dumping cleanup phase 1 -- Removing TODO_dump_func
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153 \f
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl-error.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "recog.h"
167 #include "output.h"
168 #include "basic-block.h"
169 #include "cfglayout.h"
170 #include "reload.h"
171 #include "ggc.h"
172 #include "timevar.h"
173 #include "tree-pass.h"
174 #include "target.h"
175 #include "df.h"
176 #include "vecprim.h"
177 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
178
179 #ifdef STACK_REGS
180
181 /* We use this array to cache info about insns, because otherwise we
182 spend too much time in stack_regs_mentioned_p.
183
184 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
185 the insn uses stack registers, two indicates the insn does not use
186 stack registers. */
187 static VEC(char,heap) *stack_regs_mentioned_data;
188
189 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
190
191 int regstack_completed = 0;
192
193 /* This is the basic stack record. TOP is an index into REG[] such
194 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
195
196 If TOP is -2, REG[] is not yet initialized. Stack initialization
197 consists of placing each live reg in array `reg' and setting `top'
198 appropriately.
199
200 REG_SET indicates which registers are live. */
201
202 typedef struct stack_def
203 {
204 int top; /* index to top stack element */
205 HARD_REG_SET reg_set; /* set of live registers */
206 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
207 } *stack;
208
209 /* This is used to carry information about basic blocks. It is
210 attached to the AUX field of the standard CFG block. */
211
212 typedef struct block_info_def
213 {
214 struct stack_def stack_in; /* Input stack configuration. */
215 struct stack_def stack_out; /* Output stack configuration. */
216 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
217 int done; /* True if block already converted. */
218 int predecessors; /* Number of predecessors that need
219 to be visited. */
220 } *block_info;
221
222 #define BLOCK_INFO(B) ((block_info) (B)->aux)
223
224 /* Passed to change_stack to indicate where to emit insns. */
225 enum emit_where
226 {
227 EMIT_AFTER,
228 EMIT_BEFORE
229 };
230
231 /* The block we're currently working on. */
232 static basic_block current_block;
233
234 /* In the current_block, whether we're processing the first register
235 stack or call instruction, i.e. the regstack is currently the
236 same as BLOCK_INFO(current_block)->stack_in. */
237 static bool starting_stack_p;
238
239 /* This is the register file for all register after conversion. */
240 static rtx
241 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
242
243 #define FP_MODE_REG(regno,mode) \
244 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
245
246 /* Used to initialize uninitialized registers. */
247 static rtx not_a_num;
248
249 /* Forward declarations */
250
251 static int stack_regs_mentioned_p (const_rtx pat);
252 static void pop_stack (stack, int);
253 static rtx *get_true_reg (rtx *);
254
255 static int check_asm_stack_operands (rtx);
256 static void get_asm_operands_in_out (rtx, int *, int *);
257 static rtx stack_result (tree);
258 static void replace_reg (rtx *, int);
259 static void remove_regno_note (rtx, enum reg_note, unsigned int);
260 static int get_hard_regnum (stack, rtx);
261 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
262 static void swap_to_top(rtx, stack, rtx, rtx);
263 static bool move_for_stack_reg (rtx, stack, rtx);
264 static bool move_nan_for_stack_reg (rtx, stack, rtx);
265 static int swap_rtx_condition_1 (rtx);
266 static int swap_rtx_condition (rtx);
267 static void compare_for_stack_reg (rtx, stack, rtx);
268 static bool subst_stack_regs_pat (rtx, stack, rtx);
269 static void subst_asm_stack_regs (rtx, stack);
270 static bool subst_stack_regs (rtx, stack);
271 static void change_stack (rtx, stack, stack, enum emit_where);
272 static void print_stack (FILE *, stack);
273 static rtx next_flags_user (rtx);
274 \f
275 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
276
277 static int
278 stack_regs_mentioned_p (const_rtx pat)
279 {
280 const char *fmt;
281 int i;
282
283 if (STACK_REG_P (pat))
284 return 1;
285
286 fmt = GET_RTX_FORMAT (GET_CODE (pat));
287 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288 {
289 if (fmt[i] == 'E')
290 {
291 int j;
292
293 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
294 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
295 return 1;
296 }
297 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
298 return 1;
299 }
300
301 return 0;
302 }
303
304 /* Return nonzero if INSN mentions stacked registers, else return zero. */
305
306 int
307 stack_regs_mentioned (const_rtx insn)
308 {
309 unsigned int uid, max;
310 int test;
311
312 if (! INSN_P (insn) || !stack_regs_mentioned_data)
313 return 0;
314
315 uid = INSN_UID (insn);
316 max = VEC_length (char, stack_regs_mentioned_data);
317 if (uid >= max)
318 {
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max = uid + uid / 20 + 1;
322 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
323 }
324
325 test = VEC_index (char, stack_regs_mentioned_data, uid);
326 if (test == 0)
327 {
328 /* This insn has yet to be examined. Do so now. */
329 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330 VEC_replace (char, stack_regs_mentioned_data, uid, test);
331 }
332
333 return test == 1;
334 }
335 \f
336 static rtx ix86_flags_rtx;
337
338 static rtx
339 next_flags_user (rtx insn)
340 {
341 /* Search forward looking for the first use of this value.
342 Stop at block boundaries. */
343
344 while (insn != BB_END (current_block))
345 {
346 insn = NEXT_INSN (insn);
347
348 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
349 return insn;
350
351 if (CALL_P (insn))
352 return NULL_RTX;
353 }
354 return NULL_RTX;
355 }
356 \f
357 /* Reorganize the stack into ascending numbers, before this insn. */
358
359 static void
360 straighten_stack (rtx insn, stack regstack)
361 {
362 struct stack_def temp_stack;
363 int top;
364
365 /* If there is only a single register on the stack, then the stack is
366 already in increasing order and no reorganization is needed.
367
368 Similarly if the stack is empty. */
369 if (regstack->top <= 0)
370 return;
371
372 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
373
374 for (top = temp_stack.top = regstack->top; top >= 0; top--)
375 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
376
377 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
378 }
379
380 /* Pop a register from the stack. */
381
382 static void
383 pop_stack (stack regstack, int regno)
384 {
385 int top = regstack->top;
386
387 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
388 regstack->top--;
389 /* If regno was not at the top of stack then adjust stack. */
390 if (regstack->reg [top] != regno)
391 {
392 int i;
393 for (i = regstack->top; i >= 0; i--)
394 if (regstack->reg [i] == regno)
395 {
396 int j;
397 for (j = i; j < top; j++)
398 regstack->reg [j] = regstack->reg [j + 1];
399 break;
400 }
401 }
402 }
403 \f
404 /* Return a pointer to the REG expression within PAT. If PAT is not a
405 REG, possible enclosed by a conversion rtx, return the inner part of
406 PAT that stopped the search. */
407
408 static rtx *
409 get_true_reg (rtx *pat)
410 {
411 for (;;)
412 switch (GET_CODE (*pat))
413 {
414 case SUBREG:
415 /* Eliminate FP subregister accesses in favor of the
416 actual FP register in use. */
417 {
418 rtx subreg;
419 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
420 {
421 int regno_off = subreg_regno_offset (REGNO (subreg),
422 GET_MODE (subreg),
423 SUBREG_BYTE (*pat),
424 GET_MODE (*pat));
425 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
426 GET_MODE (subreg));
427 return pat;
428 }
429 }
430 case FLOAT:
431 case FIX:
432 case FLOAT_EXTEND:
433 pat = & XEXP (*pat, 0);
434 break;
435
436 case UNSPEC:
437 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
438 pat = & XVECEXP (*pat, 0, 0);
439 return pat;
440
441 case FLOAT_TRUNCATE:
442 if (!flag_unsafe_math_optimizations)
443 return pat;
444 pat = & XEXP (*pat, 0);
445 break;
446
447 default:
448 return pat;
449 }
450 }
451 \f
452 /* Set if we find any malformed asms in a block. */
453 static bool any_malformed_asm;
454
455 /* There are many rules that an asm statement for stack-like regs must
456 follow. Those rules are explained at the top of this file: the rule
457 numbers below refer to that explanation. */
458
459 static int
460 check_asm_stack_operands (rtx insn)
461 {
462 int i;
463 int n_clobbers;
464 int malformed_asm = 0;
465 rtx body = PATTERN (insn);
466
467 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
468 char implicitly_dies[FIRST_PSEUDO_REGISTER];
469 int alt;
470
471 rtx *clobber_reg = 0;
472 int n_inputs, n_outputs;
473
474 /* Find out what the constraints require. If no constraint
475 alternative matches, this asm is malformed. */
476 extract_insn (insn);
477 constrain_operands (1);
478 alt = which_alternative;
479
480 preprocess_constraints ();
481
482 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
483
484 if (alt < 0)
485 {
486 malformed_asm = 1;
487 /* Avoid further trouble with this insn. */
488 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
489 return 0;
490 }
491
492 /* Strip SUBREGs here to make the following code simpler. */
493 for (i = 0; i < recog_data.n_operands; i++)
494 if (GET_CODE (recog_data.operand[i]) == SUBREG
495 && REG_P (SUBREG_REG (recog_data.operand[i])))
496 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
497
498 /* Set up CLOBBER_REG. */
499
500 n_clobbers = 0;
501
502 if (GET_CODE (body) == PARALLEL)
503 {
504 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
505
506 for (i = 0; i < XVECLEN (body, 0); i++)
507 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
508 {
509 rtx clobber = XVECEXP (body, 0, i);
510 rtx reg = XEXP (clobber, 0);
511
512 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
513 reg = SUBREG_REG (reg);
514
515 if (STACK_REG_P (reg))
516 {
517 clobber_reg[n_clobbers] = reg;
518 n_clobbers++;
519 }
520 }
521 }
522
523 /* Enforce rule #4: Output operands must specifically indicate which
524 reg an output appears in after an asm. "=f" is not allowed: the
525 operand constraints must select a class with a single reg.
526
527 Also enforce rule #5: Output operands must start at the top of
528 the reg-stack: output operands may not "skip" a reg. */
529
530 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
531 for (i = 0; i < n_outputs; i++)
532 if (STACK_REG_P (recog_data.operand[i]))
533 {
534 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
535 {
536 error_for_asm (insn, "output constraint %d must specify a single register", i);
537 malformed_asm = 1;
538 }
539 else
540 {
541 int j;
542
543 for (j = 0; j < n_clobbers; j++)
544 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
545 {
546 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
547 i, reg_names [REGNO (clobber_reg[j])]);
548 malformed_asm = 1;
549 break;
550 }
551 if (j == n_clobbers)
552 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
553 }
554 }
555
556
557 /* Search for first non-popped reg. */
558 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
559 if (! reg_used_as_output[i])
560 break;
561
562 /* If there are any other popped regs, that's an error. */
563 for (; i < LAST_STACK_REG + 1; i++)
564 if (reg_used_as_output[i])
565 break;
566
567 if (i != LAST_STACK_REG + 1)
568 {
569 error_for_asm (insn, "output regs must be grouped at top of stack");
570 malformed_asm = 1;
571 }
572
573 /* Enforce rule #2: All implicitly popped input regs must be closer
574 to the top of the reg-stack than any input that is not implicitly
575 popped. */
576
577 memset (implicitly_dies, 0, sizeof (implicitly_dies));
578 for (i = n_outputs; i < n_outputs + n_inputs; i++)
579 if (STACK_REG_P (recog_data.operand[i]))
580 {
581 /* An input reg is implicitly popped if it is tied to an
582 output, or if there is a CLOBBER for it. */
583 int j;
584
585 for (j = 0; j < n_clobbers; j++)
586 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
587 break;
588
589 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
590 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
591 }
592
593 /* Search for first non-popped reg. */
594 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
595 if (! implicitly_dies[i])
596 break;
597
598 /* If there are any other popped regs, that's an error. */
599 for (; i < LAST_STACK_REG + 1; i++)
600 if (implicitly_dies[i])
601 break;
602
603 if (i != LAST_STACK_REG + 1)
604 {
605 error_for_asm (insn,
606 "implicitly popped regs must be grouped at top of stack");
607 malformed_asm = 1;
608 }
609
610 /* Enforce rule #3: If any input operand uses the "f" constraint, all
611 output constraints must use the "&" earlyclobber.
