hard-reg-set.h (GO_IF_HARD_REG_SUBSET, [...]): Delete in favor of...
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153 \f
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "cfglayout.h"
171 #include "varray.h"
172 #include "reload.h"
173 #include "ggc.h"
174 #include "timevar.h"
175 #include "tree-pass.h"
176 #include "target.h"
177 #include "vecprim.h"
178
179 #ifdef STACK_REGS
180
181 /* We use this array to cache info about insns, because otherwise we
182 spend too much time in stack_regs_mentioned_p.
183
184 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
185 the insn uses stack registers, two indicates the insn does not use
186 stack registers. */
187 static VEC(char,heap) *stack_regs_mentioned_data;
188
189 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
190
191 int regstack_completed = 0;
192
193 /* This is the basic stack record. TOP is an index into REG[] such
194 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
195
196 If TOP is -2, REG[] is not yet initialized. Stack initialization
197 consists of placing each live reg in array `reg' and setting `top'
198 appropriately.
199
200 REG_SET indicates which registers are live. */
201
202 typedef struct stack_def
203 {
204 int top; /* index to top stack element */
205 HARD_REG_SET reg_set; /* set of live registers */
206 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
207 } *stack;
208
209 /* This is used to carry information about basic blocks. It is
210 attached to the AUX field of the standard CFG block. */
211
212 typedef struct block_info_def
213 {
214 struct stack_def stack_in; /* Input stack configuration. */
215 struct stack_def stack_out; /* Output stack configuration. */
216 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
217 int done; /* True if block already converted. */
218 int predecessors; /* Number of predecessors that need
219 to be visited. */
220 } *block_info;
221
222 #define BLOCK_INFO(B) ((block_info) (B)->aux)
223
224 /* Passed to change_stack to indicate where to emit insns. */
225 enum emit_where
226 {
227 EMIT_AFTER,
228 EMIT_BEFORE
229 };
230
231 /* The block we're currently working on. */
232 static basic_block current_block;
233
234 /* In the current_block, whether we're processing the first register
235 stack or call instruction, i.e. the regstack is currently the
236 same as BLOCK_INFO(current_block)->stack_in. */
237 static bool starting_stack_p;
238
239 /* This is the register file for all register after conversion. */
240 static rtx
241 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
242
243 #define FP_MODE_REG(regno,mode) \
244 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
245
246 /* Used to initialize uninitialized registers. */
247 static rtx not_a_num;
248
249 /* Forward declarations */
250
251 static int stack_regs_mentioned_p (rtx pat);
252 static void pop_stack (stack, int);
253 static rtx *get_true_reg (rtx *);
254
255 static int check_asm_stack_operands (rtx);
256 static int get_asm_operand_n_inputs (rtx);
257 static rtx stack_result (tree);
258 static void replace_reg (rtx *, int);
259 static void remove_regno_note (rtx, enum reg_note, unsigned int);
260 static int get_hard_regnum (stack, rtx);
261 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
262 static void swap_to_top(rtx, stack, rtx, rtx);
263 static bool move_for_stack_reg (rtx, stack, rtx);
264 static bool move_nan_for_stack_reg (rtx, stack, rtx);
265 static int swap_rtx_condition_1 (rtx);
266 static int swap_rtx_condition (rtx);
267 static void compare_for_stack_reg (rtx, stack, rtx);
268 static bool subst_stack_regs_pat (rtx, stack, rtx);
269 static void subst_asm_stack_regs (rtx, stack);
270 static bool subst_stack_regs (rtx, stack);
271 static void change_stack (rtx, stack, stack, enum emit_where);
272 static void print_stack (FILE *, stack);
273 static rtx next_flags_user (rtx);
274 \f
275 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
276
277 static int
278 stack_regs_mentioned_p (rtx pat)
279 {
280 const char *fmt;
281 int i;
282
283 if (STACK_REG_P (pat))
284 return 1;
285
286 fmt = GET_RTX_FORMAT (GET_CODE (pat));
287 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288 {
289 if (fmt[i] == 'E')
290 {
291 int j;
292
293 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
294 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
295 return 1;
296 }
297 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
298 return 1;
299 }
300
301 return 0;
302 }
303
304 /* Return nonzero if INSN mentions stacked registers, else return zero. */
305
306 int
307 stack_regs_mentioned (rtx insn)
308 {
309 unsigned int uid, max;
310 int test;
311
312 if (! INSN_P (insn) || !stack_regs_mentioned_data)
313 return 0;
314
315 uid = INSN_UID (insn);
316 max = VEC_length (char, stack_regs_mentioned_data);
317 if (uid >= max)
318 {
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max = uid + uid / 20 + 1;
322 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
323 }
324
325 test = VEC_index (char, stack_regs_mentioned_data, uid);
326 if (test == 0)
327 {
328 /* This insn has yet to be examined. Do so now. */
329 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330 VEC_replace (char, stack_regs_mentioned_data, uid, test);
331 }
332
333 return test == 1;
334 }
335 \f
336 static rtx ix86_flags_rtx;
337
338 static rtx
339 next_flags_user (rtx insn)
340 {
341 /* Search forward looking for the first use of this value.
342 Stop at block boundaries. */
343
344 while (insn != BB_END (current_block))
345 {
346 insn = NEXT_INSN (insn);
347
348 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
349 return insn;
350
351 if (CALL_P (insn))
352 return NULL_RTX;
353 }
354 return NULL_RTX;
355 }
356 \f
357 /* Reorganize the stack into ascending numbers, before this insn. */
358
359 static void
360 straighten_stack (rtx insn, stack regstack)
361 {
362 struct stack_def temp_stack;
363 int top;
364
365 /* If there is only a single register on the stack, then the stack is
366 already in increasing order and no reorganization is needed.
367
368 Similarly if the stack is empty. */
369 if (regstack->top <= 0)
370 return;
371
372 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
373
374 for (top = temp_stack.top = regstack->top; top >= 0; top--)
375 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
376
377 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
378 }
379
380 /* Pop a register from the stack. */
381
382 static void
383 pop_stack (stack regstack, int regno)
384 {
385 int top = regstack->top;
386
387 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
388 regstack->top--;
389 /* If regno was not at the top of stack then adjust stack. */
390 if (regstack->reg [top] != regno)
391 {
392 int i;
393 for (i = regstack->top; i >= 0; i--)
394 if (regstack->reg [i] == regno)
395 {
396 int j;
397 for (j = i; j < top; j++)
398 regstack->reg [j] = regstack->reg [j + 1];
399 break;
400 }
401 }
402 }
403 \f
404 /* Return a pointer to the REG expression within PAT. If PAT is not a
405 REG, possible enclosed by a conversion rtx, return the inner part of
406 PAT that stopped the search. */
407
408 static rtx *
409 get_true_reg (rtx *pat)
410 {
411 for (;;)
412 switch (GET_CODE (*pat))
413 {
414 case SUBREG:
415 /* Eliminate FP subregister accesses in favor of the
416 actual FP register in use. */
417 {
418 rtx subreg;
419 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
420 {
421 int regno_off = subreg_regno_offset (REGNO (subreg),
422 GET_MODE (subreg),
423 SUBREG_BYTE (*pat),
424 GET_MODE (*pat));
425 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
426 GET_MODE (subreg));
427 default:
428 return pat;
429 }
430 }
431 case FLOAT:
432 case FIX:
433 case FLOAT_EXTEND:
434 pat = & XEXP (*pat, 0);
435 break;
436
437 case UNSPEC:
438 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
439 pat = & XVECEXP (*pat, 0, 0);
440 return pat;
441
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = & XEXP (*pat, 0);
446 break;
447 }
448 }
449 \f
450 /* Set if we find any malformed asms in a block. */
451 static bool any_malformed_asm;
452
453 /* There are many rules that an asm statement for stack-like regs must
454 follow. Those rules are explained at the top of this file: the rule
455 numbers below refer to that explanation. */
456
457 static int
458 check_asm_stack_operands (rtx insn)
459 {
460 int i;
461 int n_clobbers;
462 int malformed_asm = 0;
463 rtx body = PATTERN (insn);
464
465 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
466 char implicitly_dies[FIRST_PSEUDO_REGISTER];
467 int alt;
468
469 rtx *clobber_reg = 0;
470 int n_inputs, n_outputs;
471
472 /* Find out what the constraints require. If no constraint
473 alternative matches, this asm is malformed. */
474 extract_insn (insn);
475 constrain_operands (1);
476 alt = which_alternative;
477
478 preprocess_constraints ();
479
480 n_inputs = get_asm_operand_n_inputs (body);
481 n_outputs = recog_data.n_operands - n_inputs;
482
483 if (alt < 0)
484 {
485 malformed_asm = 1;
486 /* Avoid further trouble with this insn. */
487 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
488 return 0;
489 }
490
491 /* Strip SUBREGs here to make the following code simpler. */
492 for (i = 0; i < recog_data.n_operands; i++)
493 if (GET_CODE (recog_data.operand[i]) == SUBREG
494 && REG_P (SUBREG_REG (recog_data.operand[i])))
495 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
496
497 /* Set up CLOBBER_REG. */
498
499 n_clobbers = 0;
500
501 if (GET_CODE (body) == PARALLEL)
502 {
503 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
504
505 for (i = 0; i < XVECLEN (body, 0); i++)
506 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
507 {
508 rtx clobber = XVECEXP (body, 0, i);
509 rtx reg = XEXP (clobber, 0);
510
511 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
512 reg = SUBREG_REG (reg);
513
514 if (STACK_REG_P (reg))
515 {
516 clobber_reg[n_clobbers] = reg;
517 n_clobbers++;
518 }
519 }
520 }
521
522 /* Enforce rule #4: Output operands must specifically indicate which
523 reg an output appears in after an asm. "=f" is not allowed: the
524 operand constraints must select a class with a single reg.
