lto-cgraph.c (get_alias_symbol): Remove weakref sanity check.
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
22
23 * The form of the input:
24
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
34
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
42
43 * The form of the output:
44
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
50
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
53
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
57
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
60
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
64
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
69
70 * Methodology:
71
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
75
76 * asm_operands:
77
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
81
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
85
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
89
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
96
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
99
100 3. It is possible that if an input dies in an insn, reload might
101 use the input reg for an output reload. Consider this example:
102
103 asm ("foo" : "=t" (a) : "f" (b));
104
105 This asm says that input B is not popped by the asm, and that
106 the asm pushes a result onto the reg-stack, i.e., the stack is one
107 deeper after the asm than it was before. But, it is possible that
108 reload will think that it can use the same reg for both the input and
109 the output, if input B dies in this insn.
110
111 If any input operand uses the "f" constraint, all output reg
112 constraints must use the "&" earlyclobber.
113
114 The asm above would be written as
115
116 asm ("foo" : "=&t" (a) : "f" (b));
117
118 4. Some operands need to be in particular places on the stack. All
119 output operands fall in this category - there is no other way to
120 know which regs the outputs appear in unless the user indicates
121 this in the constraints.
122
123 Output operands must specifically indicate which reg an output
124 appears in after an asm. "=f" is not allowed: the operand
125 constraints must select a class with a single reg.
126
127 5. Output operands may not be "inserted" between existing stack regs.
128 Since no 387 opcode uses a read/write operand, all output operands
129 are dead before the asm_operands, and are pushed by the asm_operands.
130 It makes no sense to push anywhere but the top of the reg-stack.
131
132 Output operands must start at the top of the reg-stack: output
133 operands may not "skip" a reg.
134
135 6. Some asm statements may need extra stack space for internal
136 calculations. This can be guaranteed by clobbering stack registers
137 unrelated to the inputs and outputs.
138
139 Here are a couple of reasonable asms to want to write. This asm
140 takes one input, which is internally popped, and produces two outputs.
141
142 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
143
144 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145 and replaces them with one output. The user must code the "st(1)"
146 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
147
148 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
149
150 */
151 \f
152 #include "config.h"
153 #include "system.h"
154 #include "coretypes.h"
155 #include "tm.h"
156 #include "tree.h"
157 #include "rtl-error.h"
158 #include "tm_p.h"
159 #include "function.h"
160 #include "insn-config.h"
161 #include "regs.h"
162 #include "hard-reg-set.h"
163 #include "flags.h"
164 #include "recog.h"
165 #include "basic-block.h"
166 #include "reload.h"
167 #include "ggc.h"
168 #include "tree-pass.h"
169 #include "target.h"
170 #include "df.h"
171 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
172
173 #ifdef STACK_REGS
174
175 /* We use this array to cache info about insns, because otherwise we
176 spend too much time in stack_regs_mentioned_p.
177
178 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
179 the insn uses stack registers, two indicates the insn does not use
180 stack registers. */
181 static vec<char> stack_regs_mentioned_data;
182
183 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
184
185 int regstack_completed = 0;
186
187 /* This is the basic stack record. TOP is an index into REG[] such
188 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
189
190 If TOP is -2, REG[] is not yet initialized. Stack initialization
191 consists of placing each live reg in array `reg' and setting `top'
192 appropriately.
193
194 REG_SET indicates which registers are live. */
195
196 typedef struct stack_def
197 {
198 int top; /* index to top stack element */
199 HARD_REG_SET reg_set; /* set of live registers */
200 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
201 } *stack_ptr;
202
203 /* This is used to carry information about basic blocks. It is
204 attached to the AUX field of the standard CFG block. */
205
206 typedef struct block_info_def
207 {
208 struct stack_def stack_in; /* Input stack configuration. */
209 struct stack_def stack_out; /* Output stack configuration. */
210 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
211 int done; /* True if block already converted. */
212 int predecessors; /* Number of predecessors that need
213 to be visited. */
214 } *block_info;
215
216 #define BLOCK_INFO(B) ((block_info) (B)->aux)
217
218 /* Passed to change_stack to indicate where to emit insns. */
219 enum emit_where
220 {
221 EMIT_AFTER,
222 EMIT_BEFORE
223 };
224
225 /* The block we're currently working on. */
226 static basic_block current_block;
227
228 /* In the current_block, whether we're processing the first register
229 stack or call instruction, i.e. the regstack is currently the
230 same as BLOCK_INFO(current_block)->stack_in. */
231 static bool starting_stack_p;
232
233 /* This is the register file for all register after conversion. */
234 static rtx
235 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
236
237 #define FP_MODE_REG(regno,mode) \
238 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
239
240 /* Used to initialize uninitialized registers. */
241 static rtx not_a_num;
242
243 /* Forward declarations */
244
245 static int stack_regs_mentioned_p (const_rtx pat);
246 static void pop_stack (stack_ptr, int);
247 static rtx *get_true_reg (rtx *);
248
249 static int check_asm_stack_operands (rtx);
250 static void get_asm_operands_in_out (rtx, int *, int *);
251 static rtx stack_result (tree);
252 static void replace_reg (rtx *, int);
253 static void remove_regno_note (rtx, enum reg_note, unsigned int);
254 static int get_hard_regnum (stack_ptr, rtx);
255 static rtx emit_pop_insn (rtx, stack_ptr, rtx, enum emit_where);
256 static void swap_to_top(rtx, stack_ptr, rtx, rtx);
257 static bool move_for_stack_reg (rtx, stack_ptr, rtx);
258 static bool move_nan_for_stack_reg (rtx, stack_ptr, rtx);
259 static int swap_rtx_condition_1 (rtx);
260 static int swap_rtx_condition (rtx);
261 static void compare_for_stack_reg (rtx, stack_ptr, rtx);
262 static bool subst_stack_regs_pat (rtx, stack_ptr, rtx);
263 static void subst_asm_stack_regs (rtx, stack_ptr);
264 static bool subst_stack_regs (rtx, stack_ptr);
265 static void change_stack (rtx, stack_ptr, stack_ptr, enum emit_where);
266 static void print_stack (FILE *, stack_ptr);
267 static rtx next_flags_user (rtx);
268 \f
269 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
270
271 static int
272 stack_regs_mentioned_p (const_rtx pat)
273 {
274 const char *fmt;
275 int i;
276
277 if (STACK_REG_P (pat))
278 return 1;
279
280 fmt = GET_RTX_FORMAT (GET_CODE (pat));
281 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
282 {
283 if (fmt[i] == 'E')
284 {
285 int j;
286
287 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
288 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
289 return 1;
290 }
291 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
292 return 1;
293 }
294
295 return 0;
296 }
297
298 /* Return nonzero if INSN mentions stacked registers, else return zero. */
299
300 int
301 stack_regs_mentioned (const_rtx insn)
302 {
303 unsigned int uid, max;
304 int test;
305
306 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
307 return 0;
308
309 uid = INSN_UID (insn);
310 max = stack_regs_mentioned_data.length ();
311 if (uid >= max)
312 {
313 /* Allocate some extra size to avoid too many reallocs, but
314 do not grow too quickly. */
315 max = uid + uid / 20 + 1;
316 stack_regs_mentioned_data.safe_grow_cleared (max);
317 }
318
319 test = stack_regs_mentioned_data[uid];
320 if (test == 0)
321 {
322 /* This insn has yet to be examined. Do so now. */
323 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
324 stack_regs_mentioned_data[uid] = test;
325 }
326
327 return test == 1;
328 }
329 \f
330 static rtx ix86_flags_rtx;
331
332 static rtx
333 next_flags_user (rtx insn)
334 {
335 /* Search forward looking for the first use of this value.
336 Stop at block boundaries. */
337
338 while (insn != BB_END (current_block))
339 {
340 insn = NEXT_INSN (insn);
341
342 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
343 return insn;
344
345 if (CALL_P (insn))
346 return NULL_RTX;
347 }
348 return NULL_RTX;
349 }
350 \f
351 /* Reorganize the stack into ascending numbers, before this insn. */
352
353 static void
354 straighten_stack (rtx insn, stack_ptr regstack)
355 {
356 struct stack_def temp_stack;
357 int top;
358
359 /* If there is only a single register on the stack, then the stack is
360 already in increasing order and no reorganization is needed.
361
362 Similarly if the stack is empty. */
363 if (regstack->top <= 0)
364 return;
365
366 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
367
368 for (top = temp_stack.top = regstack->top; top >= 0; top--)
369 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
370
371 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
372 }
373
374 /* Pop a register from the stack. */
375
376 static void
377 pop_stack (stack_ptr regstack, int regno)
378 {
379 int top = regstack->top;
380
381 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
382 regstack->top--;
383 /* If regno was not at the top of stack then adjust stack. */
384 if (regstack->reg [top] != regno)
385 {
386 int i;
387 for (i = regstack->top; i >= 0; i--)
388 if (regstack->reg [i] == regno)
389 {
390 int j;
391 for (j = i; j < top; j++)
392 regstack->reg [j] = regstack->reg [j + 1];
393 break;
394 }
395 }
396 }
397 \f
398 /* Return a pointer to the REG expression within PAT. If PAT is not a
399 REG, possible enclosed by a conversion rtx, return the inner part of
400 PAT that stopped the search. */
401
402 static rtx *
403 get_true_reg (rtx *pat)
404 {
405 for (;;)
406 switch (GET_CODE (*pat))
407 {
408 case SUBREG:
409 /* Eliminate FP subregister accesses in favor of the
410 actual FP register in use. */
411 {
412 rtx subreg;
413 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
414 {
415 int regno_off = subreg_regno_offset (REGNO (subreg),
416 GET_MODE (subreg),
417 SUBREG_BYTE (*pat),
418 GET_MODE (*pat));
419 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
420 GET_MODE (subreg));
421 return pat;
422 }
423 }
424 case FLOAT:
425 case FIX:
426 case FLOAT_EXTEND:
427 pat = & XEXP (*pat, 0);
428 break;
429
430 case UNSPEC:
431 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
432 || XINT (*pat, 1) == UNSPEC_LDA)
433 pat = & XVECEXP (*pat, 0, 0);
434 return pat;
435
436 case FLOAT_TRUNCATE:
437 if (!flag_unsafe_math_optimizations)
438 return pat;
439 pat = & XEXP (*pat, 0);
440 break;
441
442 default:
443 return pat;
444 }
445 }
446 \f
447 /* Set if we find any malformed asms in a block. */
448 static bool any_malformed_asm;
449
450 /* There are many rules that an asm statement for stack-like regs must
451 follow. Those rules are explained at the top of this file: the rule
452 numbers below refer to that explanation. */
453
454 static int
455 check_asm_stack_operands (rtx insn)
456 {
457 int i;
458 int n_clobbers;
459 int malformed_asm = 0;
460 rtx body = PATTERN (insn);
461
462 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
463 char implicitly_dies[FIRST_PSEUDO_REGISTER];
464 int alt;
465
466 rtx *clobber_reg = 0;
467 int n_inputs, n_outputs;
468
469 /* Find out what the constraints require. If no constraint
470 alternative matches, this asm is malformed. */
471 extract_insn (insn);
472 constrain_operands (1);
473 alt = which_alternative;
474
475 preprocess_constraints ();
476
477 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
478
479 if (alt < 0)
480 {
481 malformed_asm = 1;
482 /* Avoid further trouble with this insn. */
483 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
484 return 0;
485 }
486
487 /* Strip SUBREGs here to make the following code simpler. */
488 for (i = 0; i < recog_data.n_operands; i++)
489 if (GET_CODE (recog_data.operand[i]) == SUBREG
490 && REG_P (SUBREG_REG (recog_data.operand[i])))
491 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
492
493 /* Set up CLOBBER_REG. */
494
495 n_clobbers = 0;
496
497 if (GET_CODE (body) == PARALLEL)
498 {
499 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
500
501 for (i = 0; i < XVECLEN (body, 0); i++)
502 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
503 {
504 rtx clobber = XVECEXP (body, 0, i);
505 rtx reg = XEXP (clobber, 0);
506
507 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
508 reg = SUBREG_REG (reg);
509
510 if (STACK_REG_P (reg))
511 {
512 clobber_reg[n_clobbers] = reg;
513 n_clobbers++;
514 }
515 }
516 }
517
518 /* Enforce rule #4: Output operands must specifically indicate which
519 reg an output appears in after an asm. "=f" is not allowed: the
520 operand constraints must select a class with a single reg.
