combine.c (gen_lowpart_for_combine): Update handling of subregs_of_mode
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153 \f
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
173
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
176
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180 static GTY(()) varray_type stack_regs_mentioned_data;
181
182 #ifdef STACK_REGS
183
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
185
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
188
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
192
193 REG_SET indicates which registers are live. */
194
195 typedef struct stack_def
196 {
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
200 } *stack;
201
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
204
205 typedef struct block_info_def
206 {
207 struct stack_def stack_in; /* Input stack configuration. */
208 struct stack_def stack_out; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
211 int predecessors; /* Number of predecessors that needs
212 to be visited. */
213 } *block_info;
214
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
216
217 /* Passed to change_stack to indicate where to emit insns. */
218 enum emit_where
219 {
220 EMIT_AFTER,
221 EMIT_BEFORE
222 };
223
224 /* The block we're currently working on. */
225 static basic_block current_block;
226
227 /* This is the register file for all register after conversion. */
228 static rtx
229 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
230
231 #define FP_MODE_REG(regno,mode) \
232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
233
234 /* Used to initialize uninitialized registers. */
235 static rtx nan;
236
237 /* Forward declarations */
238
239 static int stack_regs_mentioned_p PARAMS ((rtx pat));
240 static void straighten_stack PARAMS ((rtx, stack));
241 static void pop_stack PARAMS ((stack, int));
242 static rtx *get_true_reg PARAMS ((rtx *));
243
244 static int check_asm_stack_operands PARAMS ((rtx));
245 static int get_asm_operand_n_inputs PARAMS ((rtx));
246 static rtx stack_result PARAMS ((tree));
247 static void replace_reg PARAMS ((rtx *, int));
248 static void remove_regno_note PARAMS ((rtx, enum reg_note,
249 unsigned int));
250 static int get_hard_regnum PARAMS ((stack, rtx));
251 static rtx emit_pop_insn PARAMS ((rtx, stack, rtx,
252 enum emit_where));
253 static void emit_swap_insn PARAMS ((rtx, stack, rtx));
254 static void move_for_stack_reg PARAMS ((rtx, stack, rtx));
255 static int swap_rtx_condition_1 PARAMS ((rtx));
256 static int swap_rtx_condition PARAMS ((rtx));
257 static void compare_for_stack_reg PARAMS ((rtx, stack, rtx));
258 static void subst_stack_regs_pat PARAMS ((rtx, stack, rtx));
259 static void subst_asm_stack_regs PARAMS ((rtx, stack));
260 static void subst_stack_regs PARAMS ((rtx, stack));
261 static void change_stack PARAMS ((rtx, stack, stack,
262 enum emit_where));
263 static int convert_regs_entry PARAMS ((void));
264 static void convert_regs_exit PARAMS ((void));
265 static int convert_regs_1 PARAMS ((FILE *, basic_block));
266 static int convert_regs_2 PARAMS ((FILE *, basic_block));
267 static int convert_regs PARAMS ((FILE *));
268 static void print_stack PARAMS ((FILE *, stack));
269 static rtx next_flags_user PARAMS ((rtx));
270 static void record_label_references PARAMS ((rtx, rtx));
271 static bool compensate_edge PARAMS ((edge, FILE *));
272 \f
273 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
274
275 static int
276 stack_regs_mentioned_p (pat)
277 rtx pat;
278 {
279 const char *fmt;
280 int i;
281
282 if (STACK_REG_P (pat))
283 return 1;
284
285 fmt = GET_RTX_FORMAT (GET_CODE (pat));
286 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
287 {
288 if (fmt[i] == 'E')
289 {
290 int j;
291
292 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
293 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
294 return 1;
295 }
296 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
297 return 1;
298 }
299
300 return 0;
301 }
302
303 /* Return nonzero if INSN mentions stacked registers, else return zero. */
304
305 int
306 stack_regs_mentioned (insn)
307 rtx insn;
308 {
309 unsigned int uid, max;
310 int test;
311
312 if (! INSN_P (insn) || !stack_regs_mentioned_data)
313 return 0;
314
315 uid = INSN_UID (insn);
316 max = VARRAY_SIZE (stack_regs_mentioned_data);
317 if (uid >= max)
318 {
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max = uid + uid / 20;
322 VARRAY_GROW (stack_regs_mentioned_data, max);
323 }
324
325 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
326 if (test == 0)
327 {
328 /* This insn has yet to be examined. Do so now. */
329 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
331 }
332
333 return test == 1;
334 }
335 \f
336 static rtx ix86_flags_rtx;
337
338 static rtx
339 next_flags_user (insn)
340 rtx insn;
341 {
342 /* Search forward looking for the first use of this value.
343 Stop at block boundaries. */
344
345 while (insn != current_block->end)
346 {
347 insn = NEXT_INSN (insn);
348
349 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
350 return insn;
351
352 if (GET_CODE (insn) == CALL_INSN)
353 return NULL_RTX;
354 }
355 return NULL_RTX;
356 }
357 \f
358 /* Reorganize the stack into ascending numbers,
359 after this insn. */
360
361 static void
362 straighten_stack (insn, regstack)
363 rtx insn;
364 stack regstack;
365 {
366 struct stack_def temp_stack;
367 int top;
368
369 /* If there is only a single register on the stack, then the stack is
370 already in increasing order and no reorganization is needed.
371
372 Similarly if the stack is empty. */
373 if (regstack->top <= 0)
374 return;
375
376 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
377
378 for (top = temp_stack.top = regstack->top; top >= 0; top--)
379 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
380
381 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
382 }
383
384 /* Pop a register from the stack. */
385
386 static void
387 pop_stack (regstack, regno)
388 stack regstack;
389 int regno;
390 {
391 int top = regstack->top;
392
393 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
394 regstack->top--;
395 /* If regno was not at the top of stack then adjust stack. */
396 if (regstack->reg [top] != regno)
397 {
398 int i;
399 for (i = regstack->top; i >= 0; i--)
400 if (regstack->reg [i] == regno)
401 {
402 int j;
403 for (j = i; j < top; j++)
404 regstack->reg [j] = regstack->reg [j + 1];
405 break;
406 }
407 }
408 }
409 \f
410 /* Convert register usage from "flat" register file usage to a "stack
411 register file. FIRST is the first insn in the function, FILE is the
412 dump file, if used.
413
414 Construct a CFG and run life analysis. Then convert each insn one
415 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
416 code duplication created when the converter inserts pop insns on
417 the edges. */
418
419 bool
420 reg_to_stack (first, file)
421 rtx first;
422 FILE *file;
423 {
424 basic_block bb;
425 int i;
426 int max_uid;
427
428 /* Clean up previous run. */
429 stack_regs_mentioned_data = 0;
430
431 /* See if there is something to do. Flow analysis is quite
432 expensive so we might save some compilation time. */
433 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
434 if (regs_ever_live[i])
435 break;
436 if (i > LAST_STACK_REG)
437 return false;
438
439 /* Ok, floating point instructions exist. If not optimizing,
440 build the CFG and run life analysis.
441 Also need to rebuild life when superblock scheduling is done
442 as it don't update liveness yet. */
443 if (!optimize
444 || (flag_sched2_use_superblocks
445 && flag_schedule_insns_after_reload))
446 {
447 count_or_remove_death_notes (NULL, 1);
448 life_analysis (first, file, PROP_DEATH_NOTES);
449 }
450 mark_dfs_back_edges ();
451
452 /* Set up block info for each basic block. */
453 alloc_aux_for_blocks (sizeof (struct block_info_def));
454 FOR_EACH_BB_REVERSE (bb)
455 {
456 edge e;
457 for (e = bb->pred; e; e=e->pred_next)
458 if (!(e->flags & EDGE_DFS_BACK)
459 && e->src != ENTRY_BLOCK_PTR)
460 BLOCK_INFO (bb)->predecessors++;
461 }
462
463 /* Create the replacement registers up front. */
464 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
465 {
466 enum machine_mode mode;
467 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
468 mode != VOIDmode;
469 mode = GET_MODE_WIDER_MODE (mode))
470 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
471 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
472 mode != VOIDmode;
473 mode = GET_MODE_WIDER_MODE (mode))
474 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
475 }
476
477 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
478
479 /* A QNaN for initializing uninitialized variables.