612
613 ??? Detect this more deterministically by having constrain_asm_operands
614 record any earlyclobber. */
615
616 for (i = n_outputs; i < n_outputs + n_inputs; i++)
617 if (recog_op_alt[i][alt].matches == -1)
618 {
619 int j;
620
621 for (j = 0; j < n_outputs; j++)
622 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
623 {
624 error_for_asm (insn,
625 "output operand %d must use %<&%> constraint", j);
626 malformed_asm = 1;
627 }
628 }
629
630 if (malformed_asm)
631 {
632 /* Avoid further trouble with this insn. */
633 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
634 any_malformed_asm = true;
635 return 0;
636 }
637
638 return 1;
639 }
640 \f
641 /* Calculate the number of inputs and outputs in BODY, an
642 asm_operands. N_OPERANDS is the total number of operands, and
643 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
644 placed. */
645
646 static void
647 get_asm_operands_in_out (rtx body, int *pout, int *pin)
648 {
649 rtx asmop = extract_asm_operands (body);
650
651 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
652 *pout = (recog_data.n_operands
653 - ASM_OPERANDS_INPUT_LENGTH (asmop)
654 - ASM_OPERANDS_LABEL_LENGTH (asmop));
655 }
656
657 /* If current function returns its result in an fp stack register,
658 return the REG. Otherwise, return 0. */
659
660 static rtx
661 stack_result (tree decl)
662 {
663 rtx result;
664
665 /* If the value is supposed to be returned in memory, then clearly
666 it is not returned in a stack register. */
667 if (aggregate_value_p (DECL_RESULT (decl), decl))
668 return 0;
669
670 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
671 if (result != 0)
672 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
673 decl, true);
674
675 return result != 0 && STACK_REG_P (result) ? result : 0;
676 }
677 \f
678
679 /*
680 * This section deals with stack register substitution, and forms the second
681 * pass over the RTL.
682 */
683
684 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
685 the desired hard REGNO. */
686
687 static void
688 replace_reg (rtx *reg, int regno)
689 {
690 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
691 gcc_assert (STACK_REG_P (*reg));
692
693 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
694 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
695
696 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
697 }
698
699 /* Remove a note of type NOTE, which must be found, for register
700 number REGNO from INSN. Remove only one such note. */
701
702 static void
703 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
704 {
705 rtx *note_link, this_rtx;
706
707 note_link = &REG_NOTES (insn);
708 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
709 if (REG_NOTE_KIND (this_rtx) == note
710 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
711 {
712 *note_link = XEXP (this_rtx, 1);
713 return;
714 }
715 else
716 note_link = &XEXP (this_rtx, 1);
717
718 gcc_unreachable ();
719 }
720
721 /* Find the hard register number of virtual register REG in REGSTACK.
722 The hard register number is relative to the top of the stack. -1 is
723 returned if the register is not found. */
724
725 static int
726 get_hard_regnum (stack regstack, rtx reg)
727 {
728 int i;
729
730 gcc_assert (STACK_REG_P (reg));
731
732 for (i = regstack->top; i >= 0; i--)
733 if (regstack->reg[i] == REGNO (reg))
734 break;
735
736 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
737 }
738 \f
739 /* Emit an insn to pop virtual register REG before or after INSN.
740 REGSTACK is the stack state after INSN and is updated to reflect this
741 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
742 is represented as a SET whose destination is the register to be popped
743 and source is the top of stack. A death note for the top of stack
744 cases the movdf pattern to pop. */
745
746 static rtx
747 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
748 {
749 rtx pop_insn, pop_rtx;
750 int hard_regno;
751
752 /* For complex types take care to pop both halves. These may survive in
753 CLOBBER and USE expressions. */
754 if (COMPLEX_MODE_P (GET_MODE (reg)))
755 {
756 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
757 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
758
759 pop_insn = NULL_RTX;
760 if (get_hard_regnum (regstack, reg1) >= 0)
761 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
762 if (get_hard_regnum (regstack, reg2) >= 0)
763 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
764 gcc_assert (pop_insn);
765 return pop_insn;
766 }
767
768 hard_regno = get_hard_regnum (regstack, reg);
769
770 gcc_assert (hard_regno >= FIRST_STACK_REG);
771
772 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
773 FP_MODE_REG (FIRST_STACK_REG, DFmode));
774
775 if (where == EMIT_AFTER)
776 pop_insn = emit_insn_after (pop_rtx, insn);
777 else
778 pop_insn = emit_insn_before (pop_rtx, insn);
779
780 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
781
782 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
783 = regstack->reg[regstack->top];
784 regstack->top -= 1;
785 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
786
787 return pop_insn;
788 }
789 \f
790 /* Emit an insn before or after INSN to swap virtual register REG with
791 the top of stack. REGSTACK is the stack state before the swap, and
792 is updated to reflect the swap. A swap insn is represented as a
793 PARALLEL of two patterns: each pattern moves one reg to the other.
794
795 If REG is already at the top of the stack, no insn is emitted. */
796
797 static void
798 emit_swap_insn (rtx insn, stack regstack, rtx reg)
799 {
800 int hard_regno;
801 rtx swap_rtx;
802 int tmp, other_reg; /* swap regno temps */
803 rtx i1; /* the stack-reg insn prior to INSN */
804 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
805
806 hard_regno = get_hard_regnum (regstack, reg);
807
808 if (hard_regno == FIRST_STACK_REG)
809 return;
810 if (hard_regno == -1)
811 {
812 /* Something failed if the register wasn't on the stack. If we had
813 malformed asms, we zapped the instruction itself, but that didn't
814 produce the same pattern of register sets as before. To prevent
815 further failure, adjust REGSTACK to include REG at TOP. */
816 gcc_assert (any_malformed_asm);
817 regstack->reg[++regstack->top] = REGNO (reg);
818 return;
819 }
820 gcc_assert (hard_regno >= FIRST_STACK_REG);
821
822 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
823
824 tmp = regstack->reg[other_reg];
825 regstack->reg[other_reg] = regstack->reg[regstack->top];
826 regstack->reg[regstack->top] = tmp;
827
828 /* Find the previous insn involving stack regs, but don't pass a
829 block boundary. */
830 i1 = NULL;
831 if (current_block && insn != BB_HEAD (current_block))
832 {
833 rtx tmp = PREV_INSN (insn);
834 rtx limit = PREV_INSN (BB_HEAD (current_block));
835 while (tmp != limit)
836 {
837 if (LABEL_P (tmp)
838 || CALL_P (tmp)
839 || NOTE_INSN_BASIC_BLOCK_P (tmp)
840 || (NONJUMP_INSN_P (tmp)
841 && stack_regs_mentioned (tmp)))
842 {
843 i1 = tmp;
844 break;
845 }
846 tmp = PREV_INSN (tmp);
847 }
848 }
849
850 if (i1 != NULL_RTX
851 && (i1set = single_set (i1)) != NULL_RTX)
852 {
853 rtx i1src = *get_true_reg (&SET_SRC (i1set));
854 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
855
856 /* If the previous register stack push was from the reg we are to
857 swap with, omit the swap. */
858
859 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
860 && REG_P (i1src)
861 && REGNO (i1src) == (unsigned) hard_regno - 1
862 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
863 return;
864
865 /* If the previous insn wrote to the reg we are to swap with,
866 omit the swap. */
867
868 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
869 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
870 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
871 return;
872 }
873
874 /* Avoid emitting the swap if this is the first register stack insn
875 of the current_block. Instead update the current_block's stack_in
876 and let compensate edges take care of this for us. */
877 if (current_block && starting_stack_p)
878 {
879 BLOCK_INFO (current_block)->stack_in = *regstack;
880 starting_stack_p = false;
881 return;
882 }
883
884 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
885 FP_MODE_REG (FIRST_STACK_REG, XFmode));
886
887 if (i1)
888 emit_insn_after (swap_rtx, i1);
889 else if (current_block)
890 emit_insn_before (swap_rtx, BB_HEAD (current_block));
891 else
892 emit_insn_before (swap_rtx, insn);
893 }
894 \f
895 /* Emit an insns before INSN to swap virtual register SRC1 with
896 the top of stack and virtual register SRC2 with second stack
897 slot. REGSTACK is the stack state before the swaps, and
898 is updated to reflect the swaps. A swap insn is represented as a
899 PARALLEL of two patterns: each pattern moves one reg to the other.
900
901 If SRC1 and/or SRC2 are already at the right place, no swap insn
902 is emitted. */
903
904 static void
905 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
906 {
907 struct stack_def temp_stack;
908 int regno, j, k, temp;
909
910 temp_stack = *regstack;
911
912 /* Place operand 1 at the top of stack. */
913 regno = get_hard_regnum (&temp_stack, src1);
914 gcc_assert (regno >= 0);
915 if (regno != FIRST_STACK_REG)
916 {
917 k = temp_stack.top - (regno - FIRST_STACK_REG);
918 j = temp_stack.top;
919
920 temp = temp_stack.reg[k];
921 temp_stack.reg[k] = temp_stack.reg[j];
922 temp_stack.reg[j] = temp;
923 }
924
925 /* Place operand 2 next on the stack. */
926 regno = get_hard_regnum (&temp_stack, src2);
927 gcc_assert (regno >= 0);
928 if (regno != FIRST_STACK_REG + 1)
929 {
930 k = temp_stack.top - (regno - FIRST_STACK_REG);
931 j = temp_stack.top - 1;
932
933 temp = temp_stack.reg[k];
934 temp_stack.reg[k] = temp_stack.reg[j];
935 temp_stack.reg[j] = temp;
936 }
937
938 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
939 }
940 \f
941 /* Handle a move to or from a stack register in PAT, which is in INSN.
942 REGSTACK is the current stack. Return whether a control flow insn
943 was deleted in the process. */
944
945 static bool
946 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
947 {
948 rtx *psrc = get_true_reg (&SET_SRC (pat));
949 rtx *pdest = get_true_reg (&SET_DEST (pat));
950 rtx src, dest;
951 rtx note;
952 bool control_flow_insn_deleted = false;
953
954 src = *psrc; dest = *pdest;
955
956 if (STACK_REG_P (src) && STACK_REG_P (dest))
957 {
958 /* Write from one stack reg to another. If SRC dies here, then
959 just change the register mapping and delete the insn. */
960
961 note = find_regno_note (insn, REG_DEAD, REGNO (src));
962 if (note)
963 {
964 int i;
965
966 /* If this is a no-op move, there must not be a REG_DEAD note. */
967 gcc_assert (REGNO (src) != REGNO (dest));
968
969 for (i = regstack->top; i >= 0; i--)
970 if (regstack->reg[i] == REGNO (src))
971 break;
972
973 /* The destination must be dead, or life analysis is borked. */
974 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
975
976 /* If the source is not live, this is yet another case of
977 uninitialized variables. Load up a NaN instead. */
978 if (i < 0)
979 return move_nan_for_stack_reg (insn, regstack, dest);
980
981 /* It is possible that the dest is unused after this insn.
