exp_smem.adb, [...]: Remove OK_For_Stream flag, not used, not needed.
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153 \f
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
173
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
176
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180 static GTY(()) varray_type stack_regs_mentioned_data;
181
182 #ifdef STACK_REGS
183
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
185
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
188
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
192
193 REG_SET indicates which registers are live. */
194
195 typedef struct stack_def
196 {
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
200 } *stack;
201
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
204
205 typedef struct block_info_def
206 {
207 struct stack_def stack_in; /* Input stack configuration. */
208 struct stack_def stack_out; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
211 int predecessors; /* Number of predecessors that needs
212 to be visited. */
213 } *block_info;
214
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
216
217 /* Passed to change_stack to indicate where to emit insns. */
218 enum emit_where
219 {
220 EMIT_AFTER,
221 EMIT_BEFORE
222 };
223
224 /* The block we're currently working on. */
225 static basic_block current_block;
226
227 /* This is the register file for all register after conversion. */
228 static rtx
229 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
230
231 #define FP_MODE_REG(regno,mode) \
232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
233
234 /* Used to initialize uninitialized registers. */
235 static rtx not_a_num;
236
237 /* Forward declarations */
238
239 static int stack_regs_mentioned_p (rtx pat);
240 static void straighten_stack (rtx, stack);
241 static void pop_stack (stack, int);
242 static rtx *get_true_reg (rtx *);
243
244 static int check_asm_stack_operands (rtx);
245 static int get_asm_operand_n_inputs (rtx);
246 static rtx stack_result (tree);
247 static void replace_reg (rtx *, int);
248 static void remove_regno_note (rtx, enum reg_note, unsigned int);
249 static int get_hard_regnum (stack, rtx);
250 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
251 static void emit_swap_insn (rtx, stack, rtx);
252 static void swap_to_top(rtx, stack, rtx, rtx);
253 static bool move_for_stack_reg (rtx, stack, rtx);
254 static bool move_nan_for_stack_reg (rtx, stack, rtx);
255 static int swap_rtx_condition_1 (rtx);
256 static int swap_rtx_condition (rtx);
257 static void compare_for_stack_reg (rtx, stack, rtx);
258 static bool subst_stack_regs_pat (rtx, stack, rtx);
259 static void subst_asm_stack_regs (rtx, stack);
260 static bool subst_stack_regs (rtx, stack);
261 static void change_stack (rtx, stack, stack, enum emit_where);
262 static int convert_regs_entry (void);
263 static void convert_regs_exit (void);
264 static int convert_regs_1 (FILE *, basic_block);
265 static int convert_regs_2 (FILE *, basic_block);
266 static int convert_regs (FILE *);
267 static void print_stack (FILE *, stack);
268 static rtx next_flags_user (rtx);
269 static bool compensate_edge (edge, FILE *);
270 \f
271 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
272
273 static int
274 stack_regs_mentioned_p (rtx pat)
275 {
276 const char *fmt;
277 int i;
278
279 if (STACK_REG_P (pat))
280 return 1;
281
282 fmt = GET_RTX_FORMAT (GET_CODE (pat));
283 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
284 {
285 if (fmt[i] == 'E')
286 {
287 int j;
288
289 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
290 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
291 return 1;
292 }
293 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
294 return 1;
295 }
296
297 return 0;
298 }
299
300 /* Return nonzero if INSN mentions stacked registers, else return zero. */
301
302 int
303 stack_regs_mentioned (rtx insn)
304 {
305 unsigned int uid, max;
306 int test;
307
308 if (! INSN_P (insn) || !stack_regs_mentioned_data)
309 return 0;
310
311 uid = INSN_UID (insn);
312 max = VARRAY_SIZE (stack_regs_mentioned_data);
313 if (uid >= max)
314 {
315 /* Allocate some extra size to avoid too many reallocs, but
316 do not grow too quickly. */
317 max = uid + uid / 20;
318 VARRAY_GROW (stack_regs_mentioned_data, max);
319 }
320
321 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
322 if (test == 0)
323 {
324 /* This insn has yet to be examined. Do so now. */
325 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
326 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
327 }
328
329 return test == 1;
330 }
331 \f
332 static rtx ix86_flags_rtx;
333
334 static rtx
335 next_flags_user (rtx insn)
336 {
337 /* Search forward looking for the first use of this value.
338 Stop at block boundaries. */
339
340 while (insn != BB_END (current_block))
341 {
342 insn = NEXT_INSN (insn);
343
344 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
345 return insn;
346
347 if (CALL_P (insn))
348 return NULL_RTX;
349 }
350 return NULL_RTX;
351 }
352 \f
353 /* Reorganize the stack into ascending numbers,
354 after this insn. */
355
356 static void
357 straighten_stack (rtx insn, stack regstack)
358 {
359 struct stack_def temp_stack;
360 int top;
361
362 /* If there is only a single register on the stack, then the stack is
363 already in increasing order and no reorganization is needed.
364
365 Similarly if the stack is empty. */
366 if (regstack->top <= 0)
367 return;
368
369 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
370
371 for (top = temp_stack.top = regstack->top; top >= 0; top--)
372 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
373
374 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
375 }
376
377 /* Pop a register from the stack. */
378
379 static void
380 pop_stack (stack regstack, int regno)
381 {
382 int top = regstack->top;
383
384 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
385 regstack->top--;
386 /* If regno was not at the top of stack then adjust stack. */
387 if (regstack->reg [top] != regno)
388 {
389 int i;
390 for (i = regstack->top; i >= 0; i--)
391 if (regstack->reg [i] == regno)
392 {
393 int j;
394 for (j = i; j < top; j++)
395 regstack->reg [j] = regstack->reg [j + 1];
396 break;
397 }
398 }
399 }
400 \f
401 /* Convert register usage from "flat" register file usage to a "stack
402 register file. FILE is the dump file, if used.
403
404 Construct a CFG and run life analysis. Then convert each insn one
405 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
406 code duplication created when the converter inserts pop insns on
407 the edges. */
408
409 bool
410 reg_to_stack (FILE *file)
411 {
412 basic_block bb;
413 int i;
414 int max_uid;
415
416 /* Clean up previous run. */
417 stack_regs_mentioned_data = 0;
418
419 /* See if there is something to do. Flow analysis is quite
420 expensive so we might save some compilation time. */
421 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
422 if (regs_ever_live[i])
423 break;
424 if (i > LAST_STACK_REG)
425 return false;
426
427 /* Ok, floating point instructions exist. If not optimizing,
428 build the CFG and run life analysis.
429 Also need to rebuild life when superblock scheduling is done
430 as it don't update liveness yet. */
431 if (!optimize
432 || (flag_sched2_use_superblocks
433 && flag_schedule_insns_after_reload))
434 {
435 count_or_remove_death_notes (NULL, 1);
436 life_analysis (file, PROP_DEATH_NOTES);
437 }
438 mark_dfs_back_edges ();
439
440 /* Set up block info for each basic block. */
441 alloc_aux_for_blocks (sizeof (struct block_info_def));
442 FOR_EACH_BB_REVERSE (bb)
443 {
444 edge e;
445 edge_iterator ei;
446
447 FOR_EACH_EDGE (e, ei, bb->preds)
448 if (!(e->flags & EDGE_DFS_BACK)
449 && e->src != ENTRY_BLOCK_PTR)
450 BLOCK_INFO (bb)->predecessors++;
451 }
452
453 /* Create the replacement registers up front. */
454 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
455 {
456 enum machine_mode mode;
457 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
458 mode != VOIDmode;
459 mode = GET_MODE_WIDER_MODE (mode))
460 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
461 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
462 mode != VOIDmode;
463 mode = GET_MODE_WIDER_MODE (mode))
464 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
465 }
466
467 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
468
469 /* A QNaN for initializing uninitialized variables.
470
471 ??? We can't load from constant memory in PIC mode, because
472 we're inserting these instructions before the prologue and
473 the PIC register hasn't been set up. In that case, fall back
474 on zero, which we can get from `ldz'. */
475
476 if (flag_pic)
477 not_a_num = CONST0_RTX (SFmode);
478 else
479 {
480 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
481 not_a_num = force_const_mem (SFmode, not_a_num);
482 }
483
484 /* Allocate a cache for stack_regs_mentioned. */
485 max_uid = get_max_uid ();
486 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
487 "stack_regs_mentioned cache");
488
489 convert_regs (file);
490
491 free_aux_for_blocks ();
492 return true;
493 }
494
495 \f
496 /* Return a pointer to the REG expression within PAT. If PAT is not a
497 REG, possible enclosed by a conversion rtx, return the inner part of
498 PAT that stopped the search. */
499
500 static rtx *
501 get_true_reg (rtx *pat)
502 {
503 for (;;)
504 switch (GET_CODE (*pat))
505 {
506 case SUBREG:
507 /* Eliminate FP subregister accesses in favor of the
508 actual FP register in use. */
509 {
510 rtx subreg;
511 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
512 {
513 int regno_off = subreg_regno_offset (REGNO (subreg),
514 GET_MODE (subreg),
515 SUBREG_BYTE (*pat),
516 GET_MODE (*pat));
517 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
518 GET_MODE (subreg));
519 default:
520 return pat;
521 }
522 }
523 case FLOAT:
524 case FIX:
525 case FLOAT_EXTEND:
526 pat = & XEXP (*pat, 0);
527 break;
528
529 case FLOAT_TRUNCATE:
530 if (!flag_unsafe_math_optimizations)
531 return pat;
532 pat = & XEXP (*pat, 0);
533 break;
534 }
535 }
536 \f
537 /* Set if we find any malformed asms in a block. */
538 static bool any_malformed_asm;
539
540 /* There are many rules that an asm statement for stack-like regs must
541 follow. Those rules are explained at the top of this file: the rule
542 numbers below refer to that explanation. */
543
544 static int
545 check_asm_stack_operands (rtx insn)
546 {
547 int i;
548 int n_clobbers;
549 int malformed_asm = 0;
550 rtx body = PATTERN (insn);
551
552 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
553 char implicitly_dies[FIRST_PSEUDO_REGISTER];
554 int alt;
555
556 rtx *clobber_reg = 0;
557 int n_inputs, n_outputs;
558
559 /* Find out what the constraints require. If no constraint
560 alternative matches, this asm is malformed. */
561 extract_insn (insn);
562 constrain_operands (1);
563 alt = which_alternative;
564
565 preprocess_constraints ();
566
567 n_inputs = get_asm_operand_n_inputs (body);
568 n_outputs = recog_data.n_operands - n_inputs;
569
570 if (alt < 0)
571 {
572 malformed_asm = 1;
573 /* Avoid further trouble with this insn. */
574 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
575 return 0;
576 }
577
578 /* Strip SUBREGs here to make the following code simpler. */
579 for (i = 0; i < recog_data.n_operands; i++)
580 if (GET_CODE (recog_data.operand[i]) == SUBREG
581 && REG_P (SUBREG_REG (recog_data.operand[i])))
582 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
583
584 /* Set up CLOBBER_REG. */
585
586 n_clobbers = 0;
587
588 if (GET_CODE (body) == PARALLEL)
589 {
590 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
591
592 for (i = 0; i < XVECLEN (body, 0); i++)
593 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
594 {
595 rtx clobber = XVECEXP (body, 0, i);
596 rtx reg = XEXP (clobber, 0);
597
598 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
599 reg = SUBREG_REG (reg);
600
601 if (STACK_REG_P (reg))
602 {
603 clobber_reg[n_clobbers] = reg;
604 n_clobbers++;
605 }
606 }
607 }
608
609 /* Enforce rule #4: Output operands must specifically indicate which
610 reg an output appears in after an asm. "=f" is not allowed: the
611 operand constraints must select a class with a single reg.