480
481 ??? We can't load from constant memory in PIC mode, because
482 we're inserting these instructions before the prologue and
483 the PIC register hasn't been set up. In that case, fall back
484 on zero, which we can get from `ldz'. */
485
486 if (flag_pic)
487 nan = CONST0_RTX (SFmode);
488 else
489 {
490 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
491 nan = force_const_mem (SFmode, nan);
492 }
493
494 /* Allocate a cache for stack_regs_mentioned. */
495 max_uid = get_max_uid ();
496 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
497 "stack_regs_mentioned cache");
498
499 convert_regs (file);
500
501 free_aux_for_blocks ();
502 return true;
503 }
504 \f
505 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
506 label's chain of references, and note which insn contains each
507 reference. */
508
509 static void
510 record_label_references (insn, pat)
511 rtx insn, pat;
512 {
513 enum rtx_code code = GET_CODE (pat);
514 int i;
515 const char *fmt;
516
517 if (code == LABEL_REF)
518 {
519 rtx label = XEXP (pat, 0);
520 rtx ref;
521
522 if (GET_CODE (label) != CODE_LABEL)
523 abort ();
524
525 /* If this is an undefined label, LABEL_REFS (label) contains
526 garbage. */
527 if (INSN_UID (label) == 0)
528 return;
529
530 /* Don't make a duplicate in the code_label's chain. */
531
532 for (ref = LABEL_REFS (label);
533 ref && ref != label;
534 ref = LABEL_NEXTREF (ref))
535 if (CONTAINING_INSN (ref) == insn)
536 return;
537
538 CONTAINING_INSN (pat) = insn;
539 LABEL_NEXTREF (pat) = LABEL_REFS (label);
540 LABEL_REFS (label) = pat;
541
542 return;
543 }
544
545 fmt = GET_RTX_FORMAT (code);
546 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
547 {
548 if (fmt[i] == 'e')
549 record_label_references (insn, XEXP (pat, i));
550 if (fmt[i] == 'E')
551 {
552 int j;
553 for (j = 0; j < XVECLEN (pat, i); j++)
554 record_label_references (insn, XVECEXP (pat, i, j));
555 }
556 }
557 }
558 \f
559 /* Return a pointer to the REG expression within PAT. If PAT is not a
560 REG, possible enclosed by a conversion rtx, return the inner part of
561 PAT that stopped the search. */
562
563 static rtx *
564 get_true_reg (pat)
565 rtx *pat;
566 {
567 for (;;)
568 switch (GET_CODE (*pat))
569 {
570 case SUBREG:
571 /* Eliminate FP subregister accesses in favor of the
572 actual FP register in use. */
573 {
574 rtx subreg;
575 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
576 {
577 int regno_off = subreg_regno_offset (REGNO (subreg),
578 GET_MODE (subreg),
579 SUBREG_BYTE (*pat),
580 GET_MODE (*pat));
581 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
582 GET_MODE (subreg));
583 default:
584 return pat;
585 }
586 }
587 case FLOAT:
588 case FIX:
589 case FLOAT_EXTEND:
590 pat = & XEXP (*pat, 0);
591 }
592 }
593 \f
594 /* There are many rules that an asm statement for stack-like regs must
595 follow. Those rules are explained at the top of this file: the rule
596 numbers below refer to that explanation. */
597
598 static int
599 check_asm_stack_operands (insn)
600 rtx insn;
601 {
602 int i;
603 int n_clobbers;
604 int malformed_asm = 0;
605 rtx body = PATTERN (insn);
606
607 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
608 char implicitly_dies[FIRST_PSEUDO_REGISTER];
609 int alt;
610
611 rtx *clobber_reg = 0;
612 int n_inputs, n_outputs;
613
614 /* Find out what the constraints require. If no constraint
615 alternative matches, this asm is malformed. */
616 extract_insn (insn);
617 constrain_operands (1);
618 alt = which_alternative;
619
620 preprocess_constraints ();
621
622 n_inputs = get_asm_operand_n_inputs (body);
623 n_outputs = recog_data.n_operands - n_inputs;
624
625 if (alt < 0)
626 {
627 malformed_asm = 1;
628 /* Avoid further trouble with this insn. */
629 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
630 return 0;
631 }
632
633 /* Strip SUBREGs here to make the following code simpler. */
634 for (i = 0; i < recog_data.n_operands; i++)
635 if (GET_CODE (recog_data.operand[i]) == SUBREG
636 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
637 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
638
639 /* Set up CLOBBER_REG. */
640
641 n_clobbers = 0;
642
643 if (GET_CODE (body) == PARALLEL)
644 {
645 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
646
647 for (i = 0; i < XVECLEN (body, 0); i++)
648 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
649 {
650 rtx clobber = XVECEXP (body, 0, i);
651 rtx reg = XEXP (clobber, 0);
652
653 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
654 reg = SUBREG_REG (reg);
655
656 if (STACK_REG_P (reg))
657 {
658 clobber_reg[n_clobbers] = reg;
659 n_clobbers++;
660 }
661 }
662 }
663
664 /* Enforce rule #4: Output operands must specifically indicate which
665 reg an output appears in after an asm. "=f" is not allowed: the
666 operand constraints must select a class with a single reg.
667
668 Also enforce rule #5: Output operands must start at the top of
669 the reg-stack: output operands may not "skip" a reg. */
670
671 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
672 for (i = 0; i < n_outputs; i++)
673 if (STACK_REG_P (recog_data.operand[i]))
674 {
675 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
676 {
677 error_for_asm (insn, "output constraint %d must specify a single register", i);
678 malformed_asm = 1;
679 }
680 else
681 {
682 int j;
683
684 for (j = 0; j < n_clobbers; j++)
685 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
686 {
687 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
688 i, reg_names [REGNO (clobber_reg[j])]);
689 malformed_asm = 1;
690 break;
691 }
692 if (j == n_clobbers)
693 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
694 }
695 }
696
697
698 /* Search for first non-popped reg. */
699 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
700 if (! reg_used_as_output[i])
701 break;
702
703 /* If there are any other popped regs, that's an error. */
704 for (; i < LAST_STACK_REG + 1; i++)
705 if (reg_used_as_output[i])
706 break;
707
708 if (i != LAST_STACK_REG + 1)
709 {
710 error_for_asm (insn, "output regs must be grouped at top of stack");
711 malformed_asm = 1;
712 }
713
714 /* Enforce rule #2: All implicitly popped input regs must be closer
715 to the top of the reg-stack than any input that is not implicitly
716 popped. */
717
718 memset (implicitly_dies, 0, sizeof (implicitly_dies));
719 for (i = n_outputs; i < n_outputs + n_inputs; i++)
720 if (STACK_REG_P (recog_data.operand[i]))
721 {
722 /* An input reg is implicitly popped if it is tied to an
723 output, or if there is a CLOBBER for it. */
724 int j;
725
726 for (j = 0; j < n_clobbers; j++)
727 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
728 break;
729
730 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
731 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
732 }
733
734 /* Search for first non-popped reg. */
735 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
736 if (! implicitly_dies[i])
737 break;
738
739 /* If there are any other popped regs, that's an error. */
740 for (; i < LAST_STACK_REG + 1; i++)
741 if (implicitly_dies[i])
742 break;
743
744 if (i != LAST_STACK_REG + 1)
745 {
746 error_for_asm (insn,
747 "implicitly popped regs must be grouped at top of stack");
748 malformed_asm = 1;
749 }
750
751 /* Enforce rule #3: If any input operand uses the "f" constraint, all
752 output constraints must use the "&" earlyclobber.
753
754 ??? Detect this more deterministically by having constrain_asm_operands
755 record any earlyclobber. */
756
757 for (i = n_outputs; i < n_outputs + n_inputs; i++)
758 if (recog_op_alt[i][alt].matches == -1)
759 {
760 int j;
761
762 for (j = 0; j < n_outputs; j++)
763 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
764 {
765 error_for_asm (insn,
766 "output operand %d must use `&' constraint", j);
767 malformed_asm = 1;
768 }
769 }
770
771 if (malformed_asm)
772 {
773 /* Avoid further trouble with this insn. */
774 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
775 return 0;
776 }
777
778 return 1;
779 }
780 \f
781 /* Calculate the number of inputs and outputs in BODY, an
782 asm_operands. N_OPERANDS is the total number of operands, and
783 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
784 placed. */
785
786 static int
787 get_asm_operand_n_inputs (body)
788 rtx body;
789 {
790 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
791 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
792
793 else if (GET_CODE (body) == ASM_OPERANDS)
794 return ASM_OPERANDS_INPUT_LENGTH (body);
795
796 else if (GET_CODE (body) == PARALLEL
797 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
798 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
799
800 else if (GET_CODE (body) == PARALLEL
801 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
802 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
803
804 abort ();
805 }
806
807 /* If current function returns its result in an fp stack register,
808 return the REG. Otherwise, return 0. */
809
810 static rtx
811 stack_result (decl)
812 tree decl;
813 {
814 rtx result;
815
816 /* If the value is supposed to be returned in memory, then clearly
817 it is not returned in a stack register. */
818 if (aggregate_value_p (DECL_RESULT (decl)))
819 return 0;
820
821 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
822 if (result != 0)
823 {
824 #ifdef FUNCTION_OUTGOING_VALUE
825 result
826 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
827 #else
828 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
829 #endif
830 }
831
832 return result != 0 && STACK_REG_P (result) ? result : 0;
833 }
834 \f
835
836 /*
837 * This section deals with stack register substitution, and forms the second
838 * pass over the RTL.
839 */
840
841 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
842 the desired hard REGNO. */
843
844 static void
845 replace_reg (reg, regno)
846 rtx *reg;
847 int regno;
848 {
849 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
850 || ! STACK_REG_P (*reg))
851 abort ();
852
853 switch (GET_MODE_CLASS (GET_MODE (*reg)))
854 {
855 default: abort ();
856 case MODE_FLOAT:
857 case MODE_COMPLEX_FLOAT:;
858 }
859
860 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
861 }
862
863 /* Remove a note of type NOTE, which must be found, for register
864 number REGNO from INSN. Remove only one such note. */
865
866 static void
867 remove_regno_note (insn, note, regno)
868 rtx insn;
869 enum reg_note note;
870 unsigned int regno;
871 {
872 rtx *note_link, this;
873
874 note_link = &REG_NOTES (insn);
875 for (this = *note_link; this; this = XEXP (this, 1))
876 if (REG_NOTE_KIND (this) == note
877 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
878 {
879 *note_link = XEXP (this, 1);
880 return;
881 }
882 else
883 note_link = &XEXP (this, 1);
884
885 abort ();
886 }
887
888 /* Find the hard register number of virtual register REG in REGSTACK.
889 The hard register number is relative to the top of the stack. -1 is
890 returned if the register is not found. */
891
892 static int
893 get_hard_regnum (regstack, reg)
894 stack regstack;
895 rtx reg;
896 {
897 int i;
898
899 if (! STACK_REG_P (reg))
900 abort ();
901
902 for (i = regstack->top; i >= 0; i--)
903 if (regstack->reg[i] == REGNO (reg))
904 break;
905
906 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
907 }
908 \f
909 /* Emit an insn to pop virtual register REG before or after INSN.