982 If so, just pop the src. */
983
984 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
985 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
986 else
987 {
988 regstack->reg[i] = REGNO (dest);
989 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
990 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
991 }
992
993 control_flow_insn_deleted |= control_flow_insn_p (insn);
994 delete_insn (insn);
995 return control_flow_insn_deleted;
996 }
997
998 /* The source reg does not die. */
999
1000 /* If this appears to be a no-op move, delete it, or else it
1001 will confuse the machine description output patterns. But if
1002 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1003 for REG_UNUSED will not work for deleted insns. */
1004
1005 if (REGNO (src) == REGNO (dest))
1006 {
1007 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1008 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1009
1010 control_flow_insn_deleted |= control_flow_insn_p (insn);
1011 delete_insn (insn);
1012 return control_flow_insn_deleted;
1013 }
1014
1015 /* The destination ought to be dead. */
1016 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1017
1018 replace_reg (psrc, get_hard_regnum (regstack, src));
1019
1020 regstack->reg[++regstack->top] = REGNO (dest);
1021 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1022 replace_reg (pdest, FIRST_STACK_REG);
1023 }
1024 else if (STACK_REG_P (src))
1025 {
1026 /* Save from a stack reg to MEM, or possibly integer reg. Since
1027 only top of stack may be saved, emit an exchange first if
1028 needs be. */
1029
1030 emit_swap_insn (insn, regstack, src);
1031
1032 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1033 if (note)
1034 {
1035 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1036 regstack->top--;
1037 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1038 }
1039 else if ((GET_MODE (src) == XFmode)
1040 && regstack->top < REG_STACK_SIZE - 1)
1041 {
1042 /* A 387 cannot write an XFmode value to a MEM without
1043 clobbering the source reg. The output code can handle
1044 this by reading back the value from the MEM.
1045 But it is more efficient to use a temp register if one is
1046 available. Push the source value here if the register
1047 stack is not full, and then write the value to memory via
1048 a pop. */
1049 rtx push_rtx;
1050 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1051
1052 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1053 emit_insn_before (push_rtx, insn);
1054 add_reg_note (insn, REG_DEAD, top_stack_reg);
1055 }
1056
1057 replace_reg (psrc, FIRST_STACK_REG);
1058 }
1059 else
1060 {
1061 rtx pat = PATTERN (insn);
1062
1063 gcc_assert (STACK_REG_P (dest));
1064
1065 /* Load from MEM, or possibly integer REG or constant, into the
1066 stack regs. The actual target is always the top of the
1067 stack. The stack mapping is changed to reflect that DEST is
1068 now at top of stack. */
1069
1070 /* The destination ought to be dead. However, there is a
1071 special case with i387 UNSPEC_TAN, where destination is live
1072 (an argument to fptan) but inherent load of 1.0 is modelled
1073 as a load from a constant. */
1074 if (GET_CODE (pat) == PARALLEL
1075 && XVECLEN (pat, 0) == 2
1076 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1077 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1078 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1079 emit_swap_insn (insn, regstack, dest);
1080 else
1081 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1082
1083 gcc_assert (regstack->top < REG_STACK_SIZE);
1084
1085 regstack->reg[++regstack->top] = REGNO (dest);
1086 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1087 replace_reg (pdest, FIRST_STACK_REG);
1088 }
1089
1090 return control_flow_insn_deleted;
1091 }
1092
1093 /* A helper function which replaces INSN with a pattern that loads up
1094 a NaN into DEST, then invokes move_for_stack_reg. */
1095
1096 static bool
1097 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1098 {
1099 rtx pat;
1100
1101 dest = FP_MODE_REG (REGNO (dest), SFmode);
1102 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1103 PATTERN (insn) = pat;
1104 INSN_CODE (insn) = -1;
1105
1106 return move_for_stack_reg (insn, regstack, pat);
1107 }
1108 \f
1109 /* Swap the condition on a branch, if there is one. Return true if we
1110 found a condition to swap. False if the condition was not used as
1111 such. */
1112
1113 static int
1114 swap_rtx_condition_1 (rtx pat)
1115 {
1116 const char *fmt;
1117 int i, r = 0;
1118
1119 if (COMPARISON_P (pat))
1120 {
1121 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1122 r = 1;
1123 }
1124 else
1125 {
1126 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1127 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1128 {
1129 if (fmt[i] == 'E')
1130 {
1131 int j;
1132
1133 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1134 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1135 }
1136 else if (fmt[i] == 'e')
1137 r |= swap_rtx_condition_1 (XEXP (pat, i));
1138 }
1139 }
1140
1141 return r;
1142 }
1143
1144 static int
1145 swap_rtx_condition (rtx insn)
1146 {
1147 rtx pat = PATTERN (insn);
1148
1149 /* We're looking for a single set to cc0 or an HImode temporary. */
1150
1151 if (GET_CODE (pat) == SET
1152 && REG_P (SET_DEST (pat))
1153 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1154 {
1155 insn = next_flags_user (insn);
1156 if (insn == NULL_RTX)
1157 return 0;
1158 pat = PATTERN (insn);
1159 }
1160
1161 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1162 with the cc value right now. We may be able to search for one
1163 though. */
1164
1165 if (GET_CODE (pat) == SET
1166 && GET_CODE (SET_SRC (pat)) == UNSPEC
1167 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1168 {
1169 rtx dest = SET_DEST (pat);
1170
1171 /* Search forward looking for the first use of this value.
1172 Stop at block boundaries. */
1173 while (insn != BB_END (current_block))
1174 {
1175 insn = NEXT_INSN (insn);
1176 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1177 break;
1178 if (CALL_P (insn))
1179 return 0;
1180 }
1181
1182 /* We haven't found it. */
1183 if (insn == BB_END (current_block))
1184 return 0;
1185
1186 /* So we've found the insn using this value. If it is anything
1187 other than sahf or the value does not die (meaning we'd have
1188 to search further), then we must give up. */
1189 pat = PATTERN (insn);
1190 if (GET_CODE (pat) != SET
1191 || GET_CODE (SET_SRC (pat)) != UNSPEC
1192 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1193 || ! dead_or_set_p (insn, dest))
1194 return 0;
1195
1196 /* Now we are prepared to handle this as a normal cc0 setter. */
1197 insn = next_flags_user (insn);
1198 if (insn == NULL_RTX)
1199 return 0;
1200 pat = PATTERN (insn);
1201 }
1202
1203 if (swap_rtx_condition_1 (pat))
1204 {
1205 int fail = 0;
1206 INSN_CODE (insn) = -1;
1207 if (recog_memoized (insn) == -1)
1208 fail = 1;
1209 /* In case the flags don't die here, recurse to try fix
1210 following user too. */
1211 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1212 {
1213 insn = next_flags_user (insn);
1214 if (!insn || !swap_rtx_condition (insn))
1215 fail = 1;
1216 }
1217 if (fail)
1218 {
1219 swap_rtx_condition_1 (pat);
1220 return 0;
1221 }
1222 return 1;
1223 }
1224 return 0;
1225 }
1226
1227 /* Handle a comparison. Special care needs to be taken to avoid
1228 causing comparisons that a 387 cannot do correctly, such as EQ.
1229
1230 Also, a pop insn may need to be emitted. The 387 does have an
1231 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1232 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1233 set up. */
1234
1235 static void
1236 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1237 {
1238 rtx *src1, *src2;
1239 rtx src1_note, src2_note;
1240
1241 src1 = get_true_reg (&XEXP (pat_src, 0));
1242 src2 = get_true_reg (&XEXP (pat_src, 1));
1243
1244 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1245 registers that die in this insn - move those to stack top first. */
1246 if ((! STACK_REG_P (*src1)
1247 || (STACK_REG_P (*src2)
1248 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1249 && swap_rtx_condition (insn))
1250 {
1251 rtx temp;
1252 temp = XEXP (pat_src, 0);
1253 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1254 XEXP (pat_src, 1) = temp;
1255
1256 src1 = get_true_reg (&XEXP (pat_src, 0));
1257 src2 = get_true_reg (&XEXP (pat_src, 1));
1258
1259 INSN_CODE (insn) = -1;
1260 }
1261
1262 /* We will fix any death note later. */
1263
1264 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1265
1266 if (STACK_REG_P (*src2))
1267 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1268 else
1269 src2_note = NULL_RTX;
1270
1271 emit_swap_insn (insn, regstack, *src1);
1272
1273 replace_reg (src1, FIRST_STACK_REG);
1274
1275 if (STACK_REG_P (*src2))
1276 replace_reg (src2, get_hard_regnum (regstack, *src2));
1277
1278 if (src1_note)
1279 {
1280 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1281 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1282 }
1283
1284 /* If the second operand dies, handle that. But if the operands are
1285 the same stack register, don't bother, because only one death is
1286 needed, and it was just handled. */
1287
1288 if (src2_note
1289 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1290 && REGNO (*src1) == REGNO (*src2)))
1291 {
1292 /* As a special case, two regs may die in this insn if src2 is
1293 next to top of stack and the top of stack also dies. Since
1294 we have already popped src1, "next to top of stack" is really
1295 at top (FIRST_STACK_REG) now. */
1296
1297 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1298 && src1_note)
1299 {
1300 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1301 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1302 }
1303 else
1304 {
1305 /* The 386 can only represent death of the first operand in
1306 the case handled above. In all other cases, emit a separate
1307 pop and remove the death note from here. */
1308
1309 /* link_cc0_insns (insn); */
1310
1311 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1312
1313 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1314 EMIT_AFTER);
1315 }
1316 }
1317 }
1318 \f
1319 /* Substitute new registers in LOC, which is part of a debug insn.
1320 REGSTACK is the current register layout. */
1321
1322 static int
1323 subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1324 {
1325 rtx *tloc = get_true_reg (loc);
1326 stack regstack = (stack)data;
1327 int hard_regno;
1328
1329 if (!STACK_REG_P (*tloc))
1330 return 0;
1331
1332 if (tloc != loc)
1333 return 0;
1334
1335 hard_regno = get_hard_regnum (regstack, *loc);
1336
1337 /* If we can't find an active register, reset this debug insn. */
1338 if (hard_regno == -1)
1339 return 1;
1340
1341 gcc_assert (hard_regno >= FIRST_STACK_REG);
1342
1343 replace_reg (loc, hard_regno);
1344
1345 return -1;
1346 }
1347
1348 /* Substitute hardware stack regs in debug insn INSN, using stack
1349 layout REGSTACK. If we can't find a hardware stack reg for any of
1350 the REGs in it, reset the debug insn. */
1351
1352 static void
1353 subst_all_stack_regs_in_debug_insn (rtx insn, struct stack_def *regstack)
1354 {
1355 int ret = for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
1356 subst_stack_regs_in_debug_insn,
1357 regstack);
1358
1359 if (ret == 1)
1360 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1361 else
1362 gcc_checking_assert (ret == 0);
1363 }
1364
1365 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1366 is the current register layout. Return whether a control flow insn
1367 was deleted in the process. */
1368
1369 static bool
1370 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1371 {
1372 rtx *dest, *src;
1373 bool control_flow_insn_deleted = false;
1374
1375 switch (GET_CODE (pat))
1376 {
1377 case USE:
1378 /* Deaths in USE insns can happen in non optimizing compilation.
1379 Handle them by popping the dying register. */
1380 src = get_true_reg (&XEXP (pat, 0));
1381 if (STACK_REG_P (*src)
1382 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1383 {
1384 /* USEs are ignored for liveness information so USEs of dead
1385 register might happen. */
1386 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1387 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1388 return control_flow_insn_deleted;
1389 }
1390 /* Uninitialized USE might happen for functions returning uninitialized
1391 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1392 so it is safe to ignore the use here. This is consistent with behavior
1393 of dataflow analyzer that ignores USE too. (This also imply that
1394 forcibly initializing the register to NaN here would lead to ICE later,
1395 since the REG_DEAD notes are not issued.) */
1396 break;
1397
1398 case VAR_LOCATION:
1399 gcc_unreachable ();
1400
1401 case CLOBBER:
1402 {
1403 rtx note;
1404
1405 dest = get_true_reg (&XEXP (pat, 0));
1406 if (STACK_REG_P (*dest))
1407 {
1408 note = find_reg_note (insn, REG_DEAD, *dest);
1409
1410 if (pat != PATTERN (insn))
1411 {
1412 /* The fix_truncdi_1 pattern wants to be able to
1413 allocate its own scratch register. It does this by
1414 clobbering an fp reg so that it is assured of an
1415 empty reg-stack register. If the register is live,
1416 kill it now. Remove the DEAD/UNUSED note so we
1417 don't try to kill it later too.
