG_CFA_EXPRESSION:
3239 case REG_CFA_RESTORE:
3240 case REG_CFA_SET_VDRAP:
3241 any_note = true;
3242 break;
3243 default:
3244 break;
3245 }
3246
3247 /* If the backend didn't supply a note, copy one over. */
3248 if (!any_note)
3249 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3250 switch (REG_NOTE_KIND (note))
3251 {
3252 case REG_FRAME_RELATED_EXPR:
3253 case REG_CFA_DEF_CFA:
3254 case REG_CFA_ADJUST_CFA:
3255 case REG_CFA_OFFSET:
3256 case REG_CFA_REGISTER:
3257 case REG_CFA_EXPRESSION:
3258 case REG_CFA_RESTORE:
3259 case REG_CFA_SET_VDRAP:
3260 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3261 any_note = true;
3262 break;
3263 default:
3264 break;
3265 }
3266
3267 /* If there still isn't a note, make sure the unwind info sees the
3268 same expression as before the split. */
3269 if (!any_note)
3270 {
3271 rtx old_set, new_set;
3272
3273 /* The old insn had better have been simple, or annotated. */
3274 old_set = single_set (old_insn);
3275 gcc_assert (old_set != NULL);
3276
3277 new_set = single_set (new_insn);
3278 if (!new_set || !rtx_equal_p (new_set, old_set))
3279 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3280 }
3281
3282 /* Copy prologue/epilogue status. This is required in order to keep
3283 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3284 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3285 }
3286
3287 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3288 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3289 cfg-related call notes. */
3290 for (i = 0; i <= match_len; ++i)
3291 {
3292 int j;
3293 rtx note;
3294
3295 j = peep2_buf_position (peep2_current + i);
3296 old_insn = peep2_insn_data[j].insn;
3297 if (!CALL_P (old_insn))
3298 continue;
3299 was_call = true;
3300
3301 new_insn = attempt;
3302 while (new_insn != NULL_RTX)
3303 {
3304 if (CALL_P (new_insn))
3305 break;
3306 new_insn = NEXT_INSN (new_insn);
3307 }
3308
3309 gcc_assert (new_insn != NULL_RTX);
3310
3311 CALL_INSN_FUNCTION_USAGE (new_insn)
3312 = CALL_INSN_FUNCTION_USAGE (old_insn);
3313
3314 for (note = REG_NOTES (old_insn);
3315 note;
3316 note = XEXP (note, 1))
3317 switch (REG_NOTE_KIND (note))
3318 {
3319 case REG_NORETURN:
3320 case REG_SETJMP:
3321 case REG_TM:
3322 add_reg_note (new_insn, REG_NOTE_KIND (note),
3323 XEXP (note, 0));
3324 break;
3325 default:
3326 /* Discard all other reg notes. */
3327 break;
3328 }
3329
3330 /* Croak if there is another call in the sequence. */
3331 while (++i <= match_len)
3332 {
3333 j = peep2_buf_position (peep2_current + i);
3334 old_insn = peep2_insn_data[j].insn;
3335 gcc_assert (!CALL_P (old_insn));
3336 }
3337 break;
3338 }
3339
3340 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3341 move those notes over to the new sequence. */
3342 as_note = NULL;
3343 for (i = match_len; i >= 0; --i)
3344 {
3345 int j = peep2_buf_position (peep2_current + i);
3346 old_insn = peep2_insn_data[j].insn;
3347
3348 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3349 if (as_note)
3350 break;
3351 }
3352
3353 i = peep2_buf_position (peep2_current + match_len);
3354 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3355
3356 /* Replace the old sequence with the new. */
3357 last = emit_insn_after_setloc (attempt,
3358 peep2_insn_data[i].insn,
3359 INSN_LOCATION (peep2_insn_data[i].insn));
3360 before_try = PREV_INSN (insn);
3361 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3362
3363 /* Re-insert the EH_REGION notes. */
3364 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3365 {
3366 edge eh_edge;
3367 edge_iterator ei;
3368
3369 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3370 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3371 break;
3372
3373 if (eh_note)