910 REGSTACK is the stack state after INSN and is updated to reflect this
911 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
912 is represented as a SET whose destination is the register to be popped
913 and source is the top of stack. A death note for the top of stack
914 cases the movdf pattern to pop. */
915
916 static rtx
917 emit_pop_insn (insn, regstack, reg, where)
918 rtx insn;
919 stack regstack;
920 rtx reg;
921 enum emit_where where;
922 {
923 rtx pop_insn, pop_rtx;
924 int hard_regno;
925
926 /* For complex types take care to pop both halves. These may survive in
927 CLOBBER and USE expressions. */
928 if (COMPLEX_MODE_P (GET_MODE (reg)))
929 {
930 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
931 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
932
933 pop_insn = NULL_RTX;
934 if (get_hard_regnum (regstack, reg1) >= 0)
935 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
936 if (get_hard_regnum (regstack, reg2) >= 0)
937 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
938 if (!pop_insn)
939 abort ();
940 return pop_insn;
941 }
942
943 hard_regno = get_hard_regnum (regstack, reg);
944
945 if (hard_regno < FIRST_STACK_REG)
946 abort ();
947
948 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
949 FP_MODE_REG (FIRST_STACK_REG, DFmode));
950
951 if (where == EMIT_AFTER)
952 pop_insn = emit_insn_after (pop_rtx, insn);
953 else
954 pop_insn = emit_insn_before (pop_rtx, insn);
955
956 REG_NOTES (pop_insn)
957 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
958 REG_NOTES (pop_insn));
959
960 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
961 = regstack->reg[regstack->top];
962 regstack->top -= 1;
963 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
964
965 return pop_insn;
966 }
967 \f
968 /* Emit an insn before or after INSN to swap virtual register REG with
969 the top of stack. REGSTACK is the stack state before the swap, and
970 is updated to reflect the swap. A swap insn is represented as a
971 PARALLEL of two patterns: each pattern moves one reg to the other.
972
973 If REG is already at the top of the stack, no insn is emitted. */
974
975 static void
976 emit_swap_insn (insn, regstack, reg)
977 rtx insn;
978 stack regstack;
979 rtx reg;
980 {
981 int hard_regno;
982 rtx swap_rtx;
983 int tmp, other_reg; /* swap regno temps */
984 rtx i1; /* the stack-reg insn prior to INSN */
985 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
986
987 hard_regno = get_hard_regnum (regstack, reg);
988
989 if (hard_regno < FIRST_STACK_REG)
990 abort ();
991 if (hard_regno == FIRST_STACK_REG)
992 return;
993
994 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
995
996 tmp = regstack->reg[other_reg];
997 regstack->reg[other_reg] = regstack->reg[regstack->top];
998 regstack->reg[regstack->top] = tmp;
999
1000 /* Find the previous insn involving stack regs, but don't pass a
1001 block boundary. */
1002 i1 = NULL;
1003 if (current_block && insn != current_block->head)
1004 {
1005 rtx tmp = PREV_INSN (insn);
1006 rtx limit = PREV_INSN (current_block->head);
1007 while (tmp != limit)
1008 {
1009 if (GET_CODE (tmp) == CODE_LABEL
1010 || GET_CODE (tmp) == CALL_INSN
1011 || NOTE_INSN_BASIC_BLOCK_P (tmp)
1012 || (GET_CODE (tmp) == INSN
1013 && stack_regs_mentioned (tmp)))
1014 {
1015 i1 = tmp;
1016 break;
1017 }
1018 tmp = PREV_INSN (tmp);
1019 }
1020 }
1021
1022 if (i1 != NULL_RTX
1023 && (i1set = single_set (i1)) != NULL_RTX)
1024 {
1025 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1026 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1027
1028 /* If the previous register stack push was from the reg we are to
1029 swap with, omit the swap. */
1030
1031 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1032 && GET_CODE (i1src) == REG
1033 && REGNO (i1src) == (unsigned) hard_regno - 1
1034 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1035 return;
1036
1037 /* If the previous insn wrote to the reg we are to swap with,
1038 omit the swap. */
1039
1040 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
1041 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1042 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1043 return;
1044 }
1045
1046 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1047 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1048
1049 if (i1)
1050 emit_insn_after (swap_rtx, i1);
1051 else if (current_block)
1052 emit_insn_before (swap_rtx, current_block->head);
1053 else
1054 emit_insn_before (swap_rtx, insn);
1055 }
1056 \f
1057 /* Handle a move to or from a stack register in PAT, which is in INSN.
1058 REGSTACK is the current stack. */
1059
1060 static void
1061 move_for_stack_reg (insn, regstack, pat)
1062 rtx insn;
1063 stack regstack;
1064 rtx pat;
1065 {
1066 rtx *psrc = get_true_reg (&SET_SRC (pat));
1067 rtx *pdest = get_true_reg (&SET_DEST (pat));
1068 rtx src, dest;
1069 rtx note;
1070
1071 src = *psrc; dest = *pdest;
1072
1073 if (STACK_REG_P (src) && STACK_REG_P (dest))
1074 {
1075 /* Write from one stack reg to another. If SRC dies here, then
1076 just change the register mapping and delete the insn. */
1077
1078 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1079 if (note)
1080 {
1081 int i;
1082
1083 /* If this is a no-op move, there must not be a REG_DEAD note. */
1084 if (REGNO (src) == REGNO (dest))
1085 abort ();
1086
1087 for (i = regstack->top; i >= 0; i--)
1088 if (regstack->reg[i] == REGNO (src))
1089 break;
1090
1091 /* The source must be live, and the dest must be dead. */
1092 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1093 abort ();
1094
1095 /* It is possible that the dest is unused after this insn.
1096 If so, just pop the src. */
1097
1098 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1099 {
1100 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1101
1102 delete_insn (insn);
1103 return;
1104 }
1105
1106 regstack->reg[i] = REGNO (dest);
1107
1108 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1109 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1110
1111 delete_insn (insn);
1112
1113 return;
1114 }
1115
1116 /* The source reg does not die. */
1117
1118 /* If this appears to be a no-op move, delete it, or else it
1119 will confuse the machine description output patterns. But if
1120 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1121 for REG_UNUSED will not work for deleted insns. */
1122
1123 if (REGNO (src) == REGNO (dest))
1124 {
1125 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1126 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1127
1128 delete_insn (insn);
1129 return;
1130 }
1131
1132 /* The destination ought to be dead. */
1133 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1134 abort ();
1135
1136 replace_reg (psrc, get_hard_regnum (regstack, src));
1137
1138 regstack->reg[++regstack->top] = REGNO (dest);
1139 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1140 replace_reg (pdest, FIRST_STACK_REG);
1141 }
1142 else if (STACK_REG_P (src))
1143 {
1144 /* Save from a stack reg to MEM, or possibly integer reg. Since
1145 only top of stack may be saved, emit an exchange first if
1146 needs be. */
1147
1148 emit_swap_insn (insn, regstack, src);
1149
1150 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1151 if (note)
1152 {
1153 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1154 regstack->top--;
1155 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1156 }
1157 else if ((GET_MODE (src) == XFmode || GET_MODE (src) == TFmode)
1158 && regstack->top < REG_STACK_SIZE - 1)
1159 {
1160 /* A 387 cannot write an XFmode value to a MEM without
1161 clobbering the source reg. The output code can handle
1162 this by reading back the value from the MEM.
1163 But it is more efficient to use a temp register if one is
1164 available. Push the source value here if the register
1165 stack is not full, and then write the value to memory via
1166 a pop. */
1167 rtx push_rtx, push_insn;
1168 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1169
1170 if (GET_MODE (src) == TFmode)
1171 push_rtx = gen_movtf (top_stack_reg, top_stack_reg);
1172 else
1173 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1174 push_insn = emit_insn_before (push_rtx, insn);
1175 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1176 REG_NOTES (insn));
1177 }
1178
1179 replace_reg (psrc, FIRST_STACK_REG);
1180 }
1181 else if (STACK_REG_P (dest))
1182 {
1183 /* Load from MEM, or possibly integer REG or constant, into the
1184 stack regs. The actual target is always the top of the
1185 stack. The stack mapping is changed to reflect that DEST is
1186 now at top of stack. */
1187
1188 /* The destination ought to be dead. */
1189 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1190 abort ();
1191
1192 if (regstack->top >= REG_STACK_SIZE)
1193 abort ();
1194
1195 regstack->reg[++regstack->top] = REGNO (dest);
1196 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1197 replace_reg (pdest, FIRST_STACK_REG);
1198 }
1199 else
1200 abort ();
1201 }
1202 \f
1203 /* Swap the condition on a branch, if there is one. Return true if we
1204 found a condition to swap. False if the condition was not used as
1205 such. */
1206
1207 static int
1208 swap_rtx_condition_1 (pat)
1209 rtx pat;
1210 {
1211 const char *fmt;
1212 int i, r = 0;
1213
1214 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1215 {
1216 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1217 r = 1;
1218 }
1219 else
1220 {
1221 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1222 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1223 {
1224 if (fmt[i] == 'E')
1225 {
1226 int j;
1227
1228 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1229 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1230 }
1231 else if (fmt[i] == 'e')
1232 r |= swap_rtx_condition_1 (XEXP (pat, i));
1233 }
1234 }
1235
1236 return r;
1237 }
1238
1239 static int
1240 swap_rtx_condition (insn)
1241 rtx insn;
1242 {
1243 rtx pat = PATTERN (insn);
1244
1245 /* We're looking for a single set to cc0 or an HImode temporary. */
1246
1247 if (GET_CODE (pat) == SET
1248 && GET_CODE (SET_DEST (pat)) == REG
1249 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1250 {
1251 insn = next_flags_user (insn);
1252 if (insn == NULL_RTX)
1253 return 0;
1254 pat = PATTERN (insn);
1255 }
1256
1257 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1258 not doing anything with the cc value right now. We may be able to
1259 search for one though. */
1260
1261 if (GET_CODE (pat) == SET
1262 && GET_CODE (SET_SRC (pat)) == UNSPEC
1263 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1264 {
1265 rtx dest = SET_DEST (pat);
1266
1267 /* Search forward looking for the first use of this value.