525
526 Also enforce rule #5: Output operands must start at the top of
527 the reg-stack: output operands may not "skip" a reg. */
528
529 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
530 for (i = 0; i < n_outputs; i++)
531 if (STACK_REG_P (recog_data.operand[i]))
532 {
533 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
534 {
535 error_for_asm (insn, "output constraint %d must specify a single register", i);
536 malformed_asm = 1;
537 }
538 else
539 {
540 int j;
541
542 for (j = 0; j < n_clobbers; j++)
543 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
544 {
545 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
546 i, reg_names [REGNO (clobber_reg[j])]);
547 malformed_asm = 1;
548 break;
549 }
550 if (j == n_clobbers)
551 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
552 }
553 }
554
555
556 /* Search for first non-popped reg. */
557 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
558 if (! reg_used_as_output[i])
559 break;
560
561 /* If there are any other popped regs, that's an error. */
562 for (; i < LAST_STACK_REG + 1; i++)
563 if (reg_used_as_output[i])
564 break;
565
566 if (i != LAST_STACK_REG + 1)
567 {
568 error_for_asm (insn, "output regs must be grouped at top of stack");
569 malformed_asm = 1;
570 }
571
572 /* Enforce rule #2: All implicitly popped input regs must be closer
573 to the top of the reg-stack than any input that is not implicitly
574 popped. */
575
576 memset (implicitly_dies, 0, sizeof (implicitly_dies));
577 for (i = n_outputs; i < n_outputs + n_inputs; i++)
578 if (STACK_REG_P (recog_data.operand[i]))
579 {
580 /* An input reg is implicitly popped if it is tied to an
581 output, or if there is a CLOBBER for it. */
582 int j;
583
584 for (j = 0; j < n_clobbers; j++)
585 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
586 break;
587
588 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
589 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
590 }
591
592 /* Search for first non-popped reg. */
593 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
594 if (! implicitly_dies[i])
595 break;
596
597 /* If there are any other popped regs, that's an error. */
598 for (; i < LAST_STACK_REG + 1; i++)
599 if (implicitly_dies[i])
600 break;
601
602 if (i != LAST_STACK_REG + 1)
603 {
604 error_for_asm (insn,
605 "implicitly popped regs must be grouped at top of stack");
606 malformed_asm = 1;
607 }
608
609 /* Enforce rule #3: If any input operand uses the "f" constraint, all
610 output constraints must use the "&" earlyclobber.
611
612 ??? Detect this more deterministically by having constrain_asm_operands
613 record any earlyclobber. */
614
615 for (i = n_outputs; i < n_outputs + n_inputs; i++)
616 if (recog_op_alt[i][alt].matches == -1)
617 {
618 int j;
619
620 for (j = 0; j < n_outputs; j++)
621 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
622 {
623 error_for_asm (insn,
624 "output operand %d must use %<&%> constraint", j);
625 malformed_asm = 1;
626 }
627 }
628
629 if (malformed_asm)
630 {
631 /* Avoid further trouble with this insn. */
632 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
633 any_malformed_asm = true;
634 return 0;
635 }
636
637 return 1;
638 }
639 \f
640 /* Calculate the number of inputs and outputs in BODY, an
641 asm_operands. N_OPERANDS is the total number of operands, and
642 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
643 placed. */
644
645 static int
646 get_asm_operand_n_inputs (rtx body)
647 {
648 switch (GET_CODE (body))
649 {
650 case SET:
651 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
652 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
653
654 case ASM_OPERANDS:
655 return ASM_OPERANDS_INPUT_LENGTH (body);
656
657 case PARALLEL:
658 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
659
660 default:
661 gcc_unreachable ();
662 }
663 }
664
665 /* If current function returns its result in an fp stack register,
666 return the REG. Otherwise, return 0. */
667
668 static rtx
669 stack_result (tree decl)
670 {
671 rtx result;
672
673 /* If the value is supposed to be returned in memory, then clearly
674 it is not returned in a stack register. */
675 if (aggregate_value_p (DECL_RESULT (decl), decl))
676 return 0;
677
678 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
679 if (result != 0)
680 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
681 decl, true);
682
683 return result != 0 && STACK_REG_P (result) ? result : 0;
684 }
685 \f
686
687 /*
688 * This section deals with stack register substitution, and forms the second
689 * pass over the RTL.
690 */
691
692 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
693 the desired hard REGNO. */
694
695 static void
696 replace_reg (rtx *reg, int regno)
697 {
698 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
699 gcc_assert (STACK_REG_P (*reg));
700
701 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
702 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
703
704 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
705 }
706
707 /* Remove a note of type NOTE, which must be found, for register
708 number REGNO from INSN. Remove only one such note. */
709
710 static void
711 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
712 {
713 rtx *note_link, this;
714
715 note_link = &REG_NOTES (insn);
716 for (this = *note_link; this; this = XEXP (this, 1))
717 if (REG_NOTE_KIND (this) == note
718 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
719 {
720 *note_link = XEXP (this, 1);
721 return;
722 }
723 else
724 note_link = &XEXP (this, 1);
725
726 gcc_unreachable ();
727 }
728
729 /* Find the hard register number of virtual register REG in REGSTACK.
730 The hard register number is relative to the top of the stack. -1 is
731 returned if the register is not found. */
732
733 static int
734 get_hard_regnum (stack regstack, rtx reg)
735 {
736 int i;
737
738 gcc_assert (STACK_REG_P (reg));
739
740 for (i = regstack->top; i >= 0; i--)
741 if (regstack->reg[i] == REGNO (reg))
742 break;
743
744 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
745 }
746 \f
747 /* Emit an insn to pop virtual register REG before or after INSN.
748 REGSTACK is the stack state after INSN and is updated to reflect this
749 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
750 is represented as a SET whose destination is the register to be popped
751 and source is the top of stack. A death note for the top of stack
752 cases the movdf pattern to pop. */
753
754 static rtx
755 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
756 {
757 rtx pop_insn, pop_rtx;
758 int hard_regno;
759
760 /* For complex types take care to pop both halves. These may survive in
761 CLOBBER and USE expressions. */
762 if (COMPLEX_MODE_P (GET_MODE (reg)))
763 {
764 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
765 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
766
767 pop_insn = NULL_RTX;
768 if (get_hard_regnum (regstack, reg1) >= 0)
769 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
770 if (get_hard_regnum (regstack, reg2) >= 0)
771 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
772 gcc_assert (pop_insn);
773 return pop_insn;
774 }
775
776 hard_regno = get_hard_regnum (regstack, reg);
777
778 gcc_assert (hard_regno >= FIRST_STACK_REG);
779
780 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
781 FP_MODE_REG (FIRST_STACK_REG, DFmode));
782
783 if (where == EMIT_AFTER)
784 pop_insn = emit_insn_after (pop_rtx, insn);
785 else
786 pop_insn = emit_insn_before (pop_rtx, insn);
787
788 REG_NOTES (pop_insn)
789 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
790 REG_NOTES (pop_insn));
791
792 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
793 = regstack->reg[regstack->top];
794 regstack->top -= 1;
795 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
796
797 return pop_insn;