612
613 Also enforce rule #5: Output operands must start at the top of
614 the reg-stack: output operands may not "skip" a reg. */
615
616 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
617 for (i = 0; i < n_outputs; i++)
618 if (STACK_REG_P (recog_data.operand[i]))
619 {
620 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
621 {
622 error_for_asm (insn, "output constraint %d must specify a single register", i);
623 malformed_asm = 1;
624 }
625 else
626 {
627 int j;
628
629 for (j = 0; j < n_clobbers; j++)
630 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
631 {
632 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
633 i, reg_names [REGNO (clobber_reg[j])]);
634 malformed_asm = 1;
635 break;
636 }
637 if (j == n_clobbers)
638 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
639 }
640 }
641
642
643 /* Search for first non-popped reg. */
644 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
645 if (! reg_used_as_output[i])
646 break;
647
648 /* If there are any other popped regs, that's an error. */
649 for (; i < LAST_STACK_REG + 1; i++)
650 if (reg_used_as_output[i])
651 break;
652
653 if (i != LAST_STACK_REG + 1)
654 {
655 error_for_asm (insn, "output regs must be grouped at top of stack");
656 malformed_asm = 1;
657 }
658
659 /* Enforce rule #2: All implicitly popped input regs must be closer
660 to the top of the reg-stack than any input that is not implicitly
661 popped. */
662
663 memset (implicitly_dies, 0, sizeof (implicitly_dies));
664 for (i = n_outputs; i < n_outputs + n_inputs; i++)
665 if (STACK_REG_P (recog_data.operand[i]))
666 {
667 /* An input reg is implicitly popped if it is tied to an
668 output, or if there is a CLOBBER for it. */
669 int j;
670
671 for (j = 0; j < n_clobbers; j++)
672 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
673 break;
674
675 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
676 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
677 }
678
679 /* Search for first non-popped reg. */
680 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
681 if (! implicitly_dies[i])
682 break;
683
684 /* If there are any other popped regs, that's an error. */
685 for (; i < LAST_STACK_REG + 1; i++)
686 if (implicitly_dies[i])
687 break;
688
689 if (i != LAST_STACK_REG + 1)
690 {
691 error_for_asm (insn,
692 "implicitly popped regs must be grouped at top of stack");
693 malformed_asm = 1;
694 }
695
696 /* Enforce rule #3: If any input operand uses the "f" constraint, all
697 output constraints must use the "&" earlyclobber.
698
699 ??? Detect this more deterministically by having constrain_asm_operands
700 record any earlyclobber. */
701
702 for (i = n_outputs; i < n_outputs + n_inputs; i++)
703 if (recog_op_alt[i][alt].matches == -1)
704 {
705 int j;
706
707 for (j = 0; j < n_outputs; j++)
708 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
709 {
710 error_for_asm (insn,
711 "output operand %d must use %<&%> constraint", j);
712 malformed_asm = 1;
713 }
714 }
715
716 if (malformed_asm)
717 {
718 /* Avoid further trouble with this insn. */
719 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
720 any_malformed_asm = true;
721 return 0;
722 }
723
724 return 1;
725 }
726 \f
727 /* Calculate the number of inputs and outputs in BODY, an
728 asm_operands. N_OPERANDS is the total number of operands, and
729 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
730 placed. */
731
732 static int
733 get_asm_operand_n_inputs (rtx body)
734 {
735 switch (GET_CODE (body))
736 {
737 case SET:
738 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
739 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
740
741 case ASM_OPERANDS:
742 return ASM_OPERANDS_INPUT_LENGTH (body);
743
744 case PARALLEL:
745 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
746
747 default:
748 gcc_unreachable ();
749 }
750 }
751
752 /* If current function returns its result in an fp stack register,
753 return the REG. Otherwise, return 0. */
754
755 static rtx
756 stack_result (tree decl)
757 {
758 rtx result;
759
760 /* If the value is supposed to be returned in memory, then clearly
761 it is not returned in a stack register. */
762 if (aggregate_value_p (DECL_RESULT (decl), decl))
763 return 0;
764
765 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
766 if (result != 0)
767 {
768 #ifdef FUNCTION_OUTGOING_VALUE
769 result
770 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
771 #else
772 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
773 #endif
774 }
775
776 return result != 0 && STACK_REG_P (result) ? result : 0;
777 }
778 \f
779
780 /*
781 * This section deals with stack register substitution, and forms the second
782 * pass over the RTL.
783 */
784
785 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
786 the desired hard REGNO. */
787
788 static void
789 replace_reg (rtx *reg, int regno)
790 {
791 gcc_assert (regno >= FIRST_STACK_REG);
792 gcc_assert (regno <= LAST_STACK_REG);
793 gcc_assert (STACK_REG_P (*reg));
794
795 gcc_assert (GET_MODE_CLASS (GET_MODE (*reg)) == MODE_FLOAT
796 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
797
798 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
799 }
800
801 /* Remove a note of type NOTE, which must be found, for register
802 number REGNO from INSN. Remove only one such note. */
803
804 static void
805 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
806 {
807 rtx *note_link, this;
808
809 note_link = &REG_NOTES (insn);
810 for (this = *note_link; this; this = XEXP (this, 1))
811 if (REG_NOTE_KIND (this) == note
812 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
813 {
814 *note_link = XEXP (this, 1);
815 return;
816 }
817 else
818 note_link = &XEXP (this, 1);
819
820 gcc_unreachable ();
821 }
822
823 /* Find the hard register number of virtual register REG in REGSTACK.
824 The hard register number is relative to the top of the stack. -1 is
825 returned if the register is not found. */
826
827 static int
828 get_hard_regnum (stack regstack, rtx reg)
829 {
830 int i;
831
832 gcc_assert (STACK_REG_P (reg));
833
834 for (i = regstack->top; i >= 0; i--)
835 if (regstack->reg[i] == REGNO (reg))
836 break;
837
838 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
839 }
840 \f
841 /* Emit an insn to pop virtual register REG before or after INSN.
842 REGSTACK is the stack state after INSN and is updated to reflect this
843 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
844 is represented as a SET whose destination is the register to be popped
845 and source is the top of stack. A death note for the top of stack
846 cases the movdf pattern to pop. */
847
848 static rtx
849 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
850 {
851 rtx pop_insn, pop_rtx;
852 int hard_regno;
853
854 /* For complex types take care to pop both halves. These may survive in
855 CLOBBER and USE expressions. */
856 if (COMPLEX_MODE_P (GET_MODE (reg)))
857 {
858 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
859 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
860
861 pop_insn = NULL_RTX;
862 if (get_hard_regnum (regstack, reg1) >= 0)
863 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
864 if (get_hard_regnum (regstack, reg2) >= 0)
865 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
866 gcc_assert (pop_insn);
867 return pop_insn;
868 }
869
870 hard_regno = get_hard_regnum (regstack, reg);
871
872 gcc_assert (hard_regno >= FIRST_STACK_REG);
873
874 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
875 FP_MODE_REG (FIRST_STACK_REG, DFmode));
876
877 if (where == EMIT_AFTER)
878 pop_insn = emit_insn_after (pop_rtx, insn);
879 else
880 pop_insn = emit_insn_before (pop_rtx, insn);
881
882 REG_NOTES (pop_insn)
883 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
884 REG_NOTES (pop_insn));
885
886 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
887 = regstack->reg[regstack->top];
888 regstack->top -= 1;
889 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
890
891 return pop_insn;
892 }
893 \f
894 /* Emit an insn before or after INSN to swap virtual register REG with
895 the top of stack. REGSTACK is the stack state before the swap, and
896 is updated to reflect the swap. A swap insn is represented as a
897 PARALLEL of two patterns: each pattern moves one reg to the other.
898
899 If REG is already at the top of the stack, no insn is emitted. */
900
901 static void
902 emit_swap_insn (rtx insn, stack regstack, rtx reg)
903 {
904 int hard_regno;
905 rtx swap_rtx;
906 int tmp, other_reg; /* swap regno temps */
907 rtx i1; /* the stack-reg insn prior to INSN */
908 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
909
910 hard_regno = get_hard_regnum (regstack, reg);
911
912 gcc_assert (hard_regno >= FIRST_STACK_REG);
913 if (hard_regno == FIRST_STACK_REG)
914 return;
915
916 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
917
918 tmp = regstack->reg[other_reg];
919 regstack->reg[other_reg] = regstack->reg[regstack->top];
920 regstack->reg[regstack->top] = tmp;
921
922 /* Find the previous insn involving stack regs, but don't pass a
923 block boundary. */
924 i1 = NULL;
925 if (current_block && insn != BB_HEAD (current_block))
926 {
927 rtx tmp = PREV_INSN (insn);
928 rtx limit = PREV_INSN (BB_HEAD (current_block));
929 while (tmp != limit)
930 {
931 if (LABEL_P (tmp)
932 || CALL_P (tmp)
933 || NOTE_INSN_BASIC_BLOCK_P (tmp)
934 || (NOTE_P (tmp)
935 && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
936 || (NONJUMP_INSN_P (tmp)
937 && stack_regs_mentioned (tmp)))
938 {
939 i1 = tmp;
940 break;
941 }
942 tmp = PREV_INSN (tmp);
943 }
944 }
945
946 if (i1 != NULL_RTX
947 && (i1set = single_set (i1)) != NULL_RTX)
948 {
949 rtx i1src = *get_true_reg (&SET_SRC (i1set));
950 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
951
952 /* If the previous register stack push was from the reg we are to
953 swap with, omit the swap. */
954
955 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
956 && REG_P (i1src)
957 && REGNO (i1src) == (unsigned) hard_regno - 1
958 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
959 return;
960
961 /* If the previous insn wrote to the reg we are to swap with,
962 omit the swap. */
963
964 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
965 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
966 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
967 return;
968 }
969
970 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
971 FP_MODE_REG (FIRST_STACK_REG, XFmode));
972
973 if (i1)
974 emit_insn_after (swap_rtx, i1);
975 else if (current_block)
976 emit_insn_before (swap_rtx, BB_HEAD (current_block));
977 else
978 emit_insn_before (swap_rtx, insn);