1268 Stop at block boundaries. */
1269 while (insn != current_block->end)
1270 {
1271 insn = NEXT_INSN (insn);
1272 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1273 break;
1274 if (GET_CODE (insn) == CALL_INSN)
1275 return 0;
1276 }
1277
1278 /* So we've found the insn using this value. If it is anything
1279 other than sahf, aka unspec 10, or the value does not die
1280 (meaning we'd have to search further), then we must give up. */
1281 pat = PATTERN (insn);
1282 if (GET_CODE (pat) != SET
1283 || GET_CODE (SET_SRC (pat)) != UNSPEC
1284 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1285 || ! dead_or_set_p (insn, dest))
1286 return 0;
1287
1288 /* Now we are prepared to handle this as a normal cc0 setter. */
1289 insn = next_flags_user (insn);
1290 if (insn == NULL_RTX)
1291 return 0;
1292 pat = PATTERN (insn);
1293 }
1294
1295 if (swap_rtx_condition_1 (pat))
1296 {
1297 int fail = 0;
1298 INSN_CODE (insn) = -1;
1299 if (recog_memoized (insn) == -1)
1300 fail = 1;
1301 /* In case the flags don't die here, recurse to try fix
1302 following user too. */
1303 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1304 {
1305 insn = next_flags_user (insn);
1306 if (!insn || !swap_rtx_condition (insn))
1307 fail = 1;
1308 }
1309 if (fail)
1310 {
1311 swap_rtx_condition_1 (pat);
1312 return 0;
1313 }
1314 return 1;
1315 }
1316 return 0;
1317 }
1318
1319 /* Handle a comparison. Special care needs to be taken to avoid
1320 causing comparisons that a 387 cannot do correctly, such as EQ.
1321
1322 Also, a pop insn may need to be emitted. The 387 does have an
1323 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1324 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1325 set up. */
1326
1327 static void
1328 compare_for_stack_reg (insn, regstack, pat_src)
1329 rtx insn;
1330 stack regstack;
1331 rtx pat_src;
1332 {
1333 rtx *src1, *src2;
1334 rtx src1_note, src2_note;
1335 rtx flags_user;
1336
1337 src1 = get_true_reg (&XEXP (pat_src, 0));
1338 src2 = get_true_reg (&XEXP (pat_src, 1));
1339 flags_user = next_flags_user (insn);
1340
1341 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1342 registers that die in this insn - move those to stack top first. */
1343 if ((! STACK_REG_P (*src1)
1344 || (STACK_REG_P (*src2)
1345 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1346 && swap_rtx_condition (insn))
1347 {
1348 rtx temp;
1349 temp = XEXP (pat_src, 0);
1350 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1351 XEXP (pat_src, 1) = temp;
1352
1353 src1 = get_true_reg (&XEXP (pat_src, 0));
1354 src2 = get_true_reg (&XEXP (pat_src, 1));
1355
1356 INSN_CODE (insn) = -1;
1357 }
1358
1359 /* We will fix any death note later. */
1360
1361 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1362
1363 if (STACK_REG_P (*src2))
1364 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1365 else
1366 src2_note = NULL_RTX;
1367
1368 emit_swap_insn (insn, regstack, *src1);
1369
1370 replace_reg (src1, FIRST_STACK_REG);
1371
1372 if (STACK_REG_P (*src2))
1373 replace_reg (src2, get_hard_regnum (regstack, *src2));
1374
1375 if (src1_note)
1376 {
1377 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1378 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1379 }
1380
1381 /* If the second operand dies, handle that. But if the operands are
1382 the same stack register, don't bother, because only one death is
1383 needed, and it was just handled. */
1384
1385 if (src2_note
1386 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1387 && REGNO (*src1) == REGNO (*src2)))
1388 {
1389 /* As a special case, two regs may die in this insn if src2 is
1390 next to top of stack and the top of stack also dies. Since
1391 we have already popped src1, "next to top of stack" is really
1392 at top (FIRST_STACK_REG) now. */
1393
1394 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1395 && src1_note)
1396 {
1397 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1398 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1399 }
1400 else
1401 {
1402 /* The 386 can only represent death of the first operand in
1403 the case handled above. In all other cases, emit a separate
1404 pop and remove the death note from here. */
1405
1406 /* link_cc0_insns (insn); */
1407
1408 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1409
1410 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1411 EMIT_AFTER);
1412 }
1413 }
1414 }
1415 \f
1416 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1417 is the current register layout. */
1418
1419 static void
1420 subst_stack_regs_pat (insn, regstack, pat)
1421 rtx insn;
1422 stack regstack;
1423 rtx pat;
1424 {
1425 rtx *dest, *src;
1426
1427 switch (GET_CODE (pat))
1428 {
1429 case USE:
1430 /* Deaths in USE insns can happen in non optimizing compilation.
1431 Handle them by popping the dying register. */
1432 src = get_true_reg (&XEXP (pat, 0));
1433 if (STACK_REG_P (*src)
1434 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1435 {
1436 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1437 return;
1438 }
1439 /* ??? Uninitialized USE should not happen. */
1440 else if (get_hard_regnum (regstack, *src) == -1)
1441 abort ();
1442 break;
1443
1444 case CLOBBER:
1445 {
1446 rtx note;
1447
1448 dest = get_true_reg (&XEXP (pat, 0));
1449 if (STACK_REG_P (*dest))
1450 {
1451 note = find_reg_note (insn, REG_DEAD, *dest);
1452
1453 if (pat != PATTERN (insn))
1454 {
1455 /* The fix_truncdi_1 pattern wants to be able to allocate
1456 it's own scratch register. It does this by clobbering
1457 an fp reg so that it is assured of an empty reg-stack
1458 register. If the register is live, kill it now.
1459 Remove the DEAD/UNUSED note so we don't try to kill it
1460 later too. */
1461
1462 if (note)
1463 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1464 else
1465 {
1466 note = find_reg_note (insn, REG_UNUSED, *dest);
1467 if (!note)
1468 abort ();
1469 }
1470 remove_note (insn, note);
1471 replace_reg (dest, LAST_STACK_REG);
1472 }
1473 else
1474 {
1475 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1476 indicates an uninitialized value. Because reload removed
1477 all other clobbers, this must be due to a function
1478 returning without a value. Load up a NaN. */
1479
1480 if (! note
1481 && get_hard_regnum (regstack, *dest) == -1)
1482 {
1483 pat = gen_rtx_SET (VOIDmode,
1484 FP_MODE_REG (REGNO (*dest), SFmode),
1485 nan);
1486 PATTERN (insn) = pat;
1487 move_for_stack_reg (insn, regstack, pat);
1488 }
1489 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1490 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1491 {
1492 pat = gen_rtx_SET (VOIDmode,
1493 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1494 nan);
1495 PATTERN (insn) = pat;
1496 move_for_stack_reg (insn, regstack, pat);
1497 }
1498 }
1499 }
1500 break;
1501 }
1502
1503 case SET:
1504 {
1505 rtx *src1 = (rtx *) 0, *src2;
1506 rtx src1_note, src2_note;
1507 rtx pat_src;
1508
1509 dest = get_true_reg (&SET_DEST (pat));
1510 src = get_true_reg (&SET_SRC (pat));
1511 pat_src = SET_SRC (pat);
1512
1513 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1514 if (STACK_REG_P (*src)
1515 || (STACK_REG_P (*dest)
1516 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1517 || GET_CODE (*src) == CONST_DOUBLE)))
1518 {
1519 move_for_stack_reg (insn, regstack, pat);
1520 break;
1521 }
1522
1523 switch (GET_CODE (pat_src))
1524 {
1525 case COMPARE:
1526 compare_for_stack_reg (insn, regstack, pat_src);
1527 break;
1528
1529 case CALL:
1530 {
1531 int count;
1532 for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1533 --count >= 0;)
1534 {
1535 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1536 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1537 }
1538 }
1539 replace_reg (dest, FIRST_STACK_REG);
1540 break;
1541
1542 case REG:
1543 /* This is a `tstM2' case. */
1544 if (*dest != cc0_rtx)
1545 abort ();
1546 src1 = src;
1547
1548 /* Fall through. */
1549
1550 case FLOAT_TRUNCATE:
1551 case SQRT:
1552 case ABS:
1553 case NEG:
1554 /* These insns only operate on the top of the stack. DEST might
1555 be cc0_rtx if we're processing a tstM pattern. Also, it's
1556 possible that the tstM case results in a REG_DEAD note on the
1557 source. */
1558
1559 if (src1 == 0)
1560 src1 = get_true_reg (&XEXP (pat_src, 0));
1561
1562 emit_swap_insn (insn, regstack, *src1);
1563
1564 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1565
1566 if (STACK_REG_P (*dest))
1567 replace_reg (dest, FIRST_STACK_REG);
1568
1569 if (src1_note)
1570 {
1571 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1572 regstack->top--;
1573 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1574 }
1575
1576 replace_reg (src1, FIRST_STACK_REG);
1577 break;
1578
1579 case MINUS:
1580 case DIV:
1581 /* On i386, reversed forms of subM3 and divM3 exist for
1582 MODE_FLOAT, so the same code that works for addM3 and mulM3
1583 can be used. */
1584 case MULT:
1585 case PLUS:
1586 /* These insns can accept the top of stack as a destination
1587 from a stack reg or mem, or can use the top of stack as a
1588 source and some other stack register (possibly top of stack)
1589 as a destination. */
1590
1591 src1 = get_true_reg (&XEXP (pat_src, 0));
1592 src2 = get_true_reg (&XEXP (pat_src, 1));
1593
1594 /* We will fix any death note later. */
1595
1596 if (STACK_REG_P (*src1))
1597 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1598 else
1599 src1_note = NULL_RTX;
1600 if (STACK_REG_P (*src2))
1601 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1602 else
1603 src2_note = NULL_RTX;
1604
1605 /* If either operand is not a stack register, then the dest
1606 must be top of stack. */
1607
1608 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1609 emit_swap_insn (insn, regstack, *dest);
1610 else
1611 {
1612 /* Both operands are REG. If neither operand is already
1613 at the top of stack, choose to make the one that is the dest
1614 the new top of stack. */
1615
1616 int src1_hard_regnum, src2_hard_regnum;
1617
1618 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1619 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1620 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1621 abort ();
1622
1623 if (src1_hard_regnum != FIRST_STACK_REG
1624 && src2_hard_regnum != FIRST_STACK_REG)
1625 emit_swap_insn (insn, regstack, *dest);
1626 }
1627
1628 if (STACK_REG_P (*src1))
1629 replace_reg (src1, get_hard_regnum (regstack, *src1));
1630 if (STACK_REG_P (*src2))
1631 replace_reg (src2, get_hard_regnum (regstack, *src2));
1632
1633 if (src1_note)
1634 {
1635 rtx src1_reg = XEXP (src1_note, 0);
1636
1637 /* If the register that dies is at the top of stack, then
1638 the destination is somewhere else - merely substitute it.
