(Synchronize with addition made to binutils sources):
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153 \f
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "cfglayout.h"
171 #include "varray.h"
172 #include "reload.h"
173 #include "ggc.h"
174 #include "timevar.h"
175 #include "tree-pass.h"
176 #include "target.h"
177 #include "df.h"
178 #include "vecprim.h"
179
180 #ifdef STACK_REGS
181
182 /* We use this array to cache info about insns, because otherwise we
183 spend too much time in stack_regs_mentioned_p.
184
185 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
186 the insn uses stack registers, two indicates the insn does not use
187 stack registers. */
188 static VEC(char,heap) *stack_regs_mentioned_data;
189
190 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
191
192 int regstack_completed = 0;
193
194 /* This is the basic stack record. TOP is an index into REG[] such
195 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
196
197 If TOP is -2, REG[] is not yet initialized. Stack initialization
198 consists of placing each live reg in array `reg' and setting `top'
199 appropriately.
200
201 REG_SET indicates which registers are live. */
202
203 typedef struct stack_def
204 {
205 int top; /* index to top stack element */
206 HARD_REG_SET reg_set; /* set of live registers */
207 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
208 } *stack;
209
210 /* This is used to carry information about basic blocks. It is
211 attached to the AUX field of the standard CFG block. */
212
213 typedef struct block_info_def
214 {
215 struct stack_def stack_in; /* Input stack configuration. */
216 struct stack_def stack_out; /* Output stack configuration. */
217 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
218 int done; /* True if block already converted. */
219 int predecessors; /* Number of predecessors that need
220 to be visited. */
221 } *block_info;
222
223 #define BLOCK_INFO(B) ((block_info) (B)->aux)
224
225 /* Passed to change_stack to indicate where to emit insns. */
226 enum emit_where
227 {
228 EMIT_AFTER,
229 EMIT_BEFORE
230 };
231
232 /* The block we're currently working on. */
233 static basic_block current_block;
234
235 /* In the current_block, whether we're processing the first register
236 stack or call instruction, i.e. the regstack is currently the
237 same as BLOCK_INFO(current_block)->stack_in. */
238 static bool starting_stack_p;
239
240 /* This is the register file for all register after conversion. */
241 static rtx
242 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
243
244 #define FP_MODE_REG(regno,mode) \
245 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
246
247 /* Used to initialize uninitialized registers. */
248 static rtx not_a_num;
249
250 /* Forward declarations */
251
252 static int stack_regs_mentioned_p (const_rtx pat);
253 static void pop_stack (stack, int);
254 static rtx *get_true_reg (rtx *);
255
256 static int check_asm_stack_operands (rtx);
257 static int get_asm_operand_n_inputs (rtx);
258 static rtx stack_result (tree);
259 static void replace_reg (rtx *, int);
260 static void remove_regno_note (rtx, enum reg_note, unsigned int);
261 static int get_hard_regnum (stack, rtx);
262 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
263 static void swap_to_top(rtx, stack, rtx, rtx);
264 static bool move_for_stack_reg (rtx, stack, rtx);
265 static bool move_nan_for_stack_reg (rtx, stack, rtx);
266 static int swap_rtx_condition_1 (rtx);
267 static int swap_rtx_condition (rtx);
268 static void compare_for_stack_reg (rtx, stack, rtx);
269 static bool subst_stack_regs_pat (rtx, stack, rtx);
270 static void subst_asm_stack_regs (rtx, stack);
271 static bool subst_stack_regs (rtx, stack);
272 static void change_stack (rtx, stack, stack, enum emit_where);
273 static void print_stack (FILE *, stack);
274 static rtx next_flags_user (rtx);
275 \f
276 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
277
278 static int
279 stack_regs_mentioned_p (const_rtx pat)
280 {
281 const char *fmt;
282 int i;
283
284 if (STACK_REG_P (pat))
285 return 1;
286
287 fmt = GET_RTX_FORMAT (GET_CODE (pat));
288 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
289 {
290 if (fmt[i] == 'E')
291 {
292 int j;
293
294 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
295 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
296 return 1;
297 }
298 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
299 return 1;
300 }
301
302 return 0;
303 }
304
305 /* Return nonzero if INSN mentions stacked registers, else return zero. */
306
307 int
308 stack_regs_mentioned (const_rtx insn)
309 {
310 unsigned int uid, max;
311 int test;
312
313 if (! INSN_P (insn) || !stack_regs_mentioned_data)
314 return 0;
315
316 uid = INSN_UID (insn);
317 max = VEC_length (char, stack_regs_mentioned_data);
318 if (uid >= max)
319 {
320 /* Allocate some extra size to avoid too many reallocs, but
321 do not grow too quickly. */
322 max = uid + uid / 20 + 1;
323 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
324 }
325
326 test = VEC_index (char, stack_regs_mentioned_data, uid);
327 if (test == 0)
328 {
329 /* This insn has yet to be examined. Do so now. */
330 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
331 VEC_replace (char, stack_regs_mentioned_data, uid, test);
332 }
333
334 return test == 1;
335 }
336 \f
337 static rtx ix86_flags_rtx;
338
339 static rtx
340 next_flags_user (rtx insn)
341 {
342 /* Search forward looking for the first use of this value.
343 Stop at block boundaries. */
344
345 while (insn != BB_END (current_block))
346 {
347 insn = NEXT_INSN (insn);
348
349 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
350 return insn;
351
352 if (CALL_P (insn))
353 return NULL_RTX;
354 }
355 return NULL_RTX;
356 }
357 \f
358 /* Reorganize the stack into ascending numbers, before this insn. */
359
360 static void
361 straighten_stack (rtx insn, stack regstack)
362 {
363 struct stack_def temp_stack;
364 int top;
365
366 /* If there is only a single register on the stack, then the stack is
367 already in increasing order and no reorganization is needed.
368
369 Similarly if the stack is empty. */
370 if (regstack->top <= 0)
371 return;
372
373 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
374
375 for (top = temp_stack.top = regstack->top; top >= 0; top--)
376 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
377
378 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
379 }
380
381 /* Pop a register from the stack. */
382
383 static void
384 pop_stack (stack regstack, int regno)
385 {
386 int top = regstack->top;
387
388 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
389 regstack->top--;
390 /* If regno was not at the top of stack then adjust stack. */
391 if (regstack->reg [top] != regno)
392 {
393 int i;
394 for (i = regstack->top; i >= 0; i--)
395 if (regstack->reg [i] == regno)
396 {
397 int j;
398 for (j = i; j < top; j++)
399 regstack->reg [j] = regstack->reg [j + 1];
400 break;
401 }
402 }
403 }
404 \f
405 /* Return a pointer to the REG expression within PAT. If PAT is not a
406 REG, possible enclosed by a conversion rtx, return the inner part of
407 PAT that stopped the search. */
408
409 static rtx *
410 get_true_reg (rtx *pat)
411 {
412 for (;;)
413 switch (GET_CODE (*pat))
414 {
415 case SUBREG:
416 /* Eliminate FP subregister accesses in favor of the
417 actual FP register in use. */
418 {
419 rtx subreg;
420 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
421 {
422 int regno_off = subreg_regno_offset (REGNO (subreg),
423 GET_MODE (subreg),
424 SUBREG_BYTE (*pat),
425 GET_MODE (*pat));
426 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
427 GET_MODE (subreg));
428 return pat;
429 }
430 }
431 case FLOAT:
432 case FIX:
433 case FLOAT_EXTEND:
434 pat = & XEXP (*pat, 0);
435 break;
436
437 case UNSPEC:
438 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
439 pat = & XVECEXP (*pat, 0, 0);
440 return pat;
441
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = & XEXP (*pat, 0);
446 break;
447
448 default:
449 return pat;
450 }
451 }
452 \f
453 /* Set if we find any malformed asms in a block. */
454 static bool any_malformed_asm;
455
456 /* There are many rules that an asm statement for stack-like regs must
457 follow. Those rules are explained at the top of this file: the rule
458 numbers below refer to that explanation. */
459
460 static int
461 check_asm_stack_operands (rtx insn)
462 {
463 int i;
464 int n_clobbers;
465 int malformed_asm = 0;
466 rtx body = PATTERN (insn);
467
468 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469 char implicitly_dies[FIRST_PSEUDO_REGISTER];
470 int alt;
471
472 rtx *clobber_reg = 0;
473 int n_inputs, n_outputs;
474
475 /* Find out what the constraints require. If no constraint
476 alternative matches, this asm is malformed. */
477 extract_insn (insn);
478 constrain_operands (1);
479 alt = which_alternative;
480
481 preprocess_constraints ();
482
483 n_inputs = get_asm_operand_n_inputs (body);
484 n_outputs = recog_data.n_operands - n_inputs;
485
486 if (alt < 0)
487 {
488 malformed_asm = 1;
489 /* Avoid further trouble with this insn. */
490 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
491 return 0;
492 }
493
494 /* Strip SUBREGs here to make the following code simpler. */
495 for (i = 0; i < recog_data.n_operands; i++)
496 if (GET_CODE (recog_data.operand[i]) == SUBREG
497 && REG_P (SUBREG_REG (recog_data.operand[i])))
498 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
499
500 /* Set up CLOBBER_REG. */
501
502 n_clobbers = 0;
503
504 if (GET_CODE (body) == PARALLEL)
505 {
506 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
507
508 for (i = 0; i < XVECLEN (body, 0); i++)
509 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
510 {
511 rtx clobber = XVECEXP (body, 0, i);
512 rtx reg = XEXP (clobber, 0);
513
514 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
515 reg = SUBREG_REG (reg);
516
517 if (STACK_REG_P (reg))
518 {
519 clobber_reg[n_clobbers] = reg;
520 n_clobbers++;
521 }
522 }
523 }
524
525 /* Enforce rule #4: Output operands must specifically indicate which
526 reg an output appears in after an asm. "=f" is not allowed: the
527 operand constraints must select a class with a single reg.
528
529 Also enforce rule #5: Output operands must start at the top of
530 the reg-stack: output operands may not "skip" a reg. */
531
532 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
533 for (i = 0; i < n_outputs; i++)
534 if (STACK_REG_P (recog_data.operand[i]))
535 {
536 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
537 {
538 error_for_asm (insn, "output constraint %d must specify a single register", i);
539 malformed_asm = 1;
540 }
541 else
542 {
543 int j;
544
545 for (j = 0; j < n_clobbers; j++)
546 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
547 {
548 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
549 i, reg_names [REGNO (clobber_reg[j])]);
550 malformed_asm = 1;
551 break;
552 }
553 if (j == n_clobbers)
554 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
555 }
556 }
557
558
559 /* Search for first non-popped reg. */
560 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
561 if (! reg_used_as_output[i])
562 break;
563
564 /* If there are any other popped regs, that's an error. */
565 for (; i < LAST_STACK_REG + 1; i++)
566 if (reg_used_as_output[i])
567 break;
568
569 if (i != LAST_STACK_REG + 1)
570 {
571 error_for_asm (insn, "output regs must be grouped at top of stack");
572 malformed_asm = 1;
573 }
574
575 /* Enforce rule #2: All implicitly popped input regs must be closer
576 to the top of the reg-stack than any input that is not implicitly
577 popped. */
578
579 memset (implicitly_dies, 0, sizeof (implicitly_dies));
580 for (i = n_outputs; i < n_outputs + n_inputs; i++)
581 if (STACK_REG_P (recog_data.operand[i]))
582 {
583 /* An input reg is implicitly popped if it is tied to an
584 output, or if there is a CLOBBER for it. */
585 int j;
586
587 for (j = 0; j < n_clobbers; j++)
588 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
589 break;
590
591 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
592 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
593 }
594
595 /* Search for first non-popped reg. */
596 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
597 if (! implicitly_dies[i])
598 break;
599
600 /* If there are any other popped regs, that's an error. */
601 for (; i < LAST_STACK_REG + 1; i++)
602 if (implicitly_dies[i])
603 break;
604
605 if (i != LAST_STACK_REG + 1)
606 {
607 error_for_asm (insn,
608 "implicitly popped regs must be grouped at top of stack");
609 malformed_asm = 1;
610 }
611
612 /* Enforce rule #3: If any input operand uses the "f" constraint, all
613 output constraints must use the "&" earlyclobber.
