Drop excess size used for run time allocated stack variables.
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
22
23 * The form of the input:
24
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
34
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
42
43 * The form of the output:
44
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
50
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
53
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
57
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
60
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
64
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
69
70 * Methodology:
71
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
75
76 * asm_operands:
77
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
81
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
85
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
89
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
96
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
99
100 All explicitly referenced input operands may not "skip" a reg.
101 Otherwise we can have holes in the stack.
102
103 3. It is possible that if an input dies in an insn, reload might
104 use the input reg for an output reload. Consider this example:
105
106 asm ("foo" : "=t" (a) : "f" (b));
107
108 This asm says that input B is not popped by the asm, and that
109 the asm pushes a result onto the reg-stack, i.e., the stack is one
110 deeper after the asm than it was before. But, it is possible that
111 reload will think that it can use the same reg for both the input and
112 the output, if input B dies in this insn.
113
114 If any input operand uses the "f" constraint, all output reg
115 constraints must use the "&" earlyclobber.
116
117 The asm above would be written as
118
119 asm ("foo" : "=&t" (a) : "f" (b));
120
121 4. Some operands need to be in particular places on the stack. All
122 output operands fall in this category - there is no other way to
123 know which regs the outputs appear in unless the user indicates
124 this in the constraints.
125
126 Output operands must specifically indicate which reg an output
127 appears in after an asm. "=f" is not allowed: the operand
128 constraints must select a class with a single reg.
129
130 5. Output operands may not be "inserted" between existing stack regs.
131 Since no 387 opcode uses a read/write operand, all output operands
132 are dead before the asm_operands, and are pushed by the asm_operands.
133 It makes no sense to push anywhere but the top of the reg-stack.
134
135 Output operands must start at the top of the reg-stack: output
136 operands may not "skip" a reg.
137
138 6. Some asm statements may need extra stack space for internal
139 calculations. This can be guaranteed by clobbering stack registers
140 unrelated to the inputs and outputs.
141
142 Here are a couple of reasonable asms to want to write. This asm
143 takes one input, which is internally popped, and produces two outputs.
144
145 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146
147 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148 and replaces them with one output. The user must code the "st(1)"
149 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150
151 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
152
153 */
154 \f
155 #include "config.h"
156 #include "system.h"
157 #include "coretypes.h"
158 #include "backend.h"
159 #include "target.h"
160 #include "rtl.h"
161 #include "tree.h"
162 #include "df.h"
163 #include "insn-config.h"
164 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
165 #include "recog.h"
166 #include "varasm.h"
167 #include "rtl-error.h"
168 #include "cfgrtl.h"
169 #include "cfganal.h"
170 #include "cfgbuild.h"
171 #include "cfgcleanup.h"
172 #include "reload.h"
173 #include "tree-pass.h"
174 #include "rtl-iter.h"
175
176 #ifdef STACK_REGS
177
178 /* We use this array to cache info about insns, because otherwise we
179 spend too much time in stack_regs_mentioned_p.
180
181 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
182 the insn uses stack registers, two indicates the insn does not use
183 stack registers. */
184 static vec<char> stack_regs_mentioned_data;
185
186 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
187
188 int regstack_completed = 0;
189
190 /* This is the basic stack record. TOP is an index into REG[] such
191 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
192
193 If TOP is -2, REG[] is not yet initialized. Stack initialization
194 consists of placing each live reg in array `reg' and setting `top'
195 appropriately.
196
197 REG_SET indicates which registers are live. */
198
199 typedef struct stack_def
200 {
201 int top; /* index to top stack element */
202 HARD_REG_SET reg_set; /* set of live registers */
203 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
204 } *stack_ptr;
205
206 /* This is used to carry information about basic blocks. It is
207 attached to the AUX field of the standard CFG block. */
208
209 typedef struct block_info_def
210 {
211 struct stack_def stack_in; /* Input stack configuration. */
212 struct stack_def stack_out; /* Output stack configuration. */
213 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
214 int done; /* True if block already converted. */
215 int predecessors; /* Number of predecessors that need
216 to be visited. */
217 } *block_info;
218
219 #define BLOCK_INFO(B) ((block_info) (B)->aux)
220
221 /* Passed to change_stack to indicate where to emit insns. */
222 enum emit_where
223 {
224 EMIT_AFTER,
225 EMIT_BEFORE
226 };
227
228 /* The block we're currently working on. */
229 static basic_block current_block;
230
231 /* In the current_block, whether we're processing the first register
232 stack or call instruction, i.e. the regstack is currently the
233 same as BLOCK_INFO(current_block)->stack_in. */
234 static bool starting_stack_p;
235
236 /* This is the register file for all register after conversion. */
237 static rtx
238 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
239
240 #define FP_MODE_REG(regno,mode) \
241 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
242
243 /* Used to initialize uninitialized registers. */
244 static rtx not_a_num;
245
246 /* Forward declarations */
247
248 static int stack_regs_mentioned_p (const_rtx pat);
249 static void pop_stack (stack_ptr, int);
250 static rtx *get_true_reg (rtx *);
251
252 static int check_asm_stack_operands (rtx_insn *);
253 static void get_asm_operands_in_out (rtx, int *, int *);
254 static rtx stack_result (tree);
255 static void replace_reg (rtx *, int);
256 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
257 static int get_hard_regnum (stack_ptr, rtx);
258 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
259 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
260 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
261 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
262 static int swap_rtx_condition_1 (rtx);
263 static int swap_rtx_condition (rtx_insn *);
264 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx);
265 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
266 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
267 static bool subst_stack_regs (rtx_insn *, stack_ptr);
268 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
269 static void print_stack (FILE *, stack_ptr);
270 static rtx_insn *next_flags_user (rtx_insn *);
271 \f
272 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
273
274 static int
275 stack_regs_mentioned_p (const_rtx pat)
276 {
277 const char *fmt;
278 int i;
279
280 if (STACK_REG_P (pat))
281 return 1;
282
283 fmt = GET_RTX_FORMAT (GET_CODE (pat));
284 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
285 {
286 if (fmt[i] == 'E')
287 {
288 int j;
289
290 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
291 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
292 return 1;
293 }
294 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
295 return 1;
296 }
297
298 return 0;
299 }
300
301 /* Return nonzero if INSN mentions stacked registers, else return zero. */
302
303 int
304 stack_regs_mentioned (const_rtx insn)
305 {
306 unsigned int uid, max;
307 int test;
308
309 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
310 return 0;
311
312 uid = INSN_UID (insn);
313 max = stack_regs_mentioned_data.length ();
314 if (uid >= max)
315 {
316 /* Allocate some extra size to avoid too many reallocs, but
317 do not grow too quickly. */
318 max = uid + uid / 20 + 1;
319 stack_regs_mentioned_data.safe_grow_cleared (max);
320 }
321
322 test = stack_regs_mentioned_data[uid];
323 if (test == 0)
324 {
325 /* This insn has yet to be examined. Do so now. */
326 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
327 stack_regs_mentioned_data[uid] = test;
328 }
329
330 return test == 1;
331 }
332 \f
333 static rtx ix86_flags_rtx;
334
335 static rtx_insn *
336 next_flags_user (rtx_insn *insn)
337 {
338 /* Search forward looking for the first use of this value.
339 Stop at block boundaries. */
340
341 while (insn != BB_END (current_block))
342 {
343 insn = NEXT_INSN (insn);
344
345 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
346 return insn;
347
348 if (CALL_P (insn))
349 return NULL;
350 }
351 return NULL;
352 }
353 \f
354 /* Reorganize the stack into ascending numbers, before this insn. */
355
356 static void
357 straighten_stack (rtx_insn *insn, stack_ptr regstack)
358 {
359 struct stack_def temp_stack;
360 int top;
361
362 /* If there is only a single register on the stack, then the stack is
363 already in increasing order and no reorganization is needed.
364
365 Similarly if the stack is empty. */
366 if (regstack->top <= 0)
367 return;
368
369 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
370
371 for (top = temp_stack.top = regstack->top; top >= 0; top--)
372 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
373
374 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
375 }
376
377 /* Pop a register from the stack. */
378
379 static void
380 pop_stack (stack_ptr regstack, int regno)
381 {
382 int top = regstack->top;
383
384 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
385 regstack->top--;
386 /* If regno was not at the top of stack then adjust stack. */
387 if (regstack->reg [top] != regno)
388 {
389 int i;
390 for (i = regstack->top; i >= 0; i--)
391 if (regstack->reg [i] == regno)
392 {
393 int j;
394 for (j = i; j < top; j++)
395 regstack->reg [j] = regstack->reg [j + 1];
396 break;
397 }
398 }
399 }
400 \f
401 /* Return a pointer to the REG expression within PAT. If PAT is not a
402 REG, possible enclosed by a conversion rtx, return the inner part of
403 PAT that stopped the search. */
404
405 static rtx *
406 get_true_reg (rtx *pat)
407 {
408 for (;;)
409 switch (GET_CODE (*pat))
410 {
411 case SUBREG:
412 /* Eliminate FP subregister accesses in favor of the
413 actual FP register in use. */
414 {
415 rtx subreg;
416 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
417 {
418 int regno_off = subreg_regno_offset (REGNO (subreg),
419 GET_MODE (subreg),
420 SUBREG_BYTE (*pat),
421 GET_MODE (*pat));
422 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
423 GET_MODE (subreg));
424 return pat;
425 }
426 pat = &XEXP (*pat, 0);
427 break;
428 }
429 case FLOAT:
430 case FIX:
431 case FLOAT_EXTEND:
432 pat = &XEXP (*pat, 0);
433 break;
434
435 case UNSPEC:
436 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
437 || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
438 pat = &XVECEXP (*pat, 0, 0);
439 return pat;
440
441 case FLOAT_TRUNCATE:
442 if (!flag_unsafe_math_optimizations)
443 return pat;
444 pat = &XEXP (*pat, 0);
445 break;
446
447 default:
448 return pat;
449 }
450 }
451 \f
452 /* Set if we find any malformed asms in a block. */
453 static bool any_malformed_asm;
454
455 /* There are many rules that an asm statement for stack-like regs must
456 follow. Those rules are explained at the top of this file: the rule
457 numbers below refer to that explanation. */
458
459 static int
460 check_asm_stack_operands (rtx_insn *insn)
461 {
462 int i;
463 int n_clobbers;
464 int malformed_asm = 0;
465 rtx body = PATTERN (insn);
466
467 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
468 char implicitly_dies[FIRST_PSEUDO_REGISTER];
469 char explicitly_used[FIRST_PSEUDO_REGISTER];
470
471 rtx *clobber_reg = 0;
472 int n_inputs, n_outputs;
473
474 /* Find out what the constraints require. If no constraint
475 alternative matches, this asm is malformed. */
476 extract_constrain_insn (insn);
477
478 preprocess_constraints (insn);
479
480 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
481
482 if (which_alternative < 0)
483 {
484 malformed_asm = 1;
485 /* Avoid further trouble with this insn. */
486 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
487 return 0;
488 }
489 const operand_alternative *op_alt = which_op_alt ();
490
491 /* Strip SUBREGs here to make the following code simpler. */
492 for (i = 0; i < recog_data.n_operands; i++)
493 if (GET_CODE (recog_data.operand[i]) == SUBREG
494 && REG_P (SUBREG_REG (recog_data.operand[i])))
495 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
496
497 /* Set up CLOBBER_REG. */
498
499 n_clobbers = 0;
500
501 if (GET_CODE (body) == PARALLEL)
502 {
503 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
504
505 for (i = 0; i < XVECLEN (body, 0); i++)
506 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
507 {
508 rtx clobber = XVECEXP (body, 0, i);
509 rtx reg = XEXP (clobber, 0);
510
511 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
512 reg = SUBREG_REG (reg);
513
514 if (STACK_REG_P (reg))
515 {
516 clobber_reg[n_clobbers] = reg;
517 n_clobbers++;
518 }
519 }
520 }
521
522 /* Enforce rule #4: Output operands must specifically indicate which
523 reg an output appears in after an asm. "=f" is not allowed: the
524 operand constraints must select a class with a single reg.