1418
1419 In reality the UNUSED note can be absent in some
1420 complicated cases when the register is reused for
1421 partially set variable. */
1422
1423 if (note)
1424 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1425 else
1426 note = find_reg_note (insn, REG_UNUSED, *dest);
1427 if (note)
1428 remove_note (insn, note);
1429 replace_reg (dest, FIRST_STACK_REG + 1);
1430 }
1431 else
1432 {
1433 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1434 indicates an uninitialized value. Because reload removed
1435 all other clobbers, this must be due to a function
1436 returning without a value. Load up a NaN. */
1437
1438 if (!note)
1439 {
1440 rtx t = *dest;
1441 if (COMPLEX_MODE_P (GET_MODE (t)))
1442 {
1443 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1444 if (get_hard_regnum (regstack, u) == -1)
1445 {
1446 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1447 rtx insn2 = emit_insn_before (pat2, insn);
1448 control_flow_insn_deleted
1449 |= move_nan_for_stack_reg (insn2, regstack, u);
1450 }
1451 }
1452 if (get_hard_regnum (regstack, t) == -1)
1453 control_flow_insn_deleted
1454 |= move_nan_for_stack_reg (insn, regstack, t);
1455 }
1456 }
1457 }
1458 break;
1459 }
1460
1461 case SET:
1462 {
1463 rtx *src1 = (rtx *) 0, *src2;
1464 rtx src1_note, src2_note;
1465 rtx pat_src;
1466
1467 dest = get_true_reg (&SET_DEST (pat));
1468 src = get_true_reg (&SET_SRC (pat));
1469 pat_src = SET_SRC (pat);
1470
1471 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1472 if (STACK_REG_P (*src)
1473 || (STACK_REG_P (*dest)
1474 && (REG_P (*src) || MEM_P (*src)
1475 || GET_CODE (*src) == CONST_DOUBLE)))
1476 {
1477 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1478 break;
1479 }
1480
1481 switch (GET_CODE (pat_src))
1482 {
1483 case COMPARE:
1484 compare_for_stack_reg (insn, regstack, pat_src);
1485 break;
1486
1487 case CALL:
1488 {
1489 int count;
1490 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1491 --count >= 0;)
1492 {
1493 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1494 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1495 }
1496 }
1497 replace_reg (dest, FIRST_STACK_REG);
1498 break;
1499
1500 case REG:
1501 /* This is a `tstM2' case. */
1502 gcc_assert (*dest == cc0_rtx);
1503 src1 = src;
1504
1505 /* Fall through. */
1506
1507 case FLOAT_TRUNCATE:
1508 case SQRT:
1509 case ABS:
1510 case NEG:
1511 /* These insns only operate on the top of the stack. DEST might
1512 be cc0_rtx if we're processing a tstM pattern. Also, it's
1513 possible that the tstM case results in a REG_DEAD note on the
1514 source. */
1515
1516 if (src1 == 0)
1517 src1 = get_true_reg (&XEXP (pat_src, 0));
1518
1519 emit_swap_insn (insn, regstack, *src1);
1520
1521 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1522
1523 if (STACK_REG_P (*dest))
1524 replace_reg (dest, FIRST_STACK_REG);
1525
1526 if (src1_note)
1527 {
1528 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1529 regstack->top--;
1530 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1531 }
1532
1533 replace_reg (src1, FIRST_STACK_REG);
1534 break;
1535
1536 case MINUS:
1537 case DIV:
1538 /* On i386, reversed forms of subM3 and divM3 exist for
1539 MODE_FLOAT, so the same code that works for addM3 and mulM3
1540 can be used. */
1541 case MULT:
1542 case PLUS:
1543 /* These insns can accept the top of stack as a destination
1544 from a stack reg or mem, or can use the top of stack as a
1545 source and some other stack register (possibly top of stack)
1546 as a destination. */
1547
1548 src1 = get_true_reg (&XEXP (pat_src, 0));
1549 src2 = get_true_reg (&XEXP (pat_src, 1));
1550
1551 /* We will fix any death note later. */
1552
1553 if (STACK_REG_P (*src1))
1554 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1555 else
1556 src1_note = NULL_RTX;
1557 if (STACK_REG_P (*src2))
1558 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1559 else
1560 src2_note = NULL_RTX;
1561
1562 /* If either operand is not a stack register, then the dest
1563 must be top of stack. */
1564
1565 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1566 emit_swap_insn (insn, regstack, *dest);
1567 else
1568 {
1569 /* Both operands are REG. If neither operand is already
1570 at the top of stack, choose to make the one that is the
1571 dest the new top of stack. */
1572
1573 int src1_hard_regnum, src2_hard_regnum;
1574
1575 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1576 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1577
1578 /* If the source is not live, this is yet another case of
1579 uninitialized variables. Load up a NaN instead. */
1580 if (src1_hard_regnum == -1)
1581 {
1582 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1583 rtx insn2 = emit_insn_before (pat2, insn);
1584 control_flow_insn_deleted
1585 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1586 }
1587 if (src2_hard_regnum == -1)
1588 {
1589 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1590 rtx insn2 = emit_insn_before (pat2, insn);
1591 control_flow_insn_deleted
1592 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1593 }
1594
1595 if (src1_hard_regnum != FIRST_STACK_REG
1596 && src2_hard_regnum != FIRST_STACK_REG)
1597 emit_swap_insn (insn, regstack, *dest);
1598 }
1599
1600 if (STACK_REG_P (*src1))
1601 replace_reg (src1, get_hard_regnum (regstack, *src1));
1602 if (STACK_REG_P (*src2))
1603 replace_reg (src2, get_hard_regnum (regstack, *src2));
1604
1605 if (src1_note)
1606 {
1607 rtx src1_reg = XEXP (src1_note, 0);
1608
1609 /* If the register that dies is at the top of stack, then
1610 the destination is somewhere else - merely substitute it.
1611 But if the reg that dies is not at top of stack, then
1612 move the top of stack to the dead reg, as though we had
1613 done the insn and then a store-with-pop. */
1614
1615 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1616 {
1617 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1618 replace_reg (dest, get_hard_regnum (regstack, *dest));
1619 }
1620 else
1621 {
1622 int regno = get_hard_regnum (regstack, src1_reg);
1623
1624 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1625 replace_reg (dest, regno);
1626
1627 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1628 = regstack->reg[regstack->top];
1629 }
1630
1631 CLEAR_HARD_REG_BIT (regstack->reg_set,
1632 REGNO (XEXP (src1_note, 0)));
1633 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1634 regstack->top--;
1635 }
1636 else if (src2_note)
1637 {
1638 rtx src2_reg = XEXP (src2_note, 0);
1639 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1640 {
1641 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1642 replace_reg (dest, get_hard_regnum (regstack, *dest));
1643 }
1644 else
1645 {
1646 int regno = get_hard_regnum (regstack, src2_reg);
1647
1648 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1649 replace_reg (dest, regno);
1650
1651 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1652 = regstack->reg[regstack->top];
1653 }
1654
1655 CLEAR_HARD_REG_BIT (regstack->reg_set,
1656 REGNO (XEXP (src2_note, 0)));
1657 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1658 regstack->top--;
1659 }
1660 else
1661 {
1662 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1663 replace_reg (dest, get_hard_regnum (regstack, *dest));
1664 }
1665
1666 /* Keep operand 1 matching with destination. */
1667 if (COMMUTATIVE_ARITH_P (pat_src)
1668 && REG_P (*src1) && REG_P (*src2)
1669 && REGNO (*src1) != REGNO (*dest))
1670 {
1671 int tmp = REGNO (*src1);
1672 replace_reg (src1, REGNO (*src2));
1673 replace_reg (src2, tmp);
1674 }
1675 break;
1676
1677 case UNSPEC:
1678 switch (XINT (pat_src, 1))
1679 {
1680 case UNSPEC_FIST:
1681
1682 case UNSPEC_FIST_FLOOR:
1683 case UNSPEC_FIST_CEIL:
1684
1685 /* These insns only operate on the top of the stack. */
1686
1687 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1688 emit_swap_insn (insn, regstack, *src1);
1689
1690 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1691
1692 if (STACK_REG_P (*dest))
1693 replace_reg (dest, FIRST_STACK_REG);
1694
1695 if (src1_note)
1696 {
1697 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1698 regstack->top--;
1699 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1700 }
1701
1702 replace_reg (src1, FIRST_STACK_REG);
1703 break;
1704
1705 case UNSPEC_FXAM:
1706
1707 /* This insn only operate on the top of the stack. */
1708
1709 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1710 emit_swap_insn (insn, regstack, *src1);
1711
1712 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1713
1714 replace_reg (src1, FIRST_STACK_REG);
1715
1716 if (src1_note)
1717 {
1718 remove_regno_note (insn, REG_DEAD,
1719 REGNO (XEXP (src1_note, 0)));
1720 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1721 EMIT_AFTER);
1722 }
1723
1724 break;
1725
1726 case UNSPEC_SIN:
1727 case UNSPEC_COS:
1728 case UNSPEC_FRNDINT:
1729 case UNSPEC_F2XM1:
1730
1731 case UNSPEC_FRNDINT_FLOOR:
1732 case UNSPEC_FRNDINT_CEIL:
1733 case UNSPEC_FRNDINT_TRUNC:
1734 case UNSPEC_FRNDINT_MASK_PM:
1735
1736 /* Above insns operate on the top of the stack. */
1737
1738 case UNSPEC_SINCOS_COS:
1739 case UNSPEC_XTRACT_FRACT:
1740
1741 /* Above insns operate on the top two stack slots,
1742 first part of one input, double output insn. */
1743
1744 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1745
1746 emit_swap_insn (insn, regstack, *src1);
1747
1748 /* Input should never die, it is replaced with output. */
1749 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1750 gcc_assert (!src1_note);
1751
1752 if (STACK_REG_P (*dest))
1753 replace_reg (dest, FIRST_STACK_REG);
1754
1755 replace_reg (src1, FIRST_STACK_REG);
1756 break;
1757
1758 case UNSPEC_SINCOS_SIN:
1759 case UNSPEC_XTRACT_EXP:
1760
1761 /* These insns operate on the top two stack slots,
1762 second part of one input, double output insn. */
1763
1764 regstack->top++;
1765 /* FALLTHRU */
1766
1767 case UNSPEC_TAN:
1768
1769 /* For UNSPEC_TAN, regstack->top is already increased
1770 by inherent load of constant 1.0. */
1771
1772 /* Output value is generated in the second stack slot.
