rs6000.md (fseldfsf4): Add TARGET_SINGLE_FLOAT condition.
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153 \f
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "cfglayout.h"
171 #include "varray.h"
172 #include "reload.h"
173 #include "ggc.h"
174 #include "timevar.h"
175 #include "tree-pass.h"
176 #include "target.h"
177 #include "df.h"
178 #include "vecprim.h"
179
180 #ifdef STACK_REGS
181
182 /* We use this array to cache info about insns, because otherwise we
183 spend too much time in stack_regs_mentioned_p.
184
185 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
186 the insn uses stack registers, two indicates the insn does not use
187 stack registers. */
188 static VEC(char,heap) *stack_regs_mentioned_data;
189
190 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
191
192 int regstack_completed = 0;
193
194 /* This is the basic stack record. TOP is an index into REG[] such
195 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
196
197 If TOP is -2, REG[] is not yet initialized. Stack initialization
198 consists of placing each live reg in array `reg' and setting `top'
199 appropriately.
200
201 REG_SET indicates which registers are live. */
202
203 typedef struct stack_def
204 {
205 int top; /* index to top stack element */
206 HARD_REG_SET reg_set; /* set of live registers */
207 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
208 } *stack;
209
210 /* This is used to carry information about basic blocks. It is
211 attached to the AUX field of the standard CFG block. */
212
213 typedef struct block_info_def
214 {
215 struct stack_def stack_in; /* Input stack configuration. */
216 struct stack_def stack_out; /* Output stack configuration. */
217 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
218 int done; /* True if block already converted. */
219 int predecessors; /* Number of predecessors that need
220 to be visited. */
221 } *block_info;
222
223 #define BLOCK_INFO(B) ((block_info) (B)->aux)
224
225 /* Passed to change_stack to indicate where to emit insns. */
226 enum emit_where
227 {
228 EMIT_AFTER,
229 EMIT_BEFORE
230 };
231
232 /* The block we're currently working on. */
233 static basic_block current_block;
234
235 /* In the current_block, whether we're processing the first register
236 stack or call instruction, i.e. the regstack is currently the
237 same as BLOCK_INFO(current_block)->stack_in. */
238 static bool starting_stack_p;
239
240 /* This is the register file for all register after conversion. */
241 static rtx
242 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
243
244 #define FP_MODE_REG(regno,mode) \
245 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
246
247 /* Used to initialize uninitialized registers. */
248 static rtx not_a_num;
249
250 /* Forward declarations */
251
252 static int stack_regs_mentioned_p (const_rtx pat);
253 static void pop_stack (stack, int);
254 static rtx *get_true_reg (rtx *);
255
256 static int check_asm_stack_operands (rtx);
257 static int get_asm_operand_n_inputs (rtx);
258 static rtx stack_result (tree);
259 static void replace_reg (rtx *, int);
260 static void remove_regno_note (rtx, enum reg_note, unsigned int);
261 static int get_hard_regnum (stack, rtx);
262 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
263 static void swap_to_top(rtx, stack, rtx, rtx);
264 static bool move_for_stack_reg (rtx, stack, rtx);
265 static bool move_nan_for_stack_reg (rtx, stack, rtx);
266 static int swap_rtx_condition_1 (rtx);
267 static int swap_rtx_condition (rtx);
268 static void compare_for_stack_reg (rtx, stack, rtx);
269 static bool subst_stack_regs_pat (rtx, stack, rtx);
270 static void subst_asm_stack_regs (rtx, stack);
271 static bool subst_stack_regs (rtx, stack);
272 static void change_stack (rtx, stack, stack, enum emit_where);
273 static void print_stack (FILE *, stack);
274 static rtx next_flags_user (rtx);
275 \f
276 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
277
278 static int
279 stack_regs_mentioned_p (const_rtx pat)
280 {
281 const char *fmt;
282 int i;
283
284 if (STACK_REG_P (pat))
285 return 1;
286
287 fmt = GET_RTX_FORMAT (GET_CODE (pat));
288 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
289 {
290 if (fmt[i] == 'E')
291 {
292 int j;
293
294 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
295 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
296 return 1;
297 }
298 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
299 return 1;
300 }
301
302 return 0;
303 }
304
305 /* Return nonzero if INSN mentions stacked registers, else return zero. */
306
307 int
308 stack_regs_mentioned (const_rtx insn)
309 {
310 unsigned int uid, max;
311 int test;
312
313 if (! INSN_P (insn) || !stack_regs_mentioned_data)
314 return 0;
315
316 uid = INSN_UID (insn);
317 max = VEC_length (char, stack_regs_mentioned_data);
318 if (uid >= max)
319 {
320 /* Allocate some extra size to avoid too many reallocs, but
321 do not grow too quickly. */
322 max = uid + uid / 20 + 1;
323 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
324 }
325
326 test = VEC_index (char, stack_regs_mentioned_data, uid);
327 if (test == 0)
328 {
329 /* This insn has yet to be examined. Do so now. */
330 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
331 VEC_replace (char, stack_regs_mentioned_data, uid, test);
332 }
333
334 return test == 1;
335 }
336 \f
337 static rtx ix86_flags_rtx;
338
339 static rtx
340 next_flags_user (rtx insn)
341 {
342 /* Search forward looking for the first use of this value.
343 Stop at block boundaries. */
344
345 while (insn != BB_END (current_block))
346 {
347 insn = NEXT_INSN (insn);
348
349 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
350 return insn;
351
352 if (CALL_P (insn))
353 return NULL_RTX;
354 }
355 return NULL_RTX;
356 }
357 \f
358 /* Reorganize the stack into ascending numbers, before this insn. */
359
360 static void
361 straighten_stack (rtx insn, stack regstack)
362 {
363 struct stack_def temp_stack;
364 int top;
365
366 /* If there is only a single register on the stack, then the stack is
367 already in increasing order and no reorganization is needed.
368
369 Similarly if the stack is empty. */
370 if (regstack->top <= 0)
371 return;
372
373 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
374
375 for (top = temp_stack.top = regstack->top; top >= 0; top--)
376 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
377
378 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
379 }
380
381 /* Pop a register from the stack. */
382
383 static void
384 pop_stack (stack regstack, int regno)
385 {
386 int top = regstack->top;
387
388 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
389 regstack->top--;
390 /* If regno was not at the top of stack then adjust stack. */
391 if (regstack->reg [top] != regno)
392 {
393 int i;
394 for (i = regstack->top; i >= 0; i--)
395 if (regstack->reg [i] == regno)
396 {
397 int j;
398 for (j = i; j < top; j++)
399 regstack->reg [j] = regstack->reg [j + 1];
400 break;
401 }
402 }
403 }
404 \f
405 /* Return a pointer to the REG expression within PAT. If PAT is not a
406 REG, possible enclosed by a conversion rtx, return the inner part of
407 PAT that stopped the search. */
408
409 static rtx *
410 get_true_reg (rtx *pat)
411 {
412 for (;;)
413 switch (GET_CODE (*pat))
414 {
415 case SUBREG:
416 /* Eliminate FP subregister accesses in favor of the
417 actual FP register in use. */
418 {
419 rtx subreg;
420 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
421 {
422 int regno_off = subreg_regno_offset (REGNO (subreg),
423 GET_MODE (subreg),
424 SUBREG_BYTE (*pat),
425 GET_MODE (*pat));
426 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
427 GET_MODE (subreg));
428 return pat;
429 }
430 }
431 case FLOAT:
432 case FIX:
433 case FLOAT_EXTEND:
434 pat = & XEXP (*pat, 0);
435 break;
436
437 case UNSPEC:
438 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
439 pat = & XVECEXP (*pat, 0, 0);
440 return pat;
441
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = & XEXP (*pat, 0);
446 break;
447
448 default:
449 return pat;
450 }
451 }
452 \f
453 /* Set if we find any malformed asms in a block. */
454 static bool any_malformed_asm;
455
456 /* There are many rules that an asm statement for stack-like regs must
457 follow. Those rules are explained at the top of this file: the rule
458 numbers below refer to that explanation. */
459
460 static int
461 check_asm_stack_operands (rtx insn)
462 {
463 int i;
464 int n_clobbers;
465 int malformed_asm = 0;
466 rtx body = PATTERN (insn);
467
468 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469 char implicitly_dies[FIRST_PSEUDO_REGISTER];
470 int alt;
471
472 rtx *clobber_reg = 0;
473 int n_inputs, n_outputs;
474
475 /* Find out what the constraints require. If no constraint
476 alternative matches, this asm is malformed. */
477 extract_insn (insn);
478 constrain_operands (1);
479 alt = which_alternative;
480
481 preprocess_constraints ();
482
483 n_inputs = get_asm_operand_n_inputs (body);
484 n_outputs = recog_data.n_operands - n_inputs;
485
486 if (alt < 0)
487 {
488 malformed_asm = 1;
489 /* Avoid further trouble with this insn. */
490 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
491 return 0;
492 }
493
494 /* Strip SUBREGs here to make the following code simpler. */
495 for (i = 0; i < recog_data.n_operands; i++)
496 if (GET_CODE (recog_data.operand[i]) == SUBREG
497 && REG_P (SUBREG_REG (recog_data.operand[i])))
498 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
499
500 /* Set up CLOBBER_REG. */
501
502 n_clobbers = 0;
503
504 if (GET_CODE (body) == PARALLEL)
505 {
506 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
507
508 for (i = 0; i < XVECLEN (body, 0); i++)
509 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
510 {
511 rtx clobber = XVECEXP (body, 0, i);
512 rtx reg = XEXP (clobber, 0);
513
514 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
515 reg = SUBREG_REG (reg);
516
517 if (STACK_REG_P (reg))
518 {
519 clobber_reg[n_clobbers] = reg;
520 n_clobbers++;
521 }
522 }
523 }
524
525 /* Enforce rule #4: Output operands must specifically indicate which
526 reg an output appears in after an asm. "=f" is not allowed: the
527 operand constraints must select a class with a single reg.
528
529 Also enforce rule #5: Output operands must start at the top of
530 the reg-stack: output operands may not "skip" a reg. */
531
532 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
533 for (i = 0; i < n_outputs; i++)
534 if (STACK_REG_P (recog_data.operand[i]))
535 {
536 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
537 {
538 error_for_asm (insn, "output constraint %d must specify a single register", i);
539 malformed_asm = 1;
540 }
541 else
542 {
543 int j;
544
545 for (j = 0; j < n_clobbers; j++)
546 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
547 {
548 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
549 i, reg_names [REGNO (clobber_reg[j])]);
550 malformed_asm = 1;
551 break;
552 }
553 if (j == n_clobbers)
554 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
555 }
556 }
557
558
559 /* Search for first non-popped reg. */
560 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
561 if (! reg_used_as_output[i])
562 break;
563
564 /* If there are any other popped regs, that's an error. */
565 for (; i < LAST_STACK_REG + 1; i++)
566 if (reg_used_as_output[i])
567 break;
568
569 if (i != LAST_STACK_REG + 1)
570 {
571 error_for_asm (insn, "output regs must be grouped at top of stack");
572 malformed_asm = 1;
573 }
574
575 /* Enforce rule #2: All implicitly popped input regs must be closer
576 to the top of the reg-stack than any input that is not implicitly
577 popped. */
578
579 memset (implicitly_dies, 0, sizeof (implicitly_dies));
580 for (i = n_outputs; i < n_outputs + n_inputs; i++)
581 if (STACK_REG_P (recog_data.operand[i]))
582 {
583 /* An input reg is implicitly popped if it is tied to an
584 output, or if there is a CLOBBER for it. */
585 int j;
586
587 for (j = 0; j < n_clobbers; j++)
588 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
589 break;
590
591 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
592 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
593 }
594
595 /* Search for first non-popped reg. */
596 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
597 if (! implicitly_dies[i])
598 break;
599
600 /* If there are any other popped regs, that's an error. */
601 for (; i < LAST_STACK_REG + 1; i++)
602 if (implicitly_dies[i])
603 break;
604
605 if (i != LAST_STACK_REG + 1)
606 {
607 error_for_asm (insn,
608 "implicitly popped regs must be grouped at top of stack");
609 malformed_asm = 1;
610 }
611
612 /* Enforce rule #3: If any input operand uses the "f" constraint, all
613 output constraints must use the "&" earlyclobber.