798 }
799 \f
800 /* Emit an insn before or after INSN to swap virtual register REG with
801 the top of stack. REGSTACK is the stack state before the swap, and
802 is updated to reflect the swap. A swap insn is represented as a
803 PARALLEL of two patterns: each pattern moves one reg to the other.
804
805 If REG is already at the top of the stack, no insn is emitted. */
806
807 static void
808 emit_swap_insn (rtx insn, stack regstack, rtx reg)
809 {
810 int hard_regno;
811 rtx swap_rtx;
812 int tmp, other_reg; /* swap regno temps */
813 rtx i1; /* the stack-reg insn prior to INSN */
814 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
815
816 hard_regno = get_hard_regnum (regstack, reg);
817
818 if (hard_regno == FIRST_STACK_REG)
819 return;
820 if (hard_regno == -1)
821 {
822 /* Something failed if the register wasn't on the stack. If we had
823 malformed asms, we zapped the instruction itself, but that didn't
824 produce the same pattern of register sets as before. To prevent
825 further failure, adjust REGSTACK to include REG at TOP. */
826 gcc_assert (any_malformed_asm);
827 regstack->reg[++regstack->top] = REGNO (reg);
828 return;
829 }
830 gcc_assert (hard_regno >= FIRST_STACK_REG);
831
832 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
833
834 tmp = regstack->reg[other_reg];
835 regstack->reg[other_reg] = regstack->reg[regstack->top];
836 regstack->reg[regstack->top] = tmp;
837
838 /* Find the previous insn involving stack regs, but don't pass a
839 block boundary. */
840 i1 = NULL;
841 if (current_block && insn != BB_HEAD (current_block))
842 {
843 rtx tmp = PREV_INSN (insn);
844 rtx limit = PREV_INSN (BB_HEAD (current_block));
845 while (tmp != limit)
846 {
847 if (LABEL_P (tmp)
848 || CALL_P (tmp)
849 || NOTE_INSN_BASIC_BLOCK_P (tmp)
850 || (NONJUMP_INSN_P (tmp)
851 && stack_regs_mentioned (tmp)))
852 {
853 i1 = tmp;
854 break;
855 }
856 tmp = PREV_INSN (tmp);
857 }
858 }
859
860 if (i1 != NULL_RTX
861 && (i1set = single_set (i1)) != NULL_RTX)
862 {
863 rtx i1src = *get_true_reg (&SET_SRC (i1set));
864 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
865
866 /* If the previous register stack push was from the reg we are to
867 swap with, omit the swap. */
868
869 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
870 && REG_P (i1src)
871 && REGNO (i1src) == (unsigned) hard_regno - 1
872 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
873 return;
874
875 /* If the previous insn wrote to the reg we are to swap with,
876 omit the swap. */
877
878 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
879 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
880 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
881 return;
882 }
883
884 /* Avoid emitting the swap if this is the first register stack insn
885 of the current_block. Instead update the current_block's stack_in
886 and let compensate edges take care of this for us. */
887 if (current_block && starting_stack_p)
888 {
889 BLOCK_INFO (current_block)->stack_in = *regstack;
890 starting_stack_p = false;
891 return;
892 }
893
894 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
895 FP_MODE_REG (FIRST_STACK_REG, XFmode));
896
897 if (i1)
898 emit_insn_after (swap_rtx, i1);
899 else if (current_block)
900 emit_insn_before (swap_rtx, BB_HEAD (current_block));
901 else
902 emit_insn_before (swap_rtx, insn);
903 }
904 \f
905 /* Emit an insns before INSN to swap virtual register SRC1 with
906 the top of stack and virtual register SRC2 with second stack
907 slot. REGSTACK is the stack state before the swaps, and
908 is updated to reflect the swaps. A swap insn is represented as a
909 PARALLEL of two patterns: each pattern moves one reg to the other.
910
911 If SRC1 and/or SRC2 are already at the right place, no swap insn
912 is emitted. */
913
914 static void
915 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
916 {
917 struct stack_def temp_stack;
918 int regno, j, k, temp;
919
920 temp_stack = *regstack;
921
922 /* Place operand 1 at the top of stack. */
923 regno = get_hard_regnum (&temp_stack, src1);
924 gcc_assert (regno >= 0);
925 if (regno != FIRST_STACK_REG)
926 {
927 k = temp_stack.top - (regno - FIRST_STACK_REG);
928 j = temp_stack.top;
929
930 temp = temp_stack.reg[k];
931 temp_stack.reg[k] = temp_stack.reg[j];
932 temp_stack.reg[j] = temp;
933 }
934
935 /* Place operand 2 next on the stack. */
936 regno = get_hard_regnum (&temp_stack, src2);
937 gcc_assert (regno >= 0);
938 if (regno != FIRST_STACK_REG + 1)
939 {
940 k = temp_stack.top - (regno - FIRST_STACK_REG);
941 j = temp_stack.top - 1;
942
943 temp = temp_stack.reg[k];
944 temp_stack.reg[k] = temp_stack.reg[j];
945 temp_stack.reg[j] = temp;
946 }
947
948 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
949 }
950 \f
951 /* Handle a move to or from a stack register in PAT, which is in INSN.
952 REGSTACK is the current stack. Return whether a control flow insn
953 was deleted in the process. */
954
955 static bool
956 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
957 {
958 rtx *psrc = get_true_reg (&SET_SRC (pat));
959 rtx *pdest = get_true_reg (&SET_DEST (pat));
960 rtx src, dest;
961 rtx note;
962 bool control_flow_insn_deleted = false;
963
964 src = *psrc; dest = *pdest;
965
966 if (STACK_REG_P (src) && STACK_REG_P (dest))
967 {
968 /* Write from one stack reg to another. If SRC dies here, then
969 just change the register mapping and delete the insn. */
970
971 note = find_regno_note (insn, REG_DEAD, REGNO (src));
972 if (note)
973 {
974 int i;
975
976 /* If this is a no-op move, there must not be a REG_DEAD note. */
977 gcc_assert (REGNO (src) != REGNO (dest));
978
979 for (i = regstack->top; i >= 0; i--)
980 if (regstack->reg[i] == REGNO (src))
981 break;
982
983 /* The destination must be dead, or life analysis is borked. */
984 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
985
986 /* If the source is not live, this is yet another case of
987 uninitialized variables. Load up a NaN instead. */
988 if (i < 0)
989 return move_nan_for_stack_reg (insn, regstack, dest);
990
991 /* It is possible that the dest is unused after this insn.
992 If so, just pop the src. */
993
994 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
995 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
996 else
997 {
998 regstack->reg[i] = REGNO (dest);
999 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1000 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1001 }
1002
1003 control_flow_insn_deleted |= control_flow_insn_p (insn);
1004 delete_insn (insn);
1005 return control_flow_insn_deleted;
1006 }
1007
1008 /* The source reg does not die. */
1009
1010 /* If this appears to be a no-op move, delete it, or else it
1011 will confuse the machine description output patterns. But if
1012 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1013 for REG_UNUSED will not work for deleted insns. */
1014
1015 if (REGNO (src) == REGNO (dest))
1016 {
1017 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1018 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1019
1020 control_flow_insn_deleted |= control_flow_insn_p (insn);
1021 delete_insn (insn);
1022 return control_flow_insn_deleted;
1023 }
1024
1025 /* The destination ought to be dead. */
1026 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1027
1028 replace_reg (psrc, get_hard_regnum (regstack, src));
1029
1030 regstack->reg[++regstack->top] = REGNO (dest);
1031 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1032 replace_reg (pdest, FIRST_STACK_REG);
1033 }
1034 else if (STACK_REG_P (src))
1035 {
1036 /* Save from a stack reg to MEM, or possibly integer reg. Since
1037 only top of stack may be saved, emit an exchange first if
1038 needs be. */
1039
1040 emit_swap_insn (insn, regstack, src);
1041
1042 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1043 if (note)
1044 {
1045 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1046 regstack->top--;
1047 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1048 }
1049 else if ((GET_MODE (src) == XFmode)
1050 && regstack->top < REG_STACK_SIZE - 1)
1051 {
1052 /* A 387 cannot write an XFmode value to a MEM without
1053 clobbering the source reg. The output code can handle
1054 this by reading back the value from the MEM.