1773 Move current value from second slot to the top. */
1774 regstack->reg[regstack->top]
1775 = regstack->reg[regstack->top - 1];
1776
1777 gcc_assert (STACK_REG_P (*dest));
1778
1779 regstack->reg[regstack->top - 1] = REGNO (*dest);
1780 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1781 replace_reg (dest, FIRST_STACK_REG + 1);
1782
1783 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1784
1785 replace_reg (src1, FIRST_STACK_REG);
1786 break;
1787
1788 case UNSPEC_FPATAN:
1789 case UNSPEC_FYL2X:
1790 case UNSPEC_FYL2XP1:
1791 /* These insns operate on the top two stack slots. */
1792
1793 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1794 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1795
1796 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1797 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1798
1799 swap_to_top (insn, regstack, *src1, *src2);
1800
1801 replace_reg (src1, FIRST_STACK_REG);
1802 replace_reg (src2, FIRST_STACK_REG + 1);
1803
1804 if (src1_note)
1805 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1806 if (src2_note)
1807 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1808
1809 /* Pop both input operands from the stack. */
1810 CLEAR_HARD_REG_BIT (regstack->reg_set,
1811 regstack->reg[regstack->top]);
1812 CLEAR_HARD_REG_BIT (regstack->reg_set,
1813 regstack->reg[regstack->top - 1]);
1814 regstack->top -= 2;
1815
1816 /* Push the result back onto the stack. */
1817 regstack->reg[++regstack->top] = REGNO (*dest);
1818 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1819 replace_reg (dest, FIRST_STACK_REG);
1820 break;
1821
1822 case UNSPEC_FSCALE_FRACT:
1823 case UNSPEC_FPREM_F:
1824 case UNSPEC_FPREM1_F:
1825 /* These insns operate on the top two stack slots,
1826 first part of double input, double output insn. */
1827
1828 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1829 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1830
1831 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1832 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1833
1834 /* Inputs should never die, they are
1835 replaced with outputs. */
1836 gcc_assert (!src1_note);
1837 gcc_assert (!src2_note);
1838
1839 swap_to_top (insn, regstack, *src1, *src2);
1840
1841 /* Push the result back onto stack. Empty stack slot
1842 will be filled in second part of insn. */
1843 if (STACK_REG_P (*dest))
1844 {
1845 regstack->reg[regstack->top] = REGNO (*dest);
1846 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1847 replace_reg (dest, FIRST_STACK_REG);
1848 }
1849
1850 replace_reg (src1, FIRST_STACK_REG);
1851 replace_reg (src2, FIRST_STACK_REG + 1);
1852 break;
1853
1854 case UNSPEC_FSCALE_EXP:
1855 case UNSPEC_FPREM_U:
1856 case UNSPEC_FPREM1_U:
1857 /* These insns operate on the top two stack slots,
1858 second part of double input, double output insn. */
1859
1860 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1861 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1862
1863 /* Push the result back onto stack. Fill empty slot from
1864 first part of insn and fix top of stack pointer. */
1865 if (STACK_REG_P (*dest))
1866 {
1867 regstack->reg[regstack->top - 1] = REGNO (*dest);
1868 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1869 replace_reg (dest, FIRST_STACK_REG + 1);
1870 }
1871
1872 replace_reg (src1, FIRST_STACK_REG);
1873 replace_reg (src2, FIRST_STACK_REG + 1);
1874 break;
1875
1876 case UNSPEC_C2_FLAG:
1877 /* This insn operates on the top two stack slots,
1878 third part of C2 setting double input insn. */
1879
1880 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1881 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1882
1883 replace_reg (src1, FIRST_STACK_REG);
1884 replace_reg (src2, FIRST_STACK_REG + 1);
1885 break;
1886
1887 case UNSPEC_SAHF:
1888 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1889 The combination matches the PPRO fcomi instruction. */
1890
1891 pat_src = XVECEXP (pat_src, 0, 0);
1892 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1893 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1894 /* Fall through. */
1895
1896 case UNSPEC_FNSTSW:
1897 /* Combined fcomp+fnstsw generated for doing well with
1898 CSE. When optimizing this would have been broken
1899 up before now. */
1900
1901 pat_src = XVECEXP (pat_src, 0, 0);
1902 gcc_assert (GET_CODE (pat_src) == COMPARE);
1903
1904 compare_for_stack_reg (insn, regstack, pat_src);
1905 break;
1906
1907 default:
1908 gcc_unreachable ();
1909 }
1910 break;
1911
1912 case IF_THEN_ELSE:
1913 /* This insn requires the top of stack to be the destination. */
1914
1915 src1 = get_true_reg (&XEXP (pat_src, 1));
1916 src2 = get_true_reg (&XEXP (pat_src, 2));
1917
1918 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1919 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1920
1921 /* If the comparison operator is an FP comparison operator,
1922 it is handled correctly by compare_for_stack_reg () who
1923 will move the destination to the top of stack. But if the
1924 comparison operator is not an FP comparison operator, we
1925 have to handle it here. */
1926 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1927 && REGNO (*dest) != regstack->reg[regstack->top])
1928 {
1929 /* In case one of operands is the top of stack and the operands
1930 dies, it is safe to make it the destination operand by
1931 reversing the direction of cmove and avoid fxch. */
1932 if ((REGNO (*src1) == regstack->reg[regstack->top]
1933 && src1_note)
1934 || (REGNO (*src2) == regstack->reg[regstack->top]
1935 && src2_note))
1936 {
1937 int idx1 = (get_hard_regnum (regstack, *src1)
1938 - FIRST_STACK_REG);
1939 int idx2 = (get_hard_regnum (regstack, *src2)
1940 - FIRST_STACK_REG);
1941
1942 /* Make reg-stack believe that the operands are already
1943 swapped on the stack */
1944 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1945 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1946
1947 /* Reverse condition to compensate the operand swap.
1948 i386 do have comparison always reversible. */
1949 PUT_CODE (XEXP (pat_src, 0),
1950 reversed_comparison_code (XEXP (pat_src, 0), insn));
1951 }
1952 else
1953 emit_swap_insn (insn, regstack, *dest);
1954 }
1955
1956 {
1957 rtx src_note [3];
1958 int i;
1959
1960 src_note[0] = 0;
1961 src_note[1] = src1_note;
1962 src_note[2] = src2_note;
1963
1964 if (STACK_REG_P (*src1))
1965 replace_reg (src1, get_hard_regnum (regstack, *src1));
1966 if (STACK_REG_P (*src2))
1967 replace_reg (src2, get_hard_regnum (regstack, *src2));
1968
1969 for (i = 1; i <= 2; i++)
1970 if (src_note [i])
1971 {
1972 int regno = REGNO (XEXP (src_note[i], 0));
1973
1974 /* If the register that dies is not at the top of
1975 stack, then move the top of stack to the dead reg.
1976 Top of stack should never die, as it is the
1977 destination. */
1978 gcc_assert (regno != regstack->reg[regstack->top]);
1979 remove_regno_note (insn, REG_DEAD, regno);
1980 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1981 EMIT_AFTER);
1982 }
1983 }
1984
1985 /* Make dest the top of stack. Add dest to regstack if
1986 not present. */
1987 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1988 regstack->reg[++regstack->top] = REGNO (*dest);
1989 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1990 replace_reg (dest, FIRST_STACK_REG);
1991 break;
1992
1993 default:
1994 gcc_unreachable ();
1995 }
1996 break;
1997 }
1998
1999 default:
2000 break;
2001 }
2002
2003 return control_flow_insn_deleted;
2004 }
2005 \f
2006 /* Substitute hard regnums for any stack regs in INSN, which has
2007 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2008 before the insn, and is updated with changes made here.
2009
2010 There are several requirements and assumptions about the use of
2011 stack-like regs in asm statements. These rules are enforced by
2012 record_asm_stack_regs; see comments there for details. Any
2013 asm_operands left in the RTL at this point may be assume to meet the
2014 requirements, since record_asm_stack_regs removes any problem asm. */
2015
2016 static void
2017 subst_asm_stack_regs (rtx insn, stack regstack)
2018 {
2019 rtx body = PATTERN (insn);
2020 int alt;
2021
2022 rtx *note_reg; /* Array of note contents */
2023 rtx **note_loc; /* Address of REG field of each note */
2024 enum reg_note *note_kind; /* The type of each note */
2025
2026 rtx *clobber_reg = 0;
2027 rtx **clobber_loc = 0;
2028
2029 struct stack_def temp_stack;
2030 int n_notes;
2031 int n_clobbers;
2032 rtx note;
2033 int i;
2034 int n_inputs, n_outputs;
2035
2036 if (! check_asm_stack_operands (insn))
2037 return;
2038
2039 /* Find out what the constraints required. If no constraint
2040 alternative matches, that is a compiler bug: we should have caught
2041 such an insn in check_asm_stack_operands. */
2042 extract_insn (insn);
2043 constrain_operands (1);
2044 alt = which_alternative;
2045
2046 preprocess_constraints ();
2047
2048 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2049
2050 gcc_assert (alt >= 0);
2051
2052 /* Strip SUBREGs here to make the following code simpler. */
2053 for (i = 0; i < recog_data.n_operands; i++)
2054 if (GET_CODE (recog_data.operand[i]) == SUBREG
2055 && REG_P (SUBREG_REG (recog_data.operand[i])))
2056 {
2057 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2058 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2059 }
2060
2061 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2062
2063 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2064 i++;
2065
2066 note_reg = XALLOCAVEC (rtx, i);
2067 note_loc = XALLOCAVEC (rtx *, i);
2068 note_kind = XALLOCAVEC (enum reg_note, i);
2069
2070 n_notes = 0;
2071 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2072 {
2073 rtx reg = XEXP (note, 0);
2074 rtx *loc = & XEXP (note, 0);
2075
2076 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2077 {
2078 loc = & SUBREG_REG (reg);
2079 reg = SUBREG_REG (reg);
2080 }
2081
2082 if (STACK_REG_P (reg)
2083 && (REG_NOTE_KIND (note) == REG_DEAD
2084 || REG_NOTE_KIND (note) == REG_UNUSED))
2085 {
2086 note_reg[n_notes] = reg;
2087 note_loc[n_notes] = loc;
2088 note_kind[n_notes] = REG_NOTE_KIND (note);
2089 n_notes++;
2090 }
2091 }
2092
2093 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2094
2095 n_clobbers = 0;
2096
2097 if (GET_CODE (body) == PARALLEL)
2098 {
2099 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2100 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2101
2102 for (i = 0; i < XVECLEN (body, 0); i++)
2103 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2104 {
2105 rtx clobber = XVECEXP (body, 0, i);
2106 rtx reg = XEXP (clobber, 0);
2107 rtx *loc = & XEXP (clobber, 0);
2108
2109 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2110 {
2111 loc = & SUBREG_REG (reg);
2112 reg = SUBREG_REG (reg);
2113 }
2114
2115 if (STACK_REG_P (reg))
2116 {
2117 clobber_reg[n_clobbers] = reg;
2118 clobber_loc[n_clobbers] = loc;
2119 n_clobbers++;
2120 }
2121 }
2122 }
2123
2124 temp_stack = *regstack;
2125
2126 /* Put the input regs into the desired place in TEMP_STACK. */
2127
2128 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2129 if (STACK_REG_P (recog_data.operand[i])
2130 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2131 FLOAT_REGS)
2132 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2133 {
2134 /* If an operand needs to be in a particular reg in
2135 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2136 these constraints are for single register classes, and
2137 reload guaranteed that operand[i] is already in that class,
2138 we can just use REGNO (recog_data.operand[i]) to know which
2139 actual reg this operand needs to be in. */
2140
2141 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2142
2143 gcc_assert (regno >= 0);
2144
2145 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2146 {
2147 /* recog_data.operand[i] is not in the right place. Find
2148 it and swap it with whatever is already in I's place.
2149 K is where recog_data.operand[i] is now. J is where it
2150 should be. */
2151 int j, k, temp;
2152
2153 k = temp_stack.top - (regno - FIRST_STACK_REG);
2154 j = (temp_stack.top
2155 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2156
2157 temp = temp_stack.reg[k];
2158 temp_stack.reg[k] = temp_stack.reg[j];
2159 temp_stack.reg[j] = temp;
2160 }
2161 }
2162
2163 /* Emit insns before INSN to make sure the reg-stack is in the right
2164 order. */
2165
2166 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2167
2168 /* Make the needed input register substitutions. Do death notes and
2169 clobbers too, because these are for inputs, not outputs. */
2170
2171 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2172 if (STACK_REG_P (recog_data.operand[i]))
2173 {
2174 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2175
2176 gcc_assert (regnum >= 0);
2177
2178 replace_reg (recog_data.operand_loc[i], regnum);
2179 }
2180
2181 for (i = 0; i < n_notes; i++)
2182 if (note_kind[i] == REG_DEAD)
2183 {
2184 int regnum = get_hard_regnum (regstack, note_reg[i]);
2185
2186 gcc_assert (regnum >= 0);
2187
2188 replace_reg (note_loc[i], regnum);
2189 }
2190
2191 for (i = 0; i < n_clobbers; i++)
2192 {
2193 /* It's OK for a CLOBBER to reference a reg that is not live.
