New syntax for -fsanitize-recover.
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
22
23 * The form of the input:
24
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
34
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
42
43 * The form of the output:
44
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
50
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
53
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
57
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
60
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
64
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
69
70 * Methodology:
71
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
75
76 * asm_operands:
77
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
81
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
85
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
89
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
96
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
99
100 3. It is possible that if an input dies in an insn, reload might
101 use the input reg for an output reload. Consider this example:
102
103 asm ("foo" : "=t" (a) : "f" (b));
104
105 This asm says that input B is not popped by the asm, and that
106 the asm pushes a result onto the reg-stack, i.e., the stack is one
107 deeper after the asm than it was before. But, it is possible that
108 reload will think that it can use the same reg for both the input and
109 the output, if input B dies in this insn.
110
111 If any input operand uses the "f" constraint, all output reg
112 constraints must use the "&" earlyclobber.
113
114 The asm above would be written as
115
116 asm ("foo" : "=&t" (a) : "f" (b));
117
118 4. Some operands need to be in particular places on the stack. All
119 output operands fall in this category - there is no other way to
120 know which regs the outputs appear in unless the user indicates
121 this in the constraints.
122
123 Output operands must specifically indicate which reg an output
124 appears in after an asm. "=f" is not allowed: the operand
125 constraints must select a class with a single reg.
126
127 5. Output operands may not be "inserted" between existing stack regs.
128 Since no 387 opcode uses a read/write operand, all output operands
129 are dead before the asm_operands, and are pushed by the asm_operands.
130 It makes no sense to push anywhere but the top of the reg-stack.
131
132 Output operands must start at the top of the reg-stack: output
133 operands may not "skip" a reg.
134
135 6. Some asm statements may need extra stack space for internal
136 calculations. This can be guaranteed by clobbering stack registers
137 unrelated to the inputs and outputs.
138
139 Here are a couple of reasonable asms to want to write. This asm
140 takes one input, which is internally popped, and produces two outputs.
141
142 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
143
144 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145 and replaces them with one output. The user must code the "st(1)"
146 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
147
148 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
149
150 */
151 \f
152 #include "config.h"
153 #include "system.h"
154 #include "coretypes.h"
155 #include "tm.h"
156 #include "tree.h"
157 #include "varasm.h"
158 #include "rtl-error.h"
159 #include "tm_p.h"
160 #include "hashtab.h"
161 #include "hash-set.h"
162 #include "vec.h"
163 #include "machmode.h"
164 #include "hard-reg-set.h"
165 #include "input.h"
166 #include "function.h"
167 #include "insn-config.h"
168 #include "regs.h"
169 #include "flags.h"
170 #include "recog.h"
171 #include "basic-block.h"
172 #include "reload.h"
173 #include "ggc.h"
174 #include "tree-pass.h"
175 #include "target.h"
176 #include "df.h"
177 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
178 #include "rtl-iter.h"
179
180 #ifdef STACK_REGS
181
182 /* We use this array to cache info about insns, because otherwise we
183 spend too much time in stack_regs_mentioned_p.
184
185 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
186 the insn uses stack registers, two indicates the insn does not use
187 stack registers. */
188 static vec<char> stack_regs_mentioned_data;
189
190 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
191
192 int regstack_completed = 0;
193
194 /* This is the basic stack record. TOP is an index into REG[] such
195 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
196
197 If TOP is -2, REG[] is not yet initialized. Stack initialization
198 consists of placing each live reg in array `reg' and setting `top'
199 appropriately.
200
201 REG_SET indicates which registers are live. */
202
203 typedef struct stack_def
204 {
205 int top; /* index to top stack element */
206 HARD_REG_SET reg_set; /* set of live registers */
207 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
208 } *stack_ptr;
209
210 /* This is used to carry information about basic blocks. It is
211 attached to the AUX field of the standard CFG block. */
212
213 typedef struct block_info_def
214 {
215 struct stack_def stack_in; /* Input stack configuration. */
216 struct stack_def stack_out; /* Output stack configuration. */
217 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
218 int done; /* True if block already converted. */
219 int predecessors; /* Number of predecessors that need
220 to be visited. */
221 } *block_info;
222
223 #define BLOCK_INFO(B) ((block_info) (B)->aux)
224
225 /* Passed to change_stack to indicate where to emit insns. */
226 enum emit_where
227 {
228 EMIT_AFTER,
229 EMIT_BEFORE
230 };
231
232 /* The block we're currently working on. */
233 static basic_block current_block;
234
235 /* In the current_block, whether we're processing the first register
236 stack or call instruction, i.e. the regstack is currently the
237 same as BLOCK_INFO(current_block)->stack_in. */
238 static bool starting_stack_p;
239
240 /* This is the register file for all register after conversion. */
241 static rtx
242 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
243
244 #define FP_MODE_REG(regno,mode) \
245 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
246
247 /* Used to initialize uninitialized registers. */
248 static rtx not_a_num;
249
250 /* Forward declarations */
251
252 static int stack_regs_mentioned_p (const_rtx pat);
253 static void pop_stack (stack_ptr, int);
254 static rtx *get_true_reg (rtx *);
255
256 static int check_asm_stack_operands (rtx_insn *);
257 static void get_asm_operands_in_out (rtx, int *, int *);
258 static rtx stack_result (tree);
259 static void replace_reg (rtx *, int);
260 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
261 static int get_hard_regnum (stack_ptr, rtx);
262 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
263 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
264 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
265 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
266 static int swap_rtx_condition_1 (rtx);
267 static int swap_rtx_condition (rtx_insn *);
268 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx);
269 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
270 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
271 static bool subst_stack_regs (rtx_insn *, stack_ptr);
272 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
273 static void print_stack (FILE *, stack_ptr);
274 static rtx_insn *next_flags_user (rtx_insn *);
275 \f
276 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
277
278 static int
279 stack_regs_mentioned_p (const_rtx pat)
280 {
281 const char *fmt;
282 int i;
283
284 if (STACK_REG_P (pat))
285 return 1;
286
287 fmt = GET_RTX_FORMAT (GET_CODE (pat));
288 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
289 {
290 if (fmt[i] == 'E')
291 {
292 int j;
293
294 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
295 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
296 return 1;
297 }
298 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
299 return 1;
300 }
301
302 return 0;
303 }
304
305 /* Return nonzero if INSN mentions stacked registers, else return zero. */
306
307 int
308 stack_regs_mentioned (const_rtx insn)
309 {
310 unsigned int uid, max;
311 int test;
312
313 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
314 return 0;
315
316 uid = INSN_UID (insn);
317 max = stack_regs_mentioned_data.length ();
318 if (uid >= max)
319 {
320 /* Allocate some extra size to avoid too many reallocs, but
321 do not grow too quickly. */
322 max = uid + uid / 20 + 1;
323 stack_regs_mentioned_data.safe_grow_cleared (max);
324 }
325
326 test = stack_regs_mentioned_data[uid];
327 if (test == 0)
328 {
329 /* This insn has yet to be examined. Do so now. */
330 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
331 stack_regs_mentioned_data[uid] = test;
332 }
333
334 return test == 1;
335 }
336 \f
337 static rtx ix86_flags_rtx;
338
339 static rtx_insn *
340 next_flags_user (rtx_insn *insn)
341 {
342 /* Search forward looking for the first use of this value.
343 Stop at block boundaries. */
344
345 while (insn != BB_END (current_block))
346 {
347 insn = NEXT_INSN (insn);
348
349 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
350 return insn;
351
352 if (CALL_P (insn))
353 return NULL;
354 }
355 return NULL;
356 }
357 \f
358 /* Reorganize the stack into ascending numbers, before this insn. */
359
360 static void
361 straighten_stack (rtx_insn *insn, stack_ptr regstack)
362 {
363 struct stack_def temp_stack;
364 int top;
365
366 /* If there is only a single register on the stack, then the stack is
367 already in increasing order and no reorganization is needed.
368
369 Similarly if the stack is empty. */
370 if (regstack->top <= 0)
371 return;
372
373 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
374
375 for (top = temp_stack.top = regstack->top; top >= 0; top--)
376 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
377
378 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
379 }
380
381 /* Pop a register from the stack. */
382
383 static void
384 pop_stack (stack_ptr regstack, int regno)
385 {
386 int top = regstack->top;
387
388 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
389 regstack->top--;
390 /* If regno was not at the top of stack then adjust stack. */
391 if (regstack->reg [top] != regno)
392 {
393 int i;
394 for (i = regstack->top; i >= 0; i--)
395 if (regstack->reg [i] == regno)
396 {
397 int j;
398 for (j = i; j < top; j++)
399 regstack->reg [j] = regstack->reg [j + 1];
400 break;
401 }
402 }
403 }
404 \f
405 /* Return a pointer to the REG expression within PAT. If PAT is not a
406 REG, possible enclosed by a conversion rtx, return the inner part of
407 PAT that stopped the search. */
408
409 static rtx *
410 get_true_reg (rtx *pat)
411 {
412 for (;;)
413 switch (GET_CODE (*pat))
414 {
415 case SUBREG:
416 /* Eliminate FP subregister accesses in favor of the
417 actual FP register in use. */
418 {
419 rtx subreg;
420 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
421 {
422 int regno_off = subreg_regno_offset (REGNO (subreg),
423 GET_MODE (subreg),
424 SUBREG_BYTE (*pat),
425 GET_MODE (*pat));
426 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
427 GET_MODE (subreg));
428 return pat;
429 }
430 }
431 case FLOAT:
432 case FIX:
433 case FLOAT_EXTEND:
434 pat = & XEXP (*pat, 0);
435 break;
436
437 case UNSPEC:
438 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
439 || XINT (*pat, 1) == UNSPEC_LDA)
440 pat = & XVECEXP (*pat, 0, 0);
441 return pat;
442
443 case FLOAT_TRUNCATE:
444 if (!flag_unsafe_math_optimizations)
445 return pat;
446 pat = & XEXP (*pat, 0);
447 break;
448
449 default:
450 return pat;
451 }
452 }
453 \f
454 /* Set if we find any malformed asms in a block. */
455 static bool any_malformed_asm;
456
457 /* There are many rules that an asm statement for stack-like regs must
458 follow. Those rules are explained at the top of this file: the rule
459 numbers below refer to that explanation. */
460
461 static int
462 check_asm_stack_operands (rtx_insn *insn)
463 {
464 int i;
465 int n_clobbers;
466 int malformed_asm = 0;
467 rtx body = PATTERN (insn);
468
469 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
470 char implicitly_dies[FIRST_PSEUDO_REGISTER];
471
472 rtx *clobber_reg = 0;
473 int n_inputs, n_outputs;
474
475 /* Find out what the constraints require. If no constraint
476 alternative matches, this asm is malformed. */
477 extract_insn (insn);
478 constrain_operands (1);
479
480 preprocess_constraints (insn);
481
482 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
483
484 if (which_alternative < 0)
485 {
486 malformed_asm = 1;
487 /* Avoid further trouble with this insn. */
488 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
489 return 0;
490 }
491 const operand_alternative *op_alt = which_op_alt ();
492
493 /* Strip SUBREGs here to make the following code simpler. */
494 for (i = 0; i < recog_data.n_operands; i++)
495 if (GET_CODE (recog_data.operand[i]) == SUBREG
496 && REG_P (SUBREG_REG (recog_data.operand[i])))
497 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
498
499 /* Set up CLOBBER_REG. */
500
501 n_clobbers = 0;
502
503 if (GET_CODE (body) == PARALLEL)
504 {
505 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
506
507 for (i = 0; i < XVECLEN (body, 0); i++)
508 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
509 {
510 rtx clobber = XVECEXP (body, 0, i);
511 rtx reg = XEXP (clobber, 0);
512
513 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
514 reg = SUBREG_REG (reg);
515
516 if (STACK_REG_P (reg))
517 {
518 clobber_reg[n_clobbers] = reg;
519 n_clobbers++;
520 }
521 }
522 }
523
524 /* Enforce rule #4: Output operands must specifically indicate which
525 reg an output appears in after an asm. "=f" is not allowed: the
526 operand constraints must select a class with a single reg.