979 }
980 \f
981 /* Emit an insns before INSN to swap virtual register SRC1 with
982 the top of stack and virtual register SRC2 with second stack
983 slot. REGSTACK is the stack state before the swaps, and
984 is updated to reflect the swaps. A swap insn is represented as a
985 PARALLEL of two patterns: each pattern moves one reg to the other.
986
987 If SRC1 and/or SRC2 are already at the right place, no swap insn
988 is emitted. */
989
990 static void
991 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
992 {
993 struct stack_def temp_stack;
994 int regno, j, k, temp;
995
996 temp_stack = *regstack;
997
998 /* Place operand 1 at the top of stack. */
999 regno = get_hard_regnum (&temp_stack, src1);
1000 gcc_assert (regno >= 0);
1001 if (regno != FIRST_STACK_REG)
1002 {
1003 k = temp_stack.top - (regno - FIRST_STACK_REG);
1004 j = temp_stack.top;
1005
1006 temp = temp_stack.reg[k];
1007 temp_stack.reg[k] = temp_stack.reg[j];
1008 temp_stack.reg[j] = temp;
1009 }
1010
1011 /* Place operand 2 next on the stack. */
1012 regno = get_hard_regnum (&temp_stack, src2);
1013 gcc_assert (regno >= 0);
1014 if (regno != FIRST_STACK_REG + 1)
1015 {
1016 k = temp_stack.top - (regno - FIRST_STACK_REG);
1017 j = temp_stack.top - 1;
1018
1019 temp = temp_stack.reg[k];
1020 temp_stack.reg[k] = temp_stack.reg[j];
1021 temp_stack.reg[j] = temp;
1022 }
1023
1024 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1025 }
1026 \f
1027 /* Handle a move to or from a stack register in PAT, which is in INSN.
1028 REGSTACK is the current stack. Return whether a control flow insn
1029 was deleted in the process. */
1030
1031 static bool
1032 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
1033 {
1034 rtx *psrc = get_true_reg (&SET_SRC (pat));
1035 rtx *pdest = get_true_reg (&SET_DEST (pat));
1036 rtx src, dest;
1037 rtx note;
1038 bool control_flow_insn_deleted = false;
1039
1040 src = *psrc; dest = *pdest;
1041
1042 if (STACK_REG_P (src) && STACK_REG_P (dest))
1043 {
1044 /* Write from one stack reg to another. If SRC dies here, then
1045 just change the register mapping and delete the insn. */
1046
1047 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1048 if (note)
1049 {
1050 int i;
1051
1052 /* If this is a no-op move, there must not be a REG_DEAD note. */
1053 gcc_assert (REGNO (src) != REGNO (dest));
1054
1055 for (i = regstack->top; i >= 0; i--)
1056 if (regstack->reg[i] == REGNO (src))
1057 break;
1058
1059 /* The destination must be dead, or life analysis is borked. */
1060 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1061
1062 /* If the source is not live, this is yet another case of
1063 uninitialized variables. Load up a NaN instead. */
1064 if (i < 0)
1065 return move_nan_for_stack_reg (insn, regstack, dest);
1066
1067 /* It is possible that the dest is unused after this insn.
1068 If so, just pop the src. */
1069
1070 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1071 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1072 else
1073 {
1074 regstack->reg[i] = REGNO (dest);
1075 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1076 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1077 }
1078
1079 control_flow_insn_deleted |= control_flow_insn_p (insn);
1080 delete_insn (insn);
1081 return control_flow_insn_deleted;
1082 }
1083
1084 /* The source reg does not die. */
1085
1086 /* If this appears to be a no-op move, delete it, or else it
1087 will confuse the machine description output patterns. But if
1088 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1089 for REG_UNUSED will not work for deleted insns. */
1090
1091 if (REGNO (src) == REGNO (dest))
1092 {
1093 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1094 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1095
1096 control_flow_insn_deleted |= control_flow_insn_p (insn);
1097 delete_insn (insn);
1098 return control_flow_insn_deleted;
1099 }
1100
1101 /* The destination ought to be dead. */
1102 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1103
1104 replace_reg (psrc, get_hard_regnum (regstack, src));
1105
1106 regstack->reg[++regstack->top] = REGNO (dest);
1107 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1108 replace_reg (pdest, FIRST_STACK_REG);
1109 }
1110 else if (STACK_REG_P (src))
1111 {
1112 /* Save from a stack reg to MEM, or possibly integer reg. Since
1113 only top of stack may be saved, emit an exchange first if
1114 needs be. */
1115
1116 emit_swap_insn (insn, regstack, src);
1117
1118 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1119 if (note)
1120 {
1121 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1122 regstack->top--;
1123 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1124 }
1125 else if ((GET_MODE (src) == XFmode)
1126 && regstack->top < REG_STACK_SIZE - 1)
1127 {
1128 /* A 387 cannot write an XFmode value to a MEM without
1129 clobbering the source reg. The output code can handle
1130 this by reading back the value from the MEM.
1131 But it is more efficient to use a temp register if one is
1132 available. Push the source value here if the register
1133 stack is not full, and then write the value to memory via
1134 a pop. */
1135 rtx push_rtx;
1136 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1137
1138 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1139 emit_insn_before (push_rtx, insn);
1140 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1141 REG_NOTES (insn));
1142 }
1143
1144 replace_reg (psrc, FIRST_STACK_REG);
1145 }
1146 else
1147 {
1148 gcc_assert (STACK_REG_P (dest));
1149
1150 /* Load from MEM, or possibly integer REG or constant, into the
1151 stack regs. The actual target is always the top of the
1152 stack. The stack mapping is changed to reflect that DEST is
1153 now at top of stack. */
1154
1155 /* The destination ought to be dead. */
1156 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1157
1158 gcc_assert (regstack->top < REG_STACK_SIZE);
1159
1160 regstack->reg[++regstack->top] = REGNO (dest);
1161 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1162 replace_reg (pdest, FIRST_STACK_REG);
1163 }
1164
1165 return control_flow_insn_deleted;
1166 }
1167
1168 /* A helper function which replaces INSN with a pattern that loads up
1169 a NaN into DEST, then invokes move_for_stack_reg. */
1170
1171 static bool
1172 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1173 {
1174 rtx pat;
1175
1176 dest = FP_MODE_REG (REGNO (dest), SFmode);
1177 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1178 PATTERN (insn) = pat;
1179 INSN_CODE (insn) = -1;
1180
1181 return move_for_stack_reg (insn, regstack, pat);
1182 }
1183 \f
1184 /* Swap the condition on a branch, if there is one. Return true if we
1185 found a condition to swap. False if the condition was not used as
1186 such. */
1187
1188 static int
1189 swap_rtx_condition_1 (rtx pat)
1190 {
1191 const char *fmt;
1192 int i, r = 0;
1193
1194 if (COMPARISON_P (pat))
1195 {
1196 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1197 r = 1;
1198 }
1199 else
1200 {
1201 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1202 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1203 {
1204 if (fmt[i] == 'E')
1205 {
1206 int j;
1207
1208 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1209 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1210 }
1211 else if (fmt[i] == 'e')
1212 r |= swap_rtx_condition_1 (XEXP (pat, i));
1213 }
1214 }
1215
1216 return r;
1217 }
1218
1219 static int
1220 swap_rtx_condition (rtx insn)
1221 {
1222 rtx pat = PATTERN (insn);
1223
1224 /* We're looking for a single set to cc0 or an HImode temporary. */
1225
1226 if (GET_CODE (pat) == SET
1227 && REG_P (SET_DEST (pat))
1228 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1229 {
1230 insn = next_flags_user (insn);
1231 if (insn == NULL_RTX)
1232 return 0;
1233 pat = PATTERN (insn);
1234 }
1235
1236 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1237 not doing anything with the cc value right now. We may be able to
1238 search for one though. */
1239
1240 if (GET_CODE (pat) == SET
1241 && GET_CODE (SET_SRC (pat)) == UNSPEC
1242 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1243 {
1244 rtx dest = SET_DEST (pat);
1245
1246 /* Search forward looking for the first use of this value.
1247 Stop at block boundaries. */
1248 while (insn != BB_END (current_block))
1249 {
1250 insn = NEXT_INSN (insn);
1251 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1252 break;
1253 if (CALL_P (insn))
1254 return 0;
1255 }
1256
1257 /* So we've found the insn using this value. If it is anything
1258 other than sahf, aka unspec 10, or the value does not die
1259 (meaning we'd have to search further), then we must give up. */
1260 pat = PATTERN (insn);
1261 if (GET_CODE (pat) != SET
1262 || GET_CODE (SET_SRC (pat)) != UNSPEC
1263 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1264 || ! dead_or_set_p (insn, dest))
1265 return 0;
1266
1267 /* Now we are prepared to handle this as a normal cc0 setter. */
1268 insn = next_flags_user (insn);
1269 if (insn == NULL_RTX)
1270 return 0;
1271 pat = PATTERN (insn);
1272 }
1273
1274 if (swap_rtx_condition_1 (pat))
1275 {
1276 int fail = 0;
1277 INSN_CODE (insn) = -1;
1278 if (recog_memoized (insn) == -1)
1279 fail = 1;
1280 /* In case the flags don't die here, recurse to try fix
1281 following user too. */
1282 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1283 {
1284 insn = next_flags_user (insn);
1285 if (!insn || !swap_rtx_condition (insn))
1286 fail = 1;
1287 }
1288 if (fail)
1289 {
1290 swap_rtx_condition_1 (pat);
1291 return 0;
1292 }
1293 return 1;
1294 }
1295 return 0;
1296 }
1297
1298 /* Handle a comparison. Special care needs to be taken to avoid
1299 causing comparisons that a 387 cannot do correctly, such as EQ.