1055 But it is more efficient to use a temp register if one is
1056 available. Push the source value here if the register
1057 stack is not full, and then write the value to memory via
1058 a pop. */
1059 rtx push_rtx;
1060 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1061
1062 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1063 emit_insn_before (push_rtx, insn);
1064 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1065 REG_NOTES (insn));
1066 }
1067
1068 replace_reg (psrc, FIRST_STACK_REG);
1069 }
1070 else
1071 {
1072 rtx pat = PATTERN (insn);
1073
1074 gcc_assert (STACK_REG_P (dest));
1075
1076 /* Load from MEM, or possibly integer REG or constant, into the
1077 stack regs. The actual target is always the top of the
1078 stack. The stack mapping is changed to reflect that DEST is
1079 now at top of stack. */
1080
1081 /* The destination ought to be dead. However, there is a
1082 special case with i387 UNSPEC_TAN, where destination is live
1083 (an argument to fptan) but inherent load of 1.0 is modelled
1084 as a load from a constant. */
1085 if (! (GET_CODE (pat) == PARALLEL
1086 && XVECLEN (pat, 0) == 2
1087 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1088 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1089 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN))
1090 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1091
1092 gcc_assert (regstack->top < REG_STACK_SIZE);
1093
1094 regstack->reg[++regstack->top] = REGNO (dest);
1095 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1096 replace_reg (pdest, FIRST_STACK_REG);
1097 }
1098
1099 return control_flow_insn_deleted;
1100 }
1101
1102 /* A helper function which replaces INSN with a pattern that loads up
1103 a NaN into DEST, then invokes move_for_stack_reg. */
1104
1105 static bool
1106 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1107 {
1108 rtx pat;
1109
1110 dest = FP_MODE_REG (REGNO (dest), SFmode);
1111 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1112 PATTERN (insn) = pat;
1113 INSN_CODE (insn) = -1;
1114
1115 return move_for_stack_reg (insn, regstack, pat);
1116 }
1117 \f
1118 /* Swap the condition on a branch, if there is one. Return true if we
1119 found a condition to swap. False if the condition was not used as
1120 such. */
1121
1122 static int
1123 swap_rtx_condition_1 (rtx pat)
1124 {
1125 const char *fmt;
1126 int i, r = 0;
1127
1128 if (COMPARISON_P (pat))
1129 {
1130 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1131 r = 1;
1132 }
1133 else
1134 {
1135 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1136 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1137 {
1138 if (fmt[i] == 'E')
1139 {
1140 int j;
1141
1142 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1143 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1144 }
1145 else if (fmt[i] == 'e')
1146 r |= swap_rtx_condition_1 (XEXP (pat, i));
1147 }
1148 }
1149
1150 return r;
1151 }
1152
1153 static int
1154 swap_rtx_condition (rtx insn)
1155 {
1156 rtx pat = PATTERN (insn);
1157
1158 /* We're looking for a single set to cc0 or an HImode temporary. */
1159
1160 if (GET_CODE (pat) == SET
1161 && REG_P (SET_DEST (pat))
1162 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1163 {
1164 insn = next_flags_user (insn);
1165 if (insn == NULL_RTX)
1166 return 0;
1167 pat = PATTERN (insn);
1168 }
1169
1170 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1171 with the cc value right now. We may be able to search for one
1172 though. */
1173
1174 if (GET_CODE (pat) == SET
1175 && GET_CODE (SET_SRC (pat)) == UNSPEC
1176 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1177 {
1178 rtx dest = SET_DEST (pat);
1179
1180 /* Search forward looking for the first use of this value.
1181 Stop at block boundaries. */
1182 while (insn != BB_END (current_block))
1183 {
1184 insn = NEXT_INSN (insn);
1185 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1186 break;
1187 if (CALL_P (insn))
1188 return 0;
1189 }
1190
1191 /* We haven't found it. */
1192 if (insn == BB_END (current_block))
1193 return 0;
1194
1195 /* So we've found the insn using this value. If it is anything
1196 other than sahf or the value does not die (meaning we'd have
1197 to search further), then we must give up. */
1198 pat = PATTERN (insn);
1199 if (GET_CODE (pat) != SET
1200 || GET_CODE (SET_SRC (pat)) != UNSPEC
1201 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1202 || ! dead_or_set_p (insn, dest))
1203 return 0;
1204
1205 /* Now we are prepared to handle this as a normal cc0 setter. */
1206 insn = next_flags_user (insn);
1207 if (insn == NULL_RTX)
1208 return 0;
1209 pat = PATTERN (insn);
1210 }
1211
1212 if (swap_rtx_condition_1 (pat))
1213 {
1214 int fail = 0;
1215 INSN_CODE (insn) = -1;
1216 if (recog_memoized (insn) == -1)
1217 fail = 1;
1218 /* In case the flags don't die here, recurse to try fix
1219 following user too. */
1220 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1221 {
1222 insn = next_flags_user (insn);
1223 if (!insn || !swap_rtx_condition (insn))
1224 fail = 1;
1225 }
1226 if (fail)
1227 {
1228 swap_rtx_condition_1 (pat);
1229 return 0;
1230 }
1231 return 1;
1232 }
1233 return 0;
1234 }
1235
1236 /* Handle a comparison. Special care needs to be taken to avoid
1237 causing comparisons that a 387 cannot do correctly, such as EQ.
1238
1239 Also, a pop insn may need to be emitted. The 387 does have an
1240 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1241 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1242 set up. */
1243
1244 static void
1245 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1246 {
1247 rtx *src1, *src2;
1248 rtx src1_note, src2_note;
1249
1250 src1 = get_true_reg (&XEXP (pat_src, 0));
1251 src2 = get_true_reg (&XEXP (pat_src, 1));
1252
1253 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1254 registers that die in this insn - move those to stack top first. */
1255 if ((! STACK_REG_P (*src1)
1256 || (STACK_REG_P (*src2)
1257 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1258 && swap_rtx_condition (insn))
1259 {
1260 rtx temp;
1261 temp = XEXP (pat_src, 0);
1262 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1263 XEXP (pat_src, 1) = temp;
1264
1265 src1 = get_true_reg (&XEXP (pat_src, 0));
1266 src2 = get_true_reg (&XEXP (pat_src, 1));
1267
1268 INSN_CODE (insn) = -1;
1269 }
1270
1271 /* We will fix any death note later. */
1272
1273 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1274
1275 if (STACK_REG_P (*src2))
1276 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1277 else
1278 src2_note = NULL_RTX;
1279
1280 emit_swap_insn (insn, regstack, *src1);
1281
1282 replace_reg (src1, FIRST_STACK_REG);
1283
1284 if (STACK_REG_P (*src2))
1285 replace_reg (src2, get_hard_regnum (regstack, *src2));
1286
1287 if (src1_note)
1288 {
1289 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1290 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1291 }
1292
1293 /* If the second operand dies, handle that. But if the operands are
1294 the same stack register, don't bother, because only one death is
1295 needed, and it was just handled. */
1296
1297 if (src2_note
1298 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1299 && REGNO (*src1) == REGNO (*src2)))
1300 {
1301 /* As a special case, two regs may die in this insn if src2 is
1302 next to top of stack and the top of stack also dies. Since
1303 we have already popped src1, "next to top of stack" is really
1304 at top (FIRST_STACK_REG) now. */
1305
1306 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1307 && src1_note)
1308 {
1309 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1310 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1311 }
1312 else
1313 {
1314 /* The 386 can only represent death of the first operand in
1315 the case handled above. In all other cases, emit a separate
1316 pop and remove the death note from here. */
1317
1318 /* link_cc0_insns (insn); */
1319
1320 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1321
1322 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1323 EMIT_AFTER);
1324 }
1325 }
1326 }
1327 \f
1328 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1329 is the current register layout. Return whether a control flow insn
1330 was deleted in the process. */
1331
1332 static bool
1333 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1334 {
1335 rtx *dest, *src;
1336 bool control_flow_insn_deleted = false;
1337
1338 switch (GET_CODE (pat))
1339 {
1340 case USE:
1341 /* Deaths in USE insns can happen in non optimizing compilation.
1342 Handle them by popping the dying register. */
1343 src = get_true_reg (&XEXP (pat, 0));
1344 if (STACK_REG_P (*src)
1345 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1346 {
1347 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1348 return control_flow_insn_deleted;
1349 }
1350 /* ??? Uninitialized USE should not happen. */
1351 else
1352 gcc_assert (get_hard_regnum (regstack, *src) != -1);
1353 break;
1354
1355 case CLOBBER:
1356 {
1357 rtx note;
1358
1359 dest = get_true_reg (&XEXP (pat, 0));
1360 if (STACK_REG_P (*dest))
1361 {
1362 note = find_reg_note (insn, REG_DEAD, *dest);
1363
1364 if (pat != PATTERN (insn))
1365 {
1366 /* The fix_truncdi_1 pattern wants to be able to allocate
1367 its own scratch register. It does this by clobbering
1368 an fp reg so that it is assured of an empty reg-stack
1369 register. If the register is live, kill it now.