521
522 Also enforce rule #5: Output operands must start at the top of
523 the reg-stack: output operands may not "skip" a reg. */
524
525 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
526 for (i = 0; i < n_outputs; i++)
527 if (STACK_REG_P (recog_data.operand[i]))
528 {
529 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
530 {
531 error_for_asm (insn, "output constraint %d must specify a single register", i);
532 malformed_asm = 1;
533 }
534 else
535 {
536 int j;
537
538 for (j = 0; j < n_clobbers; j++)
539 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
540 {
541 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
542 i, reg_names [REGNO (clobber_reg[j])]);
543 malformed_asm = 1;
544 break;
545 }
546 if (j == n_clobbers)
547 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
548 }
549 }
550
551
552 /* Search for first non-popped reg. */
553 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
554 if (! reg_used_as_output[i])
555 break;
556
557 /* If there are any other popped regs, that's an error. */
558 for (; i < LAST_STACK_REG + 1; i++)
559 if (reg_used_as_output[i])
560 break;
561
562 if (i != LAST_STACK_REG + 1)
563 {
564 error_for_asm (insn, "output regs must be grouped at top of stack");
565 malformed_asm = 1;
566 }
567
568 /* Enforce rule #2: All implicitly popped input regs must be closer
569 to the top of the reg-stack than any input that is not implicitly
570 popped. */
571
572 memset (implicitly_dies, 0, sizeof (implicitly_dies));
573 for (i = n_outputs; i < n_outputs + n_inputs; i++)
574 if (STACK_REG_P (recog_data.operand[i]))
575 {
576 /* An input reg is implicitly popped if it is tied to an
577 output, or if there is a CLOBBER for it. */
578 int j;
579
580 for (j = 0; j < n_clobbers; j++)
581 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
582 break;
583
584 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
585 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
586 }
587
588 /* Search for first non-popped reg. */
589 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
590 if (! implicitly_dies[i])
591 break;
592
593 /* If there are any other popped regs, that's an error. */
594 for (; i < LAST_STACK_REG + 1; i++)
595 if (implicitly_dies[i])
596 break;
597
598 if (i != LAST_STACK_REG + 1)
599 {
600 error_for_asm (insn,
601 "implicitly popped regs must be grouped at top of stack");
602 malformed_asm = 1;
603 }
604
605 /* Enforce rule #3: If any input operand uses the "f" constraint, all
606 output constraints must use the "&" earlyclobber.
607
608 ??? Detect this more deterministically by having constrain_asm_operands
609 record any earlyclobber. */
610
611 for (i = n_outputs; i < n_outputs + n_inputs; i++)
612 if (recog_op_alt[i][alt].matches == -1)
613 {
614 int j;
615
616 for (j = 0; j < n_outputs; j++)
617 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
618 {
619 error_for_asm (insn,
620 "output operand %d must use %<&%> constraint", j);
621 malformed_asm = 1;
622 }
623 }
624
625 if (malformed_asm)
626 {
627 /* Avoid further trouble with this insn. */
628 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
629 any_malformed_asm = true;
630 return 0;
631 }
632
633 return 1;
634 }
635 \f
636 /* Calculate the number of inputs and outputs in BODY, an
637 asm_operands. N_OPERANDS is the total number of operands, and
638 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
639 placed. */
640
641 static void
642 get_asm_operands_in_out (rtx body, int *pout, int *pin)
643 {
644 rtx asmop = extract_asm_operands (body);
645
646 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
647 *pout = (recog_data.n_operands
648 - ASM_OPERANDS_INPUT_LENGTH (asmop)
649 - ASM_OPERANDS_LABEL_LENGTH (asmop));
650 }
651
652 /* If current function returns its result in an fp stack register,
653 return the REG. Otherwise, return 0. */
654
655 static rtx
656 stack_result (tree decl)
657 {
658 rtx result;
659
660 /* If the value is supposed to be returned in memory, then clearly
661 it is not returned in a stack register. */
662 if (aggregate_value_p (DECL_RESULT (decl), decl))
663 return 0;
664
665 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
666 if (result != 0)
667 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
668 decl, true);
669
670 return result != 0 && STACK_REG_P (result) ? result : 0;
671 }
672 \f
673
674 /*
675 * This section deals with stack register substitution, and forms the second
676 * pass over the RTL.
677 */
678
679 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
680 the desired hard REGNO. */
681
682 static void
683 replace_reg (rtx *reg, int regno)
684 {
685 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
686 gcc_assert (STACK_REG_P (*reg));
687
688 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
689 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
690
691 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
692 }
693
694 /* Remove a note of type NOTE, which must be found, for register
695 number REGNO from INSN. Remove only one such note. */
696
697 static void
698 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
699 {
700 rtx *note_link, this_rtx;
701
702 note_link = &REG_NOTES (insn);
703 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
704 if (REG_NOTE_KIND (this_rtx) == note
705 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
706 {
707 *note_link = XEXP (this_rtx, 1);
708 return;
709 }
710 else
711 note_link = &XEXP (this_rtx, 1);
712
713 gcc_unreachable ();
714 }
715
716 /* Find the hard register number of virtual register REG in REGSTACK.
717 The hard register number is relative to the top of the stack. -1 is
718 returned if the register is not found. */
719
720 static int
721 get_hard_regnum (stack_ptr regstack, rtx reg)
722 {
723 int i;
724
725 gcc_assert (STACK_REG_P (reg));
726
727 for (i = regstack->top; i >= 0; i--)
728 if (regstack->reg[i] == REGNO (reg))
729 break;
730
731 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
732 }
733 \f
734 /* Emit an insn to pop virtual register REG before or after INSN.
735 REGSTACK is the stack state after INSN and is updated to reflect this
736 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
737 is represented as a SET whose destination is the register to be popped
738 and source is the top of stack. A death note for the top of stack
739 cases the movdf pattern to pop. */
740
741 static rtx
742 emit_pop_insn (rtx insn, stack_ptr regstack, rtx reg, enum emit_where where)
743 {
744 rtx pop_insn, pop_rtx;
745 int hard_regno;
746
747 /* For complex types take care to pop both halves. These may survive in
748 CLOBBER and USE expressions. */
749 if (COMPLEX_MODE_P (GET_MODE (reg)))
750 {
751 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
752 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
753
754 pop_insn = NULL_RTX;
755 if (get_hard_regnum (regstack, reg1) >= 0)
756 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
757 if (get_hard_regnum (regstack, reg2) >= 0)
758 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
759 gcc_assert (pop_insn);
760 return pop_insn;
761 }
762
763 hard_regno = get_hard_regnum (regstack, reg);
764
765 gcc_assert (hard_regno >= FIRST_STACK_REG);
766
767 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
768 FP_MODE_REG (FIRST_STACK_REG, DFmode));
769
770 if (where == EMIT_AFTER)
771 pop_insn = emit_insn_after (pop_rtx, insn);
772 else
773 pop_insn = emit_insn_before (pop_rtx, insn);
774
775 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
776
777 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
778 = regstack->reg[regstack->top];
779 regstack->top -= 1;
780 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
781
782 return pop_insn;
783 }
784 \f
785 /* Emit an insn before or after INSN to swap virtual register REG with
786 the top of stack. REGSTACK is the stack state before the swap, and
787 is updated to reflect the swap. A swap insn is represented as a
788 PARALLEL of two patterns: each pattern moves one reg to the other.
789
790 If REG is already at the top of the stack, no insn is emitted. */
791
792 static void
793 emit_swap_insn (rtx insn, stack_ptr regstack, rtx reg)
794 {
795 int hard_regno;
796 rtx swap_rtx;
797 int tmp, other_reg; /* swap regno temps */
798 rtx i1; /* the stack-reg insn prior to INSN */
799 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
800
801 hard_regno = get_hard_regnum (regstack, reg);
802
803 if (hard_regno == FIRST_STACK_REG)
804 return;
805 if (hard_regno == -1)
806 {
807 /* Something failed if the register wasn't on the stack. If we had
808 malformed asms, we zapped the instruction itself, but that didn't
809 produce the same pattern of register sets as before. To prevent
810 further failure, adjust REGSTACK to include REG at TOP. */
811 gcc_assert (any_malformed_asm);
812 regstack->reg[++regstack->top] = REGNO (reg);
813 return;
814 }
815 gcc_assert (hard_regno >= FIRST_STACK_REG);
816
817 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
818
819 tmp = regstack->reg[other_reg];
820 regstack->reg[other_reg] = regstack->reg[regstack->top];
821 regstack->reg[regstack->top] = tmp;
822
823 /* Find the previous insn involving stack regs, but don't pass a
824 block boundary. */
825 i1 = NULL;
826 if (current_block && insn != BB_HEAD (current_block))
827 {
828 rtx tmp = PREV_INSN (insn);
829 rtx limit = PREV_INSN (BB_HEAD (current_block));
830 while (tmp != limit)
831 {
832 if (LABEL_P (tmp)
833 || CALL_P (tmp)
834 || NOTE_INSN_BASIC_BLOCK_P (tmp)
835 || (NONJUMP_INSN_P (tmp)
836 && stack_regs_mentioned (tmp)))
837 {
838 i1 = tmp;
839 break;
840 }
841 tmp = PREV_INSN (tmp);
842 }
843 }
844
845 if (i1 != NULL_RTX
846 && (i1set = single_set (i1)) != NULL_RTX)
847 {
848 rtx i1src = *get_true_reg (&SET_SRC (i1set));
849 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
850
851 /* If the previous register stack push was from the reg we are to
852 swap with, omit the swap. */
853
854 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
855 && REG_P (i1src)
856 && REGNO (i1src) == (unsigned) hard_regno - 1
857 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
858 return;
859
860 /* If the previous insn wrote to the reg we are to swap with,
861 omit the swap. */
862
863 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
864 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
865 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
866 return;
867 }
868
869 /* Avoid emitting the swap if this is the first register stack insn
870 of the current_block. Instead update the current_block's stack_in
871 and let compensate edges take care of this for us. */
872 if (current_block && starting_stack_p)
873 {
874 BLOCK_INFO (current_block)->stack_in = *regstack;
875 starting_stack_p = false;
876 return;
877 }
878
879 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
880 FP_MODE_REG (FIRST_STACK_REG, XFmode));
881
882 if (i1)
883 emit_insn_after (swap_rtx, i1);
884 else if (current_block)
885 emit_insn_before (swap_rtx, BB_HEAD (current_block));
886 else
887 emit_insn_before (swap_rtx, insn);
888 }
889 \f
890 /* Emit an insns before INSN to swap virtual register SRC1 with
891 the top of stack and virtual register SRC2 with second stack
892 slot. REGSTACK is the stack state before the swaps, and
893 is updated to reflect the swaps. A swap insn is represented as a
894 PARALLEL of two patterns: each pattern moves one reg to the other.
895
896 If SRC1 and/or SRC2 are already at the right place, no swap insn
897 is emitted. */
898
899 static void
900 swap_to_top (rtx insn, stack_ptr regstack, rtx src1, rtx src2)
901 {
902 struct stack_def temp_stack;
903 int regno, j, k, temp;
904
905 temp_stack = *regstack;
906
907 /* Place operand 1 at the top of stack. */
908 regno = get_hard_regnum (&temp_stack, src1);
909 gcc_assert (regno >= 0);
910 if (regno != FIRST_STACK_REG)
911 {
912 k = temp_stack.top - (regno - FIRST_STACK_REG);
913 j = temp_stack.top;
914
915 temp = temp_stack.reg[k];
916 temp_stack.reg[k] = temp_stack.reg[j];
917 temp_stack.reg[j] = temp;
918 }
919
920 /* Place operand 2 next on the stack. */
921 regno = get_hard_regnum (&temp_stack, src2);
922 gcc_assert (regno >= 0);
923 if (regno != FIRST_STACK_REG + 1)
924 {
925 k = temp_stack.top - (regno - FIRST_STACK_REG);
926 j = temp_stack.top - 1;
927
928 temp = temp_stack.reg[k];
929 temp_stack.reg[k] = temp_stack.reg[j];
930 temp_stack.reg[j] = temp;
931 }
932
933 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
934 }
935 \f
936 /* Handle a move to or from a stack register in PAT, which is in INSN.