2194 Don't try to replace it in that case. */
2195 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2196
2197 if (regnum >= 0)
2198 {
2199 /* Sigh - clobbers always have QImode. But replace_reg knows
2200 that these regs can't be MODE_INT and will assert. Just put
2201 the right reg there without calling replace_reg. */
2202
2203 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2204 }
2205 }
2206
2207 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2208
2209 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2210 if (STACK_REG_P (recog_data.operand[i]))
2211 {
2212 /* An input reg is implicitly popped if it is tied to an
2213 output, or if there is a CLOBBER for it. */
2214 int j;
2215
2216 for (j = 0; j < n_clobbers; j++)
2217 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2218 break;
2219
2220 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2221 {
2222 /* recog_data.operand[i] might not be at the top of stack.
2223 But that's OK, because all we need to do is pop the
2224 right number of regs off of the top of the reg-stack.
2225 record_asm_stack_regs guaranteed that all implicitly
2226 popped regs were grouped at the top of the reg-stack. */
2227
2228 CLEAR_HARD_REG_BIT (regstack->reg_set,
2229 regstack->reg[regstack->top]);
2230 regstack->top--;
2231 }
2232 }
2233
2234 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2235 Note that there isn't any need to substitute register numbers.
2236 ??? Explain why this is true. */
2237
2238 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2239 {
2240 /* See if there is an output for this hard reg. */
2241 int j;
2242
2243 for (j = 0; j < n_outputs; j++)
2244 if (STACK_REG_P (recog_data.operand[j])
2245 && REGNO (recog_data.operand[j]) == (unsigned) i)
2246 {
2247 regstack->reg[++regstack->top] = i;
2248 SET_HARD_REG_BIT (regstack->reg_set, i);
2249 break;
2250 }
2251 }
2252
2253 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2254 input that the asm didn't implicitly pop. If the asm didn't
2255 implicitly pop an input reg, that reg will still be live.
2256
2257 Note that we can't use find_regno_note here: the register numbers
2258 in the death notes have already been substituted. */
2259
2260 for (i = 0; i < n_outputs; i++)
2261 if (STACK_REG_P (recog_data.operand[i]))
2262 {
2263 int j;
2264
2265 for (j = 0; j < n_notes; j++)
2266 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2267 && note_kind[j] == REG_UNUSED)
2268 {
2269 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2270 EMIT_AFTER);
2271 break;
2272 }
2273 }
2274
2275 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2276 if (STACK_REG_P (recog_data.operand[i]))
2277 {
2278 int j;
2279
2280 for (j = 0; j < n_notes; j++)
2281 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2282 && note_kind[j] == REG_DEAD
2283 && TEST_HARD_REG_BIT (regstack->reg_set,
2284 REGNO (recog_data.operand[i])))
2285 {
2286 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2287 EMIT_AFTER);
2288 break;
2289 }
2290 }
2291 }
2292 \f
2293 /* Substitute stack hard reg numbers for stack virtual registers in
2294 INSN. Non-stack register numbers are not changed. REGSTACK is the
2295 current stack content. Insns may be emitted as needed to arrange the
2296 stack for the 387 based on the contents of the insn. Return whether
2297 a control flow insn was deleted in the process. */
2298
2299 static bool
2300 subst_stack_regs (rtx insn, stack regstack)
2301 {
2302 rtx *note_link, note;
2303 bool control_flow_insn_deleted = false;
2304 int i;
2305
2306 if (CALL_P (insn))
2307 {
2308 int top = regstack->top;
2309
2310 /* If there are any floating point parameters to be passed in
2311 registers for this call, make sure they are in the right
2312 order. */
2313
2314 if (top >= 0)
2315 {
2316 straighten_stack (insn, regstack);
2317
2318 /* Now mark the arguments as dead after the call. */
2319
2320 while (regstack->top >= 0)
2321 {
2322 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2323 regstack->top--;
2324 }
2325 }
2326 }
2327
2328 /* Do the actual substitution if any stack regs are mentioned.
2329 Since we only record whether entire insn mentions stack regs, and
2330 subst_stack_regs_pat only works for patterns that contain stack regs,
2331 we must check each pattern in a parallel here. A call_value_pop could
2332 fail otherwise. */
2333
2334 if (stack_regs_mentioned (insn))
2335 {
2336 int n_operands = asm_noperands (PATTERN (insn));
2337 if (n_operands >= 0)
2338 {
2339 /* This insn is an `asm' with operands. Decode the operands,
2340 decide how many are inputs, and do register substitution.
2341 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2342
2343 subst_asm_stack_regs (insn, regstack);
2344 return control_flow_insn_deleted;
2345 }
2346
2347 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2348 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2349 {
2350 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2351 {
2352 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2353 XVECEXP (PATTERN (insn), 0, i)
2354 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2355 control_flow_insn_deleted
2356 |= subst_stack_regs_pat (insn, regstack,
2357 XVECEXP (PATTERN (insn), 0, i));
2358 }
2359 }
2360 else
2361 control_flow_insn_deleted
2362 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2363 }
2364
2365 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2366 REG_UNUSED will already have been dealt with, so just return. */
2367
2368 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2369 return control_flow_insn_deleted;
2370
2371 /* If this a noreturn call, we can't insert pop insns after it.
2372 Instead, reset the stack state to empty. */
2373 if (CALL_P (insn)
2374 && find_reg_note (insn, REG_NORETURN, NULL))
2375 {
2376 regstack->top = -1;
2377 CLEAR_HARD_REG_SET (regstack->reg_set);
2378 return control_flow_insn_deleted;
2379 }
2380
2381 /* If there is a REG_UNUSED note on a stack register on this insn,
2382 the indicated reg must be popped. The REG_UNUSED note is removed,
2383 since the form of the newly emitted pop insn references the reg,
2384 making it no longer `unset'. */
2385
2386 note_link = &REG_NOTES (insn);
2387 for (note = *note_link; note; note = XEXP (note, 1))
2388 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2389 {
2390 *note_link = XEXP (note, 1);
2391 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2392 }
2393 else
2394 note_link = &XEXP (note, 1);
2395
2396 return control_flow_insn_deleted;
2397 }
2398 \f
2399 /* Change the organization of the stack so that it fits a new basic
2400 block. Some registers might have to be popped, but there can never be
2401 a register live in the new block that is not now live.
2402
2403 Insert any needed insns before or after INSN, as indicated by
2404 WHERE. OLD is the original stack layout, and NEW is the desired
2405 form. OLD is updated to reflect the code emitted, i.e., it will be
2406 the same as NEW upon return.
2407
2408 This function will not preserve block_end[]. But that information
2409 is no longer needed once this has executed. */
2410
2411 static void
2412 change_stack (rtx insn, stack old, stack new_stack, enum emit_where where)
2413 {
2414 int reg;
2415 int update_end = 0;
2416 int i;
2417
2418 /* Stack adjustments for the first insn in a block update the
2419 current_block's stack_in instead of inserting insns directly.
2420 compensate_edges will add the necessary code later. */
2421 if (current_block
2422 && starting_stack_p
2423 && where == EMIT_BEFORE)
2424 {
2425 BLOCK_INFO (current_block)->stack_in = *new_stack;
2426 starting_stack_p = false;
2427 *old = *new_stack;
2428 return;
2429 }
2430
2431 /* We will be inserting new insns "backwards". If we are to insert
2432 after INSN, find the next insn, and insert before it. */
2433
2434 if (where == EMIT_AFTER)
2435 {
2436 if (current_block && BB_END (current_block) == insn)
2437 update_end = 1;
2438 insn = NEXT_INSN (insn);
2439 }
2440
2441 /* Initialize partially dead variables. */
2442 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2443 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2444 && !TEST_HARD_REG_BIT (old->reg_set, i))
2445 {
2446 old->reg[++old->top] = i;
2447 SET_HARD_REG_BIT (old->reg_set, i);
2448 emit_insn_before (gen_rtx_SET (VOIDmode,
2449 FP_MODE_REG (i, SFmode), not_a_num), insn);
2450 }
2451
2452 /* Pop any registers that are not needed in the new block. */
2453
2454 /* If the destination block's stack already has a specified layout
2455 and contains two or more registers, use a more intelligent algorithm
2456 to pop registers that minimizes the number number of fxchs below. */
2457 if (new_stack->top > 0)
2458 {
2459 bool slots[REG_STACK_SIZE];
2460 int pops[REG_STACK_SIZE];
2461 int next, dest, topsrc;
2462
2463 /* First pass to determine the free slots. */
2464 for (reg = 0; reg <= new_stack->top; reg++)
2465 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2466
2467 /* Second pass to allocate preferred slots. */
2468 topsrc = -1;
2469 for (reg = old->top; reg > new_stack->top; reg--)
2470 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2471 {
2472 dest = -1;
2473 for (next = 0; next <= new_stack->top; next++)
2474 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2475 {
2476 /* If this is a preference for the new top of stack, record
2477 the fact by remembering it's old->reg in topsrc. */
2478 if (next == new_stack->top)
2479 topsrc = reg;
2480 slots[next] = true;
2481 dest = next;
2482 break;
2483 }
2484 pops[reg] = dest;
2485 }
2486 else
2487 pops[reg] = reg;
2488
2489 /* Intentionally, avoid placing the top of stack in it's correct
2490 location, if we still need to permute the stack below and we
2491 can usefully place it somewhere else. This is the case if any
2492 slot is still unallocated, in which case we should place the
2493 top of stack there. */
2494 if (topsrc != -1)
2495 for (reg = 0; reg < new_stack->top; reg++)
2496 if (!slots[reg])
2497 {
2498 pops[topsrc] = reg;
2499 slots[new_stack->top] = false;
2500 slots[reg] = true;
2501 break;
2502 }
2503
2504 /* Third pass allocates remaining slots and emits pop insns. */
2505 next = new_stack->top;
2506 for (reg = old->top; reg > new_stack->top; reg--)
2507 {
2508 dest = pops[reg];
2509 if (dest == -1)
2510 {
2511 /* Find next free slot. */
2512 while (slots[next])
2513 next--;
2514 dest = next--;
2515 }
2516 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2517 EMIT_BEFORE);
2518 }
2519 }
2520 else
2521 {
2522 /* The following loop attempts to maximize the number of times we
2523 pop the top of the stack, as this permits the use of the faster
2524 ffreep instruction on platforms that support it. */
2525 int live, next;
2526
2527 live = 0;
2528 for (reg = 0; reg <= old->top; reg++)
2529 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2530 live++;
2531
2532 next = live;
2533 while (old->top >= live)
2534 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2535 {
2536 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2537 next--;
2538 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2539 EMIT_BEFORE);
2540 }
2541 else
2542 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2543 EMIT_BEFORE);
2544 }
2545
2546 if (new_stack->top == -2)
2547 {
2548 /* If the new block has never been processed, then it can inherit
2549 the old stack order. */
2550
2551 new_stack->top = old->top;
2552 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2553 }
2554 else
2555 {
2556 /* This block has been entered before, and we must match the
2557 previously selected stack order. */
2558
2559 /* By now, the only difference should be the order of the stack,
2560 not their depth or liveliness. */
2561
2562 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2563 gcc_assert (old->top == new_stack->top);
2564
2565 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2566 swaps until the stack is correct.