614
615 ??? Detect this more deterministically by having constrain_asm_operands
616 record any earlyclobber. */
617
618 for (i = n_outputs; i < n_outputs + n_inputs; i++)
619 if (recog_op_alt[i][alt].matches == -1)
620 {
621 int j;
622
623 for (j = 0; j < n_outputs; j++)
624 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
625 {
626 error_for_asm (insn,
627 "output operand %d must use %<&%> constraint", j);
628 malformed_asm = 1;
629 }
630 }
631
632 if (malformed_asm)
633 {
634 /* Avoid further trouble with this insn. */
635 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
636 any_malformed_asm = true;
637 return 0;
638 }
639
640 return 1;
641 }
642 \f
643 /* Calculate the number of inputs and outputs in BODY, an
644 asm_operands. N_OPERANDS is the total number of operands, and
645 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
646 placed. */
647
648 static int
649 get_asm_operand_n_inputs (rtx body)
650 {
651 switch (GET_CODE (body))
652 {
653 case SET:
654 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
655 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
656
657 case ASM_OPERANDS:
658 return ASM_OPERANDS_INPUT_LENGTH (body);
659
660 case PARALLEL:
661 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
662
663 default:
664 gcc_unreachable ();
665 }
666 }
667
668 /* If current function returns its result in an fp stack register,
669 return the REG. Otherwise, return 0. */
670
671 static rtx
672 stack_result (tree decl)
673 {
674 rtx result;
675
676 /* If the value is supposed to be returned in memory, then clearly
677 it is not returned in a stack register. */
678 if (aggregate_value_p (DECL_RESULT (decl), decl))
679 return 0;
680
681 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
682 if (result != 0)
683 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
684 decl, true);
685
686 return result != 0 && STACK_REG_P (result) ? result : 0;
687 }
688 \f
689
690 /*
691 * This section deals with stack register substitution, and forms the second
692 * pass over the RTL.
693 */
694
695 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
696 the desired hard REGNO. */
697
698 static void
699 replace_reg (rtx *reg, int regno)
700 {
701 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
702 gcc_assert (STACK_REG_P (*reg));
703
704 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
705 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
706
707 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
708 }
709
710 /* Remove a note of type NOTE, which must be found, for register
711 number REGNO from INSN. Remove only one such note. */
712
713 static void
714 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
715 {
716 rtx *note_link, this_rtx;
717
718 note_link = &REG_NOTES (insn);
719 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
720 if (REG_NOTE_KIND (this_rtx) == note
721 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
722 {
723 *note_link = XEXP (this_rtx, 1);
724 return;
725 }
726 else
727 note_link = &XEXP (this_rtx, 1);
728
729 gcc_unreachable ();
730 }
731
732 /* Find the hard register number of virtual register REG in REGSTACK.
733 The hard register number is relative to the top of the stack. -1 is
734 returned if the register is not found. */
735
736 static int
737 get_hard_regnum (stack regstack, rtx reg)
738 {
739 int i;
740
741 gcc_assert (STACK_REG_P (reg));
742
743 for (i = regstack->top; i >= 0; i--)
744 if (regstack->reg[i] == REGNO (reg))
745 break;
746
747 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
748 }
749 \f
750 /* Emit an insn to pop virtual register REG before or after INSN.
751 REGSTACK is the stack state after INSN and is updated to reflect this
752 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
753 is represented as a SET whose destination is the register to be popped
754 and source is the top of stack. A death note for the top of stack
755 cases the movdf pattern to pop. */
756
757 static rtx
758 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
759 {
760 rtx pop_insn, pop_rtx;
761 int hard_regno;
762
763 /* For complex types take care to pop both halves. These may survive in
764 CLOBBER and USE expressions. */
765 if (COMPLEX_MODE_P (GET_MODE (reg)))
766 {
767 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
768 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
769
770 pop_insn = NULL_RTX;
771 if (get_hard_regnum (regstack, reg1) >= 0)
772 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
773 if (get_hard_regnum (regstack, reg2) >= 0)
774 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
775 gcc_assert (pop_insn);
776 return pop_insn;
777 }
778
779 hard_regno = get_hard_regnum (regstack, reg);
780
781 gcc_assert (hard_regno >= FIRST_STACK_REG);
782
783 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
784 FP_MODE_REG (FIRST_STACK_REG, DFmode));
785
786 if (where == EMIT_AFTER)
787 pop_insn = emit_insn_after (pop_rtx, insn);
788 else
789 pop_insn = emit_insn_before (pop_rtx, insn);
790
791 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
792
793 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
794 = regstack->reg[regstack->top];
795 regstack->top -= 1;
796 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
797
798 return pop_insn;
799 }
800 \f
801 /* Emit an insn before or after INSN to swap virtual register REG with
802 the top of stack. REGSTACK is the stack state before the swap, and
803 is updated to reflect the swap. A swap insn is represented as a
804 PARALLEL of two patterns: each pattern moves one reg to the other.
805
806 If REG is already at the top of the stack, no insn is emitted. */
807
808 static void
809 emit_swap_insn (rtx insn, stack regstack, rtx reg)
810 {
811 int hard_regno;
812 rtx swap_rtx;
813 int tmp, other_reg; /* swap regno temps */
814 rtx i1; /* the stack-reg insn prior to INSN */
815 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
816
817 hard_regno = get_hard_regnum (regstack, reg);
818
819 if (hard_regno == FIRST_STACK_REG)
820 return;
821 if (hard_regno == -1)
822 {
823 /* Something failed if the register wasn't on the stack. If we had
824 malformed asms, we zapped the instruction itself, but that didn't
825 produce the same pattern of register sets as before. To prevent
826 further failure, adjust REGSTACK to include REG at TOP. */
827 gcc_assert (any_malformed_asm);
828 regstack->reg[++regstack->top] = REGNO (reg);
829 return;
830 }
831 gcc_assert (hard_regno >= FIRST_STACK_REG);
832
833 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
834
835 tmp = regstack->reg[other_reg];
836 regstack->reg[other_reg] = regstack->reg[regstack->top];
837 regstack->reg[regstack->top] = tmp;
838
839 /* Find the previous insn involving stack regs, but don't pass a
840 block boundary. */
841 i1 = NULL;
842 if (current_block && insn != BB_HEAD (current_block))
843 {
844 rtx tmp = PREV_INSN (insn);
845 rtx limit = PREV_INSN (BB_HEAD (current_block));
846 while (tmp != limit)
847 {
848 if (LABEL_P (tmp)
849 || CALL_P (tmp)
850 || NOTE_INSN_BASIC_BLOCK_P (tmp)
851 || (NONJUMP_INSN_P (tmp)
852 && stack_regs_mentioned (tmp)))
853 {
854 i1 = tmp;
855 break;
856 }
857 tmp = PREV_INSN (tmp);
858 }
859 }
860
861 if (i1 != NULL_RTX
862 && (i1set = single_set (i1)) != NULL_RTX)
863 {
864 rtx i1src = *get_true_reg (&SET_SRC (i1set));
865 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
866
867 /* If the previous register stack push was from the reg we are to
868 swap with, omit the swap. */
869
870 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
871 && REG_P (i1src)
872 && REGNO (i1src) == (unsigned) hard_regno - 1
873 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
874 return;
875
876 /* If the previous insn wrote to the reg we are to swap with,
877 omit the swap. */
878
879 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
880 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
881 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
882 return;
883 }
884
885 /* Avoid emitting the swap if this is the first register stack insn
886 of the current_block. Instead update the current_block's stack_in
887 and let compensate edges take care of this for us. */
888 if (current_block && starting_stack_p)
889 {
890 BLOCK_INFO (current_block)->stack_in = *regstack;
891 starting_stack_p = false;
892 return;
893 }
894
895 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
896 FP_MODE_REG (FIRST_STACK_REG, XFmode));
897
898 if (i1)
899 emit_insn_after (swap_rtx, i1);
900 else if (current_block)
901 emit_insn_before (swap_rtx, BB_HEAD (current_block));
902 else
903 emit_insn_before (swap_rtx, insn);
904 }
905 \f
906 /* Emit an insns before INSN to swap virtual register SRC1 with
907 the top of stack and virtual register SRC2 with second stack
908 slot. REGSTACK is the stack state before the swaps, and
909 is updated to reflect the swaps. A swap insn is represented as a
910 PARALLEL of two patterns: each pattern moves one reg to the other.
911
912 If SRC1 and/or SRC2 are already at the right place, no swap insn
913 is emitted. */
914
915 static void
916 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
917 {
918 struct stack_def temp_stack;
919 int regno, j, k, temp;
920
921 temp_stack = *regstack;
922
923 /* Place operand 1 at the top of stack. */
924 regno = get_hard_regnum (&temp_stack, src1);
925 gcc_assert (regno >= 0);
926 if (regno != FIRST_STACK_REG)
927 {
928 k = temp_stack.top - (regno - FIRST_STACK_REG);
929 j = temp_stack.top;
930
931 temp = temp_stack.reg[k];
932 temp_stack.reg[k] = temp_stack.reg[j];
933 temp_stack.reg[j] = temp;
934 }
935
936 /* Place operand 2 next on the stack. */
937 regno = get_hard_regnum (&temp_stack, src2);
938 gcc_assert (regno >= 0);
939 if (regno != FIRST_STACK_REG + 1)
940 {
941 k = temp_stack.top - (regno - FIRST_STACK_REG);
942 j = temp_stack.top - 1;
943
944 temp = temp_stack.reg[k];
945 temp_stack.reg[k] = temp_stack.reg[j];
946 temp_stack.reg[j] = temp;
947 }
948
949 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
950 }
951 \f
952 /* Handle a move to or from a stack register in PAT, which is in INSN.
953 REGSTACK is the current stack. Return whether a control flow insn
954 was deleted in the process. */
955
956 static bool
957 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
958 {
959 rtx *psrc = get_true_reg (&SET_SRC (pat));
960 rtx *pdest = get_true_reg (&SET_DEST (pat));
961 rtx src, dest;
962 rtx note;
963 bool control_flow_insn_deleted = false;
964
965 src = *psrc; dest = *pdest;
966
967 if (STACK_REG_P (src) && STACK_REG_P (dest))
968 {
969 /* Write from one stack reg to another. If SRC dies here, then
970 just change the register mapping and delete the insn. */
971
972 note = find_regno_note (insn, REG_DEAD, REGNO (src));
973 if (note)
974 {
975 int i;
976
977 /* If this is a no-op move, there must not be a REG_DEAD note. */
978 gcc_assert (REGNO (src) != REGNO (dest));
979
980 for (i = regstack->top; i >= 0; i--)
981 if (regstack->reg[i] == REGNO (src))
982 break;
983
984 /* The destination must be dead, or life analysis is borked. */
985 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
986
987 /* If the source is not live, this is yet another case of
988 uninitialized variables. Load up a NaN instead. */
989 if (i < 0)
990 return move_nan_for_stack_reg (insn, regstack, dest);
991
992 /* It is possible that the dest is unused after this insn.