3374 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3375
3376 if (eh_edge)
3377 for (x = last; x != before_try; x = PREV_INSN (x))
3378 if (x != BB_END (bb)
3379 && (can_throw_internal (x)
3380 || can_nonlocal_goto (x)))
3381 {
3382 edge nfte, nehe;
3383 int flags;
3384
3385 nfte = split_block (bb, x);
3386 flags = (eh_edge->flags
3387 & (EDGE_EH | EDGE_ABNORMAL));
3388 if (CALL_P (x))
3389 flags |= EDGE_ABNORMAL_CALL;
3390 nehe = make_edge (nfte->src, eh_edge->dest,
3391 flags);
3392
3393 nehe->probability = eh_edge->probability;
3394 nfte->probability
3395 = REG_BR_PROB_BASE - nehe->probability;
3396
3397 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3398 bb = nfte->src;
3399 eh_edge = nehe;
3400 }
3401
3402 /* Converting possibly trapping insn to non-trapping is
3403 possible. Zap dummy outgoing edges. */
3404 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3405 }
3406
3407 /* Re-insert the ARGS_SIZE notes. */
3408 if (as_note)
3409 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3410
3411 /* If we generated a jump instruction, it won't have
3412 JUMP_LABEL set. Recompute after we're done. */
3413 for (x = last; x != before_try; x = PREV_INSN (x))
3414 if (JUMP_P (x))
3415 {
3416 peep2_do_rebuild_jump_labels = true;
3417 break;
3418 }
3419
3420 return last;
3421 }
3422
3423 /* After performing a replacement in basic block BB, fix up the life
3424 information in our buffer. LAST is the last of the insns that we
3425 emitted as a replacement. PREV is the insn before the start of
3426 the replacement. MATCH_LEN is the number of instructions that were
3427 matched, and which now need to be replaced in the buffer. */
3428
3429 static void
3430 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3431 {
3432 int i = peep2_buf_position (peep2_current + match_len + 1);
3433 rtx x;
3434 regset_head live;
3435
3436 INIT_REG_SET (&live);
3437 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3438
3439 gcc_assert (peep2_current_count >= match_len + 1);
3440 peep2_current_count -= match_len + 1;
3441
3442 x = last;
3443 do
3444 {
3445 if (INSN_P (x))
3446 {
3447 df_insn_rescan (x);
3448 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3449 {
3450 peep2_current_count++;
3451 if (--i < 0)
3452 i = MAX_INSNS_PER_PEEP2;
3453 peep2_insn_data[i].insn = x;
3454 df_simulate_one_insn_backwards (bb, x, &live);
3455 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3456 }
3457 }
3458 x = PREV_INSN (x);
3459 }
3460 while (x != prev);
3461 CLEAR_REG_SET (&live);
3462
3463 peep2_current = i;
3464 }
3465
3466 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3467 Return true if we added it, false otherwise. The caller will try to match
3468 peepholes against the buffer if we return false; otherwise it will try to
3469 add more instructions to the buffer. */
3470
3471 static bool
3472 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3473 {
3474 int pos;
3475
3476 /* Once we have filled the maximum number of insns the buffer can hold,
3477 allow the caller to match the insns against peepholes. We wait until
3478 the buffer is full in case the target has similar peepholes of different
3479 length; we always want to match the longest if possible. */
3480 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3481 return false;
3482
3483 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3484 any other pattern, lest it change the semantics of the frame info. */
3485 if (RTX_FRAME_RELATED_P (insn))
3486 {
3487 /* Let the buffer drain first. */
3488 if (peep2_current_count > 0)
3489 return false;
3490 /* Now the insn will be the only thing in the buffer. */
3491 }
3492
3493 pos = peep2_buf_position (peep2_current + peep2_current_count);
3494 peep2_insn_data[pos].insn = insn;