525
526 Also enforce rule #5: Output operands must start at the top of
527 the reg-stack: output operands may not "skip" a reg. */
528
529 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
530 for (i = 0; i < n_outputs; i++)
531 if (STACK_REG_P (recog_data.operand[i]))
532 {
533 if (reg_class_size[(int) op_alt[i].cl] != 1)
534 {
535 error_for_asm (insn, "output constraint %d must specify a single register", i);
536 malformed_asm = 1;
537 }
538 else
539 {
540 int j;
541
542 for (j = 0; j < n_clobbers; j++)
543 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
544 {
545 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
546 i, reg_names [REGNO (clobber_reg[j])]);
547 malformed_asm = 1;
548 break;
549 }
550 if (j == n_clobbers)
551 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
552 }
553 }
554
555
556 /* Search for first non-popped reg. */
557 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
558 if (! reg_used_as_output[i])
559 break;
560
561 /* If there are any other popped regs, that's an error. */
562 for (; i < LAST_STACK_REG + 1; i++)
563 if (reg_used_as_output[i])
564 break;
565
566 if (i != LAST_STACK_REG + 1)
567 {
568 error_for_asm (insn, "output regs must be grouped at top of stack");
569 malformed_asm = 1;
570 }
571
572 /* Enforce rule #2: All implicitly popped input regs must be closer
573 to the top of the reg-stack than any input that is not implicitly
574 popped. */
575
576 memset (implicitly_dies, 0, sizeof (implicitly_dies));
577 memset (explicitly_used, 0, sizeof (explicitly_used));
578 for (i = n_outputs; i < n_outputs + n_inputs; i++)
579 if (STACK_REG_P (recog_data.operand[i]))
580 {
581 /* An input reg is implicitly popped if it is tied to an
582 output, or if there is a CLOBBER for it. */
583 int j;
584
585 for (j = 0; j < n_clobbers; j++)
586 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
587 break;
588
589 if (j < n_clobbers || op_alt[i].matches >= 0)
590 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
591 else if (reg_class_size[(int) op_alt[i].cl] == 1)
592 explicitly_used[REGNO (recog_data.operand[i])] = 1;
593 }
594
595 /* Search for first non-popped reg. */
596 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
597 if (! implicitly_dies[i])
598 break;
599
600 /* If there are any other popped regs, that's an error. */
601 for (; i < LAST_STACK_REG + 1; i++)
602 if (implicitly_dies[i])
603 break;
604
605 if (i != LAST_STACK_REG + 1)
606 {
607 error_for_asm (insn,
608 "implicitly popped regs must be grouped at top of stack");
609 malformed_asm = 1;
610 }
611
612 /* Search for first not-explicitly used reg. */
613 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
614 if (! implicitly_dies[i] && ! explicitly_used[i])
615 break;
616
617 /* If there are any other explicitly used regs, that's an error. */
618 for (; i < LAST_STACK_REG + 1; i++)
619 if (explicitly_used[i])
620 break;
621
622 if (i != LAST_STACK_REG + 1)
623 {
624 error_for_asm (insn,
625 "explicitly used regs must be grouped at top of stack");
626 malformed_asm = 1;
627 }
628
629 /* Enforce rule #3: If any input operand uses the "f" constraint, all
630 output constraints must use the "&" earlyclobber.
631
632 ??? Detect this more deterministically by having constrain_asm_operands
633 record any earlyclobber. */
634
635 for (i = n_outputs; i < n_outputs + n_inputs; i++)
636 if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
637 {
638 int j;
639
640 for (j = 0; j < n_outputs; j++)
641 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
642 {
643 error_for_asm (insn,
644 "output operand %d must use %<&%> constraint", j);
645 malformed_asm = 1;
646 }
647 }
648
649 if (malformed_asm)
650 {
651 /* Avoid further trouble with this insn. */
652 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
653 any_malformed_asm = true;
654 return 0;
655 }
656
657 return 1;
658 }
659 \f
660 /* Calculate the number of inputs and outputs in BODY, an
661 asm_operands. N_OPERANDS is the total number of operands, and
662 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
663 placed. */
664
665 static void
666 get_asm_operands_in_out (rtx body, int *pout, int *pin)
667 {
668 rtx asmop = extract_asm_operands (body);
669
670 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
671 *pout = (recog_data.n_operands
672 - ASM_OPERANDS_INPUT_LENGTH (asmop)
673 - ASM_OPERANDS_LABEL_LENGTH (asmop));
674 }
675
676 /* If current function returns its result in an fp stack register,
677 return the REG. Otherwise, return 0. */
678
679 static rtx
680 stack_result (tree decl)
681 {
682 rtx result;
683
684 /* If the value is supposed to be returned in memory, then clearly
685 it is not returned in a stack register. */
686 if (aggregate_value_p (DECL_RESULT (decl), decl))
687 return 0;
688
689 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
690 if (result != 0)
691 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
692 decl, true);
693
694 return result != 0 && STACK_REG_P (result) ? result : 0;
695 }
696 \f
697
698 /*
699 * This section deals with stack register substitution, and forms the second
700 * pass over the RTL.
701 */
702
703 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
704 the desired hard REGNO. */
705
706 static void
707 replace_reg (rtx *reg, int regno)
708 {
709 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
710 gcc_assert (STACK_REG_P (*reg));
711
712 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
713 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
714
715 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
716 }
717
718 /* Remove a note of type NOTE, which must be found, for register
719 number REGNO from INSN. Remove only one such note. */
720
721 static void
722 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
723 {
724 rtx *note_link, this_rtx;
725
726 note_link = &REG_NOTES (insn);
727 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
728 if (REG_NOTE_KIND (this_rtx) == note
729 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
730 {
731 *note_link = XEXP (this_rtx, 1);
732 return;
733 }
734 else
735 note_link = &XEXP (this_rtx, 1);
736
737 gcc_unreachable ();
738 }
739
740 /* Find the hard register number of virtual register REG in REGSTACK.
741 The hard register number is relative to the top of the stack. -1 is
742 returned if the register is not found. */
743
744 static int
745 get_hard_regnum (stack_ptr regstack, rtx reg)
746 {
747 int i;
748
749 gcc_assert (STACK_REG_P (reg));
750
751 for (i = regstack->top; i >= 0; i--)
752 if (regstack->reg[i] == REGNO (reg))
753 break;
754
755 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
756 }
757 \f
758 /* Emit an insn to pop virtual register REG before or after INSN.
759 REGSTACK is the stack state after INSN and is updated to reflect this
760 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
761 is represented as a SET whose destination is the register to be popped
762 and source is the top of stack. A death note for the top of stack
763 cases the movdf pattern to pop. */
764
765 static rtx_insn *
766 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg, enum emit_where where)
767 {
768 rtx_insn *pop_insn;
769 rtx pop_rtx;
770 int hard_regno;
771
772 /* For complex types take care to pop both halves. These may survive in
773 CLOBBER and USE expressions. */
774 if (COMPLEX_MODE_P (GET_MODE (reg)))
775 {
776 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
777 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
778
779 pop_insn = NULL;
780 if (get_hard_regnum (regstack, reg1) >= 0)
781 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
782 if (get_hard_regnum (regstack, reg2) >= 0)
783 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
784 gcc_assert (pop_insn);
785 return pop_insn;
786 }
787
788 hard_regno = get_hard_regnum (regstack, reg);
789
790 gcc_assert (hard_regno >= FIRST_STACK_REG);
791
792 pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, DFmode),
793 FP_MODE_REG (FIRST_STACK_REG, DFmode));
794
795 if (where == EMIT_AFTER)
796 pop_insn = emit_insn_after (pop_rtx, insn);
797 else
798 pop_insn = emit_insn_before (pop_rtx, insn);
799
800 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
801
802 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
803 = regstack->reg[regstack->top];
804 regstack->top -= 1;
805 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
806
807 return pop_insn;
808 }
809 \f
810 /* Emit an insn before or after INSN to swap virtual register REG with
811 the top of stack. REGSTACK is the stack state before the swap, and
812 is updated to reflect the swap. A swap insn is represented as a
813 PARALLEL of two patterns: each pattern moves one reg to the other.
814
815 If REG is already at the top of the stack, no insn is emitted. */
816
817 static void
818 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
819 {
820 int hard_regno;
821 rtx swap_rtx;
822 int other_reg; /* swap regno temps */
823 rtx_insn *i1; /* the stack-reg insn prior to INSN */
824 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
825
826 hard_regno = get_hard_regnum (regstack, reg);
827
828 if (hard_regno == FIRST_STACK_REG)
829 return;
830 if (hard_regno == -1)
831 {
832 /* Something failed if the register wasn't on the stack. If we had
833 malformed asms, we zapped the instruction itself, but that didn't
834 produce the same pattern of register sets as before. To prevent
835 further failure, adjust REGSTACK to include REG at TOP. */
836 gcc_assert (any_malformed_asm);
837 regstack->reg[++regstack->top] = REGNO (reg);
838 return;
839 }
840 gcc_assert (hard_regno >= FIRST_STACK_REG);
841
842 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
843 std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
844
845 /* Find the previous insn involving stack regs, but don't pass a
846 block boundary. */
847 i1 = NULL;
848 if (current_block && insn != BB_HEAD (current_block))
849 {
850 rtx_insn *tmp = PREV_INSN (insn);
851 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
852 while (tmp != limit)
853 {
854 if (LABEL_P (tmp)
855 || CALL_P (tmp)
856 || NOTE_INSN_BASIC_BLOCK_P (tmp)
857 || (NONJUMP_INSN_P (tmp)
858 && stack_regs_mentioned (tmp)))
859 {
860 i1 = tmp;
861 break;
862 }
863 tmp = PREV_INSN (tmp);
864 }
865 }
866
867 if (i1 != NULL_RTX
868 && (i1set = single_set (i1)) != NULL_RTX)
869 {
870 rtx i1src = *get_true_reg (&SET_SRC (i1set));
871 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
872
873 /* If the previous register stack push was from the reg we are to
874 swap with, omit the swap. */
875
876 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
877 && REG_P (i1src)
878 && REGNO (i1src) == (unsigned) hard_regno - 1
879 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
880 return;
881
882 /* If the previous insn wrote to the reg we are to swap with,
883 omit the swap. */
884
885 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
886 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
887 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
888 return;
889 }
890
891 /* Avoid emitting the swap if this is the first register stack insn
892 of the current_block. Instead update the current_block's stack_in
893 and let compensate edges take care of this for us. */
894 if (current_block && starting_stack_p)
895 {
896 BLOCK_INFO (current_block)->stack_in = *regstack;
897 starting_stack_p = false;
898 return;
899 }
900
901 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
902 FP_MODE_REG (FIRST_STACK_REG, XFmode));
903
904 if (i1)
905 emit_insn_after (swap_rtx, i1);
906 else if (current_block)
907 emit_insn_before (swap_rtx, BB_HEAD (current_block));
908 else
909 emit_insn_before (swap_rtx, insn);
910 }
911 \f
912 /* Emit an insns before INSN to swap virtual register SRC1 with
913 the top of stack and virtual register SRC2 with second stack
914 slot. REGSTACK is the stack state before the swaps, and
915 is updated to reflect the swaps. A swap insn is represented as a
916 PARALLEL of two patterns: each pattern moves one reg to the other.
917
918 If SRC1 and/or SRC2 are already at the right place, no swap insn
919 is emitted. */
920
921 static void
922 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
923 {
924 struct stack_def temp_stack;
925 int regno, j, k;
926
927 temp_stack = *regstack;
928
929 /* Place operand 1 at the top of stack. */
930 regno = get_hard_regnum (&temp_stack, src1);
931 gcc_assert (regno >= 0);
932 if (regno != FIRST_STACK_REG)
933 {
934 k = temp_stack.top - (regno - FIRST_STACK_REG);
935 j = temp_stack.top;
936
937 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
938 }
939
940 /* Place operand 2 next on the stack. */
941 regno = get_hard_regnum (&temp_stack, src2);
942 gcc_assert (regno >= 0);
943 if (regno != FIRST_STACK_REG + 1)
944 {
945 k = temp_stack.top - (regno - FIRST_STACK_REG);
946 j = temp_stack.top - 1;
947
948 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
949 }
950
951 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
952 }
953 \f
954 /* Handle a move to or from a stack register in PAT, which is in INSN.