527
528 Also enforce rule #5: Output operands must start at the top of
529 the reg-stack: output operands may not "skip" a reg. */
530
531 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
532 for (i = 0; i < n_outputs; i++)
533 if (STACK_REG_P (recog_data.operand[i]))
534 {
535 if (reg_class_size[(int) op_alt[i].cl] != 1)
536 {
537 error_for_asm (insn, "output constraint %d must specify a single register", i);
538 malformed_asm = 1;
539 }
540 else
541 {
542 int j;
543
544 for (j = 0; j < n_clobbers; j++)
545 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
546 {
547 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
548 i, reg_names [REGNO (clobber_reg[j])]);
549 malformed_asm = 1;
550 break;
551 }
552 if (j == n_clobbers)
553 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
554 }
555 }
556
557
558 /* Search for first non-popped reg. */
559 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
560 if (! reg_used_as_output[i])
561 break;
562
563 /* If there are any other popped regs, that's an error. */
564 for (; i < LAST_STACK_REG + 1; i++)
565 if (reg_used_as_output[i])
566 break;
567
568 if (i != LAST_STACK_REG + 1)
569 {
570 error_for_asm (insn, "output regs must be grouped at top of stack");
571 malformed_asm = 1;
572 }
573
574 /* Enforce rule #2: All implicitly popped input regs must be closer
575 to the top of the reg-stack than any input that is not implicitly
576 popped. */
577
578 memset (implicitly_dies, 0, sizeof (implicitly_dies));
579 for (i = n_outputs; i < n_outputs + n_inputs; i++)
580 if (STACK_REG_P (recog_data.operand[i]))
581 {
582 /* An input reg is implicitly popped if it is tied to an
583 output, or if there is a CLOBBER for it. */
584 int j;
585
586 for (j = 0; j < n_clobbers; j++)
587 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
588 break;
589
590 if (j < n_clobbers || op_alt[i].matches >= 0)
591 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
592 }
593
594 /* Search for first non-popped reg. */
595 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
596 if (! implicitly_dies[i])
597 break;
598
599 /* If there are any other popped regs, that's an error. */
600 for (; i < LAST_STACK_REG + 1; i++)
601 if (implicitly_dies[i])
602 break;
603
604 if (i != LAST_STACK_REG + 1)
605 {
606 error_for_asm (insn,
607 "implicitly popped regs must be grouped at top of stack");
608 malformed_asm = 1;
609 }
610
611 /* Enforce rule #3: If any input operand uses the "f" constraint, all
612 output constraints must use the "&" earlyclobber.
613
614 ??? Detect this more deterministically by having constrain_asm_operands
615 record any earlyclobber. */
616
617 for (i = n_outputs; i < n_outputs + n_inputs; i++)
618 if (op_alt[i].matches == -1)
619 {
620 int j;
621
622 for (j = 0; j < n_outputs; j++)
623 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
624 {
625 error_for_asm (insn,
626 "output operand %d must use %<&%> constraint", j);
627 malformed_asm = 1;
628 }
629 }
630
631 if (malformed_asm)
632 {
633 /* Avoid further trouble with this insn. */
634 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
635 any_malformed_asm = true;
636 return 0;
637 }
638
639 return 1;
640 }
641 \f
642 /* Calculate the number of inputs and outputs in BODY, an
643 asm_operands. N_OPERANDS is the total number of operands, and
644 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
645 placed. */
646
647 static void
648 get_asm_operands_in_out (rtx body, int *pout, int *pin)
649 {
650 rtx asmop = extract_asm_operands (body);
651
652 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
653 *pout = (recog_data.n_operands
654 - ASM_OPERANDS_INPUT_LENGTH (asmop)
655 - ASM_OPERANDS_LABEL_LENGTH (asmop));
656 }
657
658 /* If current function returns its result in an fp stack register,
659 return the REG. Otherwise, return 0. */
660
661 static rtx
662 stack_result (tree decl)
663 {
664 rtx result;
665
666 /* If the value is supposed to be returned in memory, then clearly
667 it is not returned in a stack register. */
668 if (aggregate_value_p (DECL_RESULT (decl), decl))
669 return 0;
670
671 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
672 if (result != 0)
673 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
674 decl, true);
675
676 return result != 0 && STACK_REG_P (result) ? result : 0;
677 }
678 \f
679
680 /*
681 * This section deals with stack register substitution, and forms the second
682 * pass over the RTL.
683 */
684
685 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
686 the desired hard REGNO. */
687
688 static void
689 replace_reg (rtx *reg, int regno)
690 {
691 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
692 gcc_assert (STACK_REG_P (*reg));
693
694 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
695 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
696
697 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
698 }
699
700 /* Remove a note of type NOTE, which must be found, for register
701 number REGNO from INSN. Remove only one such note. */
702
703 static void
704 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
705 {
706 rtx *note_link, this_rtx;
707
708 note_link = &REG_NOTES (insn);
709 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
710 if (REG_NOTE_KIND (this_rtx) == note
711 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
712 {
713 *note_link = XEXP (this_rtx, 1);
714 return;
715 }
716 else
717 note_link = &XEXP (this_rtx, 1);
718
719 gcc_unreachable ();
720 }
721
722 /* Find the hard register number of virtual register REG in REGSTACK.
723 The hard register number is relative to the top of the stack. -1 is
724 returned if the register is not found. */
725
726 static int
727 get_hard_regnum (stack_ptr regstack, rtx reg)
728 {
729 int i;
730
731 gcc_assert (STACK_REG_P (reg));
732
733 for (i = regstack->top; i >= 0; i--)
734 if (regstack->reg[i] == REGNO (reg))
735 break;
736
737 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
738 }
739 \f
740 /* Emit an insn to pop virtual register REG before or after INSN.
741 REGSTACK is the stack state after INSN and is updated to reflect this
742 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
743 is represented as a SET whose destination is the register to be popped
744 and source is the top of stack. A death note for the top of stack
745 cases the movdf pattern to pop. */
746
747 static rtx_insn *
748 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg, enum emit_where where)
749 {
750 rtx_insn *pop_insn;
751 rtx pop_rtx;
752 int hard_regno;
753
754 /* For complex types take care to pop both halves. These may survive in
755 CLOBBER and USE expressions. */
756 if (COMPLEX_MODE_P (GET_MODE (reg)))
757 {
758 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
759 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
760
761 pop_insn = NULL;
762 if (get_hard_regnum (regstack, reg1) >= 0)
763 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
764 if (get_hard_regnum (regstack, reg2) >= 0)
765 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
766 gcc_assert (pop_insn);
767 return pop_insn;
768 }
769
770 hard_regno = get_hard_regnum (regstack, reg);
771
772 gcc_assert (hard_regno >= FIRST_STACK_REG);
773
774 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
775 FP_MODE_REG (FIRST_STACK_REG, DFmode));
776
777 if (where == EMIT_AFTER)
778 pop_insn = emit_insn_after (pop_rtx, insn);
779 else
780 pop_insn = emit_insn_before (pop_rtx, insn);
781
782 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
783
784 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
785 = regstack->reg[regstack->top];
786 regstack->top -= 1;
787 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
788
789 return pop_insn;
790 }
791 \f
792 /* Emit an insn before or after INSN to swap virtual register REG with
793 the top of stack. REGSTACK is the stack state before the swap, and
794 is updated to reflect the swap. A swap insn is represented as a
795 PARALLEL of two patterns: each pattern moves one reg to the other.
796
797 If REG is already at the top of the stack, no insn is emitted. */
798
799 static void
800 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
801 {
802 int hard_regno;
803 rtx swap_rtx;
804 int tmp, other_reg; /* swap regno temps */
805 rtx_insn *i1; /* the stack-reg insn prior to INSN */
806 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
807
808 hard_regno = get_hard_regnum (regstack, reg);
809
810 if (hard_regno == FIRST_STACK_REG)
811 return;
812 if (hard_regno == -1)
813 {
814 /* Something failed if the register wasn't on the stack. If we had
815 malformed asms, we zapped the instruction itself, but that didn't
816 produce the same pattern of register sets as before. To prevent
817 further failure, adjust REGSTACK to include REG at TOP. */
818 gcc_assert (any_malformed_asm);
819 regstack->reg[++regstack->top] = REGNO (reg);
820 return;
821 }
822 gcc_assert (hard_regno >= FIRST_STACK_REG);
823
824 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
825
826 tmp = regstack->reg[other_reg];
827 regstack->reg[other_reg] = regstack->reg[regstack->top];
828 regstack->reg[regstack->top] = tmp;
829
830 /* Find the previous insn involving stack regs, but don't pass a
831 block boundary. */
832 i1 = NULL;
833 if (current_block && insn != BB_HEAD (current_block))
834 {
835 rtx_insn *tmp = PREV_INSN (insn);
836 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
837 while (tmp != limit)
838 {
839 if (LABEL_P (tmp)
840 || CALL_P (tmp)
841 || NOTE_INSN_BASIC_BLOCK_P (tmp)
842 || (NONJUMP_INSN_P (tmp)
843 && stack_regs_mentioned (tmp)))
844 {
845 i1 = tmp;
846 break;
847 }
848 tmp = PREV_INSN (tmp);
849 }
850 }
851
852 if (i1 != NULL_RTX
853 && (i1set = single_set (i1)) != NULL_RTX)
854 {
855 rtx i1src = *get_true_reg (&SET_SRC (i1set));
856 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
857
858 /* If the previous register stack push was from the reg we are to
859 swap with, omit the swap. */
860
861 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
862 && REG_P (i1src)
863 && REGNO (i1src) == (unsigned) hard_regno - 1
864 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
865 return;
866
867 /* If the previous insn wrote to the reg we are to swap with,
868 omit the swap. */
869
870 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
871 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
872 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
873 return;
874 }
875
876 /* Avoid emitting the swap if this is the first register stack insn
877 of the current_block. Instead update the current_block's stack_in
878 and let compensate edges take care of this for us. */
879 if (current_block && starting_stack_p)
880 {
881 BLOCK_INFO (current_block)->stack_in = *regstack;
882 starting_stack_p = false;
883 return;
884 }
885
886 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
887 FP_MODE_REG (FIRST_STACK_REG, XFmode));
888
889 if (i1)
890 emit_insn_after (swap_rtx, i1);
891 else if (current_block)
892 emit_insn_before (swap_rtx, BB_HEAD (current_block));
893 else
894 emit_insn_before (swap_rtx, insn);
895 }
896 \f
897 /* Emit an insns before INSN to swap virtual register SRC1 with
898 the top of stack and virtual register SRC2 with second stack
899 slot. REGSTACK is the stack state before the swaps, and
900 is updated to reflect the swaps. A swap insn is represented as a
901 PARALLEL of two patterns: each pattern moves one reg to the other.
902
903 If SRC1 and/or SRC2 are already at the right place, no swap insn
904 is emitted. */
905
906 static void
907 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
908 {
909 struct stack_def temp_stack;
910 int regno, j, k, temp;
911
912 temp_stack = *regstack;
913
914 /* Place operand 1 at the top of stack. */
915 regno = get_hard_regnum (&temp_stack, src1);
916 gcc_assert (regno >= 0);
917 if (regno != FIRST_STACK_REG)
918 {
919 k = temp_stack.top - (regno - FIRST_STACK_REG);
920 j = temp_stack.top;
921
922 temp = temp_stack.reg[k];
923 temp_stack.reg[k] = temp_stack.reg[j];
924 temp_stack.reg[j] = temp;
925 }
926
927 /* Place operand 2 next on the stack. */
928 regno = get_hard_regnum (&temp_stack, src2);
929 gcc_assert (regno >= 0);
930 if (regno != FIRST_STACK_REG + 1)
931 {
932 k = temp_stack.top - (regno - FIRST_STACK_REG);
933 j = temp_stack.top - 1;
934
935 temp = temp_stack.reg[k];
936 temp_stack.reg[k] = temp_stack.reg[j];
937 temp_stack.reg[j] = temp;
938 }
939
940 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
941 }
942 \f
943 /* Handle a move to or from a stack register in PAT, which is in INSN.