1300
1301 Also, a pop insn may need to be emitted. The 387 does have an
1302 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1303 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1304 set up. */
1305
1306 static void
1307 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1308 {
1309 rtx *src1, *src2;
1310 rtx src1_note, src2_note;
1311
1312 src1 = get_true_reg (&XEXP (pat_src, 0));
1313 src2 = get_true_reg (&XEXP (pat_src, 1));
1314
1315 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1316 registers that die in this insn - move those to stack top first. */
1317 if ((! STACK_REG_P (*src1)
1318 || (STACK_REG_P (*src2)
1319 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1320 && swap_rtx_condition (insn))
1321 {
1322 rtx temp;
1323 temp = XEXP (pat_src, 0);
1324 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1325 XEXP (pat_src, 1) = temp;
1326
1327 src1 = get_true_reg (&XEXP (pat_src, 0));
1328 src2 = get_true_reg (&XEXP (pat_src, 1));
1329
1330 INSN_CODE (insn) = -1;
1331 }
1332
1333 /* We will fix any death note later. */
1334
1335 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1336
1337 if (STACK_REG_P (*src2))
1338 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1339 else
1340 src2_note = NULL_RTX;
1341
1342 emit_swap_insn (insn, regstack, *src1);
1343
1344 replace_reg (src1, FIRST_STACK_REG);
1345
1346 if (STACK_REG_P (*src2))
1347 replace_reg (src2, get_hard_regnum (regstack, *src2));
1348
1349 if (src1_note)
1350 {
1351 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1352 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1353 }
1354
1355 /* If the second operand dies, handle that. But if the operands are
1356 the same stack register, don't bother, because only one death is
1357 needed, and it was just handled. */
1358
1359 if (src2_note
1360 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1361 && REGNO (*src1) == REGNO (*src2)))
1362 {
1363 /* As a special case, two regs may die in this insn if src2 is
1364 next to top of stack and the top of stack also dies. Since
1365 we have already popped src1, "next to top of stack" is really
1366 at top (FIRST_STACK_REG) now. */
1367
1368 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1369 && src1_note)
1370 {
1371 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1372 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1373 }
1374 else
1375 {
1376 /* The 386 can only represent death of the first operand in
1377 the case handled above. In all other cases, emit a separate
1378 pop and remove the death note from here. */
1379
1380 /* link_cc0_insns (insn); */
1381
1382 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1383
1384 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1385 EMIT_AFTER);
1386 }
1387 }
1388 }
1389 \f
1390 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1391 is the current register layout. Return whether a control flow insn
1392 was deleted in the process. */
1393
1394 static bool
1395 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1396 {
1397 rtx *dest, *src;
1398 bool control_flow_insn_deleted = false;
1399
1400 switch (GET_CODE (pat))
1401 {
1402 case USE:
1403 /* Deaths in USE insns can happen in non optimizing compilation.
1404 Handle them by popping the dying register. */
1405 src = get_true_reg (&XEXP (pat, 0));
1406 if (STACK_REG_P (*src)
1407 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1408 {
1409 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1410 return control_flow_insn_deleted;
1411 }
1412 /* ??? Uninitialized USE should not happen. */
1413 else
1414 gcc_assert (get_hard_regnum (regstack, *src) != -1);
1415 break;
1416
1417 case CLOBBER:
1418 {
1419 rtx note;
1420
1421 dest = get_true_reg (&XEXP (pat, 0));
1422 if (STACK_REG_P (*dest))
1423 {
1424 note = find_reg_note (insn, REG_DEAD, *dest);
1425
1426 if (pat != PATTERN (insn))
1427 {
1428 /* The fix_truncdi_1 pattern wants to be able to allocate
1429 it's own scratch register. It does this by clobbering
1430 an fp reg so that it is assured of an empty reg-stack
1431 register. If the register is live, kill it now.
1432 Remove the DEAD/UNUSED note so we don't try to kill it
1433 later too. */
1434
1435 if (note)
1436 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1437 else
1438 {
1439 note = find_reg_note (insn, REG_UNUSED, *dest);
1440 gcc_assert (note);
1441 }
1442 remove_note (insn, note);
1443 replace_reg (dest, FIRST_STACK_REG + 1);
1444 }
1445 else
1446 {
1447 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1448 indicates an uninitialized value. Because reload removed
1449 all other clobbers, this must be due to a function
1450 returning without a value. Load up a NaN. */
1451
1452 if (!note)
1453 {
1454 rtx t = *dest;
1455 if (get_hard_regnum (regstack, t) == -1)
1456 control_flow_insn_deleted
1457 |= move_nan_for_stack_reg (insn, regstack, t);
1458 if (COMPLEX_MODE_P (GET_MODE (t)))
1459 {
1460 t = FP_MODE_REG (REGNO (t) + 1, DFmode);
1461 if (get_hard_regnum (regstack, t) == -1)
1462 control_flow_insn_deleted
1463 |= move_nan_for_stack_reg (insn, regstack, t);
1464 }
1465 }
1466 }
1467 }
1468 break;
1469 }
1470
1471 case SET:
1472 {
1473 rtx *src1 = (rtx *) 0, *src2;
1474 rtx src1_note, src2_note;
1475 rtx pat_src;
1476
1477 dest = get_true_reg (&SET_DEST (pat));
1478 src = get_true_reg (&SET_SRC (pat));
1479 pat_src = SET_SRC (pat);
1480
1481 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1482 if (STACK_REG_P (*src)
1483 || (STACK_REG_P (*dest)
1484 && (REG_P (*src) || MEM_P (*src)
1485 || GET_CODE (*src) == CONST_DOUBLE)))
1486 {
1487 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1488 break;
1489 }
1490
1491 switch (GET_CODE (pat_src))
1492 {
1493 case COMPARE:
1494 compare_for_stack_reg (insn, regstack, pat_src);
1495 break;
1496
1497 case CALL:
1498 {
1499 int count;
1500 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1501 --count >= 0;)
1502 {
1503 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1504 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1505 }
1506 }
1507 replace_reg (dest, FIRST_STACK_REG);
1508 break;
1509
1510 case REG:
1511 /* This is a `tstM2' case. */
1512 gcc_assert (*dest == cc0_rtx);
1513 src1 = src;
1514
1515 /* Fall through. */
1516
1517 case FLOAT_TRUNCATE:
1518 case SQRT:
1519 case ABS:
1520 case NEG:
1521 /* These insns only operate on the top of the stack. DEST might
1522 be cc0_rtx if we're processing a tstM pattern. Also, it's
1523 possible that the tstM case results in a REG_DEAD note on the
1524 source. */
1525
1526 if (src1 == 0)
1527 src1 = get_true_reg (&XEXP (pat_src, 0));
1528
1529 emit_swap_insn (insn, regstack, *src1);
1530
1531 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1532
1533 if (STACK_REG_P (*dest))
1534 replace_reg (dest, FIRST_STACK_REG);
1535
1536 if (src1_note)
1537 {
1538 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1539 regstack->top--;
1540 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1541 }
1542
1543 replace_reg (src1, FIRST_STACK_REG);
1544 break;
1545
1546 case MINUS:
1547 case DIV:
1548 /* On i386, reversed forms of subM3 and divM3 exist for
1549 MODE_FLOAT, so the same code that works for addM3 and mulM3
1550 can be used. */
1551 case MULT:
1552 case PLUS:
1553 /* These insns can accept the top of stack as a destination
1554 from a stack reg or mem, or can use the top of stack as a
1555 source and some other stack register (possibly top of stack)
1556 as a destination. */
1557
1558 src1 = get_true_reg (&XEXP (pat_src, 0));
1559 src2 = get_true_reg (&XEXP (pat_src, 1));
1560
1561 /* We will fix any death note later. */
1562
1563 if (STACK_REG_P (*src1))
1564 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1565 else
1566 src1_note = NULL_RTX;
1567 if (STACK_REG_P (*src2))
1568 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1569 else
1570 src2_note = NULL_RTX;
1571
1572 /* If either operand is not a stack register, then the dest
1573 must be top of stack. */
1574
1575 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1576 emit_swap_insn (insn, regstack, *dest);
1577 else
1578 {
1579 /* Both operands are REG. If neither operand is already
1580 at the top of stack, choose to make the one that is the dest
1581 the new top of stack. */
1582
1583 int src1_hard_regnum, src2_hard_regnum;
1584
1585 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1586 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1587 gcc_assert (src1_hard_regnum != -1);
1588 gcc_assert (src2_hard_regnum != -1);
1589
1590 if (src1_hard_regnum != FIRST_STACK_REG
1591 && src2_hard_regnum != FIRST_STACK_REG)
1592 emit_swap_insn (insn, regstack, *dest);
1593 }
1594
1595 if (STACK_REG_P (*src1))
1596 replace_reg (src1, get_hard_regnum (regstack, *src1));
1597 if (STACK_REG_P (*src2))
1598 replace_reg (src2, get_hard_regnum (regstack, *src2));
1599
1600 if (src1_note)
1601 {
1602 rtx src1_reg = XEXP (src1_note, 0);
1603
1604 /* If the register that dies is at the top of stack, then
1605 the destination is somewhere else - merely substitute it.
1606 But if the reg that dies is not at top of stack, then
1607 move the top of stack to the dead reg, as though we had
1608 done the insn and then a store-with-pop. */
1609
1610 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1611 {
1612 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1613 replace_reg (dest, get_hard_regnum (regstack, *dest));
1614 }
1615 else
1616 {
1617 int regno = get_hard_regnum (regstack, src1_reg);
1618
1619 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1620 replace_reg (dest, regno);
1621
1622 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1623 = regstack->reg[regstack->top];
1624 }
1625
1626 CLEAR_HARD_REG_BIT (regstack->reg_set,
1627 REGNO (XEXP (src1_note, 0)));
1628 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1629 regstack->top--;
1630 }
1631 else if (src2_note)
1632 {
1633 rtx src2_reg = XEXP (src2_note, 0);
1634 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1635 {
1636 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1637 replace_reg (dest, get_hard_regnum (regstack, *dest));
1638 }
1639 else
1640 {
1641 int regno = get_hard_regnum (regstack, src2_reg);
1642
1643 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1644 replace_reg (dest, regno);
1645
1646 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1647 = regstack->reg[regstack->top];
1648 }
1649
1650 CLEAR_HARD_REG_BIT (regstack->reg_set,
1651 REGNO (XEXP (src2_note, 0)));
1652 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1653 regstack->top--;
1654 }
1655 else
1656 {
1657 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1658 replace_reg (dest, get_hard_regnum (regstack, *dest));
1659 }
1660
1661 /* Keep operand 1 matching with destination. */
1662 if (COMMUTATIVE_ARITH_P (pat_src)
1663 && REG_P (*src1) && REG_P (*src2)
1664 && REGNO (*src1) != REGNO (*dest))
1665 {
1666 int tmp = REGNO (*src1);
1667 replace_reg (src1, REGNO (*src2));
1668 replace_reg (src2, tmp);
1669 }
1670 break;
1671
1672 case UNSPEC:
1673 switch (XINT (pat_src, 1))
1674 {
1675 case UNSPEC_SIN:
1676 case UNSPEC_COS:
1677 case UNSPEC_FRNDINT:
1678 case UNSPEC_F2XM1:
1679
1680 case UNSPEC_FRNDINT_FLOOR:
1681 case UNSPEC_FRNDINT_CEIL:
1682 case UNSPEC_FRNDINT_TRUNC:
1683 case UNSPEC_FRNDINT_MASK_PM:
1684
1685 /* These insns only operate on the top of the stack. */
1686
1687 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1688
1689 emit_swap_insn (insn, regstack, *src1);
1690
1691 /* Input should never die, it is
1692 replaced with output. */
1693 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1694 gcc_assert (!src1_note);
1695
1696 if (STACK_REG_P (*dest))
1697 replace_reg (dest, FIRST_STACK_REG);
1698
1699 replace_reg (src1, FIRST_STACK_REG);
1700 break;
1701
1702 case UNSPEC_FPATAN:
1703 case UNSPEC_FYL2X:
1704 case UNSPEC_FYL2XP1:
1705 /* These insns operate on the top two stack slots. */
1706
1707 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1708 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1709
1710 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1711 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1712
1713 swap_to_top (insn, regstack, *src1, *src2);
1714
1715 replace_reg (src1, FIRST_STACK_REG);
1716 replace_reg (src2, FIRST_STACK_REG + 1);
1717
1718 if (src1_note)
1719 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1720 if (src2_note)
1721 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1722
1723 /* Pop both input operands from the stack. */
1724 CLEAR_HARD_REG_BIT (regstack->reg_set,
1725 regstack->reg[regstack->top]);
1726 CLEAR_HARD_REG_BIT (regstack->reg_set,
1727 regstack->reg[regstack->top - 1]);
1728 regstack->top -= 2;
1729
1730 /* Push the result back onto the stack. */
1731 regstack->reg[++regstack->top] = REGNO (*dest);
1732 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1733 replace_reg (dest, FIRST_STACK_REG);
1734 break;
1735
1736 case UNSPEC_FSCALE_FRACT:
1737 case UNSPEC_FPREM_F:
1738 case UNSPEC_FPREM1_F:
1739 /* These insns operate on the top two stack slots.