1370 Remove the DEAD/UNUSED note so we don't try to kill it
1371 later too. */
1372
1373 if (note)
1374 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1375 else
1376 {
1377 note = find_reg_note (insn, REG_UNUSED, *dest);
1378 gcc_assert (note);
1379 }
1380 remove_note (insn, note);
1381 replace_reg (dest, FIRST_STACK_REG + 1);
1382 }
1383 else
1384 {
1385 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1386 indicates an uninitialized value. Because reload removed
1387 all other clobbers, this must be due to a function
1388 returning without a value. Load up a NaN. */
1389
1390 if (!note)
1391 {
1392 rtx t = *dest;
1393 if (COMPLEX_MODE_P (GET_MODE (t)))
1394 {
1395 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1396 if (get_hard_regnum (regstack, u) == -1)
1397 {
1398 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1399 rtx insn2 = emit_insn_before (pat2, insn);
1400 control_flow_insn_deleted
1401 |= move_nan_for_stack_reg (insn2, regstack, u);
1402 }
1403 }
1404 if (get_hard_regnum (regstack, t) == -1)
1405 control_flow_insn_deleted
1406 |= move_nan_for_stack_reg (insn, regstack, t);
1407 }
1408 }
1409 }
1410 break;
1411 }
1412
1413 case SET:
1414 {
1415 rtx *src1 = (rtx *) 0, *src2;
1416 rtx src1_note, src2_note;
1417 rtx pat_src;
1418
1419 dest = get_true_reg (&SET_DEST (pat));
1420 src = get_true_reg (&SET_SRC (pat));
1421 pat_src = SET_SRC (pat);
1422
1423 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1424 if (STACK_REG_P (*src)
1425 || (STACK_REG_P (*dest)
1426 && (REG_P (*src) || MEM_P (*src)
1427 || GET_CODE (*src) == CONST_DOUBLE)))
1428 {
1429 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1430 break;
1431 }
1432
1433 switch (GET_CODE (pat_src))
1434 {
1435 case COMPARE:
1436 compare_for_stack_reg (insn, regstack, pat_src);
1437 break;
1438
1439 case CALL:
1440 {
1441 int count;
1442 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1443 --count >= 0;)
1444 {
1445 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1446 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1447 }
1448 }
1449 replace_reg (dest, FIRST_STACK_REG);
1450 break;
1451
1452 case REG:
1453 /* This is a `tstM2' case. */
1454 gcc_assert (*dest == cc0_rtx);
1455 src1 = src;
1456
1457 /* Fall through. */
1458
1459 case FLOAT_TRUNCATE:
1460 case SQRT:
1461 case ABS:
1462 case NEG:
1463 /* These insns only operate on the top of the stack. DEST might
1464 be cc0_rtx if we're processing a tstM pattern. Also, it's
1465 possible that the tstM case results in a REG_DEAD note on the
1466 source. */
1467
1468 if (src1 == 0)
1469 src1 = get_true_reg (&XEXP (pat_src, 0));
1470
1471 emit_swap_insn (insn, regstack, *src1);
1472
1473 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1474
1475 if (STACK_REG_P (*dest))
1476 replace_reg (dest, FIRST_STACK_REG);
1477
1478 if (src1_note)
1479 {
1480 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1481 regstack->top--;
1482 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1483 }
1484
1485 replace_reg (src1, FIRST_STACK_REG);
1486 break;
1487
1488 case MINUS:
1489 case DIV:
1490 /* On i386, reversed forms of subM3 and divM3 exist for
1491 MODE_FLOAT, so the same code that works for addM3 and mulM3
1492 can be used. */
1493 case MULT:
1494 case PLUS:
1495 /* These insns can accept the top of stack as a destination
1496 from a stack reg or mem, or can use the top of stack as a
1497 source and some other stack register (possibly top of stack)
1498 as a destination. */
1499
1500 src1 = get_true_reg (&XEXP (pat_src, 0));
1501 src2 = get_true_reg (&XEXP (pat_src, 1));
1502
1503 /* We will fix any death note later. */
1504
1505 if (STACK_REG_P (*src1))
1506 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1507 else
1508 src1_note = NULL_RTX;
1509 if (STACK_REG_P (*src2))
1510 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1511 else
1512 src2_note = NULL_RTX;
1513
1514 /* If either operand is not a stack register, then the dest
1515 must be top of stack. */
1516
1517 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1518 emit_swap_insn (insn, regstack, *dest);
1519 else
1520 {
1521 /* Both operands are REG. If neither operand is already
1522 at the top of stack, choose to make the one that is the dest
1523 the new top of stack. */
1524
1525 int src1_hard_regnum, src2_hard_regnum;
1526
1527 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1528 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1529 gcc_assert (src1_hard_regnum != -1);
1530 gcc_assert (src2_hard_regnum != -1);
1531
1532 if (src1_hard_regnum != FIRST_STACK_REG
1533 && src2_hard_regnum != FIRST_STACK_REG)
1534 emit_swap_insn (insn, regstack, *dest);
1535 }
1536
1537 if (STACK_REG_P (*src1))
1538 replace_reg (src1, get_hard_regnum (regstack, *src1));
1539 if (STACK_REG_P (*src2))
1540 replace_reg (src2, get_hard_regnum (regstack, *src2));
1541
1542 if (src1_note)
1543 {
1544 rtx src1_reg = XEXP (src1_note, 0);
1545
1546 /* If the register that dies is at the top of stack, then
1547 the destination is somewhere else - merely substitute it.
1548 But if the reg that dies is not at top of stack, then
1549 move the top of stack to the dead reg, as though we had
1550 done the insn and then a store-with-pop. */
1551
1552 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1553 {
1554 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1555 replace_reg (dest, get_hard_regnum (regstack, *dest));
1556 }
1557 else
1558 {
1559 int regno = get_hard_regnum (regstack, src1_reg);
1560
1561 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1562 replace_reg (dest, regno);
1563
1564 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1565 = regstack->reg[regstack->top];
1566 }
1567
1568 CLEAR_HARD_REG_BIT (regstack->reg_set,
1569 REGNO (XEXP (src1_note, 0)));
1570 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1571 regstack->top--;
1572 }
1573 else if (src2_note)
1574 {
1575 rtx src2_reg = XEXP (src2_note, 0);
1576 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1577 {
1578 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1579 replace_reg (dest, get_hard_regnum (regstack, *dest));
1580 }
1581 else
1582 {
1583 int regno = get_hard_regnum (regstack, src2_reg);
1584
1585 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1586 replace_reg (dest, regno);
1587
1588 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1589 = regstack->reg[regstack->top];
1590 }
1591
1592 CLEAR_HARD_REG_BIT (regstack->reg_set,
1593 REGNO (XEXP (src2_note, 0)));
1594 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1595 regstack->top--;
1596 }
1597 else
1598 {
1599 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1600 replace_reg (dest, get_hard_regnum (regstack, *dest));
1601 }
1602
1603 /* Keep operand 1 matching with destination. */
1604 if (COMMUTATIVE_ARITH_P (pat_src)
1605 && REG_P (*src1) && REG_P (*src2)
1606 && REGNO (*src1) != REGNO (*dest))
1607 {
1608 int tmp = REGNO (*src1);
1609 replace_reg (src1, REGNO (*src2));
1610 replace_reg (src2, tmp);
1611 }
1612 break;
1613
1614 case UNSPEC:
1615 switch (XINT (pat_src, 1))
1616 {
1617 case UNSPEC_FIST:
1618
1619 case UNSPEC_FIST_FLOOR:
1620 case UNSPEC_FIST_CEIL:
1621
1622 /* These insns only operate on the top of the stack. */
1623
1624 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1625 emit_swap_insn (insn, regstack, *src1);
1626
1627 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1628
1629 if (STACK_REG_P (*dest))
1630 replace_reg (dest, FIRST_STACK_REG);
1631
1632 if (src1_note)
1633 {
1634 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1635 regstack->top--;
1636 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1637 }
1638
1639 replace_reg (src1, FIRST_STACK_REG);
1640 break;
1641
1642 case UNSPEC_FXAM:
1643
1644 /* This insn only operate on the top of the stack. */
1645
1646 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1647 emit_swap_insn (insn, regstack, *src1);
1648
1649 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1650
1651 replace_reg (src1, FIRST_STACK_REG);
1652
1653 if (src1_note)
1654 {
1655 remove_regno_note (insn, REG_DEAD,
1656 REGNO (XEXP (src1_note, 0)));
1657 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1658 EMIT_AFTER);
1659 }
1660
1661 break;
1662
1663 case UNSPEC_SIN:
1664 case UNSPEC_COS:
1665 case UNSPEC_FRNDINT:
1666 case UNSPEC_F2XM1:
1667
1668 case UNSPEC_FRNDINT_FLOOR:
1669 case UNSPEC_FRNDINT_CEIL:
1670 case UNSPEC_FRNDINT_TRUNC:
1671 case UNSPEC_FRNDINT_MASK_PM:
1672
1673 /* Above insns operate on the top of the stack. */
1674
1675 case UNSPEC_SINCOS_COS:
1676 case UNSPEC_XTRACT_FRACT:
1677
1678 /* Above insns operate on the top two stack slots,
1679 first part of one input, double output insn. */
1680
1681 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1682
1683 emit_swap_insn (insn, regstack, *src1);
1684
1685 /* Input should never die, it is replaced with output. */
1686 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1687 gcc_assert (!src1_note);
1688
1689 if (STACK_REG_P (*dest))
1690 replace_reg (dest, FIRST_STACK_REG);
1691
1692 replace_reg (src1, FIRST_STACK_REG);
1693 break;
1694
1695 case UNSPEC_SINCOS_SIN:
1696 case UNSPEC_XTRACT_EXP:
1697
1698 /* These insns operate on the top two stack slots,
1699 second part of one input, double output insn. */
1700
1701 regstack->top++;
1702 /* FALLTHRU */
1703
1704 case UNSPEC_TAN:
1705
1706 /* For UNSPEC_TAN, regstack->top is already increased
1707 by inherent load of constant 1.0. */
1708
1709 /* Output value is generated in the second stack slot.