614
615 ??? Detect this more deterministically by having constrain_asm_operands
616 record any earlyclobber. */
617
618 for (i = n_outputs; i < n_outputs + n_inputs; i++)
619 if (recog_op_alt[i][alt].matches == -1)
620 {
621 int j;
622
623 for (j = 0; j < n_outputs; j++)
624 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
625 {
626 error_for_asm (insn,
627 "output operand %d must use %<&%> constraint", j);
628 malformed_asm = 1;
629 }
630 }
631
632 if (malformed_asm)
633 {
634 /* Avoid further trouble with this insn. */
635 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
636 any_malformed_asm = true;
637 return 0;
638 }
639
640 return 1;
641 }
642 \f
643 /* Calculate the number of inputs and outputs in BODY, an
644 asm_operands. N_OPERANDS is the total number of operands, and
645 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
646 placed. */
647
648 static int
649 get_asm_operand_n_inputs (rtx body)
650 {
651 switch (GET_CODE (body))
652 {
653 case SET:
654 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
655 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
656
657 case ASM_OPERANDS:
658 return ASM_OPERANDS_INPUT_LENGTH (body);
659
660 case PARALLEL:
661 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
662
663 default:
664 gcc_unreachable ();
665 }
666 }
667
668 /* If current function returns its result in an fp stack register,
669 return the REG. Otherwise, return 0. */
670
671 static rtx
672 stack_result (tree decl)
673 {
674 rtx result;
675
676 /* If the value is supposed to be returned in memory, then clearly
677 it is not returned in a stack register. */
678 if (aggregate_value_p (DECL_RESULT (decl), decl))
679 return 0;
680
681 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
682 if (result != 0)
683 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
684 decl, true);
685
686 return result != 0 && STACK_REG_P (result) ? result : 0;
687 }
688 \f
689
690 /*
691 * This section deals with stack register substitution, and forms the second
692 * pass over the RTL.
693 */
694
695 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
696 the desired hard REGNO. */
697
698 static void
699 replace_reg (rtx *reg, int regno)
700 {
701 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
702 gcc_assert (STACK_REG_P (*reg));
703
704 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
705 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
706
707 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
708 }
709
710 /* Remove a note of type NOTE, which must be found, for register
711 number REGNO from INSN. Remove only one such note. */
712
713 static void
714 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
715 {
716 rtx *note_link, this_rtx;
717
718 note_link = &REG_NOTES (insn);
719 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
720 if (REG_NOTE_KIND (this_rtx) == note
721 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
722 {
723 *note_link = XEXP (this_rtx, 1);
724 return;
725 }
726 else
727 note_link = &XEXP (this_rtx, 1);
728
729 gcc_unreachable ();
730 }
731
732 /* Find the hard register number of virtual register REG in REGSTACK.
733 The hard register number is relative to the top of the stack. -1 is
734 returned if the register is not found. */
735
736 static int
737 get_hard_regnum (stack regstack, rtx reg)
738 {
739 int i;
740
741 gcc_assert (STACK_REG_P (reg));
742
743 for (i = regstack->top; i >= 0; i--)
744 if (regstack->reg[i] == REGNO (reg))
745 break;
746
747 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
748 }
749 \f
750 /* Emit an insn to pop virtual register REG before or after INSN.
751 REGSTACK is the stack state after INSN and is updated to reflect this
752 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
753 is represented as a SET whose destination is the register to be popped
754 and source is the top of stack. A death note for the top of stack
755 cases the movdf pattern to pop. */
756
757 static rtx
758 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
759 {
760 rtx pop_insn, pop_rtx;
761 int hard_regno;
762
763 /* For complex types take care to pop both halves. These may survive in
764 CLOBBER and USE expressions. */
765 if (COMPLEX_MODE_P (GET_MODE (reg)))
766 {
767 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
768 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
769
770 pop_insn = NULL_RTX;
771 if (get_hard_regnum (regstack, reg1) >= 0)
772 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
773 if (get_hard_regnum (regstack, reg2) >= 0)
774 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
775 gcc_assert (pop_insn);
776 return pop_insn;
777 }
778
779 hard_regno = get_hard_regnum (regstack, reg);
780
781 gcc_assert (hard_regno >= FIRST_STACK_REG);
782
783 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
784 FP_MODE_REG (FIRST_STACK_REG, DFmode));
785
786 if (where == EMIT_AFTER)
787 pop_insn = emit_insn_after (pop_rtx, insn);
788 else
789 pop_insn = emit_insn_before (pop_rtx, insn);
790
791 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
792
793 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
794 = regstack->reg[regstack->top];
795 regstack->top -= 1;
796 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
797
798 return pop_insn;
799 }
800 \f
801 /* Emit an insn before or after INSN to swap virtual register REG with
802 the top of stack. REGSTACK is the stack state before the swap, and
803 is updated to reflect the swap. A swap insn is represented as a
804 PARALLEL of two patterns: each pattern moves one reg to the other.
805
806 If REG is already at the top of the stack, no insn is emitted. */
807
808 static void
809 emit_swap_insn (rtx insn, stack regstack, rtx reg)
810 {
811 int hard_regno;
812 rtx swap_rtx;
813 int tmp, other_reg; /* swap regno temps */
814 rtx i1; /* the stack-reg insn prior to INSN */
815 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
816
817 hard_regno = get_hard_regnum (regstack, reg);
818
819 if (hard_regno == FIRST_STACK_REG)
820 return;
821 if (hard_regno == -1)
822 {
823 /* Something failed if the register wasn't on the stack. If we had
824 malformed asms, we zapped the instruction itself, but that didn't
825 produce the same pattern of register sets as before. To prevent
826 further failure, adjust REGSTACK to include REG at TOP. */
827 gcc_assert (any_malformed_asm);
828 regstack->reg[++regstack->top] = REGNO (reg);
829 return;
830 }
831 gcc_assert (hard_regno >= FIRST_STACK_REG);
832
833 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
834
835 tmp = regstack->reg[other_reg];
836 regstack->reg[other_reg] = regstack->reg[regstack->top];
837 regstack->reg[regstack->top] = tmp;
838
839 /* Find the previous insn involving stack regs, but don't pass a
840 block boundary. */
841 i1 = NULL;
842 if (current_block && insn != BB_HEAD (current_block))
843 {
844 rtx tmp = PREV_INSN (insn);
845 rtx limit = PREV_INSN (BB_HEAD (current_block));
846 while (tmp != limit)
847 {
848 if (LABEL_P (tmp)
849 || CALL_P (tmp)
850 || NOTE_INSN_BASIC_BLOCK_P (tmp)
851 || (NONJUMP_INSN_P (tmp)
852 && stack_regs_mentioned (tmp)))
853 {
854 i1 = tmp;
855 break;
856 }
857 tmp = PREV_INSN (tmp);
858 }
859 }
860
861 if (i1 != NULL_RTX
862 && (i1set = single_set (i1)) != NULL_RTX)
863 {
864 rtx i1src = *get_true_reg (&SET_SRC (i1set));
865 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
866
867 /* If the previous register stack push was from the reg we are to
868 swap with, omit the swap. */
869
870 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
871 && REG_P (i1src)
872 && REGNO (i1src) == (unsigned) hard_regno - 1
873 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
874 return;
875
876 /* If the previous insn wrote to the reg we are to swap with,
877 omit the swap. */
878
879 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
880 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
881 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
882 return;
883 }
884
885 /* Avoid emitting the swap if this is the first register stack insn
886 of the current_block. Instead update the current_block's stack_in
887 and let compensate edges take care of this for us. */
888 if (current_block && starting_stack_p)
889 {
890 BLOCK_INFO (current_block)->stack_in = *regstack;
891 starting_stack_p = false;
892 return;
893 }
894
895 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
896 FP_MODE_REG (FIRST_STACK_REG, XFmode));
897
898 if (i1)
899 emit_insn_after (swap_rtx, i1);
900 else if (current_block)
901 emit_insn_before (swap_rtx, BB_HEAD (current_block));
902 else
903 emit_insn_before (swap_rtx, insn);
904 }
905 \f
906 /* Emit an insns before INSN to swap virtual register SRC1 with
907 the top of stack and virtual register SRC2 with second stack
908 slot. REGSTACK is the stack state before the swaps, and
909 is updated to reflect the swaps. A swap insn is represented as a
910 PARALLEL of two patterns: each pattern moves one reg to the other.
911
912 If SRC1 and/or SRC2 are already at the right place, no swap insn
913 is emitted. */
914
915 static void
916 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
917 {
918 struct stack_def temp_stack;
919 int regno, j, k, temp;
920
921 temp_stack = *regstack;
922
923 /* Place operand 1 at the top of stack. */
924 regno = get_hard_regnum (&temp_stack, src1);
925 gcc_assert (regno >= 0);
926 if (regno != FIRST_STACK_REG)
927 {
928 k = temp_stack.top - (regno - FIRST_STACK_REG);
929 j = temp_stack.top;
930
931 temp = temp_stack.reg[k];
932 temp_stack.reg[k] = temp_stack.reg[j];
933 temp_stack.reg[j] = temp;
934 }
935
936 /* Place operand 2 next on the stack. */
937 regno = get_hard_regnum (&temp_stack, src2);
938 gcc_assert (regno >= 0);
939 if (regno != FIRST_STACK_REG + 1)
940 {
941 k = temp_stack.top - (regno - FIRST_STACK_REG);
942 j = temp_stack.top - 1;
943
944 temp = temp_stack.reg[k];
945 temp_stack.reg[k] = temp_stack.reg[j];
946 temp_stack.reg[j] = temp;
947 }
948
949 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
950 }
951 \f
952 /* Handle a move to or from a stack register in PAT, which is in INSN.
953 REGSTACK is the current stack. Return whether a control flow insn
954 was deleted in the process. */
955
956 static bool
957 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
958 {
959 rtx *psrc = get_true_reg (&SET_SRC (pat));
960 rtx *pdest = get_true_reg (&SET_DEST (pat));
961 rtx src, dest;
962 rtx note;
963 bool control_flow_insn_deleted = false;
964
965 src = *psrc; dest = *pdest;
966
967 if (STACK_REG_P (src) && STACK_REG_P (dest))
968 {
969 /* Write from one stack reg to another. If SRC dies here, then
970 just change the register mapping and delete the insn. */
971
972 note = find_regno_note (insn, REG_DEAD, REGNO (src));
973 if (note)
974 {
975 int i;
976
977 /* If this is a no-op move, there must not be a REG_DEAD note. */
978 gcc_assert (REGNO (src) != REGNO (dest));
979
980 for (i = regstack->top; i >= 0; i--)
981 if (regstack->reg[i] == REGNO (src))
982 break;
983
984 /* The destination must be dead, or life analysis is borked. */
985 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
986
987 /* If the source is not live, this is yet another case of
988 uninitialized variables. Load up a NaN instead. */
989 if (i < 0)
990 return move_nan_for_stack_reg (insn, regstack, dest);
991
992 /* It is possible that the dest is unused after this insn.