1639 But if the reg that dies is not at top of stack, then
1640 move the top of stack to the dead reg, as though we had
1641 done the insn and then a store-with-pop. */
1642
1643 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1644 {
1645 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1646 replace_reg (dest, get_hard_regnum (regstack, *dest));
1647 }
1648 else
1649 {
1650 int regno = get_hard_regnum (regstack, src1_reg);
1651
1652 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1653 replace_reg (dest, regno);
1654
1655 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1656 = regstack->reg[regstack->top];
1657 }
1658
1659 CLEAR_HARD_REG_BIT (regstack->reg_set,
1660 REGNO (XEXP (src1_note, 0)));
1661 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1662 regstack->top--;
1663 }
1664 else if (src2_note)
1665 {
1666 rtx src2_reg = XEXP (src2_note, 0);
1667 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1668 {
1669 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1670 replace_reg (dest, get_hard_regnum (regstack, *dest));
1671 }
1672 else
1673 {
1674 int regno = get_hard_regnum (regstack, src2_reg);
1675
1676 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1677 replace_reg (dest, regno);
1678
1679 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1680 = regstack->reg[regstack->top];
1681 }
1682
1683 CLEAR_HARD_REG_BIT (regstack->reg_set,
1684 REGNO (XEXP (src2_note, 0)));
1685 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1686 regstack->top--;
1687 }
1688 else
1689 {
1690 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1691 replace_reg (dest, get_hard_regnum (regstack, *dest));
1692 }
1693
1694 /* Keep operand 1 matching with destination. */
1695 if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
1696 && REG_P (*src1) && REG_P (*src2)
1697 && REGNO (*src1) != REGNO (*dest))
1698 {
1699 int tmp = REGNO (*src1);
1700 replace_reg (src1, REGNO (*src2));
1701 replace_reg (src2, tmp);
1702 }
1703 break;
1704
1705 case UNSPEC:
1706 switch (XINT (pat_src, 1))
1707 {
1708 case UNSPEC_SIN:
1709 case UNSPEC_COS:
1710 /* These insns only operate on the top of the stack. */
1711
1712 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1713
1714 emit_swap_insn (insn, regstack, *src1);
1715
1716 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1717
1718 if (STACK_REG_P (*dest))
1719 replace_reg (dest, FIRST_STACK_REG);
1720
1721 if (src1_note)
1722 {
1723 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1724 regstack->top--;
1725 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1726 }
1727
1728 replace_reg (src1, FIRST_STACK_REG);
1729 break;
1730
1731 case UNSPEC_FPATAN:
1732 /* These insns operate on the top two stack slots. */
1733
1734 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1735 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1736
1737 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1738 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1739
1740 {
1741 struct stack_def temp_stack;
1742 int regno, j, k, temp;
1743
1744 temp_stack = *regstack;
1745
1746 /* Place operand 1 at the top of stack. */
1747 regno = get_hard_regnum (&temp_stack, *src1);
1748 if (regno < 0)
1749 abort ();
1750 if (regno != FIRST_STACK_REG)
1751 {
1752 k = temp_stack.top - (regno - FIRST_STACK_REG);
1753 j = temp_stack.top;
1754
1755 temp = temp_stack.reg[k];
1756 temp_stack.reg[k] = temp_stack.reg[j];
1757 temp_stack.reg[j] = temp;
1758 }
1759
1760 /* Place operand 2 next on the stack. */
1761 regno = get_hard_regnum (&temp_stack, *src2);
1762 if (regno < 0)
1763 abort ();
1764 if (regno != FIRST_STACK_REG + 1)
1765 {
1766 k = temp_stack.top - (regno - FIRST_STACK_REG);
1767 j = temp_stack.top - 1;
1768
1769 temp = temp_stack.reg[k];
1770 temp_stack.reg[k] = temp_stack.reg[j];
1771 temp_stack.reg[j] = temp;
1772 }
1773
1774 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1775 }
1776
1777 replace_reg (src1, FIRST_STACK_REG);
1778 replace_reg (src2, FIRST_STACK_REG + 1);
1779
1780 if (src1_note)
1781 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1782 if (src2_note)
1783 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1784
1785 /* Pop both input operands from the stack. */
1786 CLEAR_HARD_REG_BIT (regstack->reg_set,
1787 regstack->reg[regstack->top]);
1788 CLEAR_HARD_REG_BIT (regstack->reg_set,
1789 regstack->reg[regstack->top - 1]);
1790 regstack->top -= 2;
1791
1792 /* Push the result back onto the stack. */
1793 regstack->reg[++regstack->top] = REGNO (*dest);
1794 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1795 replace_reg (dest, FIRST_STACK_REG);
1796 break;
1797
1798 case UNSPEC_SAHF:
1799 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1800 The combination matches the PPRO fcomi instruction. */
1801
1802 pat_src = XVECEXP (pat_src, 0, 0);
1803 if (GET_CODE (pat_src) != UNSPEC
1804 || XINT (pat_src, 1) != UNSPEC_FNSTSW)
1805 abort ();
1806 /* FALLTHRU */
1807
1808 case UNSPEC_FNSTSW:
1809 /* Combined fcomp+fnstsw generated for doing well with
1810 CSE. When optimizing this would have been broken
1811 up before now. */
1812
1813 pat_src = XVECEXP (pat_src, 0, 0);
1814 if (GET_CODE (pat_src) != COMPARE)
1815 abort ();
1816
1817 compare_for_stack_reg (insn, regstack, pat_src);
1818 break;
1819
1820 default:
1821 abort ();
1822 }
1823 break;
1824
1825 case IF_THEN_ELSE:
1826 /* This insn requires the top of stack to be the destination. */
1827
1828 src1 = get_true_reg (&XEXP (pat_src, 1));
1829 src2 = get_true_reg (&XEXP (pat_src, 2));
1830
1831 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1832 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1833
1834 /* If the comparison operator is an FP comparison operator,
1835 it is handled correctly by compare_for_stack_reg () who
1836 will move the destination to the top of stack. But if the
1837 comparison operator is not an FP comparison operator, we
1838 have to handle it here. */
1839 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1840 && REGNO (*dest) != regstack->reg[regstack->top])
1841 {
1842 /* In case one of operands is the top of stack and the operands
1843 dies, it is safe to make it the destination operand by
1844 reversing the direction of cmove and avoid fxch. */
1845 if ((REGNO (*src1) == regstack->reg[regstack->top]
1846 && src1_note)
1847 || (REGNO (*src2) == regstack->reg[regstack->top]
1848 && src2_note))
1849 {
1850 int idx1 = (get_hard_regnum (regstack, *src1)
1851 - FIRST_STACK_REG);
1852 int idx2 = (get_hard_regnum (regstack, *src2)
1853 - FIRST_STACK_REG);
1854
1855 /* Make reg-stack believe that the operands are already
1856 swapped on the stack */
1857 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1858 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1859
1860 /* Reverse condition to compensate the operand swap.
1861 i386 do have comparison always reversible. */
1862 PUT_CODE (XEXP (pat_src, 0),
1863 reversed_comparison_code (XEXP (pat_src, 0), insn));
1864 }
1865 else
1866 emit_swap_insn (insn, regstack, *dest);
1867 }
1868
1869 {
1870 rtx src_note [3];
1871 int i;
1872
1873 src_note[0] = 0;
1874 src_note[1] = src1_note;
1875 src_note[2] = src2_note;
1876
1877 if (STACK_REG_P (*src1))
1878 replace_reg (src1, get_hard_regnum (regstack, *src1));
1879 if (STACK_REG_P (*src2))
1880 replace_reg (src2, get_hard_regnum (regstack, *src2));
1881
1882 for (i = 1; i <= 2; i++)
1883 if (src_note [i])
1884 {
1885 int regno = REGNO (XEXP (src_note[i], 0));
1886
1887 /* If the register that dies is not at the top of
1888 stack, then move the top of stack to the dead reg */
1889 if (regno != regstack->reg[regstack->top])
1890 {
1891 remove_regno_note (insn, REG_DEAD, regno);
1892 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1893 EMIT_AFTER);
1894 }
1895 else
1896 /* Top of stack never dies, as it is the
1897 destination. */
1898 abort ();
1899 }
1900 }
1901
1902 /* Make dest the top of stack. Add dest to regstack if
1903 not present. */
1904 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1905 regstack->reg[++regstack->top] = REGNO (*dest);
1906 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1907 replace_reg (dest, FIRST_STACK_REG);
1908 break;
1909
1910 default:
1911 abort ();
1912 }
1913 break;
1914 }
1915
1916 default:
1917 break;
1918 }
1919 }
1920 \f
1921 /* Substitute hard regnums for any stack regs in INSN, which has
1922 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1923 before the insn, and is updated with changes made here.