1710 Move current value from second slot to the top. */
1711 regstack->reg[regstack->top]
1712 = regstack->reg[regstack->top - 1];
1713
1714 gcc_assert (STACK_REG_P (*dest));
1715
1716 regstack->reg[regstack->top - 1] = REGNO (*dest);
1717 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1718 replace_reg (dest, FIRST_STACK_REG + 1);
1719
1720 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1721
1722 replace_reg (src1, FIRST_STACK_REG);
1723 break;
1724
1725 case UNSPEC_FPATAN:
1726 case UNSPEC_FYL2X:
1727 case UNSPEC_FYL2XP1:
1728 /* These insns operate on the top two stack slots. */
1729
1730 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1731 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1732
1733 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1734 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1735
1736 swap_to_top (insn, regstack, *src1, *src2);
1737
1738 replace_reg (src1, FIRST_STACK_REG);
1739 replace_reg (src2, FIRST_STACK_REG + 1);
1740
1741 if (src1_note)
1742 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1743 if (src2_note)
1744 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1745
1746 /* Pop both input operands from the stack. */
1747 CLEAR_HARD_REG_BIT (regstack->reg_set,
1748 regstack->reg[regstack->top]);
1749 CLEAR_HARD_REG_BIT (regstack->reg_set,
1750 regstack->reg[regstack->top - 1]);
1751 regstack->top -= 2;
1752
1753 /* Push the result back onto the stack. */
1754 regstack->reg[++regstack->top] = REGNO (*dest);
1755 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1756 replace_reg (dest, FIRST_STACK_REG);
1757 break;
1758
1759 case UNSPEC_FSCALE_FRACT:
1760 case UNSPEC_FPREM_F:
1761 case UNSPEC_FPREM1_F:
1762 /* These insns operate on the top two stack slots,
1763 first part of double input, double output insn. */
1764
1765 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1766 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1767
1768 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1769 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1770
1771 /* Inputs should never die, they are
1772 replaced with outputs. */
1773 gcc_assert (!src1_note);
1774 gcc_assert (!src2_note);
1775
1776 swap_to_top (insn, regstack, *src1, *src2);
1777
1778 /* Push the result back onto stack. Empty stack slot
1779 will be filled in second part of insn. */
1780 if (STACK_REG_P (*dest))
1781 {
1782 regstack->reg[regstack->top] = REGNO (*dest);
1783 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1784 replace_reg (dest, FIRST_STACK_REG);
1785 }
1786
1787 replace_reg (src1, FIRST_STACK_REG);
1788 replace_reg (src2, FIRST_STACK_REG + 1);
1789 break;
1790
1791 case UNSPEC_FSCALE_EXP:
1792 case UNSPEC_FPREM_U:
1793 case UNSPEC_FPREM1_U:
1794 /* These insns operate on the top two stack slots,
1795 second part of double input, double output insn. */
1796
1797 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1798 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1799
1800 /* Push the result back onto stack. Fill empty slot from
1801 first part of insn and fix top of stack pointer. */
1802 if (STACK_REG_P (*dest))
1803 {
1804 regstack->reg[regstack->top - 1] = REGNO (*dest);
1805 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1806 replace_reg (dest, FIRST_STACK_REG + 1);
1807 }
1808
1809 replace_reg (src1, FIRST_STACK_REG);
1810 replace_reg (src2, FIRST_STACK_REG + 1);
1811 break;
1812
1813 case UNSPEC_C2_FLAG:
1814 /* This insn operates on the top two stack slots,
1815 third part of C2 setting double input insn. */
1816
1817 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1818 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1819
1820 replace_reg (src1, FIRST_STACK_REG);
1821 replace_reg (src2, FIRST_STACK_REG + 1);
1822 break;
1823
1824 case UNSPEC_SAHF:
1825 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1826 The combination matches the PPRO fcomi instruction. */
1827
1828 pat_src = XVECEXP (pat_src, 0, 0);
1829 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1830 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1831 /* Fall through. */
1832
1833 case UNSPEC_FNSTSW:
1834 /* Combined fcomp+fnstsw generated for doing well with
1835 CSE. When optimizing this would have been broken
1836 up before now. */
1837
1838 pat_src = XVECEXP (pat_src, 0, 0);
1839 gcc_assert (GET_CODE (pat_src) == COMPARE);
1840
1841 compare_for_stack_reg (insn, regstack, pat_src);
1842 break;
1843
1844 default:
1845 gcc_unreachable ();
1846 }
1847 break;
1848
1849 case IF_THEN_ELSE:
1850 /* This insn requires the top of stack to be the destination. */
1851
1852 src1 = get_true_reg (&XEXP (pat_src, 1));
1853 src2 = get_true_reg (&XEXP (pat_src, 2));
1854
1855 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1856 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1857
1858 /* If the comparison operator is an FP comparison operator,
1859 it is handled correctly by compare_for_stack_reg () who
1860 will move the destination to the top of stack. But if the
1861 comparison operator is not an FP comparison operator, we
1862 have to handle it here. */
1863 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1864 && REGNO (*dest) != regstack->reg[regstack->top])
1865 {
1866 /* In case one of operands is the top of stack and the operands
1867 dies, it is safe to make it the destination operand by
1868 reversing the direction of cmove and avoid fxch. */
1869 if ((REGNO (*src1) == regstack->reg[regstack->top]
1870 && src1_note)
1871 || (REGNO (*src2) == regstack->reg[regstack->top]
1872 && src2_note))
1873 {
1874 int idx1 = (get_hard_regnum (regstack, *src1)
1875 - FIRST_STACK_REG);
1876 int idx2 = (get_hard_regnum (regstack, *src2)
1877 - FIRST_STACK_REG);
1878
1879 /* Make reg-stack believe that the operands are already
1880 swapped on the stack */
1881 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1882 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1883
1884 /* Reverse condition to compensate the operand swap.
1885 i386 do have comparison always reversible. */
1886 PUT_CODE (XEXP (pat_src, 0),
1887 reversed_comparison_code (XEXP (pat_src, 0), insn));
1888 }
1889 else
1890 emit_swap_insn (insn, regstack, *dest);
1891 }
1892
1893 {
1894 rtx src_note [3];
1895 int i;
1896
1897 src_note[0] = 0;
1898 src_note[1] = src1_note;
1899 src_note[2] = src2_note;
1900
1901 if (STACK_REG_P (*src1))
1902 replace_reg (src1, get_hard_regnum (regstack, *src1));
1903 if (STACK_REG_P (*src2))
1904 replace_reg (src2, get_hard_regnum (regstack, *src2));
1905
1906 for (i = 1; i <= 2; i++)
1907 if (src_note [i])
1908 {
1909 int regno = REGNO (XEXP (src_note[i], 0));
1910
1911 /* If the register that dies is not at the top of
1912 stack, then move the top of stack to the dead reg.
1913 Top of stack should never die, as it is the
1914 destination. */
1915 gcc_assert (regno != regstack->reg[regstack->top]);
1916 remove_regno_note (insn, REG_DEAD, regno);
1917 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1918 EMIT_AFTER);
1919 }
1920 }
1921
1922 /* Make dest the top of stack. Add dest to regstack if
1923 not present. */
1924 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1925 regstack->reg[++regstack->top] = REGNO (*dest);
1926 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1927 replace_reg (dest, FIRST_STACK_REG);
1928 break;
1929
1930 default:
1931 gcc_unreachable ();
1932 }
1933 break;
1934 }
1935
1936 default:
1937 break;
1938 }
1939
1940 return control_flow_insn_deleted;
1941 }
1942 \f
1943 /* Substitute hard regnums for any stack regs in INSN, which has
1944 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1945 before the insn, and is updated with changes made here.
