typeck2.c (store_init_value): Don't re-digest a bracketed initializer.
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153 \f
154 #include "config.h"
155 #include "system.h"
156 #include "tree.h"
157 #include "rtl.h"
158 #include "tm_p.h"
159 #include "function.h"
160 #include "insn-config.h"
161 #include "regs.h"
162 #include "hard-reg-set.h"
163 #include "flags.h"
164 #include "toplev.h"
165 #include "recog.h"
166 #include "output.h"
167 #include "basic-block.h"
168 #include "varray.h"
169 #include "reload.h"
170
171 #ifdef STACK_REGS
172
173 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
174
175 /* This is the basic stack record. TOP is an index into REG[] such
176 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
177
178 If TOP is -2, REG[] is not yet initialized. Stack initialization
179 consists of placing each live reg in array `reg' and setting `top'
180 appropriately.
181
182 REG_SET indicates which registers are live. */
183
184 typedef struct stack_def
185 {
186 int top; /* index to top stack element */
187 HARD_REG_SET reg_set; /* set of live registers */
188 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
189 } *stack;
190
191 /* This is used to carry information about basic blocks. It is
192 attached to the AUX field of the standard CFG block. */
193
194 typedef struct block_info_def
195 {
196 struct stack_def stack_in; /* Input stack configuration. */
197 struct stack_def stack_out; /* Output stack configuration. */
198 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
199 int done; /* True if block already converted. */
200 int predecesors; /* Number of predecesors that needs
201 to be visited. */
202 } *block_info;
203
204 #define BLOCK_INFO(B) ((block_info) (B)->aux)
205
206 /* Passed to change_stack to indicate where to emit insns. */
207 enum emit_where
208 {
209 EMIT_AFTER,
210 EMIT_BEFORE
211 };
212
213 /* We use this array to cache info about insns, because otherwise we
214 spend too much time in stack_regs_mentioned_p.
215
216 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
217 the insn uses stack registers, two indicates the insn does not use
218 stack registers. */
219 static varray_type stack_regs_mentioned_data;
220
221 /* The block we're currently working on. */
222 static basic_block current_block;
223
224 /* This is the register file for all register after conversion */
225 static rtx
226 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
227
228 #define FP_MODE_REG(regno,mode) \
229 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int)(mode)])
230
231 /* Used to initialize uninitialized registers. */
232 static rtx nan;
233
234 /* Forward declarations */
235
236 static int stack_regs_mentioned_p PARAMS ((rtx pat));
237 static void straighten_stack PARAMS ((rtx, stack));
238 static void pop_stack PARAMS ((stack, int));
239 static rtx *get_true_reg PARAMS ((rtx *));
240
241 static int check_asm_stack_operands PARAMS ((rtx));
242 static int get_asm_operand_n_inputs PARAMS ((rtx));
243 static rtx stack_result PARAMS ((tree));
244 static void replace_reg PARAMS ((rtx *, int));
245 static void remove_regno_note PARAMS ((rtx, enum reg_note,
246 unsigned int));
247 static int get_hard_regnum PARAMS ((stack, rtx));
248 static rtx emit_pop_insn PARAMS ((rtx, stack, rtx,
249 enum emit_where));
250 static void emit_swap_insn PARAMS ((rtx, stack, rtx));
251 static void move_for_stack_reg PARAMS ((rtx, stack, rtx));
252 static int swap_rtx_condition_1 PARAMS ((rtx));
253 static int swap_rtx_condition PARAMS ((rtx));
254 static void compare_for_stack_reg PARAMS ((rtx, stack, rtx));
255 static void subst_stack_regs_pat PARAMS ((rtx, stack, rtx));
256 static void subst_asm_stack_regs PARAMS ((rtx, stack));
257 static void subst_stack_regs PARAMS ((rtx, stack));
258 static void change_stack PARAMS ((rtx, stack, stack,
259 enum emit_where));
260 static int convert_regs_entry PARAMS ((void));
261 static void convert_regs_exit PARAMS ((void));
262 static int convert_regs_1 PARAMS ((FILE *, basic_block));
263 static int convert_regs_2 PARAMS ((FILE *, basic_block));
264 static int convert_regs PARAMS ((FILE *));
265 static void print_stack PARAMS ((FILE *, stack));
266 static rtx next_flags_user PARAMS ((rtx));
267 static void record_label_references PARAMS ((rtx, rtx));
268 static bool compensate_edge PARAMS ((edge, FILE *));
269 \f
270 /* Return non-zero if any stack register is mentioned somewhere within PAT. */
271
272 static int
273 stack_regs_mentioned_p (pat)
274 rtx pat;
275 {
276 const char *fmt;
277 int i;
278
279 if (STACK_REG_P (pat))
280 return 1;
281
282 fmt = GET_RTX_FORMAT (GET_CODE (pat));
283 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
284 {
285 if (fmt[i] == 'E')
286 {
287 int j;
288
289 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
290 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
291 return 1;
292 }
293 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
294 return 1;
295 }
296
297 return 0;
298 }
299
300 /* Return nonzero if INSN mentions stacked registers, else return zero. */
301
302 int
303 stack_regs_mentioned (insn)
304 rtx insn;
305 {
306 unsigned int uid, max;
307 int test;
308
309 if (! INSN_P (insn) || !stack_regs_mentioned_data)
310 return 0;
311
312 uid = INSN_UID (insn);
313 max = VARRAY_SIZE (stack_regs_mentioned_data);
314 if (uid >= max)
315 {
316 /* Allocate some extra size to avoid too many reallocs, but
317 do not grow too quickly. */
318 max = uid + uid / 20;
319 VARRAY_GROW (stack_regs_mentioned_data, max);
320 }
321
322 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
323 if (test == 0)
324 {
325 /* This insn has yet to be examined. Do so now. */
326 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
327 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
328 }
329
330 return test == 1;
331 }
332 \f
333 static rtx ix86_flags_rtx;
334
335 static rtx
336 next_flags_user (insn)
337 rtx insn;
338 {
339 /* Search forward looking for the first use of this value.
340 Stop at block boundaries. */
341
342 while (insn != current_block->end)
343 {
344 insn = NEXT_INSN (insn);
345
346 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
347 return insn;
348
349 if (GET_CODE (insn) == CALL_INSN)
350 return NULL_RTX;
351 }
352 return NULL_RTX;
353 }
354 \f
355 /* Reorganise the stack into ascending numbers,
356 after this insn. */
357
358 static void
359 straighten_stack (insn, regstack)
360 rtx insn;
361 stack regstack;
362 {
363 struct stack_def temp_stack;
364 int top;
365
366 /* If there is only a single register on the stack, then the stack is
367 already in increasing order and no reorganization is needed.
368
369 Similarly if the stack is empty. */
370 if (regstack->top <= 0)
371 return;
372
373 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
374
375 for (top = temp_stack.top = regstack->top; top >= 0; top--)
376 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
377
378 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
379 }
380
381 /* Pop a register from the stack */
382
383 static void
384 pop_stack (regstack, regno)
385 stack regstack;
386 int regno;
387 {
388 int top = regstack->top;
389
390 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
391 regstack->top--;
392 /* If regno was not at the top of stack then adjust stack */
393 if (regstack->reg [top] != regno)
394 {
395 int i;
396 for (i = regstack->top; i >= 0; i--)
397 if (regstack->reg [i] == regno)
398 {
399 int j;
400 for (j = i; j < top; j++)
401 regstack->reg [j] = regstack->reg [j + 1];
402 break;
403 }
404 }
405 }
406 \f
407 /* Convert register usage from "flat" register file usage to a "stack
408 register file. FIRST is the first insn in the function, FILE is the
409 dump file, if used.
410
411 Construct a CFG and run life analysis. Then convert each insn one
412 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
413 code duplication created when the converter inserts pop insns on
414 the edges. */
415
416 void
417 reg_to_stack (first, file)
418 rtx first;
419 FILE *file;
420 {
421 int i;
422 int max_uid;
423
424 /* Clean up previous run. */
425 if (stack_regs_mentioned_data)
426 {
427 VARRAY_FREE (stack_regs_mentioned_data);
428 stack_regs_mentioned_data = 0;
429 }
430
431 if (!optimize)
432 split_all_insns (0);
433
434 /* See if there is something to do. Flow analysis is quite
435 expensive so we might save some compilation time. */
436 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
437 if (regs_ever_live[i])
438 break;
439 if (i > LAST_STACK_REG)
440 return;
441
442 /* Ok, floating point instructions exist. If not optimizing,
443 build the CFG and run life analysis. */
444 if (!optimize)
445 find_basic_blocks (first, max_reg_num (), file);
446 count_or_remove_death_notes (NULL, 1);
447 life_analysis (first, file, PROP_DEATH_NOTES);
448 mark_dfs_back_edges ();
449
450 /* Set up block info for each basic block. */
451 alloc_aux_for_blocks (sizeof (struct block_info_def));
452 for (i = n_basic_blocks - 1; i >= 0; --i)
453 {
454 edge e;
455 basic_block bb = BASIC_BLOCK (i);
456 for (e = bb->pred; e; e=e->pred_next)
457 if (!(e->flags & EDGE_DFS_BACK)
458 && e->src != ENTRY_BLOCK_PTR)
459 BLOCK_INFO (bb)->predecesors++;
460 }
461
462 /* Create the replacement registers up front. */
463 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
464 {
465 enum machine_mode mode;
466 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
467 mode != VOIDmode;
468 mode = GET_MODE_WIDER_MODE (mode))
469 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
470 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
471 mode != VOIDmode;
472 mode = GET_MODE_WIDER_MODE (mode))
473 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
474 }
475
476 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
477
478 /* A QNaN for initializing uninitialized variables.