993 If so, just pop the src. */
994
995 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
996 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
997 else
998 {
999 regstack->reg[i] = REGNO (dest);
1000 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1001 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1002 }
1003
1004 control_flow_insn_deleted |= control_flow_insn_p (insn);
1005 delete_insn (insn);
1006 return control_flow_insn_deleted;
1007 }
1008
1009 /* The source reg does not die. */
1010
1011 /* If this appears to be a no-op move, delete it, or else it
1012 will confuse the machine description output patterns. But if
1013 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1014 for REG_UNUSED will not work for deleted insns. */
1015
1016 if (REGNO (src) == REGNO (dest))
1017 {
1018 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1019 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1020
1021 control_flow_insn_deleted |= control_flow_insn_p (insn);
1022 delete_insn (insn);
1023 return control_flow_insn_deleted;
1024 }
1025
1026 /* The destination ought to be dead. */
1027 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1028
1029 replace_reg (psrc, get_hard_regnum (regstack, src));
1030
1031 regstack->reg[++regstack->top] = REGNO (dest);
1032 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1033 replace_reg (pdest, FIRST_STACK_REG);
1034 }
1035 else if (STACK_REG_P (src))
1036 {
1037 /* Save from a stack reg to MEM, or possibly integer reg. Since
1038 only top of stack may be saved, emit an exchange first if
1039 needs be. */
1040
1041 emit_swap_insn (insn, regstack, src);
1042
1043 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1044 if (note)
1045 {
1046 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1047 regstack->top--;
1048 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1049 }
1050 else if ((GET_MODE (src) == XFmode)
1051 && regstack->top < REG_STACK_SIZE - 1)
1052 {
1053 /* A 387 cannot write an XFmode value to a MEM without
1054 clobbering the source reg. The output code can handle
1055 this by reading back the value from the MEM.
1056 But it is more efficient to use a temp register if one is
1057 available. Push the source value here if the register
1058 stack is not full, and then write the value to memory via
1059 a pop. */
1060 rtx push_rtx;
1061 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1062
1063 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1064 emit_insn_before (push_rtx, insn);
1065 add_reg_note (insn, REG_DEAD, top_stack_reg);
1066 }
1067
1068 replace_reg (psrc, FIRST_STACK_REG);
1069 }
1070 else
1071 {
1072 rtx pat = PATTERN (insn);
1073
1074 gcc_assert (STACK_REG_P (dest));
1075
1076 /* Load from MEM, or possibly integer REG or constant, into the
1077 stack regs. The actual target is always the top of the
1078 stack. The stack mapping is changed to reflect that DEST is
1079 now at top of stack. */
1080
1081 /* The destination ought to be dead. However, there is a
1082 special case with i387 UNSPEC_TAN, where destination is live
1083 (an argument to fptan) but inherent load of 1.0 is modelled
1084 as a load from a constant. */
1085 if (GET_CODE (pat) == PARALLEL
1086 && XVECLEN (pat, 0) == 2
1087 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1088 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1089 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1090 emit_swap_insn (insn, regstack, dest);
1091 else
1092 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1093
1094 gcc_assert (regstack->top < REG_STACK_SIZE);
1095
1096 regstack->reg[++regstack->top] = REGNO (dest);
1097 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1098 replace_reg (pdest, FIRST_STACK_REG);
1099 }
1100
1101 return control_flow_insn_deleted;
1102 }
1103
1104 /* A helper function which replaces INSN with a pattern that loads up
1105 a NaN into DEST, then invokes move_for_stack_reg. */
1106
1107 static bool
1108 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1109 {
1110 rtx pat;
1111
1112 dest = FP_MODE_REG (REGNO (dest), SFmode);
1113 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1114 PATTERN (insn) = pat;
1115 INSN_CODE (insn) = -1;
1116
1117 return move_for_stack_reg (insn, regstack, pat);
1118 }
1119 \f
1120 /* Swap the condition on a branch, if there is one. Return true if we
1121 found a condition to swap. False if the condition was not used as
1122 such. */
1123
1124 static int
1125 swap_rtx_condition_1 (rtx pat)
1126 {
1127 const char *fmt;
1128 int i, r = 0;
1129
1130 if (COMPARISON_P (pat))
1131 {
1132 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1133 r = 1;
1134 }
1135 else
1136 {
1137 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1138 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1139 {
1140 if (fmt[i] == 'E')
1141 {
1142 int j;
1143
1144 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1145 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1146 }
1147 else if (fmt[i] == 'e')
1148 r |= swap_rtx_condition_1 (XEXP (pat, i));
1149 }
1150 }
1151
1152 return r;
1153 }
1154
1155 static int
1156 swap_rtx_condition (rtx insn)
1157 {
1158 rtx pat = PATTERN (insn);
1159
1160 /* We're looking for a single set to cc0 or an HImode temporary. */
1161
1162 if (GET_CODE (pat) == SET
1163 && REG_P (SET_DEST (pat))
1164 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1165 {
1166 insn = next_flags_user (insn);
1167 if (insn == NULL_RTX)
1168 return 0;
1169 pat = PATTERN (insn);
1170 }
1171
1172 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1173 with the cc value right now. We may be able to search for one
1174 though. */
1175
1176 if (GET_CODE (pat) == SET
1177 && GET_CODE (SET_SRC (pat)) == UNSPEC
1178 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1179 {
1180 rtx dest = SET_DEST (pat);
1181
1182 /* Search forward looking for the first use of this value.
1183 Stop at block boundaries. */
1184 while (insn != BB_END (current_block))
1185 {
1186 insn = NEXT_INSN (insn);
1187 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1188 break;
1189 if (CALL_P (insn))
1190 return 0;
1191 }
1192
1193 /* We haven't found it. */
1194 if (insn == BB_END (current_block))
1195 return 0;
1196
1197 /* So we've found the insn using this value. If it is anything
1198 other than sahf or the value does not die (meaning we'd have
1199 to search further), then we must give up. */
1200 pat = PATTERN (insn);
1201 if (GET_CODE (pat) != SET
1202 || GET_CODE (SET_SRC (pat)) != UNSPEC
1203 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1204 || ! dead_or_set_p (insn, dest))
1205 return 0;
1206
1207 /* Now we are prepared to handle this as a normal cc0 setter. */
1208 insn = next_flags_user (insn);
1209 if (insn == NULL_RTX)
1210 return 0;
1211 pat = PATTERN (insn);
1212 }
1213
1214 if (swap_rtx_condition_1 (pat))
1215 {
1216 int fail = 0;
1217 INSN_CODE (insn) = -1;
1218 if (recog_memoized (insn) == -1)
1219 fail = 1;
1220 /* In case the flags don't die here, recurse to try fix
1221 following user too. */
1222 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1223 {
1224 insn = next_flags_user (insn);
1225 if (!insn || !swap_rtx_condition (insn))
1226 fail = 1;
1227 }
1228 if (fail)
1229 {
1230 swap_rtx_condition_1 (pat);
1231 return 0;
1232 }
1233 return 1;
1234 }
1235 return 0;
1236 }
1237
1238 /* Handle a comparison. Special care needs to be taken to avoid
1239 causing comparisons that a 387 cannot do correctly, such as EQ.
1240
1241 Also, a pop insn may need to be emitted. The 387 does have an
1242 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1243 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1244 set up. */
1245
1246 static void
1247 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1248 {
1249 rtx *src1, *src2;
1250 rtx src1_note, src2_note;
1251
1252 src1 = get_true_reg (&XEXP (pat_src, 0));
1253 src2 = get_true_reg (&XEXP (pat_src, 1));
1254
1255 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1256 registers that die in this insn - move those to stack top first. */
1257 if ((! STACK_REG_P (*src1)
1258 || (STACK_REG_P (*src2)
1259 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1260 && swap_rtx_condition (insn))
1261 {
1262 rtx temp;
1263 temp = XEXP (pat_src, 0);
1264 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1265 XEXP (pat_src, 1) = temp;
1266
1267 src1 = get_true_reg (&XEXP (pat_src, 0));
1268 src2 = get_true_reg (&XEXP (pat_src, 1));
1269
1270 INSN_CODE (insn) = -1;
1271 }
1272
1273 /* We will fix any death note later. */
1274
1275 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1276
1277 if (STACK_REG_P (*src2))
1278 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1279 else
1280 src2_note = NULL_RTX;
1281
1282 emit_swap_insn (insn, regstack, *src1);
1283
1284 replace_reg (src1, FIRST_STACK_REG);
1285
1286 if (STACK_REG_P (*src2))
1287 replace_reg (src2, get_hard_regnum (regstack, *src2));
1288
1289 if (src1_note)
1290 {
1291 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1292 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1293 }
1294
1295 /* If the second operand dies, handle that. But if the operands are
1296 the same stack register, don't bother, because only one death is
1297 needed, and it was just handled. */
1298
1299 if (src2_note
1300 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1301 && REGNO (*src1) == REGNO (*src2)))
1302 {
1303 /* As a special case, two regs may die in this insn if src2 is
1304 next to top of stack and the top of stack also dies. Since
1305 we have already popped src1, "next to top of stack" is really
1306 at top (FIRST_STACK_REG) now. */
1307
1308 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1309 && src1_note)
1310 {
1311 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1312 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1313 }
1314 else
1315 {
1316 /* The 386 can only represent death of the first operand in
1317 the case handled above. In all other cases, emit a separate
1318 pop and remove the death note from here. */
1319
1320 /* link_cc0_insns (insn); */
1321
1322 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1323
1324 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1325 EMIT_AFTER);
1326 }
1327 }
1328 }
1329 \f
1330 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1331 is the current register layout. Return whether a control flow insn
1332 was deleted in the process. */
1333
1334 static bool
1335 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1336 {
1337 rtx *dest, *src;
1338 bool control_flow_insn_deleted = false;
1339
1340 switch (GET_CODE (pat))
1341 {
1342 case USE:
1343 /* Deaths in USE insns can happen in non optimizing compilation.
1344 Handle them by popping the dying register. */
1345 src = get_true_reg (&XEXP (pat, 0));
1346 if (STACK_REG_P (*src)
1347 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1348 {
1349 /* USEs are ignored for liveness information so USEs of dead
1350 register might happen. */
1351 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1352 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1353 return control_flow_insn_deleted;
1354 }
1355 /* Uninitialized USE might happen for functions returning uninitialized
1356 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1357 so it is safe to ignore the use here. This is consistent with behavior
1358 of dataflow analyzer that ignores USE too. (This also imply that
1359 forcibly initializing the register to NaN here would lead to ICE later,
1360 since the REG_DEAD notes are not issued.) */
1361 break;
1362
1363 case CLOBBER:
1364 {
1365 rtx note;
1366
1367 dest = get_true_reg (&XEXP (pat, 0));
1368 if (STACK_REG_P (*dest))
1369 {
1370 note = find_reg_note (insn, REG_DEAD, *dest);
1371
1372 if (pat != PATTERN (insn))
1373 {
1374 /* The fix_truncdi_1 pattern wants to be able to
1375 allocate its own scratch register. It does this by
1376 clobbering an fp reg so that it is assured of an
1377 empty reg-stack register. If the register is live,
1378 kill it now. Remove the DEAD/UNUSED note so we
1379 don't try to kill it later too.