1740 first part of double input, double output insn. */
1741
1742 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1743 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1744
1745 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1746 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1747
1748 /* Inputs should never die, they are
1749 replaced with outputs. */
1750 gcc_assert (!src1_note);
1751 gcc_assert (!src2_note);
1752
1753 swap_to_top (insn, regstack, *src1, *src2);
1754
1755 /* Push the result back onto stack. Empty stack slot
1756 will be filled in second part of insn. */
1757 if (STACK_REG_P (*dest)) {
1758 regstack->reg[regstack->top] = REGNO (*dest);
1759 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1760 replace_reg (dest, FIRST_STACK_REG);
1761 }
1762
1763 replace_reg (src1, FIRST_STACK_REG);
1764 replace_reg (src2, FIRST_STACK_REG + 1);
1765 break;
1766
1767 case UNSPEC_FSCALE_EXP:
1768 case UNSPEC_FPREM_U:
1769 case UNSPEC_FPREM1_U:
1770 /* These insns operate on the top two stack slots./
1771 second part of double input, double output insn. */
1772
1773 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1774 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1775
1776 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1777 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1778
1779 /* Inputs should never die, they are
1780 replaced with outputs. */
1781 gcc_assert (!src1_note);
1782 gcc_assert (!src2_note);
1783
1784 swap_to_top (insn, regstack, *src1, *src2);
1785
1786 /* Push the result back onto stack. Fill empty slot from
1787 first part of insn and fix top of stack pointer. */
1788 if (STACK_REG_P (*dest)) {
1789 regstack->reg[regstack->top - 1] = REGNO (*dest);
1790 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1791 replace_reg (dest, FIRST_STACK_REG + 1);
1792 }
1793
1794 replace_reg (src1, FIRST_STACK_REG);
1795 replace_reg (src2, FIRST_STACK_REG + 1);
1796 break;
1797
1798 case UNSPEC_SINCOS_COS:
1799 case UNSPEC_TAN_ONE:
1800 case UNSPEC_XTRACT_FRACT:
1801 /* These insns operate on the top two stack slots,
1802 first part of one input, double output insn. */
1803
1804 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1805
1806 emit_swap_insn (insn, regstack, *src1);
1807
1808 /* Input should never die, it is
1809 replaced with output. */
1810 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1811 gcc_assert (!src1_note);
1812
1813 /* Push the result back onto stack. Empty stack slot
1814 will be filled in second part of insn. */
1815 if (STACK_REG_P (*dest)) {
1816 regstack->reg[regstack->top + 1] = REGNO (*dest);
1817 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1818 replace_reg (dest, FIRST_STACK_REG);
1819 }
1820
1821 replace_reg (src1, FIRST_STACK_REG);
1822 break;
1823
1824 case UNSPEC_SINCOS_SIN:
1825 case UNSPEC_TAN_TAN:
1826 case UNSPEC_XTRACT_EXP:
1827 /* These insns operate on the top two stack slots,
1828 second part of one input, double output insn. */
1829
1830 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1831
1832 emit_swap_insn (insn, regstack, *src1);
1833
1834 /* Input should never die, it is
1835 replaced with output. */
1836 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1837 gcc_assert (!src1_note);
1838
1839 /* Push the result back onto stack. Fill empty slot from
1840 first part of insn and fix top of stack pointer. */
1841 if (STACK_REG_P (*dest)) {
1842 regstack->reg[regstack->top] = REGNO (*dest);
1843 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1844 replace_reg (dest, FIRST_STACK_REG + 1);
1845
1846 regstack->top++;
1847 }
1848
1849 replace_reg (src1, FIRST_STACK_REG);
1850 break;
1851
1852 case UNSPEC_SAHF:
1853 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1854 The combination matches the PPRO fcomi instruction. */
1855
1856 pat_src = XVECEXP (pat_src, 0, 0);
1857 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1858 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1859 /* Fall through. */
1860
1861 case UNSPEC_FNSTSW:
1862 /* Combined fcomp+fnstsw generated for doing well with
1863 CSE. When optimizing this would have been broken
1864 up before now. */
1865
1866 pat_src = XVECEXP (pat_src, 0, 0);
1867 gcc_assert (GET_CODE (pat_src) == COMPARE);
1868
1869 compare_for_stack_reg (insn, regstack, pat_src);
1870 break;
1871
1872 default:
1873 gcc_unreachable ();
1874 }
1875 break;
1876
1877 case IF_THEN_ELSE:
1878 /* This insn requires the top of stack to be the destination. */
1879
1880 src1 = get_true_reg (&XEXP (pat_src, 1));
1881 src2 = get_true_reg (&XEXP (pat_src, 2));
1882
1883 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1884 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1885
1886 /* If the comparison operator is an FP comparison operator,
1887 it is handled correctly by compare_for_stack_reg () who
1888 will move the destination to the top of stack. But if the
1889 comparison operator is not an FP comparison operator, we
1890 have to handle it here. */
1891 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1892 && REGNO (*dest) != regstack->reg[regstack->top])
1893 {
1894 /* In case one of operands is the top of stack and the operands
1895 dies, it is safe to make it the destination operand by
1896 reversing the direction of cmove and avoid fxch. */
1897 if ((REGNO (*src1) == regstack->reg[regstack->top]
1898 && src1_note)
1899 || (REGNO (*src2) == regstack->reg[regstack->top]
1900 && src2_note))
1901 {
1902 int idx1 = (get_hard_regnum (regstack, *src1)
1903 - FIRST_STACK_REG);
1904 int idx2 = (get_hard_regnum (regstack, *src2)
1905 - FIRST_STACK_REG);
1906
1907 /* Make reg-stack believe that the operands are already
1908 swapped on the stack */
1909 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1910 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1911
1912 /* Reverse condition to compensate the operand swap.
1913 i386 do have comparison always reversible. */
1914 PUT_CODE (XEXP (pat_src, 0),
1915 reversed_comparison_code (XEXP (pat_src, 0), insn));
1916 }
1917 else
1918 emit_swap_insn (insn, regstack, *dest);
1919 }
1920
1921 {
1922 rtx src_note [3];
1923 int i;
1924
1925 src_note[0] = 0;
1926 src_note[1] = src1_note;
1927 src_note[2] = src2_note;
1928
1929 if (STACK_REG_P (*src1))
1930 replace_reg (src1, get_hard_regnum (regstack, *src1));
1931 if (STACK_REG_P (*src2))
1932 replace_reg (src2, get_hard_regnum (regstack, *src2));
1933
1934 for (i = 1; i <= 2; i++)
1935 if (src_note [i])
1936 {
1937 int regno = REGNO (XEXP (src_note[i], 0));
1938
1939 /* If the register that dies is not at the top of
1940 stack, then move the top of stack to the dead reg.
1941 Top of stack should never die, as it is the
1942 destination. */
1943 gcc_assert (regno != regstack->reg[regstack->top]);
1944 remove_regno_note (insn, REG_DEAD, regno);
1945 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1946 EMIT_AFTER);
1947 }
1948 }
1949
1950 /* Make dest the top of stack. Add dest to regstack if
1951 not present. */
1952 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1953 regstack->reg[++regstack->top] = REGNO (*dest);
1954 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1955 replace_reg (dest, FIRST_STACK_REG);
1956 break;
1957
1958 default:
1959 gcc_unreachable ();
1960 }
1961 break;
1962 }
1963
1964 default:
1965 break;
1966 }
1967
1968 return control_flow_insn_deleted;
1969 }
1970 \f
1971 /* Substitute hard regnums for any stack regs in INSN, which has
1972 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1973 before the insn, and is updated with changes made here.