3495 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3496 peep2_current_count++;
3497
3498 df_simulate_one_insn_forwards (bb, insn, live);
3499 return true;
3500 }
3501
3502 /* Perform the peephole2 optimization pass. */
3503
3504 static void
3505 peephole2_optimize (void)
3506 {
3507 rtx insn;
3508 bitmap live;
3509 int i;
3510 basic_block bb;
3511
3512 peep2_do_cleanup_cfg = false;
3513 peep2_do_rebuild_jump_labels = false;
3514
3515 df_set_flags (DF_LR_RUN_DCE);
3516 df_note_add_problem ();
3517 df_analyze ();
3518
3519 /* Initialize the regsets we're going to use. */
3520 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3521 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3522 live = BITMAP_ALLOC (&reg_obstack);
3523
3524 FOR_EACH_BB_REVERSE (bb)
3525 {
3526 bool past_end = false;
3527 int pos;
3528
3529 rtl_profile_for_bb (bb);
3530
3531 /* Start up propagation. */
3532 bitmap_copy (live, DF_LR_IN (bb));
3533 df_simulate_initialize_forwards (bb, live);
3534 peep2_reinit_state (live);
3535
3536 insn = BB_HEAD (bb);
3537 for (;;)
3538 {
3539 rtx attempt, head;
3540 int match_len;
3541
3542 if (!past_end && !NONDEBUG_INSN_P (insn))
3543 {
3544 next_insn:
3545 insn = NEXT_INSN (insn);
3546 if (insn == NEXT_INSN (BB_END (bb)))
3547 past_end = true;
3548 continue;
3549 }
3550 if (!past_end && peep2_fill_buffer (bb, insn, live))
3551 goto next_insn;
3552
3553 /* If we did not fill an empty buffer, it signals the end of the
3554 block. */
3555 if (peep2_current_count == 0)
3556 break;
3557
3558 /* The buffer filled to the current maximum, so try to match. */
3559
3560 pos = peep2_buf_position (peep2_current + peep2_current_count);
3561 peep2_insn_data[pos].insn = PEEP2_EOB;
3562 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3563
3564 /* Match the peephole. */
3565 head = peep2_insn_data[peep2_current].insn;
3566 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3567 if (attempt != NULL)
3568 {
3569 rtx last = peep2_attempt (bb, head, match_len, attempt);
3570 if (last)
3571 {
3572 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3573 continue;
3574 }
3575 }
3576
3577 /* No match: advance the buffer by one insn. */
3578 peep2_current = peep2_buf_position (peep2_current + 1);
3579 peep2_current_count--;
3580 }
3581 }
3582
3583 default_rtl_profile ();
3584 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3585 BITMAP_FREE (peep2_insn_data[i].live_before);
3586 BITMAP_FREE (live);
3587 if (peep2_do_rebuild_jump_labels)
3588 rebuild_jump_labels (get_insns ());
3589 }
3590 #endif /* HAVE_peephole2 */
3591
3592 /* Common predicates for use with define_bypass. */
3593
3594 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3595 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3596 must be either a single_set or a PARALLEL with SETs inside. */
3597
3598 int
3599 store_data_bypass_p (rtx out_insn, rtx in_insn)
3600 {
3601 rtx out_set, in_set;
3602 rtx out_pat, in_pat;
3603 rtx out_exp, in_exp;
3604 int i, j;
3605
3606 in_set = single_set (in_insn);
3607 if (in_set)
3608 {
3609 if (!MEM_P (SET_DEST (in_set)))
3610 return false;
3611
3612 out_set = single_set (out_insn);
3613 if (out_set)
3614 {
3615 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3616 return false;
3617 }
3618 else
3619 {
3620 out_pat = PATTERN (out_insn);
3621
3622 if (GET_CODE (out_pat) != PARALLEL)
3623 return false;
3624
3625 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3626 {
3627 out_exp = XVECEXP (out_pat, 0, i);
3628
3629 if (GET_CODE (out_exp) == CLOBBER)
3630 continue;
3631
3632 gcc_assert (GET_CODE (out_exp) == SET);
3633
3634 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3635 return false;
3636 }
3637 }
3638 }
3639 else
3640 {
3641 in_pat = PATTERN (in_insn);
3642 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3643