1380
1381 In reality the UNUSED note can be absent in some
1382 complicated cases when the register is reused for
1383 partially set variable. */
1384
1385 if (note)
1386 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1387 else
1388 note = find_reg_note (insn, REG_UNUSED, *dest);
1389 if (note)
1390 remove_note (insn, note);
1391 replace_reg (dest, FIRST_STACK_REG + 1);
1392 }
1393 else
1394 {
1395 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1396 indicates an uninitialized value. Because reload removed
1397 all other clobbers, this must be due to a function
1398 returning without a value. Load up a NaN. */
1399
1400 if (!note)
1401 {
1402 rtx t = *dest;
1403 if (COMPLEX_MODE_P (GET_MODE (t)))
1404 {
1405 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1406 if (get_hard_regnum (regstack, u) == -1)
1407 {
1408 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1409 rtx insn2 = emit_insn_before (pat2, insn);
1410 control_flow_insn_deleted
1411 |= move_nan_for_stack_reg (insn2, regstack, u);
1412 }
1413 }
1414 if (get_hard_regnum (regstack, t) == -1)
1415 control_flow_insn_deleted
1416 |= move_nan_for_stack_reg (insn, regstack, t);
1417 }
1418 }
1419 }
1420 break;
1421 }
1422
1423 case SET:
1424 {
1425 rtx *src1 = (rtx *) 0, *src2;
1426 rtx src1_note, src2_note;
1427 rtx pat_src;
1428
1429 dest = get_true_reg (&SET_DEST (pat));
1430 src = get_true_reg (&SET_SRC (pat));
1431 pat_src = SET_SRC (pat);
1432
1433 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1434 if (STACK_REG_P (*src)
1435 || (STACK_REG_P (*dest)
1436 && (REG_P (*src) || MEM_P (*src)
1437 || GET_CODE (*src) == CONST_DOUBLE)))
1438 {
1439 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1440 break;
1441 }
1442
1443 switch (GET_CODE (pat_src))
1444 {
1445 case COMPARE:
1446 compare_for_stack_reg (insn, regstack, pat_src);
1447 break;
1448
1449 case CALL:
1450 {
1451 int count;
1452 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1453 --count >= 0;)
1454 {
1455 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1456 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1457 }
1458 }
1459 replace_reg (dest, FIRST_STACK_REG);
1460 break;
1461
1462 case REG:
1463 /* This is a `tstM2' case. */
1464 gcc_assert (*dest == cc0_rtx);
1465 src1 = src;
1466
1467 /* Fall through. */
1468
1469 case FLOAT_TRUNCATE:
1470 case SQRT:
1471 case ABS:
1472 case NEG:
1473 /* These insns only operate on the top of the stack. DEST might
1474 be cc0_rtx if we're processing a tstM pattern. Also, it's
1475 possible that the tstM case results in a REG_DEAD note on the
1476 source. */
1477
1478 if (src1 == 0)
1479 src1 = get_true_reg (&XEXP (pat_src, 0));
1480
1481 emit_swap_insn (insn, regstack, *src1);
1482
1483 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1484
1485 if (STACK_REG_P (*dest))
1486 replace_reg (dest, FIRST_STACK_REG);
1487
1488 if (src1_note)
1489 {
1490 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1491 regstack->top--;
1492 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1493 }
1494
1495 replace_reg (src1, FIRST_STACK_REG);
1496 break;
1497
1498 case MINUS:
1499 case DIV:
1500 /* On i386, reversed forms of subM3 and divM3 exist for
1501 MODE_FLOAT, so the same code that works for addM3 and mulM3
1502 can be used. */
1503 case MULT:
1504 case PLUS:
1505 /* These insns can accept the top of stack as a destination
1506 from a stack reg or mem, or can use the top of stack as a
1507 source and some other stack register (possibly top of stack)
1508 as a destination. */
1509
1510 src1 = get_true_reg (&XEXP (pat_src, 0));
1511 src2 = get_true_reg (&XEXP (pat_src, 1));
1512
1513 /* We will fix any death note later. */
1514
1515 if (STACK_REG_P (*src1))
1516 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1517 else
1518 src1_note = NULL_RTX;
1519 if (STACK_REG_P (*src2))
1520 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1521 else
1522 src2_note = NULL_RTX;
1523
1524 /* If either operand is not a stack register, then the dest
1525 must be top of stack. */
1526
1527 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1528 emit_swap_insn (insn, regstack, *dest);
1529 else
1530 {
1531 /* Both operands are REG. If neither operand is already
1532 at the top of stack, choose to make the one that is the
1533 dest the new top of stack. */
1534
1535 int src1_hard_regnum, src2_hard_regnum;
1536
1537 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1538 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1539
1540 /* If the source is not live, this is yet another case of
1541 uninitialized variables. Load up a NaN instead. */
1542 if (src1_hard_regnum == -1)
1543 {
1544 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1545 rtx insn2 = emit_insn_before (pat2, insn);
1546 control_flow_insn_deleted
1547 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1548 }
1549 if (src2_hard_regnum == -1)
1550 {
1551 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1552 rtx insn2 = emit_insn_before (pat2, insn);
1553 control_flow_insn_deleted
1554 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1555 }
1556
1557 if (src1_hard_regnum != FIRST_STACK_REG
1558 && src2_hard_regnum != FIRST_STACK_REG)
1559 emit_swap_insn (insn, regstack, *dest);
1560 }
1561
1562 if (STACK_REG_P (*src1))
1563 replace_reg (src1, get_hard_regnum (regstack, *src1));
1564 if (STACK_REG_P (*src2))
1565 replace_reg (src2, get_hard_regnum (regstack, *src2));
1566
1567 if (src1_note)
1568 {
1569 rtx src1_reg = XEXP (src1_note, 0);
1570
1571 /* If the register that dies is at the top of stack, then
1572 the destination is somewhere else - merely substitute it.
1573 But if the reg that dies is not at top of stack, then
1574 move the top of stack to the dead reg, as though we had
1575 done the insn and then a store-with-pop. */
1576
1577 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1578 {
1579 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1580 replace_reg (dest, get_hard_regnum (regstack, *dest));
1581 }
1582 else
1583 {
1584 int regno = get_hard_regnum (regstack, src1_reg);
1585
1586 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1587 replace_reg (dest, regno);
1588
1589 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1590 = regstack->reg[regstack->top];
1591 }
1592
1593 CLEAR_HARD_REG_BIT (regstack->reg_set,
1594 REGNO (XEXP (src1_note, 0)));
1595 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1596 regstack->top--;
1597 }
1598 else if (src2_note)
1599 {
1600 rtx src2_reg = XEXP (src2_note, 0);
1601 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1602 {
1603 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1604 replace_reg (dest, get_hard_regnum (regstack, *dest));
1605 }
1606 else
1607 {
1608 int regno = get_hard_regnum (regstack, src2_reg);
1609
1610 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1611 replace_reg (dest, regno);
1612
1613 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1614 = regstack->reg[regstack->top];
1615 }
1616
1617 CLEAR_HARD_REG_BIT (regstack->reg_set,
1618 REGNO (XEXP (src2_note, 0)));
1619 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1620 regstack->top--;
1621 }
1622 else
1623 {
1624 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1625 replace_reg (dest, get_hard_regnum (regstack, *dest));
1626 }
1627
1628 /* Keep operand 1 matching with destination. */
1629 if (COMMUTATIVE_ARITH_P (pat_src)
1630 && REG_P (*src1) && REG_P (*src2)
1631 && REGNO (*src1) != REGNO (*dest))
1632 {
1633 int tmp = REGNO (*src1);
1634 replace_reg (src1, REGNO (*src2));
1635 replace_reg (src2, tmp);
1636 }
1637 break;
1638
1639 case UNSPEC:
1640 switch (XINT (pat_src, 1))
1641 {
1642 case UNSPEC_FIST:
1643
1644 case UNSPEC_FIST_FLOOR:
1645 case UNSPEC_FIST_CEIL:
1646
1647 /* These insns only operate on the top of the stack. */
1648
1649 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1650 emit_swap_insn (insn, regstack, *src1);
1651
1652 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1653
1654 if (STACK_REG_P (*dest))
1655 replace_reg (dest, FIRST_STACK_REG);
1656
1657 if (src1_note)
1658 {
1659 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1660 regstack->top--;
1661 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1662 }
1663
1664 replace_reg (src1, FIRST_STACK_REG);
1665 break;
1666
1667 case UNSPEC_FXAM:
1668
1669 /* This insn only operate on the top of the stack. */
1670
1671 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1672 emit_swap_insn (insn, regstack, *src1);
1673
1674 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1675
1676 replace_reg (src1, FIRST_STACK_REG);
1677
1678 if (src1_note)
1679 {
1680 remove_regno_note (insn, REG_DEAD,
1681 REGNO (XEXP (src1_note, 0)));
1682 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1683 EMIT_AFTER);
1684 }
1685
1686 break;
1687
1688 case UNSPEC_SIN:
1689 case UNSPEC_COS:
1690 case UNSPEC_FRNDINT:
1691 case UNSPEC_F2XM1:
1692
1693 case UNSPEC_FRNDINT_FLOOR:
1694 case UNSPEC_FRNDINT_CEIL:
1695 case UNSPEC_FRNDINT_TRUNC:
1696 case UNSPEC_FRNDINT_MASK_PM:
1697
1698 /* Above insns operate on the top of the stack. */
1699
1700 case UNSPEC_SINCOS_COS:
1701 case UNSPEC_XTRACT_FRACT:
1702
1703 /* Above insns operate on the top two stack slots,
1704 first part of one input, double output insn. */
1705
1706 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1707
1708 emit_swap_insn (insn, regstack, *src1);
1709
1710 /* Input should never die, it is replaced with output. */
1711 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1712 gcc_assert (!src1_note);
1713
1714 if (STACK_REG_P (*dest))
1715 replace_reg (dest, FIRST_STACK_REG);
1716
1717 replace_reg (src1, FIRST_STACK_REG);
1718 break;
1719
1720 case UNSPEC_SINCOS_SIN:
1721 case UNSPEC_XTRACT_EXP:
1722
1723 /* These insns operate on the top two stack slots,
1724 second part of one input, double output insn. */
1725
1726 regstack->top++;
1727 /* FALLTHRU */
1728
1729 case UNSPEC_TAN:
1730
1731 /* For UNSPEC_TAN, regstack->top is already increased
1732 by inherent load of constant 1.0. */
1733
1734 /* Output value is generated in the second stack slot.