993 If so, just pop the src. */
994
995 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
996 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
997 else
998 {
999 regstack->reg[i] = REGNO (dest);
1000 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1001 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1002 }
1003
1004 control_flow_insn_deleted |= control_flow_insn_p (insn);
1005 delete_insn (insn);
1006 return control_flow_insn_deleted;
1007 }
1008
1009 /* The source reg does not die. */
1010
1011 /* If this appears to be a no-op move, delete it, or else it
1012 will confuse the machine description output patterns. But if
1013 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1014 for REG_UNUSED will not work for deleted insns. */
1015
1016 if (REGNO (src) == REGNO (dest))
1017 {
1018 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1019 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1020
1021 control_flow_insn_deleted |= control_flow_insn_p (insn);
1022 delete_insn (insn);
1023 return control_flow_insn_deleted;
1024 }
1025
1026 /* The destination ought to be dead. */
1027 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1028
1029 replace_reg (psrc, get_hard_regnum (regstack, src));
1030
1031 regstack->reg[++regstack->top] = REGNO (dest);
1032 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1033 replace_reg (pdest, FIRST_STACK_REG);
1034 }
1035 else if (STACK_REG_P (src))
1036 {
1037 /* Save from a stack reg to MEM, or possibly integer reg. Since
1038 only top of stack may be saved, emit an exchange first if
1039 needs be. */
1040
1041 emit_swap_insn (insn, regstack, src);
1042
1043 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1044 if (note)
1045 {
1046 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1047 regstack->top--;
1048 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1049 }
1050 else if ((GET_MODE (src) == XFmode)
1051 && regstack->top < REG_STACK_SIZE - 1)
1052 {
1053 /* A 387 cannot write an XFmode value to a MEM without
1054 clobbering the source reg. The output code can handle
1055 this by reading back the value from the MEM.
1056 But it is more efficient to use a temp register if one is
1057 available. Push the source value here if the register
1058 stack is not full, and then write the value to memory via
1059 a pop. */
1060 rtx push_rtx;
1061 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1062
1063 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1064 emit_insn_before (push_rtx, insn);
1065 add_reg_note (insn, REG_DEAD, top_stack_reg);
1066 }
1067
1068 replace_reg (psrc, FIRST_STACK_REG);
1069 }
1070 else
1071 {
1072 rtx pat = PATTERN (insn);
1073
1074 gcc_assert (STACK_REG_P (dest));
1075
1076 /* Load from MEM, or possibly integer REG or constant, into the
1077 stack regs. The actual target is always the top of the
1078 stack. The stack mapping is changed to reflect that DEST is
1079 now at top of stack. */
1080
1081 /* The destination ought to be dead. However, there is a
1082 special case with i387 UNSPEC_TAN, where destination is live
1083 (an argument to fptan) but inherent load of 1.0 is modelled
1084 as a load from a constant. */
1085 if (GET_CODE (pat) == PARALLEL
1086 && XVECLEN (pat, 0) == 2
1087 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1088 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1089 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1090 emit_swap_insn (insn, regstack, dest);
1091 else
1092 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1093
1094 gcc_assert (regstack->top < REG_STACK_SIZE);
1095
1096 regstack->reg[++regstack->top] = REGNO (dest);
1097 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1098 replace_reg (pdest, FIRST_STACK_REG);
1099 }
1100
1101 return control_flow_insn_deleted;
1102 }
1103
1104 /* A helper function which replaces INSN with a pattern that loads up
1105 a NaN into DEST, then invokes move_for_stack_reg. */
1106
1107 static bool
1108 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1109 {
1110 rtx pat;
1111
1112 dest = FP_MODE_REG (REGNO (dest), SFmode);
1113 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1114 PATTERN (insn) = pat;
1115 INSN_CODE (insn) = -1;
1116
1117 return move_for_stack_reg (insn, regstack, pat);
1118 }
1119 \f
1120 /* Swap the condition on a branch, if there is one. Return true if we
1121 found a condition to swap. False if the condition was not used as
1122 such. */
1123
1124 static int
1125 swap_rtx_condition_1 (rtx pat)
1126 {
1127 const char *fmt;
1128 int i, r = 0;
1129
1130 if (COMPARISON_P (pat))
1131 {
1132 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1133 r = 1;
1134 }
1135 else
1136 {
1137 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1138 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1139 {
1140 if (fmt[i] == 'E')
1141 {
1142 int j;
1143
1144 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1145 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1146 }
1147 else if (fmt[i] == 'e')
1148 r |= swap_rtx_condition_1 (XEXP (pat, i));
1149 }
1150 }
1151
1152 return r;
1153 }
1154
1155 static int
1156 swap_rtx_condition (rtx insn)
1157 {
1158 rtx pat = PATTERN (insn);
1159
1160 /* We're looking for a single set to cc0 or an HImode temporary. */
1161
1162 if (GET_CODE (pat) == SET
1163 && REG_P (SET_DEST (pat))
1164 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1165 {
1166 insn = next_flags_user (insn);
1167 if (insn == NULL_RTX)
1168 return 0;
1169 pat = PATTERN (insn);
1170 }
1171
1172 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1173 with the cc value right now. We may be able to search for one
1174 though. */
1175
1176 if (GET_CODE (pat) == SET
1177 && GET_CODE (SET_SRC (pat)) == UNSPEC
1178 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1179 {
1180 rtx dest = SET_DEST (pat);
1181
1182 /* Search forward looking for the first use of this value.
1183 Stop at block boundaries. */
1184 while (insn != BB_END (current_block))
1185 {
1186 insn = NEXT_INSN (insn);
1187 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1188 break;
1189 if (CALL_P (insn))
1190 return 0;
1191 }
1192
1193 /* We haven't found it. */
1194 if (insn == BB_END (current_block))
1195 return 0;
1196
1197 /* So we've found the insn using this value. If it is anything
1198 other than sahf or the value does not die (meaning we'd have
1199 to search further), then we must give up. */
1200 pat = PATTERN (insn);
1201 if (GET_CODE (pat) != SET
1202 || GET_CODE (SET_SRC (pat)) != UNSPEC
1203 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1204 || ! dead_or_set_p (insn, dest))
1205 return 0;
1206
1207 /* Now we are prepared to handle this as a normal cc0 setter. */
1208 insn = next_flags_user (insn);
1209 if (insn == NULL_RTX)
1210 return 0;
1211 pat = PATTERN (insn);
1212 }
1213
1214 if (swap_rtx_condition_1 (pat))
1215 {
1216 int fail = 0;
1217 INSN_CODE (insn) = -1;
1218 if (recog_memoized (insn) == -1)
1219 fail = 1;
1220 /* In case the flags don't die here, recurse to try fix
1221 following user too. */
1222 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1223 {
1224 insn = next_flags_user (insn);
1225 if (!insn || !swap_rtx_condition (insn))
1226 fail = 1;
1227 }
1228 if (fail)
1229 {
1230 swap_rtx_condition_1 (pat);
1231 return 0;
1232 }
1233 return 1;
1234 }
1235 return 0;
1236 }
1237
1238 /* Handle a comparison. Special care needs to be taken to avoid
1239 causing comparisons that a 387 cannot do correctly, such as EQ.
1240
1241 Also, a pop insn may need to be emitted. The 387 does have an
1242 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1243 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1244 set up. */
1245
1246 static void
1247 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1248 {
1249 rtx *src1, *src2;
1250 rtx src1_note, src2_note;
1251
1252 src1 = get_true_reg (&XEXP (pat_src, 0));
1253 src2 = get_true_reg (&XEXP (pat_src, 1));
1254
1255 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1256 registers that die in this insn - move those to stack top first. */
1257 if ((! STACK_REG_P (*src1)
1258 || (STACK_REG_P (*src2)
1259 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1260 && swap_rtx_condition (insn))
1261 {
1262 rtx temp;
1263 temp = XEXP (pat_src, 0);
1264 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1265 XEXP (pat_src, 1) = temp;
1266
1267 src1 = get_true_reg (&XEXP (pat_src, 0));
1268 src2 = get_true_reg (&XEXP (pat_src, 1));
1269
1270 INSN_CODE (insn) = -1;
1271 }
1272
1273 /* We will fix any death note later. */
1274
1275 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1276
1277 if (STACK_REG_P (*src2))
1278 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1279 else
1280 src2_note = NULL_RTX;
1281
1282 emit_swap_insn (insn, regstack, *src1);
1283
1284 replace_reg (src1, FIRST_STACK_REG);
1285
1286 if (STACK_REG_P (*src2))
1287 replace_reg (src2, get_hard_regnum (regstack, *src2));
1288
1289 if (src1_note)
1290 {
1291 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1292 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1293 }
1294
1295 /* If the second operand dies, handle that. But if the operands are
1296 the same stack register, don't bother, because only one death is
1297 needed, and it was just handled. */
1298
1299 if (src2_note
1300 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1301 && REGNO (*src1) == REGNO (*src2)))
1302 {
1303 /* As a special case, two regs may die in this insn if src2 is
1304 next to top of stack and the top of stack also dies. Since
1305 we have already popped src1, "next to top of stack" is really
1306 at top (FIRST_STACK_REG) now. */
1307
1308 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1309 && src1_note)
1310 {
1311 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1312 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1313 }
1314 else
1315 {
1316 /* The 386 can only represent death of the first operand in
1317 the case handled above. In all other cases, emit a separate
1318 pop and remove the death note from here. */
1319
1320 /* link_cc0_insns (insn); */
1321
1322 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1323
1324 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1325 EMIT_AFTER);
1326 }
1327 }
1328 }
1329 \f
1330 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1331 is the current register layout. Return whether a control flow insn
1332 was deleted in the process. */
1333
1334 static bool
1335 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1336 {
1337 rtx *dest, *src;
1338 bool control_flow_insn_deleted = false;
1339
1340 switch (GET_CODE (pat))
1341 {
1342 case USE:
1343 /* Deaths in USE insns can happen in non optimizing compilation.
1344 Handle them by popping the dying register. */
1345 src = get_true_reg (&XEXP (pat, 0));
1346 if (STACK_REG_P (*src)
1347 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1348 {
1349 /* USEs are ignored for liveness information so USEs of dead
1350 register might happen. */
1351 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1352 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1353 return control_flow_insn_deleted;
1354 }
1355 /* Uninitialized USE might happen for functions returning uninitialized
1356 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1357 so it is safe to ignore the use here. This is consistent with behavior
1358 of dataflow analyzer that ignores USE too. (This also imply that
1359 forcibly initializing the register to NaN here would lead to ICE later,
1360 since the REG_DEAD notes are not issued.) */
1361 break;
1362
1363 case CLOBBER:
1364 {
1365 rtx note;
1366
1367 dest = get_true_reg (&XEXP (pat, 0));
1368 if (STACK_REG_P (*dest))
1369 {
1370 note = find_reg_note (insn, REG_DEAD, *dest);
1371
1372 if (pat != PATTERN (insn))
1373 {
1374 /* The fix_truncdi_1 pattern wants to be able to allocate
1375 its own scratch register. It does this by clobbering
1376 an fp reg so that it is assured of an empty reg-stack
1377 register. If the register is live, kill it now.