3644 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3645 {
3646 in_exp = XVECEXP (in_pat, 0, i);
3647
3648 if (GET_CODE (in_exp) == CLOBBER)
3649 continue;
3650
3651 gcc_assert (GET_CODE (in_exp) == SET);
3652
3653 if (!MEM_P (SET_DEST (in_exp)))
3654 return false;
3655
3656 out_set = single_set (out_insn);
3657 if (out_set)
3658 {
3659 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3660 return false;
3661 }
3662 else
3663 {
3664 out_pat = PATTERN (out_insn);
3665 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3666
3667 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3668 {
3669 out_exp = XVECEXP (out_pat, 0, j);
3670
3671 if (GET_CODE (out_exp) == CLOBBER)
3672 continue;
3673
3674 gcc_assert (GET_CODE (out_exp) == SET);
3675
3676 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3677 return false;
3678 }
3679 }
3680 }
3681 }
3682
3683 return true;
3684 }
3685
3686 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3687 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3688 or multiple set; IN_INSN should be single_set for truth, but for convenience
3689 of insn categorization may be any JUMP or CALL insn. */
3690
3691 int
3692 if_test_bypass_p (rtx out_insn, rtx in_insn)
3693 {
3694 rtx out_set, in_set;
3695
3696 in_set = single_set (in_insn);
3697 if (! in_set)
3698 {
3699 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3700 return false;
3701 }
3702
3703 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3704 return false;
3705 in_set = SET_SRC (in_set);
3706
3707 out_set = single_set (out_insn);
3708 if (out_set)
3709 {
3710 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3711 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3712 return false;
3713 }
3714 else
3715 {
3716 rtx out_pat;
3717 int i;
3718
3719 out_pat = PATTERN (out_insn);
3720 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3721
3722 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3723 {
3724 rtx exp = XVECEXP (out_pat, 0, i);
3725
3726 if (GET_CODE (exp) == CLOBBER)
3727 continue;
3728
3729 gcc_assert (GET_CODE (exp) == SET);
3730
3731 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3732 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3733 return false;
3734 }
3735 }
3736
3737 return true;
3738 }
3739 \f
3740 static bool
3741 gate_handle_peephole2 (void)
3742 {
3743 return (optimize > 0 && flag_peephole2);
3744 }
3745
3746 static unsigned int
3747 rest_of_handle_peephole2 (void)
3748 {
3749 #ifdef HAVE_peephole2
3750 peephole2_optimize ();
3751 #endif
3752 return 0;
3753 }
3754
3755 struct rtl_opt_pass pass_peephole2 =
3756 {
3757 {
3758 RTL_PASS,
3759 "peephole2", /* name */
3760 OPTGROUP_NONE, /* optinfo_flags */
3761 gate_handle_peephole2, /* gate */
3762 rest_of_handle_peephole2, /* execute */
3763 NULL, /* sub */
3764 NULL, /* next */
3765 0, /* static_pass_number */
3766 TV_PEEPHOLE2, /* tv_id */
3767 0, /* properties_required */
3768 0, /* properties_provided */
3769 0, /* properties_destroyed */
3770 0, /* todo_flags_start */
3771 TODO_df_finish | TODO_verify_rtl_sharing |
3772 0 /* todo_flags_finish */
3773 }
3774 };
3775
3776 static unsigned int
3777 rest_of_handle_split_all_insns (void)
3778 {
3779 split_all_insns ();
3780 return 0;
3781 }
3782
3783 struct rtl_opt_pass pass_split_all_insns =
3784 {
3785 {
3786 RTL_PASS,
3787 "split1", /* name */
3788 OPTGROUP_NONE, /* optinfo_flags */
3789 NULL, /* gate */
3790 rest_of_handle_split_all_insns, /* execute */
3791 NULL, /* sub */
3792 NULL, /* next */
3793 0, /* static_pass_number */
3794 TV_NONE, /* tv_id */
3795 0, /* properties_required */
3796 0, /* properties_provided */
3797 0, /* properties_destroyed */
3798 0, /* todo_flags_start */
3799 0 /* todo_flags_finish */