1924
1925 There are several requirements and assumptions about the use of
1926 stack-like regs in asm statements. These rules are enforced by
1927 record_asm_stack_regs; see comments there for details. Any
1928 asm_operands left in the RTL at this point may be assume to meet the
1929 requirements, since record_asm_stack_regs removes any problem asm. */
1930
1931 static void
1932 subst_asm_stack_regs (insn, regstack)
1933 rtx insn;
1934 stack regstack;
1935 {
1936 rtx body = PATTERN (insn);
1937 int alt;
1938
1939 rtx *note_reg; /* Array of note contents */
1940 rtx **note_loc; /* Address of REG field of each note */
1941 enum reg_note *note_kind; /* The type of each note */
1942
1943 rtx *clobber_reg = 0;
1944 rtx **clobber_loc = 0;
1945
1946 struct stack_def temp_stack;
1947 int n_notes;
1948 int n_clobbers;
1949 rtx note;
1950 int i;
1951 int n_inputs, n_outputs;
1952
1953 if (! check_asm_stack_operands (insn))
1954 return;
1955
1956 /* Find out what the constraints required. If no constraint
1957 alternative matches, that is a compiler bug: we should have caught
1958 such an insn in check_asm_stack_operands. */
1959 extract_insn (insn);
1960 constrain_operands (1);
1961 alt = which_alternative;
1962
1963 preprocess_constraints ();
1964
1965 n_inputs = get_asm_operand_n_inputs (body);
1966 n_outputs = recog_data.n_operands - n_inputs;
1967
1968 if (alt < 0)
1969 abort ();
1970
1971 /* Strip SUBREGs here to make the following code simpler. */
1972 for (i = 0; i < recog_data.n_operands; i++)
1973 if (GET_CODE (recog_data.operand[i]) == SUBREG
1974 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
1975 {
1976 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1977 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1978 }
1979
1980 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1981
1982 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1983 i++;
1984
1985 note_reg = (rtx *) alloca (i * sizeof (rtx));
1986 note_loc = (rtx **) alloca (i * sizeof (rtx *));
1987 note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
1988
1989 n_notes = 0;
1990 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1991 {
1992 rtx reg = XEXP (note, 0);
1993 rtx *loc = & XEXP (note, 0);
1994
1995 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1996 {
1997 loc = & SUBREG_REG (reg);
1998 reg = SUBREG_REG (reg);
1999 }
2000
2001 if (STACK_REG_P (reg)
2002 && (REG_NOTE_KIND (note) == REG_DEAD
2003 || REG_NOTE_KIND (note) == REG_UNUSED))
2004 {
2005 note_reg[n_notes] = reg;
2006 note_loc[n_notes] = loc;
2007 note_kind[n_notes] = REG_NOTE_KIND (note);
2008 n_notes++;
2009 }
2010 }
2011
2012 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2013
2014 n_clobbers = 0;
2015
2016 if (GET_CODE (body) == PARALLEL)
2017 {
2018 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
2019 clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
2020
2021 for (i = 0; i < XVECLEN (body, 0); i++)
2022 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2023 {
2024 rtx clobber = XVECEXP (body, 0, i);
2025 rtx reg = XEXP (clobber, 0);
2026 rtx *loc = & XEXP (clobber, 0);
2027
2028 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
2029 {
2030 loc = & SUBREG_REG (reg);
2031 reg = SUBREG_REG (reg);
2032 }
2033
2034 if (STACK_REG_P (reg))
2035 {
2036 clobber_reg[n_clobbers] = reg;
2037 clobber_loc[n_clobbers] = loc;
2038 n_clobbers++;
2039 }
2040 }
2041 }
2042
2043 temp_stack = *regstack;
2044
2045 /* Put the input regs into the desired place in TEMP_STACK. */
2046
2047 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2048 if (STACK_REG_P (recog_data.operand[i])
2049 && reg_class_subset_p (recog_op_alt[i][alt].class,
2050 FLOAT_REGS)
2051 && recog_op_alt[i][alt].class != FLOAT_REGS)
2052 {
2053 /* If an operand needs to be in a particular reg in
2054 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2055 these constraints are for single register classes, and
2056 reload guaranteed that operand[i] is already in that class,
2057 we can just use REGNO (recog_data.operand[i]) to know which
2058 actual reg this operand needs to be in. */
2059
2060 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2061
2062 if (regno < 0)
2063 abort ();
2064
2065 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2066 {
2067 /* recog_data.operand[i] is not in the right place. Find
2068 it and swap it with whatever is already in I's place.
2069 K is where recog_data.operand[i] is now. J is where it
2070 should be. */
2071 int j, k, temp;
2072
2073 k = temp_stack.top - (regno - FIRST_STACK_REG);
2074 j = (temp_stack.top
2075 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2076
2077 temp = temp_stack.reg[k];
2078 temp_stack.reg[k] = temp_stack.reg[j];
2079 temp_stack.reg[j] = temp;
2080 }
2081 }
2082
2083 /* Emit insns before INSN to make sure the reg-stack is in the right
2084 order. */
2085
2086 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2087
2088 /* Make the needed input register substitutions. Do death notes and
2089 clobbers too, because these are for inputs, not outputs. */
2090
2091 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2092 if (STACK_REG_P (recog_data.operand[i]))
2093 {
2094 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2095
2096 if (regnum < 0)
2097 abort ();
2098
2099 replace_reg (recog_data.operand_loc[i], regnum);
2100 }
2101
2102 for (i = 0; i < n_notes; i++)
2103 if (note_kind[i] == REG_DEAD)
2104 {
2105 int regnum = get_hard_regnum (regstack, note_reg[i]);
2106
2107 if (regnum < 0)
2108 abort ();
2109
2110 replace_reg (note_loc[i], regnum);
2111 }
2112
2113 for (i = 0; i < n_clobbers; i++)
2114 {
2115 /* It's OK for a CLOBBER to reference a reg that is not live.
2116 Don't try to replace it in that case. */
2117 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2118
2119 if (regnum >= 0)
2120 {
2121 /* Sigh - clobbers always have QImode. But replace_reg knows
2122 that these regs can't be MODE_INT and will abort. Just put
2123 the right reg there without calling replace_reg. */
2124
2125 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2126 }
2127 }
2128
2129 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2130
2131 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2132 if (STACK_REG_P (recog_data.operand[i]))
2133 {
2134 /* An input reg is implicitly popped if it is tied to an
2135 output, or if there is a CLOBBER for it. */
2136 int j;
2137
2138 for (j = 0; j < n_clobbers; j++)
2139 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2140 break;
2141
2142 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2143 {
2144 /* recog_data.operand[i] might not be at the top of stack.
2145 But that's OK, because all we need to do is pop the
2146 right number of regs off of the top of the reg-stack.
2147 record_asm_stack_regs guaranteed that all implicitly
2148 popped regs were grouped at the top of the reg-stack. */
2149
2150 CLEAR_HARD_REG_BIT (regstack->reg_set,
2151 regstack->reg[regstack->top]);
2152 regstack->top--;
2153 }
2154 }
2155
2156 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2157 Note that there isn't any need to substitute register numbers.
2158 ??? Explain why this is true. */
2159
2160 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2161 {
2162 /* See if there is an output for this hard reg. */
2163 int j;
2164
2165 for (j = 0; j < n_outputs; j++)
2166 if (STACK_REG_P (recog_data.operand[j])
2167 && REGNO (recog_data.operand[j]) == (unsigned) i)
2168 {
2169 regstack->reg[++regstack->top] = i;
2170 SET_HARD_REG_BIT (regstack->reg_set, i);
2171 break;
2172 }
2173 }
2174
2175 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2176 input that the asm didn't implicitly pop. If the asm didn't
2177 implicitly pop an input reg, that reg will still be live.
2178
2179 Note that we can't use find_regno_note here: the register numbers
2180 in the death notes have already been substituted. */
2181
2182 for (i = 0; i < n_outputs; i++)
2183 if (STACK_REG_P (recog_data.operand[i]))
2184 {
2185 int j;
2186
2187 for (j = 0; j < n_notes; j++)
2188 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2189 && note_kind[j] == REG_UNUSED)
2190 {
2191 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2192 EMIT_AFTER);
2193 break;
2194 }
2195 }
2196
2197 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2198 if (STACK_REG_P (recog_data.operand[i]))
2199 {
2200 int j;
2201
2202 for (j = 0; j < n_notes; j++)
2203 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2204 && note_kind[j] == REG_DEAD
2205 && TEST_HARD_REG_BIT (regstack->reg_set,
2206 REGNO (recog_data.operand[i])))
2207 {
2208 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2209 EMIT_AFTER);
2210 break;
2211 }
2212 }
2213 }
2214 \f
2215 /* Substitute stack hard reg numbers for stack virtual registers in
2216 INSN. Non-stack register numbers are not changed. REGSTACK is the
2217 current stack content. Insns may be emitted as needed to arrange the
2218 stack for the 387 based on the contents of the insn. */
2219
2220 static void
2221 subst_stack_regs (insn, regstack)
2222 rtx insn;
2223 stack regstack;
2224 {
2225 rtx *note_link, note;
2226 int i;
2227
2228 if (GET_CODE (insn) == CALL_INSN)
2229 {
2230 int top = regstack->top;
2231
2232 /* If there are any floating point parameters to be passed in
2233 registers for this call, make sure they are in the right
2234 order. */
2235
2236 if (top >= 0)
2237 {
2238 straighten_stack (PREV_INSN (insn), regstack);
2239
2240 /* Now mark the arguments as dead after the call. */
2241
2242 while (regstack->top >= 0)
2243 {
2244 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2245 regstack->top--;
2246 }
2247 }
2248 }
2249
2250 /* Do the actual substitution if any stack regs are mentioned.