1378 Remove the DEAD/UNUSED note so we don't try to kill it
1379 later too. */
1380
1381 if (note)
1382 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1383 else
1384 {
1385 note = find_reg_note (insn, REG_UNUSED, *dest);
1386 gcc_assert (note);
1387 }
1388 remove_note (insn, note);
1389 replace_reg (dest, FIRST_STACK_REG + 1);
1390 }
1391 else
1392 {
1393 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1394 indicates an uninitialized value. Because reload removed
1395 all other clobbers, this must be due to a function
1396 returning without a value. Load up a NaN. */
1397
1398 if (!note)
1399 {
1400 rtx t = *dest;
1401 if (COMPLEX_MODE_P (GET_MODE (t)))
1402 {
1403 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1404 if (get_hard_regnum (regstack, u) == -1)
1405 {
1406 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1407 rtx insn2 = emit_insn_before (pat2, insn);
1408 control_flow_insn_deleted
1409 |= move_nan_for_stack_reg (insn2, regstack, u);
1410 }
1411 }
1412 if (get_hard_regnum (regstack, t) == -1)
1413 control_flow_insn_deleted
1414 |= move_nan_for_stack_reg (insn, regstack, t);
1415 }
1416 }
1417 }
1418 break;
1419 }
1420
1421 case SET:
1422 {
1423 rtx *src1 = (rtx *) 0, *src2;
1424 rtx src1_note, src2_note;
1425 rtx pat_src;
1426
1427 dest = get_true_reg (&SET_DEST (pat));
1428 src = get_true_reg (&SET_SRC (pat));
1429 pat_src = SET_SRC (pat);
1430
1431 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1432 if (STACK_REG_P (*src)
1433 || (STACK_REG_P (*dest)
1434 && (REG_P (*src) || MEM_P (*src)
1435 || GET_CODE (*src) == CONST_DOUBLE)))
1436 {
1437 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1438 break;
1439 }
1440
1441 switch (GET_CODE (pat_src))
1442 {
1443 case COMPARE:
1444 compare_for_stack_reg (insn, regstack, pat_src);
1445 break;
1446
1447 case CALL:
1448 {
1449 int count;
1450 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1451 --count >= 0;)
1452 {
1453 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1454 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1455 }
1456 }
1457 replace_reg (dest, FIRST_STACK_REG);
1458 break;
1459
1460 case REG:
1461 /* This is a `tstM2' case. */
1462 gcc_assert (*dest == cc0_rtx);
1463 src1 = src;
1464
1465 /* Fall through. */
1466
1467 case FLOAT_TRUNCATE:
1468 case SQRT:
1469 case ABS:
1470 case NEG:
1471 /* These insns only operate on the top of the stack. DEST might
1472 be cc0_rtx if we're processing a tstM pattern. Also, it's
1473 possible that the tstM case results in a REG_DEAD note on the
1474 source. */
1475
1476 if (src1 == 0)
1477 src1 = get_true_reg (&XEXP (pat_src, 0));
1478
1479 emit_swap_insn (insn, regstack, *src1);
1480
1481 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1482
1483 if (STACK_REG_P (*dest))
1484 replace_reg (dest, FIRST_STACK_REG);
1485
1486 if (src1_note)
1487 {
1488 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1489 regstack->top--;
1490 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1491 }
1492
1493 replace_reg (src1, FIRST_STACK_REG);
1494 break;
1495
1496 case MINUS:
1497 case DIV:
1498 /* On i386, reversed forms of subM3 and divM3 exist for
1499 MODE_FLOAT, so the same code that works for addM3 and mulM3
1500 can be used. */
1501 case MULT:
1502 case PLUS:
1503 /* These insns can accept the top of stack as a destination
1504 from a stack reg or mem, or can use the top of stack as a
1505 source and some other stack register (possibly top of stack)
1506 as a destination. */
1507
1508 src1 = get_true_reg (&XEXP (pat_src, 0));
1509 src2 = get_true_reg (&XEXP (pat_src, 1));
1510
1511 /* We will fix any death note later. */
1512
1513 if (STACK_REG_P (*src1))
1514 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1515 else
1516 src1_note = NULL_RTX;
1517 if (STACK_REG_P (*src2))
1518 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1519 else
1520 src2_note = NULL_RTX;
1521
1522 /* If either operand is not a stack register, then the dest
1523 must be top of stack. */
1524
1525 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1526 emit_swap_insn (insn, regstack, *dest);
1527 else
1528 {
1529 /* Both operands are REG. If neither operand is already
1530 at the top of stack, choose to make the one that is the dest
1531 the new top of stack. */
1532
1533 int src1_hard_regnum, src2_hard_regnum;
1534
1535 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1536 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1537 gcc_assert (src1_hard_regnum != -1);
1538 gcc_assert (src2_hard_regnum != -1);
1539
1540 if (src1_hard_regnum != FIRST_STACK_REG
1541 && src2_hard_regnum != FIRST_STACK_REG)
1542 emit_swap_insn (insn, regstack, *dest);
1543 }
1544
1545 if (STACK_REG_P (*src1))
1546 replace_reg (src1, get_hard_regnum (regstack, *src1));
1547 if (STACK_REG_P (*src2))
1548 replace_reg (src2, get_hard_regnum (regstack, *src2));
1549
1550 if (src1_note)
1551 {
1552 rtx src1_reg = XEXP (src1_note, 0);
1553
1554 /* If the register that dies is at the top of stack, then
1555 the destination is somewhere else - merely substitute it.
1556 But if the reg that dies is not at top of stack, then
1557 move the top of stack to the dead reg, as though we had
1558 done the insn and then a store-with-pop. */
1559
1560 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1561 {
1562 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1563 replace_reg (dest, get_hard_regnum (regstack, *dest));
1564 }
1565 else
1566 {
1567 int regno = get_hard_regnum (regstack, src1_reg);
1568
1569 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1570 replace_reg (dest, regno);
1571
1572 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1573 = regstack->reg[regstack->top];
1574 }
1575
1576 CLEAR_HARD_REG_BIT (regstack->reg_set,
1577 REGNO (XEXP (src1_note, 0)));
1578 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1579 regstack->top--;
1580 }
1581 else if (src2_note)
1582 {
1583 rtx src2_reg = XEXP (src2_note, 0);
1584 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1585 {
1586 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1587 replace_reg (dest, get_hard_regnum (regstack, *dest));
1588 }
1589 else
1590 {
1591 int regno = get_hard_regnum (regstack, src2_reg);
1592
1593 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1594 replace_reg (dest, regno);
1595
1596 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1597 = regstack->reg[regstack->top];
1598 }
1599
1600 CLEAR_HARD_REG_BIT (regstack->reg_set,
1601 REGNO (XEXP (src2_note, 0)));
1602 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1603 regstack->top--;
1604 }
1605 else
1606 {
1607 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1608 replace_reg (dest, get_hard_regnum (regstack, *dest));
1609 }
1610
1611 /* Keep operand 1 matching with destination. */
1612 if (COMMUTATIVE_ARITH_P (pat_src)
1613 && REG_P (*src1) && REG_P (*src2)
1614 && REGNO (*src1) != REGNO (*dest))
1615 {
1616 int tmp = REGNO (*src1);
1617 replace_reg (src1, REGNO (*src2));
1618 replace_reg (src2, tmp);
1619 }
1620 break;
1621
1622 case UNSPEC:
1623 switch (XINT (pat_src, 1))
1624 {
1625 case UNSPEC_FIST:
1626
1627 case UNSPEC_FIST_FLOOR:
1628 case UNSPEC_FIST_CEIL:
1629
1630 /* These insns only operate on the top of the stack. */
1631
1632 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1633 emit_swap_insn (insn, regstack, *src1);
1634
1635 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1636
1637 if (STACK_REG_P (*dest))
1638 replace_reg (dest, FIRST_STACK_REG);
1639
1640 if (src1_note)
1641 {
1642 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1643 regstack->top--;
1644 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1645 }
1646
1647 replace_reg (src1, FIRST_STACK_REG);
1648 break;
1649
1650 case UNSPEC_FXAM:
1651
1652 /* This insn only operate on the top of the stack. */
1653
1654 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1655 emit_swap_insn (insn, regstack, *src1);
1656
1657 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1658
1659 replace_reg (src1, FIRST_STACK_REG);
1660
1661 if (src1_note)
1662 {
1663 remove_regno_note (insn, REG_DEAD,
1664 REGNO (XEXP (src1_note, 0)));
1665 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1666 EMIT_AFTER);
1667 }
1668
1669 break;
1670
1671 case UNSPEC_SIN:
1672 case UNSPEC_COS:
1673 case UNSPEC_FRNDINT:
1674 case UNSPEC_F2XM1:
1675
1676 case UNSPEC_FRNDINT_FLOOR:
1677 case UNSPEC_FRNDINT_CEIL:
1678 case UNSPEC_FRNDINT_TRUNC:
1679 case UNSPEC_FRNDINT_MASK_PM:
1680
1681 /* Above insns operate on the top of the stack. */
1682
1683 case UNSPEC_SINCOS_COS:
1684 case UNSPEC_XTRACT_FRACT:
1685
1686 /* Above insns operate on the top two stack slots,
1687 first part of one input, double output insn. */
1688
1689 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1690
1691 emit_swap_insn (insn, regstack, *src1);
1692
1693 /* Input should never die, it is replaced with output. */
1694 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1695 gcc_assert (!src1_note);
1696
1697 if (STACK_REG_P (*dest))
1698 replace_reg (dest, FIRST_STACK_REG);
1699
1700 replace_reg (src1, FIRST_STACK_REG);
1701 break;
1702
1703 case UNSPEC_SINCOS_SIN:
1704 case UNSPEC_XTRACT_EXP:
1705
1706 /* These insns operate on the top two stack slots,
1707 second part of one input, double output insn. */
1708
1709 regstack->top++;
1710 /* FALLTHRU */
1711
1712 case UNSPEC_TAN:
1713
1714 /* For UNSPEC_TAN, regstack->top is already increased
1715 by inherent load of constant 1.0. */
1716
1717 /* Output value is generated in the second stack slot.