1735 Move current value from second slot to the top. */
1736 regstack->reg[regstack->top]
1737 = regstack->reg[regstack->top - 1];
1738
1739 gcc_assert (STACK_REG_P (*dest));
1740
1741 regstack->reg[regstack->top - 1] = REGNO (*dest);
1742 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1743 replace_reg (dest, FIRST_STACK_REG + 1);
1744
1745 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1746
1747 replace_reg (src1, FIRST_STACK_REG);
1748 break;
1749
1750 case UNSPEC_FPATAN:
1751 case UNSPEC_FYL2X:
1752 case UNSPEC_FYL2XP1:
1753 /* These insns operate on the top two stack slots. */
1754
1755 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1756 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1757
1758 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1759 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1760
1761 swap_to_top (insn, regstack, *src1, *src2);
1762
1763 replace_reg (src1, FIRST_STACK_REG);
1764 replace_reg (src2, FIRST_STACK_REG + 1);
1765
1766 if (src1_note)
1767 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1768 if (src2_note)
1769 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1770
1771 /* Pop both input operands from the stack. */
1772 CLEAR_HARD_REG_BIT (regstack->reg_set,
1773 regstack->reg[regstack->top]);
1774 CLEAR_HARD_REG_BIT (regstack->reg_set,
1775 regstack->reg[regstack->top - 1]);
1776 regstack->top -= 2;
1777
1778 /* Push the result back onto the stack. */
1779 regstack->reg[++regstack->top] = REGNO (*dest);
1780 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1781 replace_reg (dest, FIRST_STACK_REG);
1782 break;
1783
1784 case UNSPEC_FSCALE_FRACT:
1785 case UNSPEC_FPREM_F:
1786 case UNSPEC_FPREM1_F:
1787 /* These insns operate on the top two stack slots,
1788 first part of double input, double output insn. */
1789
1790 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1791 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1792
1793 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1794 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1795
1796 /* Inputs should never die, they are
1797 replaced with outputs. */
1798 gcc_assert (!src1_note);
1799 gcc_assert (!src2_note);
1800
1801 swap_to_top (insn, regstack, *src1, *src2);
1802
1803 /* Push the result back onto stack. Empty stack slot
1804 will be filled in second part of insn. */
1805 if (STACK_REG_P (*dest))
1806 {
1807 regstack->reg[regstack->top] = REGNO (*dest);
1808 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1809 replace_reg (dest, FIRST_STACK_REG);
1810 }
1811
1812 replace_reg (src1, FIRST_STACK_REG);
1813 replace_reg (src2, FIRST_STACK_REG + 1);
1814 break;
1815
1816 case UNSPEC_FSCALE_EXP:
1817 case UNSPEC_FPREM_U:
1818 case UNSPEC_FPREM1_U:
1819 /* These insns operate on the top two stack slots,
1820 second part of double input, double output insn. */
1821
1822 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1823 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1824
1825 /* Push the result back onto stack. Fill empty slot from
1826 first part of insn and fix top of stack pointer. */
1827 if (STACK_REG_P (*dest))
1828 {
1829 regstack->reg[regstack->top - 1] = REGNO (*dest);
1830 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1831 replace_reg (dest, FIRST_STACK_REG + 1);
1832 }
1833
1834 replace_reg (src1, FIRST_STACK_REG);
1835 replace_reg (src2, FIRST_STACK_REG + 1);
1836 break;
1837
1838 case UNSPEC_C2_FLAG:
1839 /* This insn operates on the top two stack slots,
1840 third part of C2 setting double input insn. */
1841
1842 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1843 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1844
1845 replace_reg (src1, FIRST_STACK_REG);
1846 replace_reg (src2, FIRST_STACK_REG + 1);
1847 break;
1848
1849 case UNSPEC_SAHF:
1850 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1851 The combination matches the PPRO fcomi instruction. */
1852
1853 pat_src = XVECEXP (pat_src, 0, 0);
1854 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1855 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1856 /* Fall through. */
1857
1858 case UNSPEC_FNSTSW:
1859 /* Combined fcomp+fnstsw generated for doing well with
1860 CSE. When optimizing this would have been broken
1861 up before now. */
1862
1863 pat_src = XVECEXP (pat_src, 0, 0);
1864 gcc_assert (GET_CODE (pat_src) == COMPARE);
1865
1866 compare_for_stack_reg (insn, regstack, pat_src);
1867 break;
1868
1869 default:
1870 gcc_unreachable ();
1871 }
1872 break;
1873
1874 case IF_THEN_ELSE:
1875 /* This insn requires the top of stack to be the destination. */
1876
1877 src1 = get_true_reg (&XEXP (pat_src, 1));
1878 src2 = get_true_reg (&XEXP (pat_src, 2));
1879
1880 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1881 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1882
1883 /* If the comparison operator is an FP comparison operator,
1884 it is handled correctly by compare_for_stack_reg () who
1885 will move the destination to the top of stack. But if the
1886 comparison operator is not an FP comparison operator, we
1887 have to handle it here. */
1888 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1889 && REGNO (*dest) != regstack->reg[regstack->top])
1890 {
1891 /* In case one of operands is the top of stack and the operands
1892 dies, it is safe to make it the destination operand by
1893 reversing the direction of cmove and avoid fxch. */
1894 if ((REGNO (*src1) == regstack->reg[regstack->top]
1895 && src1_note)
1896 || (REGNO (*src2) == regstack->reg[regstack->top]
1897 && src2_note))
1898 {
1899 int idx1 = (get_hard_regnum (regstack, *src1)
1900 - FIRST_STACK_REG);
1901 int idx2 = (get_hard_regnum (regstack, *src2)
1902 - FIRST_STACK_REG);
1903
1904 /* Make reg-stack believe that the operands are already
1905 swapped on the stack */
1906 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1907 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1908
1909 /* Reverse condition to compensate the operand swap.
1910 i386 do have comparison always reversible. */
1911 PUT_CODE (XEXP (pat_src, 0),
1912 reversed_comparison_code (XEXP (pat_src, 0), insn));
1913 }
1914 else
1915 emit_swap_insn (insn, regstack, *dest);
1916 }
1917
1918 {
1919 rtx src_note [3];
1920 int i;
1921
1922 src_note[0] = 0;
1923 src_note[1] = src1_note;
1924 src_note[2] = src2_note;
1925
1926 if (STACK_REG_P (*src1))
1927 replace_reg (src1, get_hard_regnum (regstack, *src1));
1928 if (STACK_REG_P (*src2))
1929 replace_reg (src2, get_hard_regnum (regstack, *src2));
1930
1931 for (i = 1; i <= 2; i++)
1932 if (src_note [i])
1933 {
1934 int regno = REGNO (XEXP (src_note[i], 0));
1935
1936 /* If the register that dies is not at the top of
1937 stack, then move the top of stack to the dead reg.
1938 Top of stack should never die, as it is the
1939 destination. */
1940 gcc_assert (regno != regstack->reg[regstack->top]);
1941 remove_regno_note (insn, REG_DEAD, regno);
1942 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1943 EMIT_AFTER);
1944 }
1945 }
1946
1947 /* Make dest the top of stack. Add dest to regstack if
1948 not present. */
1949 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1950 regstack->reg[++regstack->top] = REGNO (*dest);
1951 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1952 replace_reg (dest, FIRST_STACK_REG);
1953 break;
1954
1955 default:
1956 gcc_unreachable ();
1957 }
1958 break;
1959 }
1960
1961 default:
1962 break;
1963 }
1964
1965 return control_flow_insn_deleted;
1966 }
1967 \f
1968 /* Substitute hard regnums for any stack regs in INSN, which has
1969 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1970 before the insn, and is updated with changes made here.
1971
1972 There are several requirements and assumptions about the use of
1973 stack-like regs in asm statements. These rules are enforced by
1974 record_asm_stack_regs; see comments there for details. Any
1975 asm_operands left in the RTL at this point may be assume to meet the
1976 requirements, since record_asm_stack_regs removes any problem asm. */
1977
1978 static void
1979 subst_asm_stack_regs (rtx insn, stack regstack)
1980 {
1981 rtx body = PATTERN (insn);
1982 int alt;
1983
1984 rtx *note_reg; /* Array of note contents */
1985 rtx **note_loc; /* Address of REG field of each note */
1986 enum reg_note *note_kind; /* The type of each note */
1987
1988 rtx *clobber_reg = 0;
1989 rtx **clobber_loc = 0;
1990
1991 struct stack_def temp_stack;
1992 int n_notes;
1993 int n_clobbers;
1994 rtx note;
1995 int i;
1996 int n_inputs, n_outputs;
1997
1998 if (! check_asm_stack_operands (insn))
1999 return;
2000
2001 /* Find out what the constraints required. If no constraint
2002 alternative matches, that is a compiler bug: we should have caught
2003 such an insn in check_asm_stack_operands. */
2004 extract_insn (insn);
2005 constrain_operands (1);
2006 alt = which_alternative;
2007
2008 preprocess_constraints ();
2009
2010 n_inputs = get_asm_operand_n_inputs (body);
2011 n_outputs = recog_data.n_operands - n_inputs;
2012
2013 gcc_assert (alt >= 0);
2014
2015 /* Strip SUBREGs here to make the following code simpler. */
2016 for (i = 0; i < recog_data.n_operands; i++)
2017 if (GET_CODE (recog_data.operand[i]) == SUBREG
2018 && REG_P (SUBREG_REG (recog_data.operand[i])))
2019 {
2020 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2021 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2022 }
2023
2024 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2025
2026 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2027 i++;
2028
2029 note_reg = XALLOCAVEC (rtx, i);
2030 note_loc = XALLOCAVEC (rtx *, i);
2031 note_kind = XALLOCAVEC (enum reg_note, i);
2032
2033 n_notes = 0;
2034 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2035 {
2036 rtx reg = XEXP (note, 0);
2037 rtx *loc = & XEXP (note, 0);
2038
2039 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2040 {
2041 loc = & SUBREG_REG (reg);
2042 reg = SUBREG_REG (reg);
2043 }
2044
2045 if (STACK_REG_P (reg)
2046 && (REG_NOTE_KIND (note) == REG_DEAD
2047 || REG_NOTE_KIND (note) == REG_UNUSED))
2048 {
2049 note_reg[n_notes] = reg;
2050 note_loc[n_notes] = loc;
2051 note_kind[n_notes] = REG_NOTE_KIND (note);
2052 n_notes++;
2053 }
2054 }
2055
2056 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2057
2058 n_clobbers = 0;
2059
2060 if (GET_CODE (body) == PARALLEL)
2061 {
2062 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2063 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2064
2065 for (i = 0; i < XVECLEN (body, 0); i++)
2066 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2067 {
2068 rtx clobber = XVECEXP (body, 0, i);
2069 rtx reg = XEXP (clobber, 0);
2070 rtx *loc = & XEXP (clobber, 0);
2071
2072 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2073 {
2074 loc = & SUBREG_REG (reg);
2075 reg = SUBREG_REG (reg);
2076 }
2077
2078 if (STACK_REG_P (reg))
2079 {
2080 clobber_reg[n_clobbers] = reg;
2081 clobber_loc[n_clobbers] = loc;
2082 n_clobbers++;
2083 }
2084 }
2085 }
2086
2087 temp_stack = *regstack;
2088
2089 /* Put the input regs into the desired place in TEMP_STACK. */
2090
2091 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2092 if (STACK_REG_P (recog_data.operand[i])
2093 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2094 FLOAT_REGS)
2095 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2096 {
2097 /* If an operand needs to be in a particular reg in
2098 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2099 these constraints are for single register classes, and
2100 reload guaranteed that operand[i] is already in that class,
2101 we can just use REGNO (recog_data.operand[i]) to know which
2102 actual reg this operand needs to be in. */
2103
2104 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2105
2106 gcc_assert (regno >= 0);
2107
2108 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2109 {
2110 /* recog_data.operand[i] is not in the right place. Find
2111 it and swap it with whatever is already in I's place.