2251 Since we only record whether entire insn mentions stack regs, and
2252 subst_stack_regs_pat only works for patterns that contain stack regs,
2253 we must check each pattern in a parallel here. A call_value_pop could
2254 fail otherwise. */
2255
2256 if (stack_regs_mentioned (insn))
2257 {
2258 int n_operands = asm_noperands (PATTERN (insn));
2259 if (n_operands >= 0)
2260 {
2261 /* This insn is an `asm' with operands. Decode the operands,
2262 decide how many are inputs, and do register substitution.
2263 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2264
2265 subst_asm_stack_regs (insn, regstack);
2266 return;
2267 }
2268
2269 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2270 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2271 {
2272 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2273 subst_stack_regs_pat (insn, regstack,
2274 XVECEXP (PATTERN (insn), 0, i));
2275 }
2276 else
2277 subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2278 }
2279
2280 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2281 REG_UNUSED will already have been dealt with, so just return. */
2282
2283 if (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn))
2284 return;
2285
2286 /* If there is a REG_UNUSED note on a stack register on this insn,
2287 the indicated reg must be popped. The REG_UNUSED note is removed,
2288 since the form of the newly emitted pop insn references the reg,
2289 making it no longer `unset'. */
2290
2291 note_link = &REG_NOTES (insn);
2292 for (note = *note_link; note; note = XEXP (note, 1))
2293 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2294 {
2295 *note_link = XEXP (note, 1);
2296 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2297 }
2298 else
2299 note_link = &XEXP (note, 1);
2300 }
2301 \f
2302 /* Change the organization of the stack so that it fits a new basic
2303 block. Some registers might have to be popped, but there can never be
2304 a register live in the new block that is not now live.
2305
2306 Insert any needed insns before or after INSN, as indicated by
2307 WHERE. OLD is the original stack layout, and NEW is the desired
2308 form. OLD is updated to reflect the code emitted, ie, it will be
2309 the same as NEW upon return.
2310
2311 This function will not preserve block_end[]. But that information
2312 is no longer needed once this has executed. */
2313
2314 static void
2315 change_stack (insn, old, new, where)
2316 rtx insn;
2317 stack old;
2318 stack new;
2319 enum emit_where where;
2320 {
2321 int reg;
2322 int update_end = 0;
2323
2324 /* We will be inserting new insns "backwards". If we are to insert
2325 after INSN, find the next insn, and insert before it. */
2326
2327 if (where == EMIT_AFTER)
2328 {
2329 if (current_block && current_block->end == insn)
2330 update_end = 1;
2331 insn = NEXT_INSN (insn);
2332 }
2333
2334 /* Pop any registers that are not needed in the new block. */
2335
2336 for (reg = old->top; reg >= 0; reg--)
2337 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2338 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2339 EMIT_BEFORE);
2340
2341 if (new->top == -2)
2342 {
2343 /* If the new block has never been processed, then it can inherit
2344 the old stack order. */
2345
2346 new->top = old->top;
2347 memcpy (new->reg, old->reg, sizeof (new->reg));
2348 }
2349 else
2350 {
2351 /* This block has been entered before, and we must match the
2352 previously selected stack order. */
2353
2354 /* By now, the only difference should be the order of the stack,
2355 not their depth or liveliness. */
2356
2357 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2358 abort ();
2359 win:
2360 if (old->top != new->top)
2361 abort ();
2362
2363 /* If the stack is not empty (new->top != -1), loop here emitting
2364 swaps until the stack is correct.
2365
2366 The worst case number of swaps emitted is N + 2, where N is the
2367 depth of the stack. In some cases, the reg at the top of
2368 stack may be correct, but swapped anyway in order to fix
2369 other regs. But since we never swap any other reg away from
2370 its correct slot, this algorithm will converge. */
2371
2372 if (new->top != -1)
2373 do
2374 {
2375 /* Swap the reg at top of stack into the position it is
2376 supposed to be in, until the correct top of stack appears. */
2377
2378 while (old->reg[old->top] != new->reg[new->top])
2379 {
2380 for (reg = new->top; reg >= 0; reg--)
2381 if (new->reg[reg] == old->reg[old->top])
2382 break;
2383
2384 if (reg == -1)
2385 abort ();
2386
2387 emit_swap_insn (insn, old,
2388 FP_MODE_REG (old->reg[reg], DFmode));
2389 }
2390
2391 /* See if any regs remain incorrect. If so, bring an
2392 incorrect reg to the top of stack, and let the while loop
2393 above fix it. */
2394
2395 for (reg = new->top; reg >= 0; reg--)
2396 if (new->reg[reg] != old->reg[reg])
2397 {
2398 emit_swap_insn (insn, old,
2399 FP_MODE_REG (old->reg[reg], DFmode));
2400 break;
2401 }
2402 } while (reg >= 0);
2403
2404 /* At this point there must be no differences. */
2405
2406 for (reg = old->top; reg >= 0; reg--)
2407 if (old->reg[reg] != new->reg[reg])
2408 abort ();
2409 }
2410
2411 if (update_end)
2412 current_block->end = PREV_INSN (insn);
2413 }
2414 \f
2415 /* Print stack configuration. */
2416
2417 static void
2418 print_stack (file, s)
2419 FILE *file;
2420 stack s;
2421 {
2422 if (! file)
2423 return;
2424
2425 if (s->top == -2)
2426 fprintf (file, "uninitialized\n");
2427 else if (s->top == -1)
2428 fprintf (file, "empty\n");
2429 else
2430 {
2431 int i;
2432 fputs ("[ ", file);
2433 for (i = 0; i <= s->top; ++i)
2434 fprintf (file, "%d ", s->reg[i]);
2435 fputs ("]\n", file);
2436 }
2437 }
2438 \f
2439 /* This function was doing life analysis. We now let the regular live
2440 code do it's job, so we only need to check some extra invariants
2441 that reg-stack expects. Primary among these being that all registers
2442 are initialized before use.
2443
2444 The function returns true when code was emitted to CFG edges and
2445 commit_edge_insertions needs to be called. */
2446
2447 static int
2448 convert_regs_entry ()
2449 {
2450 int inserted = 0;
2451 edge e;
2452 basic_block block;
2453
2454 FOR_EACH_BB_REVERSE (block)
2455 {
2456 block_info bi = BLOCK_INFO (block);
2457 int reg;
2458
2459 /* Set current register status at last instruction `uninitialized'. */
2460 bi->stack_in.top = -2;
2461
2462 /* Copy live_at_end and live_at_start into temporaries. */
2463 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2464 {
2465 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2466 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2467 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2468 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2469 }
2470 }
2471
2472 /* Load something into each stack register live at function entry.
2473 Such live registers can be caused by uninitialized variables or
2474 functions not returning values on all paths. In order to keep
2475 the push/pop code happy, and to not scrog the register stack, we
2476 must put something in these registers. Use a QNaN.
2477
2478 Note that we are inserting converted code here. This code is
2479 never seen by the convert_regs pass. */
2480
2481 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2482 {
2483 basic_block block = e->dest;
2484 block_info bi = BLOCK_INFO (block);
2485 int reg, top = -1;
2486
2487 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2488 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2489 {
2490 rtx init;
2491
2492 bi->stack_in.reg[++top] = reg;
2493
2494 init = gen_rtx_SET (VOIDmode,
2495 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2496 nan);
2497 insert_insn_on_edge (init, e);
2498 inserted = 1;
2499 }
2500
2501 bi->stack_in.top = top;
2502 }
2503
2504 return inserted;
2505 }
2506
2507 /* Construct the desired stack for function exit. This will either
2508 be `empty', or the function return value at top-of-stack. */
2509
2510 static void
2511 convert_regs_exit ()
2512 {
2513 int value_reg_low, value_reg_high;
2514 stack output_stack;
2515 rtx retvalue;
2516
2517 retvalue = stack_result (current_function_decl);
2518 value_reg_low = value_reg_high = -1;
2519 if (retvalue)
2520 {
2521 value_reg_low = REGNO (retvalue);
2522 value_reg_high = value_reg_low
2523 + HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2524 }
2525
2526 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2527 if (value_reg_low == -1)
2528 output_stack->top = -1;
2529 else
2530 {
2531 int reg;
2532
2533 output_stack->top = value_reg_high - value_reg_low;
2534 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2535 {
2536 output_stack->reg[value_reg_high - reg] = reg;
2537 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2538 }
2539 }
2540 }
2541
2542 /* Adjust the stack of this block on exit to match the stack of the
2543 target block, or copy stack info into the stack of the successor
2544 of the successor hasn't been processed yet. */
2545 static bool
2546 compensate_edge (e, file)
2547 edge e;
2548 FILE *file;
2549 {
2550 basic_block block = e->src, target = e->dest;
2551 block_info bi = BLOCK_INFO (block);
2552 struct stack_def regstack, tmpstack;
2553 stack target_stack = &BLOCK_INFO (target)->stack_in;
2554 int reg;
2555
2556 current_block = block;
2557 regstack = bi->stack_out;
2558 if (file)
2559 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2560
2561 if (target_stack->top == -2)
2562 {
2563 /* The target block hasn't had a stack order selected.