1718 Move current value from second slot to the top. */
1719 regstack->reg[regstack->top]
1720 = regstack->reg[regstack->top - 1];
1721
1722 gcc_assert (STACK_REG_P (*dest));
1723
1724 regstack->reg[regstack->top - 1] = REGNO (*dest);
1725 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1726 replace_reg (dest, FIRST_STACK_REG + 1);
1727
1728 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1729
1730 replace_reg (src1, FIRST_STACK_REG);
1731 break;
1732
1733 case UNSPEC_FPATAN:
1734 case UNSPEC_FYL2X:
1735 case UNSPEC_FYL2XP1:
1736 /* These insns operate on the top two stack slots. */
1737
1738 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1739 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1740
1741 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1742 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1743
1744 swap_to_top (insn, regstack, *src1, *src2);
1745
1746 replace_reg (src1, FIRST_STACK_REG);
1747 replace_reg (src2, FIRST_STACK_REG + 1);
1748
1749 if (src1_note)
1750 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1751 if (src2_note)
1752 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1753
1754 /* Pop both input operands from the stack. */
1755 CLEAR_HARD_REG_BIT (regstack->reg_set,
1756 regstack->reg[regstack->top]);
1757 CLEAR_HARD_REG_BIT (regstack->reg_set,
1758 regstack->reg[regstack->top - 1]);
1759 regstack->top -= 2;
1760
1761 /* Push the result back onto the stack. */
1762 regstack->reg[++regstack->top] = REGNO (*dest);
1763 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1764 replace_reg (dest, FIRST_STACK_REG);
1765 break;
1766
1767 case UNSPEC_FSCALE_FRACT:
1768 case UNSPEC_FPREM_F:
1769 case UNSPEC_FPREM1_F:
1770 /* These insns operate on the top two stack slots,
1771 first part of double input, double output insn. */
1772
1773 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1774 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1775
1776 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1777 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1778
1779 /* Inputs should never die, they are
1780 replaced with outputs. */
1781 gcc_assert (!src1_note);
1782 gcc_assert (!src2_note);
1783
1784 swap_to_top (insn, regstack, *src1, *src2);
1785
1786 /* Push the result back onto stack. Empty stack slot
1787 will be filled in second part of insn. */
1788 if (STACK_REG_P (*dest))
1789 {
1790 regstack->reg[regstack->top] = REGNO (*dest);
1791 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1792 replace_reg (dest, FIRST_STACK_REG);
1793 }
1794
1795 replace_reg (src1, FIRST_STACK_REG);
1796 replace_reg (src2, FIRST_STACK_REG + 1);
1797 break;
1798
1799 case UNSPEC_FSCALE_EXP:
1800 case UNSPEC_FPREM_U:
1801 case UNSPEC_FPREM1_U:
1802 /* These insns operate on the top two stack slots,
1803 second part of double input, double output insn. */
1804
1805 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1806 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1807
1808 /* Push the result back onto stack. Fill empty slot from
1809 first part of insn and fix top of stack pointer. */
1810 if (STACK_REG_P (*dest))
1811 {
1812 regstack->reg[regstack->top - 1] = REGNO (*dest);
1813 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1814 replace_reg (dest, FIRST_STACK_REG + 1);
1815 }
1816
1817 replace_reg (src1, FIRST_STACK_REG);
1818 replace_reg (src2, FIRST_STACK_REG + 1);
1819 break;
1820
1821 case UNSPEC_C2_FLAG:
1822 /* This insn operates on the top two stack slots,
1823 third part of C2 setting double input insn. */
1824
1825 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1826 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1827
1828 replace_reg (src1, FIRST_STACK_REG);
1829 replace_reg (src2, FIRST_STACK_REG + 1);
1830 break;
1831
1832 case UNSPEC_SAHF:
1833 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1834 The combination matches the PPRO fcomi instruction. */
1835
1836 pat_src = XVECEXP (pat_src, 0, 0);
1837 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1838 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1839 /* Fall through. */
1840
1841 case UNSPEC_FNSTSW:
1842 /* Combined fcomp+fnstsw generated for doing well with
1843 CSE. When optimizing this would have been broken
1844 up before now. */
1845
1846 pat_src = XVECEXP (pat_src, 0, 0);
1847 gcc_assert (GET_CODE (pat_src) == COMPARE);
1848
1849 compare_for_stack_reg (insn, regstack, pat_src);
1850 break;
1851
1852 default:
1853 gcc_unreachable ();
1854 }
1855 break;
1856
1857 case IF_THEN_ELSE:
1858 /* This insn requires the top of stack to be the destination. */
1859
1860 src1 = get_true_reg (&XEXP (pat_src, 1));
1861 src2 = get_true_reg (&XEXP (pat_src, 2));
1862
1863 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1864 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1865
1866 /* If the comparison operator is an FP comparison operator,
1867 it is handled correctly by compare_for_stack_reg () who
1868 will move the destination to the top of stack. But if the
1869 comparison operator is not an FP comparison operator, we
1870 have to handle it here. */
1871 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1872 && REGNO (*dest) != regstack->reg[regstack->top])
1873 {
1874 /* In case one of operands is the top of stack and the operands
1875 dies, it is safe to make it the destination operand by
1876 reversing the direction of cmove and avoid fxch. */
1877 if ((REGNO (*src1) == regstack->reg[regstack->top]
1878 && src1_note)
1879 || (REGNO (*src2) == regstack->reg[regstack->top]
1880 && src2_note))
1881 {
1882 int idx1 = (get_hard_regnum (regstack, *src1)
1883 - FIRST_STACK_REG);
1884 int idx2 = (get_hard_regnum (regstack, *src2)
1885 - FIRST_STACK_REG);
1886
1887 /* Make reg-stack believe that the operands are already
1888 swapped on the stack */
1889 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1890 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1891
1892 /* Reverse condition to compensate the operand swap.
1893 i386 do have comparison always reversible. */
1894 PUT_CODE (XEXP (pat_src, 0),
1895 reversed_comparison_code (XEXP (pat_src, 0), insn));
1896 }
1897 else
1898 emit_swap_insn (insn, regstack, *dest);
1899 }
1900
1901 {
1902 rtx src_note [3];
1903 int i;
1904
1905 src_note[0] = 0;
1906 src_note[1] = src1_note;
1907 src_note[2] = src2_note;
1908
1909 if (STACK_REG_P (*src1))
1910 replace_reg (src1, get_hard_regnum (regstack, *src1));
1911 if (STACK_REG_P (*src2))
1912 replace_reg (src2, get_hard_regnum (regstack, *src2));
1913
1914 for (i = 1; i <= 2; i++)
1915 if (src_note [i])
1916 {
1917 int regno = REGNO (XEXP (src_note[i], 0));
1918
1919 /* If the register that dies is not at the top of
1920 stack, then move the top of stack to the dead reg.
1921 Top of stack should never die, as it is the
1922 destination. */
1923 gcc_assert (regno != regstack->reg[regstack->top]);
1924 remove_regno_note (insn, REG_DEAD, regno);
1925 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1926 EMIT_AFTER);
1927 }
1928 }
1929
1930 /* Make dest the top of stack. Add dest to regstack if
1931 not present. */
1932 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1933 regstack->reg[++regstack->top] = REGNO (*dest);
1934 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1935 replace_reg (dest, FIRST_STACK_REG);
1936 break;
1937
1938 default:
1939 gcc_unreachable ();
1940 }
1941 break;
1942 }
1943
1944 default:
1945 break;
1946 }
1947
1948 return control_flow_insn_deleted;
1949 }
1950 \f
1951 /* Substitute hard regnums for any stack regs in INSN, which has
1952 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1953 before the insn, and is updated with changes made here.
1954
1955 There are several requirements and assumptions about the use of
1956 stack-like regs in asm statements. These rules are enforced by
1957 record_asm_stack_regs; see comments there for details. Any
1958 asm_operands left in the RTL at this point may be assume to meet the
1959 requirements, since record_asm_stack_regs removes any problem asm. */
1960
1961 static void
1962 subst_asm_stack_regs (rtx insn, stack regstack)
1963 {
1964 rtx body = PATTERN (insn);
1965 int alt;
1966
1967 rtx *note_reg; /* Array of note contents */
1968 rtx **note_loc; /* Address of REG field of each note */
1969 enum reg_note *note_kind; /* The type of each note */
1970
1971 rtx *clobber_reg = 0;
1972 rtx **clobber_loc = 0;
1973
1974 struct stack_def temp_stack;
1975 int n_notes;
1976 int n_clobbers;
1977 rtx note;
1978 int i;
1979 int n_inputs, n_outputs;
1980
1981 if (! check_asm_stack_operands (insn))
1982 return;
1983
1984 /* Find out what the constraints required. If no constraint
1985 alternative matches, that is a compiler bug: we should have caught
1986 such an insn in check_asm_stack_operands. */
1987 extract_insn (insn);
1988 constrain_operands (1);
1989 alt = which_alternative;
1990
1991 preprocess_constraints ();
1992
1993 n_inputs = get_asm_operand_n_inputs (body);
1994 n_outputs = recog_data.n_operands - n_inputs;
1995
1996 gcc_assert (alt >= 0);
1997
1998 /* Strip SUBREGs here to make the following code simpler. */
1999 for (i = 0; i < recog_data.n_operands; i++)
2000 if (GET_CODE (recog_data.operand[i]) == SUBREG
2001 && REG_P (SUBREG_REG (recog_data.operand[i])))
2002 {
2003 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2004 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2005 }
2006
2007 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2008
2009 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2010 i++;
2011
2012 note_reg = XALLOCAVEC (rtx, i);
2013 note_loc = XALLOCAVEC (rtx *, i);
2014 note_kind = XALLOCAVEC (enum reg_note, i);
2015
2016 n_notes = 0;
2017 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2018 {
2019 rtx reg = XEXP (note, 0);
2020 rtx *loc = & XEXP (note, 0);
2021
2022 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2023 {
2024 loc = & SUBREG_REG (reg);
2025 reg = SUBREG_REG (reg);
2026 }
2027
2028 if (STACK_REG_P (reg)
2029 && (REG_NOTE_KIND (note) == REG_DEAD
2030 || REG_NOTE_KIND (note) == REG_UNUSED))
2031 {
2032 note_reg[n_notes] = reg;
2033 note_loc[n_notes] = loc;
2034 note_kind[n_notes] = REG_NOTE_KIND (note);
2035 n_notes++;
2036 }
2037 }
2038
2039 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2040
2041 n_clobbers = 0;
2042
2043 if (GET_CODE (body) == PARALLEL)
2044 {
2045 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2046 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2047
2048 for (i = 0; i < XVECLEN (body, 0); i++)
2049 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2050 {
2051 rtx clobber = XVECEXP (body, 0, i);
2052 rtx reg = XEXP (clobber, 0);
2053 rtx *loc = & XEXP (clobber, 0);
2054
2055 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2056 {
2057 loc = & SUBREG_REG (reg);
2058 reg = SUBREG_REG (reg);
2059 }
2060
2061 if (STACK_REG_P (reg))
2062 {
2063 clobber_reg[n_clobbers] = reg;
2064 clobber_loc[n_clobbers] = loc;
2065 n_clobbers++;
2066 }
2067 }
2068 }
2069
2070 temp_stack = *regstack;
2071
2072 /* Put the input regs into the desired place in TEMP_STACK. */
2073
2074 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2075 if (STACK_REG_P (recog_data.operand[i])
2076 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2077 FLOAT_REGS)
2078 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2079 {
2080 /* If an operand needs to be in a particular reg in
2081 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2082 these constraints are for single register classes, and
2083 reload guaranteed that operand[i] is already in that class,
2084 we can just use REGNO (recog_data.operand[i]) to know which
2085 actual reg this operand needs to be in. */
2086
2087 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2088
2089 gcc_assert (regno >= 0);
2090
2091 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2092 {
2093 /* recog_data.operand[i] is not in the right place. Find
2094 it and swap it with whatever is already in I's place.