479
480 ??? We can't load from constant memory in PIC mode, because
481 we're insertting these instructions before the prologue and
482 the PIC register hasn't been set up. In that case, fall back
483 on zero, which we can get from `ldz'. */
484
485 if (flag_pic)
486 nan = CONST0_RTX (SFmode);
487 else
488 {
489 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
490 nan = force_const_mem (SFmode, nan);
491 }
492
493 /* Allocate a cache for stack_regs_mentioned. */
494 max_uid = get_max_uid ();
495 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
496 "stack_regs_mentioned cache");
497
498 convert_regs (file);
499
500 free_aux_for_blocks ();
501 }
502 \f
503 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
504 label's chain of references, and note which insn contains each
505 reference. */
506
507 static void
508 record_label_references (insn, pat)
509 rtx insn, pat;
510 {
511 enum rtx_code code = GET_CODE (pat);
512 int i;
513 const char *fmt;
514
515 if (code == LABEL_REF)
516 {
517 rtx label = XEXP (pat, 0);
518 rtx ref;
519
520 if (GET_CODE (label) != CODE_LABEL)
521 abort ();
522
523 /* If this is an undefined label, LABEL_REFS (label) contains
524 garbage. */
525 if (INSN_UID (label) == 0)
526 return;
527
528 /* Don't make a duplicate in the code_label's chain. */
529
530 for (ref = LABEL_REFS (label);
531 ref && ref != label;
532 ref = LABEL_NEXTREF (ref))
533 if (CONTAINING_INSN (ref) == insn)
534 return;
535
536 CONTAINING_INSN (pat) = insn;
537 LABEL_NEXTREF (pat) = LABEL_REFS (label);
538 LABEL_REFS (label) = pat;
539
540 return;
541 }
542
543 fmt = GET_RTX_FORMAT (code);
544 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
545 {
546 if (fmt[i] == 'e')
547 record_label_references (insn, XEXP (pat, i));
548 if (fmt[i] == 'E')
549 {
550 int j;
551 for (j = 0; j < XVECLEN (pat, i); j++)
552 record_label_references (insn, XVECEXP (pat, i, j));
553 }
554 }
555 }
556 \f
557 /* Return a pointer to the REG expression within PAT. If PAT is not a
558 REG, possible enclosed by a conversion rtx, return the inner part of
559 PAT that stopped the search. */
560
561 static rtx *
562 get_true_reg (pat)
563 rtx *pat;
564 {
565 for (;;)
566 switch (GET_CODE (*pat))
567 {
568 case SUBREG:
569 /* Eliminate FP subregister accesses in favour of the
570 actual FP register in use. */
571 {
572 rtx subreg;
573 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
574 {
575 int regno_off = subreg_regno_offset (REGNO (subreg),
576 GET_MODE (subreg),
577 SUBREG_BYTE (*pat),
578 GET_MODE (*pat));
579 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
580 GET_MODE (subreg));
581 default:
582 return pat;
583 }
584 }
585 case FLOAT:
586 case FIX:
587 case FLOAT_EXTEND:
588 pat = & XEXP (*pat, 0);
589 }
590 }
591 \f
592 /* There are many rules that an asm statement for stack-like regs must
593 follow. Those rules are explained at the top of this file: the rule
594 numbers below refer to that explanation. */
595
596 static int
597 check_asm_stack_operands (insn)
598 rtx insn;
599 {
600 int i;
601 int n_clobbers;
602 int malformed_asm = 0;
603 rtx body = PATTERN (insn);
604
605 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
606 char implicitly_dies[FIRST_PSEUDO_REGISTER];
607 int alt;
608
609 rtx *clobber_reg = 0;
610 int n_inputs, n_outputs;
611
612 /* Find out what the constraints require. If no constraint
613 alternative matches, this asm is malformed. */
614 extract_insn (insn);
615 constrain_operands (1);
616 alt = which_alternative;
617
618 preprocess_constraints ();
619
620 n_inputs = get_asm_operand_n_inputs (body);
621 n_outputs = recog_data.n_operands - n_inputs;
622
623 if (alt < 0)
624 {
625 malformed_asm = 1;
626 /* Avoid further trouble with this insn. */
627 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
628 return 0;
629 }
630
631 /* Strip SUBREGs here to make the following code simpler. */
632 for (i = 0; i < recog_data.n_operands; i++)
633 if (GET_CODE (recog_data.operand[i]) == SUBREG
634 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
635 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
636
637 /* Set up CLOBBER_REG. */
638
639 n_clobbers = 0;
640
641 if (GET_CODE (body) == PARALLEL)
642 {
643 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
644
645 for (i = 0; i < XVECLEN (body, 0); i++)
646 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
647 {
648 rtx clobber = XVECEXP (body, 0, i);
649 rtx reg = XEXP (clobber, 0);
650
651 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
652 reg = SUBREG_REG (reg);
653
654 if (STACK_REG_P (reg))
655 {
656 clobber_reg[n_clobbers] = reg;
657 n_clobbers++;
658 }
659 }
660 }
661
662 /* Enforce rule #4: Output operands must specifically indicate which
663 reg an output appears in after an asm. "=f" is not allowed: the
664 operand constraints must select a class with a single reg.
665
666 Also enforce rule #5: Output operands must start at the top of
667 the reg-stack: output operands may not "skip" a reg. */
668
669 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
670 for (i = 0; i < n_outputs; i++)
671 if (STACK_REG_P (recog_data.operand[i]))
672 {
673 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
674 {
675 error_for_asm (insn, "Output constraint %d must specify a single register", i);
676 malformed_asm = 1;
677 }
678 else
679 {
680 int j;
681
682 for (j = 0; j < n_clobbers; j++)
683 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
684 {
685 error_for_asm (insn, "Output constraint %d cannot be specified together with \"%s\" clobber",
686 i, reg_names [REGNO (clobber_reg[j])]);
687 malformed_asm = 1;
688 break;
689 }
690 if (j == n_clobbers)
691 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
692 }
693 }
694
695
696 /* Search for first non-popped reg. */
697 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
698 if (! reg_used_as_output[i])
699 break;
700
701 /* If there are any other popped regs, that's an error. */
702 for (; i < LAST_STACK_REG + 1; i++)
703 if (reg_used_as_output[i])
704 break;
705
706 if (i != LAST_STACK_REG + 1)
707 {
708 error_for_asm (insn, "Output regs must be grouped at top of stack");
709 malformed_asm = 1;
710 }
711
712 /* Enforce rule #2: All implicitly popped input regs must be closer
713 to the top of the reg-stack than any input that is not implicitly
714 popped. */
715
716 memset (implicitly_dies, 0, sizeof (implicitly_dies));
717 for (i = n_outputs; i < n_outputs + n_inputs; i++)
718 if (STACK_REG_P (recog_data.operand[i]))
719 {
720 /* An input reg is implicitly popped if it is tied to an
721 output, or if there is a CLOBBER for it. */
722 int j;
723
724 for (j = 0; j < n_clobbers; j++)
725 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
726 break;
727
728 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
729 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
730 }
731
732 /* Search for first non-popped reg. */
733 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
734 if (! implicitly_dies[i])
735 break;
736
737 /* If there are any other popped regs, that's an error. */
738 for (; i < LAST_STACK_REG + 1; i++)
739 if (implicitly_dies[i])
740 break;
741
742 if (i != LAST_STACK_REG + 1)
743 {
744 error_for_asm (insn,
745 "Implicitly popped regs must be grouped at top of stack");
746 malformed_asm = 1;
747 }
748
749 /* Enfore rule #3: If any input operand uses the "f" constraint, all
750 output constraints must use the "&" earlyclobber.
751
752 ??? Detect this more deterministically by having constrain_asm_operands
753 record any earlyclobber. */
754
755 for (i = n_outputs; i < n_outputs + n_inputs; i++)
756 if (recog_op_alt[i][alt].matches == -1)
757 {
758 int j;
759
760 for (j = 0; j < n_outputs; j++)
761 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
762 {
763 error_for_asm (insn,
764 "Output operand %d must use `&' constraint", j);
765 malformed_asm = 1;
766 }
767 }
768
769 if (malformed_asm)
770 {
771 /* Avoid further trouble with this insn. */
772 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
773 return 0;
774 }
775
776 return 1;
777 }
778 \f
779 /* Calculate the number of inputs and outputs in BODY, an
780 asm_operands. N_OPERANDS is the total number of operands, and
781 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
782 placed. */
783
784 static int
785 get_asm_operand_n_inputs (body)
786 rtx body;
787 {
788 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
789 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
790
791 else if (GET_CODE (body) == ASM_OPERANDS)
792 return ASM_OPERANDS_INPUT_LENGTH (body);
793
794 else if (GET_CODE (body) == PARALLEL
795 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
796 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
797
798 else if (GET_CODE (body) == PARALLEL
799 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
800 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
801
802 abort ();
803 }
804
805 /* If current function returns its result in an fp stack register,
806 return the REG. Otherwise, return 0. */
807
808 static rtx
809 stack_result (decl)
810 tree decl;
811 {
812 rtx result;
813
814 /* If the value is supposed to be returned in memory, then clearly
815 it is not returned in a stack register. */
816 if (aggregate_value_p (DECL_RESULT (decl)))
817 return 0;
818
819 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
820 if (result != 0)
821 {
822 #ifdef FUNCTION_OUTGOING_VALUE
823 result
824 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
825 #else
826 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
827 #endif
828 }
829
830 return result != 0 && STACK_REG_P (result) ? result : 0;
831 }
832 \f
833
834 /*
835 * This section deals with stack register substitution, and forms the second
836 * pass over the RTL.