955 REGSTACK is the current stack. Return whether a control flow insn
956 was deleted in the process. */
957
958 static bool
959 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
960 {
961 rtx *psrc = get_true_reg (&SET_SRC (pat));
962 rtx *pdest = get_true_reg (&SET_DEST (pat));
963 rtx src, dest;
964 rtx note;
965 bool control_flow_insn_deleted = false;
966
967 src = *psrc; dest = *pdest;
968
969 if (STACK_REG_P (src) && STACK_REG_P (dest))
970 {
971 /* Write from one stack reg to another. If SRC dies here, then
972 just change the register mapping and delete the insn. */
973
974 note = find_regno_note (insn, REG_DEAD, REGNO (src));
975 if (note)
976 {
977 int i;
978
979 /* If this is a no-op move, there must not be a REG_DEAD note. */
980 gcc_assert (REGNO (src) != REGNO (dest));
981
982 for (i = regstack->top; i >= 0; i--)
983 if (regstack->reg[i] == REGNO (src))
984 break;
985
986 /* The destination must be dead, or life analysis is borked. */
987 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
988
989 /* If the source is not live, this is yet another case of
990 uninitialized variables. Load up a NaN instead. */
991 if (i < 0)
992 return move_nan_for_stack_reg (insn, regstack, dest);
993
994 /* It is possible that the dest is unused after this insn.
995 If so, just pop the src. */
996
997 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
998 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
999 else
1000 {
1001 regstack->reg[i] = REGNO (dest);
1002 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1003 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1004 }
1005
1006 control_flow_insn_deleted |= control_flow_insn_p (insn);
1007 delete_insn (insn);
1008 return control_flow_insn_deleted;
1009 }
1010
1011 /* The source reg does not die. */
1012
1013 /* If this appears to be a no-op move, delete it, or else it
1014 will confuse the machine description output patterns. But if
1015 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1016 for REG_UNUSED will not work for deleted insns. */
1017
1018 if (REGNO (src) == REGNO (dest))
1019 {
1020 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1021 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1022
1023 control_flow_insn_deleted |= control_flow_insn_p (insn);
1024 delete_insn (insn);
1025 return control_flow_insn_deleted;
1026 }
1027
1028 /* The destination ought to be dead. */
1029 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1030
1031 replace_reg (psrc, get_hard_regnum (regstack, src));
1032
1033 regstack->reg[++regstack->top] = REGNO (dest);
1034 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1035 replace_reg (pdest, FIRST_STACK_REG);
1036 }
1037 else if (STACK_REG_P (src))
1038 {
1039 /* Save from a stack reg to MEM, or possibly integer reg. Since
1040 only top of stack may be saved, emit an exchange first if
1041 needs be. */
1042
1043 emit_swap_insn (insn, regstack, src);
1044
1045 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1046 if (note)
1047 {
1048 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1049 regstack->top--;
1050 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1051 }
1052 else if ((GET_MODE (src) == XFmode)
1053 && regstack->top < REG_STACK_SIZE - 1)
1054 {
1055 /* A 387 cannot write an XFmode value to a MEM without
1056 clobbering the source reg. The output code can handle
1057 this by reading back the value from the MEM.
1058 But it is more efficient to use a temp register if one is
1059 available. Push the source value here if the register
1060 stack is not full, and then write the value to memory via
1061 a pop. */
1062 rtx push_rtx;
1063 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1064
1065 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1066 emit_insn_before (push_rtx, insn);
1067 add_reg_note (insn, REG_DEAD, top_stack_reg);
1068 }
1069
1070 replace_reg (psrc, FIRST_STACK_REG);
1071 }
1072 else
1073 {
1074 rtx pat = PATTERN (insn);
1075
1076 gcc_assert (STACK_REG_P (dest));
1077
1078 /* Load from MEM, or possibly integer REG or constant, into the
1079 stack regs. The actual target is always the top of the
1080 stack. The stack mapping is changed to reflect that DEST is
1081 now at top of stack. */
1082
1083 /* The destination ought to be dead. However, there is a
1084 special case with i387 UNSPEC_TAN, where destination is live
1085 (an argument to fptan) but inherent load of 1.0 is modelled
1086 as a load from a constant. */
1087 if (GET_CODE (pat) == PARALLEL
1088 && XVECLEN (pat, 0) == 2
1089 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1090 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1091 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1092 emit_swap_insn (insn, regstack, dest);
1093 else
1094 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1095
1096 gcc_assert (regstack->top < REG_STACK_SIZE);
1097
1098 regstack->reg[++regstack->top] = REGNO (dest);
1099 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1100 replace_reg (pdest, FIRST_STACK_REG);
1101 }
1102
1103 return control_flow_insn_deleted;
1104 }
1105
1106 /* A helper function which replaces INSN with a pattern that loads up
1107 a NaN into DEST, then invokes move_for_stack_reg. */
1108
1109 static bool
1110 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1111 {
1112 rtx pat;
1113
1114 dest = FP_MODE_REG (REGNO (dest), SFmode);
1115 pat = gen_rtx_SET (dest, not_a_num);
1116 PATTERN (insn) = pat;
1117 INSN_CODE (insn) = -1;
1118
1119 return move_for_stack_reg (insn, regstack, pat);
1120 }
1121 \f
1122 /* Swap the condition on a branch, if there is one. Return true if we
1123 found a condition to swap. False if the condition was not used as
1124 such. */
1125
1126 static int
1127 swap_rtx_condition_1 (rtx pat)
1128 {
1129 const char *fmt;
1130 int i, r = 0;
1131
1132 if (COMPARISON_P (pat))
1133 {
1134 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1135 r = 1;
1136 }
1137 else
1138 {
1139 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1140 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1141 {
1142 if (fmt[i] == 'E')
1143 {
1144 int j;
1145
1146 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1147 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1148 }
1149 else if (fmt[i] == 'e')
1150 r |= swap_rtx_condition_1 (XEXP (pat, i));
1151 }
1152 }
1153
1154 return r;
1155 }
1156
1157 static int
1158 swap_rtx_condition (rtx_insn *insn)
1159 {
1160 rtx pat = PATTERN (insn);
1161
1162 /* We're looking for a single set to cc0 or an HImode temporary. */
1163
1164 if (GET_CODE (pat) == SET
1165 && REG_P (SET_DEST (pat))
1166 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1167 {
1168 insn = next_flags_user (insn);
1169 if (insn == NULL_RTX)
1170 return 0;
1171 pat = PATTERN (insn);
1172 }
1173
1174 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1175 with the cc value right now. We may be able to search for one
1176 though. */
1177
1178 if (GET_CODE (pat) == SET
1179 && GET_CODE (SET_SRC (pat)) == UNSPEC
1180 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1181 {
1182 rtx dest = SET_DEST (pat);
1183
1184 /* Search forward looking for the first use of this value.
1185 Stop at block boundaries. */
1186 while (insn != BB_END (current_block))
1187 {
1188 insn = NEXT_INSN (insn);
1189 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1190 break;
1191 if (CALL_P (insn))
1192 return 0;
1193 }
1194
1195 /* We haven't found it. */
1196 if (insn == BB_END (current_block))
1197 return 0;
1198
1199 /* So we've found the insn using this value. If it is anything
1200 other than sahf or the value does not die (meaning we'd have
1201 to search further), then we must give up. */
1202 pat = PATTERN (insn);
1203 if (GET_CODE (pat) != SET
1204 || GET_CODE (SET_SRC (pat)) != UNSPEC
1205 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1206 || ! dead_or_set_p (insn, dest))
1207 return 0;
1208
1209 /* Now we are prepared to handle this as a normal cc0 setter. */
1210 insn = next_flags_user (insn);
1211 if (insn == NULL_RTX)
1212 return 0;
1213 pat = PATTERN (insn);
1214 }
1215
1216 if (swap_rtx_condition_1 (pat))
1217 {
1218 int fail = 0;
1219 INSN_CODE (insn) = -1;
1220 if (recog_memoized (insn) == -1)
1221 fail = 1;
1222 /* In case the flags don't die here, recurse to try fix
1223 following user too. */
1224 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1225 {
1226 insn = next_flags_user (insn);
1227 if (!insn || !swap_rtx_condition (insn))
1228 fail = 1;
1229 }
1230 if (fail)
1231 {
1232 swap_rtx_condition_1 (pat);
1233 return 0;
1234 }
1235 return 1;
1236 }
1237 return 0;
1238 }
1239
1240 /* Handle a comparison. Special care needs to be taken to avoid
1241 causing comparisons that a 387 cannot do correctly, such as EQ.
1242
1243 Also, a pop insn may need to be emitted. The 387 does have an
1244 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1245 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1246 set up. */
1247
1248 static void
1249 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat_src)
1250 {
1251 rtx *src1, *src2;
1252 rtx src1_note, src2_note;
1253
1254 src1 = get_true_reg (&XEXP (pat_src, 0));
1255 src2 = get_true_reg (&XEXP (pat_src, 1));
1256
1257 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1258 registers that die in this insn - move those to stack top first. */
1259 if ((! STACK_REG_P (*src1)
1260 || (STACK_REG_P (*src2)
1261 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1262 && swap_rtx_condition (insn))
1263 {
1264 std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1265
1266 src1 = get_true_reg (&XEXP (pat_src, 0));
1267 src2 = get_true_reg (&XEXP (pat_src, 1));
1268
1269 INSN_CODE (insn) = -1;
1270 }
1271
1272 /* We will fix any death note later. */
1273
1274 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1275
1276 if (STACK_REG_P (*src2))
1277 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1278 else
1279 src2_note = NULL_RTX;
1280
1281 emit_swap_insn (insn, regstack, *src1);
1282
1283 replace_reg (src1, FIRST_STACK_REG);
1284
1285 if (STACK_REG_P (*src2))
1286 replace_reg (src2, get_hard_regnum (regstack, *src2));
1287
1288 if (src1_note)
1289 {
1290 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1291 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1292 }
1293
1294 /* If the second operand dies, handle that. But if the operands are
1295 the same stack register, don't bother, because only one death is
1296 needed, and it was just handled. */
1297
1298 if (src2_note
1299 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1300 && REGNO (*src1) == REGNO (*src2)))
1301 {
1302 /* As a special case, two regs may die in this insn if src2 is
1303 next to top of stack and the top of stack also dies. Since
1304 we have already popped src1, "next to top of stack" is really
1305 at top (FIRST_STACK_REG) now. */
1306
1307 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1308 && src1_note)
1309 {
1310 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1311 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1312 }
1313 else
1314 {
1315 /* The 386 can only represent death of the first operand in
1316 the case handled above. In all other cases, emit a separate
1317 pop and remove the death note from here. */
1318 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1319 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1320 EMIT_AFTER);
1321 }
1322 }
1323 }
1324 \f
1325 /* Substitute hardware stack regs in debug insn INSN, using stack
1326 layout REGSTACK. If we can't find a hardware stack reg for any of
1327 the REGs in it, reset the debug insn. */
1328
1329 static void
1330 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1331 {
1332 subrtx_ptr_iterator::array_type array;
1333 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1334 {
1335 rtx *loc = *iter;
1336 rtx x = *loc;
1337 if (STACK_REG_P (x))
1338 {
1339 int hard_regno = get_hard_regnum (regstack, x);
1340
1341 /* If we can't find an active register, reset this debug insn. */
1342 if (hard_regno == -1)
1343 {
1344 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1345 return;
1346 }
1347
1348 gcc_assert (hard_regno >= FIRST_STACK_REG);
1349 replace_reg (loc, hard_regno);
1350 iter.skip_subrtxes ();
1351 }
1352 }
1353 }
1354
1355 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1356 is the current register layout. Return whether a control flow insn
1357 was deleted in the process. */
1358
1359 static bool
1360 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1361 {
1362 rtx *dest, *src;
1363 bool control_flow_insn_deleted = false;
1364
1365 switch (GET_CODE (pat))
1366 {
1367 case USE:
1368 /* Deaths in USE insns can happen in non optimizing compilation.