2112 K is where recog_data.operand[i] is now. J is where it
2113 should be. */
2114 int j, k, temp;
2115
2116 k = temp_stack.top - (regno - FIRST_STACK_REG);
2117 j = (temp_stack.top
2118 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2119
2120 temp = temp_stack.reg[k];
2121 temp_stack.reg[k] = temp_stack.reg[j];
2122 temp_stack.reg[j] = temp;
2123 }
2124 }
2125
2126 /* Emit insns before INSN to make sure the reg-stack is in the right
2127 order. */
2128
2129 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2130
2131 /* Make the needed input register substitutions. Do death notes and
2132 clobbers too, because these are for inputs, not outputs. */
2133
2134 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2135 if (STACK_REG_P (recog_data.operand[i]))
2136 {
2137 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2138
2139 gcc_assert (regnum >= 0);
2140
2141 replace_reg (recog_data.operand_loc[i], regnum);
2142 }
2143
2144 for (i = 0; i < n_notes; i++)
2145 if (note_kind[i] == REG_DEAD)
2146 {
2147 int regnum = get_hard_regnum (regstack, note_reg[i]);
2148
2149 gcc_assert (regnum >= 0);
2150
2151 replace_reg (note_loc[i], regnum);
2152 }
2153
2154 for (i = 0; i < n_clobbers; i++)
2155 {
2156 /* It's OK for a CLOBBER to reference a reg that is not live.
2157 Don't try to replace it in that case. */
2158 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2159
2160 if (regnum >= 0)
2161 {
2162 /* Sigh - clobbers always have QImode. But replace_reg knows
2163 that these regs can't be MODE_INT and will assert. Just put
2164 the right reg there without calling replace_reg. */
2165
2166 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2167 }
2168 }
2169
2170 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2171
2172 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2173 if (STACK_REG_P (recog_data.operand[i]))
2174 {
2175 /* An input reg is implicitly popped if it is tied to an
2176 output, or if there is a CLOBBER for it. */
2177 int j;
2178
2179 for (j = 0; j < n_clobbers; j++)
2180 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2181 break;
2182
2183 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2184 {
2185 /* recog_data.operand[i] might not be at the top of stack.
2186 But that's OK, because all we need to do is pop the
2187 right number of regs off of the top of the reg-stack.
2188 record_asm_stack_regs guaranteed that all implicitly
2189 popped regs were grouped at the top of the reg-stack. */
2190
2191 CLEAR_HARD_REG_BIT (regstack->reg_set,
2192 regstack->reg[regstack->top]);
2193 regstack->top--;
2194 }
2195 }
2196
2197 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2198 Note that there isn't any need to substitute register numbers.
2199 ??? Explain why this is true. */
2200
2201 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2202 {
2203 /* See if there is an output for this hard reg. */
2204 int j;
2205
2206 for (j = 0; j < n_outputs; j++)
2207 if (STACK_REG_P (recog_data.operand[j])
2208 && REGNO (recog_data.operand[j]) == (unsigned) i)
2209 {
2210 regstack->reg[++regstack->top] = i;
2211 SET_HARD_REG_BIT (regstack->reg_set, i);
2212 break;
2213 }
2214 }
2215
2216 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2217 input that the asm didn't implicitly pop. If the asm didn't
2218 implicitly pop an input reg, that reg will still be live.
2219
2220 Note that we can't use find_regno_note here: the register numbers
2221 in the death notes have already been substituted. */
2222
2223 for (i = 0; i < n_outputs; i++)
2224 if (STACK_REG_P (recog_data.operand[i]))
2225 {
2226 int j;
2227
2228 for (j = 0; j < n_notes; j++)
2229 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2230 && note_kind[j] == REG_UNUSED)
2231 {
2232 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2233 EMIT_AFTER);
2234 break;
2235 }
2236 }
2237
2238 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2239 if (STACK_REG_P (recog_data.operand[i]))
2240 {
2241 int j;
2242
2243 for (j = 0; j < n_notes; j++)
2244 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2245 && note_kind[j] == REG_DEAD
2246 && TEST_HARD_REG_BIT (regstack->reg_set,
2247 REGNO (recog_data.operand[i])))
2248 {
2249 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2250 EMIT_AFTER);
2251 break;
2252 }
2253 }
2254 }
2255 \f
2256 /* Substitute stack hard reg numbers for stack virtual registers in
2257 INSN. Non-stack register numbers are not changed. REGSTACK is the
2258 current stack content. Insns may be emitted as needed to arrange the
2259 stack for the 387 based on the contents of the insn. Return whether
2260 a control flow insn was deleted in the process. */
2261
2262 static bool
2263 subst_stack_regs (rtx insn, stack regstack)
2264 {
2265 rtx *note_link, note;
2266 bool control_flow_insn_deleted = false;
2267 int i;
2268
2269 if (CALL_P (insn))
2270 {
2271 int top = regstack->top;
2272
2273 /* If there are any floating point parameters to be passed in
2274 registers for this call, make sure they are in the right
2275 order. */
2276
2277 if (top >= 0)
2278 {
2279 straighten_stack (insn, regstack);
2280
2281 /* Now mark the arguments as dead after the call. */
2282
2283 while (regstack->top >= 0)
2284 {
2285 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2286 regstack->top--;
2287 }
2288 }
2289 }
2290
2291 /* Do the actual substitution if any stack regs are mentioned.
2292 Since we only record whether entire insn mentions stack regs, and
2293 subst_stack_regs_pat only works for patterns that contain stack regs,
2294 we must check each pattern in a parallel here. A call_value_pop could
2295 fail otherwise. */
2296
2297 if (stack_regs_mentioned (insn))
2298 {
2299 int n_operands = asm_noperands (PATTERN (insn));
2300 if (n_operands >= 0)
2301 {
2302 /* This insn is an `asm' with operands. Decode the operands,
2303 decide how many are inputs, and do register substitution.
2304 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2305
2306 subst_asm_stack_regs (insn, regstack);
2307 return control_flow_insn_deleted;
2308 }
2309
2310 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2311 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2312 {
2313 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2314 {
2315 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2316 XVECEXP (PATTERN (insn), 0, i)
2317 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2318 control_flow_insn_deleted
2319 |= subst_stack_regs_pat (insn, regstack,
2320 XVECEXP (PATTERN (insn), 0, i));
2321 }
2322 }
2323 else
2324 control_flow_insn_deleted
2325 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2326 }
2327
2328 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2329 REG_UNUSED will already have been dealt with, so just return. */
2330
2331 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2332 return control_flow_insn_deleted;
2333
2334 /* If this a noreturn call, we can't insert pop insns after it.
2335 Instead, reset the stack state to empty. */
2336 if (CALL_P (insn)
2337 && find_reg_note (insn, REG_NORETURN, NULL))
2338 {
2339 regstack->top = -1;
2340 CLEAR_HARD_REG_SET (regstack->reg_set);
2341 return control_flow_insn_deleted;
2342 }
2343
2344 /* If there is a REG_UNUSED note on a stack register on this insn,
2345 the indicated reg must be popped. The REG_UNUSED note is removed,
2346 since the form of the newly emitted pop insn references the reg,
2347 making it no longer `unset'. */
2348
2349 note_link = &REG_NOTES (insn);
2350 for (note = *note_link; note; note = XEXP (note, 1))
2351 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2352 {
2353 *note_link = XEXP (note, 1);
2354 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2355 }
2356 else
2357 note_link = &XEXP (note, 1);
2358
2359 return control_flow_insn_deleted;
2360 }
2361 \f
2362 /* Change the organization of the stack so that it fits a new basic
2363 block. Some registers might have to be popped, but there can never be
2364 a register live in the new block that is not now live.
2365
2366 Insert any needed insns before or after INSN, as indicated by
2367 WHERE. OLD is the original stack layout, and NEW is the desired
2368 form. OLD is updated to reflect the code emitted, i.e., it will be
2369 the same as NEW upon return.
2370
2371 This function will not preserve block_end[]. But that information
2372 is no longer needed once this has executed. */
2373
2374 static void
2375 change_stack (rtx insn, stack old, stack new_stack, enum emit_where where)
2376 {
2377 int reg;
2378 int update_end = 0;
2379 int i;
2380
2381 /* Stack adjustments for the first insn in a block update the
2382 current_block's stack_in instead of inserting insns directly.
2383 compensate_edges will add the necessary code later. */
2384 if (current_block
2385 && starting_stack_p
2386 && where == EMIT_BEFORE)
2387 {
2388 BLOCK_INFO (current_block)->stack_in = *new_stack;
2389 starting_stack_p = false;
2390 *old = *new_stack;
2391 return;
2392 }
2393
2394 /* We will be inserting new insns "backwards". If we are to insert
2395 after INSN, find the next insn, and insert before it. */
2396
2397 if (where == EMIT_AFTER)
2398 {
2399 if (current_block && BB_END (current_block) == insn)
2400 update_end = 1;
2401 insn = NEXT_INSN (insn);
2402 }
2403
2404 /* Initialize partially dead variables. */
2405 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2406 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2407 && !TEST_HARD_REG_BIT (old->reg_set, i))
2408 {
2409 old->reg[++old->top] = i;
2410 SET_HARD_REG_BIT (old->reg_set, i);
2411 emit_insn_before (gen_rtx_SET (VOIDmode,
2412 FP_MODE_REG (i, SFmode), not_a_num), insn);
2413 }
2414
2415 /* Pop any registers that are not needed in the new block. */
2416
2417 /* If the destination block's stack already has a specified layout
2418 and contains two or more registers, use a more intelligent algorithm
2419 to pop registers that minimizes the number number of fxchs below. */
2420 if (new_stack->top > 0)
2421 {
2422 bool slots[REG_STACK_SIZE];
2423 int pops[REG_STACK_SIZE];
2424 int next, dest, topsrc;
2425
2426 /* First pass to determine the free slots. */
2427 for (reg = 0; reg <= new_stack->top; reg++)
2428 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2429
2430 /* Second pass to allocate preferred slots. */
2431 topsrc = -1;
2432 for (reg = old->top; reg > new_stack->top; reg--)
2433 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2434 {
2435 dest = -1;
2436 for (next = 0; next <= new_stack->top; next++)
2437 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2438 {
2439 /* If this is a preference for the new top of stack, record
2440 the fact by remembering it's old->reg in topsrc. */
2441 if (next == new_stack->top)
2442 topsrc = reg;
2443 slots[next] = true;
2444 dest = next;
2445 break;
2446 }
2447 pops[reg] = dest;
2448 }
2449 else
2450 pops[reg] = reg;
2451
2452 /* Intentionally, avoid placing the top of stack in it's correct
2453 location, if we still need to permute the stack below and we
2454 can usefully place it somewhere else. This is the case if any
2455 slot is still unallocated, in which case we should place the
2456 top of stack there. */
2457 if (topsrc != -1)
2458 for (reg = 0; reg < new_stack->top; reg++)
2459 if (!slots[reg])
2460 {
2461 pops[topsrc] = reg;
2462 slots[new_stack->top] = false;
2463 slots[reg] = true;
2464 break;
2465 }
2466
2467 /* Third pass allocates remaining slots and emits pop insns. */
2468 next = new_stack->top;
2469 for (reg = old->top; reg > new_stack->top; reg--)
2470 {
2471 dest = pops[reg];
2472 if (dest == -1)
2473 {
2474 /* Find next free slot. */
2475 while (slots[next])
2476 next--;
2477 dest = next--;
2478 }
2479 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2480 EMIT_BEFORE);
2481 }
2482 }
2483 else
2484 {
2485 /* The following loop attempts to maximize the number of times we
2486 pop the top of the stack, as this permits the use of the faster
2487 ffreep instruction on platforms that support it. */
2488 int live, next;
2489
2490 live = 0;
2491 for (reg = 0; reg <= old->top; reg++)
2492 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2493 live++;
2494
2495 next = live;
2496 while (old->top >= live)
2497 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2498 {
2499 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2500 next--;
2501 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2502 EMIT_BEFORE);
2503 }
2504 else
2505 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2506 EMIT_BEFORE);
2507 }
2508
2509 if (new_stack->top == -2)
2510 {
2511 /* If the new block has never been processed, then it can inherit
2512 the old stack order. */
2513
2514 new_stack->top = old->top;
2515 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2516 }
2517 else
2518 {
2519 /* This block has been entered before, and we must match the
2520 previously selected stack order. */
2521
2522 /* By now, the only difference should be the order of the stack,
2523 not their depth or liveliness. */
2524
2525 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2526 gcc_assert (old->top == new_stack->top);
2527
2528 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2529 swaps until the stack is correct.