2095 K is where recog_data.operand[i] is now. J is where it
2096 should be. */
2097 int j, k, temp;
2098
2099 k = temp_stack.top - (regno - FIRST_STACK_REG);
2100 j = (temp_stack.top
2101 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2102
2103 temp = temp_stack.reg[k];
2104 temp_stack.reg[k] = temp_stack.reg[j];
2105 temp_stack.reg[j] = temp;
2106 }
2107 }
2108
2109 /* Emit insns before INSN to make sure the reg-stack is in the right
2110 order. */
2111
2112 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2113
2114 /* Make the needed input register substitutions. Do death notes and
2115 clobbers too, because these are for inputs, not outputs. */
2116
2117 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2118 if (STACK_REG_P (recog_data.operand[i]))
2119 {
2120 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2121
2122 gcc_assert (regnum >= 0);
2123
2124 replace_reg (recog_data.operand_loc[i], regnum);
2125 }
2126
2127 for (i = 0; i < n_notes; i++)
2128 if (note_kind[i] == REG_DEAD)
2129 {
2130 int regnum = get_hard_regnum (regstack, note_reg[i]);
2131
2132 gcc_assert (regnum >= 0);
2133
2134 replace_reg (note_loc[i], regnum);
2135 }
2136
2137 for (i = 0; i < n_clobbers; i++)
2138 {
2139 /* It's OK for a CLOBBER to reference a reg that is not live.
2140 Don't try to replace it in that case. */
2141 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2142
2143 if (regnum >= 0)
2144 {
2145 /* Sigh - clobbers always have QImode. But replace_reg knows
2146 that these regs can't be MODE_INT and will assert. Just put
2147 the right reg there without calling replace_reg. */
2148
2149 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2150 }
2151 }
2152
2153 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2154
2155 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2156 if (STACK_REG_P (recog_data.operand[i]))
2157 {
2158 /* An input reg is implicitly popped if it is tied to an
2159 output, or if there is a CLOBBER for it. */
2160 int j;
2161
2162 for (j = 0; j < n_clobbers; j++)
2163 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2164 break;
2165
2166 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2167 {
2168 /* recog_data.operand[i] might not be at the top of stack.
2169 But that's OK, because all we need to do is pop the
2170 right number of regs off of the top of the reg-stack.
2171 record_asm_stack_regs guaranteed that all implicitly
2172 popped regs were grouped at the top of the reg-stack. */
2173
2174 CLEAR_HARD_REG_BIT (regstack->reg_set,
2175 regstack->reg[regstack->top]);
2176 regstack->top--;
2177 }
2178 }
2179
2180 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2181 Note that there isn't any need to substitute register numbers.
2182 ??? Explain why this is true. */
2183
2184 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2185 {
2186 /* See if there is an output for this hard reg. */
2187 int j;
2188
2189 for (j = 0; j < n_outputs; j++)
2190 if (STACK_REG_P (recog_data.operand[j])
2191 && REGNO (recog_data.operand[j]) == (unsigned) i)
2192 {
2193 regstack->reg[++regstack->top] = i;
2194 SET_HARD_REG_BIT (regstack->reg_set, i);
2195 break;
2196 }
2197 }
2198
2199 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2200 input that the asm didn't implicitly pop. If the asm didn't
2201 implicitly pop an input reg, that reg will still be live.
2202
2203 Note that we can't use find_regno_note here: the register numbers
2204 in the death notes have already been substituted. */
2205
2206 for (i = 0; i < n_outputs; i++)
2207 if (STACK_REG_P (recog_data.operand[i]))
2208 {
2209 int j;
2210
2211 for (j = 0; j < n_notes; j++)
2212 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2213 && note_kind[j] == REG_UNUSED)
2214 {
2215 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2216 EMIT_AFTER);
2217 break;
2218 }
2219 }
2220
2221 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2222 if (STACK_REG_P (recog_data.operand[i]))
2223 {
2224 int j;
2225
2226 for (j = 0; j < n_notes; j++)
2227 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2228 && note_kind[j] == REG_DEAD
2229 && TEST_HARD_REG_BIT (regstack->reg_set,
2230 REGNO (recog_data.operand[i])))
2231 {
2232 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2233 EMIT_AFTER);
2234 break;
2235 }
2236 }
2237 }
2238 \f
2239 /* Substitute stack hard reg numbers for stack virtual registers in
2240 INSN. Non-stack register numbers are not changed. REGSTACK is the
2241 current stack content. Insns may be emitted as needed to arrange the
2242 stack for the 387 based on the contents of the insn. Return whether
2243 a control flow insn was deleted in the process. */
2244
2245 static bool
2246 subst_stack_regs (rtx insn, stack regstack)
2247 {
2248 rtx *note_link, note;
2249 bool control_flow_insn_deleted = false;
2250 int i;
2251
2252 if (CALL_P (insn))
2253 {
2254 int top = regstack->top;
2255
2256 /* If there are any floating point parameters to be passed in
2257 registers for this call, make sure they are in the right
2258 order. */
2259
2260 if (top >= 0)
2261 {
2262 straighten_stack (insn, regstack);
2263
2264 /* Now mark the arguments as dead after the call. */
2265
2266 while (regstack->top >= 0)
2267 {
2268 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2269 regstack->top--;
2270 }
2271 }
2272 }
2273
2274 /* Do the actual substitution if any stack regs are mentioned.
2275 Since we only record whether entire insn mentions stack regs, and
2276 subst_stack_regs_pat only works for patterns that contain stack regs,
2277 we must check each pattern in a parallel here. A call_value_pop could
2278 fail otherwise. */
2279
2280 if (stack_regs_mentioned (insn))
2281 {
2282 int n_operands = asm_noperands (PATTERN (insn));
2283 if (n_operands >= 0)
2284 {
2285 /* This insn is an `asm' with operands. Decode the operands,
2286 decide how many are inputs, and do register substitution.
2287 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2288
2289 subst_asm_stack_regs (insn, regstack);
2290 return control_flow_insn_deleted;
2291 }
2292
2293 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2294 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2295 {
2296 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2297 {
2298 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2299 XVECEXP (PATTERN (insn), 0, i)
2300 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2301 control_flow_insn_deleted
2302 |= subst_stack_regs_pat (insn, regstack,
2303 XVECEXP (PATTERN (insn), 0, i));
2304 }
2305 }
2306 else
2307 control_flow_insn_deleted
2308 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2309 }
2310
2311 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2312 REG_UNUSED will already have been dealt with, so just return. */
2313
2314 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2315 return control_flow_insn_deleted;
2316
2317 /* If this a noreturn call, we can't insert pop insns after it.
2318 Instead, reset the stack state to empty. */
2319 if (CALL_P (insn)
2320 && find_reg_note (insn, REG_NORETURN, NULL))
2321 {
2322 regstack->top = -1;
2323 CLEAR_HARD_REG_SET (regstack->reg_set);
2324 return control_flow_insn_deleted;
2325 }
2326
2327 /* If there is a REG_UNUSED note on a stack register on this insn,
2328 the indicated reg must be popped. The REG_UNUSED note is removed,
2329 since the form of the newly emitted pop insn references the reg,
2330 making it no longer `unset'. */
2331
2332 note_link = &REG_NOTES (insn);
2333 for (note = *note_link; note; note = XEXP (note, 1))
2334 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2335 {
2336 *note_link = XEXP (note, 1);
2337 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2338 }
2339 else
2340 note_link = &XEXP (note, 1);
2341
2342 return control_flow_insn_deleted;
2343 }
2344 \f
2345 /* Change the organization of the stack so that it fits a new basic
2346 block. Some registers might have to be popped, but there can never be
2347 a register live in the new block that is not now live.
2348
2349 Insert any needed insns before or after INSN, as indicated by
2350 WHERE. OLD is the original stack layout, and NEW is the desired
2351 form. OLD is updated to reflect the code emitted, i.e., it will be
2352 the same as NEW upon return.
2353
2354 This function will not preserve block_end[]. But that information
2355 is no longer needed once this has executed. */
2356
2357 static void
2358 change_stack (rtx insn, stack old, stack new_stack, enum emit_where where)
2359 {
2360 int reg;
2361 int update_end = 0;
2362 int i;
2363
2364 /* Stack adjustments for the first insn in a block update the
2365 current_block's stack_in instead of inserting insns directly.
2366 compensate_edges will add the necessary code later. */
2367 if (current_block
2368 && starting_stack_p
2369 && where == EMIT_BEFORE)
2370 {
2371 BLOCK_INFO (current_block)->stack_in = *new_stack;
2372 starting_stack_p = false;
2373 *old = *new_stack;
2374 return;
2375 }
2376
2377 /* We will be inserting new insns "backwards". If we are to insert
2378 after INSN, find the next insn, and insert before it. */
2379
2380 if (where == EMIT_AFTER)
2381 {
2382 if (current_block && BB_END (current_block) == insn)
2383 update_end = 1;
2384 insn = NEXT_INSN (insn);
2385 }
2386
2387 /* Initialize partially dead variables. */
2388 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2389 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2390 && !TEST_HARD_REG_BIT (old->reg_set, i))
2391 {
2392 old->reg[++old->top] = i;
2393 SET_HARD_REG_BIT (old->reg_set, i);
2394 emit_insn_before (gen_rtx_SET (VOIDmode,
2395 FP_MODE_REG (i, SFmode), not_a_num), insn);
2396 }
2397
2398 /* Pop any registers that are not needed in the new block. */
2399
2400 /* If the destination block's stack already has a specified layout
2401 and contains two or more registers, use a more intelligent algorithm
2402 to pop registers that minimizes the number number of fxchs below. */
2403 if (new_stack->top > 0)
2404 {
2405 bool slots[REG_STACK_SIZE];
2406 int pops[REG_STACK_SIZE];
2407 int next, dest, topsrc;
2408
2409 /* First pass to determine the free slots. */
2410 for (reg = 0; reg <= new_stack->top; reg++)
2411 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2412
2413 /* Second pass to allocate preferred slots. */
2414 topsrc = -1;
2415 for (reg = old->top; reg > new_stack->top; reg--)
2416 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2417 {
2418 dest = -1;
2419 for (next = 0; next <= new_stack->top; next++)
2420 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2421 {
2422 /* If this is a preference for the new top of stack, record
2423 the fact by remembering it's old->reg in topsrc. */
2424 if (next == new_stack->top)
2425 topsrc = reg;
2426 slots[next] = true;
2427 dest = next;
2428 break;
2429 }
2430 pops[reg] = dest;
2431 }
2432 else
2433 pops[reg] = reg;
2434
2435 /* Intentionally, avoid placing the top of stack in it's correct
2436 location, if we still need to permute the stack below and we
2437 can usefully place it somewhere else. This is the case if any
2438 slot is still unallocated, in which case we should place the
2439 top of stack there. */
2440 if (topsrc != -1)
2441 for (reg = 0; reg < new_stack->top; reg++)
2442 if (!slots[reg])
2443 {
2444 pops[topsrc] = reg;
2445 slots[new_stack->top] = false;
2446 slots[reg] = true;
2447 break;
2448 }
2449
2450 /* Third pass allocates remaining slots and emits pop insns. */
2451 next = new_stack->top;
2452 for (reg = old->top; reg > new_stack->top; reg--)
2453 {
2454 dest = pops[reg];
2455 if (dest == -1)
2456 {
2457 /* Find next free slot. */
2458 while (slots[next])
2459 next--;
2460 dest = next--;
2461 }
2462 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2463 EMIT_BEFORE);
2464 }
2465 }
2466 else
2467 {
2468 /* The following loop attempts to maximize the number of times we
2469 pop the top of the stack, as this permits the use of the faster
2470 ffreep instruction on platforms that support it. */
2471 int live, next;
2472
2473 live = 0;
2474 for (reg = 0; reg <= old->top; reg++)
2475 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2476 live++;
2477
2478 next = live;
2479 while (old->top >= live)
2480 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2481 {
2482 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2483 next--;
2484 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2485 EMIT_BEFORE);
2486 }
2487 else
2488 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2489 EMIT_BEFORE);
2490 }
2491
2492 if (new_stack->top == -2)
2493 {
2494 /* If the new block has never been processed, then it can inherit
2495 the old stack order. */
2496
2497 new_stack->top = old->top;
2498 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2499 }
2500 else
2501 {
2502 /* This block has been entered before, and we must match the
2503 previously selected stack order. */
2504
2505 /* By now, the only difference should be the order of the stack,
2506 not their depth or liveliness. */
2507
2508 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2509 gcc_assert (old->top == new_stack->top);
2510
2511 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2512 swaps until the stack is correct.