1369 Handle them by popping the dying register. */
1370 src = get_true_reg (&XEXP (pat, 0));
1371 if (STACK_REG_P (*src)
1372 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1373 {
1374 /* USEs are ignored for liveness information so USEs of dead
1375 register might happen. */
1376 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1377 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1378 return control_flow_insn_deleted;
1379 }
1380 /* Uninitialized USE might happen for functions returning uninitialized
1381 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1382 so it is safe to ignore the use here. This is consistent with behavior
1383 of dataflow analyzer that ignores USE too. (This also imply that
1384 forcibly initializing the register to NaN here would lead to ICE later,
1385 since the REG_DEAD notes are not issued.) */
1386 break;
1387
1388 case VAR_LOCATION:
1389 gcc_unreachable ();
1390
1391 case CLOBBER:
1392 {
1393 rtx note;
1394
1395 dest = get_true_reg (&XEXP (pat, 0));
1396 if (STACK_REG_P (*dest))
1397 {
1398 note = find_reg_note (insn, REG_DEAD, *dest);
1399
1400 if (pat != PATTERN (insn))
1401 {
1402 /* The fix_truncdi_1 pattern wants to be able to
1403 allocate its own scratch register. It does this by
1404 clobbering an fp reg so that it is assured of an
1405 empty reg-stack register. If the register is live,
1406 kill it now. Remove the DEAD/UNUSED note so we
1407 don't try to kill it later too.
1408
1409 In reality the UNUSED note can be absent in some
1410 complicated cases when the register is reused for
1411 partially set variable. */
1412
1413 if (note)
1414 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1415 else
1416 note = find_reg_note (insn, REG_UNUSED, *dest);
1417 if (note)
1418 remove_note (insn, note);
1419 replace_reg (dest, FIRST_STACK_REG + 1);
1420 }
1421 else
1422 {
1423 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1424 indicates an uninitialized value. Because reload removed
1425 all other clobbers, this must be due to a function
1426 returning without a value. Load up a NaN. */
1427
1428 if (!note)
1429 {
1430 rtx t = *dest;
1431 if (COMPLEX_MODE_P (GET_MODE (t)))
1432 {
1433 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1434 if (get_hard_regnum (regstack, u) == -1)
1435 {
1436 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1437 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1438 control_flow_insn_deleted
1439 |= move_nan_for_stack_reg (insn2, regstack, u);
1440 }
1441 }
1442 if (get_hard_regnum (regstack, t) == -1)
1443 control_flow_insn_deleted
1444 |= move_nan_for_stack_reg (insn, regstack, t);
1445 }
1446 }
1447 }
1448 break;
1449 }
1450
1451 case SET:
1452 {
1453 rtx *src1 = (rtx *) 0, *src2;
1454 rtx src1_note, src2_note;
1455 rtx pat_src;
1456
1457 dest = get_true_reg (&SET_DEST (pat));
1458 src = get_true_reg (&SET_SRC (pat));
1459 pat_src = SET_SRC (pat);
1460
1461 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1462 if (STACK_REG_P (*src)
1463 || (STACK_REG_P (*dest)
1464 && (REG_P (*src) || MEM_P (*src)
1465 || CONST_DOUBLE_P (*src))))
1466 {
1467 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1468 break;
1469 }
1470
1471 switch (GET_CODE (pat_src))
1472 {
1473 case COMPARE:
1474 compare_for_stack_reg (insn, regstack, pat_src);
1475 break;
1476
1477 case CALL:
1478 {
1479 int count;
1480 for (count = REG_NREGS (*dest); --count >= 0;)
1481 {
1482 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1483 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1484 }
1485 }
1486 replace_reg (dest, FIRST_STACK_REG);
1487 break;
1488
1489 case REG:
1490 /* This is a `tstM2' case. */
1491 gcc_assert (*dest == cc0_rtx);
1492 src1 = src;
1493
1494 /* Fall through. */
1495
1496 case FLOAT_TRUNCATE:
1497 case SQRT:
1498 case ABS:
1499 case NEG:
1500 /* These insns only operate on the top of the stack. DEST might
1501 be cc0_rtx if we're processing a tstM pattern. Also, it's
1502 possible that the tstM case results in a REG_DEAD note on the
1503 source. */
1504
1505 if (src1 == 0)
1506 src1 = get_true_reg (&XEXP (pat_src, 0));
1507
1508 emit_swap_insn (insn, regstack, *src1);
1509
1510 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1511
1512 if (STACK_REG_P (*dest))
1513 replace_reg (dest, FIRST_STACK_REG);
1514
1515 if (src1_note)
1516 {
1517 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1518 regstack->top--;
1519 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1520 }
1521
1522 replace_reg (src1, FIRST_STACK_REG);
1523 break;
1524
1525 case MINUS:
1526 case DIV:
1527 /* On i386, reversed forms of subM3 and divM3 exist for
1528 MODE_FLOAT, so the same code that works for addM3 and mulM3
1529 can be used. */
1530 case MULT:
1531 case PLUS:
1532 /* These insns can accept the top of stack as a destination
1533 from a stack reg or mem, or can use the top of stack as a
1534 source and some other stack register (possibly top of stack)
1535 as a destination. */
1536
1537 src1 = get_true_reg (&XEXP (pat_src, 0));
1538 src2 = get_true_reg (&XEXP (pat_src, 1));
1539
1540 /* We will fix any death note later. */
1541
1542 if (STACK_REG_P (*src1))
1543 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1544 else
1545 src1_note = NULL_RTX;
1546 if (STACK_REG_P (*src2))
1547 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1548 else
1549 src2_note = NULL_RTX;
1550
1551 /* If either operand is not a stack register, then the dest
1552 must be top of stack. */
1553
1554 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1555 emit_swap_insn (insn, regstack, *dest);
1556 else
1557 {
1558 /* Both operands are REG. If neither operand is already
1559 at the top of stack, choose to make the one that is the
1560 dest the new top of stack. */
1561
1562 int src1_hard_regnum, src2_hard_regnum;
1563
1564 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1565 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1566
1567 /* If the source is not live, this is yet another case of
1568 uninitialized variables. Load up a NaN instead. */
1569 if (src1_hard_regnum == -1)
1570 {
1571 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1572 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1573 control_flow_insn_deleted
1574 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1575 }
1576 if (src2_hard_regnum == -1)
1577 {
1578 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1579 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1580 control_flow_insn_deleted
1581 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1582 }
1583
1584 if (src1_hard_regnum != FIRST_STACK_REG
1585 && src2_hard_regnum != FIRST_STACK_REG)
1586 emit_swap_insn (insn, regstack, *dest);
1587 }
1588
1589 if (STACK_REG_P (*src1))
1590 replace_reg (src1, get_hard_regnum (regstack, *src1));
1591 if (STACK_REG_P (*src2))
1592 replace_reg (src2, get_hard_regnum (regstack, *src2));
1593
1594 if (src1_note)
1595 {
1596 rtx src1_reg = XEXP (src1_note, 0);
1597
1598 /* If the register that dies is at the top of stack, then
1599 the destination is somewhere else - merely substitute it.
1600 But if the reg that dies is not at top of stack, then
1601 move the top of stack to the dead reg, as though we had
1602 done the insn and then a store-with-pop. */
1603
1604 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1605 {
1606 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1607 replace_reg (dest, get_hard_regnum (regstack, *dest));
1608 }
1609 else
1610 {
1611 int regno = get_hard_regnum (regstack, src1_reg);
1612
1613 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1614 replace_reg (dest, regno);
1615
1616 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1617 = regstack->reg[regstack->top];
1618 }
1619
1620 CLEAR_HARD_REG_BIT (regstack->reg_set,
1621 REGNO (XEXP (src1_note, 0)));
1622 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1623 regstack->top--;
1624 }
1625 else if (src2_note)
1626 {
1627 rtx src2_reg = XEXP (src2_note, 0);
1628 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1629 {
1630 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1631 replace_reg (dest, get_hard_regnum (regstack, *dest));
1632 }
1633 else
1634 {
1635 int regno = get_hard_regnum (regstack, src2_reg);
1636
1637 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1638 replace_reg (dest, regno);
1639
1640 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1641 = regstack->reg[regstack->top];
1642 }
1643
1644 CLEAR_HARD_REG_BIT (regstack->reg_set,
1645 REGNO (XEXP (src2_note, 0)));
1646 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1647 regstack->top--;
1648 }
1649 else
1650 {
1651 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1652 replace_reg (dest, get_hard_regnum (regstack, *dest));
1653 }
1654
1655 /* Keep operand 1 matching with destination. */
1656 if (COMMUTATIVE_ARITH_P (pat_src)
1657 && REG_P (*src1) && REG_P (*src2)
1658 && REGNO (*src1) != REGNO (*dest))
1659 {
1660 int tmp = REGNO (*src1);
1661 replace_reg (src1, REGNO (*src2));
1662 replace_reg (src2, tmp);
1663 }
1664 break;
1665
1666 case UNSPEC:
1667 switch (XINT (pat_src, 1))
1668 {
1669 case UNSPEC_FIST:
1670 case UNSPEC_FIST_ATOMIC:
1671
1672 case UNSPEC_FIST_FLOOR:
1673 case UNSPEC_FIST_CEIL:
1674
1675 /* These insns only operate on the top of the stack. */
1676
1677 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1678 emit_swap_insn (insn, regstack, *src1);
1679
1680 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1681
1682 if (STACK_REG_P (*dest))
1683 replace_reg (dest, FIRST_STACK_REG);
1684
1685 if (src1_note)
1686 {
1687 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1688 regstack->top--;
1689 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1690 }
1691
1692 replace_reg (src1, FIRST_STACK_REG);
1693 break;
1694
1695 case UNSPEC_FXAM:
1696
1697 /* This insn only operate on the top of the stack. */
1698
1699 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1700 emit_swap_insn (insn, regstack, *src1);
1701
1702 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1703
1704 replace_reg (src1, FIRST_STACK_REG);
1705
1706 if (src1_note)
1707 {
1708 remove_regno_note (insn, REG_DEAD,
1709 REGNO (XEXP (src1_note, 0)));
1710 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1711 EMIT_AFTER);
1712 }
1713
1714 break;
1715
1716 case UNSPEC_SIN:
1717 case UNSPEC_COS:
1718 case UNSPEC_FRNDINT:
1719 case UNSPEC_F2XM1:
1720
1721 case UNSPEC_FRNDINT_FLOOR:
1722 case UNSPEC_FRNDINT_CEIL:
1723 case UNSPEC_FRNDINT_TRUNC:
1724 case UNSPEC_FRNDINT_MASK_PM:
1725
1726 /* Above insns operate on the top of the stack. */
1727
1728 case UNSPEC_SINCOS_COS:
1729 case UNSPEC_XTRACT_FRACT:
1730
1731 /* Above insns operate on the top two stack slots,
1732 first part of one input, double output insn. */
1733
1734 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1735
1736 emit_swap_insn (insn, regstack, *src1);
1737
1738 /* Input should never die, it is replaced with output. */
1739 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1740 gcc_assert (!src1_note);
1741
1742 if (STACK_REG_P (*dest))
1743 replace_reg (dest, FIRST_STACK_REG);
1744
1745 replace_reg (src1, FIRST_STACK_REG);
1746 break;
1747
1748 case UNSPEC_SINCOS_SIN:
1749 case UNSPEC_XTRACT_EXP:
1750
1751 /* These insns operate on the top two stack slots,
1752 second part of one input, double output insn. */
1753
1754 regstack->top++;
1755 /* FALLTHRU */
1756
1757 case UNSPEC_TAN:
1758
1759 /* For UNSPEC_TAN, regstack->top is already increased
1760 by inherent load of constant 1.0. */
1761
1762 /* Output value is generated in the second stack slot.