837 */
838
839 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
840 the desired hard REGNO. */
841
842 static void
843 replace_reg (reg, regno)
844 rtx *reg;
845 int regno;
846 {
847 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
848 || ! STACK_REG_P (*reg))
849 abort ();
850
851 switch (GET_MODE_CLASS (GET_MODE (*reg)))
852 {
853 default: abort ();
854 case MODE_FLOAT:
855 case MODE_COMPLEX_FLOAT:;
856 }
857
858 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
859 }
860
861 /* Remove a note of type NOTE, which must be found, for register
862 number REGNO from INSN. Remove only one such note. */
863
864 static void
865 remove_regno_note (insn, note, regno)
866 rtx insn;
867 enum reg_note note;
868 unsigned int regno;
869 {
870 rtx *note_link, this;
871
872 note_link = &REG_NOTES(insn);
873 for (this = *note_link; this; this = XEXP (this, 1))
874 if (REG_NOTE_KIND (this) == note
875 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
876 {
877 *note_link = XEXP (this, 1);
878 return;
879 }
880 else
881 note_link = &XEXP (this, 1);
882
883 abort ();
884 }
885
886 /* Find the hard register number of virtual register REG in REGSTACK.
887 The hard register number is relative to the top of the stack. -1 is
888 returned if the register is not found. */
889
890 static int
891 get_hard_regnum (regstack, reg)
892 stack regstack;
893 rtx reg;
894 {
895 int i;
896
897 if (! STACK_REG_P (reg))
898 abort ();
899
900 for (i = regstack->top; i >= 0; i--)
901 if (regstack->reg[i] == REGNO (reg))
902 break;
903
904 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
905 }
906 \f
907 /* Emit an insn to pop virtual register REG before or after INSN.
908 REGSTACK is the stack state after INSN and is updated to reflect this
909 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
910 is represented as a SET whose destination is the register to be popped
911 and source is the top of stack. A death note for the top of stack
912 cases the movdf pattern to pop. */
913
914 static rtx
915 emit_pop_insn (insn, regstack, reg, where)
916 rtx insn;
917 stack regstack;
918 rtx reg;
919 enum emit_where where;
920 {
921 rtx pop_insn, pop_rtx;
922 int hard_regno;
923
924 /* For complex types take care to pop both halves. These may survive in
925 CLOBBER and USE expressions. */
926 if (COMPLEX_MODE_P (GET_MODE (reg)))
927 {
928 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
929 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
930
931 pop_insn = NULL_RTX;
932 if (get_hard_regnum (regstack, reg1) >= 0)
933 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
934 if (get_hard_regnum (regstack, reg2) >= 0)
935 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
936 if (!pop_insn)
937 abort ();
938 return pop_insn;
939 }
940
941 hard_regno = get_hard_regnum (regstack, reg);
942
943 if (hard_regno < FIRST_STACK_REG)
944 abort ();
945
946 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
947 FP_MODE_REG (FIRST_STACK_REG, DFmode));
948
949 if (where == EMIT_AFTER)
950 pop_insn = emit_insn_after (pop_rtx, insn);
951 else
952 pop_insn = emit_insn_before (pop_rtx, insn);
953
954 REG_NOTES (pop_insn)
955 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
956 REG_NOTES (pop_insn));
957
958 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
959 = regstack->reg[regstack->top];
960 regstack->top -= 1;
961 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
962
963 return pop_insn;
964 }
965 \f
966 /* Emit an insn before or after INSN to swap virtual register REG with
967 the top of stack. REGSTACK is the stack state before the swap, and
968 is updated to reflect the swap. A swap insn is represented as a
969 PARALLEL of two patterns: each pattern moves one reg to the other.
970
971 If REG is already at the top of the stack, no insn is emitted. */
972
973 static void
974 emit_swap_insn (insn, regstack, reg)
975 rtx insn;
976 stack regstack;
977 rtx reg;
978 {
979 int hard_regno;
980 rtx swap_rtx;
981 int tmp, other_reg; /* swap regno temps */
982 rtx i1; /* the stack-reg insn prior to INSN */
983 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
984
985 hard_regno = get_hard_regnum (regstack, reg);
986
987 if (hard_regno < FIRST_STACK_REG)
988 abort ();
989 if (hard_regno == FIRST_STACK_REG)
990 return;
991
992 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
993
994 tmp = regstack->reg[other_reg];
995 regstack->reg[other_reg] = regstack->reg[regstack->top];
996 regstack->reg[regstack->top] = tmp;
997
998 /* Find the previous insn involving stack regs, but don't pass a
999 block boundary. */
1000 i1 = NULL;
1001 if (current_block && insn != current_block->head)
1002 {
1003 rtx tmp = PREV_INSN (insn);
1004 rtx limit = PREV_INSN (current_block->head);
1005 while (tmp != limit)
1006 {
1007 if (GET_CODE (tmp) == CODE_LABEL
1008 || GET_CODE (tmp) == CALL_INSN
1009 || NOTE_INSN_BASIC_BLOCK_P (tmp)
1010 || (GET_CODE (tmp) == INSN
1011 && stack_regs_mentioned (tmp)))
1012 {
1013 i1 = tmp;
1014 break;
1015 }
1016 tmp = PREV_INSN (tmp);
1017 }
1018 }
1019
1020 if (i1 != NULL_RTX
1021 && (i1set = single_set (i1)) != NULL_RTX)
1022 {
1023 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1024 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1025
1026 /* If the previous register stack push was from the reg we are to
1027 swap with, omit the swap. */
1028
1029 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1030 && GET_CODE (i1src) == REG
1031 && REGNO (i1src) == (unsigned) hard_regno - 1
1032 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1033 return;
1034
1035 /* If the previous insn wrote to the reg we are to swap with,
1036 omit the swap. */
1037
1038 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
1039 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1040 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1041 return;
1042 }
1043
1044 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1045 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1046
1047 if (i1)
1048 emit_insn_after (swap_rtx, i1);
1049 else if (current_block)
1050 emit_insn_before (swap_rtx, current_block->head);
1051 else
1052 emit_insn_before (swap_rtx, insn);
1053 }
1054 \f
1055 /* Handle a move to or from a stack register in PAT, which is in INSN.
1056 REGSTACK is the current stack. */
1057
1058 static void
1059 move_for_stack_reg (insn, regstack, pat)
1060 rtx insn;
1061 stack regstack;
1062 rtx pat;
1063 {
1064 rtx *psrc = get_true_reg (&SET_SRC (pat));
1065 rtx *pdest = get_true_reg (&SET_DEST (pat));
1066 rtx src, dest;
1067 rtx note;
1068
1069 src = *psrc; dest = *pdest;
1070
1071 if (STACK_REG_P (src) && STACK_REG_P (dest))
1072 {
1073 /* Write from one stack reg to another. If SRC dies here, then
1074 just change the register mapping and delete the insn. */
1075
1076 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1077 if (note)
1078 {
1079 int i;
1080
1081 /* If this is a no-op move, there must not be a REG_DEAD note. */
1082 if (REGNO (src) == REGNO (dest))
1083 abort ();
1084
1085 for (i = regstack->top; i >= 0; i--)
1086 if (regstack->reg[i] == REGNO (src))
1087 break;
1088
1089 /* The source must be live, and the dest must be dead. */
1090 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1091 abort ();
1092
1093 /* It is possible that the dest is unused after this insn.
1094 If so, just pop the src. */
1095
1096 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1097 {
1098 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1099
1100 delete_insn (insn);
1101 return;
1102 }
1103
1104 regstack->reg[i] = REGNO (dest);
1105
1106 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1107 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1108
1109 delete_insn (insn);
1110
1111 return;
1112 }
1113
1114 /* The source reg does not die. */
1115
1116 /* If this appears to be a no-op move, delete it, or else it
1117 will confuse the machine description output patterns. But if
1118 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1119 for REG_UNUSED will not work for deleted insns. */
1120
1121 if (REGNO (src) == REGNO (dest))
1122 {
1123 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1124 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1125
1126 delete_insn (insn);
1127 return;
1128 }
1129
1130 /* The destination ought to be dead */
1131 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1132 abort ();
1133
1134 replace_reg (psrc, get_hard_regnum (regstack, src));
1135
1136 regstack->reg[++regstack->top] = REGNO (dest);
1137 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1138 replace_reg (pdest, FIRST_STACK_REG);
1139 }
1140 else if (STACK_REG_P (src))
1141 {
1142 /* Save from a stack reg to MEM, or possibly integer reg. Since
1143 only top of stack may be saved, emit an exchange first if
1144 needs be. */
1145
1146 emit_swap_insn (insn, regstack, src);
1147
1148 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1149 if (note)
1150 {
1151 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1152 regstack->top--;
1153 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1154 }
1155 else if ((GET_MODE (src) == XFmode || GET_MODE (src) == TFmode)
1156 && regstack->top < REG_STACK_SIZE - 1)
1157 {
1158 /* A 387 cannot write an XFmode value to a MEM without
1159 clobbering the source reg. The output code can handle
1160 this by reading back the value from the MEM.