944 REGSTACK is the current stack. Return whether a control flow insn
945 was deleted in the process. */
946
947 static bool
948 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
949 {
950 rtx *psrc = get_true_reg (&SET_SRC (pat));
951 rtx *pdest = get_true_reg (&SET_DEST (pat));
952 rtx src, dest;
953 rtx note;
954 bool control_flow_insn_deleted = false;
955
956 src = *psrc; dest = *pdest;
957
958 if (STACK_REG_P (src) && STACK_REG_P (dest))
959 {
960 /* Write from one stack reg to another. If SRC dies here, then
961 just change the register mapping and delete the insn. */
962
963 note = find_regno_note (insn, REG_DEAD, REGNO (src));
964 if (note)
965 {
966 int i;
967
968 /* If this is a no-op move, there must not be a REG_DEAD note. */
969 gcc_assert (REGNO (src) != REGNO (dest));
970
971 for (i = regstack->top; i >= 0; i--)
972 if (regstack->reg[i] == REGNO (src))
973 break;
974
975 /* The destination must be dead, or life analysis is borked. */
976 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
977
978 /* If the source is not live, this is yet another case of
979 uninitialized variables. Load up a NaN instead. */
980 if (i < 0)
981 return move_nan_for_stack_reg (insn, regstack, dest);
982
983 /* It is possible that the dest is unused after this insn.
984 If so, just pop the src. */
985
986 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
987 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
988 else
989 {
990 regstack->reg[i] = REGNO (dest);
991 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
992 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
993 }
994
995 control_flow_insn_deleted |= control_flow_insn_p (insn);
996 delete_insn (insn);
997 return control_flow_insn_deleted;
998 }
999
1000 /* The source reg does not die. */
1001
1002 /* If this appears to be a no-op move, delete it, or else it
1003 will confuse the machine description output patterns. But if
1004 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1005 for REG_UNUSED will not work for deleted insns. */
1006
1007 if (REGNO (src) == REGNO (dest))
1008 {
1009 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1010 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1011
1012 control_flow_insn_deleted |= control_flow_insn_p (insn);
1013 delete_insn (insn);
1014 return control_flow_insn_deleted;
1015 }
1016
1017 /* The destination ought to be dead. */
1018 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1019
1020 replace_reg (psrc, get_hard_regnum (regstack, src));
1021
1022 regstack->reg[++regstack->top] = REGNO (dest);
1023 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1024 replace_reg (pdest, FIRST_STACK_REG);
1025 }
1026 else if (STACK_REG_P (src))
1027 {
1028 /* Save from a stack reg to MEM, or possibly integer reg. Since
1029 only top of stack may be saved, emit an exchange first if
1030 needs be. */
1031
1032 emit_swap_insn (insn, regstack, src);
1033
1034 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1035 if (note)
1036 {
1037 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1038 regstack->top--;
1039 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1040 }
1041 else if ((GET_MODE (src) == XFmode)
1042 && regstack->top < REG_STACK_SIZE - 1)
1043 {
1044 /* A 387 cannot write an XFmode value to a MEM without
1045 clobbering the source reg. The output code can handle
1046 this by reading back the value from the MEM.
1047 But it is more efficient to use a temp register if one is
1048 available. Push the source value here if the register
1049 stack is not full, and then write the value to memory via
1050 a pop. */
1051 rtx push_rtx;
1052 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1053
1054 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1055 emit_insn_before (push_rtx, insn);
1056 add_reg_note (insn, REG_DEAD, top_stack_reg);
1057 }
1058
1059 replace_reg (psrc, FIRST_STACK_REG);
1060 }
1061 else
1062 {
1063 rtx pat = PATTERN (insn);
1064
1065 gcc_assert (STACK_REG_P (dest));
1066
1067 /* Load from MEM, or possibly integer REG or constant, into the
1068 stack regs. The actual target is always the top of the
1069 stack. The stack mapping is changed to reflect that DEST is
1070 now at top of stack. */
1071
1072 /* The destination ought to be dead. However, there is a
1073 special case with i387 UNSPEC_TAN, where destination is live
1074 (an argument to fptan) but inherent load of 1.0 is modelled
1075 as a load from a constant. */
1076 if (GET_CODE (pat) == PARALLEL
1077 && XVECLEN (pat, 0) == 2
1078 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1079 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1080 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1081 emit_swap_insn (insn, regstack, dest);
1082 else
1083 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1084
1085 gcc_assert (regstack->top < REG_STACK_SIZE);
1086
1087 regstack->reg[++regstack->top] = REGNO (dest);
1088 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1089 replace_reg (pdest, FIRST_STACK_REG);
1090 }
1091
1092 return control_flow_insn_deleted;
1093 }
1094
1095 /* A helper function which replaces INSN with a pattern that loads up
1096 a NaN into DEST, then invokes move_for_stack_reg. */
1097
1098 static bool
1099 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1100 {
1101 rtx pat;
1102
1103 dest = FP_MODE_REG (REGNO (dest), SFmode);
1104 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1105 PATTERN (insn) = pat;
1106 INSN_CODE (insn) = -1;
1107
1108 return move_for_stack_reg (insn, regstack, pat);
1109 }
1110 \f
1111 /* Swap the condition on a branch, if there is one. Return true if we
1112 found a condition to swap. False if the condition was not used as
1113 such. */
1114
1115 static int
1116 swap_rtx_condition_1 (rtx pat)
1117 {
1118 const char *fmt;
1119 int i, r = 0;
1120
1121 if (COMPARISON_P (pat))
1122 {
1123 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1124 r = 1;
1125 }
1126 else
1127 {
1128 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1129 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1130 {
1131 if (fmt[i] == 'E')
1132 {
1133 int j;
1134
1135 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1136 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1137 }
1138 else if (fmt[i] == 'e')
1139 r |= swap_rtx_condition_1 (XEXP (pat, i));
1140 }
1141 }
1142
1143 return r;
1144 }
1145
1146 static int
1147 swap_rtx_condition (rtx_insn *insn)
1148 {
1149 rtx pat = PATTERN (insn);
1150
1151 /* We're looking for a single set to cc0 or an HImode temporary. */
1152
1153 if (GET_CODE (pat) == SET
1154 && REG_P (SET_DEST (pat))
1155 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1156 {
1157 insn = next_flags_user (insn);
1158 if (insn == NULL_RTX)
1159 return 0;
1160 pat = PATTERN (insn);
1161 }
1162
1163 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1164 with the cc value right now. We may be able to search for one
1165 though. */
1166
1167 if (GET_CODE (pat) == SET
1168 && GET_CODE (SET_SRC (pat)) == UNSPEC
1169 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1170 {
1171 rtx dest = SET_DEST (pat);
1172
1173 /* Search forward looking for the first use of this value.
1174 Stop at block boundaries. */
1175 while (insn != BB_END (current_block))
1176 {
1177 insn = NEXT_INSN (insn);
1178 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1179 break;
1180 if (CALL_P (insn))
1181 return 0;
1182 }
1183
1184 /* We haven't found it. */
1185 if (insn == BB_END (current_block))
1186 return 0;
1187
1188 /* So we've found the insn using this value. If it is anything
1189 other than sahf or the value does not die (meaning we'd have
1190 to search further), then we must give up. */
1191 pat = PATTERN (insn);
1192 if (GET_CODE (pat) != SET
1193 || GET_CODE (SET_SRC (pat)) != UNSPEC
1194 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1195 || ! dead_or_set_p (insn, dest))
1196 return 0;
1197
1198 /* Now we are prepared to handle this as a normal cc0 setter. */
1199 insn = next_flags_user (insn);
1200 if (insn == NULL_RTX)
1201 return 0;
1202 pat = PATTERN (insn);
1203 }
1204
1205 if (swap_rtx_condition_1 (pat))
1206 {
1207 int fail = 0;
1208 INSN_CODE (insn) = -1;
1209 if (recog_memoized (insn) == -1)
1210 fail = 1;
1211 /* In case the flags don't die here, recurse to try fix
1212 following user too. */
1213 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1214 {
1215 insn = next_flags_user (insn);
1216 if (!insn || !swap_rtx_condition (insn))
1217 fail = 1;
1218 }
1219 if (fail)
1220 {
1221 swap_rtx_condition_1 (pat);
1222 return 0;
1223 }
1224 return 1;
1225 }
1226 return 0;
1227 }
1228
1229 /* Handle a comparison. Special care needs to be taken to avoid
1230 causing comparisons that a 387 cannot do correctly, such as EQ.
1231
1232 Also, a pop insn may need to be emitted. The 387 does have an
1233 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1234 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1235 set up. */
1236
1237 static void
1238 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat_src)
1239 {
1240 rtx *src1, *src2;
1241 rtx src1_note, src2_note;
1242
1243 src1 = get_true_reg (&XEXP (pat_src, 0));
1244 src2 = get_true_reg (&XEXP (pat_src, 1));
1245
1246 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1247 registers that die in this insn - move those to stack top first. */
1248 if ((! STACK_REG_P (*src1)
1249 || (STACK_REG_P (*src2)
1250 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1251 && swap_rtx_condition (insn))
1252 {
1253 rtx temp;
1254 temp = XEXP (pat_src, 0);
1255 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1256 XEXP (pat_src, 1) = temp;
1257
1258 src1 = get_true_reg (&XEXP (pat_src, 0));
1259 src2 = get_true_reg (&XEXP (pat_src, 1));
1260
1261 INSN_CODE (insn) = -1;
1262 }
1263
1264 /* We will fix any death note later. */
1265
1266 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1267
1268 if (STACK_REG_P (*src2))
1269 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1270 else
1271 src2_note = NULL_RTX;
1272
1273 emit_swap_insn (insn, regstack, *src1);
1274
1275 replace_reg (src1, FIRST_STACK_REG);
1276
1277 if (STACK_REG_P (*src2))
1278 replace_reg (src2, get_hard_regnum (regstack, *src2));
1279
1280 if (src1_note)
1281 {
1282 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1283 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1284 }
1285
1286 /* If the second operand dies, handle that. But if the operands are
1287 the same stack register, don't bother, because only one death is
1288 needed, and it was just handled. */
1289
1290 if (src2_note
1291 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1292 && REGNO (*src1) == REGNO (*src2)))
1293 {
1294 /* As a special case, two regs may die in this insn if src2 is
1295 next to top of stack and the top of stack also dies. Since
1296 we have already popped src1, "next to top of stack" is really
1297 at top (FIRST_STACK_REG) now. */
1298
1299 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1300 && src1_note)
1301 {
1302 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1303 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1304 }
1305 else
1306 {
1307 /* The 386 can only represent death of the first operand in
1308 the case handled above. In all other cases, emit a separate
1309 pop and remove the death note from here. */
1310 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1311 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1312 EMIT_AFTER);
1313 }
1314 }
1315 }
1316 \f
1317 /* Substitute hardware stack regs in debug insn INSN, using stack
1318 layout REGSTACK. If we can't find a hardware stack reg for any of
1319 the REGs in it, reset the debug insn. */
1320
1321 static void
1322 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1323 {
1324 subrtx_ptr_iterator::array_type array;
1325 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1326 {
1327 rtx *loc = *iter;
1328 rtx x = *loc;
1329 if (STACK_REG_P (x))
1330 {
1331 int hard_regno = get_hard_regnum (regstack, x);
1332
1333 /* If we can't find an active register, reset this debug insn. */
1334 if (hard_regno == -1)
1335 {
1336 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1337 return;
1338 }
1339
1340 gcc_assert (hard_regno >= FIRST_STACK_REG);
1341 replace_reg (loc, hard_regno);
1342 iter.skip_subrtxes ();
1343 }
1344 }
1345 }
1346
1347 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1348 is the current register layout. Return whether a control flow insn
1349 was deleted in the process. */
1350
1351 static bool
1352 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1353 {
1354 rtx *dest, *src;
1355 bool control_flow_insn_deleted = false;
1356
1357 switch (GET_CODE (pat))
1358 {
1359 case USE:
1360 /* Deaths in USE insns can happen in non optimizing compilation.