1763 Move current value from second slot to the top. */
1764 regstack->reg[regstack->top]
1765 = regstack->reg[regstack->top - 1];
1766
1767 gcc_assert (STACK_REG_P (*dest));
1768
1769 regstack->reg[regstack->top - 1] = REGNO (*dest);
1770 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1771 replace_reg (dest, FIRST_STACK_REG + 1);
1772
1773 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1774
1775 replace_reg (src1, FIRST_STACK_REG);
1776 break;
1777
1778 case UNSPEC_FPATAN:
1779 case UNSPEC_FYL2X:
1780 case UNSPEC_FYL2XP1:
1781 /* These insns operate on the top two stack slots. */
1782
1783 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1784 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1785
1786 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1787 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1788
1789 swap_to_top (insn, regstack, *src1, *src2);
1790
1791 replace_reg (src1, FIRST_STACK_REG);
1792 replace_reg (src2, FIRST_STACK_REG + 1);
1793
1794 if (src1_note)
1795 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1796 if (src2_note)
1797 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1798
1799 /* Pop both input operands from the stack. */
1800 CLEAR_HARD_REG_BIT (regstack->reg_set,
1801 regstack->reg[regstack->top]);
1802 CLEAR_HARD_REG_BIT (regstack->reg_set,
1803 regstack->reg[regstack->top - 1]);
1804 regstack->top -= 2;
1805
1806 /* Push the result back onto the stack. */
1807 regstack->reg[++regstack->top] = REGNO (*dest);
1808 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1809 replace_reg (dest, FIRST_STACK_REG);
1810 break;
1811
1812 case UNSPEC_FSCALE_FRACT:
1813 case UNSPEC_FPREM_F:
1814 case UNSPEC_FPREM1_F:
1815 /* These insns operate on the top two stack slots,
1816 first part of double input, double output insn. */
1817
1818 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1819 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1820
1821 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1822 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1823
1824 /* Inputs should never die, they are
1825 replaced with outputs. */
1826 gcc_assert (!src1_note);
1827 gcc_assert (!src2_note);
1828
1829 swap_to_top (insn, regstack, *src1, *src2);
1830
1831 /* Push the result back onto stack. Empty stack slot
1832 will be filled in second part of insn. */
1833 if (STACK_REG_P (*dest))
1834 {
1835 regstack->reg[regstack->top] = REGNO (*dest);
1836 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1837 replace_reg (dest, FIRST_STACK_REG);
1838 }
1839
1840 replace_reg (src1, FIRST_STACK_REG);
1841 replace_reg (src2, FIRST_STACK_REG + 1);
1842 break;
1843
1844 case UNSPEC_FSCALE_EXP:
1845 case UNSPEC_FPREM_U:
1846 case UNSPEC_FPREM1_U:
1847 /* These insns operate on the top two stack slots,
1848 second part of double input, double output insn. */
1849
1850 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1851 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1852
1853 /* Push the result back onto stack. Fill empty slot from
1854 first part of insn and fix top of stack pointer. */
1855 if (STACK_REG_P (*dest))
1856 {
1857 regstack->reg[regstack->top - 1] = REGNO (*dest);
1858 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1859 replace_reg (dest, FIRST_STACK_REG + 1);
1860 }
1861
1862 replace_reg (src1, FIRST_STACK_REG);
1863 replace_reg (src2, FIRST_STACK_REG + 1);
1864 break;
1865
1866 case UNSPEC_C2_FLAG:
1867 /* This insn operates on the top two stack slots,
1868 third part of C2 setting double input insn. */
1869
1870 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1871 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1872
1873 replace_reg (src1, FIRST_STACK_REG);
1874 replace_reg (src2, FIRST_STACK_REG + 1);
1875 break;
1876
1877 case UNSPEC_SAHF:
1878 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1879 The combination matches the PPRO fcomi instruction. */
1880
1881 pat_src = XVECEXP (pat_src, 0, 0);
1882 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1883 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1884 /* Fall through. */
1885
1886 case UNSPEC_FNSTSW:
1887 /* Combined fcomp+fnstsw generated for doing well with
1888 CSE. When optimizing this would have been broken
1889 up before now. */
1890
1891 pat_src = XVECEXP (pat_src, 0, 0);
1892 gcc_assert (GET_CODE (pat_src) == COMPARE);
1893
1894 compare_for_stack_reg (insn, regstack, pat_src);
1895 break;
1896
1897 default:
1898 gcc_unreachable ();
1899 }
1900 break;
1901
1902 case IF_THEN_ELSE:
1903 /* This insn requires the top of stack to be the destination. */
1904
1905 src1 = get_true_reg (&XEXP (pat_src, 1));
1906 src2 = get_true_reg (&XEXP (pat_src, 2));
1907
1908 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1909 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1910
1911 /* If the comparison operator is an FP comparison operator,
1912 it is handled correctly by compare_for_stack_reg () who
1913 will move the destination to the top of stack. But if the
1914 comparison operator is not an FP comparison operator, we
1915 have to handle it here. */
1916 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1917 && REGNO (*dest) != regstack->reg[regstack->top])
1918 {
1919 /* In case one of operands is the top of stack and the operands
1920 dies, it is safe to make it the destination operand by
1921 reversing the direction of cmove and avoid fxch. */
1922 if ((REGNO (*src1) == regstack->reg[regstack->top]
1923 && src1_note)
1924 || (REGNO (*src2) == regstack->reg[regstack->top]
1925 && src2_note))
1926 {
1927 int idx1 = (get_hard_regnum (regstack, *src1)
1928 - FIRST_STACK_REG);
1929 int idx2 = (get_hard_regnum (regstack, *src2)
1930 - FIRST_STACK_REG);
1931
1932 /* Make reg-stack believe that the operands are already
1933 swapped on the stack */
1934 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1935 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1936
1937 /* Reverse condition to compensate the operand swap.
1938 i386 do have comparison always reversible. */
1939 PUT_CODE (XEXP (pat_src, 0),
1940 reversed_comparison_code (XEXP (pat_src, 0), insn));
1941 }
1942 else
1943 emit_swap_insn (insn, regstack, *dest);
1944 }
1945
1946 {
1947 rtx src_note [3];
1948 int i;
1949
1950 src_note[0] = 0;
1951 src_note[1] = src1_note;
1952 src_note[2] = src2_note;
1953
1954 if (STACK_REG_P (*src1))
1955 replace_reg (src1, get_hard_regnum (regstack, *src1));
1956 if (STACK_REG_P (*src2))
1957 replace_reg (src2, get_hard_regnum (regstack, *src2));
1958
1959 for (i = 1; i <= 2; i++)
1960 if (src_note [i])
1961 {
1962 int regno = REGNO (XEXP (src_note[i], 0));
1963
1964 /* If the register that dies is not at the top of
1965 stack, then move the top of stack to the dead reg.
1966 Top of stack should never die, as it is the
1967 destination. */
1968 gcc_assert (regno != regstack->reg[regstack->top]);
1969 remove_regno_note (insn, REG_DEAD, regno);
1970 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1971 EMIT_AFTER);
1972 }
1973 }
1974
1975 /* Make dest the top of stack. Add dest to regstack if
1976 not present. */
1977 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1978 regstack->reg[++regstack->top] = REGNO (*dest);
1979 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1980 replace_reg (dest, FIRST_STACK_REG);
1981 break;
1982
1983 default:
1984 gcc_unreachable ();
1985 }
1986 break;
1987 }
1988
1989 default:
1990 break;
1991 }
1992
1993 return control_flow_insn_deleted;
1994 }
1995 \f
1996 /* Substitute hard regnums for any stack regs in INSN, which has
1997 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1998 before the insn, and is updated with changes made here.
1999
2000 There are several requirements and assumptions about the use of
2001 stack-like regs in asm statements. These rules are enforced by
2002 record_asm_stack_regs; see comments there for details. Any
2003 asm_operands left in the RTL at this point may be assume to meet the
2004 requirements, since record_asm_stack_regs removes any problem asm. */
2005
2006 static void
2007 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2008 {
2009 rtx body = PATTERN (insn);
2010
2011 rtx *note_reg; /* Array of note contents */
2012 rtx **note_loc; /* Address of REG field of each note */
2013 enum reg_note *note_kind; /* The type of each note */
2014
2015 rtx *clobber_reg = 0;
2016 rtx **clobber_loc = 0;
2017
2018 struct stack_def temp_stack;
2019 int n_notes;
2020 int n_clobbers;
2021 rtx note;
2022 int i;
2023 int n_inputs, n_outputs;
2024
2025 if (! check_asm_stack_operands (insn))
2026 return;
2027
2028 /* Find out what the constraints required. If no constraint
2029 alternative matches, that is a compiler bug: we should have caught
2030 such an insn in check_asm_stack_operands. */
2031 extract_constrain_insn (insn);
2032
2033 preprocess_constraints (insn);
2034 const operand_alternative *op_alt = which_op_alt ();
2035
2036 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2037
2038 /* Strip SUBREGs here to make the following code simpler. */
2039 for (i = 0; i < recog_data.n_operands; i++)
2040 if (GET_CODE (recog_data.operand[i]) == SUBREG
2041 && REG_P (SUBREG_REG (recog_data.operand[i])))
2042 {
2043 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2044 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2045 }
2046
2047 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2048
2049 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2050 i++;
2051
2052 note_reg = XALLOCAVEC (rtx, i);
2053 note_loc = XALLOCAVEC (rtx *, i);
2054 note_kind = XALLOCAVEC (enum reg_note, i);
2055
2056 n_notes = 0;
2057 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2058 {
2059 if (GET_CODE (note) != EXPR_LIST)
2060 continue;
2061 rtx reg = XEXP (note, 0);
2062 rtx *loc = & XEXP (note, 0);
2063
2064 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2065 {
2066 loc = & SUBREG_REG (reg);
2067 reg = SUBREG_REG (reg);
2068 }
2069
2070 if (STACK_REG_P (reg)
2071 && (REG_NOTE_KIND (note) == REG_DEAD
2072 || REG_NOTE_KIND (note) == REG_UNUSED))
2073 {
2074 note_reg[n_notes] = reg;
2075 note_loc[n_notes] = loc;
2076 note_kind[n_notes] = REG_NOTE_KIND (note);
2077 n_notes++;
2078 }
2079 }
2080
2081 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2082
2083 n_clobbers = 0;
2084
2085 if (GET_CODE (body) == PARALLEL)
2086 {
2087 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2088 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2089
2090 for (i = 0; i < XVECLEN (body, 0); i++)
2091 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2092 {
2093 rtx clobber = XVECEXP (body, 0, i);
2094 rtx reg = XEXP (clobber, 0);
2095 rtx *loc = & XEXP (clobber, 0);
2096
2097 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2098 {
2099 loc = & SUBREG_REG (reg);
2100 reg = SUBREG_REG (reg);
2101 }
2102
2103 if (STACK_REG_P (reg))
2104 {
2105 clobber_reg[n_clobbers] = reg;
2106 clobber_loc[n_clobbers] = loc;
2107 n_clobbers++;
2108 }
2109 }
2110 }
2111
2112 temp_stack = *regstack;
2113
2114 /* Put the input regs into the desired place in TEMP_STACK. */
2115
2116 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2117 if (STACK_REG_P (recog_data.operand[i])
2118 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2119 && op_alt[i].cl != FLOAT_REGS)
2120 {
2121 /* If an operand needs to be in a particular reg in
2122 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2123 these constraints are for single register classes, and
2124 reload guaranteed that operand[i] is already in that class,
2125 we can just use REGNO (recog_data.operand[i]) to know which
2126 actual reg this operand needs to be in. */
2127
2128 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2129
2130 gcc_assert (regno >= 0);
2131
2132 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2133 {
2134 /* recog_data.operand[i] is not in the right place. Find
2135 it and swap it with whatever is already in I's place.