2567
2568 The worst case number of swaps emitted is N + 2, where N is the
2569 depth of the stack. In some cases, the reg at the top of
2570 stack may be correct, but swapped anyway in order to fix
2571 other regs. But since we never swap any other reg away from
2572 its correct slot, this algorithm will converge. */
2573
2574 if (new_stack->top != -1)
2575 do
2576 {
2577 /* Swap the reg at top of stack into the position it is
2578 supposed to be in, until the correct top of stack appears. */
2579
2580 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2581 {
2582 for (reg = new_stack->top; reg >= 0; reg--)
2583 if (new_stack->reg[reg] == old->reg[old->top])
2584 break;
2585
2586 gcc_assert (reg != -1);
2587
2588 emit_swap_insn (insn, old,
2589 FP_MODE_REG (old->reg[reg], DFmode));
2590 }
2591
2592 /* See if any regs remain incorrect. If so, bring an
2593 incorrect reg to the top of stack, and let the while loop
2594 above fix it. */
2595
2596 for (reg = new_stack->top; reg >= 0; reg--)
2597 if (new_stack->reg[reg] != old->reg[reg])
2598 {
2599 emit_swap_insn (insn, old,
2600 FP_MODE_REG (old->reg[reg], DFmode));
2601 break;
2602 }
2603 } while (reg >= 0);
2604
2605 /* At this point there must be no differences. */
2606
2607 for (reg = old->top; reg >= 0; reg--)
2608 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2609 }
2610
2611 if (update_end)
2612 BB_END (current_block) = PREV_INSN (insn);
2613 }
2614 \f
2615 /* Print stack configuration. */
2616
2617 static void
2618 print_stack (FILE *file, stack s)
2619 {
2620 if (! file)
2621 return;
2622
2623 if (s->top == -2)
2624 fprintf (file, "uninitialized\n");
2625 else if (s->top == -1)
2626 fprintf (file, "empty\n");
2627 else
2628 {
2629 int i;
2630 fputs ("[ ", file);
2631 for (i = 0; i <= s->top; ++i)
2632 fprintf (file, "%d ", s->reg[i]);
2633 fputs ("]\n", file);
2634 }
2635 }
2636 \f
2637 /* This function was doing life analysis. We now let the regular live
2638 code do it's job, so we only need to check some extra invariants
2639 that reg-stack expects. Primary among these being that all registers
2640 are initialized before use.
2641
2642 The function returns true when code was emitted to CFG edges and
2643 commit_edge_insertions needs to be called. */
2644
2645 static int
2646 convert_regs_entry (void)
2647 {
2648 int inserted = 0;
2649 edge e;
2650 edge_iterator ei;
2651
2652 /* Load something into each stack register live at function entry.
2653 Such live registers can be caused by uninitialized variables or
2654 functions not returning values on all paths. In order to keep
2655 the push/pop code happy, and to not scrog the register stack, we
2656 must put something in these registers. Use a QNaN.
2657
2658 Note that we are inserting converted code here. This code is
2659 never seen by the convert_regs pass. */
2660
2661 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2662 {
2663 basic_block block = e->dest;
2664 block_info bi = BLOCK_INFO (block);
2665 int reg, top = -1;
2666
2667 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2668 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2669 {
2670 rtx init;
2671
2672 bi->stack_in.reg[++top] = reg;
2673
2674 init = gen_rtx_SET (VOIDmode,
2675 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2676 not_a_num);
2677 insert_insn_on_edge (init, e);
2678 inserted = 1;
2679 }
2680
2681 bi->stack_in.top = top;
2682 }
2683
2684 return inserted;
2685 }
2686
2687 /* Construct the desired stack for function exit. This will either
2688 be `empty', or the function return value at top-of-stack. */
2689
2690 static void
2691 convert_regs_exit (void)
2692 {
2693 int value_reg_low, value_reg_high;
2694 stack output_stack;
2695 rtx retvalue;
2696
2697 retvalue = stack_result (current_function_decl);
2698 value_reg_low = value_reg_high = -1;
2699 if (retvalue)
2700 {
2701 value_reg_low = REGNO (retvalue);
2702 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2703 }
2704
2705 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2706 if (value_reg_low == -1)
2707 output_stack->top = -1;
2708 else
2709 {
2710 int reg;
2711
2712 output_stack->top = value_reg_high - value_reg_low;
2713 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2714 {
2715 output_stack->reg[value_reg_high - reg] = reg;
2716 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2717 }
2718 }
2719 }
2720
2721 /* Copy the stack info from the end of edge E's source block to the
2722 start of E's destination block. */
2723
2724 static void
2725 propagate_stack (edge e)
2726 {
2727 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2728 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2729 int reg;
2730
2731 /* Preserve the order of the original stack, but check whether
2732 any pops are needed. */
2733 dest_stack->top = -1;
2734 for (reg = 0; reg <= src_stack->top; ++reg)
2735 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2736 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2737
2738 /* Push in any partially dead values. */
2739 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2740 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2741 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2742 dest_stack->reg[++dest_stack->top] = reg;
2743 }
2744
2745
2746 /* Adjust the stack of edge E's source block on exit to match the stack
2747 of it's target block upon input. The stack layouts of both blocks
2748 should have been defined by now. */
2749
2750 static bool
2751 compensate_edge (edge e)
2752 {
2753 basic_block source = e->src, target = e->dest;
2754 stack target_stack = &BLOCK_INFO (target)->stack_in;
2755 stack source_stack = &BLOCK_INFO (source)->stack_out;
2756 struct stack_def regstack;
2757 int reg;
2758
2759 if (dump_file)
2760 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2761
2762 gcc_assert (target_stack->top != -2);
2763
2764 /* Check whether stacks are identical. */
2765 if (target_stack->top == source_stack->top)
2766 {
2767 for (reg = target_stack->top; reg >= 0; --reg)
2768 if (target_stack->reg[reg] != source_stack->reg[reg])
2769 break;
2770
2771 if (reg == -1)
2772 {
2773 if (dump_file)
2774 fprintf (dump_file, "no changes needed\n");
2775 return false;
2776 }
2777 }
2778
2779 if (dump_file)
2780 {
2781 fprintf (dump_file, "correcting stack to ");
2782 print_stack (dump_file, target_stack);
2783 }
2784
2785 /* Abnormal calls may appear to have values live in st(0), but the
2786 abnormal return path will not have actually loaded the values. */
2787 if (e->flags & EDGE_ABNORMAL_CALL)
2788 {
2789 /* Assert that the lifetimes are as we expect -- one value
2790 live at st(0) on the end of the source block, and no
2791 values live at the beginning of the destination block.
2792 For complex return values, we may have st(1) live as well. */
2793 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2794 gcc_assert (target_stack->top == -1);
2795 return false;
2796 }
2797
2798 /* Handle non-call EH edges specially. The normal return path have
2799 values in registers. These will be popped en masse by the unwind
2800 library. */
2801 if (e->flags & EDGE_EH)
2802 {
2803 gcc_assert (target_stack->top == -1);
2804 return false;
2805 }
2806
2807 /* We don't support abnormal edges. Global takes care to
2808 avoid any live register across them, so we should never
2809 have to insert instructions on such edges. */
2810 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2811
2812 /* Make a copy of source_stack as change_stack is destructive. */
2813 regstack = *source_stack;
2814
2815 /* It is better to output directly to the end of the block
2816 instead of to the edge, because emit_swap can do minimal
2817 insn scheduling. We can do this when there is only one
2818 edge out, and it is not abnormal. */
2819 if (EDGE_COUNT (source->succs) == 1)
2820 {
2821 current_block = source;
2822 change_stack (BB_END (source), &regstack, target_stack,
2823 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2824 }
2825 else
2826 {
2827 rtx seq, after;
2828
2829 current_block = NULL;
2830 start_sequence ();
2831
2832 /* ??? change_stack needs some point to emit insns after. */
2833 after = emit_note (NOTE_INSN_DELETED);
2834
2835 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2836
2837 seq = get_insns ();
2838 end_sequence ();
2839
2840 insert_insn_on_edge (seq, e);
2841 return true;
2842 }
2843 return false;
2844 }
2845
2846 /* Traverse all non-entry edges in the CFG, and emit the necessary
2847 edge compensation code to change the stack from stack_out of the
2848 source block to the stack_in of the destination block. */
2849
2850 static bool
2851 compensate_edges (void)
2852 {
2853 bool inserted = false;
2854 basic_block bb;
2855
2856 starting_stack_p = false;
2857
2858 FOR_EACH_BB (bb)
2859 if (bb != ENTRY_BLOCK_PTR)
2860 {
2861 edge e;
2862 edge_iterator ei;
2863
2864 FOR_EACH_EDGE (e, ei, bb->succs)
2865 inserted |= compensate_edge (e);
2866 }
2867 return inserted;
2868 }
2869
2870 /* Select the better of two edges E1 and E2 to use to determine the
2871 stack layout for their shared destination basic block. This is
2872 typically the more frequently executed. The edge E1 may be NULL
2873 (in which case E2 is returned), but E2 is always non-NULL. */
2874
2875 static edge
2876 better_edge (edge e1, edge e2)
2877 {
2878 if (!e1)
2879 return e2;
2880
2881 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2882 return e1;
2883 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2884 return e2;
2885
2886 if (e1->count > e2->count)
2887 return e1;
2888 if (e1->count < e2->count)
2889 return e2;
2890
2891 /* Prefer critical edges to minimize inserting compensation code on
2892 critical edges. */
2893
2894 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2895 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2896
2897 /* Avoid non-deterministic behavior. */
2898 return (e1->src->index < e2->src->index) ? e1 : e2;
2899 }
2900
2901 /* Convert stack register references in one block. Return true if the CFG
2902 has been modified in the process. */
2903
2904 static bool
2905 convert_regs_1 (basic_block block)
2906 {
2907 struct stack_def regstack;
2908 block_info bi = BLOCK_INFO (block);
2909 int reg;
2910 rtx insn, next;
2911 bool control_flow_insn_deleted = false;
2912 bool cfg_altered = false;
2913 int debug_insns_with_starting_stack = 0;
2914
2915 any_malformed_asm = false;
2916
2917 /* Choose an initial stack layout, if one hasn't already been chosen. */
2918 if (bi->stack_in.top == -2)
2919 {
2920 edge e, beste = NULL;
2921 edge_iterator ei;
2922
2923 /* Select the best incoming edge (typically the most frequent) to
2924 use as a template for this basic block. */
2925 FOR_EACH_EDGE (e, ei, block->preds)
2926 if (BLOCK_INFO (e->src)->done)
2927 beste = better_edge (beste, e);
2928
2929 if (beste)
2930 propagate_stack (beste);
2931 else
2932 {
2933 /* No predecessors. Create an arbitrary input stack. */
2934 bi->stack_in.top = -1;
2935 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2936 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2937 bi->stack_in.reg[++bi->stack_in.top] = reg;
2938 }
2939 }
2940
2941 if (dump_file)
2942 {
2943 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2944 print_stack (dump_file, &bi->stack_in);
2945 }
2946
2947 /* Process all insns in this block. Keep track of NEXT so that we
2948 don't process insns emitted while substituting in INSN. */
2949 current_block = block;
2950 next = BB_HEAD (block);
2951 regstack = bi->stack_in;
2952 starting_stack_p = true;
2953
2954 do
2955 {
2956 insn = next;
2957 next = NEXT_INSN (insn);
2958
2959 /* Ensure we have not missed a block boundary. */
2960 gcc_assert (next);
2961 if (insn == BB_END (block))
2962 next = NULL;
2963
2964 /* Don't bother processing unless there is a stack reg
2965 mentioned or if it's a CALL_INSN. */
2966 if (DEBUG_INSN_P (insn))
2967 {
2968 if (starting_stack_p)
2969 debug_insns_with_starting_stack++;
2970 else
2971 {
2972 subst_all_stack_regs_in_debug_insn (insn, &regstack);
2973
2974 /* Nothing must ever die at a debug insn. If something
2975 is referenced in it that becomes dead, it should have
2976 died before and the reference in the debug insn
2977 should have been removed so as to avoid changing code
2978 generation. */
2979 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2980 }
2981 }
2982 else if (stack_regs_mentioned (insn)
2983 || CALL_P (insn))
2984 {
2985 if (dump_file)
2986 {
2987 fprintf (dump_file, " insn %d input stack: ",
2988 INSN_UID (insn));
2989 print_stack (dump_file, &regstack);
2990 }
2991 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2992 starting_stack_p = false;
2993 }
2994 }
2995 while (next);
2996
2997 if (debug_insns_with_starting_stack)
2998 {
2999 /* Since it's the first non-debug instruction that determines
3000 the stack requirements of the current basic block, we refrain
3001 from updating debug insns before it in the loop above, and
3002 fix them up here. */
3003 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3004 insn = NEXT_INSN (insn))
3005 {
3006 if (!DEBUG_INSN_P (insn))
3007 continue;
3008
3009 debug_insns_with_starting_stack--;
3010 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3011 }
3012 }
3013
3014 if (dump_file)
3015 {
3016 fprintf (dump_file, "Expected live registers [");
3017 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3018 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3019 fprintf (dump_file, " %d", reg);
3020 fprintf (dump_file, " ]\nOutput stack: ");
3021 print_stack (dump_file, &regstack);
3022 }
3023
3024 insn = BB_END (block);
3025 if (JUMP_P (insn))
3026 insn = PREV_INSN (insn);
3027
3028 /* If the function is declared to return a value, but it returns one
3029 in only some cases, some registers might come live here. Emit
3030 necessary moves for them. */
3031
3032 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3033 {
3034 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3035 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3036 {
3037 rtx set;
3038
3039 if (dump_file)
3040 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3041
3042 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3043 insn = emit_insn_after (set, insn);
3044 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3045 }
3046 }
3047
3048 /* Amongst the insns possibly deleted during the substitution process above,
3049 might have been the only trapping insn in the block. We purge the now
3050 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3051 called at the end of convert_regs. The order in which we process the
3052 blocks ensures that we never delete an already processed edge.