1974
1975 There are several requirements and assumptions about the use of
1976 stack-like regs in asm statements. These rules are enforced by
1977 record_asm_stack_regs; see comments there for details. Any
1978 asm_operands left in the RTL at this point may be assume to meet the
1979 requirements, since record_asm_stack_regs removes any problem asm. */
1980
1981 static void
1982 subst_asm_stack_regs (rtx insn, stack regstack)
1983 {
1984 rtx body = PATTERN (insn);
1985 int alt;
1986
1987 rtx *note_reg; /* Array of note contents */
1988 rtx **note_loc; /* Address of REG field of each note */
1989 enum reg_note *note_kind; /* The type of each note */
1990
1991 rtx *clobber_reg = 0;
1992 rtx **clobber_loc = 0;
1993
1994 struct stack_def temp_stack;
1995 int n_notes;
1996 int n_clobbers;
1997 rtx note;
1998 int i;
1999 int n_inputs, n_outputs;
2000
2001 if (! check_asm_stack_operands (insn))
2002 return;
2003
2004 /* Find out what the constraints required. If no constraint
2005 alternative matches, that is a compiler bug: we should have caught
2006 such an insn in check_asm_stack_operands. */
2007 extract_insn (insn);
2008 constrain_operands (1);
2009 alt = which_alternative;
2010
2011 preprocess_constraints ();
2012
2013 n_inputs = get_asm_operand_n_inputs (body);
2014 n_outputs = recog_data.n_operands - n_inputs;
2015
2016 gcc_assert (alt >= 0);
2017
2018 /* Strip SUBREGs here to make the following code simpler. */
2019 for (i = 0; i < recog_data.n_operands; i++)
2020 if (GET_CODE (recog_data.operand[i]) == SUBREG
2021 && REG_P (SUBREG_REG (recog_data.operand[i])))
2022 {
2023 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2024 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2025 }
2026
2027 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2028
2029 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2030 i++;
2031
2032 note_reg = alloca (i * sizeof (rtx));
2033 note_loc = alloca (i * sizeof (rtx *));
2034 note_kind = alloca (i * sizeof (enum reg_note));
2035
2036 n_notes = 0;
2037 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2038 {
2039 rtx reg = XEXP (note, 0);
2040 rtx *loc = & XEXP (note, 0);
2041
2042 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2043 {
2044 loc = & SUBREG_REG (reg);
2045 reg = SUBREG_REG (reg);
2046 }
2047
2048 if (STACK_REG_P (reg)
2049 && (REG_NOTE_KIND (note) == REG_DEAD
2050 || REG_NOTE_KIND (note) == REG_UNUSED))
2051 {
2052 note_reg[n_notes] = reg;
2053 note_loc[n_notes] = loc;
2054 note_kind[n_notes] = REG_NOTE_KIND (note);
2055 n_notes++;
2056 }
2057 }
2058
2059 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2060
2061 n_clobbers = 0;
2062
2063 if (GET_CODE (body) == PARALLEL)
2064 {
2065 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2066 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2067
2068 for (i = 0; i < XVECLEN (body, 0); i++)
2069 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2070 {
2071 rtx clobber = XVECEXP (body, 0, i);
2072 rtx reg = XEXP (clobber, 0);
2073 rtx *loc = & XEXP (clobber, 0);
2074
2075 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2076 {
2077 loc = & SUBREG_REG (reg);
2078 reg = SUBREG_REG (reg);
2079 }
2080
2081 if (STACK_REG_P (reg))
2082 {
2083 clobber_reg[n_clobbers] = reg;
2084 clobber_loc[n_clobbers] = loc;
2085 n_clobbers++;
2086 }
2087 }
2088 }
2089
2090 temp_stack = *regstack;
2091
2092 /* Put the input regs into the desired place in TEMP_STACK. */
2093
2094 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2095 if (STACK_REG_P (recog_data.operand[i])
2096 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2097 FLOAT_REGS)
2098 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2099 {
2100 /* If an operand needs to be in a particular reg in
2101 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2102 these constraints are for single register classes, and
2103 reload guaranteed that operand[i] is already in that class,
2104 we can just use REGNO (recog_data.operand[i]) to know which
2105 actual reg this operand needs to be in. */
2106
2107 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2108
2109 gcc_assert (regno >= 0);
2110
2111 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2112 {
2113 /* recog_data.operand[i] is not in the right place. Find
2114 it and swap it with whatever is already in I's place.
2115 K is where recog_data.operand[i] is now. J is where it
2116 should be. */
2117 int j, k, temp;
2118
2119 k = temp_stack.top - (regno - FIRST_STACK_REG);
2120 j = (temp_stack.top
2121 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2122
2123 temp = temp_stack.reg[k];
2124 temp_stack.reg[k] = temp_stack.reg[j];
2125 temp_stack.reg[j] = temp;
2126 }
2127 }
2128
2129 /* Emit insns before INSN to make sure the reg-stack is in the right
2130 order. */
2131
2132 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2133
2134 /* Make the needed input register substitutions. Do death notes and
2135 clobbers too, because these are for inputs, not outputs. */
2136
2137 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2138 if (STACK_REG_P (recog_data.operand[i]))
2139 {
2140 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2141
2142 gcc_assert (regnum >= 0);
2143
2144 replace_reg (recog_data.operand_loc[i], regnum);
2145 }
2146
2147 for (i = 0; i < n_notes; i++)
2148 if (note_kind[i] == REG_DEAD)
2149 {
2150 int regnum = get_hard_regnum (regstack, note_reg[i]);
2151
2152 gcc_assert (regnum >= 0);
2153
2154 replace_reg (note_loc[i], regnum);
2155 }
2156
2157 for (i = 0; i < n_clobbers; i++)
2158 {
2159 /* It's OK for a CLOBBER to reference a reg that is not live.
2160 Don't try to replace it in that case. */
2161 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2162
2163 if (regnum >= 0)
2164 {
2165 /* Sigh - clobbers always have QImode. But replace_reg knows
2166 that these regs can't be MODE_INT and will assert. Just put
2167 the right reg there without calling replace_reg. */
2168
2169 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2170 }
2171 }
2172
2173 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2174
2175 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2176 if (STACK_REG_P (recog_data.operand[i]))
2177 {
2178 /* An input reg is implicitly popped if it is tied to an
2179 output, or if there is a CLOBBER for it. */
2180 int j;
2181
2182 for (j = 0; j < n_clobbers; j++)
2183 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2184 break;
2185
2186 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2187 {
2188 /* recog_data.operand[i] might not be at the top of stack.
2189 But that's OK, because all we need to do is pop the
2190 right number of regs off of the top of the reg-stack.
2191 record_asm_stack_regs guaranteed that all implicitly
2192 popped regs were grouped at the top of the reg-stack. */
2193
2194 CLEAR_HARD_REG_BIT (regstack->reg_set,
2195 regstack->reg[regstack->top]);
2196 regstack->top--;
2197 }
2198 }
2199
2200 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2201 Note that there isn't any need to substitute register numbers.
2202 ??? Explain why this is true. */
2203
2204 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2205 {
2206 /* See if there is an output for this hard reg. */
2207 int j;
2208
2209 for (j = 0; j < n_outputs; j++)
2210 if (STACK_REG_P (recog_data.operand[j])
2211 && REGNO (recog_data.operand[j]) == (unsigned) i)
2212 {
2213 regstack->reg[++regstack->top] = i;
2214 SET_HARD_REG_BIT (regstack->reg_set, i);
2215 break;
2216 }
2217 }
2218
2219 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2220 input that the asm didn't implicitly pop. If the asm didn't
2221 implicitly pop an input reg, that reg will still be live.
2222
2223 Note that we can't use find_regno_note here: the register numbers
2224 in the death notes have already been substituted. */
2225
2226 for (i = 0; i < n_outputs; i++)
2227 if (STACK_REG_P (recog_data.operand[i]))
2228 {
2229 int j;
2230
2231 for (j = 0; j < n_notes; j++)
2232 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2233 && note_kind[j] == REG_UNUSED)
2234 {
2235 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2236 EMIT_AFTER);
2237 break;
2238 }
2239 }
2240
2241 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2242 if (STACK_REG_P (recog_data.operand[i]))
2243 {
2244 int j;
2245
2246 for (j = 0; j < n_notes; j++)
2247 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2248 && note_kind[j] == REG_DEAD
2249 && TEST_HARD_REG_BIT (regstack->reg_set,
2250 REGNO (recog_data.operand[i])))
2251 {
2252 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2253 EMIT_AFTER);
2254 break;
2255 }
2256 }
2257 }
2258 \f
2259 /* Substitute stack hard reg numbers for stack virtual registers in
2260 INSN. Non-stack register numbers are not changed. REGSTACK is the
2261 current stack content. Insns may be emitted as needed to arrange the
2262 stack for the 387 based on the contents of the insn. Return whether
2263 a control flow insn was deleted in the process. */
2264
2265 static bool
2266 subst_stack_regs (rtx insn, stack regstack)
2267 {
2268 rtx *note_link, note;
2269 bool control_flow_insn_deleted = false;
2270 int i;
2271
2272 if (CALL_P (insn))
2273 {
2274 int top = regstack->top;
2275
2276 /* If there are any floating point parameters to be passed in
2277 registers for this call, make sure they are in the right
2278 order. */
2279
2280 if (top >= 0)
2281 {
2282 straighten_stack (PREV_INSN (insn), regstack);
2283
2284 /* Now mark the arguments as dead after the call. */
2285
2286 while (regstack->top >= 0)
2287 {
2288 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2289 regstack->top--;
2290 }
2291 }
2292 }
2293
2294 /* Do the actual substitution if any stack regs are mentioned.
2295 Since we only record whether entire insn mentions stack regs, and
2296 subst_stack_regs_pat only works for patterns that contain stack regs,
2297 we must check each pattern in a parallel here. A call_value_pop could
2298 fail otherwise. */
2299
2300 if (stack_regs_mentioned (insn))
2301 {
2302 int n_operands = asm_noperands (PATTERN (insn));
2303 if (n_operands >= 0)
2304 {
2305 /* This insn is an `asm' with operands. Decode the operands,
2306 decide how many are inputs, and do register substitution.
2307 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2308
2309 subst_asm_stack_regs (insn, regstack);
2310 return control_flow_insn_deleted;
2311 }
2312
2313 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2314 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2315 {
2316 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2317 {
2318 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2319 XVECEXP (PATTERN (insn), 0, i)
2320 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2321 control_flow_insn_deleted
2322 |= subst_stack_regs_pat (insn, regstack,
2323 XVECEXP (PATTERN (insn), 0, i));
2324 }
2325 }
2326 else
2327 control_flow_insn_deleted
2328 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2329 }
2330
2331 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2332 REG_UNUSED will already have been dealt with, so just return. */
2333
2334 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2335 return control_flow_insn_deleted;
2336
2337 /* If there is a REG_UNUSED note on a stack register on this insn,
2338 the indicated reg must be popped. The REG_UNUSED note is removed,
2339 since the form of the newly emitted pop insn references the reg,
2340 making it no longer `unset'. */
2341
2342 note_link = &REG_NOTES (insn);
2343 for (note = *note_link; note; note = XEXP (note, 1))
2344 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2345 {
2346 *note_link = XEXP (note, 1);
2347 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2348 }
2349 else
2350 note_link = &XEXP (note, 1);
2351
2352 return control_flow_insn_deleted;
2353 }
2354 \f
2355 /* Change the organization of the stack so that it fits a new basic
2356 block. Some registers might have to be popped, but there can never be
2357 a register live in the new block that is not now live.
2358
2359 Insert any needed insns before or after INSN, as indicated by
2360 WHERE. OLD is the original stack layout, and NEW is the desired
2361 form. OLD is updated to reflect the code emitted, i.e., it will be
2362 the same as NEW upon return.