2136 K is where recog_data.operand[i] is now. J is where it
2137 should be. */
2138 int j, k;
2139
2140 k = temp_stack.top - (regno - FIRST_STACK_REG);
2141 j = (temp_stack.top
2142 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2143
2144 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2145 }
2146 }
2147
2148 /* Emit insns before INSN to make sure the reg-stack is in the right
2149 order. */
2150
2151 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2152
2153 /* Make the needed input register substitutions. Do death notes and
2154 clobbers too, because these are for inputs, not outputs. */
2155
2156 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2157 if (STACK_REG_P (recog_data.operand[i]))
2158 {
2159 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2160
2161 gcc_assert (regnum >= 0);
2162
2163 replace_reg (recog_data.operand_loc[i], regnum);
2164 }
2165
2166 for (i = 0; i < n_notes; i++)
2167 if (note_kind[i] == REG_DEAD)
2168 {
2169 int regnum = get_hard_regnum (regstack, note_reg[i]);
2170
2171 gcc_assert (regnum >= 0);
2172
2173 replace_reg (note_loc[i], regnum);
2174 }
2175
2176 for (i = 0; i < n_clobbers; i++)
2177 {
2178 /* It's OK for a CLOBBER to reference a reg that is not live.
2179 Don't try to replace it in that case. */
2180 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2181
2182 if (regnum >= 0)
2183 {
2184 /* Sigh - clobbers always have QImode. But replace_reg knows
2185 that these regs can't be MODE_INT and will assert. Just put
2186 the right reg there without calling replace_reg. */
2187
2188 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2189 }
2190 }
2191
2192 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2193
2194 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2195 if (STACK_REG_P (recog_data.operand[i]))
2196 {
2197 /* An input reg is implicitly popped if it is tied to an
2198 output, or if there is a CLOBBER for it. */
2199 int j;
2200
2201 for (j = 0; j < n_clobbers; j++)
2202 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2203 break;
2204
2205 if (j < n_clobbers || op_alt[i].matches >= 0)
2206 {
2207 /* recog_data.operand[i] might not be at the top of stack.
2208 But that's OK, because all we need to do is pop the
2209 right number of regs off of the top of the reg-stack.
2210 record_asm_stack_regs guaranteed that all implicitly
2211 popped regs were grouped at the top of the reg-stack. */
2212
2213 CLEAR_HARD_REG_BIT (regstack->reg_set,
2214 regstack->reg[regstack->top]);
2215 regstack->top--;
2216 }
2217 }
2218
2219 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2220 Note that there isn't any need to substitute register numbers.
2221 ??? Explain why this is true. */
2222
2223 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2224 {
2225 /* See if there is an output for this hard reg. */
2226 int j;
2227
2228 for (j = 0; j < n_outputs; j++)
2229 if (STACK_REG_P (recog_data.operand[j])
2230 && REGNO (recog_data.operand[j]) == (unsigned) i)
2231 {
2232 regstack->reg[++regstack->top] = i;
2233 SET_HARD_REG_BIT (regstack->reg_set, i);
2234 break;
2235 }
2236 }
2237
2238 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2239 input that the asm didn't implicitly pop. If the asm didn't
2240 implicitly pop an input reg, that reg will still be live.
2241
2242 Note that we can't use find_regno_note here: the register numbers
2243 in the death notes have already been substituted. */
2244
2245 for (i = 0; i < n_outputs; i++)
2246 if (STACK_REG_P (recog_data.operand[i]))
2247 {
2248 int j;
2249
2250 for (j = 0; j < n_notes; j++)
2251 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2252 && note_kind[j] == REG_UNUSED)
2253 {
2254 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2255 EMIT_AFTER);
2256 break;
2257 }
2258 }
2259
2260 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2261 if (STACK_REG_P (recog_data.operand[i]))
2262 {
2263 int j;
2264
2265 for (j = 0; j < n_notes; j++)
2266 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2267 && note_kind[j] == REG_DEAD
2268 && TEST_HARD_REG_BIT (regstack->reg_set,
2269 REGNO (recog_data.operand[i])))
2270 {
2271 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2272 EMIT_AFTER);
2273 break;
2274 }
2275 }
2276 }
2277 \f
2278 /* Substitute stack hard reg numbers for stack virtual registers in
2279 INSN. Non-stack register numbers are not changed. REGSTACK is the
2280 current stack content. Insns may be emitted as needed to arrange the
2281 stack for the 387 based on the contents of the insn. Return whether
2282 a control flow insn was deleted in the process. */
2283
2284 static bool
2285 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2286 {
2287 rtx *note_link, note;
2288 bool control_flow_insn_deleted = false;
2289 int i;
2290
2291 if (CALL_P (insn))
2292 {
2293 int top = regstack->top;
2294
2295 /* If there are any floating point parameters to be passed in
2296 registers for this call, make sure they are in the right
2297 order. */
2298
2299 if (top >= 0)
2300 {
2301 straighten_stack (insn, regstack);
2302
2303 /* Now mark the arguments as dead after the call. */
2304
2305 while (regstack->top >= 0)
2306 {
2307 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2308 regstack->top--;
2309 }
2310 }
2311 }
2312
2313 /* Do the actual substitution if any stack regs are mentioned.
2314 Since we only record whether entire insn mentions stack regs, and
2315 subst_stack_regs_pat only works for patterns that contain stack regs,
2316 we must check each pattern in a parallel here. A call_value_pop could
2317 fail otherwise. */
2318
2319 if (stack_regs_mentioned (insn))
2320 {
2321 int n_operands = asm_noperands (PATTERN (insn));
2322 if (n_operands >= 0)
2323 {
2324 /* This insn is an `asm' with operands. Decode the operands,
2325 decide how many are inputs, and do register substitution.
2326 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2327
2328 subst_asm_stack_regs (insn, regstack);
2329 return control_flow_insn_deleted;
2330 }
2331
2332 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2333 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2334 {
2335 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2336 {
2337 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2338 XVECEXP (PATTERN (insn), 0, i)
2339 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2340 control_flow_insn_deleted
2341 |= subst_stack_regs_pat (insn, regstack,
2342 XVECEXP (PATTERN (insn), 0, i));
2343 }
2344 }
2345 else
2346 control_flow_insn_deleted
2347 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2348 }
2349
2350 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2351 REG_UNUSED will already have been dealt with, so just return. */
2352
2353 if (NOTE_P (insn) || insn->deleted ())
2354 return control_flow_insn_deleted;
2355
2356 /* If this a noreturn call, we can't insert pop insns after it.
2357 Instead, reset the stack state to empty. */
2358 if (CALL_P (insn)
2359 && find_reg_note (insn, REG_NORETURN, NULL))
2360 {
2361 regstack->top = -1;
2362 CLEAR_HARD_REG_SET (regstack->reg_set);
2363 return control_flow_insn_deleted;
2364 }
2365
2366 /* If there is a REG_UNUSED note on a stack register on this insn,
2367 the indicated reg must be popped. The REG_UNUSED note is removed,
2368 since the form of the newly emitted pop insn references the reg,
2369 making it no longer `unset'. */
2370
2371 note_link = &REG_NOTES (insn);
2372 for (note = *note_link; note; note = XEXP (note, 1))
2373 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2374 {
2375 *note_link = XEXP (note, 1);
2376 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2377 }
2378 else
2379 note_link = &XEXP (note, 1);
2380
2381 return control_flow_insn_deleted;
2382 }
2383 \f
2384 /* Change the organization of the stack so that it fits a new basic
2385 block. Some registers might have to be popped, but there can never be
2386 a register live in the new block that is not now live.
2387
2388 Insert any needed insns before or after INSN, as indicated by
2389 WHERE. OLD is the original stack layout, and NEW is the desired
2390 form. OLD is updated to reflect the code emitted, i.e., it will be
2391 the same as NEW upon return.
2392
2393 This function will not preserve block_end[]. But that information
2394 is no longer needed once this has executed. */
2395
2396 static void
2397 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2398 enum emit_where where)
2399 {
2400 int reg;
2401 int update_end = 0;
2402 int i;
2403
2404 /* Stack adjustments for the first insn in a block update the
2405 current_block's stack_in instead of inserting insns directly.
2406 compensate_edges will add the necessary code later. */
2407 if (current_block
2408 && starting_stack_p
2409 && where == EMIT_BEFORE)
2410 {
2411 BLOCK_INFO (current_block)->stack_in = *new_stack;
2412 starting_stack_p = false;
2413 *old = *new_stack;
2414 return;
2415 }
2416
2417 /* We will be inserting new insns "backwards". If we are to insert
2418 after INSN, find the next insn, and insert before it. */
2419
2420 if (where == EMIT_AFTER)
2421 {
2422 if (current_block && BB_END (current_block) == insn)
2423 update_end = 1;
2424 insn = NEXT_INSN (insn);
2425 }
2426
2427 /* Initialize partially dead variables. */
2428 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2429 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2430 && !TEST_HARD_REG_BIT (old->reg_set, i))
2431 {
2432 old->reg[++old->top] = i;
2433 SET_HARD_REG_BIT (old->reg_set, i);
2434 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2435 insn);
2436 }
2437
2438 /* Pop any registers that are not needed in the new block. */
2439
2440 /* If the destination block's stack already has a specified layout
2441 and contains two or more registers, use a more intelligent algorithm
2442 to pop registers that minimizes the number of fxchs below. */
2443 if (new_stack->top > 0)
2444 {
2445 bool slots[REG_STACK_SIZE];
2446 int pops[REG_STACK_SIZE];
2447 int next, dest, topsrc;
2448
2449 /* First pass to determine the free slots. */
2450 for (reg = 0; reg <= new_stack->top; reg++)
2451 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2452
2453 /* Second pass to allocate preferred slots. */
2454 topsrc = -1;
2455 for (reg = old->top; reg > new_stack->top; reg--)
2456 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2457 {
2458 dest = -1;
2459 for (next = 0; next <= new_stack->top; next++)
2460 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2461 {
2462 /* If this is a preference for the new top of stack, record
2463 the fact by remembering it's old->reg in topsrc. */
2464 if (next == new_stack->top)
2465 topsrc = reg;
2466 slots[next] = true;
2467 dest = next;
2468 break;
2469 }
2470 pops[reg] = dest;
2471 }
2472 else
2473 pops[reg] = reg;
2474
2475 /* Intentionally, avoid placing the top of stack in it's correct
2476 location, if we still need to permute the stack below and we
2477 can usefully place it somewhere else. This is the case if any
2478 slot is still unallocated, in which case we should place the
2479 top of stack there. */
2480 if (topsrc != -1)
2481 for (reg = 0; reg < new_stack->top; reg++)
2482 if (!slots[reg])
2483 {
2484 pops[topsrc] = reg;
2485 slots[new_stack->top] = false;
2486 slots[reg] = true;
2487 break;
2488 }
2489
2490 /* Third pass allocates remaining slots and emits pop insns. */
2491 next = new_stack->top;
2492 for (reg = old->top; reg > new_stack->top; reg--)
2493 {
2494 dest = pops[reg];
2495 if (dest == -1)
2496 {
2497 /* Find next free slot. */
2498 while (slots[next])
2499 next--;
2500 dest = next--;
2501 }
2502 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2503 EMIT_BEFORE);
2504 }
2505 }
2506 else
2507 {
2508 /* The following loop attempts to maximize the number of times we
2509 pop the top of the stack, as this permits the use of the faster
2510 ffreep instruction on platforms that support it. */
2511 int live, next;
2512
2513 live = 0;
2514 for (reg = 0; reg <= old->top; reg++)
2515 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2516 live++;
2517
2518 next = live;
2519 while (old->top >= live)
2520 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2521 {
2522 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2523 next--;
2524 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2525 EMIT_BEFORE);
2526 }
2527 else
2528 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2529 EMIT_BEFORE);
2530 }
2531
2532 if (new_stack->top == -2)
2533 {
2534 /* If the new block has never been processed, then it can inherit
2535 the old stack order. */
2536
2537 new_stack->top = old->top;
2538 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2539 }
2540 else
2541 {
2542 /* This block has been entered before, and we must match the
2543 previously selected stack order. */
2544
2545 /* By now, the only difference should be the order of the stack,
2546 not their depth or liveliness. */
2547
2548 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2549 gcc_assert (old->top == new_stack->top);
2550
2551 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2552 swaps until the stack is correct.