2513
2514 The worst case number of swaps emitted is N + 2, where N is the
2515 depth of the stack. In some cases, the reg at the top of
2516 stack may be correct, but swapped anyway in order to fix
2517 other regs. But since we never swap any other reg away from
2518 its correct slot, this algorithm will converge. */
2519
2520 if (new_stack->top != -1)
2521 do
2522 {
2523 /* Swap the reg at top of stack into the position it is
2524 supposed to be in, until the correct top of stack appears. */
2525
2526 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2527 {
2528 for (reg = new_stack->top; reg >= 0; reg--)
2529 if (new_stack->reg[reg] == old->reg[old->top])
2530 break;
2531
2532 gcc_assert (reg != -1);
2533
2534 emit_swap_insn (insn, old,
2535 FP_MODE_REG (old->reg[reg], DFmode));
2536 }
2537
2538 /* See if any regs remain incorrect. If so, bring an
2539 incorrect reg to the top of stack, and let the while loop
2540 above fix it. */
2541
2542 for (reg = new_stack->top; reg >= 0; reg--)
2543 if (new_stack->reg[reg] != old->reg[reg])
2544 {
2545 emit_swap_insn (insn, old,
2546 FP_MODE_REG (old->reg[reg], DFmode));
2547 break;
2548 }
2549 } while (reg >= 0);
2550
2551 /* At this point there must be no differences. */
2552
2553 for (reg = old->top; reg >= 0; reg--)
2554 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2555 }
2556
2557 if (update_end)
2558 BB_END (current_block) = PREV_INSN (insn);
2559 }
2560 \f
2561 /* Print stack configuration. */
2562
2563 static void
2564 print_stack (FILE *file, stack s)
2565 {
2566 if (! file)
2567 return;
2568
2569 if (s->top == -2)
2570 fprintf (file, "uninitialized\n");
2571 else if (s->top == -1)
2572 fprintf (file, "empty\n");
2573 else
2574 {
2575 int i;
2576 fputs ("[ ", file);
2577 for (i = 0; i <= s->top; ++i)
2578 fprintf (file, "%d ", s->reg[i]);
2579 fputs ("]\n", file);
2580 }
2581 }
2582 \f
2583 /* This function was doing life analysis. We now let the regular live
2584 code do it's job, so we only need to check some extra invariants
2585 that reg-stack expects. Primary among these being that all registers
2586 are initialized before use.
2587
2588 The function returns true when code was emitted to CFG edges and
2589 commit_edge_insertions needs to be called. */
2590
2591 static int
2592 convert_regs_entry (void)
2593 {
2594 int inserted = 0;
2595 edge e;
2596 edge_iterator ei;
2597
2598 /* Load something into each stack register live at function entry.
2599 Such live registers can be caused by uninitialized variables or
2600 functions not returning values on all paths. In order to keep
2601 the push/pop code happy, and to not scrog the register stack, we
2602 must put something in these registers. Use a QNaN.
2603
2604 Note that we are inserting converted code here. This code is
2605 never seen by the convert_regs pass. */
2606
2607 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2608 {
2609 basic_block block = e->dest;
2610 block_info bi = BLOCK_INFO (block);
2611 int reg, top = -1;
2612
2613 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2614 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2615 {
2616 rtx init;
2617
2618 bi->stack_in.reg[++top] = reg;
2619
2620 init = gen_rtx_SET (VOIDmode,
2621 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2622 not_a_num);
2623 insert_insn_on_edge (init, e);
2624 inserted = 1;
2625 }
2626
2627 bi->stack_in.top = top;
2628 }
2629
2630 return inserted;
2631 }
2632
2633 /* Construct the desired stack for function exit. This will either
2634 be `empty', or the function return value at top-of-stack. */
2635
2636 static void
2637 convert_regs_exit (void)
2638 {
2639 int value_reg_low, value_reg_high;
2640 stack output_stack;
2641 rtx retvalue;
2642
2643 retvalue = stack_result (current_function_decl);
2644 value_reg_low = value_reg_high = -1;
2645 if (retvalue)
2646 {
2647 value_reg_low = REGNO (retvalue);
2648 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2649 }
2650
2651 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2652 if (value_reg_low == -1)
2653 output_stack->top = -1;
2654 else
2655 {
2656 int reg;
2657
2658 output_stack->top = value_reg_high - value_reg_low;
2659 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2660 {
2661 output_stack->reg[value_reg_high - reg] = reg;
2662 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2663 }
2664 }
2665 }
2666
2667 /* Copy the stack info from the end of edge E's source block to the
2668 start of E's destination block. */
2669
2670 static void
2671 propagate_stack (edge e)
2672 {
2673 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2674 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2675 int reg;
2676
2677 /* Preserve the order of the original stack, but check whether
2678 any pops are needed. */
2679 dest_stack->top = -1;
2680 for (reg = 0; reg <= src_stack->top; ++reg)
2681 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2682 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2683
2684 /* Push in any partially dead values. */
2685 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2686 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2687 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2688 dest_stack->reg[++dest_stack->top] = reg;
2689 }
2690
2691
2692 /* Adjust the stack of edge E's source block on exit to match the stack
2693 of it's target block upon input. The stack layouts of both blocks
2694 should have been defined by now. */
2695
2696 static bool
2697 compensate_edge (edge e)
2698 {
2699 basic_block source = e->src, target = e->dest;
2700 stack target_stack = &BLOCK_INFO (target)->stack_in;
2701 stack source_stack = &BLOCK_INFO (source)->stack_out;
2702 struct stack_def regstack;
2703 int reg;
2704
2705 if (dump_file)
2706 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2707
2708 gcc_assert (target_stack->top != -2);
2709
2710 /* Check whether stacks are identical. */
2711 if (target_stack->top == source_stack->top)
2712 {
2713 for (reg = target_stack->top; reg >= 0; --reg)
2714 if (target_stack->reg[reg] != source_stack->reg[reg])
2715 break;
2716
2717 if (reg == -1)
2718 {
2719 if (dump_file)
2720 fprintf (dump_file, "no changes needed\n");
2721 return false;
2722 }
2723 }
2724
2725 if (dump_file)
2726 {
2727 fprintf (dump_file, "correcting stack to ");
2728 print_stack (dump_file, target_stack);
2729 }
2730
2731 /* Abnormal calls may appear to have values live in st(0), but the
2732 abnormal return path will not have actually loaded the values. */
2733 if (e->flags & EDGE_ABNORMAL_CALL)
2734 {
2735 /* Assert that the lifetimes are as we expect -- one value
2736 live at st(0) on the end of the source block, and no
2737 values live at the beginning of the destination block.
2738 For complex return values, we may have st(1) live as well. */
2739 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2740 gcc_assert (target_stack->top == -1);
2741 return false;
2742 }
2743
2744 /* Handle non-call EH edges specially. The normal return path have
2745 values in registers. These will be popped en masse by the unwind
2746 library. */
2747 if (e->flags & EDGE_EH)
2748 {
2749 gcc_assert (target_stack->top == -1);
2750 return false;
2751 }
2752
2753 /* We don't support abnormal edges. Global takes care to
2754 avoid any live register across them, so we should never
2755 have to insert instructions on such edges. */
2756 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2757
2758 /* Make a copy of source_stack as change_stack is destructive. */
2759 regstack = *source_stack;
2760
2761 /* It is better to output directly to the end of the block
2762 instead of to the edge, because emit_swap can do minimal
2763 insn scheduling. We can do this when there is only one
2764 edge out, and it is not abnormal. */
2765 if (EDGE_COUNT (source->succs) == 1)
2766 {
2767 current_block = source;
2768 change_stack (BB_END (source), &regstack, target_stack,
2769 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2770 }
2771 else
2772 {
2773 rtx seq, after;
2774
2775 current_block = NULL;
2776 start_sequence ();
2777
2778 /* ??? change_stack needs some point to emit insns after. */
2779 after = emit_note (NOTE_INSN_DELETED);
2780
2781 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2782
2783 seq = get_insns ();
2784 end_sequence ();
2785
2786 insert_insn_on_edge (seq, e);
2787 return true;
2788 }
2789 return false;
2790 }
2791
2792 /* Traverse all non-entry edges in the CFG, and emit the necessary
2793 edge compensation code to change the stack from stack_out of the
2794 source block to the stack_in of the destination block. */
2795
2796 static bool
2797 compensate_edges (void)
2798 {
2799 bool inserted = false;
2800 basic_block bb;
2801
2802 starting_stack_p = false;
2803
2804 FOR_EACH_BB (bb)
2805 if (bb != ENTRY_BLOCK_PTR)
2806 {
2807 edge e;
2808 edge_iterator ei;
2809
2810 FOR_EACH_EDGE (e, ei, bb->succs)
2811 inserted |= compensate_edge (e);
2812 }
2813 return inserted;
2814 }
2815
2816 /* Select the better of two edges E1 and E2 to use to determine the
2817 stack layout for their shared destination basic block. This is
2818 typically the more frequently executed. The edge E1 may be NULL
2819 (in which case E2 is returned), but E2 is always non-NULL. */
2820
2821 static edge
2822 better_edge (edge e1, edge e2)
2823 {
2824 if (!e1)
2825 return e2;
2826
2827 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2828 return e1;
2829 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2830 return e2;
2831
2832 if (e1->count > e2->count)
2833 return e1;
2834 if (e1->count < e2->count)
2835 return e2;
2836
2837 /* Prefer critical edges to minimize inserting compensation code on
2838 critical edges. */
2839
2840 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2841 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2842
2843 /* Avoid non-deterministic behavior. */
2844 return (e1->src->index < e2->src->index) ? e1 : e2;
2845 }
2846
2847 /* Convert stack register references in one block. */
2848
2849 static void
2850 convert_regs_1 (basic_block block)
2851 {
2852 struct stack_def regstack;
2853 block_info bi = BLOCK_INFO (block);
2854 int reg;
2855 rtx insn, next;
2856 bool control_flow_insn_deleted = false;
2857
2858 any_malformed_asm = false;
2859
2860 /* Choose an initial stack layout, if one hasn't already been chosen. */
2861 if (bi->stack_in.top == -2)
2862 {
2863 edge e, beste = NULL;
2864 edge_iterator ei;
2865
2866 /* Select the best incoming edge (typically the most frequent) to
2867 use as a template for this basic block. */
2868 FOR_EACH_EDGE (e, ei, block->preds)
2869 if (BLOCK_INFO (e->src)->done)
2870 beste = better_edge (beste, e);
2871
2872 if (beste)
2873 propagate_stack (beste);
2874 else
2875 {
2876 /* No predecessors. Create an arbitrary input stack. */
2877 bi->stack_in.top = -1;
2878 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2879 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2880 bi->stack_in.reg[++bi->stack_in.top] = reg;
2881 }
2882 }
2883
2884 if (dump_file)
2885 {
2886 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2887 print_stack (dump_file, &bi->stack_in);
2888 }
2889
2890 /* Process all insns in this block. Keep track of NEXT so that we
2891 don't process insns emitted while substituting in INSN. */
2892 current_block = block;
2893 next = BB_HEAD (block);
2894 regstack = bi->stack_in;
2895 starting_stack_p = true;
2896
2897 do
2898 {
2899 insn = next;
2900 next = NEXT_INSN (insn);
2901
2902 /* Ensure we have not missed a block boundary. */
2903 gcc_assert (next);
2904 if (insn == BB_END (block))
2905 next = NULL;
2906
2907 /* Don't bother processing unless there is a stack reg
2908 mentioned or if it's a CALL_INSN. */
2909 if (stack_regs_mentioned (insn)
2910 || CALL_P (insn))
2911 {
2912 if (dump_file)
2913 {
2914 fprintf (dump_file, " insn %d input stack: ",
2915 INSN_UID (insn));
2916 print_stack (dump_file, &regstack);
2917 }
2918 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2919 starting_stack_p = false;
2920 }
2921 }
2922 while (next);
2923
2924 if (dump_file)
2925 {
2926 fprintf (dump_file, "Expected live registers [");
2927 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2928 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2929 fprintf (dump_file, " %d", reg);
2930 fprintf (dump_file, " ]\nOutput stack: ");
2931 print_stack (dump_file, &regstack);
2932 }
2933
2934 insn = BB_END (block);
2935 if (JUMP_P (insn))
2936 insn = PREV_INSN (insn);
2937
2938 /* If the function is declared to return a value, but it returns one
2939 in only some cases, some registers might come live here. Emit
2940 necessary moves for them. */
2941
2942 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2943 {
2944 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2945 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2946 {
2947 rtx set;
2948
2949 if (dump_file)
2950 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2951
2952 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2953 insn = emit_insn_after (set, insn);
2954 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2955 }
2956 }
2957
2958 /* Amongst the insns possibly deleted during the substitution process above,
2959 might have been the only trapping insn in the block. We purge the now
2960 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2961 called at the end of convert_regs. The order in which we process the
2962 blocks ensures that we never delete an already processed edge.