937 REGSTACK is the current stack. Return whether a control flow insn
938 was deleted in the process. */
939
940 static bool
941 move_for_stack_reg (rtx insn, stack_ptr regstack, rtx pat)
942 {
943 rtx *psrc = get_true_reg (&SET_SRC (pat));
944 rtx *pdest = get_true_reg (&SET_DEST (pat));
945 rtx src, dest;
946 rtx note;
947 bool control_flow_insn_deleted = false;
948
949 src = *psrc; dest = *pdest;
950
951 if (STACK_REG_P (src) && STACK_REG_P (dest))
952 {
953 /* Write from one stack reg to another. If SRC dies here, then
954 just change the register mapping and delete the insn. */
955
956 note = find_regno_note (insn, REG_DEAD, REGNO (src));
957 if (note)
958 {
959 int i;
960
961 /* If this is a no-op move, there must not be a REG_DEAD note. */
962 gcc_assert (REGNO (src) != REGNO (dest));
963
964 for (i = regstack->top; i >= 0; i--)
965 if (regstack->reg[i] == REGNO (src))
966 break;
967
968 /* The destination must be dead, or life analysis is borked. */
969 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
970
971 /* If the source is not live, this is yet another case of
972 uninitialized variables. Load up a NaN instead. */
973 if (i < 0)
974 return move_nan_for_stack_reg (insn, regstack, dest);
975
976 /* It is possible that the dest is unused after this insn.
977 If so, just pop the src. */
978
979 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
980 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
981 else
982 {
983 regstack->reg[i] = REGNO (dest);
984 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
985 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
986 }
987
988 control_flow_insn_deleted |= control_flow_insn_p (insn);
989 delete_insn (insn);
990 return control_flow_insn_deleted;
991 }
992
993 /* The source reg does not die. */
994
995 /* If this appears to be a no-op move, delete it, or else it
996 will confuse the machine description output patterns. But if
997 it is REG_UNUSED, we must pop the reg now, as per-insn processing
998 for REG_UNUSED will not work for deleted insns. */
999
1000 if (REGNO (src) == REGNO (dest))
1001 {
1002 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1003 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1004
1005 control_flow_insn_deleted |= control_flow_insn_p (insn);
1006 delete_insn (insn);
1007 return control_flow_insn_deleted;
1008 }
1009
1010 /* The destination ought to be dead. */
1011 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1012
1013 replace_reg (psrc, get_hard_regnum (regstack, src));
1014
1015 regstack->reg[++regstack->top] = REGNO (dest);
1016 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1017 replace_reg (pdest, FIRST_STACK_REG);
1018 }
1019 else if (STACK_REG_P (src))
1020 {
1021 /* Save from a stack reg to MEM, or possibly integer reg. Since
1022 only top of stack may be saved, emit an exchange first if
1023 needs be. */
1024
1025 emit_swap_insn (insn, regstack, src);
1026
1027 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1028 if (note)
1029 {
1030 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1031 regstack->top--;
1032 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1033 }
1034 else if ((GET_MODE (src) == XFmode)
1035 && regstack->top < REG_STACK_SIZE - 1)
1036 {
1037 /* A 387 cannot write an XFmode value to a MEM without
1038 clobbering the source reg. The output code can handle
1039 this by reading back the value from the MEM.
1040 But it is more efficient to use a temp register if one is
1041 available. Push the source value here if the register
1042 stack is not full, and then write the value to memory via
1043 a pop. */
1044 rtx push_rtx;
1045 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1046
1047 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1048 emit_insn_before (push_rtx, insn);
1049 add_reg_note (insn, REG_DEAD, top_stack_reg);
1050 }
1051
1052 replace_reg (psrc, FIRST_STACK_REG);
1053 }
1054 else
1055 {
1056 rtx pat = PATTERN (insn);
1057
1058 gcc_assert (STACK_REG_P (dest));
1059
1060 /* Load from MEM, or possibly integer REG or constant, into the
1061 stack regs. The actual target is always the top of the
1062 stack. The stack mapping is changed to reflect that DEST is
1063 now at top of stack. */
1064
1065 /* The destination ought to be dead. However, there is a
1066 special case with i387 UNSPEC_TAN, where destination is live
1067 (an argument to fptan) but inherent load of 1.0 is modelled
1068 as a load from a constant. */
1069 if (GET_CODE (pat) == PARALLEL
1070 && XVECLEN (pat, 0) == 2
1071 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1072 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1073 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1074 emit_swap_insn (insn, regstack, dest);
1075 else
1076 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1077
1078 gcc_assert (regstack->top < REG_STACK_SIZE);
1079
1080 regstack->reg[++regstack->top] = REGNO (dest);
1081 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1082 replace_reg (pdest, FIRST_STACK_REG);
1083 }
1084
1085 return control_flow_insn_deleted;
1086 }
1087
1088 /* A helper function which replaces INSN with a pattern that loads up
1089 a NaN into DEST, then invokes move_for_stack_reg. */
1090
1091 static bool
1092 move_nan_for_stack_reg (rtx insn, stack_ptr regstack, rtx dest)
1093 {
1094 rtx pat;
1095
1096 dest = FP_MODE_REG (REGNO (dest), SFmode);
1097 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1098 PATTERN (insn) = pat;
1099 INSN_CODE (insn) = -1;
1100
1101 return move_for_stack_reg (insn, regstack, pat);
1102 }
1103 \f
1104 /* Swap the condition on a branch, if there is one. Return true if we
1105 found a condition to swap. False if the condition was not used as
1106 such. */
1107
1108 static int
1109 swap_rtx_condition_1 (rtx pat)
1110 {
1111 const char *fmt;
1112 int i, r = 0;
1113
1114 if (COMPARISON_P (pat))
1115 {
1116 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1117 r = 1;
1118 }
1119 else
1120 {
1121 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1122 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1123 {
1124 if (fmt[i] == 'E')
1125 {
1126 int j;
1127
1128 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1129 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1130 }
1131 else if (fmt[i] == 'e')
1132 r |= swap_rtx_condition_1 (XEXP (pat, i));
1133 }
1134 }
1135
1136 return r;
1137 }
1138
1139 static int
1140 swap_rtx_condition (rtx insn)
1141 {
1142 rtx pat = PATTERN (insn);
1143
1144 /* We're looking for a single set to cc0 or an HImode temporary. */
1145
1146 if (GET_CODE (pat) == SET
1147 && REG_P (SET_DEST (pat))
1148 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1149 {
1150 insn = next_flags_user (insn);
1151 if (insn == NULL_RTX)
1152 return 0;
1153 pat = PATTERN (insn);
1154 }
1155
1156 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1157 with the cc value right now. We may be able to search for one
1158 though. */
1159
1160 if (GET_CODE (pat) == SET
1161 && GET_CODE (SET_SRC (pat)) == UNSPEC
1162 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1163 {
1164 rtx dest = SET_DEST (pat);
1165
1166 /* Search forward looking for the first use of this value.
1167 Stop at block boundaries. */
1168 while (insn != BB_END (current_block))
1169 {
1170 insn = NEXT_INSN (insn);
1171 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1172 break;
1173 if (CALL_P (insn))
1174 return 0;
1175 }
1176
1177 /* We haven't found it. */
1178 if (insn == BB_END (current_block))
1179 return 0;
1180
1181 /* So we've found the insn using this value. If it is anything
1182 other than sahf or the value does not die (meaning we'd have
1183 to search further), then we must give up. */
1184 pat = PATTERN (insn);
1185 if (GET_CODE (pat) != SET
1186 || GET_CODE (SET_SRC (pat)) != UNSPEC
1187 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1188 || ! dead_or_set_p (insn, dest))
1189 return 0;
1190
1191 /* Now we are prepared to handle this as a normal cc0 setter. */
1192 insn = next_flags_user (insn);
1193 if (insn == NULL_RTX)
1194 return 0;
1195 pat = PATTERN (insn);
1196 }
1197
1198 if (swap_rtx_condition_1 (pat))
1199 {
1200 int fail = 0;
1201 INSN_CODE (insn) = -1;
1202 if (recog_memoized (insn) == -1)
1203 fail = 1;
1204 /* In case the flags don't die here, recurse to try fix
1205 following user too. */
1206 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1207 {
1208 insn = next_flags_user (insn);
1209 if (!insn || !swap_rtx_condition (insn))
1210 fail = 1;
1211 }
1212 if (fail)
1213 {
1214 swap_rtx_condition_1 (pat);
1215 return 0;
1216 }
1217 return 1;
1218 }
1219 return 0;
1220 }
1221
1222 /* Handle a comparison. Special care needs to be taken to avoid
1223 causing comparisons that a 387 cannot do correctly, such as EQ.
1224
1225 Also, a pop insn may need to be emitted. The 387 does have an
1226 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1227 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1228 set up. */
1229
1230 static void
1231 compare_for_stack_reg (rtx insn, stack_ptr regstack, rtx pat_src)
1232 {
1233 rtx *src1, *src2;
1234 rtx src1_note, src2_note;
1235
1236 src1 = get_true_reg (&XEXP (pat_src, 0));
1237 src2 = get_true_reg (&XEXP (pat_src, 1));
1238
1239 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1240 registers that die in this insn - move those to stack top first. */
1241 if ((! STACK_REG_P (*src1)
1242 || (STACK_REG_P (*src2)
1243 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1244 && swap_rtx_condition (insn))
1245 {
1246 rtx temp;
1247 temp = XEXP (pat_src, 0);
1248 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1249 XEXP (pat_src, 1) = temp;
1250
1251 src1 = get_true_reg (&XEXP (pat_src, 0));
1252 src2 = get_true_reg (&XEXP (pat_src, 1));
1253
1254 INSN_CODE (insn) = -1;
1255 }
1256
1257 /* We will fix any death note later. */
1258
1259 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1260
1261 if (STACK_REG_P (*src2))
1262 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1263 else
1264 src2_note = NULL_RTX;
1265
1266 emit_swap_insn (insn, regstack, *src1);
1267
1268 replace_reg (src1, FIRST_STACK_REG);
1269
1270 if (STACK_REG_P (*src2))
1271 replace_reg (src2, get_hard_regnum (regstack, *src2));
1272
1273 if (src1_note)
1274 {
1275 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1276 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1277 }
1278
1279 /* If the second operand dies, handle that. But if the operands are
1280 the same stack register, don't bother, because only one death is
1281 needed, and it was just handled. */
1282
1283 if (src2_note
1284 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1285 && REGNO (*src1) == REGNO (*src2)))
1286 {
1287 /* As a special case, two regs may die in this insn if src2 is
1288 next to top of stack and the top of stack also dies. Since
1289 we have already popped src1, "next to top of stack" is really
1290 at top (FIRST_STACK_REG) now. */
1291
1292 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1293 && src1_note)
1294 {
1295 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1296 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1297 }
1298 else
1299 {
1300 /* The 386 can only represent death of the first operand in
1301 the case handled above. In all other cases, emit a separate
1302 pop and remove the death note from here. */
1303 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1304 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1305 EMIT_AFTER);
1306 }
1307 }
1308 }
1309 \f
1310 /* Substitute new registers in LOC, which is part of a debug insn.