2553
2554 The worst case number of swaps emitted is N + 2, where N is the
2555 depth of the stack. In some cases, the reg at the top of
2556 stack may be correct, but swapped anyway in order to fix
2557 other regs. But since we never swap any other reg away from
2558 its correct slot, this algorithm will converge. */
2559
2560 if (new_stack->top != -1)
2561 do
2562 {
2563 /* Swap the reg at top of stack into the position it is
2564 supposed to be in, until the correct top of stack appears. */
2565
2566 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2567 {
2568 for (reg = new_stack->top; reg >= 0; reg--)
2569 if (new_stack->reg[reg] == old->reg[old->top])
2570 break;
2571
2572 gcc_assert (reg != -1);
2573
2574 emit_swap_insn (insn, old,
2575 FP_MODE_REG (old->reg[reg], DFmode));
2576 }
2577
2578 /* See if any regs remain incorrect. If so, bring an
2579 incorrect reg to the top of stack, and let the while loop
2580 above fix it. */
2581
2582 for (reg = new_stack->top; reg >= 0; reg--)
2583 if (new_stack->reg[reg] != old->reg[reg])
2584 {
2585 emit_swap_insn (insn, old,
2586 FP_MODE_REG (old->reg[reg], DFmode));
2587 break;
2588 }
2589 } while (reg >= 0);
2590
2591 /* At this point there must be no differences. */
2592
2593 for (reg = old->top; reg >= 0; reg--)
2594 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2595 }
2596
2597 if (update_end)
2598 BB_END (current_block) = PREV_INSN (insn);
2599 }
2600 \f
2601 /* Print stack configuration. */
2602
2603 static void
2604 print_stack (FILE *file, stack_ptr s)
2605 {
2606 if (! file)
2607 return;
2608
2609 if (s->top == -2)
2610 fprintf (file, "uninitialized\n");
2611 else if (s->top == -1)
2612 fprintf (file, "empty\n");
2613 else
2614 {
2615 int i;
2616 fputs ("[ ", file);
2617 for (i = 0; i <= s->top; ++i)
2618 fprintf (file, "%d ", s->reg[i]);
2619 fputs ("]\n", file);
2620 }
2621 }
2622 \f
2623 /* This function was doing life analysis. We now let the regular live
2624 code do it's job, so we only need to check some extra invariants
2625 that reg-stack expects. Primary among these being that all registers
2626 are initialized before use.
2627
2628 The function returns true when code was emitted to CFG edges and
2629 commit_edge_insertions needs to be called. */
2630
2631 static int
2632 convert_regs_entry (void)
2633 {
2634 int inserted = 0;
2635 edge e;
2636 edge_iterator ei;
2637
2638 /* Load something into each stack register live at function entry.
2639 Such live registers can be caused by uninitialized variables or
2640 functions not returning values on all paths. In order to keep
2641 the push/pop code happy, and to not scrog the register stack, we
2642 must put something in these registers. Use a QNaN.
2643
2644 Note that we are inserting converted code here. This code is
2645 never seen by the convert_regs pass. */
2646
2647 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2648 {
2649 basic_block block = e->dest;
2650 block_info bi = BLOCK_INFO (block);
2651 int reg, top = -1;
2652
2653 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2654 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2655 {
2656 rtx init;
2657
2658 bi->stack_in.reg[++top] = reg;
2659
2660 init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2661 not_a_num);
2662 insert_insn_on_edge (init, e);
2663 inserted = 1;
2664 }
2665
2666 bi->stack_in.top = top;
2667 }
2668
2669 return inserted;
2670 }
2671
2672 /* Construct the desired stack for function exit. This will either
2673 be `empty', or the function return value at top-of-stack. */
2674
2675 static void
2676 convert_regs_exit (void)
2677 {
2678 int value_reg_low, value_reg_high;
2679 stack_ptr output_stack;
2680 rtx retvalue;
2681
2682 retvalue = stack_result (current_function_decl);
2683 value_reg_low = value_reg_high = -1;
2684 if (retvalue)
2685 {
2686 value_reg_low = REGNO (retvalue);
2687 value_reg_high = END_REGNO (retvalue) - 1;
2688 }
2689
2690 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2691 if (value_reg_low == -1)
2692 output_stack->top = -1;
2693 else
2694 {
2695 int reg;
2696
2697 output_stack->top = value_reg_high - value_reg_low;
2698 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2699 {
2700 output_stack->reg[value_reg_high - reg] = reg;
2701 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2702 }
2703 }
2704 }
2705
2706 /* Copy the stack info from the end of edge E's source block to the
2707 start of E's destination block. */
2708
2709 static void
2710 propagate_stack (edge e)
2711 {
2712 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2713 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2714 int reg;
2715
2716 /* Preserve the order of the original stack, but check whether
2717 any pops are needed. */
2718 dest_stack->top = -1;
2719 for (reg = 0; reg <= src_stack->top; ++reg)
2720 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2721 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2722
2723 /* Push in any partially dead values. */
2724 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2725 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2726 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2727 dest_stack->reg[++dest_stack->top] = reg;
2728 }
2729
2730
2731 /* Adjust the stack of edge E's source block on exit to match the stack
2732 of it's target block upon input. The stack layouts of both blocks
2733 should have been defined by now. */
2734
2735 static bool
2736 compensate_edge (edge e)
2737 {
2738 basic_block source = e->src, target = e->dest;
2739 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2740 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2741 struct stack_def regstack;
2742 int reg;
2743
2744 if (dump_file)
2745 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2746
2747 gcc_assert (target_stack->top != -2);
2748
2749 /* Check whether stacks are identical. */
2750 if (target_stack->top == source_stack->top)
2751 {
2752 for (reg = target_stack->top; reg >= 0; --reg)
2753 if (target_stack->reg[reg] != source_stack->reg[reg])
2754 break;
2755
2756 if (reg == -1)
2757 {
2758 if (dump_file)
2759 fprintf (dump_file, "no changes needed\n");
2760 return false;
2761 }
2762 }
2763
2764 if (dump_file)
2765 {
2766 fprintf (dump_file, "correcting stack to ");
2767 print_stack (dump_file, target_stack);
2768 }
2769
2770 /* Abnormal calls may appear to have values live in st(0), but the
2771 abnormal return path will not have actually loaded the values. */
2772 if (e->flags & EDGE_ABNORMAL_CALL)
2773 {
2774 /* Assert that the lifetimes are as we expect -- one value
2775 live at st(0) on the end of the source block, and no
2776 values live at the beginning of the destination block.
2777 For complex return values, we may have st(1) live as well. */
2778 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2779 gcc_assert (target_stack->top == -1);
2780 return false;
2781 }
2782
2783 /* Handle non-call EH edges specially. The normal return path have
2784 values in registers. These will be popped en masse by the unwind
2785 library. */
2786 if (e->flags & EDGE_EH)
2787 {
2788 gcc_assert (target_stack->top == -1);
2789 return false;
2790 }
2791
2792 /* We don't support abnormal edges. Global takes care to
2793 avoid any live register across them, so we should never
2794 have to insert instructions on such edges. */
2795 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2796
2797 /* Make a copy of source_stack as change_stack is destructive. */
2798 regstack = *source_stack;
2799
2800 /* It is better to output directly to the end of the block
2801 instead of to the edge, because emit_swap can do minimal
2802 insn scheduling. We can do this when there is only one
2803 edge out, and it is not abnormal. */
2804 if (EDGE_COUNT (source->succs) == 1)
2805 {
2806 current_block = source;
2807 change_stack (BB_END (source), &regstack, target_stack,
2808 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2809 }
2810 else
2811 {
2812 rtx_insn *seq;
2813 rtx_note *after;
2814
2815 current_block = NULL;
2816 start_sequence ();
2817
2818 /* ??? change_stack needs some point to emit insns after. */
2819 after = emit_note (NOTE_INSN_DELETED);
2820
2821 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2822
2823 seq = get_insns ();
2824 end_sequence ();
2825
2826 insert_insn_on_edge (seq, e);
2827 return true;
2828 }
2829 return false;
2830 }
2831
2832 /* Traverse all non-entry edges in the CFG, and emit the necessary
2833 edge compensation code to change the stack from stack_out of the
2834 source block to the stack_in of the destination block. */
2835
2836 static bool
2837 compensate_edges (void)
2838 {
2839 bool inserted = false;
2840 basic_block bb;
2841
2842 starting_stack_p = false;
2843
2844 FOR_EACH_BB_FN (bb, cfun)
2845 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2846 {
2847 edge e;
2848 edge_iterator ei;
2849
2850 FOR_EACH_EDGE (e, ei, bb->succs)
2851 inserted |= compensate_edge (e);
2852 }
2853 return inserted;
2854 }
2855
2856 /* Select the better of two edges E1 and E2 to use to determine the
2857 stack layout for their shared destination basic block. This is
2858 typically the more frequently executed. The edge E1 may be NULL
2859 (in which case E2 is returned), but E2 is always non-NULL. */
2860
2861 static edge
2862 better_edge (edge e1, edge e2)
2863 {
2864 if (!e1)
2865 return e2;
2866
2867 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2868 return e1;
2869 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2870 return e2;
2871
2872 if (e1->count > e2->count)
2873 return e1;
2874 if (e1->count < e2->count)
2875 return e2;
2876
2877 /* Prefer critical edges to minimize inserting compensation code on
2878 critical edges. */
2879
2880 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2881 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2882
2883 /* Avoid non-deterministic behavior. */
2884 return (e1->src->index < e2->src->index) ? e1 : e2;
2885 }
2886
2887 /* Convert stack register references in one block. Return true if the CFG
2888 has been modified in the process. */
2889
2890 static bool
2891 convert_regs_1 (basic_block block)
2892 {
2893 struct stack_def regstack;
2894 block_info bi = BLOCK_INFO (block);
2895 int reg;
2896 rtx_insn *insn, *next;
2897 bool control_flow_insn_deleted = false;
2898 bool cfg_altered = false;
2899 int debug_insns_with_starting_stack = 0;
2900
2901 any_malformed_asm = false;
2902
2903 /* Choose an initial stack layout, if one hasn't already been chosen. */
2904 if (bi->stack_in.top == -2)
2905 {
2906 edge e, beste = NULL;
2907 edge_iterator ei;
2908
2909 /* Select the best incoming edge (typically the most frequent) to
2910 use as a template for this basic block. */
2911 FOR_EACH_EDGE (e, ei, block->preds)
2912 if (BLOCK_INFO (e->src)->done)
2913 beste = better_edge (beste, e);
2914
2915 if (beste)
2916 propagate_stack (beste);
2917 else
2918 {
2919 /* No predecessors. Create an arbitrary input stack. */
2920 bi->stack_in.top = -1;
2921 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2922 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2923 bi->stack_in.reg[++bi->stack_in.top] = reg;
2924 }
2925 }
2926
2927 if (dump_file)
2928 {
2929 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2930 print_stack (dump_file, &bi->stack_in);
2931 }
2932
2933 /* Process all insns in this block. Keep track of NEXT so that we
2934 don't process insns emitted while substituting in INSN. */
2935 current_block = block;
2936 next = BB_HEAD (block);
2937 regstack = bi->stack_in;
2938 starting_stack_p = true;
2939
2940 do
2941 {
2942 insn = next;
2943 next = NEXT_INSN (insn);
2944
2945 /* Ensure we have not missed a block boundary. */
2946 gcc_assert (next);
2947 if (insn == BB_END (block))
2948 next = NULL;
2949
2950 /* Don't bother processing unless there is a stack reg
2951 mentioned or if it's a CALL_INSN. */
2952 if (DEBUG_INSN_P (insn))
2953 {
2954 if (starting_stack_p)
2955 debug_insns_with_starting_stack++;
2956 else
2957 {
2958 subst_all_stack_regs_in_debug_insn (insn, &regstack);
2959
2960 /* Nothing must ever die at a debug insn. If something
2961 is referenced in it that becomes dead, it should have
2962 died before and the reference in the debug insn
2963 should have been removed so as to avoid changing code
2964 generation. */
2965 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2966 }
2967 }
2968 else if (stack_regs_mentioned (insn)
2969 || CALL_P (insn))
2970 {
2971 if (dump_file)
2972 {
2973 fprintf (dump_file, " insn %d input stack: ",
2974 INSN_UID (insn));
2975 print_stack (dump_file, &regstack);
2976 }
2977 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2978 starting_stack_p = false;
2979 }
2980 }
2981 while (next);
2982
2983 if (debug_insns_with_starting_stack)
2984 {
2985 /* Since it's the first non-debug instruction that determines
2986 the stack requirements of the current basic block, we refrain
2987 from updating debug insns before it in the loop above, and
2988 fix them up here. */
2989 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2990 insn = NEXT_INSN (insn))
2991 {
2992 if (!DEBUG_INSN_P (insn))
2993 continue;
2994
2995 debug_insns_with_starting_stack--;
2996 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
2997 }
2998 }
2999
3000 if (dump_file)
3001 {
3002 fprintf (dump_file, "Expected live registers [");
3003 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3004 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3005 fprintf (dump_file, " %d", reg);
3006 fprintf (dump_file, " ]\nOutput stack: ");
3007 print_stack (dump_file, &regstack);
3008 }
3009
3010 insn = BB_END (block);
3011 if (JUMP_P (insn))
3012 insn = PREV_INSN (insn);
3013
3014 /* If the function is declared to return a value, but it returns one
3015 in only some cases, some registers might come live here. Emit
3016 necessary moves for them. */
3017
3018 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3019 {
3020 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3021 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3022 {
3023 rtx set;
3024
3025 if (dump_file)
3026 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3027
3028 set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3029 insn = emit_insn_after (set, insn);
3030 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3031 }
3032 }
3033
3034 /* Amongst the insns possibly deleted during the substitution process above,
3035 might have been the only trapping insn in the block. We purge the now
3036 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3037 called at the end of convert_regs. The order in which we process the
3038 blocks ensures that we never delete an already processed edge.