1361 Handle them by popping the dying register. */
1362 src = get_true_reg (&XEXP (pat, 0));
1363 if (STACK_REG_P (*src)
1364 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1365 {
1366 /* USEs are ignored for liveness information so USEs of dead
1367 register might happen. */
1368 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1369 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1370 return control_flow_insn_deleted;
1371 }
1372 /* Uninitialized USE might happen for functions returning uninitialized
1373 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1374 so it is safe to ignore the use here. This is consistent with behavior
1375 of dataflow analyzer that ignores USE too. (This also imply that
1376 forcibly initializing the register to NaN here would lead to ICE later,
1377 since the REG_DEAD notes are not issued.) */
1378 break;
1379
1380 case VAR_LOCATION:
1381 gcc_unreachable ();
1382
1383 case CLOBBER:
1384 {
1385 rtx note;
1386
1387 dest = get_true_reg (&XEXP (pat, 0));
1388 if (STACK_REG_P (*dest))
1389 {
1390 note = find_reg_note (insn, REG_DEAD, *dest);
1391
1392 if (pat != PATTERN (insn))
1393 {
1394 /* The fix_truncdi_1 pattern wants to be able to
1395 allocate its own scratch register. It does this by
1396 clobbering an fp reg so that it is assured of an
1397 empty reg-stack register. If the register is live,
1398 kill it now. Remove the DEAD/UNUSED note so we
1399 don't try to kill it later too.
1400
1401 In reality the UNUSED note can be absent in some
1402 complicated cases when the register is reused for
1403 partially set variable. */
1404
1405 if (note)
1406 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1407 else
1408 note = find_reg_note (insn, REG_UNUSED, *dest);
1409 if (note)
1410 remove_note (insn, note);
1411 replace_reg (dest, FIRST_STACK_REG + 1);
1412 }
1413 else
1414 {
1415 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1416 indicates an uninitialized value. Because reload removed
1417 all other clobbers, this must be due to a function
1418 returning without a value. Load up a NaN. */
1419
1420 if (!note)
1421 {
1422 rtx t = *dest;
1423 if (COMPLEX_MODE_P (GET_MODE (t)))
1424 {
1425 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1426 if (get_hard_regnum (regstack, u) == -1)
1427 {
1428 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1429 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1430 control_flow_insn_deleted
1431 |= move_nan_for_stack_reg (insn2, regstack, u);
1432 }
1433 }
1434 if (get_hard_regnum (regstack, t) == -1)
1435 control_flow_insn_deleted
1436 |= move_nan_for_stack_reg (insn, regstack, t);
1437 }
1438 }
1439 }
1440 break;
1441 }
1442
1443 case SET:
1444 {
1445 rtx *src1 = (rtx *) 0, *src2;
1446 rtx src1_note, src2_note;
1447 rtx pat_src;
1448
1449 dest = get_true_reg (&SET_DEST (pat));
1450 src = get_true_reg (&SET_SRC (pat));
1451 pat_src = SET_SRC (pat);
1452
1453 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1454 if (STACK_REG_P (*src)
1455 || (STACK_REG_P (*dest)
1456 && (REG_P (*src) || MEM_P (*src)
1457 || CONST_DOUBLE_P (*src))))
1458 {
1459 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1460 break;
1461 }
1462
1463 switch (GET_CODE (pat_src))
1464 {
1465 case COMPARE:
1466 compare_for_stack_reg (insn, regstack, pat_src);
1467 break;
1468
1469 case CALL:
1470 {
1471 int count;
1472 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1473 --count >= 0;)
1474 {
1475 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1476 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1477 }
1478 }
1479 replace_reg (dest, FIRST_STACK_REG);
1480 break;
1481
1482 case REG:
1483 /* This is a `tstM2' case. */
1484 gcc_assert (*dest == cc0_rtx);
1485 src1 = src;
1486
1487 /* Fall through. */
1488
1489 case FLOAT_TRUNCATE:
1490 case SQRT:
1491 case ABS:
1492 case NEG:
1493 /* These insns only operate on the top of the stack. DEST might
1494 be cc0_rtx if we're processing a tstM pattern. Also, it's
1495 possible that the tstM case results in a REG_DEAD note on the
1496 source. */
1497
1498 if (src1 == 0)
1499 src1 = get_true_reg (&XEXP (pat_src, 0));
1500
1501 emit_swap_insn (insn, regstack, *src1);
1502
1503 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1504
1505 if (STACK_REG_P (*dest))
1506 replace_reg (dest, FIRST_STACK_REG);
1507
1508 if (src1_note)
1509 {
1510 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1511 regstack->top--;
1512 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1513 }
1514
1515 replace_reg (src1, FIRST_STACK_REG);
1516 break;
1517
1518 case MINUS:
1519 case DIV:
1520 /* On i386, reversed forms of subM3 and divM3 exist for
1521 MODE_FLOAT, so the same code that works for addM3 and mulM3
1522 can be used. */
1523 case MULT:
1524 case PLUS:
1525 /* These insns can accept the top of stack as a destination
1526 from a stack reg or mem, or can use the top of stack as a
1527 source and some other stack register (possibly top of stack)
1528 as a destination. */
1529
1530 src1 = get_true_reg (&XEXP (pat_src, 0));
1531 src2 = get_true_reg (&XEXP (pat_src, 1));
1532
1533 /* We will fix any death note later. */
1534
1535 if (STACK_REG_P (*src1))
1536 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1537 else
1538 src1_note = NULL_RTX;
1539 if (STACK_REG_P (*src2))
1540 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1541 else
1542 src2_note = NULL_RTX;
1543
1544 /* If either operand is not a stack register, then the dest
1545 must be top of stack. */
1546
1547 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1548 emit_swap_insn (insn, regstack, *dest);
1549 else
1550 {
1551 /* Both operands are REG. If neither operand is already
1552 at the top of stack, choose to make the one that is the
1553 dest the new top of stack. */
1554
1555 int src1_hard_regnum, src2_hard_regnum;
1556
1557 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1558 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1559
1560 /* If the source is not live, this is yet another case of
1561 uninitialized variables. Load up a NaN instead. */
1562 if (src1_hard_regnum == -1)
1563 {
1564 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1565 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1566 control_flow_insn_deleted
1567 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1568 }
1569 if (src2_hard_regnum == -1)
1570 {
1571 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1572 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1573 control_flow_insn_deleted
1574 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1575 }
1576
1577 if (src1_hard_regnum != FIRST_STACK_REG
1578 && src2_hard_regnum != FIRST_STACK_REG)
1579 emit_swap_insn (insn, regstack, *dest);
1580 }
1581
1582 if (STACK_REG_P (*src1))
1583 replace_reg (src1, get_hard_regnum (regstack, *src1));
1584 if (STACK_REG_P (*src2))
1585 replace_reg (src2, get_hard_regnum (regstack, *src2));
1586
1587 if (src1_note)
1588 {
1589 rtx src1_reg = XEXP (src1_note, 0);
1590
1591 /* If the register that dies is at the top of stack, then
1592 the destination is somewhere else - merely substitute it.
1593 But if the reg that dies is not at top of stack, then
1594 move the top of stack to the dead reg, as though we had
1595 done the insn and then a store-with-pop. */
1596
1597 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1598 {
1599 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1600 replace_reg (dest, get_hard_regnum (regstack, *dest));
1601 }
1602 else
1603 {
1604 int regno = get_hard_regnum (regstack, src1_reg);
1605
1606 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1607 replace_reg (dest, regno);
1608
1609 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1610 = regstack->reg[regstack->top];
1611 }
1612
1613 CLEAR_HARD_REG_BIT (regstack->reg_set,
1614 REGNO (XEXP (src1_note, 0)));
1615 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1616 regstack->top--;
1617 }
1618 else if (src2_note)
1619 {
1620 rtx src2_reg = XEXP (src2_note, 0);
1621 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1622 {
1623 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1624 replace_reg (dest, get_hard_regnum (regstack, *dest));
1625 }
1626 else
1627 {
1628 int regno = get_hard_regnum (regstack, src2_reg);
1629
1630 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1631 replace_reg (dest, regno);
1632
1633 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1634 = regstack->reg[regstack->top];
1635 }
1636
1637 CLEAR_HARD_REG_BIT (regstack->reg_set,
1638 REGNO (XEXP (src2_note, 0)));
1639 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1640 regstack->top--;
1641 }
1642 else
1643 {
1644 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1645 replace_reg (dest, get_hard_regnum (regstack, *dest));
1646 }
1647
1648 /* Keep operand 1 matching with destination. */
1649 if (COMMUTATIVE_ARITH_P (pat_src)
1650 && REG_P (*src1) && REG_P (*src2)
1651 && REGNO (*src1) != REGNO (*dest))
1652 {
1653 int tmp = REGNO (*src1);
1654 replace_reg (src1, REGNO (*src2));
1655 replace_reg (src2, tmp);
1656 }
1657 break;
1658
1659 case UNSPEC:
1660 switch (XINT (pat_src, 1))
1661 {
1662 case UNSPEC_STA:
1663 case UNSPEC_FIST:
1664
1665 case UNSPEC_FIST_FLOOR:
1666 case UNSPEC_FIST_CEIL:
1667
1668 /* These insns only operate on the top of the stack. */
1669
1670 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1671 emit_swap_insn (insn, regstack, *src1);
1672
1673 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1674
1675 if (STACK_REG_P (*dest))
1676 replace_reg (dest, FIRST_STACK_REG);
1677
1678 if (src1_note)
1679 {
1680 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1681 regstack->top--;
1682 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1683 }
1684
1685 replace_reg (src1, FIRST_STACK_REG);
1686 break;
1687
1688 case UNSPEC_FXAM:
1689
1690 /* This insn only operate on the top of the stack. */
1691
1692 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1693 emit_swap_insn (insn, regstack, *src1);
1694
1695 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1696
1697 replace_reg (src1, FIRST_STACK_REG);
1698
1699 if (src1_note)
1700 {
1701 remove_regno_note (insn, REG_DEAD,
1702 REGNO (XEXP (src1_note, 0)));
1703 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1704 EMIT_AFTER);
1705 }
1706
1707 break;
1708
1709 case UNSPEC_SIN:
1710 case UNSPEC_COS:
1711 case UNSPEC_FRNDINT:
1712 case UNSPEC_F2XM1:
1713
1714 case UNSPEC_FRNDINT_FLOOR:
1715 case UNSPEC_FRNDINT_CEIL:
1716 case UNSPEC_FRNDINT_TRUNC:
1717 case UNSPEC_FRNDINT_MASK_PM:
1718
1719 /* Above insns operate on the top of the stack. */
1720
1721 case UNSPEC_SINCOS_COS:
1722 case UNSPEC_XTRACT_FRACT:
1723
1724 /* Above insns operate on the top two stack slots,
1725 first part of one input, double output insn. */
1726
1727 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1728
1729 emit_swap_insn (insn, regstack, *src1);
1730
1731 /* Input should never die, it is replaced with output. */
1732 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1733 gcc_assert (!src1_note);
1734
1735 if (STACK_REG_P (*dest))
1736 replace_reg (dest, FIRST_STACK_REG);
1737
1738 replace_reg (src1, FIRST_STACK_REG);
1739 break;
1740
1741 case UNSPEC_SINCOS_SIN:
1742 case UNSPEC_XTRACT_EXP:
1743
1744 /* These insns operate on the top two stack slots,
1745 second part of one input, double output insn. */
1746
1747 regstack->top++;
1748 /* FALLTHRU */
1749
1750 case UNSPEC_TAN:
1751
1752 /* For UNSPEC_TAN, regstack->top is already increased
1753 by inherent load of constant 1.0. */
1754
1755 /* Output value is generated in the second stack slot.