1311 REGSTACK is the current register layout. */
1312
1313 static int
1314 subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1315 {
1316 stack_ptr regstack = (stack_ptr)data;
1317 int hard_regno;
1318
1319 if (!STACK_REG_P (*loc))
1320 return 0;
1321
1322 hard_regno = get_hard_regnum (regstack, *loc);
1323
1324 /* If we can't find an active register, reset this debug insn. */
1325 if (hard_regno == -1)
1326 return 1;
1327
1328 gcc_assert (hard_regno >= FIRST_STACK_REG);
1329
1330 replace_reg (loc, hard_regno);
1331
1332 return -1;
1333 }
1334
1335 /* Substitute hardware stack regs in debug insn INSN, using stack
1336 layout REGSTACK. If we can't find a hardware stack reg for any of
1337 the REGs in it, reset the debug insn. */
1338
1339 static void
1340 subst_all_stack_regs_in_debug_insn (rtx insn, struct stack_def *regstack)
1341 {
1342 int ret = for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
1343 subst_stack_regs_in_debug_insn,
1344 regstack);
1345
1346 if (ret == 1)
1347 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1348 else
1349 gcc_checking_assert (ret == 0);
1350 }
1351
1352 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1353 is the current register layout. Return whether a control flow insn
1354 was deleted in the process. */
1355
1356 static bool
1357 subst_stack_regs_pat (rtx insn, stack_ptr regstack, rtx pat)
1358 {
1359 rtx *dest, *src;
1360 bool control_flow_insn_deleted = false;
1361
1362 switch (GET_CODE (pat))
1363 {
1364 case USE:
1365 /* Deaths in USE insns can happen in non optimizing compilation.
1366 Handle them by popping the dying register. */
1367 src = get_true_reg (&XEXP (pat, 0));
1368 if (STACK_REG_P (*src)
1369 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1370 {
1371 /* USEs are ignored for liveness information so USEs of dead
1372 register might happen. */
1373 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1374 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1375 return control_flow_insn_deleted;
1376 }
1377 /* Uninitialized USE might happen for functions returning uninitialized
1378 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1379 so it is safe to ignore the use here. This is consistent with behavior
1380 of dataflow analyzer that ignores USE too. (This also imply that
1381 forcibly initializing the register to NaN here would lead to ICE later,
1382 since the REG_DEAD notes are not issued.) */
1383 break;
1384
1385 case VAR_LOCATION:
1386 gcc_unreachable ();
1387
1388 case CLOBBER:
1389 {
1390 rtx note;
1391
1392 dest = get_true_reg (&XEXP (pat, 0));
1393 if (STACK_REG_P (*dest))
1394 {
1395 note = find_reg_note (insn, REG_DEAD, *dest);
1396
1397 if (pat != PATTERN (insn))
1398 {
1399 /* The fix_truncdi_1 pattern wants to be able to
1400 allocate its own scratch register. It does this by
1401 clobbering an fp reg so that it is assured of an
1402 empty reg-stack register. If the register is live,
1403 kill it now. Remove the DEAD/UNUSED note so we
1404 don't try to kill it later too.
1405
1406 In reality the UNUSED note can be absent in some
1407 complicated cases when the register is reused for
1408 partially set variable. */
1409
1410 if (note)
1411 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1412 else
1413 note = find_reg_note (insn, REG_UNUSED, *dest);
1414 if (note)
1415 remove_note (insn, note);
1416 replace_reg (dest, FIRST_STACK_REG + 1);
1417 }
1418 else
1419 {
1420 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1421 indicates an uninitialized value. Because reload removed
1422 all other clobbers, this must be due to a function
1423 returning without a value. Load up a NaN. */
1424
1425 if (!note)
1426 {
1427 rtx t = *dest;
1428 if (COMPLEX_MODE_P (GET_MODE (t)))
1429 {
1430 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1431 if (get_hard_regnum (regstack, u) == -1)
1432 {
1433 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1434 rtx insn2 = emit_insn_before (pat2, insn);
1435 control_flow_insn_deleted
1436 |= move_nan_for_stack_reg (insn2, regstack, u);
1437 }
1438 }
1439 if (get_hard_regnum (regstack, t) == -1)
1440 control_flow_insn_deleted
1441 |= move_nan_for_stack_reg (insn, regstack, t);
1442 }
1443 }
1444 }
1445 break;
1446 }
1447
1448 case SET:
1449 {
1450 rtx *src1 = (rtx *) 0, *src2;
1451 rtx src1_note, src2_note;
1452 rtx pat_src;
1453
1454 dest = get_true_reg (&SET_DEST (pat));
1455 src = get_true_reg (&SET_SRC (pat));
1456 pat_src = SET_SRC (pat);
1457
1458 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1459 if (STACK_REG_P (*src)
1460 || (STACK_REG_P (*dest)
1461 && (REG_P (*src) || MEM_P (*src)
1462 || CONST_DOUBLE_P (*src))))
1463 {
1464 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1465 break;
1466 }
1467
1468 switch (GET_CODE (pat_src))
1469 {
1470 case COMPARE:
1471 compare_for_stack_reg (insn, regstack, pat_src);
1472 break;
1473
1474 case CALL:
1475 {
1476 int count;
1477 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1478 --count >= 0;)
1479 {
1480 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1481 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1482 }
1483 }
1484 replace_reg (dest, FIRST_STACK_REG);
1485 break;
1486
1487 case REG:
1488 /* This is a `tstM2' case. */
1489 gcc_assert (*dest == cc0_rtx);
1490 src1 = src;
1491
1492 /* Fall through. */
1493
1494 case FLOAT_TRUNCATE:
1495 case SQRT:
1496 case ABS:
1497 case NEG:
1498 /* These insns only operate on the top of the stack. DEST might
1499 be cc0_rtx if we're processing a tstM pattern. Also, it's
1500 possible that the tstM case results in a REG_DEAD note on the
1501 source. */
1502
1503 if (src1 == 0)
1504 src1 = get_true_reg (&XEXP (pat_src, 0));
1505
1506 emit_swap_insn (insn, regstack, *src1);
1507
1508 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1509
1510 if (STACK_REG_P (*dest))
1511 replace_reg (dest, FIRST_STACK_REG);
1512
1513 if (src1_note)
1514 {
1515 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1516 regstack->top--;
1517 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1518 }
1519
1520 replace_reg (src1, FIRST_STACK_REG);
1521 break;
1522
1523 case MINUS:
1524 case DIV:
1525 /* On i386, reversed forms of subM3 and divM3 exist for
1526 MODE_FLOAT, so the same code that works for addM3 and mulM3
1527 can be used. */
1528 case MULT:
1529 case PLUS:
1530 /* These insns can accept the top of stack as a destination
1531 from a stack reg or mem, or can use the top of stack as a
1532 source and some other stack register (possibly top of stack)
1533 as a destination. */
1534
1535 src1 = get_true_reg (&XEXP (pat_src, 0));
1536 src2 = get_true_reg (&XEXP (pat_src, 1));
1537
1538 /* We will fix any death note later. */
1539
1540 if (STACK_REG_P (*src1))
1541 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1542 else
1543 src1_note = NULL_RTX;
1544 if (STACK_REG_P (*src2))
1545 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1546 else
1547 src2_note = NULL_RTX;
1548
1549 /* If either operand is not a stack register, then the dest
1550 must be top of stack. */
1551
1552 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1553 emit_swap_insn (insn, regstack, *dest);
1554 else
1555 {
1556 /* Both operands are REG. If neither operand is already
1557 at the top of stack, choose to make the one that is the
1558 dest the new top of stack. */
1559
1560 int src1_hard_regnum, src2_hard_regnum;
1561
1562 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1563 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1564
1565 /* If the source is not live, this is yet another case of
1566 uninitialized variables. Load up a NaN instead. */
1567 if (src1_hard_regnum == -1)
1568 {
1569 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1570 rtx insn2 = emit_insn_before (pat2, insn);
1571 control_flow_insn_deleted
1572 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1573 }
1574 if (src2_hard_regnum == -1)
1575 {
1576 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1577 rtx insn2 = emit_insn_before (pat2, insn);
1578 control_flow_insn_deleted
1579 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1580 }
1581
1582 if (src1_hard_regnum != FIRST_STACK_REG
1583 && src2_hard_regnum != FIRST_STACK_REG)
1584 emit_swap_insn (insn, regstack, *dest);
1585 }
1586
1587 if (STACK_REG_P (*src1))
1588 replace_reg (src1, get_hard_regnum (regstack, *src1));
1589 if (STACK_REG_P (*src2))
1590 replace_reg (src2, get_hard_regnum (regstack, *src2));
1591
1592 if (src1_note)
1593 {
1594 rtx src1_reg = XEXP (src1_note, 0);
1595
1596 /* If the register that dies is at the top of stack, then
1597 the destination is somewhere else - merely substitute it.
1598 But if the reg that dies is not at top of stack, then
1599 move the top of stack to the dead reg, as though we had
1600 done the insn and then a store-with-pop. */
1601
1602 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1603 {
1604 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1605 replace_reg (dest, get_hard_regnum (regstack, *dest));
1606 }
1607 else
1608 {
1609 int regno = get_hard_regnum (regstack, src1_reg);
1610
1611 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1612 replace_reg (dest, regno);
1613
1614 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1615 = regstack->reg[regstack->top];
1616 }
1617
1618 CLEAR_HARD_REG_BIT (regstack->reg_set,
1619 REGNO (XEXP (src1_note, 0)));
1620 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1621 regstack->top--;
1622 }
1623 else if (src2_note)
1624 {
1625 rtx src2_reg = XEXP (src2_note, 0);
1626 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1627 {
1628 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1629 replace_reg (dest, get_hard_regnum (regstack, *dest));
1630 }
1631 else
1632 {
1633 int regno = get_hard_regnum (regstack, src2_reg);
1634
1635 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1636 replace_reg (dest, regno);
1637
1638 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1639 = regstack->reg[regstack->top];
1640 }
1641
1642 CLEAR_HARD_REG_BIT (regstack->reg_set,
1643 REGNO (XEXP (src2_note, 0)));
1644 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1645 regstack->top--;
1646 }
1647 else
1648 {
1649 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1650 replace_reg (dest, get_hard_regnum (regstack, *dest));
1651 }
1652
1653 /* Keep operand 1 matching with destination. */
1654 if (COMMUTATIVE_ARITH_P (pat_src)
1655 && REG_P (*src1) && REG_P (*src2)
1656 && REGNO (*src1) != REGNO (*dest))
1657 {
1658 int tmp = REGNO (*src1);
1659 replace_reg (src1, REGNO (*src2));
1660 replace_reg (src2, tmp);
1661 }
1662 break;
1663
1664 case UNSPEC:
1665 switch (XINT (pat_src, 1))
1666 {
1667 case UNSPEC_STA:
1668 case UNSPEC_FIST:
1669
1670 case UNSPEC_FIST_FLOOR:
1671 case UNSPEC_FIST_CEIL:
1672
1673 /* These insns only operate on the top of the stack. */
1674
1675 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1676 emit_swap_insn (insn, regstack, *src1);
1677
1678 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1679
1680 if (STACK_REG_P (*dest))
1681 replace_reg (dest, FIRST_STACK_REG);
1682
1683 if (src1_note)
1684 {
1685 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1686 regstack->top--;
1687 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1688 }
1689
1690 replace_reg (src1, FIRST_STACK_REG);
1691 break;
1692
1693 case UNSPEC_FXAM:
1694
1695 /* This insn only operate on the top of the stack. */
1696
1697 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1698 emit_swap_insn (insn, regstack, *src1);
1699
1700 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1701
1702 replace_reg (src1, FIRST_STACK_REG);
1703
1704 if (src1_note)
1705 {
1706 remove_regno_note (insn, REG_DEAD,
1707 REGNO (XEXP (src1_note, 0)));
1708 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1709 EMIT_AFTER);
1710 }
1711
1712 break;
1713
1714 case UNSPEC_SIN:
1715 case UNSPEC_COS:
1716 case UNSPEC_FRNDINT:
1717 case UNSPEC_F2XM1:
1718
1719 case UNSPEC_FRNDINT_FLOOR:
1720 case UNSPEC_FRNDINT_CEIL:
1721 case UNSPEC_FRNDINT_TRUNC:
1722 case UNSPEC_FRNDINT_MASK_PM:
1723
1724 /* Above insns operate on the top of the stack. */
1725
1726 case UNSPEC_SINCOS_COS:
1727 case UNSPEC_XTRACT_FRACT:
1728
1729 /* Above insns operate on the top two stack slots,
1730 first part of one input, double output insn. */
1731
1732 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1733
1734 emit_swap_insn (insn, regstack, *src1);
1735
1736 /* Input should never die, it is replaced with output. */
1737 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1738 gcc_assert (!src1_note);
1739
1740 if (STACK_REG_P (*dest))
1741 replace_reg (dest, FIRST_STACK_REG);
1742
1743 replace_reg (src1, FIRST_STACK_REG);
1744 break;
1745
1746 case UNSPEC_SINCOS_SIN:
1747 case UNSPEC_XTRACT_EXP:
1748
1749 /* These insns operate on the top two stack slots,
1750 second part of one input, double output insn. */
1751
1752 regstack->top++;
1753 /* FALLTHRU */
1754
1755 case UNSPEC_TAN:
1756
1757 /* For UNSPEC_TAN, regstack->top is already increased
1758 by inherent load of constant 1.0. */
1759
1760 /* Output value is generated in the second stack slot.