2963
2964 Note that, at this point, the CFG may have been damaged by the emission
2965 of instructions after an abnormal call, which moves the basic block end
2966 (and is the reason why we call fixup_abnormal_edges later). So we must
2967 be sure that the trapping insn has been deleted before trying to purge
2968 dead edges, otherwise we risk purging valid edges.
2969
2970 ??? We are normally supposed not to delete trapping insns, so we pretend
2971 that the insns deleted above don't actually trap. It would have been
2972 better to detect this earlier and avoid creating the EH edge in the first
2973 place, still, but we don't have enough information at that time. */
2974
2975 if (control_flow_insn_deleted)
2976 purge_dead_edges (block);
2977
2978 /* Something failed if the stack lives don't match. If we had malformed
2979 asms, we zapped the instruction itself, but that didn't produce the
2980 same pattern of register kills as before. */
2981
2982 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
2983 || any_malformed_asm);
2984 bi->stack_out = regstack;
2985 bi->done = true;
2986 }
2987
2988 /* Convert registers in all blocks reachable from BLOCK. */
2989
2990 static void
2991 convert_regs_2 (basic_block block)
2992 {
2993 basic_block *stack, *sp;
2994
2995 /* We process the blocks in a top-down manner, in a way such that one block
2996 is only processed after all its predecessors. The number of predecessors
2997 of every block has already been computed. */
2998
2999 stack = XNEWVEC (basic_block, n_basic_blocks);
3000 sp = stack;
3001
3002 *sp++ = block;
3003
3004 do
3005 {
3006 edge e;
3007 edge_iterator ei;
3008
3009 block = *--sp;
3010
3011 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3012 some dead EH outgoing edge after the deletion of the trapping
3013 insn inside the block. Since the number of predecessors of
3014 BLOCK's successors was computed based on the initial edge set,
3015 we check the necessity to process some of these successors
3016 before such an edge deletion may happen. However, there is
3017 a pitfall: if BLOCK is the only predecessor of a successor and
3018 the edge between them happens to be deleted, the successor
3019 becomes unreachable and should not be processed. The problem
3020 is that there is no way to preventively detect this case so we
3021 stack the successor in all cases and hand over the task of
3022 fixing up the discrepancy to convert_regs_1. */
3023
3024 FOR_EACH_EDGE (e, ei, block->succs)
3025 if (! (e->flags & EDGE_DFS_BACK))
3026 {
3027 BLOCK_INFO (e->dest)->predecessors--;
3028 if (!BLOCK_INFO (e->dest)->predecessors)
3029 *sp++ = e->dest;
3030 }
3031
3032 convert_regs_1 (block);
3033 }
3034 while (sp != stack);
3035
3036 free (stack);
3037 }
3038
3039 /* Traverse all basic blocks in a function, converting the register
3040 references in each insn from the "flat" register file that gcc uses,
3041 to the stack-like registers the 387 uses. */
3042
3043 static void
3044 convert_regs (void)
3045 {
3046 int inserted;
3047 basic_block b;
3048 edge e;
3049 edge_iterator ei;
3050
3051 /* Initialize uninitialized registers on function entry. */
3052 inserted = convert_regs_entry ();
3053
3054 /* Construct the desired stack for function exit. */
3055 convert_regs_exit ();
3056 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3057
3058 /* ??? Future: process inner loops first, and give them arbitrary
3059 initial stacks which emit_swap_insn can modify. This ought to
3060 prevent double fxch that often appears at the head of a loop. */
3061
3062 /* Process all blocks reachable from all entry points. */
3063 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3064 convert_regs_2 (e->dest);
3065
3066 /* ??? Process all unreachable blocks. Though there's no excuse
3067 for keeping these even when not optimizing. */
3068 FOR_EACH_BB (b)
3069 {
3070 block_info bi = BLOCK_INFO (b);
3071
3072 if (! bi->done)
3073 convert_regs_2 (b);
3074 }
3075
3076 inserted |= compensate_edges ();
3077
3078 clear_aux_for_blocks ();
3079
3080 fixup_abnormal_edges ();
3081 if (inserted)
3082 commit_edge_insertions ();
3083
3084 if (dump_file)
3085 fputc ('\n', dump_file);
3086 }
3087 \f
3088 /* Convert register usage from "flat" register file usage to a "stack
3089 register file. FILE is the dump file, if used.
3090
3091 Construct a CFG and run life analysis. Then convert each insn one
3092 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3093 code duplication created when the converter inserts pop insns on
3094 the edges. */
3095
3096 static bool
3097 reg_to_stack (void)
3098 {
3099 basic_block bb;
3100 int i;
3101 int max_uid;
3102
3103 /* Clean up previous run. */
3104 if (stack_regs_mentioned_data != NULL)
3105 VEC_free (char, heap, stack_regs_mentioned_data);
3106
3107 /* See if there is something to do. Flow analysis is quite
3108 expensive so we might save some compilation time. */
3109 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3110 if (df_regs_ever_live_p (i))
3111 break;
3112 if (i > LAST_STACK_REG)
3113 return false;
3114
3115 df_note_add_problem ();
3116 df_analyze ();
3117
3118 mark_dfs_back_edges ();
3119
3120 /* Set up block info for each basic block. */
3121 alloc_aux_for_blocks (sizeof (struct block_info_def));
3122 FOR_EACH_BB (bb)
3123 {
3124 block_info bi = BLOCK_INFO (bb);
3125 edge_iterator ei;
3126 edge e;
3127 int reg;
3128
3129 FOR_EACH_EDGE (e, ei, bb->preds)
3130 if (!(e->flags & EDGE_DFS_BACK)
3131 && e->src != ENTRY_BLOCK_PTR)
3132 bi->predecessors++;
3133
3134 /* Set current register status at last instruction `uninitialized'. */
3135 bi->stack_in.top = -2;
3136
3137 /* Copy live_at_end and live_at_start into temporaries. */
3138 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3139 {
3140 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3141 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3142 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3143 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3144 }
3145 }
3146
3147 /* Create the replacement registers up front. */
3148 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3149 {
3150 enum machine_mode mode;
3151 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3152 mode != VOIDmode;
3153 mode = GET_MODE_WIDER_MODE (mode))
3154 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3155 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3156 mode != VOIDmode;
3157 mode = GET_MODE_WIDER_MODE (mode))
3158 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3159 }
3160
3161 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3162
3163 /* A QNaN for initializing uninitialized variables.
3164
3165 ??? We can't load from constant memory in PIC mode, because
3166 we're inserting these instructions before the prologue and
3167 the PIC register hasn't been set up. In that case, fall back
3168 on zero, which we can get from `ldz'. */
3169
3170 if ((flag_pic && !TARGET_64BIT)
3171 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3172 not_a_num = CONST0_RTX (SFmode);
3173 else
3174 {
3175 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3176 not_a_num = force_const_mem (SFmode, not_a_num);
3177 }
3178
3179 /* Allocate a cache for stack_regs_mentioned. */
3180 max_uid = get_max_uid ();
3181 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3182 memset (VEC_address (char, stack_regs_mentioned_data),
3183 0, sizeof (char) * max_uid + 1);
3184
3185 convert_regs ();
3186
3187 free_aux_for_blocks ();
3188 return true;
3189 }
3190 #endif /* STACK_REGS */
3191 \f
3192 static bool
3193 gate_handle_stack_regs (void)
3194 {
3195 #ifdef STACK_REGS
3196 return 1;
3197 #else
3198 return 0;
3199 #endif
3200 }
3201
3202 struct rtl_opt_pass pass_stack_regs =
3203 {
3204 {
3205 RTL_PASS,
3206 NULL, /* name */
3207 gate_handle_stack_regs, /* gate */
3208 NULL, /* execute */
3209 NULL, /* sub */
3210 NULL, /* next */
3211 0, /* static_pass_number */
3212 TV_REG_STACK, /* tv_id */
3213 0, /* properties_required */
3214 0, /* properties_provided */
3215 0, /* properties_destroyed */
3216 0, /* todo_flags_start */
3217 0 /* todo_flags_finish */
3218 }
3219 };
3220
3221 /* Convert register usage from flat register file usage to a stack
3222 register file. */
3223 static unsigned int
3224 rest_of_handle_stack_regs (void)
3225 {
3226 #ifdef STACK_REGS
3227 reg_to_stack ();
3228 regstack_completed = 1;
3229 #endif
3230 return 0;
3231 }
3232
3233 struct rtl_opt_pass pass_stack_regs_run =
3234 {
3235 {
3236 RTL_PASS,
3237 "stack", /* name */
3238 NULL, /* gate */
3239 rest_of_handle_stack_regs, /* execute */
3240 NULL, /* sub */
3241 NULL, /* next */
3242 0, /* static_pass_number */
3243 TV_REG_STACK, /* tv_id */
3244 0, /* properties_required */
3245 0, /* properties_provided */
3246 0, /* properties_destroyed */
3247 0, /* todo_flags_start */
3248 TODO_df_finish | TODO_verify_rtl_sharing |
3249 TODO_dump_func |
3250 TODO_ggc_collect /* todo_flags_finish */
3251 }
3252 };