1161 But it is more efficient to use a temp register if one is
1162 available. Push the source value here if the register
1163 stack is not full, and then write the value to memory via
1164 a pop. */
1165 rtx push_rtx, push_insn;
1166 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1167
1168 if (GET_MODE (src) == TFmode)
1169 push_rtx = gen_movtf (top_stack_reg, top_stack_reg);
1170 else
1171 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1172 push_insn = emit_insn_before (push_rtx, insn);
1173 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1174 REG_NOTES (insn));
1175 }
1176
1177 replace_reg (psrc, FIRST_STACK_REG);
1178 }
1179 else if (STACK_REG_P (dest))
1180 {
1181 /* Load from MEM, or possibly integer REG or constant, into the
1182 stack regs. The actual target is always the top of the
1183 stack. The stack mapping is changed to reflect that DEST is
1184 now at top of stack. */
1185
1186 /* The destination ought to be dead */
1187 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1188 abort ();
1189
1190 if (regstack->top >= REG_STACK_SIZE)
1191 abort ();
1192
1193 regstack->reg[++regstack->top] = REGNO (dest);
1194 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1195 replace_reg (pdest, FIRST_STACK_REG);
1196 }
1197 else
1198 abort ();
1199 }
1200 \f
1201 /* Swap the condition on a branch, if there is one. Return true if we
1202 found a condition to swap. False if the condition was not used as
1203 such. */
1204
1205 static int
1206 swap_rtx_condition_1 (pat)
1207 rtx pat;
1208 {
1209 const char *fmt;
1210 int i, r = 0;
1211
1212 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1213 {
1214 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1215 r = 1;
1216 }
1217 else
1218 {
1219 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1220 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1221 {
1222 if (fmt[i] == 'E')
1223 {
1224 int j;
1225
1226 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1227 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1228 }
1229 else if (fmt[i] == 'e')
1230 r |= swap_rtx_condition_1 (XEXP (pat, i));
1231 }
1232 }
1233
1234 return r;
1235 }
1236
1237 static int
1238 swap_rtx_condition (insn)
1239 rtx insn;
1240 {
1241 rtx pat = PATTERN (insn);
1242
1243 /* We're looking for a single set to cc0 or an HImode temporary. */
1244
1245 if (GET_CODE (pat) == SET
1246 && GET_CODE (SET_DEST (pat)) == REG
1247 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1248 {
1249 insn = next_flags_user (insn);
1250 if (insn == NULL_RTX)
1251 return 0;
1252 pat = PATTERN (insn);
1253 }
1254
1255 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1256 not doing anything with the cc value right now. We may be able to
1257 search for one though. */
1258
1259 if (GET_CODE (pat) == SET
1260 && GET_CODE (SET_SRC (pat)) == UNSPEC
1261 && XINT (SET_SRC (pat), 1) == 9)
1262 {
1263 rtx dest = SET_DEST (pat);
1264
1265 /* Search forward looking for the first use of this value.
1266 Stop at block boundaries. */
1267 while (insn != current_block->end)
1268 {
1269 insn = NEXT_INSN (insn);
1270 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1271 break;
1272 if (GET_CODE (insn) == CALL_INSN)
1273 return 0;
1274 }
1275
1276 /* So we've found the insn using this value. If it is anything
1277 other than sahf, aka unspec 10, or the value does not die
1278 (meaning we'd have to search further), then we must give up. */
1279 pat = PATTERN (insn);
1280 if (GET_CODE (pat) != SET
1281 || GET_CODE (SET_SRC (pat)) != UNSPEC
1282 || XINT (SET_SRC (pat), 1) != 10
1283 || ! dead_or_set_p (insn, dest))
1284 return 0;
1285
1286 /* Now we are prepared to handle this as a normal cc0 setter. */
1287 insn = next_flags_user (insn);
1288 if (insn == NULL_RTX)
1289 return 0;
1290 pat = PATTERN (insn);
1291 }
1292
1293 if (swap_rtx_condition_1 (pat))
1294 {
1295 int fail = 0;
1296 INSN_CODE (insn) = -1;
1297 if (recog_memoized (insn) == -1)
1298 fail = 1;
1299 /* In case the flags don't die here, recurse to try fix
1300 following user too. */
1301 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1302 {
1303 insn = next_flags_user (insn);
1304 if (!insn || !swap_rtx_condition (insn))
1305 fail = 1;
1306 }
1307 if (fail)
1308 {
1309 swap_rtx_condition_1 (pat);
1310 return 0;
1311 }
1312 return 1;
1313 }
1314 return 0;
1315 }
1316
1317 /* Handle a comparison. Special care needs to be taken to avoid
1318 causing comparisons that a 387 cannot do correctly, such as EQ.
1319
1320 Also, a pop insn may need to be emitted. The 387 does have an
1321 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1322 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1323 set up. */
1324
1325 static void
1326 compare_for_stack_reg (insn, regstack, pat_src)
1327 rtx insn;
1328 stack regstack;
1329 rtx pat_src;
1330 {
1331 rtx *src1, *src2;
1332 rtx src1_note, src2_note;
1333 rtx flags_user;
1334
1335 src1 = get_true_reg (&XEXP (pat_src, 0));
1336 src2 = get_true_reg (&XEXP (pat_src, 1));
1337 flags_user = next_flags_user (insn);
1338
1339 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1340 registers that die in this insn - move those to stack top first. */
1341 if ((! STACK_REG_P (*src1)
1342 || (STACK_REG_P (*src2)
1343 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1344 && swap_rtx_condition (insn))
1345 {
1346 rtx temp;
1347 temp = XEXP (pat_src, 0);
1348 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1349 XEXP (pat_src, 1) = temp;
1350
1351 src1 = get_true_reg (&XEXP (pat_src, 0));
1352 src2 = get_true_reg (&XEXP (pat_src, 1));
1353
1354 INSN_CODE (insn) = -1;
1355 }
1356
1357 /* We will fix any death note later. */
1358
1359 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1360
1361 if (STACK_REG_P (*src2))
1362 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1363 else
1364 src2_note = NULL_RTX;
1365
1366 emit_swap_insn (insn, regstack, *src1);
1367
1368 replace_reg (src1, FIRST_STACK_REG);
1369
1370 if (STACK_REG_P (*src2))
1371 replace_reg (src2, get_hard_regnum (regstack, *src2));
1372
1373 if (src1_note)
1374 {
1375 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1376 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1377 }
1378
1379 /* If the second operand dies, handle that. But if the operands are
1380 the same stack register, don't bother, because only one death is
1381 needed, and it was just handled. */
1382
1383 if (src2_note
1384 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1385 && REGNO (*src1) == REGNO (*src2)))
1386 {
1387 /* As a special case, two regs may die in this insn if src2 is
1388 next to top of stack and the top of stack also dies. Since
1389 we have already popped src1, "next to top of stack" is really
1390 at top (FIRST_STACK_REG) now. */
1391
1392 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1393 && src1_note)
1394 {
1395 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1396 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1397 }
1398 else
1399 {
1400 /* The 386 can only represent death of the first operand in
1401 the case handled above. In all other cases, emit a separate
1402 pop and remove the death note from here. */
1403
1404 /* link_cc0_insns (insn); */
1405
1406 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1407
1408 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1409 EMIT_AFTER);
1410 }
1411 }
1412 }
1413 \f
1414 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1415 is the current register layout. */
1416
1417 static void
1418 subst_stack_regs_pat (insn, regstack, pat)
1419 rtx insn;
1420 stack regstack;
1421 rtx pat;
1422 {
1423 rtx *dest, *src;
1424
1425 switch (GET_CODE (pat))
1426 {
1427 case USE:
1428 /* Deaths in USE insns can happen in non optimizing compilation.
1429 Handle them by popping the dying register. */
1430 src = get_true_reg (&XEXP (pat, 0));
1431 if (STACK_REG_P (*src)
1432 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1433 {
1434 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1435 return;
1436 }
1437 /* ??? Uninitialized USE should not happen. */
1438 else if (get_hard_regnum (regstack, *src) == -1)
1439 abort();
1440 break;
1441
1442 case CLOBBER:
1443 {
1444 rtx note;
1445
1446 dest = get_true_reg (&XEXP (pat, 0));
1447 if (STACK_REG_P (*dest))
1448 {
1449 note = find_reg_note (insn, REG_DEAD, *dest);
1450
1451 if (pat != PATTERN (insn))
1452 {
1453 /* The fix_truncdi_1 pattern wants to be able to allocate
1454 it's own scratch register. It does this by clobbering
1455 an fp reg so that it is assured of an empty reg-stack
1456 register. If the register is live, kill it now.