1756 Move current value from second slot to the top. */
1757 regstack->reg[regstack->top]
1758 = regstack->reg[regstack->top - 1];
1759
1760 gcc_assert (STACK_REG_P (*dest));
1761
1762 regstack->reg[regstack->top - 1] = REGNO (*dest);
1763 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1764 replace_reg (dest, FIRST_STACK_REG + 1);
1765
1766 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1767
1768 replace_reg (src1, FIRST_STACK_REG);
1769 break;
1770
1771 case UNSPEC_FPATAN:
1772 case UNSPEC_FYL2X:
1773 case UNSPEC_FYL2XP1:
1774 /* These insns operate on the top two stack slots. */
1775
1776 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1777 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1778
1779 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1780 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1781
1782 swap_to_top (insn, regstack, *src1, *src2);
1783
1784 replace_reg (src1, FIRST_STACK_REG);
1785 replace_reg (src2, FIRST_STACK_REG + 1);
1786
1787 if (src1_note)
1788 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1789 if (src2_note)
1790 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1791
1792 /* Pop both input operands from the stack. */
1793 CLEAR_HARD_REG_BIT (regstack->reg_set,
1794 regstack->reg[regstack->top]);
1795 CLEAR_HARD_REG_BIT (regstack->reg_set,
1796 regstack->reg[regstack->top - 1]);
1797 regstack->top -= 2;
1798
1799 /* Push the result back onto the stack. */
1800 regstack->reg[++regstack->top] = REGNO (*dest);
1801 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1802 replace_reg (dest, FIRST_STACK_REG);
1803 break;
1804
1805 case UNSPEC_FSCALE_FRACT:
1806 case UNSPEC_FPREM_F:
1807 case UNSPEC_FPREM1_F:
1808 /* These insns operate on the top two stack slots,
1809 first part of double input, double output insn. */
1810
1811 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1812 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1813
1814 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1815 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1816
1817 /* Inputs should never die, they are
1818 replaced with outputs. */
1819 gcc_assert (!src1_note);
1820 gcc_assert (!src2_note);
1821
1822 swap_to_top (insn, regstack, *src1, *src2);
1823
1824 /* Push the result back onto stack. Empty stack slot
1825 will be filled in second part of insn. */
1826 if (STACK_REG_P (*dest))
1827 {
1828 regstack->reg[regstack->top] = REGNO (*dest);
1829 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1830 replace_reg (dest, FIRST_STACK_REG);
1831 }
1832
1833 replace_reg (src1, FIRST_STACK_REG);
1834 replace_reg (src2, FIRST_STACK_REG + 1);
1835 break;
1836
1837 case UNSPEC_FSCALE_EXP:
1838 case UNSPEC_FPREM_U:
1839 case UNSPEC_FPREM1_U:
1840 /* These insns operate on the top two stack slots,
1841 second part of double input, double output insn. */
1842
1843 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1844 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1845
1846 /* Push the result back onto stack. Fill empty slot from
1847 first part of insn and fix top of stack pointer. */
1848 if (STACK_REG_P (*dest))
1849 {
1850 regstack->reg[regstack->top - 1] = REGNO (*dest);
1851 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1852 replace_reg (dest, FIRST_STACK_REG + 1);
1853 }
1854
1855 replace_reg (src1, FIRST_STACK_REG);
1856 replace_reg (src2, FIRST_STACK_REG + 1);
1857 break;
1858
1859 case UNSPEC_C2_FLAG:
1860 /* This insn operates on the top two stack slots,
1861 third part of C2 setting double input insn. */
1862
1863 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1864 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1865
1866 replace_reg (src1, FIRST_STACK_REG);
1867 replace_reg (src2, FIRST_STACK_REG + 1);
1868 break;
1869
1870 case UNSPEC_SAHF:
1871 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1872 The combination matches the PPRO fcomi instruction. */
1873
1874 pat_src = XVECEXP (pat_src, 0, 0);
1875 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1876 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1877 /* Fall through. */
1878
1879 case UNSPEC_FNSTSW:
1880 /* Combined fcomp+fnstsw generated for doing well with
1881 CSE. When optimizing this would have been broken
1882 up before now. */
1883
1884 pat_src = XVECEXP (pat_src, 0, 0);
1885 gcc_assert (GET_CODE (pat_src) == COMPARE);
1886
1887 compare_for_stack_reg (insn, regstack, pat_src);
1888 break;
1889
1890 default:
1891 gcc_unreachable ();
1892 }
1893 break;
1894
1895 case IF_THEN_ELSE:
1896 /* This insn requires the top of stack to be the destination. */
1897
1898 src1 = get_true_reg (&XEXP (pat_src, 1));
1899 src2 = get_true_reg (&XEXP (pat_src, 2));
1900
1901 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1902 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1903
1904 /* If the comparison operator is an FP comparison operator,
1905 it is handled correctly by compare_for_stack_reg () who
1906 will move the destination to the top of stack. But if the
1907 comparison operator is not an FP comparison operator, we
1908 have to handle it here. */
1909 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1910 && REGNO (*dest) != regstack->reg[regstack->top])
1911 {
1912 /* In case one of operands is the top of stack and the operands
1913 dies, it is safe to make it the destination operand by
1914 reversing the direction of cmove and avoid fxch. */
1915 if ((REGNO (*src1) == regstack->reg[regstack->top]
1916 && src1_note)
1917 || (REGNO (*src2) == regstack->reg[regstack->top]
1918 && src2_note))
1919 {
1920 int idx1 = (get_hard_regnum (regstack, *src1)
1921 - FIRST_STACK_REG);
1922 int idx2 = (get_hard_regnum (regstack, *src2)
1923 - FIRST_STACK_REG);
1924
1925 /* Make reg-stack believe that the operands are already
1926 swapped on the stack */
1927 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1928 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1929
1930 /* Reverse condition to compensate the operand swap.
1931 i386 do have comparison always reversible. */
1932 PUT_CODE (XEXP (pat_src, 0),
1933 reversed_comparison_code (XEXP (pat_src, 0), insn));
1934 }
1935 else
1936 emit_swap_insn (insn, regstack, *dest);
1937 }
1938
1939 {
1940 rtx src_note [3];
1941 int i;
1942
1943 src_note[0] = 0;
1944 src_note[1] = src1_note;
1945 src_note[2] = src2_note;
1946
1947 if (STACK_REG_P (*src1))
1948 replace_reg (src1, get_hard_regnum (regstack, *src1));
1949 if (STACK_REG_P (*src2))
1950 replace_reg (src2, get_hard_regnum (regstack, *src2));
1951
1952 for (i = 1; i <= 2; i++)
1953 if (src_note [i])
1954 {
1955 int regno = REGNO (XEXP (src_note[i], 0));
1956
1957 /* If the register that dies is not at the top of
1958 stack, then move the top of stack to the dead reg.
1959 Top of stack should never die, as it is the
1960 destination. */
1961 gcc_assert (regno != regstack->reg[regstack->top]);
1962 remove_regno_note (insn, REG_DEAD, regno);
1963 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1964 EMIT_AFTER);
1965 }
1966 }
1967
1968 /* Make dest the top of stack. Add dest to regstack if
1969 not present. */
1970 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1971 regstack->reg[++regstack->top] = REGNO (*dest);
1972 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1973 replace_reg (dest, FIRST_STACK_REG);
1974 break;
1975
1976 default:
1977 gcc_unreachable ();
1978 }
1979 break;
1980 }
1981
1982 default:
1983 break;
1984 }
1985
1986 return control_flow_insn_deleted;
1987 }
1988 \f
1989 /* Substitute hard regnums for any stack regs in INSN, which has
1990 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1991 before the insn, and is updated with changes made here.
1992
1993 There are several requirements and assumptions about the use of
1994 stack-like regs in asm statements. These rules are enforced by
1995 record_asm_stack_regs; see comments there for details. Any
1996 asm_operands left in the RTL at this point may be assume to meet the
1997 requirements, since record_asm_stack_regs removes any problem asm. */
1998
1999 static void
2000 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2001 {
2002 rtx body = PATTERN (insn);
2003
2004 rtx *note_reg; /* Array of note contents */
2005 rtx **note_loc; /* Address of REG field of each note */
2006 enum reg_note *note_kind; /* The type of each note */
2007
2008 rtx *clobber_reg = 0;
2009 rtx **clobber_loc = 0;
2010
2011 struct stack_def temp_stack;
2012 int n_notes;
2013 int n_clobbers;
2014 rtx note;
2015 int i;
2016 int n_inputs, n_outputs;
2017
2018 if (! check_asm_stack_operands (insn))
2019 return;
2020
2021 /* Find out what the constraints required. If no constraint
2022 alternative matches, that is a compiler bug: we should have caught
2023 such an insn in check_asm_stack_operands. */
2024 extract_insn (insn);
2025 constrain_operands (1);
2026
2027 preprocess_constraints (insn);
2028 const operand_alternative *op_alt = which_op_alt ();
2029
2030 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2031
2032 /* Strip SUBREGs here to make the following code simpler. */
2033 for (i = 0; i < recog_data.n_operands; i++)
2034 if (GET_CODE (recog_data.operand[i]) == SUBREG
2035 && REG_P (SUBREG_REG (recog_data.operand[i])))
2036 {
2037 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2038 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2039 }
2040
2041 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2042
2043 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2044 i++;
2045
2046 note_reg = XALLOCAVEC (rtx, i);
2047 note_loc = XALLOCAVEC (rtx *, i);
2048 note_kind = XALLOCAVEC (enum reg_note, i);
2049
2050 n_notes = 0;
2051 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2052 {
2053 if (GET_CODE (note) != EXPR_LIST)
2054 continue;
2055 rtx reg = XEXP (note, 0);
2056 rtx *loc = & XEXP (note, 0);
2057
2058 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2059 {
2060 loc = & SUBREG_REG (reg);
2061 reg = SUBREG_REG (reg);
2062 }
2063
2064 if (STACK_REG_P (reg)
2065 && (REG_NOTE_KIND (note) == REG_DEAD
2066 || REG_NOTE_KIND (note) == REG_UNUSED))
2067 {
2068 note_reg[n_notes] = reg;
2069 note_loc[n_notes] = loc;
2070 note_kind[n_notes] = REG_NOTE_KIND (note);
2071 n_notes++;
2072 }
2073 }
2074
2075 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2076
2077 n_clobbers = 0;
2078
2079 if (GET_CODE (body) == PARALLEL)
2080 {
2081 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2082 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2083
2084 for (i = 0; i < XVECLEN (body, 0); i++)
2085 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2086 {
2087 rtx clobber = XVECEXP (body, 0, i);
2088 rtx reg = XEXP (clobber, 0);
2089 rtx *loc = & XEXP (clobber, 0);
2090
2091 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2092 {
2093 loc = & SUBREG_REG (reg);
2094 reg = SUBREG_REG (reg);
2095 }
2096
2097 if (STACK_REG_P (reg))
2098 {
2099 clobber_reg[n_clobbers] = reg;
2100 clobber_loc[n_clobbers] = loc;
2101 n_clobbers++;
2102 }
2103 }
2104 }
2105
2106 temp_stack = *regstack;
2107
2108 /* Put the input regs into the desired place in TEMP_STACK. */
2109
2110 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2111 if (STACK_REG_P (recog_data.operand[i])
2112 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2113 && op_alt[i].cl != FLOAT_REGS)
2114 {
2115 /* If an operand needs to be in a particular reg in
2116 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2117 these constraints are for single register classes, and
2118 reload guaranteed that operand[i] is already in that class,
2119 we can just use REGNO (recog_data.operand[i]) to know which
2120 actual reg this operand needs to be in. */
2121
2122 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2123
2124 gcc_assert (regno >= 0);
2125
2126 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2127 {
2128 /* recog_data.operand[i] is not in the right place. Find
2129 it and swap it with whatever is already in I's place.