1761 Move current value from second slot to the top. */
1762 regstack->reg[regstack->top]
1763 = regstack->reg[regstack->top - 1];
1764
1765 gcc_assert (STACK_REG_P (*dest));
1766
1767 regstack->reg[regstack->top - 1] = REGNO (*dest);
1768 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1769 replace_reg (dest, FIRST_STACK_REG + 1);
1770
1771 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1772
1773 replace_reg (src1, FIRST_STACK_REG);
1774 break;
1775
1776 case UNSPEC_FPATAN:
1777 case UNSPEC_FYL2X:
1778 case UNSPEC_FYL2XP1:
1779 /* These insns operate on the top two stack slots. */
1780
1781 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1782 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1783
1784 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1785 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1786
1787 swap_to_top (insn, regstack, *src1, *src2);
1788
1789 replace_reg (src1, FIRST_STACK_REG);
1790 replace_reg (src2, FIRST_STACK_REG + 1);
1791
1792 if (src1_note)
1793 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1794 if (src2_note)
1795 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1796
1797 /* Pop both input operands from the stack. */
1798 CLEAR_HARD_REG_BIT (regstack->reg_set,
1799 regstack->reg[regstack->top]);
1800 CLEAR_HARD_REG_BIT (regstack->reg_set,
1801 regstack->reg[regstack->top - 1]);
1802 regstack->top -= 2;
1803
1804 /* Push the result back onto the stack. */
1805 regstack->reg[++regstack->top] = REGNO (*dest);
1806 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1807 replace_reg (dest, FIRST_STACK_REG);
1808 break;
1809
1810 case UNSPEC_FSCALE_FRACT:
1811 case UNSPEC_FPREM_F:
1812 case UNSPEC_FPREM1_F:
1813 /* These insns operate on the top two stack slots,
1814 first part of double input, double output insn. */
1815
1816 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1817 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1818
1819 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1820 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1821
1822 /* Inputs should never die, they are
1823 replaced with outputs. */
1824 gcc_assert (!src1_note);
1825 gcc_assert (!src2_note);
1826
1827 swap_to_top (insn, regstack, *src1, *src2);
1828
1829 /* Push the result back onto stack. Empty stack slot
1830 will be filled in second part of insn. */
1831 if (STACK_REG_P (*dest))
1832 {
1833 regstack->reg[regstack->top] = REGNO (*dest);
1834 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1835 replace_reg (dest, FIRST_STACK_REG);
1836 }
1837
1838 replace_reg (src1, FIRST_STACK_REG);
1839 replace_reg (src2, FIRST_STACK_REG + 1);
1840 break;
1841
1842 case UNSPEC_FSCALE_EXP:
1843 case UNSPEC_FPREM_U:
1844 case UNSPEC_FPREM1_U:
1845 /* These insns operate on the top two stack slots,
1846 second part of double input, double output insn. */
1847
1848 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1849 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1850
1851 /* Push the result back onto stack. Fill empty slot from
1852 first part of insn and fix top of stack pointer. */
1853 if (STACK_REG_P (*dest))
1854 {
1855 regstack->reg[regstack->top - 1] = REGNO (*dest);
1856 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1857 replace_reg (dest, FIRST_STACK_REG + 1);
1858 }
1859
1860 replace_reg (src1, FIRST_STACK_REG);
1861 replace_reg (src2, FIRST_STACK_REG + 1);
1862 break;
1863
1864 case UNSPEC_C2_FLAG:
1865 /* This insn operates on the top two stack slots,
1866 third part of C2 setting double input insn. */
1867
1868 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1869 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1870
1871 replace_reg (src1, FIRST_STACK_REG);
1872 replace_reg (src2, FIRST_STACK_REG + 1);
1873 break;
1874
1875 case UNSPEC_SAHF:
1876 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1877 The combination matches the PPRO fcomi instruction. */
1878
1879 pat_src = XVECEXP (pat_src, 0, 0);
1880 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1881 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1882 /* Fall through. */
1883
1884 case UNSPEC_FNSTSW:
1885 /* Combined fcomp+fnstsw generated for doing well with
1886 CSE. When optimizing this would have been broken
1887 up before now. */
1888
1889 pat_src = XVECEXP (pat_src, 0, 0);
1890 gcc_assert (GET_CODE (pat_src) == COMPARE);
1891
1892 compare_for_stack_reg (insn, regstack, pat_src);
1893 break;
1894
1895 default:
1896 gcc_unreachable ();
1897 }
1898 break;
1899
1900 case IF_THEN_ELSE:
1901 /* This insn requires the top of stack to be the destination. */
1902
1903 src1 = get_true_reg (&XEXP (pat_src, 1));
1904 src2 = get_true_reg (&XEXP (pat_src, 2));
1905
1906 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1907 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1908
1909 /* If the comparison operator is an FP comparison operator,
1910 it is handled correctly by compare_for_stack_reg () who
1911 will move the destination to the top of stack. But if the
1912 comparison operator is not an FP comparison operator, we
1913 have to handle it here. */
1914 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1915 && REGNO (*dest) != regstack->reg[regstack->top])
1916 {
1917 /* In case one of operands is the top of stack and the operands
1918 dies, it is safe to make it the destination operand by
1919 reversing the direction of cmove and avoid fxch. */
1920 if ((REGNO (*src1) == regstack->reg[regstack->top]
1921 && src1_note)
1922 || (REGNO (*src2) == regstack->reg[regstack->top]
1923 && src2_note))
1924 {
1925 int idx1 = (get_hard_regnum (regstack, *src1)
1926 - FIRST_STACK_REG);
1927 int idx2 = (get_hard_regnum (regstack, *src2)
1928 - FIRST_STACK_REG);
1929
1930 /* Make reg-stack believe that the operands are already
1931 swapped on the stack */
1932 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1933 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1934
1935 /* Reverse condition to compensate the operand swap.
1936 i386 do have comparison always reversible. */
1937 PUT_CODE (XEXP (pat_src, 0),
1938 reversed_comparison_code (XEXP (pat_src, 0), insn));
1939 }
1940 else
1941 emit_swap_insn (insn, regstack, *dest);
1942 }
1943
1944 {
1945 rtx src_note [3];
1946 int i;
1947
1948 src_note[0] = 0;
1949 src_note[1] = src1_note;
1950 src_note[2] = src2_note;
1951
1952 if (STACK_REG_P (*src1))
1953 replace_reg (src1, get_hard_regnum (regstack, *src1));
1954 if (STACK_REG_P (*src2))
1955 replace_reg (src2, get_hard_regnum (regstack, *src2));
1956
1957 for (i = 1; i <= 2; i++)
1958 if (src_note [i])
1959 {
1960 int regno = REGNO (XEXP (src_note[i], 0));
1961
1962 /* If the register that dies is not at the top of
1963 stack, then move the top of stack to the dead reg.
1964 Top of stack should never die, as it is the
1965 destination. */
1966 gcc_assert (regno != regstack->reg[regstack->top]);
1967 remove_regno_note (insn, REG_DEAD, regno);
1968 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1969 EMIT_AFTER);
1970 }
1971 }
1972
1973 /* Make dest the top of stack. Add dest to regstack if
1974 not present. */
1975 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1976 regstack->reg[++regstack->top] = REGNO (*dest);
1977 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1978 replace_reg (dest, FIRST_STACK_REG);
1979 break;
1980
1981 default:
1982 gcc_unreachable ();
1983 }
1984 break;
1985 }
1986
1987 default:
1988 break;
1989 }
1990
1991 return control_flow_insn_deleted;
1992 }
1993 \f
1994 /* Substitute hard regnums for any stack regs in INSN, which has
1995 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1996 before the insn, and is updated with changes made here.
1997
1998 There are several requirements and assumptions about the use of
1999 stack-like regs in asm statements. These rules are enforced by
2000 record_asm_stack_regs; see comments there for details. Any
2001 asm_operands left in the RTL at this point may be assume to meet the
2002 requirements, since record_asm_stack_regs removes any problem asm. */
2003
2004 static void
2005 subst_asm_stack_regs (rtx insn, stack_ptr regstack)
2006 {
2007 rtx body = PATTERN (insn);
2008 int alt;
2009
2010 rtx *note_reg; /* Array of note contents */
2011 rtx **note_loc; /* Address of REG field of each note */
2012 enum reg_note *note_kind; /* The type of each note */
2013
2014 rtx *clobber_reg = 0;
2015 rtx **clobber_loc = 0;
2016
2017 struct stack_def temp_stack;
2018 int n_notes;
2019 int n_clobbers;
2020 rtx note;
2021 int i;
2022 int n_inputs, n_outputs;
2023
2024 if (! check_asm_stack_operands (insn))
2025 return;
2026
2027 /* Find out what the constraints required. If no constraint
2028 alternative matches, that is a compiler bug: we should have caught
2029 such an insn in check_asm_stack_operands. */
2030 extract_insn (insn);
2031 constrain_operands (1);
2032 alt = which_alternative;
2033
2034 preprocess_constraints ();
2035
2036 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2037
2038 gcc_assert (alt >= 0);
2039
2040 /* Strip SUBREGs here to make the following code simpler. */
2041 for (i = 0; i < recog_data.n_operands; i++)
2042 if (GET_CODE (recog_data.operand[i]) == SUBREG
2043 && REG_P (SUBREG_REG (recog_data.operand[i])))
2044 {
2045 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2046 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2047 }
2048
2049 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2050
2051 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2052 i++;
2053
2054 note_reg = XALLOCAVEC (rtx, i);
2055 note_loc = XALLOCAVEC (rtx *, i);
2056 note_kind = XALLOCAVEC (enum reg_note, i);
2057
2058 n_notes = 0;
2059 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2060 {
2061 rtx reg = XEXP (note, 0);
2062 rtx *loc = & XEXP (note, 0);
2063
2064 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2065 {
2066 loc = & SUBREG_REG (reg);
2067 reg = SUBREG_REG (reg);
2068 }
2069
2070 if (STACK_REG_P (reg)
2071 && (REG_NOTE_KIND (note) == REG_DEAD
2072 || REG_NOTE_KIND (note) == REG_UNUSED))
2073 {
2074 note_reg[n_notes] = reg;
2075 note_loc[n_notes] = loc;
2076 note_kind[n_notes] = REG_NOTE_KIND (note);
2077 n_notes++;
2078 }
2079 }
2080
2081 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2082
2083 n_clobbers = 0;
2084
2085 if (GET_CODE (body) == PARALLEL)
2086 {
2087 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2088 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2089
2090 for (i = 0; i < XVECLEN (body, 0); i++)
2091 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2092 {
2093 rtx clobber = XVECEXP (body, 0, i);
2094 rtx reg = XEXP (clobber, 0);
2095 rtx *loc = & XEXP (clobber, 0);
2096
2097 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2098 {
2099 loc = & SUBREG_REG (reg);
2100 reg = SUBREG_REG (reg);
2101 }
2102
2103 if (STACK_REG_P (reg))
2104 {
2105 clobber_reg[n_clobbers] = reg;
2106 clobber_loc[n_clobbers] = loc;
2107 n_clobbers++;
2108 }
2109 }
2110 }
2111
2112 temp_stack = *regstack;
2113
2114 /* Put the input regs into the desired place in TEMP_STACK. */
2115
2116 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2117 if (STACK_REG_P (recog_data.operand[i])
2118 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2119 FLOAT_REGS)
2120 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2121 {
2122 /* If an operand needs to be in a particular reg in
2123 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2124 these constraints are for single register classes, and
2125 reload guaranteed that operand[i] is already in that class,
2126 we can just use REGNO (recog_data.operand[i]) to know which
2127 actual reg this operand needs to be in. */
2128
2129 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2130
2131 gcc_assert (regno >= 0);
2132
2133 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2134 {
2135 /* recog_data.operand[i] is not in the right place. Find
2136 it and swap it with whatever is already in I's place.