1457 Remove the DEAD/UNUSED note so we don't try to kill it
1458 later too. */
1459
1460 if (note)
1461 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1462 else
1463 {
1464 note = find_reg_note (insn, REG_UNUSED, *dest);
1465 if (!note)
1466 abort ();
1467 }
1468 remove_note (insn, note);
1469 replace_reg (dest, LAST_STACK_REG);
1470 }
1471 else
1472 {
1473 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1474 indicates an uninitialized value. Because reload removed
1475 all other clobbers, this must be due to a function
1476 returning without a value. Load up a NaN. */
1477
1478 if (! note
1479 && get_hard_regnum (regstack, *dest) == -1)
1480 {
1481 pat = gen_rtx_SET (VOIDmode,
1482 FP_MODE_REG (REGNO (*dest), SFmode),
1483 nan);
1484 PATTERN (insn) = pat;
1485 move_for_stack_reg (insn, regstack, pat);
1486 }
1487 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1488 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1489 {
1490 pat = gen_rtx_SET (VOIDmode,
1491 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1492 nan);
1493 PATTERN (insn) = pat;
1494 move_for_stack_reg (insn, regstack, pat);
1495 }
1496 }
1497 }
1498 break;
1499 }
1500
1501 case SET:
1502 {
1503 rtx *src1 = (rtx *) 0, *src2;
1504 rtx src1_note, src2_note;
1505 rtx pat_src;
1506
1507 dest = get_true_reg (&SET_DEST (pat));
1508 src = get_true_reg (&SET_SRC (pat));
1509 pat_src = SET_SRC (pat);
1510
1511 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1512 if (STACK_REG_P (*src)
1513 || (STACK_REG_P (*dest)
1514 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1515 || GET_CODE (*src) == CONST_DOUBLE)))
1516 {
1517 move_for_stack_reg (insn, regstack, pat);
1518 break;
1519 }
1520
1521 switch (GET_CODE (pat_src))
1522 {
1523 case COMPARE:
1524 compare_for_stack_reg (insn, regstack, pat_src);
1525 break;
1526
1527 case CALL:
1528 {
1529 int count;
1530 for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1531 --count >= 0;)
1532 {
1533 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1534 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1535 }
1536 }
1537 replace_reg (dest, FIRST_STACK_REG);
1538 break;
1539
1540 case REG:
1541 /* This is a `tstM2' case. */
1542 if (*dest != cc0_rtx)
1543 abort ();
1544 src1 = src;
1545
1546 /* Fall through. */
1547
1548 case FLOAT_TRUNCATE:
1549 case SQRT:
1550 case ABS:
1551 case NEG:
1552 /* These insns only operate on the top of the stack. DEST might
1553 be cc0_rtx if we're processing a tstM pattern. Also, it's
1554 possible that the tstM case results in a REG_DEAD note on the
1555 source. */
1556
1557 if (src1 == 0)
1558 src1 = get_true_reg (&XEXP (pat_src, 0));
1559
1560 emit_swap_insn (insn, regstack, *src1);
1561
1562 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1563
1564 if (STACK_REG_P (*dest))
1565 replace_reg (dest, FIRST_STACK_REG);
1566
1567 if (src1_note)
1568 {
1569 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1570 regstack->top--;
1571 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1572 }
1573
1574 replace_reg (src1, FIRST_STACK_REG);
1575 break;
1576
1577 case MINUS:
1578 case DIV:
1579 /* On i386, reversed forms of subM3 and divM3 exist for
1580 MODE_FLOAT, so the same code that works for addM3 and mulM3
1581 can be used. */
1582 case MULT:
1583 case PLUS:
1584 /* These insns can accept the top of stack as a destination
1585 from a stack reg or mem, or can use the top of stack as a
1586 source and some other stack register (possibly top of stack)
1587 as a destination. */
1588
1589 src1 = get_true_reg (&XEXP (pat_src, 0));
1590 src2 = get_true_reg (&XEXP (pat_src, 1));
1591
1592 /* We will fix any death note later. */
1593
1594 if (STACK_REG_P (*src1))
1595 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1596 else
1597 src1_note = NULL_RTX;
1598 if (STACK_REG_P (*src2))
1599 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1600 else
1601 src2_note = NULL_RTX;
1602
1603 /* If either operand is not a stack register, then the dest
1604 must be top of stack. */
1605
1606 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1607 emit_swap_insn (insn, regstack, *dest);
1608 else
1609 {
1610 /* Both operands are REG. If neither operand is already
1611 at the top of stack, choose to make the one that is the dest
1612 the new top of stack. */
1613
1614 int src1_hard_regnum, src2_hard_regnum;
1615
1616 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1617 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1618 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1619 abort ();
1620
1621 if (src1_hard_regnum != FIRST_STACK_REG
1622 && src2_hard_regnum != FIRST_STACK_REG)
1623 emit_swap_insn (insn, regstack, *dest);
1624 }
1625
1626 if (STACK_REG_P (*src1))
1627 replace_reg (src1, get_hard_regnum (regstack, *src1));
1628 if (STACK_REG_P (*src2))
1629 replace_reg (src2, get_hard_regnum (regstack, *src2));
1630
1631 if (src1_note)
1632 {
1633 rtx src1_reg = XEXP (src1_note, 0);
1634
1635 /* If the register that dies is at the top of stack, then
1636 the destination is somewhere else - merely substitute it.
1637 But if the reg that dies is not at top of stack, then
1638 move the top of stack to the dead reg, as though we had
1639 done the insn and then a store-with-pop. */
1640
1641 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1642 {
1643 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1644 replace_reg (dest, get_hard_regnum (regstack, *dest));
1645 }
1646 else
1647 {
1648 int regno = get_hard_regnum (regstack, src1_reg);
1649
1650 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1651 replace_reg (dest, regno);
1652
1653 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1654 = regstack->reg[regstack->top];
1655 }
1656
1657 CLEAR_HARD_REG_BIT (regstack->reg_set,
1658 REGNO (XEXP (src1_note, 0)));
1659 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1660 regstack->top--;
1661 }
1662 else if (src2_note)
1663 {
1664 rtx src2_reg = XEXP (src2_note, 0);
1665 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1666 {
1667 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1668 replace_reg (dest, get_hard_regnum (regstack, *dest));
1669 }
1670 else
1671 {
1672 int regno = get_hard_regnum (regstack, src2_reg);
1673
1674 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1675 replace_reg (dest, regno);
1676
1677 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1678 = regstack->reg[regstack->top];
1679 }
1680
1681 CLEAR_HARD_REG_BIT (regstack->reg_set,
1682 REGNO (XEXP (src2_note, 0)));
1683 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1684 regstack->top--;
1685 }
1686 else
1687 {
1688 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1689 replace_reg (dest, get_hard_regnum (regstack, *dest));
1690 }
1691
1692 /* Keep operand 1 maching with destination. */
1693 if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
1694 && REG_P (*src1) && REG_P (*src2)
1695 && REGNO (*src1) != REGNO (*dest))
1696 {
1697 int tmp = REGNO (*src1);
1698 replace_reg (src1, REGNO (*src2));
1699 replace_reg (src2, tmp);
1700 }
1701 break;
1702
1703 case UNSPEC:
1704 switch (XINT (pat_src, 1))
1705 {
1706 case 1: /* sin */
1707 case 2: /* cos */
1708 /* These insns only operate on the top of the stack. */
1709
1710 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1711
1712 emit_swap_insn (insn, regstack, *src1);
1713
1714 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1715
1716 if (STACK_REG_P (*dest))
1717 replace_reg (dest, FIRST_STACK_REG);
1718
1719 if (src1_note)
1720 {
1721 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1722 regstack->top--;
1723 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1724 }
1725
1726 replace_reg (src1, FIRST_STACK_REG);
1727 break;
1728
1729 case 10:
1730 /* (unspec [(unspec [(compare ..)] 9)] 10)
1731 Unspec 9 is fnstsw; unspec 10 is sahf. The combination
1732 matches the PPRO fcomi instruction. */
1733
1734 pat_src = XVECEXP (pat_src, 0, 0);
1735 if (GET_CODE (pat_src) != UNSPEC
1736 || XINT (pat_src, 1) != 9)
1737 abort ();
1738 /* FALLTHRU */
1739
1740 case 9:
1741 /* (unspec [(compare ..)] 9) */
1742 /* Combined fcomp+fnstsw generated for doing well with
1743 CSE. When optimizing this would have been broken
1744 up before now. */
1745
1746 pat_src = XVECEXP (pat_src, 0, 0);
1747 if (GET_CODE (pat_src) != COMPARE)
1748 abort ();
1749
1750 compare_for_stack_reg (insn, regstack, pat_src);
1751 break;
1752
1753 default:
1754 abort ();
1755 }
1756 break;
1757
1758 case IF_THEN_ELSE:
1759 /* This insn requires the top of stack to be the destination. */
1760
1761 src1 = get_true_reg (&XEXP (pat_src, 1));
1762 src2 = get_true_reg (&XEXP (pat_src, 2));
1763
1764 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1765 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1766
1767 /* If the comparison operator is an FP comparison operator,
1768 it is handled correctly by compare_for_stack_reg () who
1769 will move the destination to the top of stack. But if the
1770 comparison operator is not an FP comparison operator, we
1771 have to handle it here. */
1772 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1773 && REGNO (*dest) != regstack->reg[regstack->top])
1774 {
1775 /* In case one of operands is the top of stack and the operands
1776 dies, it is safe to make it the destination operand by reversing
1777 the direction of cmove and avoid fxch. */
1778 if ((REGNO (*src1) == regstack->reg[regstack->top]
1779 && src1_note)
1780 || (REGNO (*src2) == regstack->reg[regstack->top]
1781 && src2_note))
1782 {
1783 int idx1 = (get_hard_regnum (regstack, *src1)
1784 - FIRST_STACK_REG);
1785 int idx2 = (get_hard_regnum (regstack, *src2)
1786 - FIRST_STACK_REG);
1787
1788 /* Make reg-stack believe that the operands are already
1789 swapped on the stack */
1790 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1791 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1792
1793 /* Reverse condition to compensate the operand swap.
1794 i386 do have comparison always reversible. */
1795 PUT_CODE (XEXP (pat_src, 0),
1796 reversed_comparison_code (XEXP (pat_src, 0), insn));
1797 }
1798 else
1799 emit_swap_insn (insn, regstack, *dest);
1800 }
1801
1802 {
1803 rtx src_note [3];
1804 int i;
1805
1806 src_note[0] = 0;
1807 src_note[1] = src1_note;
1808 src_note[2] = src2_note;
1809
1810 if (STACK_REG_P (*src1))
1811 replace_reg (src1, get_hard_regnum (regstack, *src1));
1812 if (STACK_REG_P (*src2))
1813 replace_reg (src2, get_hard_regnum (regstack, *src2));
1814
1815 for (i = 1; i <= 2; i++)
1816 if (src_note [i])
1817 {
1818 int regno = REGNO (XEXP (src_note[i], 0));
1819
1820 /* If the register that dies is not at the top of
1821 stack, then move the top of stack to the dead reg */
1822 if (regno != regstack->reg[regstack->top])
1823 {
1824 remove_regno_note (insn, REG_DEAD, regno);
1825 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1826 EMIT_AFTER);
1827 }
1828 else
1829 /* Top of stack never dies, as it is the
1830 destination. */
1831 abort ();
1832 }
1833 }
1834
1835 /* Make dest the top of stack. Add dest to regstack if
1836 not present. */
1837 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1838 regstack->reg[++regstack->top] = REGNO (*dest);
1839 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1840 replace_reg (dest, FIRST_STACK_REG);
1841 break;
1842
1843 default:
1844 abort ();
1845 }
1846 break;
1847 }
1848
1849 default:
1850 break;
1851 }
1852 }
1853 \f
1854 /* Substitute hard regnums for any stack regs in INSN, which has
1855 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1856 before the insn, and is updated with changes made here.