2130 K is where recog_data.operand[i] is now. J is where it
2131 should be. */
2132 int j, k, temp;
2133
2134 k = temp_stack.top - (regno - FIRST_STACK_REG);
2135 j = (temp_stack.top
2136 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2137
2138 temp = temp_stack.reg[k];
2139 temp_stack.reg[k] = temp_stack.reg[j];
2140 temp_stack.reg[j] = temp;
2141 }
2142 }
2143
2144 /* Emit insns before INSN to make sure the reg-stack is in the right
2145 order. */
2146
2147 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2148
2149 /* Make the needed input register substitutions. Do death notes and
2150 clobbers too, because these are for inputs, not outputs. */
2151
2152 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2153 if (STACK_REG_P (recog_data.operand[i]))
2154 {
2155 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2156
2157 gcc_assert (regnum >= 0);
2158
2159 replace_reg (recog_data.operand_loc[i], regnum);
2160 }
2161
2162 for (i = 0; i < n_notes; i++)
2163 if (note_kind[i] == REG_DEAD)
2164 {
2165 int regnum = get_hard_regnum (regstack, note_reg[i]);
2166
2167 gcc_assert (regnum >= 0);
2168
2169 replace_reg (note_loc[i], regnum);
2170 }
2171
2172 for (i = 0; i < n_clobbers; i++)
2173 {
2174 /* It's OK for a CLOBBER to reference a reg that is not live.
2175 Don't try to replace it in that case. */
2176 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2177
2178 if (regnum >= 0)
2179 {
2180 /* Sigh - clobbers always have QImode. But replace_reg knows
2181 that these regs can't be MODE_INT and will assert. Just put
2182 the right reg there without calling replace_reg. */
2183
2184 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2185 }
2186 }
2187
2188 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2189
2190 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2191 if (STACK_REG_P (recog_data.operand[i]))
2192 {
2193 /* An input reg is implicitly popped if it is tied to an
2194 output, or if there is a CLOBBER for it. */
2195 int j;
2196
2197 for (j = 0; j < n_clobbers; j++)
2198 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2199 break;
2200
2201 if (j < n_clobbers || op_alt[i].matches >= 0)
2202 {
2203 /* recog_data.operand[i] might not be at the top of stack.
2204 But that's OK, because all we need to do is pop the
2205 right number of regs off of the top of the reg-stack.
2206 record_asm_stack_regs guaranteed that all implicitly
2207 popped regs were grouped at the top of the reg-stack. */
2208
2209 CLEAR_HARD_REG_BIT (regstack->reg_set,
2210 regstack->reg[regstack->top]);
2211 regstack->top--;
2212 }
2213 }
2214
2215 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2216 Note that there isn't any need to substitute register numbers.
2217 ??? Explain why this is true. */
2218
2219 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2220 {
2221 /* See if there is an output for this hard reg. */
2222 int j;
2223
2224 for (j = 0; j < n_outputs; j++)
2225 if (STACK_REG_P (recog_data.operand[j])
2226 && REGNO (recog_data.operand[j]) == (unsigned) i)
2227 {
2228 regstack->reg[++regstack->top] = i;
2229 SET_HARD_REG_BIT (regstack->reg_set, i);
2230 break;
2231 }
2232 }
2233
2234 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2235 input that the asm didn't implicitly pop. If the asm didn't
2236 implicitly pop an input reg, that reg will still be live.
2237
2238 Note that we can't use find_regno_note here: the register numbers
2239 in the death notes have already been substituted. */
2240
2241 for (i = 0; i < n_outputs; i++)
2242 if (STACK_REG_P (recog_data.operand[i]))
2243 {
2244 int j;
2245
2246 for (j = 0; j < n_notes; j++)
2247 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2248 && note_kind[j] == REG_UNUSED)
2249 {
2250 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2251 EMIT_AFTER);
2252 break;
2253 }
2254 }
2255
2256 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2257 if (STACK_REG_P (recog_data.operand[i]))
2258 {
2259 int j;
2260
2261 for (j = 0; j < n_notes; j++)
2262 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2263 && note_kind[j] == REG_DEAD
2264 && TEST_HARD_REG_BIT (regstack->reg_set,
2265 REGNO (recog_data.operand[i])))
2266 {
2267 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2268 EMIT_AFTER);
2269 break;
2270 }
2271 }
2272 }
2273 \f
2274 /* Substitute stack hard reg numbers for stack virtual registers in
2275 INSN. Non-stack register numbers are not changed. REGSTACK is the
2276 current stack content. Insns may be emitted as needed to arrange the
2277 stack for the 387 based on the contents of the insn. Return whether
2278 a control flow insn was deleted in the process. */
2279
2280 static bool
2281 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2282 {
2283 rtx *note_link, note;
2284 bool control_flow_insn_deleted = false;
2285 int i;
2286
2287 if (CALL_P (insn))
2288 {
2289 int top = regstack->top;
2290
2291 /* If there are any floating point parameters to be passed in
2292 registers for this call, make sure they are in the right
2293 order. */
2294
2295 if (top >= 0)
2296 {
2297 straighten_stack (insn, regstack);
2298
2299 /* Now mark the arguments as dead after the call. */
2300
2301 while (regstack->top >= 0)
2302 {
2303 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2304 regstack->top--;
2305 }
2306 }
2307 }
2308
2309 /* Do the actual substitution if any stack regs are mentioned.
2310 Since we only record whether entire insn mentions stack regs, and
2311 subst_stack_regs_pat only works for patterns that contain stack regs,
2312 we must check each pattern in a parallel here. A call_value_pop could
2313 fail otherwise. */
2314
2315 if (stack_regs_mentioned (insn))
2316 {
2317 int n_operands = asm_noperands (PATTERN (insn));
2318 if (n_operands >= 0)
2319 {
2320 /* This insn is an `asm' with operands. Decode the operands,
2321 decide how many are inputs, and do register substitution.
2322 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2323
2324 subst_asm_stack_regs (insn, regstack);
2325 return control_flow_insn_deleted;
2326 }
2327
2328 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2329 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2330 {
2331 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2332 {
2333 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2334 XVECEXP (PATTERN (insn), 0, i)
2335 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2336 control_flow_insn_deleted
2337 |= subst_stack_regs_pat (insn, regstack,
2338 XVECEXP (PATTERN (insn), 0, i));
2339 }
2340 }
2341 else
2342 control_flow_insn_deleted
2343 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2344 }
2345
2346 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2347 REG_UNUSED will already have been dealt with, so just return. */
2348
2349 if (NOTE_P (insn) || insn->deleted ())
2350 return control_flow_insn_deleted;
2351
2352 /* If this a noreturn call, we can't insert pop insns after it.
2353 Instead, reset the stack state to empty. */
2354 if (CALL_P (insn)
2355 && find_reg_note (insn, REG_NORETURN, NULL))
2356 {
2357 regstack->top = -1;
2358 CLEAR_HARD_REG_SET (regstack->reg_set);
2359 return control_flow_insn_deleted;
2360 }
2361
2362 /* If there is a REG_UNUSED note on a stack register on this insn,
2363 the indicated reg must be popped. The REG_UNUSED note is removed,
2364 since the form of the newly emitted pop insn references the reg,
2365 making it no longer `unset'. */
2366
2367 note_link = &REG_NOTES (insn);
2368 for (note = *note_link; note; note = XEXP (note, 1))
2369 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2370 {
2371 *note_link = XEXP (note, 1);
2372 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2373 }
2374 else
2375 note_link = &XEXP (note, 1);
2376
2377 return control_flow_insn_deleted;
2378 }
2379 \f
2380 /* Change the organization of the stack so that it fits a new basic
2381 block. Some registers might have to be popped, but there can never be
2382 a register live in the new block that is not now live.
2383
2384 Insert any needed insns before or after INSN, as indicated by
2385 WHERE. OLD is the original stack layout, and NEW is the desired
2386 form. OLD is updated to reflect the code emitted, i.e., it will be
2387 the same as NEW upon return.
2388
2389 This function will not preserve block_end[]. But that information
2390 is no longer needed once this has executed. */
2391
2392 static void
2393 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2394 enum emit_where where)
2395 {
2396 int reg;
2397 int update_end = 0;
2398 int i;
2399
2400 /* Stack adjustments for the first insn in a block update the
2401 current_block's stack_in instead of inserting insns directly.
2402 compensate_edges will add the necessary code later. */
2403 if (current_block
2404 && starting_stack_p
2405 && where == EMIT_BEFORE)
2406 {
2407 BLOCK_INFO (current_block)->stack_in = *new_stack;
2408 starting_stack_p = false;
2409 *old = *new_stack;
2410 return;
2411 }
2412
2413 /* We will be inserting new insns "backwards". If we are to insert
2414 after INSN, find the next insn, and insert before it. */
2415
2416 if (where == EMIT_AFTER)
2417 {
2418 if (current_block && BB_END (current_block) == insn)
2419 update_end = 1;
2420 insn = NEXT_INSN (insn);
2421 }
2422
2423 /* Initialize partially dead variables. */
2424 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2425 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2426 && !TEST_HARD_REG_BIT (old->reg_set, i))
2427 {
2428 old->reg[++old->top] = i;
2429 SET_HARD_REG_BIT (old->reg_set, i);
2430 emit_insn_before (gen_rtx_SET (VOIDmode,
2431 FP_MODE_REG (i, SFmode), not_a_num), insn);
2432 }
2433
2434 /* Pop any registers that are not needed in the new block. */
2435
2436 /* If the destination block's stack already has a specified layout
2437 and contains two or more registers, use a more intelligent algorithm
2438 to pop registers that minimizes the number number of fxchs below. */
2439 if (new_stack->top > 0)
2440 {
2441 bool slots[REG_STACK_SIZE];
2442 int pops[REG_STACK_SIZE];
2443 int next, dest, topsrc;
2444
2445 /* First pass to determine the free slots. */
2446 for (reg = 0; reg <= new_stack->top; reg++)
2447 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2448
2449 /* Second pass to allocate preferred slots. */
2450 topsrc = -1;
2451 for (reg = old->top; reg > new_stack->top; reg--)
2452 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2453 {
2454 dest = -1;
2455 for (next = 0; next <= new_stack->top; next++)
2456 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2457 {
2458 /* If this is a preference for the new top of stack, record
2459 the fact by remembering it's old->reg in topsrc. */
2460 if (next == new_stack->top)
2461 topsrc = reg;
2462 slots[next] = true;
2463 dest = next;
2464 break;
2465 }
2466 pops[reg] = dest;
2467 }
2468 else
2469 pops[reg] = reg;
2470
2471 /* Intentionally, avoid placing the top of stack in it's correct
2472 location, if we still need to permute the stack below and we
2473 can usefully place it somewhere else. This is the case if any
2474 slot is still unallocated, in which case we should place the
2475 top of stack there. */
2476 if (topsrc != -1)
2477 for (reg = 0; reg < new_stack->top; reg++)
2478 if (!slots[reg])
2479 {
2480 pops[topsrc] = reg;
2481 slots[new_stack->top] = false;
2482 slots[reg] = true;
2483 break;
2484 }
2485
2486 /* Third pass allocates remaining slots and emits pop insns. */
2487 next = new_stack->top;
2488 for (reg = old->top; reg > new_stack->top; reg--)
2489 {
2490 dest = pops[reg];
2491 if (dest == -1)
2492 {
2493 /* Find next free slot. */
2494 while (slots[next])
2495 next--;
2496 dest = next--;
2497 }
2498 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2499 EMIT_BEFORE);
2500 }
2501 }
2502 else
2503 {
2504 /* The following loop attempts to maximize the number of times we
2505 pop the top of the stack, as this permits the use of the faster
2506 ffreep instruction on platforms that support it. */
2507 int live, next;
2508
2509 live = 0;
2510 for (reg = 0; reg <= old->top; reg++)
2511 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2512 live++;
2513
2514 next = live;
2515 while (old->top >= live)
2516 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2517 {
2518 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2519 next--;
2520 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2521 EMIT_BEFORE);
2522 }
2523 else
2524 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2525 EMIT_BEFORE);
2526 }
2527
2528 if (new_stack->top == -2)
2529 {
2530 /* If the new block has never been processed, then it can inherit
2531 the old stack order. */
2532
2533 new_stack->top = old->top;
2534 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2535 }
2536 else
2537 {
2538 /* This block has been entered before, and we must match the
2539 previously selected stack order. */
2540
2541 /* By now, the only difference should be the order of the stack,
2542 not their depth or liveliness. */
2543
2544 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2545 gcc_assert (old->top == new_stack->top);
2546
2547 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2548 swaps until the stack is correct.