2564 We need merely ensure that no pops are needed. */
2565 for (reg = regstack.top; reg >= 0; --reg)
2566 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2567 break;
2568
2569 if (reg == -1)
2570 {
2571 if (file)
2572 fprintf (file, "new block; copying stack position\n");
2573
2574 /* change_stack kills values in regstack. */
2575 tmpstack = regstack;
2576
2577 change_stack (block->end, &tmpstack, target_stack, EMIT_AFTER);
2578 return false;
2579 }
2580
2581 if (file)
2582 fprintf (file, "new block; pops needed\n");
2583 }
2584 else
2585 {
2586 if (target_stack->top == regstack.top)
2587 {
2588 for (reg = target_stack->top; reg >= 0; --reg)
2589 if (target_stack->reg[reg] != regstack.reg[reg])
2590 break;
2591
2592 if (reg == -1)
2593 {
2594 if (file)
2595 fprintf (file, "no changes needed\n");
2596 return false;
2597 }
2598 }
2599
2600 if (file)
2601 {
2602 fprintf (file, "correcting stack to ");
2603 print_stack (file, target_stack);
2604 }
2605 }
2606
2607 /* Care for non-call EH edges specially. The normal return path have
2608 values in registers. These will be popped en masse by the unwind
2609 library. */
2610 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2611 target_stack->top = -1;
2612
2613 /* Other calls may appear to have values live in st(0), but the
2614 abnormal return path will not have actually loaded the values. */
2615 else if (e->flags & EDGE_ABNORMAL_CALL)
2616 {
2617 /* Assert that the lifetimes are as we expect -- one value
2618 live at st(0) on the end of the source block, and no
2619 values live at the beginning of the destination block. */
2620 HARD_REG_SET tmp;
2621
2622 CLEAR_HARD_REG_SET (tmp);
2623 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2624 abort ();
2625 eh1:
2626
2627 /* We are sure that there is st(0) live, otherwise we won't compensate.
2628 For complex return values, we may have st(1) live as well. */
2629 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2630 if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2631 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
2632 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2633 abort ();
2634 eh2:
2635
2636 target_stack->top = -1;
2637 }
2638
2639 /* It is better to output directly to the end of the block
2640 instead of to the edge, because emit_swap can do minimal
2641 insn scheduling. We can do this when there is only one
2642 edge out, and it is not abnormal. */
2643 else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2644 {
2645 /* change_stack kills values in regstack. */
2646 tmpstack = regstack;
2647
2648 change_stack (block->end, &tmpstack, target_stack,
2649 (GET_CODE (block->end) == JUMP_INSN
2650 ? EMIT_BEFORE : EMIT_AFTER));
2651 }
2652 else
2653 {
2654 rtx seq, after;
2655
2656 /* We don't support abnormal edges. Global takes care to
2657 avoid any live register across them, so we should never
2658 have to insert instructions on such edges. */
2659 if (e->flags & EDGE_ABNORMAL)
2660 abort ();
2661
2662 current_block = NULL;
2663 start_sequence ();
2664
2665 /* ??? change_stack needs some point to emit insns after. */
2666 after = emit_note (NULL, NOTE_INSN_DELETED);
2667
2668 tmpstack = regstack;
2669 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2670
2671 seq = get_insns ();
2672 end_sequence ();
2673
2674 insert_insn_on_edge (seq, e);
2675 return true;
2676 }
2677 return false;
2678 }
2679
2680 /* Convert stack register references in one block. */
2681
2682 static int
2683 convert_regs_1 (file, block)
2684 FILE *file;
2685 basic_block block;
2686 {
2687 struct stack_def regstack;
2688 block_info bi = BLOCK_INFO (block);
2689 int inserted, reg;
2690 rtx insn, next;
2691 edge e, beste = NULL;
2692
2693 inserted = 0;
2694
2695 /* Find the edge we will copy stack from. It should be the most frequent
2696 one as it will get cheapest after compensation code is generated,
2697 if multiple such exists, take one with largest count, prefer critical
2698 one (as splitting critical edges is more expensive), or one with lowest
2699 index, to avoid random changes with different orders of the edges. */
2700 for (e = block->pred; e ; e = e->pred_next)
2701 {
2702 if (e->flags & EDGE_DFS_BACK)
2703 ;
2704 else if (! beste)
2705 beste = e;
2706 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2707 beste = e;
2708 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2709 ;
2710 else if (beste->count < e->count)
2711 beste = e;
2712 else if (beste->count > e->count)
2713 ;
2714 else if ((EDGE_CRITICAL_P (e) != 0)
2715 != (EDGE_CRITICAL_P (beste) != 0))
2716 {
2717 if (EDGE_CRITICAL_P (e))
2718 beste = e;
2719 }
2720 else if (e->src->index < beste->src->index)
2721 beste = e;
2722 }
2723
2724 /* Entry block does have stack already initialized. */
2725 if (bi->stack_in.top == -2)
2726 inserted |= compensate_edge (beste, file);
2727 else
2728 beste = NULL;
2729
2730 current_block = block;
2731
2732 if (file)
2733 {
2734 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2735 print_stack (file, &bi->stack_in);
2736 }
2737
2738 /* Process all insns in this block. Keep track of NEXT so that we
2739 don't process insns emitted while substituting in INSN. */
2740 next = block->head;
2741 regstack = bi->stack_in;
2742 do
2743 {
2744 insn = next;
2745 next = NEXT_INSN (insn);
2746
2747 /* Ensure we have not missed a block boundary. */
2748 if (next == NULL)
2749 abort ();
2750 if (insn == block->end)
2751 next = NULL;
2752
2753 /* Don't bother processing unless there is a stack reg
2754 mentioned or if it's a CALL_INSN. */
2755 if (stack_regs_mentioned (insn)
2756 || GET_CODE (insn) == CALL_INSN)
2757 {
2758 if (file)
2759 {
2760 fprintf (file, " insn %d input stack: ",
2761 INSN_UID (insn));
2762 print_stack (file, &regstack);
2763 }
2764 subst_stack_regs (insn, &regstack);
2765 }
2766 }
2767 while (next);
2768
2769 if (file)
2770 {
2771 fprintf (file, "Expected live registers [");
2772 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2773 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2774 fprintf (file, " %d", reg);
2775 fprintf (file, " ]\nOutput stack: ");
2776 print_stack (file, &regstack);
2777 }
2778
2779 insn = block->end;
2780 if (GET_CODE (insn) == JUMP_INSN)
2781 insn = PREV_INSN (insn);
2782
2783 /* If the function is declared to return a value, but it returns one
2784 in only some cases, some registers might come live here. Emit
2785 necessary moves for them. */
2786
2787 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2788 {
2789 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2790 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2791 {
2792 rtx set;
2793
2794 if (file)
2795 {
2796 fprintf (file, "Emitting insn initializing reg %d\n",
2797 reg);
2798 }
2799
2800 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2801 nan);
2802 insn = emit_insn_after (set, insn);
2803 subst_stack_regs (insn, &regstack);
2804 }
2805 }
2806
2807 /* Something failed if the stack lives don't match. */
2808 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2809 abort ();
2810 win:
2811 bi->stack_out = regstack;
2812
2813 /* Compensate the back edges, as those wasn't visited yet. */
2814 for (e = block->succ; e ; e = e->succ_next)
2815 {
2816 if (e->flags & EDGE_DFS_BACK
2817 || (e->dest == EXIT_BLOCK_PTR))
2818 {
2819 if (!BLOCK_INFO (e->dest)->done
2820 && e->dest != block)
2821 abort ();
2822 inserted |= compensate_edge (e, file);
2823 }
2824 }
2825 for (e = block->pred; e ; e = e->pred_next)
2826 {
2827 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2828 && e->src != ENTRY_BLOCK_PTR)
2829 {
2830 if (!BLOCK_INFO (e->src)->done)
2831 abort ();
2832 inserted |= compensate_edge (e, file);
2833 }
2834 }
2835
2836 return inserted;
2837 }
2838
2839 /* Convert registers in all blocks reachable from BLOCK. */
2840
2841 static int
2842 convert_regs_2 (file, block)
2843 FILE *file;
2844 basic_block block;
2845 {
2846 basic_block *stack, *sp;
2847 int inserted;
2848
2849 stack = (basic_block *) xmalloc (sizeof (*stack) * n_basic_blocks);
2850 sp = stack;
2851
2852 *sp++ = block;
2853
2854 inserted = 0;
2855 do
2856 {
2857 edge e;
2858
2859 block = *--sp;
2860 inserted |= convert_regs_1 (file, block);
2861 BLOCK_INFO (block)->done = 1;
2862
2863 for (e = block->succ; e ; e = e->succ_next)
2864 if (! (e->flags & EDGE_DFS_BACK))
2865 {
2866 BLOCK_INFO (e->dest)->predecessors--;
2867 if (!BLOCK_INFO (e->dest)->predecessors)
2868 *sp++ = e->dest;
2869 }
2870 }
2871 while (sp != stack);
2872
2873 return inserted;
2874 }
2875
2876 /* Traverse all basic blocks in a function, converting the register
2877 references in each insn from the "flat" register file that gcc uses,
2878 to the stack-like registers the 387 uses. */
2879
2880 static int
2881 convert_regs (file)
2882 FILE *file;
2883 {
2884 int inserted;
2885 basic_block b;
2886 edge e;
2887
2888 /* Initialize uninitialized registers on function entry. */
2889 inserted = convert_regs_entry ();
2890
2891 /* Construct the desired stack for function exit. */
2892 convert_regs_exit ();
2893 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2894
2895 /* ??? Future: process inner loops first, and give them arbitrary
2896 initial stacks which emit_swap_insn can modify. This ought to
2897 prevent double fxch that aften appears at the head of a loop. */
2898
2899 /* Process all blocks reachable from all entry points. */
2900 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2901 inserted |= convert_regs_2 (file, e->dest);
2902
2903 /* ??? Process all unreachable blocks. Though there's no excuse
2904 for keeping these even when not optimizing. */
2905 FOR_EACH_BB (b)
2906 {
2907 block_info bi = BLOCK_INFO (b);
2908
2909 if (! bi->done)
2910 {
2911 int reg;
2912
2913 /* Create an arbitrary input stack. */
2914 bi->stack_in.top = -1;
2915 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2916 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2917 bi->stack_in.reg[++bi->stack_in.top] = reg;
2918
2919 inserted |= convert_regs_2 (file, b);
2920 }
2921 }
2922 clear_aux_for_blocks ();
2923
2924 fixup_abnormal_edges ();
2925 if (inserted)
2926 commit_edge_insertions ();
2927
2928 if (file)
2929 fputc ('\n', file);
2930
2931 return inserted;
2932 }
2933 #endif /* STACK_REGS */
2934
2935 #include "gt-reg-stack.h"