1857
1858 There are several requirements and assumptions about the use of
1859 stack-like regs in asm statements. These rules are enforced by
1860 record_asm_stack_regs; see comments there for details. Any
1861 asm_operands left in the RTL at this point may be assume to meet the
1862 requirements, since record_asm_stack_regs removes any problem asm. */
1863
1864 static void
1865 subst_asm_stack_regs (insn, regstack)
1866 rtx insn;
1867 stack regstack;
1868 {
1869 rtx body = PATTERN (insn);
1870 int alt;
1871
1872 rtx *note_reg; /* Array of note contents */
1873 rtx **note_loc; /* Address of REG field of each note */
1874 enum reg_note *note_kind; /* The type of each note */
1875
1876 rtx *clobber_reg = 0;
1877 rtx **clobber_loc = 0;
1878
1879 struct stack_def temp_stack;
1880 int n_notes;
1881 int n_clobbers;
1882 rtx note;
1883 int i;
1884 int n_inputs, n_outputs;
1885
1886 if (! check_asm_stack_operands (insn))
1887 return;
1888
1889 /* Find out what the constraints required. If no constraint
1890 alternative matches, that is a compiler bug: we should have caught
1891 such an insn in check_asm_stack_operands. */
1892 extract_insn (insn);
1893 constrain_operands (1);
1894 alt = which_alternative;
1895
1896 preprocess_constraints ();
1897
1898 n_inputs = get_asm_operand_n_inputs (body);
1899 n_outputs = recog_data.n_operands - n_inputs;
1900
1901 if (alt < 0)
1902 abort ();
1903
1904 /* Strip SUBREGs here to make the following code simpler. */
1905 for (i = 0; i < recog_data.n_operands; i++)
1906 if (GET_CODE (recog_data.operand[i]) == SUBREG
1907 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
1908 {
1909 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1910 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1911 }
1912
1913 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1914
1915 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1916 i++;
1917
1918 note_reg = (rtx *) alloca (i * sizeof (rtx));
1919 note_loc = (rtx **) alloca (i * sizeof (rtx *));
1920 note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
1921
1922 n_notes = 0;
1923 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1924 {
1925 rtx reg = XEXP (note, 0);
1926 rtx *loc = & XEXP (note, 0);
1927
1928 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1929 {
1930 loc = & SUBREG_REG (reg);
1931 reg = SUBREG_REG (reg);
1932 }
1933
1934 if (STACK_REG_P (reg)
1935 && (REG_NOTE_KIND (note) == REG_DEAD
1936 || REG_NOTE_KIND (note) == REG_UNUSED))
1937 {
1938 note_reg[n_notes] = reg;
1939 note_loc[n_notes] = loc;
1940 note_kind[n_notes] = REG_NOTE_KIND (note);
1941 n_notes++;
1942 }
1943 }
1944
1945 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1946
1947 n_clobbers = 0;
1948
1949 if (GET_CODE (body) == PARALLEL)
1950 {
1951 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
1952 clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
1953
1954 for (i = 0; i < XVECLEN (body, 0); i++)
1955 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1956 {
1957 rtx clobber = XVECEXP (body, 0, i);
1958 rtx reg = XEXP (clobber, 0);
1959 rtx *loc = & XEXP (clobber, 0);
1960
1961 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1962 {
1963 loc = & SUBREG_REG (reg);
1964 reg = SUBREG_REG (reg);
1965 }
1966
1967 if (STACK_REG_P (reg))
1968 {
1969 clobber_reg[n_clobbers] = reg;
1970 clobber_loc[n_clobbers] = loc;
1971 n_clobbers++;
1972 }
1973 }
1974 }
1975
1976 temp_stack = *regstack;
1977
1978 /* Put the input regs into the desired place in TEMP_STACK. */
1979
1980 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1981 if (STACK_REG_P (recog_data.operand[i])
1982 && reg_class_subset_p (recog_op_alt[i][alt].class,
1983 FLOAT_REGS)
1984 && recog_op_alt[i][alt].class != FLOAT_REGS)
1985 {
1986 /* If an operand needs to be in a particular reg in
1987 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1988 these constraints are for single register classes, and
1989 reload guaranteed that operand[i] is already in that class,
1990 we can just use REGNO (recog_data.operand[i]) to know which
1991 actual reg this operand needs to be in. */
1992
1993 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
1994
1995 if (regno < 0)
1996 abort ();
1997
1998 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
1999 {
2000 /* recog_data.operand[i] is not in the right place. Find
2001 it and swap it with whatever is already in I's place.
2002 K is where recog_data.operand[i] is now. J is where it
2003 should be. */
2004 int j, k, temp;
2005
2006 k = temp_stack.top - (regno - FIRST_STACK_REG);
2007 j = (temp_stack.top
2008 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2009
2010 temp = temp_stack.reg[k];
2011 temp_stack.reg[k] = temp_stack.reg[j];
2012 temp_stack.reg[j] = temp;
2013 }
2014 }
2015
2016 /* Emit insns before INSN to make sure the reg-stack is in the right
2017 order. */
2018
2019 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2020
2021 /* Make the needed input register substitutions. Do death notes and
2022 clobbers too, because these are for inputs, not outputs. */
2023
2024 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2025 if (STACK_REG_P (recog_data.operand[i]))
2026 {
2027 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2028
2029 if (regnum < 0)
2030 abort ();
2031
2032 replace_reg (recog_data.operand_loc[i], regnum);
2033 }
2034
2035 for (i = 0; i < n_notes; i++)
2036 if (note_kind[i] == REG_DEAD)
2037 {
2038 int regnum = get_hard_regnum (regstack, note_reg[i]);
2039
2040 if (regnum < 0)
2041 abort ();
2042
2043 replace_reg (note_loc[i], regnum);
2044 }
2045
2046 for (i = 0; i < n_clobbers; i++)
2047 {
2048 /* It's OK for a CLOBBER to reference a reg that is not live.
2049 Don't try to replace it in that case. */
2050 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2051
2052 if (regnum >= 0)
2053 {
2054 /* Sigh - clobbers always have QImode. But replace_reg knows
2055 that these regs can't be MODE_INT and will abort. Just put
2056 the right reg there without calling replace_reg. */
2057
2058 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2059 }
2060 }
2061
2062 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2063
2064 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2065 if (STACK_REG_P (recog_data.operand[i]))
2066 {
2067 /* An input reg is implicitly popped if it is tied to an
2068 output, or if there is a CLOBBER for it. */
2069 int j;
2070
2071 for (j = 0; j < n_clobbers; j++)
2072 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2073 break;
2074
2075 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2076 {
2077 /* recog_data.operand[i] might not be at the top of stack.
2078 But that's OK, because all we need to do is pop the
2079 right number of regs off of the top of the reg-stack.
2080 record_asm_stack_regs guaranteed that all implicitly
2081 popped regs were grouped at the top of the reg-stack. */
2082
2083 CLEAR_HARD_REG_BIT (regstack->reg_set,
2084 regstack->reg[regstack->top]);
2085 regstack->top--;
2086 }
2087 }
2088
2089 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2090 Note that there isn't any need to substitute register numbers.
2091 ??? Explain why this is true. */
2092
2093 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2094 {
2095 /* See if there is an output for this hard reg. */
2096 int j;
2097
2098 for (j = 0; j < n_outputs; j++)
2099 if (STACK_REG_P (recog_data.operand[j])
2100 && REGNO (recog_data.operand[j]) == (unsigned) i)
2101 {
2102 regstack->reg[++regstack->top] = i;
2103 SET_HARD_REG_BIT (regstack->reg_set, i);
2104 break;
2105 }
2106 }
2107
2108 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2109 input that the asm didn't implicitly pop. If the asm didn't
2110 implicitly pop an input reg, that reg will still be live.
2111
2112 Note that we can't use find_regno_note here: the register numbers
2113 in the death notes have already been substituted. */
2114
2115 for (i = 0; i < n_outputs; i++)
2116 if (STACK_REG_P (recog_data.operand[i]))
2117 {
2118 int j;
2119
2120 for (j = 0; j < n_notes; j++)
2121 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2122 && note_kind[j] == REG_UNUSED)
2123 {
2124 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2125 EMIT_AFTER);
2126 break;
2127 }
2128 }
2129
2130 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2131 if (STACK_REG_P (recog_data.operand[i]))
2132 {
2133 int j;
2134
2135 for (j = 0; j < n_notes; j++)
2136 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2137 && note_kind[j] == REG_DEAD
2138 && TEST_HARD_REG_BIT (regstack->reg_set,
2139 REGNO (recog_data.operand[i])))
2140 {
2141 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2142 EMIT_AFTER);
2143 break;
2144 }
2145 }
2146 }
2147 \f
2148 /* Substitute stack hard reg numbers for stack virtual registers in
2149 INSN. Non-stack register numbers are not changed. REGSTACK is the
2150 current stack content. Insns may be emitted as needed to arrange the
2151 stack for the 387 based on the contents of the insn. */
2152
2153 static void
2154 subst_stack_regs (insn, regstack)
2155 rtx insn;
2156 stack regstack;
2157 {
2158 rtx *note_link, note;
2159 int i;
2160
2161 if (GET_CODE (insn) == CALL_INSN)
2162 {
2163 int top = regstack->top;
2164
2165 /* If there are any floating point parameters to be passed in
2166 registers for this call, make sure they are in the right
2167 order. */
2168
2169 if (top >= 0)
2170 {
2171 straighten_stack (PREV_INSN (insn), regstack);
2172
2173 /* Now mark the arguments as dead after the call. */
2174
2175 while (regstack->top >= 0)
2176 {
2177 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2178 regstack->top--;
2179 }
2180 }
2181 }
2182
2183 /* Do the actual substitution if any stack regs are mentioned.
2184 Since we only record whether entire insn mentions stack regs, and
2185 subst_stack_regs_pat only works for patterns that contain stack regs,
2186 we must check each pattern in a parallel here. A call_value_pop could
2187 fail otherwise. */
2188
2189 if (stack_regs_mentioned (insn))
2190 {
2191 int n_operands = asm_noperands (PATTERN (insn));
2192 if (n_operands >= 0)
2193 {
2194 /* This insn is an `asm' with operands. Decode the operands,
2195 decide how many are inputs, and do register substitution.