2549
2550 The worst case number of swaps emitted is N + 2, where N is the
2551 depth of the stack. In some cases, the reg at the top of
2552 stack may be correct, but swapped anyway in order to fix
2553 other regs. But since we never swap any other reg away from
2554 its correct slot, this algorithm will converge. */
2555
2556 if (new_stack->top != -1)
2557 do
2558 {
2559 /* Swap the reg at top of stack into the position it is
2560 supposed to be in, until the correct top of stack appears. */
2561
2562 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2563 {
2564 for (reg = new_stack->top; reg >= 0; reg--)
2565 if (new_stack->reg[reg] == old->reg[old->top])
2566 break;
2567
2568 gcc_assert (reg != -1);
2569
2570 emit_swap_insn (insn, old,
2571 FP_MODE_REG (old->reg[reg], DFmode));
2572 }
2573
2574 /* See if any regs remain incorrect. If so, bring an
2575 incorrect reg to the top of stack, and let the while loop
2576 above fix it. */
2577
2578 for (reg = new_stack->top; reg >= 0; reg--)
2579 if (new_stack->reg[reg] != old->reg[reg])
2580 {
2581 emit_swap_insn (insn, old,
2582 FP_MODE_REG (old->reg[reg], DFmode));
2583 break;
2584 }
2585 } while (reg >= 0);
2586
2587 /* At this point there must be no differences. */
2588
2589 for (reg = old->top; reg >= 0; reg--)
2590 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2591 }
2592
2593 if (update_end)
2594 BB_END (current_block) = PREV_INSN (insn);
2595 }
2596 \f
2597 /* Print stack configuration. */
2598
2599 static void
2600 print_stack (FILE *file, stack_ptr s)
2601 {
2602 if (! file)
2603 return;
2604
2605 if (s->top == -2)
2606 fprintf (file, "uninitialized\n");
2607 else if (s->top == -1)
2608 fprintf (file, "empty\n");
2609 else
2610 {
2611 int i;
2612 fputs ("[ ", file);
2613 for (i = 0; i <= s->top; ++i)
2614 fprintf (file, "%d ", s->reg[i]);
2615 fputs ("]\n", file);
2616 }
2617 }
2618 \f
2619 /* This function was doing life analysis. We now let the regular live
2620 code do it's job, so we only need to check some extra invariants
2621 that reg-stack expects. Primary among these being that all registers
2622 are initialized before use.
2623
2624 The function returns true when code was emitted to CFG edges and
2625 commit_edge_insertions needs to be called. */
2626
2627 static int
2628 convert_regs_entry (void)
2629 {
2630 int inserted = 0;
2631 edge e;
2632 edge_iterator ei;
2633
2634 /* Load something into each stack register live at function entry.
2635 Such live registers can be caused by uninitialized variables or
2636 functions not returning values on all paths. In order to keep
2637 the push/pop code happy, and to not scrog the register stack, we
2638 must put something in these registers. Use a QNaN.
2639
2640 Note that we are inserting converted code here. This code is
2641 never seen by the convert_regs pass. */
2642
2643 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2644 {
2645 basic_block block = e->dest;
2646 block_info bi = BLOCK_INFO (block);
2647 int reg, top = -1;
2648
2649 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2650 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2651 {
2652 rtx init;
2653
2654 bi->stack_in.reg[++top] = reg;
2655
2656 init = gen_rtx_SET (VOIDmode,
2657 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2658 not_a_num);
2659 insert_insn_on_edge (init, e);
2660 inserted = 1;
2661 }
2662
2663 bi->stack_in.top = top;
2664 }
2665
2666 return inserted;
2667 }
2668
2669 /* Construct the desired stack for function exit. This will either
2670 be `empty', or the function return value at top-of-stack. */
2671
2672 static void
2673 convert_regs_exit (void)
2674 {
2675 int value_reg_low, value_reg_high;
2676 stack_ptr output_stack;
2677 rtx retvalue;
2678
2679 retvalue = stack_result (current_function_decl);
2680 value_reg_low = value_reg_high = -1;
2681 if (retvalue)
2682 {
2683 value_reg_low = REGNO (retvalue);
2684 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2685 }
2686
2687 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2688 if (value_reg_low == -1)
2689 output_stack->top = -1;
2690 else
2691 {
2692 int reg;
2693
2694 output_stack->top = value_reg_high - value_reg_low;
2695 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2696 {
2697 output_stack->reg[value_reg_high - reg] = reg;
2698 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2699 }
2700 }
2701 }
2702
2703 /* Copy the stack info from the end of edge E's source block to the
2704 start of E's destination block. */
2705
2706 static void
2707 propagate_stack (edge e)
2708 {
2709 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2710 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2711 int reg;
2712
2713 /* Preserve the order of the original stack, but check whether
2714 any pops are needed. */
2715 dest_stack->top = -1;
2716 for (reg = 0; reg <= src_stack->top; ++reg)
2717 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2718 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2719
2720 /* Push in any partially dead values. */
2721 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2722 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2723 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2724 dest_stack->reg[++dest_stack->top] = reg;
2725 }
2726
2727
2728 /* Adjust the stack of edge E's source block on exit to match the stack
2729 of it's target block upon input. The stack layouts of both blocks
2730 should have been defined by now. */
2731
2732 static bool
2733 compensate_edge (edge e)
2734 {
2735 basic_block source = e->src, target = e->dest;
2736 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2737 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2738 struct stack_def regstack;
2739 int reg;
2740
2741 if (dump_file)
2742 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2743
2744 gcc_assert (target_stack->top != -2);
2745
2746 /* Check whether stacks are identical. */
2747 if (target_stack->top == source_stack->top)
2748 {
2749 for (reg = target_stack->top; reg >= 0; --reg)
2750 if (target_stack->reg[reg] != source_stack->reg[reg])
2751 break;
2752
2753 if (reg == -1)
2754 {
2755 if (dump_file)
2756 fprintf (dump_file, "no changes needed\n");
2757 return false;
2758 }
2759 }
2760
2761 if (dump_file)
2762 {
2763 fprintf (dump_file, "correcting stack to ");
2764 print_stack (dump_file, target_stack);
2765 }
2766
2767 /* Abnormal calls may appear to have values live in st(0), but the
2768 abnormal return path will not have actually loaded the values. */
2769 if (e->flags & EDGE_ABNORMAL_CALL)
2770 {
2771 /* Assert that the lifetimes are as we expect -- one value
2772 live at st(0) on the end of the source block, and no
2773 values live at the beginning of the destination block.
2774 For complex return values, we may have st(1) live as well. */
2775 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2776 gcc_assert (target_stack->top == -1);
2777 return false;
2778 }
2779
2780 /* Handle non-call EH edges specially. The normal return path have
2781 values in registers. These will be popped en masse by the unwind
2782 library. */
2783 if (e->flags & EDGE_EH)
2784 {
2785 gcc_assert (target_stack->top == -1);
2786 return false;
2787 }
2788
2789 /* We don't support abnormal edges. Global takes care to
2790 avoid any live register across them, so we should never
2791 have to insert instructions on such edges. */
2792 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2793
2794 /* Make a copy of source_stack as change_stack is destructive. */
2795 regstack = *source_stack;
2796
2797 /* It is better to output directly to the end of the block
2798 instead of to the edge, because emit_swap can do minimal
2799 insn scheduling. We can do this when there is only one
2800 edge out, and it is not abnormal. */
2801 if (EDGE_COUNT (source->succs) == 1)
2802 {
2803 current_block = source;
2804 change_stack (BB_END (source), &regstack, target_stack,
2805 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2806 }
2807 else
2808 {
2809 rtx_insn *seq;
2810 rtx_note *after;
2811
2812 current_block = NULL;
2813 start_sequence ();
2814
2815 /* ??? change_stack needs some point to emit insns after. */
2816 after = emit_note (NOTE_INSN_DELETED);
2817
2818 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2819
2820 seq = get_insns ();
2821 end_sequence ();
2822
2823 insert_insn_on_edge (seq, e);
2824 return true;
2825 }
2826 return false;
2827 }
2828
2829 /* Traverse all non-entry edges in the CFG, and emit the necessary
2830 edge compensation code to change the stack from stack_out of the
2831 source block to the stack_in of the destination block. */
2832
2833 static bool
2834 compensate_edges (void)
2835 {
2836 bool inserted = false;
2837 basic_block bb;
2838
2839 starting_stack_p = false;
2840
2841 FOR_EACH_BB_FN (bb, cfun)
2842 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2843 {
2844 edge e;
2845 edge_iterator ei;
2846
2847 FOR_EACH_EDGE (e, ei, bb->succs)
2848 inserted |= compensate_edge (e);
2849 }
2850 return inserted;
2851 }
2852
2853 /* Select the better of two edges E1 and E2 to use to determine the
2854 stack layout for their shared destination basic block. This is
2855 typically the more frequently executed. The edge E1 may be NULL
2856 (in which case E2 is returned), but E2 is always non-NULL. */
2857
2858 static edge
2859 better_edge (edge e1, edge e2)
2860 {
2861 if (!e1)
2862 return e2;
2863
2864 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2865 return e1;
2866 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2867 return e2;
2868
2869 if (e1->count > e2->count)
2870 return e1;
2871 if (e1->count < e2->count)
2872 return e2;
2873
2874 /* Prefer critical edges to minimize inserting compensation code on
2875 critical edges. */
2876
2877 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2878 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2879
2880 /* Avoid non-deterministic behavior. */
2881 return (e1->src->index < e2->src->index) ? e1 : e2;
2882 }
2883
2884 /* Convert stack register references in one block. Return true if the CFG
2885 has been modified in the process. */
2886
2887 static bool
2888 convert_regs_1 (basic_block block)
2889 {
2890 struct stack_def regstack;
2891 block_info bi = BLOCK_INFO (block);
2892 int reg;
2893 rtx_insn *insn, *next;
2894 bool control_flow_insn_deleted = false;
2895 bool cfg_altered = false;
2896 int debug_insns_with_starting_stack = 0;
2897
2898 any_malformed_asm = false;
2899
2900 /* Choose an initial stack layout, if one hasn't already been chosen. */
2901 if (bi->stack_in.top == -2)
2902 {
2903 edge e, beste = NULL;
2904 edge_iterator ei;
2905
2906 /* Select the best incoming edge (typically the most frequent) to
2907 use as a template for this basic block. */
2908 FOR_EACH_EDGE (e, ei, block->preds)
2909 if (BLOCK_INFO (e->src)->done)
2910 beste = better_edge (beste, e);
2911
2912 if (beste)
2913 propagate_stack (beste);
2914 else
2915 {
2916 /* No predecessors. Create an arbitrary input stack. */
2917 bi->stack_in.top = -1;
2918 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2919 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2920 bi->stack_in.reg[++bi->stack_in.top] = reg;
2921 }
2922 }
2923
2924 if (dump_file)
2925 {
2926 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2927 print_stack (dump_file, &bi->stack_in);
2928 }
2929
2930 /* Process all insns in this block. Keep track of NEXT so that we
2931 don't process insns emitted while substituting in INSN. */
2932 current_block = block;
2933 next = BB_HEAD (block);
2934 regstack = bi->stack_in;
2935 starting_stack_p = true;
2936
2937 do
2938 {
2939 insn = next;
2940 next = NEXT_INSN (insn);
2941
2942 /* Ensure we have not missed a block boundary. */
2943 gcc_assert (next);
2944 if (insn == BB_END (block))
2945 next = NULL;
2946
2947 /* Don't bother processing unless there is a stack reg
2948 mentioned or if it's a CALL_INSN. */
2949 if (DEBUG_INSN_P (insn))
2950 {
2951 if (starting_stack_p)
2952 debug_insns_with_starting_stack++;
2953 else
2954 {
2955 subst_all_stack_regs_in_debug_insn (insn, &regstack);
2956
2957 /* Nothing must ever die at a debug insn. If something
2958 is referenced in it that becomes dead, it should have
2959 died before and the reference in the debug insn
2960 should have been removed so as to avoid changing code
2961 generation. */
2962 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2963 }
2964 }
2965 else if (stack_regs_mentioned (insn)
2966 || CALL_P (insn))
2967 {
2968 if (dump_file)
2969 {
2970 fprintf (dump_file, " insn %d input stack: ",
2971 INSN_UID (insn));
2972 print_stack (dump_file, &regstack);
2973 }
2974 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2975 starting_stack_p = false;
2976 }
2977 }
2978 while (next);
2979
2980 if (debug_insns_with_starting_stack)
2981 {
2982 /* Since it's the first non-debug instruction that determines
2983 the stack requirements of the current basic block, we refrain
2984 from updating debug insns before it in the loop above, and
2985 fix them up here. */
2986 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2987 insn = NEXT_INSN (insn))
2988 {
2989 if (!DEBUG_INSN_P (insn))
2990 continue;
2991
2992 debug_insns_with_starting_stack--;
2993 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
2994 }
2995 }
2996
2997 if (dump_file)
2998 {
2999 fprintf (dump_file, "Expected live registers [");
3000 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3001 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3002 fprintf (dump_file, " %d", reg);
3003 fprintf (dump_file, " ]\nOutput stack: ");
3004 print_stack (dump_file, &regstack);
3005 }
3006
3007 insn = BB_END (block);
3008 if (JUMP_P (insn))
3009 insn = PREV_INSN (insn);
3010
3011 /* If the function is declared to return a value, but it returns one
3012 in only some cases, some registers might come live here. Emit
3013 necessary moves for them. */
3014
3015 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3016 {
3017 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3018 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3019 {
3020 rtx set;
3021
3022 if (dump_file)
3023 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3024
3025 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3026 insn = emit_insn_after (set, insn);
3027 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3028 }
3029 }
3030
3031 /* Amongst the insns possibly deleted during the substitution process above,
3032 might have been the only trapping insn in the block. We purge the now
3033 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3034 called at the end of convert_regs. The order in which we process the
3035 blocks ensures that we never delete an already processed edge.