2363
2364 This function will not preserve block_end[]. But that information
2365 is no longer needed once this has executed. */
2366
2367 static void
2368 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2369 {
2370 int reg;
2371 int update_end = 0;
2372
2373 /* We will be inserting new insns "backwards". If we are to insert
2374 after INSN, find the next insn, and insert before it. */
2375
2376 if (where == EMIT_AFTER)
2377 {
2378 if (current_block && BB_END (current_block) == insn)
2379 update_end = 1;
2380 insn = NEXT_INSN (insn);
2381 }
2382
2383 /* Pop any registers that are not needed in the new block. */
2384
2385 /* If the destination block's stack already has a specified layout
2386 and contains two or more registers, use a more intelligent algorithm
2387 to pop registers that minimizes the number number of fxchs below. */
2388 if (new->top > 0)
2389 {
2390 bool slots[REG_STACK_SIZE];
2391 int pops[REG_STACK_SIZE];
2392 int next, dest, topsrc;
2393
2394 /* First pass to determine the free slots. */
2395 for (reg = 0; reg <= new->top; reg++)
2396 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2397
2398 /* Second pass to allocate preferred slots. */
2399 topsrc = -1;
2400 for (reg = old->top; reg > new->top; reg--)
2401 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2402 {
2403 dest = -1;
2404 for (next = 0; next <= new->top; next++)
2405 if (!slots[next] && new->reg[next] == old->reg[reg])
2406 {
2407 /* If this is a preference for the new top of stack, record
2408 the fact by remembering it's old->reg in topsrc. */
2409 if (next == new->top)
2410 topsrc = reg;
2411 slots[next] = true;
2412 dest = next;
2413 break;
2414 }
2415 pops[reg] = dest;
2416 }
2417 else
2418 pops[reg] = reg;
2419
2420 /* Intentionally, avoid placing the top of stack in it's correct
2421 location, if we still need to permute the stack below and we
2422 can usefully place it somewhere else. This is the case if any
2423 slot is still unallocated, in which case we should place the
2424 top of stack there. */
2425 if (topsrc != -1)
2426 for (reg = 0; reg < new->top; reg++)
2427 if (!slots[reg])
2428 {
2429 pops[topsrc] = reg;
2430 slots[new->top] = false;
2431 slots[reg] = true;
2432 break;
2433 }
2434
2435 /* Third pass allocates remaining slots and emits pop insns. */
2436 next = new->top;
2437 for (reg = old->top; reg > new->top; reg--)
2438 {
2439 dest = pops[reg];
2440 if (dest == -1)
2441 {
2442 /* Find next free slot. */
2443 while (slots[next])
2444 next--;
2445 dest = next--;
2446 }
2447 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2448 EMIT_BEFORE);
2449 }
2450 }
2451 else
2452 {
2453 /* The following loop attempts to maximize the number of times we
2454 pop the top of the stack, as this permits the use of the faster
2455 ffreep instruction on platforms that support it. */
2456 int live, next;
2457
2458 live = 0;
2459 for (reg = 0; reg <= old->top; reg++)
2460 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2461 live++;
2462
2463 next = live;
2464 while (old->top >= live)
2465 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2466 {
2467 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2468 next--;
2469 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2470 EMIT_BEFORE);
2471 }
2472 else
2473 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2474 EMIT_BEFORE);
2475 }
2476
2477 if (new->top == -2)
2478 {
2479 /* If the new block has never been processed, then it can inherit
2480 the old stack order. */
2481
2482 new->top = old->top;
2483 memcpy (new->reg, old->reg, sizeof (new->reg));
2484 }
2485 else
2486 {
2487 /* This block has been entered before, and we must match the
2488 previously selected stack order. */
2489
2490 /* By now, the only difference should be the order of the stack,
2491 not their depth or liveliness. */
2492
2493 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2494 gcc_unreachable ();
2495 win:
2496 gcc_assert (old->top == new->top);
2497
2498 /* If the stack is not empty (new->top != -1), loop here emitting
2499 swaps until the stack is correct.
2500
2501 The worst case number of swaps emitted is N + 2, where N is the
2502 depth of the stack. In some cases, the reg at the top of
2503 stack may be correct, but swapped anyway in order to fix
2504 other regs. But since we never swap any other reg away from
2505 its correct slot, this algorithm will converge. */
2506
2507 if (new->top != -1)
2508 do
2509 {
2510 /* Swap the reg at top of stack into the position it is
2511 supposed to be in, until the correct top of stack appears. */
2512
2513 while (old->reg[old->top] != new->reg[new->top])
2514 {
2515 for (reg = new->top; reg >= 0; reg--)
2516 if (new->reg[reg] == old->reg[old->top])
2517 break;
2518
2519 gcc_assert (reg != -1);
2520
2521 emit_swap_insn (insn, old,
2522 FP_MODE_REG (old->reg[reg], DFmode));
2523 }
2524
2525 /* See if any regs remain incorrect. If so, bring an
2526 incorrect reg to the top of stack, and let the while loop
2527 above fix it. */
2528
2529 for (reg = new->top; reg >= 0; reg--)
2530 if (new->reg[reg] != old->reg[reg])
2531 {
2532 emit_swap_insn (insn, old,
2533 FP_MODE_REG (old->reg[reg], DFmode));
2534 break;
2535 }
2536 } while (reg >= 0);
2537
2538 /* At this point there must be no differences. */
2539
2540 for (reg = old->top; reg >= 0; reg--)
2541 gcc_assert (old->reg[reg] == new->reg[reg]);
2542 }
2543
2544 if (update_end)
2545 BB_END (current_block) = PREV_INSN (insn);
2546 }
2547 \f
2548 /* Print stack configuration. */
2549
2550 static void
2551 print_stack (FILE *file, stack s)
2552 {
2553 if (! file)
2554 return;
2555
2556 if (s->top == -2)
2557 fprintf (file, "uninitialized\n");
2558 else if (s->top == -1)
2559 fprintf (file, "empty\n");
2560 else
2561 {
2562 int i;
2563 fputs ("[ ", file);
2564 for (i = 0; i <= s->top; ++i)
2565 fprintf (file, "%d ", s->reg[i]);
2566 fputs ("]\n", file);
2567 }
2568 }
2569 \f
2570 /* This function was doing life analysis. We now let the regular live
2571 code do it's job, so we only need to check some extra invariants
2572 that reg-stack expects. Primary among these being that all registers
2573 are initialized before use.
2574
2575 The function returns true when code was emitted to CFG edges and
2576 commit_edge_insertions needs to be called. */
2577
2578 static int
2579 convert_regs_entry (void)
2580 {
2581 int inserted = 0;
2582 edge e;
2583 edge_iterator ei;
2584 basic_block block;
2585
2586 FOR_EACH_BB_REVERSE (block)
2587 {
2588 block_info bi = BLOCK_INFO (block);
2589 int reg;
2590
2591 /* Set current register status at last instruction `uninitialized'. */
2592 bi->stack_in.top = -2;
2593
2594 /* Copy live_at_end and live_at_start into temporaries. */
2595 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2596 {
2597 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2598 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2599 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2600 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2601 }
2602 }
2603
2604 /* Load something into each stack register live at function entry.
2605 Such live registers can be caused by uninitialized variables or
2606 functions not returning values on all paths. In order to keep
2607 the push/pop code happy, and to not scrog the register stack, we
2608 must put something in these registers. Use a QNaN.
2609
2610 Note that we are inserting converted code here. This code is
2611 never seen by the convert_regs pass. */
2612
2613 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2614 {
2615 basic_block block = e->dest;
2616 block_info bi = BLOCK_INFO (block);
2617 int reg, top = -1;
2618
2619 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2620 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2621 {
2622 rtx init;
2623
2624 bi->stack_in.reg[++top] = reg;
2625
2626 init = gen_rtx_SET (VOIDmode,
2627 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2628 not_a_num);
2629 insert_insn_on_edge (init, e);
2630 inserted = 1;
2631 }
2632
2633 bi->stack_in.top = top;
2634 }
2635
2636 return inserted;
2637 }
2638
2639 /* Construct the desired stack for function exit. This will either
2640 be `empty', or the function return value at top-of-stack. */
2641
2642 static void
2643 convert_regs_exit (void)
2644 {
2645 int value_reg_low, value_reg_high;
2646 stack output_stack;
2647 rtx retvalue;
2648
2649 retvalue = stack_result (current_function_decl);
2650 value_reg_low = value_reg_high = -1;
2651 if (retvalue)
2652 {
2653 value_reg_low = REGNO (retvalue);
2654 value_reg_high = value_reg_low
2655 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2656 }
2657
2658 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2659 if (value_reg_low == -1)
2660 output_stack->top = -1;
2661 else
2662 {
2663 int reg;
2664
2665 output_stack->top = value_reg_high - value_reg_low;
2666 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2667 {
2668 output_stack->reg[value_reg_high - reg] = reg;
2669 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2670 }
2671 }
2672 }
2673
2674 /* Adjust the stack of this block on exit to match the stack of the
2675 target block, or copy stack info into the stack of the successor
2676 of the successor hasn't been processed yet. */
2677 static bool
2678 compensate_edge (edge e, FILE *file)
2679 {
2680 basic_block block = e->src, target = e->dest;
2681 block_info bi = BLOCK_INFO (block);
2682 struct stack_def regstack, tmpstack;
2683 stack target_stack = &BLOCK_INFO (target)->stack_in;
2684 int reg;
2685
2686 current_block = block;
2687 regstack = bi->stack_out;
2688 if (file)
2689 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2690
2691 if (target_stack->top == -2)
2692 {
2693 /* The target block hasn't had a stack order selected.
2694 We need merely ensure that no pops are needed. */
2695 for (reg = regstack.top; reg >= 0; --reg)
2696 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2697 break;
2698
2699 if (reg == -1)
2700 {
2701 if (file)
2702 fprintf (file, "new block; copying stack position\n");
2703
2704 /* change_stack kills values in regstack. */
2705 tmpstack = regstack;
2706
2707 change_stack (BB_END (block), &tmpstack, target_stack, EMIT_AFTER);
2708 return false;
2709 }
2710
2711 if (file)
2712 fprintf (file, "new block; pops needed\n");
2713 }
2714 else
2715 {
2716 if (target_stack->top == regstack.top)
2717 {
2718 for (reg = target_stack->top; reg >= 0; --reg)
2719 if (target_stack->reg[reg] != regstack.reg[reg])
2720 break;
2721
2722 if (reg == -1)
2723 {
2724 if (file)
2725 fprintf (file, "no changes needed\n");
2726 return false;
2727 }
2728 }
2729
2730 if (file)
2731 {
2732 fprintf (file, "correcting stack to ");
2733 print_stack (file, target_stack);
2734 }
2735 }
2736
2737 /* Care for non-call EH edges specially. The normal return path have
2738 values in registers. These will be popped en masse by the unwind
2739 library. */
2740 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2741 target_stack->top = -1;
2742
2743 /* Other calls may appear to have values live in st(0), but the
2744 abnormal return path will not have actually loaded the values. */
2745 else if (e->flags & EDGE_ABNORMAL_CALL)
2746 {
2747 /* Assert that the lifetimes are as we expect -- one value
2748 live at st(0) on the end of the source block, and no
2749 values live at the beginning of the destination block. */
2750 HARD_REG_SET tmp;
2751
2752 CLEAR_HARD_REG_SET (tmp);
2753 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2754 gcc_unreachable ();
2755 eh1:
2756
2757 /* We are sure that there is st(0) live, otherwise we won't compensate.