2196 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2197
2198 subst_asm_stack_regs (insn, regstack);
2199 return;
2200 }
2201
2202 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2203 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2204 {
2205 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2206 subst_stack_regs_pat (insn, regstack,
2207 XVECEXP (PATTERN (insn), 0, i));
2208 }
2209 else
2210 subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2211 }
2212
2213 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2214 REG_UNUSED will already have been dealt with, so just return. */
2215
2216 if (GET_CODE (insn) == NOTE)
2217 return;
2218
2219 /* If there is a REG_UNUSED note on a stack register on this insn,
2220 the indicated reg must be popped. The REG_UNUSED note is removed,
2221 since the form of the newly emitted pop insn references the reg,
2222 making it no longer `unset'. */
2223
2224 note_link = &REG_NOTES(insn);
2225 for (note = *note_link; note; note = XEXP (note, 1))
2226 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2227 {
2228 *note_link = XEXP (note, 1);
2229 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2230 }
2231 else
2232 note_link = &XEXP (note, 1);
2233 }
2234 \f
2235 /* Change the organization of the stack so that it fits a new basic
2236 block. Some registers might have to be popped, but there can never be
2237 a register live in the new block that is not now live.
2238
2239 Insert any needed insns before or after INSN, as indicated by
2240 WHERE. OLD is the original stack layout, and NEW is the desired
2241 form. OLD is updated to reflect the code emitted, ie, it will be
2242 the same as NEW upon return.
2243
2244 This function will not preserve block_end[]. But that information
2245 is no longer needed once this has executed. */
2246
2247 static void
2248 change_stack (insn, old, new, where)
2249 rtx insn;
2250 stack old;
2251 stack new;
2252 enum emit_where where;
2253 {
2254 int reg;
2255 int update_end = 0;
2256
2257 /* We will be inserting new insns "backwards". If we are to insert
2258 after INSN, find the next insn, and insert before it. */
2259
2260 if (where == EMIT_AFTER)
2261 {
2262 if (current_block && current_block->end == insn)
2263 update_end = 1;
2264 insn = NEXT_INSN (insn);
2265 }
2266
2267 /* Pop any registers that are not needed in the new block. */
2268
2269 for (reg = old->top; reg >= 0; reg--)
2270 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2271 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2272 EMIT_BEFORE);
2273
2274 if (new->top == -2)
2275 {
2276 /* If the new block has never been processed, then it can inherit
2277 the old stack order. */
2278
2279 new->top = old->top;
2280 memcpy (new->reg, old->reg, sizeof (new->reg));
2281 }
2282 else
2283 {
2284 /* This block has been entered before, and we must match the
2285 previously selected stack order. */
2286
2287 /* By now, the only difference should be the order of the stack,
2288 not their depth or liveliness. */
2289
2290 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2291 abort ();
2292 win:
2293 if (old->top != new->top)
2294 abort ();
2295
2296 /* If the stack is not empty (new->top != -1), loop here emitting
2297 swaps until the stack is correct.
2298
2299 The worst case number of swaps emitted is N + 2, where N is the
2300 depth of the stack. In some cases, the reg at the top of
2301 stack may be correct, but swapped anyway in order to fix
2302 other regs. But since we never swap any other reg away from
2303 its correct slot, this algorithm will converge. */
2304
2305 if (new->top != -1)
2306 do
2307 {
2308 /* Swap the reg at top of stack into the position it is
2309 supposed to be in, until the correct top of stack appears. */
2310
2311 while (old->reg[old->top] != new->reg[new->top])
2312 {
2313 for (reg = new->top; reg >= 0; reg--)
2314 if (new->reg[reg] == old->reg[old->top])
2315 break;
2316
2317 if (reg == -1)
2318 abort ();
2319
2320 emit_swap_insn (insn, old,
2321 FP_MODE_REG (old->reg[reg], DFmode));
2322 }
2323
2324 /* See if any regs remain incorrect. If so, bring an
2325 incorrect reg to the top of stack, and let the while loop
2326 above fix it. */
2327
2328 for (reg = new->top; reg >= 0; reg--)
2329 if (new->reg[reg] != old->reg[reg])
2330 {
2331 emit_swap_insn (insn, old,
2332 FP_MODE_REG (old->reg[reg], DFmode));
2333 break;
2334 }
2335 } while (reg >= 0);
2336
2337 /* At this point there must be no differences. */
2338
2339 for (reg = old->top; reg >= 0; reg--)
2340 if (old->reg[reg] != new->reg[reg])
2341 abort ();
2342 }
2343
2344 if (update_end)
2345 current_block->end = PREV_INSN (insn);
2346 }
2347 \f
2348 /* Print stack configuration. */
2349
2350 static void
2351 print_stack (file, s)
2352 FILE *file;
2353 stack s;
2354 {
2355 if (! file)
2356 return;
2357
2358 if (s->top == -2)
2359 fprintf (file, "uninitialized\n");
2360 else if (s->top == -1)
2361 fprintf (file, "empty\n");
2362 else
2363 {
2364 int i;
2365 fputs ("[ ", file);
2366 for (i = 0; i <= s->top; ++i)
2367 fprintf (file, "%d ", s->reg[i]);
2368 fputs ("]\n", file);
2369 }
2370 }
2371 \f
2372 /* This function was doing life analysis. We now let the regular live
2373 code do it's job, so we only need to check some extra invariants
2374 that reg-stack expects. Primary among these being that all registers
2375 are initialized before use.
2376
2377 The function returns true when code was emitted to CFG edges and
2378 commit_edge_insertions needs to be called. */
2379
2380 static int
2381 convert_regs_entry ()
2382 {
2383 int inserted = 0, i;
2384 edge e;
2385
2386 for (i = n_basic_blocks - 1; i >= 0; --i)
2387 {
2388 basic_block block = BASIC_BLOCK (i);
2389 block_info bi = BLOCK_INFO (block);
2390 int reg;
2391
2392 /* Set current register status at last instruction `uninitialized'. */
2393 bi->stack_in.top = -2;
2394
2395 /* Copy live_at_end and live_at_start into temporaries. */
2396 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2397 {
2398 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2399 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2400 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2401 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2402 }
2403 }
2404
2405 /* Load something into each stack register live at function entry.
2406 Such live registers can be caused by uninitialized variables or
2407 functions not returning values on all paths. In order to keep
2408 the push/pop code happy, and to not scrog the register stack, we
2409 must put something in these registers. Use a QNaN.
2410
2411 Note that we are insertting converted code here. This code is
2412 never seen by the convert_regs pass. */
2413
2414 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2415 {
2416 basic_block block = e->dest;
2417 block_info bi = BLOCK_INFO (block);
2418 int reg, top = -1;
2419
2420 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2421 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2422 {
2423 rtx init;
2424
2425 bi->stack_in.reg[++top] = reg;
2426
2427 init = gen_rtx_SET (VOIDmode,
2428 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2429 nan);
2430 insert_insn_on_edge (init, e);
2431 inserted = 1;
2432 }
2433
2434 bi->stack_in.top = top;
2435 }
2436
2437 return inserted;
2438 }
2439
2440 /* Construct the desired stack for function exit. This will either
2441 be `empty', or the function return value at top-of-stack. */
2442
2443 static void
2444 convert_regs_exit ()
2445 {
2446 int value_reg_low, value_reg_high;
2447 stack output_stack;
2448 rtx retvalue;
2449
2450 retvalue = stack_result (current_function_decl);
2451 value_reg_low = value_reg_high = -1;
2452 if (retvalue)
2453 {
2454 value_reg_low = REGNO (retvalue);
2455 value_reg_high = value_reg_low
2456 + HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2457 }
2458
2459 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2460 if (value_reg_low == -1)
2461 output_stack->top = -1;
2462 else
2463 {
2464 int reg;
2465
2466 output_stack->top = value_reg_high - value_reg_low;
2467 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2468 {
2469 output_stack->reg[reg - value_reg_low] = reg;
2470 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2471 }
2472 }
2473 }
2474
2475 /* Adjust the stack of this block on exit to match the stack of the
2476 target block, or copy stack info into the stack of the successor
2477 of the successor hasn't been processed yet. */
2478 static bool
2479 compensate_edge (e, file)
2480 edge e;
2481 FILE *file;
2482 {
2483 basic_block block = e->src, target = e->dest;
2484 block_info bi = BLOCK_INFO (block);
2485 struct stack_def regstack, tmpstack;
2486 stack target_stack = &BLOCK_INFO (target)->stack_in;
2487 int reg;
2488
2489 current_block = block;
2490 regstack = bi->stack_out;
2491 if (file)
2492 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2493
2494 if (target_stack->top == -2)
2495 {
2496 /* The target block hasn't had a stack order selected.