2530
2531 The worst case number of swaps emitted is N + 2, where N is the
2532 depth of the stack. In some cases, the reg at the top of
2533 stack may be correct, but swapped anyway in order to fix
2534 other regs. But since we never swap any other reg away from
2535 its correct slot, this algorithm will converge. */
2536
2537 if (new_stack->top != -1)
2538 do
2539 {
2540 /* Swap the reg at top of stack into the position it is
2541 supposed to be in, until the correct top of stack appears. */
2542
2543 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2544 {
2545 for (reg = new_stack->top; reg >= 0; reg--)
2546 if (new_stack->reg[reg] == old->reg[old->top])
2547 break;
2548
2549 gcc_assert (reg != -1);
2550
2551 emit_swap_insn (insn, old,
2552 FP_MODE_REG (old->reg[reg], DFmode));
2553 }
2554
2555 /* See if any regs remain incorrect. If so, bring an
2556 incorrect reg to the top of stack, and let the while loop
2557 above fix it. */
2558
2559 for (reg = new_stack->top; reg >= 0; reg--)
2560 if (new_stack->reg[reg] != old->reg[reg])
2561 {
2562 emit_swap_insn (insn, old,
2563 FP_MODE_REG (old->reg[reg], DFmode));
2564 break;
2565 }
2566 } while (reg >= 0);
2567
2568 /* At this point there must be no differences. */
2569
2570 for (reg = old->top; reg >= 0; reg--)
2571 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2572 }
2573
2574 if (update_end)
2575 BB_END (current_block) = PREV_INSN (insn);
2576 }
2577 \f
2578 /* Print stack configuration. */
2579
2580 static void
2581 print_stack (FILE *file, stack s)
2582 {
2583 if (! file)
2584 return;
2585
2586 if (s->top == -2)
2587 fprintf (file, "uninitialized\n");
2588 else if (s->top == -1)
2589 fprintf (file, "empty\n");
2590 else
2591 {
2592 int i;
2593 fputs ("[ ", file);
2594 for (i = 0; i <= s->top; ++i)
2595 fprintf (file, "%d ", s->reg[i]);
2596 fputs ("]\n", file);
2597 }
2598 }
2599 \f
2600 /* This function was doing life analysis. We now let the regular live
2601 code do it's job, so we only need to check some extra invariants
2602 that reg-stack expects. Primary among these being that all registers
2603 are initialized before use.
2604
2605 The function returns true when code was emitted to CFG edges and
2606 commit_edge_insertions needs to be called. */
2607
2608 static int
2609 convert_regs_entry (void)
2610 {
2611 int inserted = 0;
2612 edge e;
2613 edge_iterator ei;
2614
2615 /* Load something into each stack register live at function entry.
2616 Such live registers can be caused by uninitialized variables or
2617 functions not returning values on all paths. In order to keep
2618 the push/pop code happy, and to not scrog the register stack, we
2619 must put something in these registers. Use a QNaN.
2620
2621 Note that we are inserting converted code here. This code is
2622 never seen by the convert_regs pass. */
2623
2624 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2625 {
2626 basic_block block = e->dest;
2627 block_info bi = BLOCK_INFO (block);
2628 int reg, top = -1;
2629
2630 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2631 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2632 {
2633 rtx init;
2634
2635 bi->stack_in.reg[++top] = reg;
2636
2637 init = gen_rtx_SET (VOIDmode,
2638 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2639 not_a_num);
2640 insert_insn_on_edge (init, e);
2641 inserted = 1;
2642 }
2643
2644 bi->stack_in.top = top;
2645 }
2646
2647 return inserted;
2648 }
2649
2650 /* Construct the desired stack for function exit. This will either
2651 be `empty', or the function return value at top-of-stack. */
2652
2653 static void
2654 convert_regs_exit (void)
2655 {
2656 int value_reg_low, value_reg_high;
2657 stack output_stack;
2658 rtx retvalue;
2659
2660 retvalue = stack_result (current_function_decl);
2661 value_reg_low = value_reg_high = -1;
2662 if (retvalue)
2663 {
2664 value_reg_low = REGNO (retvalue);
2665 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2666 }
2667
2668 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2669 if (value_reg_low == -1)
2670 output_stack->top = -1;
2671 else
2672 {
2673 int reg;
2674
2675 output_stack->top = value_reg_high - value_reg_low;
2676 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2677 {
2678 output_stack->reg[value_reg_high - reg] = reg;
2679 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2680 }
2681 }
2682 }
2683
2684 /* Copy the stack info from the end of edge E's source block to the
2685 start of E's destination block. */
2686
2687 static void
2688 propagate_stack (edge e)
2689 {
2690 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2691 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2692 int reg;
2693
2694 /* Preserve the order of the original stack, but check whether
2695 any pops are needed. */
2696 dest_stack->top = -1;
2697 for (reg = 0; reg <= src_stack->top; ++reg)
2698 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2699 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2700
2701 /* Push in any partially dead values. */
2702 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2703 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2704 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2705 dest_stack->reg[++dest_stack->top] = reg;
2706 }
2707
2708
2709 /* Adjust the stack of edge E's source block on exit to match the stack
2710 of it's target block upon input. The stack layouts of both blocks
2711 should have been defined by now. */
2712
2713 static bool
2714 compensate_edge (edge e)
2715 {
2716 basic_block source = e->src, target = e->dest;
2717 stack target_stack = &BLOCK_INFO (target)->stack_in;
2718 stack source_stack = &BLOCK_INFO (source)->stack_out;
2719 struct stack_def regstack;
2720 int reg;
2721
2722 if (dump_file)
2723 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2724
2725 gcc_assert (target_stack->top != -2);
2726
2727 /* Check whether stacks are identical. */
2728 if (target_stack->top == source_stack->top)
2729 {
2730 for (reg = target_stack->top; reg >= 0; --reg)
2731 if (target_stack->reg[reg] != source_stack->reg[reg])
2732 break;
2733
2734 if (reg == -1)
2735 {
2736 if (dump_file)
2737 fprintf (dump_file, "no changes needed\n");
2738 return false;
2739 }
2740 }
2741
2742 if (dump_file)
2743 {
2744 fprintf (dump_file, "correcting stack to ");
2745 print_stack (dump_file, target_stack);
2746 }
2747
2748 /* Abnormal calls may appear to have values live in st(0), but the
2749 abnormal return path will not have actually loaded the values. */
2750 if (e->flags & EDGE_ABNORMAL_CALL)
2751 {
2752 /* Assert that the lifetimes are as we expect -- one value
2753 live at st(0) on the end of the source block, and no
2754 values live at the beginning of the destination block.
2755 For complex return values, we may have st(1) live as well. */
2756 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2757 gcc_assert (target_stack->top == -1);
2758 return false;
2759 }
2760
2761 /* Handle non-call EH edges specially. The normal return path have
2762 values in registers. These will be popped en masse by the unwind
2763 library. */
2764 if (e->flags & EDGE_EH)
2765 {
2766 gcc_assert (target_stack->top == -1);
2767 return false;
2768 }
2769
2770 /* We don't support abnormal edges. Global takes care to
2771 avoid any live register across them, so we should never
2772 have to insert instructions on such edges. */
2773 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2774
2775 /* Make a copy of source_stack as change_stack is destructive. */
2776 regstack = *source_stack;
2777
2778 /* It is better to output directly to the end of the block
2779 instead of to the edge, because emit_swap can do minimal
2780 insn scheduling. We can do this when there is only one
2781 edge out, and it is not abnormal. */
2782 if (EDGE_COUNT (source->succs) == 1)
2783 {
2784 current_block = source;
2785 change_stack (BB_END (source), &regstack, target_stack,
2786 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2787 }
2788 else
2789 {
2790 rtx seq, after;
2791
2792 current_block = NULL;
2793 start_sequence ();
2794
2795 /* ??? change_stack needs some point to emit insns after. */
2796 after = emit_note (NOTE_INSN_DELETED);
2797
2798 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2799
2800 seq = get_insns ();
2801 end_sequence ();
2802
2803 insert_insn_on_edge (seq, e);
2804 return true;
2805 }
2806 return false;
2807 }
2808
2809 /* Traverse all non-entry edges in the CFG, and emit the necessary
2810 edge compensation code to change the stack from stack_out of the
2811 source block to the stack_in of the destination block. */
2812
2813 static bool
2814 compensate_edges (void)
2815 {
2816 bool inserted = false;
2817 basic_block bb;
2818
2819 starting_stack_p = false;
2820
2821 FOR_EACH_BB (bb)
2822 if (bb != ENTRY_BLOCK_PTR)
2823 {
2824 edge e;
2825 edge_iterator ei;
2826
2827 FOR_EACH_EDGE (e, ei, bb->succs)
2828 inserted |= compensate_edge (e);
2829 }
2830 return inserted;
2831 }
2832
2833 /* Select the better of two edges E1 and E2 to use to determine the
2834 stack layout for their shared destination basic block. This is
2835 typically the more frequently executed. The edge E1 may be NULL
2836 (in which case E2 is returned), but E2 is always non-NULL. */
2837
2838 static edge
2839 better_edge (edge e1, edge e2)
2840 {
2841 if (!e1)
2842 return e2;
2843
2844 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2845 return e1;
2846 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2847 return e2;
2848
2849 if (e1->count > e2->count)
2850 return e1;
2851 if (e1->count < e2->count)
2852 return e2;
2853
2854 /* Prefer critical edges to minimize inserting compensation code on
2855 critical edges. */
2856
2857 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2858 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2859
2860 /* Avoid non-deterministic behavior. */
2861 return (e1->src->index < e2->src->index) ? e1 : e2;
2862 }
2863
2864 /* Convert stack register references in one block. */
2865
2866 static void
2867 convert_regs_1 (basic_block block)
2868 {
2869 struct stack_def regstack;
2870 block_info bi = BLOCK_INFO (block);
2871 int reg;
2872 rtx insn, next;
2873 bool control_flow_insn_deleted = false;
2874
2875 any_malformed_asm = false;
2876
2877 /* Choose an initial stack layout, if one hasn't already been chosen. */
2878 if (bi->stack_in.top == -2)
2879 {
2880 edge e, beste = NULL;
2881 edge_iterator ei;
2882
2883 /* Select the best incoming edge (typically the most frequent) to
2884 use as a template for this basic block. */
2885 FOR_EACH_EDGE (e, ei, block->preds)
2886 if (BLOCK_INFO (e->src)->done)
2887 beste = better_edge (beste, e);
2888
2889 if (beste)
2890 propagate_stack (beste);
2891 else
2892 {
2893 /* No predecessors. Create an arbitrary input stack. */
2894 bi->stack_in.top = -1;
2895 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2896 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2897 bi->stack_in.reg[++bi->stack_in.top] = reg;
2898 }
2899 }
2900
2901 if (dump_file)
2902 {
2903 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2904 print_stack (dump_file, &bi->stack_in);
2905 }
2906
2907 /* Process all insns in this block. Keep track of NEXT so that we
2908 don't process insns emitted while substituting in INSN. */
2909 current_block = block;
2910 next = BB_HEAD (block);
2911 regstack = bi->stack_in;
2912 starting_stack_p = true;
2913
2914 do
2915 {
2916 insn = next;
2917 next = NEXT_INSN (insn);
2918
2919 /* Ensure we have not missed a block boundary. */
2920 gcc_assert (next);
2921 if (insn == BB_END (block))
2922 next = NULL;
2923
2924 /* Don't bother processing unless there is a stack reg
2925 mentioned or if it's a CALL_INSN. */
2926 if (stack_regs_mentioned (insn)
2927 || CALL_P (insn))
2928 {
2929 if (dump_file)
2930 {
2931 fprintf (dump_file, " insn %d input stack: ",
2932 INSN_UID (insn));
2933 print_stack (dump_file, &regstack);
2934 }
2935 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2936 starting_stack_p = false;
2937 }
2938 }
2939 while (next);
2940
2941 if (dump_file)
2942 {
2943 fprintf (dump_file, "Expected live registers [");
2944 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2945 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2946 fprintf (dump_file, " %d", reg);
2947 fprintf (dump_file, " ]\nOutput stack: ");
2948 print_stack (dump_file, &regstack);
2949 }
2950
2951 insn = BB_END (block);
2952 if (JUMP_P (insn))
2953 insn = PREV_INSN (insn);
2954
2955 /* If the function is declared to return a value, but it returns one
2956 in only some cases, some registers might come live here. Emit
2957 necessary moves for them. */
2958
2959 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2960 {
2961 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2962 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2963 {
2964 rtx set;
2965
2966 if (dump_file)
2967 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2968
2969 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2970 insn = emit_insn_after (set, insn);
2971 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2972 }
2973 }
2974
2975 /* Amongst the insns possibly deleted during the substitution process above,
2976 might have been the only trapping insn in the block. We purge the now
2977 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2978 called at the end of convert_regs. The order in which we process the
2979 blocks ensures that we never delete an already processed edge.