2137 K is where recog_data.operand[i] is now. J is where it
2138 should be. */
2139 int j, k, temp;
2140
2141 k = temp_stack.top - (regno - FIRST_STACK_REG);
2142 j = (temp_stack.top
2143 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2144
2145 temp = temp_stack.reg[k];
2146 temp_stack.reg[k] = temp_stack.reg[j];
2147 temp_stack.reg[j] = temp;
2148 }
2149 }
2150
2151 /* Emit insns before INSN to make sure the reg-stack is in the right
2152 order. */
2153
2154 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2155
2156 /* Make the needed input register substitutions. Do death notes and
2157 clobbers too, because these are for inputs, not outputs. */
2158
2159 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2160 if (STACK_REG_P (recog_data.operand[i]))
2161 {
2162 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2163
2164 gcc_assert (regnum >= 0);
2165
2166 replace_reg (recog_data.operand_loc[i], regnum);
2167 }
2168
2169 for (i = 0; i < n_notes; i++)
2170 if (note_kind[i] == REG_DEAD)
2171 {
2172 int regnum = get_hard_regnum (regstack, note_reg[i]);
2173
2174 gcc_assert (regnum >= 0);
2175
2176 replace_reg (note_loc[i], regnum);
2177 }
2178
2179 for (i = 0; i < n_clobbers; i++)
2180 {
2181 /* It's OK for a CLOBBER to reference a reg that is not live.
2182 Don't try to replace it in that case. */
2183 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2184
2185 if (regnum >= 0)
2186 {
2187 /* Sigh - clobbers always have QImode. But replace_reg knows
2188 that these regs can't be MODE_INT and will assert. Just put
2189 the right reg there without calling replace_reg. */
2190
2191 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2192 }
2193 }
2194
2195 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2196
2197 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2198 if (STACK_REG_P (recog_data.operand[i]))
2199 {
2200 /* An input reg is implicitly popped if it is tied to an
2201 output, or if there is a CLOBBER for it. */
2202 int j;
2203
2204 for (j = 0; j < n_clobbers; j++)
2205 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2206 break;
2207
2208 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2209 {
2210 /* recog_data.operand[i] might not be at the top of stack.
2211 But that's OK, because all we need to do is pop the
2212 right number of regs off of the top of the reg-stack.
2213 record_asm_stack_regs guaranteed that all implicitly
2214 popped regs were grouped at the top of the reg-stack. */
2215
2216 CLEAR_HARD_REG_BIT (regstack->reg_set,
2217 regstack->reg[regstack->top]);
2218 regstack->top--;
2219 }
2220 }
2221
2222 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2223 Note that there isn't any need to substitute register numbers.
2224 ??? Explain why this is true. */
2225
2226 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2227 {
2228 /* See if there is an output for this hard reg. */
2229 int j;
2230
2231 for (j = 0; j < n_outputs; j++)
2232 if (STACK_REG_P (recog_data.operand[j])
2233 && REGNO (recog_data.operand[j]) == (unsigned) i)
2234 {
2235 regstack->reg[++regstack->top] = i;
2236 SET_HARD_REG_BIT (regstack->reg_set, i);
2237 break;
2238 }
2239 }
2240
2241 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2242 input that the asm didn't implicitly pop. If the asm didn't
2243 implicitly pop an input reg, that reg will still be live.
2244
2245 Note that we can't use find_regno_note here: the register numbers
2246 in the death notes have already been substituted. */
2247
2248 for (i = 0; i < n_outputs; i++)
2249 if (STACK_REG_P (recog_data.operand[i]))
2250 {
2251 int j;
2252
2253 for (j = 0; j < n_notes; j++)
2254 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2255 && note_kind[j] == REG_UNUSED)
2256 {
2257 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2258 EMIT_AFTER);
2259 break;
2260 }
2261 }
2262
2263 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2264 if (STACK_REG_P (recog_data.operand[i]))
2265 {
2266 int j;
2267
2268 for (j = 0; j < n_notes; j++)
2269 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2270 && note_kind[j] == REG_DEAD
2271 && TEST_HARD_REG_BIT (regstack->reg_set,
2272 REGNO (recog_data.operand[i])))
2273 {
2274 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2275 EMIT_AFTER);
2276 break;
2277 }
2278 }
2279 }
2280 \f
2281 /* Substitute stack hard reg numbers for stack virtual registers in
2282 INSN. Non-stack register numbers are not changed. REGSTACK is the
2283 current stack content. Insns may be emitted as needed to arrange the
2284 stack for the 387 based on the contents of the insn. Return whether
2285 a control flow insn was deleted in the process. */
2286
2287 static bool
2288 subst_stack_regs (rtx insn, stack_ptr regstack)
2289 {
2290 rtx *note_link, note;
2291 bool control_flow_insn_deleted = false;
2292 int i;
2293
2294 if (CALL_P (insn))
2295 {
2296 int top = regstack->top;
2297
2298 /* If there are any floating point parameters to be passed in
2299 registers for this call, make sure they are in the right
2300 order. */
2301
2302 if (top >= 0)
2303 {
2304 straighten_stack (insn, regstack);
2305
2306 /* Now mark the arguments as dead after the call. */
2307
2308 while (regstack->top >= 0)
2309 {
2310 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2311 regstack->top--;
2312 }
2313 }
2314 }
2315
2316 /* Do the actual substitution if any stack regs are mentioned.
2317 Since we only record whether entire insn mentions stack regs, and
2318 subst_stack_regs_pat only works for patterns that contain stack regs,
2319 we must check each pattern in a parallel here. A call_value_pop could
2320 fail otherwise. */
2321
2322 if (stack_regs_mentioned (insn))
2323 {
2324 int n_operands = asm_noperands (PATTERN (insn));
2325 if (n_operands >= 0)
2326 {
2327 /* This insn is an `asm' with operands. Decode the operands,
2328 decide how many are inputs, and do register substitution.
2329 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2330
2331 subst_asm_stack_regs (insn, regstack);
2332 return control_flow_insn_deleted;
2333 }
2334
2335 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2336 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2337 {
2338 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2339 {
2340 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2341 XVECEXP (PATTERN (insn), 0, i)
2342 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2343 control_flow_insn_deleted
2344 |= subst_stack_regs_pat (insn, regstack,
2345 XVECEXP (PATTERN (insn), 0, i));
2346 }
2347 }
2348 else
2349 control_flow_insn_deleted
2350 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2351 }
2352
2353 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2354 REG_UNUSED will already have been dealt with, so just return. */
2355
2356 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2357 return control_flow_insn_deleted;
2358
2359 /* If this a noreturn call, we can't insert pop insns after it.
2360 Instead, reset the stack state to empty. */
2361 if (CALL_P (insn)
2362 && find_reg_note (insn, REG_NORETURN, NULL))
2363 {
2364 regstack->top = -1;
2365 CLEAR_HARD_REG_SET (regstack->reg_set);
2366 return control_flow_insn_deleted;
2367 }
2368
2369 /* If there is a REG_UNUSED note on a stack register on this insn,
2370 the indicated reg must be popped. The REG_UNUSED note is removed,
2371 since the form of the newly emitted pop insn references the reg,
2372 making it no longer `unset'. */
2373
2374 note_link = &REG_NOTES (insn);
2375 for (note = *note_link; note; note = XEXP (note, 1))
2376 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2377 {
2378 *note_link = XEXP (note, 1);
2379 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2380 }
2381 else
2382 note_link = &XEXP (note, 1);
2383
2384 return control_flow_insn_deleted;
2385 }
2386 \f
2387 /* Change the organization of the stack so that it fits a new basic
2388 block. Some registers might have to be popped, but there can never be
2389 a register live in the new block that is not now live.
2390
2391 Insert any needed insns before or after INSN, as indicated by
2392 WHERE. OLD is the original stack layout, and NEW is the desired
2393 form. OLD is updated to reflect the code emitted, i.e., it will be
2394 the same as NEW upon return.
2395
2396 This function will not preserve block_end[]. But that information
2397 is no longer needed once this has executed. */
2398
2399 static void
2400 change_stack (rtx insn, stack_ptr old, stack_ptr new_stack, enum emit_where where)
2401 {
2402 int reg;
2403 int update_end = 0;
2404 int i;
2405
2406 /* Stack adjustments for the first insn in a block update the
2407 current_block's stack_in instead of inserting insns directly.
2408 compensate_edges will add the necessary code later. */
2409 if (current_block
2410 && starting_stack_p
2411 && where == EMIT_BEFORE)
2412 {
2413 BLOCK_INFO (current_block)->stack_in = *new_stack;
2414 starting_stack_p = false;
2415 *old = *new_stack;
2416 return;
2417 }
2418
2419 /* We will be inserting new insns "backwards". If we are to insert
2420 after INSN, find the next insn, and insert before it. */
2421
2422 if (where == EMIT_AFTER)
2423 {
2424 if (current_block && BB_END (current_block) == insn)
2425 update_end = 1;
2426 insn = NEXT_INSN (insn);
2427 }
2428
2429 /* Initialize partially dead variables. */
2430 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2431 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2432 && !TEST_HARD_REG_BIT (old->reg_set, i))
2433 {
2434 old->reg[++old->top] = i;
2435 SET_HARD_REG_BIT (old->reg_set, i);
2436 emit_insn_before (gen_rtx_SET (VOIDmode,
2437 FP_MODE_REG (i, SFmode), not_a_num), insn);
2438 }
2439
2440 /* Pop any registers that are not needed in the new block. */
2441
2442 /* If the destination block's stack already has a specified layout
2443 and contains two or more registers, use a more intelligent algorithm
2444 to pop registers that minimizes the number number of fxchs below. */
2445 if (new_stack->top > 0)
2446 {
2447 bool slots[REG_STACK_SIZE];
2448 int pops[REG_STACK_SIZE];
2449 int next, dest, topsrc;
2450
2451 /* First pass to determine the free slots. */
2452 for (reg = 0; reg <= new_stack->top; reg++)
2453 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2454
2455 /* Second pass to allocate preferred slots. */
2456 topsrc = -1;
2457 for (reg = old->top; reg > new_stack->top; reg--)
2458 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2459 {
2460 dest = -1;
2461 for (next = 0; next <= new_stack->top; next++)
2462 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2463 {
2464 /* If this is a preference for the new top of stack, record
2465 the fact by remembering it's old->reg in topsrc. */
2466 if (next == new_stack->top)
2467 topsrc = reg;
2468 slots[next] = true;
2469 dest = next;
2470 break;
2471 }
2472 pops[reg] = dest;
2473 }
2474 else
2475 pops[reg] = reg;
2476
2477 /* Intentionally, avoid placing the top of stack in it's correct
2478 location, if we still need to permute the stack below and we
2479 can usefully place it somewhere else. This is the case if any
2480 slot is still unallocated, in which case we should place the
2481 top of stack there. */
2482 if (topsrc != -1)
2483 for (reg = 0; reg < new_stack->top; reg++)
2484 if (!slots[reg])
2485 {
2486 pops[topsrc] = reg;
2487 slots[new_stack->top] = false;
2488 slots[reg] = true;
2489 break;
2490 }
2491
2492 /* Third pass allocates remaining slots and emits pop insns. */
2493 next = new_stack->top;
2494 for (reg = old->top; reg > new_stack->top; reg--)
2495 {
2496 dest = pops[reg];
2497 if (dest == -1)
2498 {
2499 /* Find next free slot. */
2500 while (slots[next])
2501 next--;
2502 dest = next--;
2503 }
2504 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2505 EMIT_BEFORE);
2506 }
2507 }
2508 else
2509 {
2510 /* The following loop attempts to maximize the number of times we
2511 pop the top of the stack, as this permits the use of the faster
2512 ffreep instruction on platforms that support it. */
2513 int live, next;
2514
2515 live = 0;
2516 for (reg = 0; reg <= old->top; reg++)
2517 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2518 live++;
2519
2520 next = live;
2521 while (old->top >= live)
2522 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2523 {
2524 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2525 next--;
2526 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2527 EMIT_BEFORE);
2528 }
2529 else
2530 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2531 EMIT_BEFORE);
2532 }
2533
2534 if (new_stack->top == -2)
2535 {
2536 /* If the new block has never been processed, then it can inherit
2537 the old stack order. */
2538
2539 new_stack->top = old->top;
2540 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2541 }
2542 else
2543 {
2544 /* This block has been entered before, and we must match the
2545 previously selected stack order. */
2546
2547 /* By now, the only difference should be the order of the stack,
2548 not their depth or liveliness. */
2549
2550 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2551 gcc_assert (old->top == new_stack->top);
2552
2553 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2554 swaps until the stack is correct.