3800 }
3801 };
3802
3803 static unsigned int
3804 rest_of_handle_split_after_reload (void)
3805 {
3806 /* If optimizing, then go ahead and split insns now. */
3807 #ifndef STACK_REGS
3808 if (optimize > 0)
3809 #endif
3810 split_all_insns ();
3811 return 0;
3812 }
3813
3814 struct rtl_opt_pass pass_split_after_reload =
3815 {
3816 {
3817 RTL_PASS,
3818 "split2", /* name */
3819 OPTGROUP_NONE, /* optinfo_flags */
3820 NULL, /* gate */
3821 rest_of_handle_split_after_reload, /* execute */
3822 NULL, /* sub */
3823 NULL, /* next */
3824 0, /* static_pass_number */
3825 TV_NONE, /* tv_id */
3826 0, /* properties_required */
3827 0, /* properties_provided */
3828 0, /* properties_destroyed */
3829 0, /* todo_flags_start */
3830 0 /* todo_flags_finish */
3831 }
3832 };
3833
3834 static bool
3835 gate_handle_split_before_regstack (void)
3836 {
3837 #if HAVE_ATTR_length && defined (STACK_REGS)
3838 /* If flow2 creates new instructions which need splitting
3839 and scheduling after reload is not done, they might not be
3840 split until final which doesn't allow splitting
3841 if HAVE_ATTR_length. */
3842 # ifdef INSN_SCHEDULING
3843 return (optimize && !flag_schedule_insns_after_reload);
3844 # else
3845 return (optimize);
3846 # endif
3847 #else
3848 return 0;
3849 #endif
3850 }
3851
3852 static unsigned int
3853 rest_of_handle_split_before_regstack (void)
3854 {
3855 split_all_insns ();
3856 return 0;
3857 }
3858
3859 struct rtl_opt_pass pass_split_before_regstack =
3860 {
3861 {
3862 RTL_PASS,
3863 "split3", /* name */
3864 OPTGROUP_NONE, /* optinfo_flags */
3865 gate_handle_split_before_regstack, /* gate */
3866 rest_of_handle_split_before_regstack, /* execute */
3867 NULL, /* sub */
3868 NULL, /* next */
3869 0, /* static_pass_number */
3870 TV_NONE, /* tv_id */
3871 0, /* properties_required */
3872 0, /* properties_provided */
3873 0, /* properties_destroyed */
3874 0, /* todo_flags_start */
3875 0 /* todo_flags_finish */
3876 }
3877 };
3878
3879 static bool
3880 gate_handle_split_before_sched2 (void)
3881 {
3882 #ifdef INSN_SCHEDULING
3883 return optimize > 0 && flag_schedule_insns_after_reload;
3884 #else
3885 return 0;
3886 #endif
3887 }
3888
3889 static unsigned int
3890 rest_of_handle_split_before_sched2 (void)
3891 {
3892 #ifdef INSN_SCHEDULING
3893 split_all_insns ();
3894 #endif
3895 return 0;
3896 }
3897
3898 struct rtl_opt_pass pass_split_before_sched2 =
3899 {
3900 {
3901 RTL_PASS,
3902 "split4", /* name */
3903 OPTGROUP_NONE, /* optinfo_flags */
3904 gate_handle_split_before_sched2, /* gate */
3905 rest_of_handle_split_before_sched2, /* execute */
3906 NULL, /* sub */
3907 NULL, /* next */
3908 0, /* static_pass_number */
3909 TV_NONE, /* tv_id */
3910 0, /* properties_required */
3911 0, /* properties_provided */
3912 0, /* properties_destroyed */
3913 0, /* todo_flags_start */
3914 TODO_verify_flow /* todo_flags_finish */
3915 }
3916 };
3917
3918 /* The placement of the splitting that we do for shorten_branches
3919 depends on whether regstack is used by the target or not. */
3920 static bool
3921 gate_do_final_split (void)
3922 {
3923 #if HAVE_ATTR_length && !defined (STACK_REGS)
3924 return 1;
3925 #else
3926 return 0;
3927 #endif
3928 }
3929
3930 struct rtl_opt_pass pass_split_for_shorten_branches =
3931 {
3932 {
3933 RTL_PASS,
3934 "split5", /* name */
3935 OPTGROUP_NONE, /* optinfo_flags */
3936 gate_do_final_split, /* gate */
3937 split_all_insns_noflow, /* execute */
3938 NULL, /* sub */
3939 NULL, /* next */
3940 0, /* static_pass_number */
3941 TV_NONE, /* tv_id */
3942 0, /* properties_required */
3943 0, /* properties_provided */
3944 0, /* properties_destroyed */
3945 0, /* todo_flags_start */
3946 TODO_verify_rtl_sharing /* todo_flags_finish */
3947 }
3948 };