1946
1947 There are several requirements and assumptions about the use of
1948 stack-like regs in asm statements. These rules are enforced by
1949 record_asm_stack_regs; see comments there for details. Any
1950 asm_operands left in the RTL at this point may be assume to meet the
1951 requirements, since record_asm_stack_regs removes any problem asm. */
1952
1953 static void
1954 subst_asm_stack_regs (rtx insn, stack regstack)
1955 {
1956 rtx body = PATTERN (insn);
1957 int alt;
1958
1959 rtx *note_reg; /* Array of note contents */
1960 rtx **note_loc; /* Address of REG field of each note */
1961 enum reg_note *note_kind; /* The type of each note */
1962
1963 rtx *clobber_reg = 0;
1964 rtx **clobber_loc = 0;
1965
1966 struct stack_def temp_stack;
1967 int n_notes;
1968 int n_clobbers;
1969 rtx note;
1970 int i;
1971 int n_inputs, n_outputs;
1972
1973 if (! check_asm_stack_operands (insn))
1974 return;
1975
1976 /* Find out what the constraints required. If no constraint
1977 alternative matches, that is a compiler bug: we should have caught
1978 such an insn in check_asm_stack_operands. */
1979 extract_insn (insn);
1980 constrain_operands (1);
1981 alt = which_alternative;
1982
1983 preprocess_constraints ();
1984
1985 n_inputs = get_asm_operand_n_inputs (body);
1986 n_outputs = recog_data.n_operands - n_inputs;
1987
1988 gcc_assert (alt >= 0);
1989
1990 /* Strip SUBREGs here to make the following code simpler. */
1991 for (i = 0; i < recog_data.n_operands; i++)
1992 if (GET_CODE (recog_data.operand[i]) == SUBREG
1993 && REG_P (SUBREG_REG (recog_data.operand[i])))
1994 {
1995 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1996 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1997 }
1998
1999 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2000
2001 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2002 i++;
2003
2004 note_reg = alloca (i * sizeof (rtx));
2005 note_loc = alloca (i * sizeof (rtx *));
2006 note_kind = alloca (i * sizeof (enum reg_note));
2007
2008 n_notes = 0;
2009 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2010 {
2011 rtx reg = XEXP (note, 0);
2012 rtx *loc = & XEXP (note, 0);
2013
2014 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2015 {
2016 loc = & SUBREG_REG (reg);
2017 reg = SUBREG_REG (reg);
2018 }
2019
2020 if (STACK_REG_P (reg)
2021 && (REG_NOTE_KIND (note) == REG_DEAD
2022 || REG_NOTE_KIND (note) == REG_UNUSED))
2023 {
2024 note_reg[n_notes] = reg;
2025 note_loc[n_notes] = loc;
2026 note_kind[n_notes] = REG_NOTE_KIND (note);
2027 n_notes++;
2028 }
2029 }
2030
2031 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2032
2033 n_clobbers = 0;
2034
2035 if (GET_CODE (body) == PARALLEL)
2036 {
2037 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2038 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2039
2040 for (i = 0; i < XVECLEN (body, 0); i++)
2041 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2042 {
2043 rtx clobber = XVECEXP (body, 0, i);
2044 rtx reg = XEXP (clobber, 0);
2045 rtx *loc = & XEXP (clobber, 0);
2046
2047 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2048 {
2049 loc = & SUBREG_REG (reg);
2050 reg = SUBREG_REG (reg);
2051 }
2052
2053 if (STACK_REG_P (reg))
2054 {
2055 clobber_reg[n_clobbers] = reg;
2056 clobber_loc[n_clobbers] = loc;
2057 n_clobbers++;
2058 }
2059 }
2060 }
2061
2062 temp_stack = *regstack;
2063
2064 /* Put the input regs into the desired place in TEMP_STACK. */
2065
2066 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2067 if (STACK_REG_P (recog_data.operand[i])
2068 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2069 FLOAT_REGS)
2070 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2071 {
2072 /* If an operand needs to be in a particular reg in
2073 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2074 these constraints are for single register classes, and
2075 reload guaranteed that operand[i] is already in that class,
2076 we can just use REGNO (recog_data.operand[i]) to know which
2077 actual reg this operand needs to be in. */
2078
2079 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2080
2081 gcc_assert (regno >= 0);
2082
2083 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2084 {
2085 /* recog_data.operand[i] is not in the right place. Find
2086 it and swap it with whatever is already in I's place.
2087 K is where recog_data.operand[i] is now. J is where it
2088 should be. */
2089 int j, k, temp;
2090
2091 k = temp_stack.top - (regno - FIRST_STACK_REG);
2092 j = (temp_stack.top
2093 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2094
2095 temp = temp_stack.reg[k];
2096 temp_stack.reg[k] = temp_stack.reg[j];
2097 temp_stack.reg[j] = temp;
2098 }
2099 }
2100
2101 /* Emit insns before INSN to make sure the reg-stack is in the right
2102 order. */
2103
2104 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2105
2106 /* Make the needed input register substitutions. Do death notes and
2107 clobbers too, because these are for inputs, not outputs. */
2108
2109 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2110 if (STACK_REG_P (recog_data.operand[i]))
2111 {
2112 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2113
2114 gcc_assert (regnum >= 0);
2115
2116 replace_reg (recog_data.operand_loc[i], regnum);
2117 }
2118
2119 for (i = 0; i < n_notes; i++)
2120 if (note_kind[i] == REG_DEAD)
2121 {
2122 int regnum = get_hard_regnum (regstack, note_reg[i]);
2123
2124 gcc_assert (regnum >= 0);
2125
2126 replace_reg (note_loc[i], regnum);
2127 }
2128
2129 for (i = 0; i < n_clobbers; i++)
2130 {
2131 /* It's OK for a CLOBBER to reference a reg that is not live.
2132 Don't try to replace it in that case. */
2133 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2134
2135 if (regnum >= 0)
2136 {
2137 /* Sigh - clobbers always have QImode. But replace_reg knows
2138 that these regs can't be MODE_INT and will assert. Just put
2139 the right reg there without calling replace_reg. */
2140
2141 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2142 }
2143 }
2144
2145 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2146
2147 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2148 if (STACK_REG_P (recog_data.operand[i]))
2149 {
2150 /* An input reg is implicitly popped if it is tied to an
2151 output, or if there is a CLOBBER for it. */
2152 int j;
2153
2154 for (j = 0; j < n_clobbers; j++)
2155 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2156 break;
2157
2158 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2159 {
2160 /* recog_data.operand[i] might not be at the top of stack.
2161 But that's OK, because all we need to do is pop the
2162 right number of regs off of the top of the reg-stack.
2163 record_asm_stack_regs guaranteed that all implicitly
2164 popped regs were grouped at the top of the reg-stack. */
2165
2166 CLEAR_HARD_REG_BIT (regstack->reg_set,
2167 regstack->reg[regstack->top]);
2168 regstack->top--;
2169 }
2170 }
2171
2172 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2173 Note that there isn't any need to substitute register numbers.
2174 ??? Explain why this is true. */
2175
2176 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2177 {
2178 /* See if there is an output for this hard reg. */
2179 int j;
2180
2181 for (j = 0; j < n_outputs; j++)
2182 if (STACK_REG_P (recog_data.operand[j])
2183 && REGNO (recog_data.operand[j]) == (unsigned) i)
2184 {
2185 regstack->reg[++regstack->top] = i;
2186 SET_HARD_REG_BIT (regstack->reg_set, i);
2187 break;
2188 }
2189 }
2190
2191 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2192 input that the asm didn't implicitly pop. If the asm didn't
2193 implicitly pop an input reg, that reg will still be live.
2194
2195 Note that we can't use find_regno_note here: the register numbers
2196 in the death notes have already been substituted. */
2197
2198 for (i = 0; i < n_outputs; i++)
2199 if (STACK_REG_P (recog_data.operand[i]))
2200 {
2201 int j;
2202
2203 for (j = 0; j < n_notes; j++)
2204 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2205 && note_kind[j] == REG_UNUSED)
2206 {
2207 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2208 EMIT_AFTER);
2209 break;
2210 }
2211 }
2212
2213 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2214 if (STACK_REG_P (recog_data.operand[i]))
2215 {
2216 int j;
2217
2218 for (j = 0; j < n_notes; j++)
2219 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2220 && note_kind[j] == REG_DEAD
2221 && TEST_HARD_REG_BIT (regstack->reg_set,
2222 REGNO (recog_data.operand[i])))
2223 {
2224 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2225 EMIT_AFTER);
2226 break;
2227 }
2228 }
2229 }
2230 \f
2231 /* Substitute stack hard reg numbers for stack virtual registers in
2232 INSN. Non-stack register numbers are not changed. REGSTACK is the
2233 current stack content. Insns may be emitted as needed to arrange the
2234 stack for the 387 based on the contents of the insn. Return whether
2235 a control flow insn was deleted in the process. */
2236
2237 static bool
2238 subst_stack_regs (rtx insn, stack regstack)
2239 {
2240 rtx *note_link, note;
2241 bool control_flow_insn_deleted = false;
2242 int i;
2243
2244 if (CALL_P (insn))
2245 {
2246 int top = regstack->top;
2247
2248 /* If there are any floating point parameters to be passed in
2249 registers for this call, make sure they are in the right
2250 order. */
2251
2252 if (top >= 0)
2253 {
2254 straighten_stack (insn, regstack);
2255
2256 /* Now mark the arguments as dead after the call. */
2257
2258 while (regstack->top >= 0)
2259 {
2260 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2261 regstack->top--;
2262 }
2263 }
2264 }
2265
2266 /* Do the actual substitution if any stack regs are mentioned.