2980
2981 Note that, at this point, the CFG may have been damaged by the emission
2982 of instructions after an abnormal call, which moves the basic block end
2983 (and is the reason why we call fixup_abnormal_edges later). So we must
2984 be sure that the trapping insn has been deleted before trying to purge
2985 dead edges, otherwise we risk purging valid edges.
2986
2987 ??? We are normally supposed not to delete trapping insns, so we pretend
2988 that the insns deleted above don't actually trap. It would have been
2989 better to detect this earlier and avoid creating the EH edge in the first
2990 place, still, but we don't have enough information at that time. */
2991
2992 if (control_flow_insn_deleted)
2993 purge_dead_edges (block);
2994
2995 /* Something failed if the stack lives don't match. If we had malformed
2996 asms, we zapped the instruction itself, but that didn't produce the
2997 same pattern of register kills as before. */
2998
2999 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3000 || any_malformed_asm);
3001 bi->stack_out = regstack;
3002 bi->done = true;
3003 }
3004
3005 /* Convert registers in all blocks reachable from BLOCK. */
3006
3007 static void
3008 convert_regs_2 (basic_block block)
3009 {
3010 basic_block *stack, *sp;
3011
3012 /* We process the blocks in a top-down manner, in a way such that one block
3013 is only processed after all its predecessors. The number of predecessors
3014 of every block has already been computed. */
3015
3016 stack = XNEWVEC (basic_block, n_basic_blocks);
3017 sp = stack;
3018
3019 *sp++ = block;
3020
3021 do
3022 {
3023 edge e;
3024 edge_iterator ei;
3025
3026 block = *--sp;
3027
3028 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3029 some dead EH outgoing edge after the deletion of the trapping
3030 insn inside the block. Since the number of predecessors of
3031 BLOCK's successors was computed based on the initial edge set,
3032 we check the necessity to process some of these successors
3033 before such an edge deletion may happen. However, there is
3034 a pitfall: if BLOCK is the only predecessor of a successor and
3035 the edge between them happens to be deleted, the successor
3036 becomes unreachable and should not be processed. The problem
3037 is that there is no way to preventively detect this case so we
3038 stack the successor in all cases and hand over the task of
3039 fixing up the discrepancy to convert_regs_1. */
3040
3041 FOR_EACH_EDGE (e, ei, block->succs)
3042 if (! (e->flags & EDGE_DFS_BACK))
3043 {
3044 BLOCK_INFO (e->dest)->predecessors--;
3045 if (!BLOCK_INFO (e->dest)->predecessors)
3046 *sp++ = e->dest;
3047 }
3048
3049 convert_regs_1 (block);
3050 }
3051 while (sp != stack);
3052
3053 free (stack);
3054 }
3055
3056 /* Traverse all basic blocks in a function, converting the register
3057 references in each insn from the "flat" register file that gcc uses,
3058 to the stack-like registers the 387 uses. */
3059
3060 static void
3061 convert_regs (void)
3062 {
3063 int inserted;
3064 basic_block b;
3065 edge e;
3066 edge_iterator ei;
3067
3068 /* Initialize uninitialized registers on function entry. */
3069 inserted = convert_regs_entry ();
3070
3071 /* Construct the desired stack for function exit. */
3072 convert_regs_exit ();
3073 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3074
3075 /* ??? Future: process inner loops first, and give them arbitrary
3076 initial stacks which emit_swap_insn can modify. This ought to
3077 prevent double fxch that often appears at the head of a loop. */
3078
3079 /* Process all blocks reachable from all entry points. */
3080 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3081 convert_regs_2 (e->dest);
3082
3083 /* ??? Process all unreachable blocks. Though there's no excuse
3084 for keeping these even when not optimizing. */
3085 FOR_EACH_BB (b)
3086 {
3087 block_info bi = BLOCK_INFO (b);
3088
3089 if (! bi->done)
3090 convert_regs_2 (b);
3091 }
3092
3093 inserted |= compensate_edges ();
3094
3095 clear_aux_for_blocks ();
3096
3097 fixup_abnormal_edges ();
3098 if (inserted)
3099 commit_edge_insertions ();
3100
3101 if (dump_file)
3102 fputc ('\n', dump_file);
3103 }
3104 \f
3105 /* Convert register usage from "flat" register file usage to a "stack
3106 register file. FILE is the dump file, if used.
3107
3108 Construct a CFG and run life analysis. Then convert each insn one
3109 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3110 code duplication created when the converter inserts pop insns on
3111 the edges. */
3112
3113 static bool
3114 reg_to_stack (void)
3115 {
3116 basic_block bb;
3117 int i;
3118 int max_uid;
3119
3120 /* Clean up previous run. */
3121 if (stack_regs_mentioned_data != NULL)
3122 VEC_free (char, heap, stack_regs_mentioned_data);
3123
3124 /* See if there is something to do. Flow analysis is quite
3125 expensive so we might save some compilation time. */
3126 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3127 if (df_regs_ever_live_p (i))
3128 break;
3129 if (i > LAST_STACK_REG)
3130 return false;
3131
3132 df_note_add_problem ();
3133 df_analyze ();
3134
3135 mark_dfs_back_edges ();
3136
3137 /* Set up block info for each basic block. */
3138 alloc_aux_for_blocks (sizeof (struct block_info_def));
3139 FOR_EACH_BB (bb)
3140 {
3141 block_info bi = BLOCK_INFO (bb);
3142 edge_iterator ei;
3143 edge e;
3144 int reg;
3145
3146 FOR_EACH_EDGE (e, ei, bb->preds)
3147 if (!(e->flags & EDGE_DFS_BACK)
3148 && e->src != ENTRY_BLOCK_PTR)
3149 bi->predecessors++;
3150
3151 /* Set current register status at last instruction `uninitialized'. */
3152 bi->stack_in.top = -2;
3153
3154 /* Copy live_at_end and live_at_start into temporaries. */
3155 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3156 {
3157 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3158 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3159 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3160 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3161 }
3162 }
3163
3164 /* Create the replacement registers up front. */
3165 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3166 {
3167 enum machine_mode mode;
3168 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3169 mode != VOIDmode;
3170 mode = GET_MODE_WIDER_MODE (mode))
3171 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3172 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3173 mode != VOIDmode;
3174 mode = GET_MODE_WIDER_MODE (mode))
3175 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3176 }
3177
3178 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3179
3180 /* A QNaN for initializing uninitialized variables.
3181
3182 ??? We can't load from constant memory in PIC mode, because
3183 we're inserting these instructions before the prologue and
3184 the PIC register hasn't been set up. In that case, fall back
3185 on zero, which we can get from `fldz'. */
3186
3187 if ((flag_pic && !TARGET_64BIT)
3188 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3189 not_a_num = CONST0_RTX (SFmode);
3190 else
3191 {
3192 REAL_VALUE_TYPE r;
3193
3194 real_nan (&r, "", 1, SFmode);
3195 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3196 not_a_num = force_const_mem (SFmode, not_a_num);
3197 }
3198
3199 /* Allocate a cache for stack_regs_mentioned. */
3200 max_uid = get_max_uid ();
3201 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3202 memset (VEC_address (char, stack_regs_mentioned_data),
3203 0, sizeof (char) * (max_uid + 1));
3204
3205 convert_regs ();
3206
3207 free_aux_for_blocks ();
3208 return true;
3209 }
3210 #endif /* STACK_REGS */
3211 \f
3212 static bool
3213 gate_handle_stack_regs (void)
3214 {
3215 #ifdef STACK_REGS
3216 return 1;
3217 #else
3218 return 0;
3219 #endif
3220 }
3221
3222 struct rtl_opt_pass pass_stack_regs =
3223 {
3224 {
3225 RTL_PASS,
3226 NULL, /* name */
3227 gate_handle_stack_regs, /* gate */
3228 NULL, /* execute */
3229 NULL, /* sub */
3230 NULL, /* next */
3231 0, /* static_pass_number */
3232 TV_REG_STACK, /* tv_id */
3233 0, /* properties_required */
3234 0, /* properties_provided */
3235 0, /* properties_destroyed */
3236 0, /* todo_flags_start */
3237 0 /* todo_flags_finish */
3238 }
3239 };
3240
3241 /* Convert register usage from flat register file usage to a stack
3242 register file. */
3243 static unsigned int
3244 rest_of_handle_stack_regs (void)
3245 {
3246 #ifdef STACK_REGS
3247 reg_to_stack ();
3248 regstack_completed = 1;
3249 #endif
3250 return 0;
3251 }
3252
3253 struct rtl_opt_pass pass_stack_regs_run =
3254 {
3255 {
3256 RTL_PASS,
3257 "stack", /* name */
3258 NULL, /* gate */
3259 rest_of_handle_stack_regs, /* execute */
3260 NULL, /* sub */
3261 NULL, /* next */
3262 0, /* static_pass_number */
3263 TV_REG_STACK, /* tv_id */
3264 0, /* properties_required */
3265 0, /* properties_provided */
3266 0, /* properties_destroyed */
3267 0, /* todo_flags_start */
3268 TODO_df_finish | TODO_verify_rtl_sharing |
3269 TODO_dump_func |
3270 TODO_ggc_collect /* todo_flags_finish */
3271 }
3272 };