2497 We need merely ensure that no pops are needed. */
2498 for (reg = regstack.top; reg >= 0; --reg)
2499 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2500 break;
2501
2502 if (reg == -1)
2503 {
2504 if (file)
2505 fprintf (file, "new block; copying stack position\n");
2506
2507 /* change_stack kills values in regstack. */
2508 tmpstack = regstack;
2509
2510 change_stack (block->end, &tmpstack, target_stack, EMIT_AFTER);
2511 return false;
2512 }
2513
2514 if (file)
2515 fprintf (file, "new block; pops needed\n");
2516 }
2517 else
2518 {
2519 if (target_stack->top == regstack.top)
2520 {
2521 for (reg = target_stack->top; reg >= 0; --reg)
2522 if (target_stack->reg[reg] != regstack.reg[reg])
2523 break;
2524
2525 if (reg == -1)
2526 {
2527 if (file)
2528 fprintf (file, "no changes needed\n");
2529 return false;
2530 }
2531 }
2532
2533 if (file)
2534 {
2535 fprintf (file, "correcting stack to ");
2536 print_stack (file, target_stack);
2537 }
2538 }
2539
2540 /* Care for non-call EH edges specially. The normal return path have
2541 values in registers. These will be popped en masse by the unwind
2542 library. */
2543 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2544 target_stack->top = -1;
2545
2546 /* Other calls may appear to have values live in st(0), but the
2547 abnormal return path will not have actually loaded the values. */
2548 else if (e->flags & EDGE_ABNORMAL_CALL)
2549 {
2550 /* Assert that the lifetimes are as we expect -- one value
2551 live at st(0) on the end of the source block, and no
2552 values live at the beginning of the destination block. */
2553 HARD_REG_SET tmp;
2554
2555 CLEAR_HARD_REG_SET (tmp);
2556 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2557 abort ();
2558 eh1:
2559
2560 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2561 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2562 abort ();
2563 eh2:
2564
2565 target_stack->top = -1;
2566 }
2567
2568 /* It is better to output directly to the end of the block
2569 instead of to the edge, because emit_swap can do minimal
2570 insn scheduling. We can do this when there is only one
2571 edge out, and it is not abnormal. */
2572 else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2573 {
2574 /* change_stack kills values in regstack. */
2575 tmpstack = regstack;
2576
2577 change_stack (block->end, &tmpstack, target_stack,
2578 (GET_CODE (block->end) == JUMP_INSN
2579 ? EMIT_BEFORE : EMIT_AFTER));
2580 }
2581 else
2582 {
2583 rtx seq, after;
2584
2585 /* We don't support abnormal edges. Global takes care to
2586 avoid any live register across them, so we should never
2587 have to insert instructions on such edges. */
2588 if (e->flags & EDGE_ABNORMAL)
2589 abort ();
2590
2591 current_block = NULL;
2592 start_sequence ();
2593
2594 /* ??? change_stack needs some point to emit insns after.
2595 Also needed to keep gen_sequence from returning a
2596 pattern as opposed to a sequence, which would lose
2597 REG_DEAD notes. */
2598 after = emit_note (NULL, NOTE_INSN_DELETED);
2599
2600 tmpstack = regstack;
2601 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2602
2603 seq = gen_sequence ();
2604 end_sequence ();
2605
2606 insert_insn_on_edge (seq, e);
2607 return true;
2608 }
2609 return false;
2610 }
2611
2612 /* Convert stack register references in one block. */
2613
2614 static int
2615 convert_regs_1 (file, block)
2616 FILE *file;
2617 basic_block block;
2618 {
2619 struct stack_def regstack;
2620 block_info bi = BLOCK_INFO (block);
2621 int inserted, reg;
2622 rtx insn, next;
2623 edge e, beste = NULL;
2624
2625 inserted = 0;
2626
2627 /* Find the edge we will copy stack from. It should be the most frequent
2628 one as it will get cheapest after compensation code is generated,
2629 if multiple such exists, take one with largest count, preffer critical
2630 one (as splitting critical edges is more expensive), or one with lowest
2631 index, to avoid random changes with different orders of the edges. */
2632 for (e = block->pred; e ; e = e->pred_next)
2633 {
2634 if (e->flags & EDGE_DFS_BACK)
2635 ;
2636 else if (! beste)
2637 beste = e;
2638 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2639 beste = e;
2640 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2641 ;
2642 else if (beste->count < e->count)
2643 beste = e;
2644 else if (beste->count > e->count)
2645 ;
2646 else if ((EDGE_CRITICAL_P (e) != 0)
2647 != (EDGE_CRITICAL_P (beste) != 0))
2648 {
2649 if (EDGE_CRITICAL_P (e))
2650 beste = e;
2651 }
2652 else if (e->src->index < beste->src->index)
2653 beste = e;
2654 }
2655
2656 /* Entry block does have stack already initialized. */
2657 if (bi->stack_in.top == -2)
2658 inserted |= compensate_edge (beste, file);
2659 else
2660 beste = NULL;
2661
2662 current_block = block;
2663
2664 if (file)
2665 {
2666 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2667 print_stack (file, &bi->stack_in);
2668 }
2669
2670 /* Process all insns in this block. Keep track of NEXT so that we
2671 don't process insns emitted while substituting in INSN. */
2672 next = block->head;
2673 regstack = bi->stack_in;
2674 do
2675 {
2676 insn = next;
2677 next = NEXT_INSN (insn);
2678
2679 /* Ensure we have not missed a block boundary. */
2680 if (next == NULL)
2681 abort ();
2682 if (insn == block->end)
2683 next = NULL;
2684
2685 /* Don't bother processing unless there is a stack reg
2686 mentioned or if it's a CALL_INSN. */
2687 if (stack_regs_mentioned (insn)
2688 || GET_CODE (insn) == CALL_INSN)
2689 {
2690 if (file)
2691 {
2692 fprintf (file, " insn %d input stack: ",
2693 INSN_UID (insn));
2694 print_stack (file, &regstack);
2695 }
2696 subst_stack_regs (insn, &regstack);
2697 }
2698 }
2699 while (next);
2700
2701 if (file)
2702 {
2703 fprintf (file, "Expected live registers [");
2704 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2705 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2706 fprintf (file, " %d", reg);
2707 fprintf (file, " ]\nOutput stack: ");
2708 print_stack (file, &regstack);
2709 }
2710
2711 insn = block->end;
2712 if (GET_CODE (insn) == JUMP_INSN)
2713 insn = PREV_INSN (insn);
2714
2715 /* If the function is declared to return a value, but it returns one
2716 in only some cases, some registers might come live here. Emit
2717 necessary moves for them. */
2718
2719 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2720 {
2721 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2722 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2723 {
2724 rtx set;
2725
2726 if (file)
2727 {
2728 fprintf (file, "Emitting insn initializing reg %d\n",
2729 reg);
2730 }
2731
2732 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2733 nan);
2734 insn = emit_insn_after (set, insn);
2735 subst_stack_regs (insn, &regstack);
2736 }
2737 }
2738
2739 /* Something failed if the stack lives don't match. */
2740 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2741 abort ();
2742 win:
2743 bi->stack_out = regstack;
2744
2745 /* Compensate the back edges, as those wasn't visited yet. */
2746 for (e = block->succ; e ; e = e->succ_next)
2747 {
2748 if (e->flags & EDGE_DFS_BACK
2749 || (e->dest == EXIT_BLOCK_PTR))
2750 {
2751 if (!BLOCK_INFO (e->dest)->done
2752 && e->dest != block)
2753 abort ();
2754 inserted |= compensate_edge (e, file);
2755 }
2756 }
2757 for (e = block->pred; e ; e = e->pred_next)
2758 {
2759 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2760 && e->src != ENTRY_BLOCK_PTR)
2761 {
2762 if (!BLOCK_INFO (e->src)->done)
2763 abort ();
2764 inserted |= compensate_edge (e, file);
2765 }
2766 }
2767
2768 return inserted;
2769 }
2770
2771 /* Convert registers in all blocks reachable from BLOCK. */
2772
2773 static int
2774 convert_regs_2 (file, block)
2775 FILE *file;
2776 basic_block block;
2777 {
2778 basic_block *stack, *sp;
2779 int inserted;
2780
2781 stack = (basic_block *) xmalloc (sizeof (*stack) * n_basic_blocks);
2782 sp = stack;
2783
2784 *sp++ = block;
2785
2786 inserted = 0;
2787 do
2788 {
2789 edge e;
2790
2791 block = *--sp;
2792 inserted |= convert_regs_1 (file, block);
2793 BLOCK_INFO (block)->done = 1;
2794
2795 for (e = block->succ; e ; e = e->succ_next)
2796 if (! (e->flags & EDGE_DFS_BACK))
2797 {
2798 BLOCK_INFO (e->dest)->predecesors--;
2799 if (!BLOCK_INFO (e->dest)->predecesors)
2800 *sp++ = e->dest;
2801 }
2802 }
2803 while (sp != stack);
2804
2805 return inserted;
2806 }
2807
2808 /* Traverse all basic blocks in a function, converting the register
2809 references in each insn from the "flat" register file that gcc uses,
2810 to the stack-like registers the 387 uses. */
2811
2812 static int
2813 convert_regs (file)
2814 FILE *file;
2815 {
2816 int inserted, i;
2817 edge e;
2818
2819 /* Initialize uninitialized registers on function entry. */
2820 inserted = convert_regs_entry ();
2821
2822 /* Construct the desired stack for function exit. */
2823 convert_regs_exit ();
2824 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2825
2826 /* ??? Future: process inner loops first, and give them arbitrary
2827 initial stacks which emit_swap_insn can modify. This ought to
2828 prevent double fxch that aften appears at the head of a loop. */
2829
2830 /* Process all blocks reachable from all entry points. */
2831 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2832 inserted |= convert_regs_2 (file, e->dest);
2833
2834 /* ??? Process all unreachable blocks. Though there's no excuse
2835 for keeping these even when not optimizing. */
2836 for (i = 0; i < n_basic_blocks; ++i)
2837 {
2838 basic_block b = BASIC_BLOCK (i);
2839 block_info bi = BLOCK_INFO (b);
2840
2841 if (! bi->done)
2842 {
2843 int reg;
2844
2845 /* Create an arbitrary input stack. */
2846 bi->stack_in.top = -1;
2847 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2848 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2849 bi->stack_in.reg[++bi->stack_in.top] = reg;
2850
2851 inserted |= convert_regs_2 (file, b);
2852 }
2853 }
2854
2855 if (inserted)
2856 commit_edge_insertions ();
2857
2858 if (file)
2859 fputc ('\n', file);
2860
2861 return inserted;
2862 }
2863 #endif /* STACK_REGS */