3036
3037 Note that, at this point, the CFG may have been damaged by the emission
3038 of instructions after an abnormal call, which moves the basic block end
3039 (and is the reason why we call fixup_abnormal_edges later). So we must
3040 be sure that the trapping insn has been deleted before trying to purge
3041 dead edges, otherwise we risk purging valid edges.
3042
3043 ??? We are normally supposed not to delete trapping insns, so we pretend
3044 that the insns deleted above don't actually trap. It would have been
3045 better to detect this earlier and avoid creating the EH edge in the first
3046 place, still, but we don't have enough information at that time. */
3047
3048 if (control_flow_insn_deleted)
3049 cfg_altered |= purge_dead_edges (block);
3050
3051 /* Something failed if the stack lives don't match. If we had malformed
3052 asms, we zapped the instruction itself, but that didn't produce the
3053 same pattern of register kills as before. */
3054
3055 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3056 || any_malformed_asm);
3057 bi->stack_out = regstack;
3058 bi->done = true;
3059
3060 return cfg_altered;
3061 }
3062
3063 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3064 CFG has been modified in the process. */
3065
3066 static bool
3067 convert_regs_2 (basic_block block)
3068 {
3069 basic_block *stack, *sp;
3070 bool cfg_altered = false;
3071
3072 /* We process the blocks in a top-down manner, in a way such that one block
3073 is only processed after all its predecessors. The number of predecessors
3074 of every block has already been computed. */
3075
3076 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3077 sp = stack;
3078
3079 *sp++ = block;
3080
3081 do
3082 {
3083 edge e;
3084 edge_iterator ei;
3085
3086 block = *--sp;
3087
3088 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3089 some dead EH outgoing edge after the deletion of the trapping
3090 insn inside the block. Since the number of predecessors of
3091 BLOCK's successors was computed based on the initial edge set,
3092 we check the necessity to process some of these successors
3093 before such an edge deletion may happen. However, there is
3094 a pitfall: if BLOCK is the only predecessor of a successor and
3095 the edge between them happens to be deleted, the successor
3096 becomes unreachable and should not be processed. The problem
3097 is that there is no way to preventively detect this case so we
3098 stack the successor in all cases and hand over the task of
3099 fixing up the discrepancy to convert_regs_1. */
3100
3101 FOR_EACH_EDGE (e, ei, block->succs)
3102 if (! (e->flags & EDGE_DFS_BACK))
3103 {
3104 BLOCK_INFO (e->dest)->predecessors--;
3105 if (!BLOCK_INFO (e->dest)->predecessors)
3106 *sp++ = e->dest;
3107 }
3108
3109 cfg_altered |= convert_regs_1 (block);
3110 }
3111 while (sp != stack);
3112
3113 free (stack);
3114
3115 return cfg_altered;
3116 }
3117
3118 /* Traverse all basic blocks in a function, converting the register
3119 references in each insn from the "flat" register file that gcc uses,
3120 to the stack-like registers the 387 uses. */
3121
3122 static void
3123 convert_regs (void)
3124 {
3125 bool cfg_altered = false;
3126 int inserted;
3127 basic_block b;
3128 edge e;
3129 edge_iterator ei;
3130
3131 /* Initialize uninitialized registers on function entry. */
3132 inserted = convert_regs_entry ();
3133
3134 /* Construct the desired stack for function exit. */
3135 convert_regs_exit ();
3136 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3137
3138 /* ??? Future: process inner loops first, and give them arbitrary
3139 initial stacks which emit_swap_insn can modify. This ought to
3140 prevent double fxch that often appears at the head of a loop. */
3141
3142 /* Process all blocks reachable from all entry points. */
3143 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3144 cfg_altered |= convert_regs_2 (e->dest);
3145
3146 /* ??? Process all unreachable blocks. Though there's no excuse
3147 for keeping these even when not optimizing. */
3148 FOR_EACH_BB_FN (b, cfun)
3149 {
3150 block_info bi = BLOCK_INFO (b);
3151
3152 if (! bi->done)
3153 cfg_altered |= convert_regs_2 (b);
3154 }
3155
3156 /* We must fix up abnormal edges before inserting compensation code
3157 because both mechanisms insert insns on edges. */
3158 inserted |= fixup_abnormal_edges ();
3159
3160 inserted |= compensate_edges ();
3161
3162 clear_aux_for_blocks ();
3163
3164 if (inserted)
3165 commit_edge_insertions ();
3166
3167 if (cfg_altered)
3168 cleanup_cfg (0);
3169
3170 if (dump_file)
3171 fputc ('\n', dump_file);
3172 }
3173 \f
3174 /* Convert register usage from "flat" register file usage to a "stack
3175 register file. FILE is the dump file, if used.
3176
3177 Construct a CFG and run life analysis. Then convert each insn one
3178 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3179 code duplication created when the converter inserts pop insns on
3180 the edges. */
3181
3182 static bool
3183 reg_to_stack (void)
3184 {
3185 basic_block bb;
3186 int i;
3187 int max_uid;
3188
3189 /* Clean up previous run. */
3190 stack_regs_mentioned_data.release ();
3191
3192 /* See if there is something to do. Flow analysis is quite
3193 expensive so we might save some compilation time. */
3194 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3195 if (df_regs_ever_live_p (i))
3196 break;
3197 if (i > LAST_STACK_REG)
3198 return false;
3199
3200 df_note_add_problem ();
3201 df_analyze ();
3202
3203 mark_dfs_back_edges ();
3204
3205 /* Set up block info for each basic block. */
3206 alloc_aux_for_blocks (sizeof (struct block_info_def));
3207 FOR_EACH_BB_FN (bb, cfun)
3208 {
3209 block_info bi = BLOCK_INFO (bb);
3210 edge_iterator ei;
3211 edge e;
3212 int reg;
3213
3214 FOR_EACH_EDGE (e, ei, bb->preds)
3215 if (!(e->flags & EDGE_DFS_BACK)
3216 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3217 bi->predecessors++;
3218
3219 /* Set current register status at last instruction `uninitialized'. */
3220 bi->stack_in.top = -2;
3221
3222 /* Copy live_at_end and live_at_start into temporaries. */
3223 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3224 {
3225 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3226 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3227 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3228 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3229 }
3230 }
3231
3232 /* Create the replacement registers up front. */
3233 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3234 {
3235 enum machine_mode mode;
3236 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3237 mode != VOIDmode;
3238 mode = GET_MODE_WIDER_MODE (mode))
3239 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3240 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3241 mode != VOIDmode;
3242 mode = GET_MODE_WIDER_MODE (mode))
3243 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3244 }
3245
3246 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3247
3248 /* A QNaN for initializing uninitialized variables.
3249
3250 ??? We can't load from constant memory in PIC mode, because
3251 we're inserting these instructions before the prologue and
3252 the PIC register hasn't been set up. In that case, fall back
3253 on zero, which we can get from `fldz'. */
3254
3255 if ((flag_pic && !TARGET_64BIT)
3256 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3257 not_a_num = CONST0_RTX (SFmode);
3258 else
3259 {
3260 REAL_VALUE_TYPE r;
3261
3262 real_nan (&r, "", 1, SFmode);
3263 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3264 not_a_num = force_const_mem (SFmode, not_a_num);
3265 }
3266
3267 /* Allocate a cache for stack_regs_mentioned. */
3268 max_uid = get_max_uid ();
3269 stack_regs_mentioned_data.create (max_uid + 1);
3270 memset (stack_regs_mentioned_data.address (),
3271 0, sizeof (char) * (max_uid + 1));
3272
3273 convert_regs ();
3274
3275 free_aux_for_blocks ();
3276 return true;
3277 }
3278 #endif /* STACK_REGS */
3279 \f
3280 namespace {
3281
3282 const pass_data pass_data_stack_regs =
3283 {
3284 RTL_PASS, /* type */
3285 "*stack_regs", /* name */
3286 OPTGROUP_NONE, /* optinfo_flags */
3287 TV_REG_STACK, /* tv_id */
3288 0, /* properties_required */
3289 0, /* properties_provided */
3290 0, /* properties_destroyed */
3291 0, /* todo_flags_start */
3292 0, /* todo_flags_finish */
3293 };
3294
3295 class pass_stack_regs : public rtl_opt_pass
3296 {
3297 public:
3298 pass_stack_regs (gcc::context *ctxt)
3299 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3300 {}
3301
3302 /* opt_pass methods: */
3303 virtual bool gate (function *)
3304 {
3305 #ifdef STACK_REGS
3306 return true;
3307 #else
3308 return false;
3309 #endif
3310 }
3311
3312 }; // class pass_stack_regs
3313
3314 } // anon namespace
3315
3316 rtl_opt_pass *
3317 make_pass_stack_regs (gcc::context *ctxt)
3318 {
3319 return new pass_stack_regs (ctxt);
3320 }
3321
3322 /* Convert register usage from flat register file usage to a stack
3323 register file. */
3324 static unsigned int
3325 rest_of_handle_stack_regs (void)
3326 {
3327 #ifdef STACK_REGS
3328 reg_to_stack ();
3329 regstack_completed = 1;
3330 #endif
3331 return 0;
3332 }
3333
3334 namespace {
3335
3336 const pass_data pass_data_stack_regs_run =
3337 {
3338 RTL_PASS, /* type */
3339 "stack", /* name */
3340 OPTGROUP_NONE, /* optinfo_flags */
3341 TV_REG_STACK, /* tv_id */
3342 0, /* properties_required */
3343 0, /* properties_provided */
3344 0, /* properties_destroyed */
3345 0, /* todo_flags_start */
3346 TODO_df_finish, /* todo_flags_finish */
3347 };
3348
3349 class pass_stack_regs_run : public rtl_opt_pass
3350 {
3351 public:
3352 pass_stack_regs_run (gcc::context *ctxt)
3353 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3354 {}
3355
3356 /* opt_pass methods: */
3357 virtual unsigned int execute (function *)
3358 {
3359 return rest_of_handle_stack_regs ();
3360 }
3361
3362 }; // class pass_stack_regs_run
3363
3364 } // anon namespace
3365
3366 rtl_opt_pass *
3367 make_pass_stack_regs_run (gcc::context *ctxt)
3368 {
3369 return new pass_stack_regs_run (ctxt);
3370 }