2555
2556 The worst case number of swaps emitted is N + 2, where N is the
2557 depth of the stack. In some cases, the reg at the top of
2558 stack may be correct, but swapped anyway in order to fix
2559 other regs. But since we never swap any other reg away from
2560 its correct slot, this algorithm will converge. */
2561
2562 if (new_stack->top != -1)
2563 do
2564 {
2565 /* Swap the reg at top of stack into the position it is
2566 supposed to be in, until the correct top of stack appears. */
2567
2568 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2569 {
2570 for (reg = new_stack->top; reg >= 0; reg--)
2571 if (new_stack->reg[reg] == old->reg[old->top])
2572 break;
2573
2574 gcc_assert (reg != -1);
2575
2576 emit_swap_insn (insn, old,
2577 FP_MODE_REG (old->reg[reg], DFmode));
2578 }
2579
2580 /* See if any regs remain incorrect. If so, bring an
2581 incorrect reg to the top of stack, and let the while loop
2582 above fix it. */
2583
2584 for (reg = new_stack->top; reg >= 0; reg--)
2585 if (new_stack->reg[reg] != old->reg[reg])
2586 {
2587 emit_swap_insn (insn, old,
2588 FP_MODE_REG (old->reg[reg], DFmode));
2589 break;
2590 }
2591 } while (reg >= 0);
2592
2593 /* At this point there must be no differences. */
2594
2595 for (reg = old->top; reg >= 0; reg--)
2596 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2597 }
2598
2599 if (update_end)
2600 BB_END (current_block) = PREV_INSN (insn);
2601 }
2602 \f
2603 /* Print stack configuration. */
2604
2605 static void
2606 print_stack (FILE *file, stack_ptr s)
2607 {
2608 if (! file)
2609 return;
2610
2611 if (s->top == -2)
2612 fprintf (file, "uninitialized\n");
2613 else if (s->top == -1)
2614 fprintf (file, "empty\n");
2615 else
2616 {
2617 int i;
2618 fputs ("[ ", file);
2619 for (i = 0; i <= s->top; ++i)
2620 fprintf (file, "%d ", s->reg[i]);
2621 fputs ("]\n", file);
2622 }
2623 }
2624 \f
2625 /* This function was doing life analysis. We now let the regular live
2626 code do it's job, so we only need to check some extra invariants
2627 that reg-stack expects. Primary among these being that all registers
2628 are initialized before use.
2629
2630 The function returns true when code was emitted to CFG edges and
2631 commit_edge_insertions needs to be called. */
2632
2633 static int
2634 convert_regs_entry (void)
2635 {
2636 int inserted = 0;
2637 edge e;
2638 edge_iterator ei;
2639
2640 /* Load something into each stack register live at function entry.
2641 Such live registers can be caused by uninitialized variables or
2642 functions not returning values on all paths. In order to keep
2643 the push/pop code happy, and to not scrog the register stack, we
2644 must put something in these registers. Use a QNaN.
2645
2646 Note that we are inserting converted code here. This code is
2647 never seen by the convert_regs pass. */
2648
2649 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2650 {
2651 basic_block block = e->dest;
2652 block_info bi = BLOCK_INFO (block);
2653 int reg, top = -1;
2654
2655 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2656 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2657 {
2658 rtx init;
2659
2660 bi->stack_in.reg[++top] = reg;
2661
2662 init = gen_rtx_SET (VOIDmode,
2663 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2664 not_a_num);
2665 insert_insn_on_edge (init, e);
2666 inserted = 1;
2667 }
2668
2669 bi->stack_in.top = top;
2670 }
2671
2672 return inserted;
2673 }
2674
2675 /* Construct the desired stack for function exit. This will either
2676 be `empty', or the function return value at top-of-stack. */
2677
2678 static void
2679 convert_regs_exit (void)
2680 {
2681 int value_reg_low, value_reg_high;
2682 stack_ptr output_stack;
2683 rtx retvalue;
2684
2685 retvalue = stack_result (current_function_decl);
2686 value_reg_low = value_reg_high = -1;
2687 if (retvalue)
2688 {
2689 value_reg_low = REGNO (retvalue);
2690 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2691 }
2692
2693 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2694 if (value_reg_low == -1)
2695 output_stack->top = -1;
2696 else
2697 {
2698 int reg;
2699
2700 output_stack->top = value_reg_high - value_reg_low;
2701 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2702 {
2703 output_stack->reg[value_reg_high - reg] = reg;
2704 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2705 }
2706 }
2707 }
2708
2709 /* Copy the stack info from the end of edge E's source block to the
2710 start of E's destination block. */
2711
2712 static void
2713 propagate_stack (edge e)
2714 {
2715 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2716 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2717 int reg;
2718
2719 /* Preserve the order of the original stack, but check whether
2720 any pops are needed. */
2721 dest_stack->top = -1;
2722 for (reg = 0; reg <= src_stack->top; ++reg)
2723 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2724 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2725
2726 /* Push in any partially dead values. */
2727 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2728 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2729 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2730 dest_stack->reg[++dest_stack->top] = reg;
2731 }
2732
2733
2734 /* Adjust the stack of edge E's source block on exit to match the stack
2735 of it's target block upon input. The stack layouts of both blocks
2736 should have been defined by now. */
2737
2738 static bool
2739 compensate_edge (edge e)
2740 {
2741 basic_block source = e->src, target = e->dest;
2742 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2743 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2744 struct stack_def regstack;
2745 int reg;
2746
2747 if (dump_file)
2748 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2749
2750 gcc_assert (target_stack->top != -2);
2751
2752 /* Check whether stacks are identical. */
2753 if (target_stack->top == source_stack->top)
2754 {
2755 for (reg = target_stack->top; reg >= 0; --reg)
2756 if (target_stack->reg[reg] != source_stack->reg[reg])
2757 break;
2758
2759 if (reg == -1)
2760 {
2761 if (dump_file)
2762 fprintf (dump_file, "no changes needed\n");
2763 return false;
2764 }
2765 }
2766
2767 if (dump_file)
2768 {
2769 fprintf (dump_file, "correcting stack to ");
2770 print_stack (dump_file, target_stack);
2771 }
2772
2773 /* Abnormal calls may appear to have values live in st(0), but the
2774 abnormal return path will not have actually loaded the values. */
2775 if (e->flags & EDGE_ABNORMAL_CALL)
2776 {
2777 /* Assert that the lifetimes are as we expect -- one value
2778 live at st(0) on the end of the source block, and no
2779 values live at the beginning of the destination block.
2780 For complex return values, we may have st(1) live as well. */
2781 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2782 gcc_assert (target_stack->top == -1);
2783 return false;
2784 }
2785
2786 /* Handle non-call EH edges specially. The normal return path have
2787 values in registers. These will be popped en masse by the unwind
2788 library. */
2789 if (e->flags & EDGE_EH)
2790 {
2791 gcc_assert (target_stack->top == -1);
2792 return false;
2793 }
2794
2795 /* We don't support abnormal edges. Global takes care to
2796 avoid any live register across them, so we should never
2797 have to insert instructions on such edges. */
2798 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2799
2800 /* Make a copy of source_stack as change_stack is destructive. */
2801 regstack = *source_stack;
2802
2803 /* It is better to output directly to the end of the block
2804 instead of to the edge, because emit_swap can do minimal
2805 insn scheduling. We can do this when there is only one
2806 edge out, and it is not abnormal. */
2807 if (EDGE_COUNT (source->succs) == 1)
2808 {
2809 current_block = source;
2810 change_stack (BB_END (source), &regstack, target_stack,
2811 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2812 }
2813 else
2814 {
2815 rtx seq, after;
2816
2817 current_block = NULL;
2818 start_sequence ();
2819
2820 /* ??? change_stack needs some point to emit insns after. */
2821 after = emit_note (NOTE_INSN_DELETED);
2822
2823 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2824
2825 seq = get_insns ();
2826 end_sequence ();
2827
2828 insert_insn_on_edge (seq, e);
2829 return true;
2830 }
2831 return false;
2832 }
2833
2834 /* Traverse all non-entry edges in the CFG, and emit the necessary
2835 edge compensation code to change the stack from stack_out of the
2836 source block to the stack_in of the destination block. */
2837
2838 static bool
2839 compensate_edges (void)
2840 {
2841 bool inserted = false;
2842 basic_block bb;
2843
2844 starting_stack_p = false;
2845
2846 FOR_EACH_BB (bb)
2847 if (bb != ENTRY_BLOCK_PTR)
2848 {
2849 edge e;
2850 edge_iterator ei;
2851
2852 FOR_EACH_EDGE (e, ei, bb->succs)
2853 inserted |= compensate_edge (e);
2854 }
2855 return inserted;
2856 }
2857
2858 /* Select the better of two edges E1 and E2 to use to determine the
2859 stack layout for their shared destination basic block. This is
2860 typically the more frequently executed. The edge E1 may be NULL
2861 (in which case E2 is returned), but E2 is always non-NULL. */
2862
2863 static edge
2864 better_edge (edge e1, edge e2)
2865 {
2866 if (!e1)
2867 return e2;
2868
2869 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2870 return e1;
2871 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2872 return e2;
2873
2874 if (e1->count > e2->count)
2875 return e1;
2876 if (e1->count < e2->count)
2877 return e2;
2878
2879 /* Prefer critical edges to minimize inserting compensation code on
2880 critical edges. */
2881
2882 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2883 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2884
2885 /* Avoid non-deterministic behavior. */
2886 return (e1->src->index < e2->src->index) ? e1 : e2;
2887 }
2888
2889 /* Convert stack register references in one block. Return true if the CFG
2890 has been modified in the process. */
2891
2892 static bool
2893 convert_regs_1 (basic_block block)
2894 {
2895 struct stack_def regstack;
2896 block_info bi = BLOCK_INFO (block);
2897 int reg;
2898 rtx insn, next;
2899 bool control_flow_insn_deleted = false;
2900 bool cfg_altered = false;
2901 int debug_insns_with_starting_stack = 0;
2902
2903 any_malformed_asm = false;
2904
2905 /* Choose an initial stack layout, if one hasn't already been chosen. */
2906 if (bi->stack_in.top == -2)
2907 {
2908 edge e, beste = NULL;
2909 edge_iterator ei;
2910
2911 /* Select the best incoming edge (typically the most frequent) to
2912 use as a template for this basic block. */
2913 FOR_EACH_EDGE (e, ei, block->preds)
2914 if (BLOCK_INFO (e->src)->done)
2915 beste = better_edge (beste, e);
2916
2917 if (beste)
2918 propagate_stack (beste);
2919 else
2920 {
2921 /* No predecessors. Create an arbitrary input stack. */
2922 bi->stack_in.top = -1;
2923 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2924 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2925 bi->stack_in.reg[++bi->stack_in.top] = reg;
2926 }
2927 }
2928
2929 if (dump_file)
2930 {
2931 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2932 print_stack (dump_file, &bi->stack_in);
2933 }
2934
2935 /* Process all insns in this block. Keep track of NEXT so that we
2936 don't process insns emitted while substituting in INSN. */
2937 current_block = block;
2938 next = BB_HEAD (block);
2939 regstack = bi->stack_in;
2940 starting_stack_p = true;
2941
2942 do
2943 {
2944 insn = next;
2945 next = NEXT_INSN (insn);
2946
2947 /* Ensure we have not missed a block boundary. */
2948 gcc_assert (next);
2949 if (insn == BB_END (block))
2950 next = NULL;
2951
2952 /* Don't bother processing unless there is a stack reg
2953 mentioned or if it's a CALL_INSN. */
2954 if (DEBUG_INSN_P (insn))
2955 {
2956 if (starting_stack_p)
2957 debug_insns_with_starting_stack++;
2958 else
2959 {
2960 subst_all_stack_regs_in_debug_insn (insn, &regstack);
2961
2962 /* Nothing must ever die at a debug insn. If something
2963 is referenced in it that becomes dead, it should have
2964 died before and the reference in the debug insn
2965 should have been removed so as to avoid changing code
2966 generation. */
2967 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2968 }
2969 }
2970 else if (stack_regs_mentioned (insn)
2971 || CALL_P (insn))
2972 {
2973 if (dump_file)
2974 {
2975 fprintf (dump_file, " insn %d input stack: ",
2976 INSN_UID (insn));
2977 print_stack (dump_file, &regstack);
2978 }
2979 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2980 starting_stack_p = false;
2981 }
2982 }
2983 while (next);
2984
2985 if (debug_insns_with_starting_stack)
2986 {
2987 /* Since it's the first non-debug instruction that determines
2988 the stack requirements of the current basic block, we refrain
2989 from updating debug insns before it in the loop above, and
2990 fix them up here. */
2991 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2992 insn = NEXT_INSN (insn))
2993 {
2994 if (!DEBUG_INSN_P (insn))
2995 continue;
2996
2997 debug_insns_with_starting_stack--;
2998 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
2999 }
3000 }
3001
3002 if (dump_file)
3003 {
3004 fprintf (dump_file, "Expected live registers [");
3005 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3006 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3007 fprintf (dump_file, " %d", reg);
3008 fprintf (dump_file, " ]\nOutput stack: ");
3009 print_stack (dump_file, &regstack);
3010 }
3011
3012 insn = BB_END (block);
3013 if (JUMP_P (insn))
3014 insn = PREV_INSN (insn);
3015
3016 /* If the function is declared to return a value, but it returns one
3017 in only some cases, some registers might come live here. Emit
3018 necessary moves for them. */
3019
3020 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3021 {
3022 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3023 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3024 {
3025 rtx set;
3026
3027 if (dump_file)
3028 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3029
3030 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3031 insn = emit_insn_after (set, insn);
3032 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3033 }
3034 }
3035
3036 /* Amongst the insns possibly deleted during the substitution process above,
3037 might have been the only trapping insn in the block. We purge the now
3038 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3039 called at the end of convert_regs. The order in which we process the
3040 blocks ensures that we never delete an already processed edge.