3039
3040 Note that, at this point, the CFG may have been damaged by the emission
3041 of instructions after an abnormal call, which moves the basic block end
3042 (and is the reason why we call fixup_abnormal_edges later). So we must
3043 be sure that the trapping insn has been deleted before trying to purge
3044 dead edges, otherwise we risk purging valid edges.
3045
3046 ??? We are normally supposed not to delete trapping insns, so we pretend
3047 that the insns deleted above don't actually trap. It would have been
3048 better to detect this earlier and avoid creating the EH edge in the first
3049 place, still, but we don't have enough information at that time. */
3050
3051 if (control_flow_insn_deleted)
3052 cfg_altered |= purge_dead_edges (block);
3053
3054 /* Something failed if the stack lives don't match. If we had malformed
3055 asms, we zapped the instruction itself, but that didn't produce the
3056 same pattern of register kills as before. */
3057
3058 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3059 || any_malformed_asm);
3060 bi->stack_out = regstack;
3061 bi->done = true;
3062
3063 return cfg_altered;
3064 }
3065
3066 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3067 CFG has been modified in the process. */
3068
3069 static bool
3070 convert_regs_2 (basic_block block)
3071 {
3072 basic_block *stack, *sp;
3073 bool cfg_altered = false;
3074
3075 /* We process the blocks in a top-down manner, in a way such that one block
3076 is only processed after all its predecessors. The number of predecessors
3077 of every block has already been computed. */
3078
3079 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3080 sp = stack;
3081
3082 *sp++ = block;
3083
3084 do
3085 {
3086 edge e;
3087 edge_iterator ei;
3088
3089 block = *--sp;
3090
3091 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3092 some dead EH outgoing edge after the deletion of the trapping
3093 insn inside the block. Since the number of predecessors of
3094 BLOCK's successors was computed based on the initial edge set,
3095 we check the necessity to process some of these successors
3096 before such an edge deletion may happen. However, there is
3097 a pitfall: if BLOCK is the only predecessor of a successor and
3098 the edge between them happens to be deleted, the successor
3099 becomes unreachable and should not be processed. The problem
3100 is that there is no way to preventively detect this case so we
3101 stack the successor in all cases and hand over the task of
3102 fixing up the discrepancy to convert_regs_1. */
3103
3104 FOR_EACH_EDGE (e, ei, block->succs)
3105 if (! (e->flags & EDGE_DFS_BACK))
3106 {
3107 BLOCK_INFO (e->dest)->predecessors--;
3108 if (!BLOCK_INFO (e->dest)->predecessors)
3109 *sp++ = e->dest;
3110 }
3111
3112 cfg_altered |= convert_regs_1 (block);
3113 }
3114 while (sp != stack);
3115
3116 free (stack);
3117
3118 return cfg_altered;
3119 }
3120
3121 /* Traverse all basic blocks in a function, converting the register
3122 references in each insn from the "flat" register file that gcc uses,
3123 to the stack-like registers the 387 uses. */
3124
3125 static void
3126 convert_regs (void)
3127 {
3128 bool cfg_altered = false;
3129 int inserted;
3130 basic_block b;
3131 edge e;
3132 edge_iterator ei;
3133
3134 /* Initialize uninitialized registers on function entry. */
3135 inserted = convert_regs_entry ();
3136
3137 /* Construct the desired stack for function exit. */
3138 convert_regs_exit ();
3139 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3140
3141 /* ??? Future: process inner loops first, and give them arbitrary
3142 initial stacks which emit_swap_insn can modify. This ought to
3143 prevent double fxch that often appears at the head of a loop. */
3144
3145 /* Process all blocks reachable from all entry points. */
3146 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3147 cfg_altered |= convert_regs_2 (e->dest);
3148
3149 /* ??? Process all unreachable blocks. Though there's no excuse
3150 for keeping these even when not optimizing. */
3151 FOR_EACH_BB_FN (b, cfun)
3152 {
3153 block_info bi = BLOCK_INFO (b);
3154
3155 if (! bi->done)
3156 cfg_altered |= convert_regs_2 (b);
3157 }
3158
3159 /* We must fix up abnormal edges before inserting compensation code
3160 because both mechanisms insert insns on edges. */
3161 inserted |= fixup_abnormal_edges ();
3162
3163 inserted |= compensate_edges ();
3164
3165 clear_aux_for_blocks ();
3166
3167 if (inserted)
3168 commit_edge_insertions ();
3169
3170 if (cfg_altered)
3171 cleanup_cfg (0);
3172
3173 if (dump_file)
3174 fputc ('\n', dump_file);
3175 }
3176 \f
3177 /* Convert register usage from "flat" register file usage to a "stack
3178 register file. FILE is the dump file, if used.
3179
3180 Construct a CFG and run life analysis. Then convert each insn one
3181 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3182 code duplication created when the converter inserts pop insns on
3183 the edges. */
3184
3185 static bool
3186 reg_to_stack (void)
3187 {
3188 basic_block bb;
3189 int i;
3190 int max_uid;
3191
3192 /* Clean up previous run. */
3193 stack_regs_mentioned_data.release ();
3194
3195 /* See if there is something to do. Flow analysis is quite
3196 expensive so we might save some compilation time. */
3197 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3198 if (df_regs_ever_live_p (i))
3199 break;
3200 if (i > LAST_STACK_REG)
3201 return false;
3202
3203 df_note_add_problem ();
3204 df_analyze ();
3205
3206 mark_dfs_back_edges ();
3207
3208 /* Set up block info for each basic block. */
3209 alloc_aux_for_blocks (sizeof (struct block_info_def));
3210 FOR_EACH_BB_FN (bb, cfun)
3211 {
3212 block_info bi = BLOCK_INFO (bb);
3213 edge_iterator ei;
3214 edge e;
3215 int reg;
3216
3217 FOR_EACH_EDGE (e, ei, bb->preds)
3218 if (!(e->flags & EDGE_DFS_BACK)
3219 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3220 bi->predecessors++;
3221
3222 /* Set current register status at last instruction `uninitialized'. */
3223 bi->stack_in.top = -2;
3224
3225 /* Copy live_at_end and live_at_start into temporaries. */
3226 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3227 {
3228 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3229 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3230 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3231 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3232 }
3233 }
3234
3235 /* Create the replacement registers up front. */
3236 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3237 {
3238 machine_mode mode;
3239 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3240 mode != VOIDmode;
3241 mode = GET_MODE_WIDER_MODE (mode))
3242 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3243 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3244 mode != VOIDmode;
3245 mode = GET_MODE_WIDER_MODE (mode))
3246 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3247 }
3248
3249 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3250
3251 /* A QNaN for initializing uninitialized variables.
3252
3253 ??? We can't load from constant memory in PIC mode, because
3254 we're inserting these instructions before the prologue and
3255 the PIC register hasn't been set up. In that case, fall back
3256 on zero, which we can get from `fldz'. */
3257
3258 if ((flag_pic && !TARGET_64BIT)
3259 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3260 not_a_num = CONST0_RTX (SFmode);
3261 else
3262 {
3263 REAL_VALUE_TYPE r;
3264
3265 real_nan (&r, "", 1, SFmode);
3266 not_a_num = const_double_from_real_value (r, SFmode);
3267 not_a_num = force_const_mem (SFmode, not_a_num);
3268 }
3269
3270 /* Allocate a cache for stack_regs_mentioned. */
3271 max_uid = get_max_uid ();
3272 stack_regs_mentioned_data.create (max_uid + 1);
3273 memset (stack_regs_mentioned_data.address (),
3274 0, sizeof (char) * (max_uid + 1));
3275
3276 convert_regs ();
3277
3278 free_aux_for_blocks ();
3279 return true;
3280 }
3281 #endif /* STACK_REGS */
3282 \f
3283 namespace {
3284
3285 const pass_data pass_data_stack_regs =
3286 {
3287 RTL_PASS, /* type */
3288 "*stack_regs", /* name */
3289 OPTGROUP_NONE, /* optinfo_flags */
3290 TV_REG_STACK, /* tv_id */
3291 0, /* properties_required */
3292 0, /* properties_provided */
3293 0, /* properties_destroyed */
3294 0, /* todo_flags_start */
3295 0, /* todo_flags_finish */
3296 };
3297
3298 class pass_stack_regs : public rtl_opt_pass
3299 {
3300 public:
3301 pass_stack_regs (gcc::context *ctxt)
3302 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3303 {}
3304
3305 /* opt_pass methods: */
3306 virtual bool gate (function *)
3307 {
3308 #ifdef STACK_REGS
3309 return true;
3310 #else
3311 return false;
3312 #endif
3313 }
3314
3315 }; // class pass_stack_regs
3316
3317 } // anon namespace
3318
3319 rtl_opt_pass *
3320 make_pass_stack_regs (gcc::context *ctxt)
3321 {
3322 return new pass_stack_regs (ctxt);
3323 }
3324
3325 /* Convert register usage from flat register file usage to a stack
3326 register file. */
3327 static unsigned int
3328 rest_of_handle_stack_regs (void)
3329 {
3330 #ifdef STACK_REGS
3331 reg_to_stack ();
3332 regstack_completed = 1;
3333 #endif
3334 return 0;
3335 }
3336
3337 namespace {
3338
3339 const pass_data pass_data_stack_regs_run =
3340 {
3341 RTL_PASS, /* type */
3342 "stack", /* name */
3343 OPTGROUP_NONE, /* optinfo_flags */
3344 TV_REG_STACK, /* tv_id */
3345 0, /* properties_required */
3346 0, /* properties_provided */
3347 0, /* properties_destroyed */
3348 0, /* todo_flags_start */
3349 TODO_df_finish, /* todo_flags_finish */
3350 };
3351
3352 class pass_stack_regs_run : public rtl_opt_pass
3353 {
3354 public:
3355 pass_stack_regs_run (gcc::context *ctxt)
3356 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3357 {}
3358
3359 /* opt_pass methods: */
3360 virtual unsigned int execute (function *)
3361 {
3362 return rest_of_handle_stack_regs ();
3363 }
3364
3365 }; // class pass_stack_regs_run
3366
3367 } // anon namespace
3368
3369 rtl_opt_pass *
3370 make_pass_stack_regs_run (gcc::context *ctxt)
3371 {
3372 return new pass_stack_regs_run (ctxt);
3373 }