3053
3054 Note that, at this point, the CFG may have been damaged by the emission
3055 of instructions after an abnormal call, which moves the basic block end
3056 (and is the reason why we call fixup_abnormal_edges later). So we must
3057 be sure that the trapping insn has been deleted before trying to purge
3058 dead edges, otherwise we risk purging valid edges.
3059
3060 ??? We are normally supposed not to delete trapping insns, so we pretend
3061 that the insns deleted above don't actually trap. It would have been
3062 better to detect this earlier and avoid creating the EH edge in the first
3063 place, still, but we don't have enough information at that time. */
3064
3065 if (control_flow_insn_deleted)
3066 cfg_altered |= purge_dead_edges (block);
3067
3068 /* Something failed if the stack lives don't match. If we had malformed
3069 asms, we zapped the instruction itself, but that didn't produce the
3070 same pattern of register kills as before. */
3071
3072 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3073 || any_malformed_asm);
3074 bi->stack_out = regstack;
3075 bi->done = true;
3076
3077 return cfg_altered;
3078 }
3079
3080 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3081 CFG has been modified in the process. */
3082
3083 static bool
3084 convert_regs_2 (basic_block block)
3085 {
3086 basic_block *stack, *sp;
3087 bool cfg_altered = false;
3088
3089 /* We process the blocks in a top-down manner, in a way such that one block
3090 is only processed after all its predecessors. The number of predecessors
3091 of every block has already been computed. */
3092
3093 stack = XNEWVEC (basic_block, n_basic_blocks);
3094 sp = stack;
3095
3096 *sp++ = block;
3097
3098 do
3099 {
3100 edge e;
3101 edge_iterator ei;
3102
3103 block = *--sp;
3104
3105 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3106 some dead EH outgoing edge after the deletion of the trapping
3107 insn inside the block. Since the number of predecessors of
3108 BLOCK's successors was computed based on the initial edge set,
3109 we check the necessity to process some of these successors
3110 before such an edge deletion may happen. However, there is
3111 a pitfall: if BLOCK is the only predecessor of a successor and
3112 the edge between them happens to be deleted, the successor
3113 becomes unreachable and should not be processed. The problem
3114 is that there is no way to preventively detect this case so we
3115 stack the successor in all cases and hand over the task of
3116 fixing up the discrepancy to convert_regs_1. */
3117
3118 FOR_EACH_EDGE (e, ei, block->succs)
3119 if (! (e->flags & EDGE_DFS_BACK))
3120 {
3121 BLOCK_INFO (e->dest)->predecessors--;
3122 if (!BLOCK_INFO (e->dest)->predecessors)
3123 *sp++ = e->dest;
3124 }
3125
3126 cfg_altered |= convert_regs_1 (block);
3127 }
3128 while (sp != stack);
3129
3130 free (stack);
3131
3132 return cfg_altered;
3133 }
3134
3135 /* Traverse all basic blocks in a function, converting the register
3136 references in each insn from the "flat" register file that gcc uses,
3137 to the stack-like registers the 387 uses. */
3138
3139 static void
3140 convert_regs (void)
3141 {
3142 bool cfg_altered = false;
3143 int inserted;
3144 basic_block b;
3145 edge e;
3146 edge_iterator ei;
3147
3148 /* Initialize uninitialized registers on function entry. */
3149 inserted = convert_regs_entry ();
3150
3151 /* Construct the desired stack for function exit. */
3152 convert_regs_exit ();
3153 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3154
3155 /* ??? Future: process inner loops first, and give them arbitrary
3156 initial stacks which emit_swap_insn can modify. This ought to
3157 prevent double fxch that often appears at the head of a loop. */
3158
3159 /* Process all blocks reachable from all entry points. */
3160 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3161 cfg_altered |= convert_regs_2 (e->dest);
3162
3163 /* ??? Process all unreachable blocks. Though there's no excuse
3164 for keeping these even when not optimizing. */
3165 FOR_EACH_BB (b)
3166 {
3167 block_info bi = BLOCK_INFO (b);
3168
3169 if (! bi->done)
3170 cfg_altered |= convert_regs_2 (b);
3171 }
3172
3173 /* We must fix up abnormal edges before inserting compensation code
3174 because both mechanisms insert insns on edges. */
3175 inserted |= fixup_abnormal_edges ();
3176
3177 inserted |= compensate_edges ();
3178
3179 clear_aux_for_blocks ();
3180
3181 if (inserted)
3182 commit_edge_insertions ();
3183
3184 if (cfg_altered)
3185 cleanup_cfg (0);
3186
3187 if (dump_file)
3188 fputc ('\n', dump_file);
3189 }
3190 \f
3191 /* Convert register usage from "flat" register file usage to a "stack
3192 register file. FILE is the dump file, if used.
3193
3194 Construct a CFG and run life analysis. Then convert each insn one
3195 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3196 code duplication created when the converter inserts pop insns on
3197 the edges. */
3198
3199 static bool
3200 reg_to_stack (void)
3201 {
3202 basic_block bb;
3203 int i;
3204 int max_uid;
3205
3206 /* Clean up previous run. */
3207 if (stack_regs_mentioned_data != NULL)
3208 VEC_free (char, heap, stack_regs_mentioned_data);
3209
3210 /* See if there is something to do. Flow analysis is quite
3211 expensive so we might save some compilation time. */
3212 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3213 if (df_regs_ever_live_p (i))
3214 break;
3215 if (i > LAST_STACK_REG)
3216 return false;
3217
3218 df_note_add_problem ();
3219 df_analyze ();
3220
3221 mark_dfs_back_edges ();
3222
3223 /* Set up block info for each basic block. */
3224 alloc_aux_for_blocks (sizeof (struct block_info_def));
3225 FOR_EACH_BB (bb)
3226 {
3227 block_info bi = BLOCK_INFO (bb);
3228 edge_iterator ei;
3229 edge e;
3230 int reg;
3231
3232 FOR_EACH_EDGE (e, ei, bb->preds)
3233 if (!(e->flags & EDGE_DFS_BACK)
3234 && e->src != ENTRY_BLOCK_PTR)
3235 bi->predecessors++;
3236
3237 /* Set current register status at last instruction `uninitialized'. */
3238 bi->stack_in.top = -2;
3239
3240 /* Copy live_at_end and live_at_start into temporaries. */
3241 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3242 {
3243 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3244 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3245 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3246 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3247 }
3248 }
3249
3250 /* Create the replacement registers up front. */
3251 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3252 {
3253 enum machine_mode mode;
3254 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3255 mode != VOIDmode;
3256 mode = GET_MODE_WIDER_MODE (mode))
3257 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3258 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3259 mode != VOIDmode;
3260 mode = GET_MODE_WIDER_MODE (mode))
3261 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3262 }
3263
3264 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3265
3266 /* A QNaN for initializing uninitialized variables.
3267
3268 ??? We can't load from constant memory in PIC mode, because
3269 we're inserting these instructions before the prologue and
3270 the PIC register hasn't been set up. In that case, fall back
3271 on zero, which we can get from `fldz'. */
3272
3273 if ((flag_pic && !TARGET_64BIT)
3274 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3275 not_a_num = CONST0_RTX (SFmode);
3276 else
3277 {
3278 REAL_VALUE_TYPE r;
3279
3280 real_nan (&r, "", 1, SFmode);
3281 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3282 not_a_num = force_const_mem (SFmode, not_a_num);
3283 }
3284
3285 /* Allocate a cache for stack_regs_mentioned. */
3286 max_uid = get_max_uid ();
3287 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3288 memset (VEC_address (char, stack_regs_mentioned_data),
3289 0, sizeof (char) * (max_uid + 1));
3290
3291 convert_regs ();
3292
3293 free_aux_for_blocks ();
3294 return true;
3295 }
3296 #endif /* STACK_REGS */
3297 \f
3298 static bool
3299 gate_handle_stack_regs (void)
3300 {
3301 #ifdef STACK_REGS
3302 return 1;
3303 #else
3304 return 0;
3305 #endif
3306 }
3307
3308 struct rtl_opt_pass pass_stack_regs =
3309 {
3310 {
3311 RTL_PASS,
3312 "*stack_regs", /* name */
3313 gate_handle_stack_regs, /* gate */
3314 NULL, /* execute */
3315 NULL, /* sub */
3316 NULL, /* next */
3317 0, /* static_pass_number */
3318 TV_REG_STACK, /* tv_id */
3319 0, /* properties_required */
3320 0, /* properties_provided */
3321 0, /* properties_destroyed */
3322 0, /* todo_flags_start */
3323 0 /* todo_flags_finish */
3324 }
3325 };
3326
3327 /* Convert register usage from flat register file usage to a stack
3328 register file. */
3329 static unsigned int
3330 rest_of_handle_stack_regs (void)
3331 {
3332 #ifdef STACK_REGS
3333 reg_to_stack ();
3334 regstack_completed = 1;
3335 #endif
3336 return 0;
3337 }
3338
3339 struct rtl_opt_pass pass_stack_regs_run =
3340 {
3341 {
3342 RTL_PASS,
3343 "stack", /* name */
3344 NULL, /* gate */
3345 rest_of_handle_stack_regs, /* execute */
3346 NULL, /* sub */
3347 NULL, /* next */
3348 0, /* static_pass_number */
3349 TV_REG_STACK, /* tv_id */
3350 0, /* properties_required */
3351 0, /* properties_provided */
3352 0, /* properties_destroyed */
3353 0, /* todo_flags_start */
3354 TODO_df_finish | TODO_verify_rtl_sharing |
3355 TODO_ggc_collect /* todo_flags_finish */
3356 }
3357 };