3041
3042 Note that, at this point, the CFG may have been damaged by the emission
3043 of instructions after an abnormal call, which moves the basic block end
3044 (and is the reason why we call fixup_abnormal_edges later). So we must
3045 be sure that the trapping insn has been deleted before trying to purge
3046 dead edges, otherwise we risk purging valid edges.
3047
3048 ??? We are normally supposed not to delete trapping insns, so we pretend
3049 that the insns deleted above don't actually trap. It would have been
3050 better to detect this earlier and avoid creating the EH edge in the first
3051 place, still, but we don't have enough information at that time. */
3052
3053 if (control_flow_insn_deleted)
3054 cfg_altered |= purge_dead_edges (block);
3055
3056 /* Something failed if the stack lives don't match. If we had malformed
3057 asms, we zapped the instruction itself, but that didn't produce the
3058 same pattern of register kills as before. */
3059
3060 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3061 || any_malformed_asm);
3062 bi->stack_out = regstack;
3063 bi->done = true;
3064
3065 return cfg_altered;
3066 }
3067
3068 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3069 CFG has been modified in the process. */
3070
3071 static bool
3072 convert_regs_2 (basic_block block)
3073 {
3074 basic_block *stack, *sp;
3075 bool cfg_altered = false;
3076
3077 /* We process the blocks in a top-down manner, in a way such that one block
3078 is only processed after all its predecessors. The number of predecessors
3079 of every block has already been computed. */
3080
3081 stack = XNEWVEC (basic_block, n_basic_blocks);
3082 sp = stack;
3083
3084 *sp++ = block;
3085
3086 do
3087 {
3088 edge e;
3089 edge_iterator ei;
3090
3091 block = *--sp;
3092
3093 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3094 some dead EH outgoing edge after the deletion of the trapping
3095 insn inside the block. Since the number of predecessors of
3096 BLOCK's successors was computed based on the initial edge set,
3097 we check the necessity to process some of these successors
3098 before such an edge deletion may happen. However, there is
3099 a pitfall: if BLOCK is the only predecessor of a successor and
3100 the edge between them happens to be deleted, the successor
3101 becomes unreachable and should not be processed. The problem
3102 is that there is no way to preventively detect this case so we
3103 stack the successor in all cases and hand over the task of
3104 fixing up the discrepancy to convert_regs_1. */
3105
3106 FOR_EACH_EDGE (e, ei, block->succs)
3107 if (! (e->flags & EDGE_DFS_BACK))
3108 {
3109 BLOCK_INFO (e->dest)->predecessors--;
3110 if (!BLOCK_INFO (e->dest)->predecessors)
3111 *sp++ = e->dest;
3112 }
3113
3114 cfg_altered |= convert_regs_1 (block);
3115 }
3116 while (sp != stack);
3117
3118 free (stack);
3119
3120 return cfg_altered;
3121 }
3122
3123 /* Traverse all basic blocks in a function, converting the register
3124 references in each insn from the "flat" register file that gcc uses,
3125 to the stack-like registers the 387 uses. */
3126
3127 static void
3128 convert_regs (void)
3129 {
3130 bool cfg_altered = false;
3131 int inserted;
3132 basic_block b;
3133 edge e;
3134 edge_iterator ei;
3135
3136 /* Initialize uninitialized registers on function entry. */
3137 inserted = convert_regs_entry ();
3138
3139 /* Construct the desired stack for function exit. */
3140 convert_regs_exit ();
3141 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3142
3143 /* ??? Future: process inner loops first, and give them arbitrary
3144 initial stacks which emit_swap_insn can modify. This ought to
3145 prevent double fxch that often appears at the head of a loop. */
3146
3147 /* Process all blocks reachable from all entry points. */
3148 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3149 cfg_altered |= convert_regs_2 (e->dest);
3150
3151 /* ??? Process all unreachable blocks. Though there's no excuse
3152 for keeping these even when not optimizing. */
3153 FOR_EACH_BB (b)
3154 {
3155 block_info bi = BLOCK_INFO (b);
3156
3157 if (! bi->done)
3158 cfg_altered |= convert_regs_2 (b);
3159 }
3160
3161 /* We must fix up abnormal edges before inserting compensation code
3162 because both mechanisms insert insns on edges. */
3163 inserted |= fixup_abnormal_edges ();
3164
3165 inserted |= compensate_edges ();
3166
3167 clear_aux_for_blocks ();
3168
3169 if (inserted)
3170 commit_edge_insertions ();
3171
3172 if (cfg_altered)
3173 cleanup_cfg (0);
3174
3175 if (dump_file)
3176 fputc ('\n', dump_file);
3177 }
3178 \f
3179 /* Convert register usage from "flat" register file usage to a "stack
3180 register file. FILE is the dump file, if used.
3181
3182 Construct a CFG and run life analysis. Then convert each insn one
3183 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3184 code duplication created when the converter inserts pop insns on
3185 the edges. */
3186
3187 static bool
3188 reg_to_stack (void)
3189 {
3190 basic_block bb;
3191 int i;
3192 int max_uid;
3193
3194 /* Clean up previous run. */
3195 stack_regs_mentioned_data.release ();
3196
3197 /* See if there is something to do. Flow analysis is quite
3198 expensive so we might save some compilation time. */
3199 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3200 if (df_regs_ever_live_p (i))
3201 break;
3202 if (i > LAST_STACK_REG)
3203 return false;
3204
3205 df_note_add_problem ();
3206 df_analyze ();
3207
3208 mark_dfs_back_edges ();
3209
3210 /* Set up block info for each basic block. */
3211 alloc_aux_for_blocks (sizeof (struct block_info_def));
3212 FOR_EACH_BB (bb)
3213 {
3214 block_info bi = BLOCK_INFO (bb);
3215 edge_iterator ei;
3216 edge e;
3217 int reg;
3218
3219 FOR_EACH_EDGE (e, ei, bb->preds)
3220 if (!(e->flags & EDGE_DFS_BACK)
3221 && e->src != ENTRY_BLOCK_PTR)
3222 bi->predecessors++;
3223
3224 /* Set current register status at last instruction `uninitialized'. */
3225 bi->stack_in.top = -2;
3226
3227 /* Copy live_at_end and live_at_start into temporaries. */
3228 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3229 {
3230 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3231 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3232 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3233 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3234 }
3235 }
3236
3237 /* Create the replacement registers up front. */
3238 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3239 {
3240 enum machine_mode mode;
3241 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3242 mode != VOIDmode;
3243 mode = GET_MODE_WIDER_MODE (mode))
3244 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3245 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3246 mode != VOIDmode;
3247 mode = GET_MODE_WIDER_MODE (mode))
3248 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3249 }
3250
3251 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3252
3253 /* A QNaN for initializing uninitialized variables.
3254
3255 ??? We can't load from constant memory in PIC mode, because
3256 we're inserting these instructions before the prologue and
3257 the PIC register hasn't been set up. In that case, fall back
3258 on zero, which we can get from `fldz'. */
3259
3260 if ((flag_pic && !TARGET_64BIT)
3261 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3262 not_a_num = CONST0_RTX (SFmode);
3263 else
3264 {
3265 REAL_VALUE_TYPE r;
3266
3267 real_nan (&r, "", 1, SFmode);
3268 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3269 not_a_num = force_const_mem (SFmode, not_a_num);
3270 }
3271
3272 /* Allocate a cache for stack_regs_mentioned. */
3273 max_uid = get_max_uid ();
3274 stack_regs_mentioned_data.create (max_uid + 1);
3275 memset (stack_regs_mentioned_data.address (),
3276 0, sizeof (char) * (max_uid + 1));
3277
3278 convert_regs ();
3279
3280 free_aux_for_blocks ();
3281 return true;
3282 }
3283 #endif /* STACK_REGS */
3284 \f
3285 static bool
3286 gate_handle_stack_regs (void)
3287 {
3288 #ifdef STACK_REGS
3289 return 1;
3290 #else
3291 return 0;
3292 #endif
3293 }
3294
3295 struct rtl_opt_pass pass_stack_regs =
3296 {
3297 {
3298 RTL_PASS,
3299 "*stack_regs", /* name */
3300 OPTGROUP_NONE, /* optinfo_flags */
3301 gate_handle_stack_regs, /* gate */
3302 NULL, /* execute */
3303 NULL, /* sub */
3304 NULL, /* next */
3305 0, /* static_pass_number */
3306 TV_REG_STACK, /* tv_id */
3307 0, /* properties_required */
3308 0, /* properties_provided */
3309 0, /* properties_destroyed */
3310 0, /* todo_flags_start */
3311 0 /* todo_flags_finish */
3312 }
3313 };
3314
3315 /* Convert register usage from flat register file usage to a stack
3316 register file. */
3317 static unsigned int
3318 rest_of_handle_stack_regs (void)
3319 {
3320 #ifdef STACK_REGS
3321 reg_to_stack ();
3322 regstack_completed = 1;
3323 #endif
3324 return 0;
3325 }
3326
3327 struct rtl_opt_pass pass_stack_regs_run =
3328 {
3329 {
3330 RTL_PASS,
3331 "stack", /* name */
3332 OPTGROUP_NONE, /* optinfo_flags */
3333 NULL, /* gate */
3334 rest_of_handle_stack_regs, /* execute */
3335 NULL, /* sub */
3336 NULL, /* next */
3337 0, /* static_pass_number */
3338 TV_REG_STACK, /* tv_id */
3339 0, /* properties_required */
3340 0, /* properties_provided */
3341 0, /* properties_destroyed */
3342 0, /* todo_flags_start */
3343 TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */
3344 }
3345 };