2758 For complex return values, we may have st(1) live as well. */
2759 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2760 if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2761 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
2762 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2763 gcc_unreachable ();
2764 eh2:
2765
2766 target_stack->top = -1;
2767 }
2768
2769 /* It is better to output directly to the end of the block
2770 instead of to the edge, because emit_swap can do minimal
2771 insn scheduling. We can do this when there is only one
2772 edge out, and it is not abnormal. */
2773 else if (EDGE_COUNT (block->succs) == 1 && !(e->flags & EDGE_ABNORMAL))
2774 {
2775 /* change_stack kills values in regstack. */
2776 tmpstack = regstack;
2777
2778 change_stack (BB_END (block), &tmpstack, target_stack,
2779 (JUMP_P (BB_END (block))
2780 ? EMIT_BEFORE : EMIT_AFTER));
2781 }
2782 else
2783 {
2784 rtx seq, after;
2785
2786 /* We don't support abnormal edges. Global takes care to
2787 avoid any live register across them, so we should never
2788 have to insert instructions on such edges. */
2789 gcc_assert (!(e->flags & EDGE_ABNORMAL));
2790
2791 current_block = NULL;
2792 start_sequence ();
2793
2794 /* ??? change_stack needs some point to emit insns after. */
2795 after = emit_note (NOTE_INSN_DELETED);
2796
2797 tmpstack = regstack;
2798 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2799
2800 seq = get_insns ();
2801 end_sequence ();
2802
2803 insert_insn_on_edge (seq, e);
2804 return true;
2805 }
2806 return false;
2807 }
2808
2809 /* Convert stack register references in one block. */
2810
2811 static int
2812 convert_regs_1 (FILE *file, basic_block block)
2813 {
2814 struct stack_def regstack;
2815 block_info bi = BLOCK_INFO (block);
2816 int inserted, reg;
2817 rtx insn, next;
2818 edge e, beste = NULL;
2819 bool control_flow_insn_deleted = false;
2820 edge_iterator ei;
2821
2822 inserted = 0;
2823 any_malformed_asm = false;
2824
2825 /* Find the edge we will copy stack from. It should be the most frequent
2826 one as it will get cheapest after compensation code is generated,
2827 if multiple such exists, take one with largest count, prefer critical
2828 one (as splitting critical edges is more expensive), or one with lowest
2829 index, to avoid random changes with different orders of the edges. */
2830 FOR_EACH_EDGE (e, ei, block->preds)
2831 {
2832 if (e->flags & EDGE_DFS_BACK)
2833 ;
2834 else if (! beste)
2835 beste = e;
2836 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2837 beste = e;
2838 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2839 ;
2840 else if (beste->count < e->count)
2841 beste = e;
2842 else if (beste->count > e->count)
2843 ;
2844 else if ((EDGE_CRITICAL_P (e) != 0)
2845 != (EDGE_CRITICAL_P (beste) != 0))
2846 {
2847 if (EDGE_CRITICAL_P (e))
2848 beste = e;
2849 }
2850 else if (e->src->index < beste->src->index)
2851 beste = e;
2852 }
2853
2854 /* Initialize stack at block entry. */
2855 if (bi->stack_in.top == -2)
2856 {
2857 if (beste)
2858 inserted |= compensate_edge (beste, file);
2859 else
2860 {
2861 /* No predecessors. Create an arbitrary input stack. */
2862 int reg;
2863
2864 bi->stack_in.top = -1;
2865 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2866 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2867 bi->stack_in.reg[++bi->stack_in.top] = reg;
2868 }
2869 }
2870 else
2871 /* Entry blocks do have stack already initialized. */
2872 beste = NULL;
2873
2874 current_block = block;
2875
2876 if (file)
2877 {
2878 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2879 print_stack (file, &bi->stack_in);
2880 }
2881
2882 /* Process all insns in this block. Keep track of NEXT so that we
2883 don't process insns emitted while substituting in INSN. */
2884 next = BB_HEAD (block);
2885 regstack = bi->stack_in;
2886 do
2887 {
2888 insn = next;
2889 next = NEXT_INSN (insn);
2890
2891 /* Ensure we have not missed a block boundary. */
2892 gcc_assert (next);
2893 if (insn == BB_END (block))
2894 next = NULL;
2895
2896 /* Don't bother processing unless there is a stack reg
2897 mentioned or if it's a CALL_INSN. */
2898 if (stack_regs_mentioned (insn)
2899 || CALL_P (insn))
2900 {
2901 if (file)
2902 {
2903 fprintf (file, " insn %d input stack: ",
2904 INSN_UID (insn));
2905 print_stack (file, &regstack);
2906 }
2907 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2908 }
2909 }
2910 while (next);
2911
2912 if (file)
2913 {
2914 fprintf (file, "Expected live registers [");
2915 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2916 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2917 fprintf (file, " %d", reg);
2918 fprintf (file, " ]\nOutput stack: ");
2919 print_stack (file, &regstack);
2920 }
2921
2922 insn = BB_END (block);
2923 if (JUMP_P (insn))
2924 insn = PREV_INSN (insn);
2925
2926 /* If the function is declared to return a value, but it returns one
2927 in only some cases, some registers might come live here. Emit
2928 necessary moves for them. */
2929
2930 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2931 {
2932 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2933 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2934 {
2935 rtx set;
2936
2937 if (file)
2938 fprintf (file, "Emitting insn initializing reg %d\n", reg);
2939
2940 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2941 insn = emit_insn_after (set, insn);
2942 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2943 }
2944 }
2945
2946 /* Amongst the insns possibly deleted during the substitution process above,
2947 might have been the only trapping insn in the block. We purge the now
2948 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2949 called at the end of convert_regs. The order in which we process the
2950 blocks ensures that we never delete an already processed edge.
2951
2952 Note that, at this point, the CFG may have been damaged by the emission
2953 of instructions after an abnormal call, which moves the basic block end
2954 (and is the reason why we call fixup_abnormal_edges later). So we must
2955 be sure that the trapping insn has been deleted before trying to purge
2956 dead edges, otherwise we risk purging valid edges.
2957
2958 ??? We are normally supposed not to delete trapping insns, so we pretend
2959 that the insns deleted above don't actually trap. It would have been
2960 better to detect this earlier and avoid creating the EH edge in the first
2961 place, still, but we don't have enough information at that time. */
2962
2963 if (control_flow_insn_deleted)
2964 purge_dead_edges (block);
2965
2966 /* Something failed if the stack lives don't match. If we had malformed
2967 asms, we zapped the instruction itself, but that didn't produce the
2968 same pattern of register kills as before. */
2969 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2970 gcc_assert (any_malformed_asm);
2971 win:
2972 bi->stack_out = regstack;
2973
2974 /* Compensate the back edges, as those wasn't visited yet. */
2975 FOR_EACH_EDGE (e, ei, block->succs)
2976 {
2977 if (e->flags & EDGE_DFS_BACK
2978 || (e->dest == EXIT_BLOCK_PTR))
2979 {
2980 gcc_assert (BLOCK_INFO (e->dest)->done
2981 || e->dest == block);
2982 inserted |= compensate_edge (e, file);
2983 }
2984 }
2985 FOR_EACH_EDGE (e, ei, block->preds)
2986 {
2987 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2988 && e->src != ENTRY_BLOCK_PTR)
2989 {
2990 gcc_assert (BLOCK_INFO (e->src)->done);
2991 inserted |= compensate_edge (e, file);
2992 }
2993 }
2994
2995 return inserted;
2996 }
2997
2998 /* Convert registers in all blocks reachable from BLOCK. */
2999
3000 static int
3001 convert_regs_2 (FILE *file, basic_block block)
3002 {
3003 basic_block *stack, *sp;
3004 int inserted;
3005
3006 /* We process the blocks in a top-down manner, in a way such that one block
3007 is only processed after all its predecessors. The number of predecessors
3008 of every block has already been computed. */
3009
3010 stack = xmalloc (sizeof (*stack) * n_basic_blocks);
3011 sp = stack;
3012
3013 *sp++ = block;
3014
3015 inserted = 0;
3016 do
3017 {
3018 edge e;
3019 edge_iterator ei;
3020
3021 block = *--sp;
3022
3023 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3024 some dead EH outgoing edge after the deletion of the trapping
3025 insn inside the block. Since the number of predecessors of
3026 BLOCK's successors was computed based on the initial edge set,
3027 we check the necessity to process some of these successors
3028 before such an edge deletion may happen. However, there is
3029 a pitfall: if BLOCK is the only predecessor of a successor and
3030 the edge between them happens to be deleted, the successor
3031 becomes unreachable and should not be processed. The problem
3032 is that there is no way to preventively detect this case so we
3033 stack the successor in all cases and hand over the task of
3034 fixing up the discrepancy to convert_regs_1. */
3035
3036 FOR_EACH_EDGE (e, ei, block->succs)
3037 if (! (e->flags & EDGE_DFS_BACK))
3038 {
3039 BLOCK_INFO (e->dest)->predecessors--;
3040 if (!BLOCK_INFO (e->dest)->predecessors)
3041 *sp++ = e->dest;
3042 }
3043
3044 inserted |= convert_regs_1 (file, block);
3045 BLOCK_INFO (block)->done = 1;
3046 }
3047 while (sp != stack);
3048
3049 free (stack);
3050
3051 return inserted;
3052 }
3053
3054 /* Traverse all basic blocks in a function, converting the register
3055 references in each insn from the "flat" register file that gcc uses,
3056 to the stack-like registers the 387 uses. */
3057
3058 static int
3059 convert_regs (FILE *file)
3060 {
3061 int inserted;
3062 basic_block b;
3063 edge e;
3064 edge_iterator ei;
3065
3066 /* Initialize uninitialized registers on function entry. */
3067 inserted = convert_regs_entry ();
3068
3069 /* Construct the desired stack for function exit. */
3070 convert_regs_exit ();
3071 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3072
3073 /* ??? Future: process inner loops first, and give them arbitrary
3074 initial stacks which emit_swap_insn can modify. This ought to
3075 prevent double fxch that often appears at the head of a loop. */
3076
3077 /* Process all blocks reachable from all entry points. */
3078 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3079 inserted |= convert_regs_2 (file, e->dest);
3080
3081 /* ??? Process all unreachable blocks. Though there's no excuse
3082 for keeping these even when not optimizing. */
3083 FOR_EACH_BB (b)
3084 {
3085 block_info bi = BLOCK_INFO (b);
3086
3087 if (! bi->done)
3088 inserted |= convert_regs_2 (file, b);
3089 }
3090 clear_aux_for_blocks ();
3091
3092 fixup_abnormal_edges ();
3093 if (inserted)
3094 commit_edge_insertions ();
3095
3096 if (file)
3097 fputc ('\n', file);
3098
3099 return inserted;
3100 }
3101 #endif /* STACK_REGS */
3102
3103 #include "gt-reg-stack.h"