2267 Since we only record whether entire insn mentions stack regs, and
2268 subst_stack_regs_pat only works for patterns that contain stack regs,
2269 we must check each pattern in a parallel here. A call_value_pop could
2270 fail otherwise. */
2271
2272 if (stack_regs_mentioned (insn))
2273 {
2274 int n_operands = asm_noperands (PATTERN (insn));
2275 if (n_operands >= 0)
2276 {
2277 /* This insn is an `asm' with operands. Decode the operands,
2278 decide how many are inputs, and do register substitution.
2279 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2280
2281 subst_asm_stack_regs (insn, regstack);
2282 return control_flow_insn_deleted;
2283 }
2284
2285 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2286 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2287 {
2288 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2289 {
2290 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2291 XVECEXP (PATTERN (insn), 0, i)
2292 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2293 control_flow_insn_deleted
2294 |= subst_stack_regs_pat (insn, regstack,
2295 XVECEXP (PATTERN (insn), 0, i));
2296 }
2297 }
2298 else
2299 control_flow_insn_deleted
2300 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2301 }
2302
2303 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2304 REG_UNUSED will already have been dealt with, so just return. */
2305
2306 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2307 return control_flow_insn_deleted;
2308
2309 /* If this a noreturn call, we can't insert pop insns after it.
2310 Instead, reset the stack state to empty. */
2311 if (CALL_P (insn)
2312 && find_reg_note (insn, REG_NORETURN, NULL))
2313 {
2314 regstack->top = -1;
2315 CLEAR_HARD_REG_SET (regstack->reg_set);
2316 return control_flow_insn_deleted;
2317 }
2318
2319 /* If there is a REG_UNUSED note on a stack register on this insn,
2320 the indicated reg must be popped. The REG_UNUSED note is removed,
2321 since the form of the newly emitted pop insn references the reg,
2322 making it no longer `unset'. */
2323
2324 note_link = &REG_NOTES (insn);
2325 for (note = *note_link; note; note = XEXP (note, 1))
2326 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2327 {
2328 *note_link = XEXP (note, 1);
2329 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2330 }
2331 else
2332 note_link = &XEXP (note, 1);
2333
2334 return control_flow_insn_deleted;
2335 }
2336 \f
2337 /* Change the organization of the stack so that it fits a new basic
2338 block. Some registers might have to be popped, but there can never be
2339 a register live in the new block that is not now live.
2340
2341 Insert any needed insns before or after INSN, as indicated by
2342 WHERE. OLD is the original stack layout, and NEW is the desired
2343 form. OLD is updated to reflect the code emitted, i.e., it will be
2344 the same as NEW upon return.
2345
2346 This function will not preserve block_end[]. But that information
2347 is no longer needed once this has executed. */
2348
2349 static void
2350 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2351 {
2352 int reg;
2353 int update_end = 0;
2354
2355 /* Stack adjustments for the first insn in a block update the
2356 current_block's stack_in instead of inserting insns directly.
2357 compensate_edges will add the necessary code later. */
2358 if (current_block
2359 && starting_stack_p
2360 && where == EMIT_BEFORE)
2361 {
2362 BLOCK_INFO (current_block)->stack_in = *new;
2363 starting_stack_p = false;
2364 *old = *new;
2365 return;
2366 }
2367
2368 /* We will be inserting new insns "backwards". If we are to insert
2369 after INSN, find the next insn, and insert before it. */
2370
2371 if (where == EMIT_AFTER)
2372 {
2373 if (current_block && BB_END (current_block) == insn)
2374 update_end = 1;
2375 insn = NEXT_INSN (insn);
2376 }
2377
2378 /* Pop any registers that are not needed in the new block. */
2379
2380 /* If the destination block's stack already has a specified layout
2381 and contains two or more registers, use a more intelligent algorithm
2382 to pop registers that minimizes the number number of fxchs below. */
2383 if (new->top > 0)
2384 {
2385 bool slots[REG_STACK_SIZE];
2386 int pops[REG_STACK_SIZE];
2387 int next, dest, topsrc;
2388
2389 /* First pass to determine the free slots. */
2390 for (reg = 0; reg <= new->top; reg++)
2391 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2392
2393 /* Second pass to allocate preferred slots. */
2394 topsrc = -1;
2395 for (reg = old->top; reg > new->top; reg--)
2396 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2397 {
2398 dest = -1;
2399 for (next = 0; next <= new->top; next++)
2400 if (!slots[next] && new->reg[next] == old->reg[reg])
2401 {
2402 /* If this is a preference for the new top of stack, record
2403 the fact by remembering it's old->reg in topsrc. */
2404 if (next == new->top)
2405 topsrc = reg;
2406 slots[next] = true;
2407 dest = next;
2408 break;
2409 }
2410 pops[reg] = dest;
2411 }
2412 else
2413 pops[reg] = reg;
2414
2415 /* Intentionally, avoid placing the top of stack in it's correct
2416 location, if we still need to permute the stack below and we
2417 can usefully place it somewhere else. This is the case if any
2418 slot is still unallocated, in which case we should place the
2419 top of stack there. */
2420 if (topsrc != -1)
2421 for (reg = 0; reg < new->top; reg++)
2422 if (!slots[reg])
2423 {
2424 pops[topsrc] = reg;
2425 slots[new->top] = false;
2426 slots[reg] = true;
2427 break;
2428 }
2429
2430 /* Third pass allocates remaining slots and emits pop insns. */
2431 next = new->top;
2432 for (reg = old->top; reg > new->top; reg--)
2433 {
2434 dest = pops[reg];
2435 if (dest == -1)
2436 {
2437 /* Find next free slot. */
2438 while (slots[next])
2439 next--;
2440 dest = next--;
2441 }
2442 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2443 EMIT_BEFORE);
2444 }
2445 }
2446 else
2447 {
2448 /* The following loop attempts to maximize the number of times we
2449 pop the top of the stack, as this permits the use of the faster
2450 ffreep instruction on platforms that support it. */
2451 int live, next;
2452
2453 live = 0;
2454 for (reg = 0; reg <= old->top; reg++)
2455 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2456 live++;
2457
2458 next = live;
2459 while (old->top >= live)
2460 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2461 {
2462 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2463 next--;
2464 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2465 EMIT_BEFORE);
2466 }
2467 else
2468 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2469 EMIT_BEFORE);
2470 }
2471
2472 if (new->top == -2)
2473 {
2474 /* If the new block has never been processed, then it can inherit
2475 the old stack order. */
2476
2477 new->top = old->top;
2478 memcpy (new->reg, old->reg, sizeof (new->reg));
2479 }
2480 else
2481 {
2482 /* This block has been entered before, and we must match the
2483 previously selected stack order. */
2484
2485 /* By now, the only difference should be the order of the stack,
2486 not their depth or liveliness. */
2487
2488 gcc_assert (hard_reg_set_equal_p (old->reg_set, new->reg_set));
2489 gcc_assert (old->top == new->top);
2490
2491 /* If the stack is not empty (new->top != -1), loop here emitting
2492 swaps until the stack is correct.
2493
2494 The worst case number of swaps emitted is N + 2, where N is the
2495 depth of the stack. In some cases, the reg at the top of
2496 stack may be correct, but swapped anyway in order to fix
2497 other regs. But since we never swap any other reg away from
2498 its correct slot, this algorithm will converge. */
2499
2500 if (new->top != -1)
2501 do
2502 {
2503 /* Swap the reg at top of stack into the position it is
2504 supposed to be in, until the correct top of stack appears. */
2505
2506 while (old->reg[old->top] != new->reg[new->top])
2507 {
2508 for (reg = new->top; reg >= 0; reg--)
2509 if (new->reg[reg] == old->reg[old->top])
2510 break;
2511
2512 gcc_assert (reg != -1);
2513
2514 emit_swap_insn (insn, old,
2515 FP_MODE_REG (old->reg[reg], DFmode));
2516 }
2517
2518 /* See if any regs remain incorrect. If so, bring an
2519 incorrect reg to the top of stack, and let the while loop
2520 above fix it. */
2521
2522 for (reg = new->top; reg >= 0; reg--)
2523 if (new->reg[reg] != old->reg[reg])
2524 {
2525 emit_swap_insn (insn, old,
2526 FP_MODE_REG (old->reg[reg], DFmode));
2527 break;
2528 }
2529 } while (reg >= 0);
2530
2531 /* At this point there must be no differences. */
2532
2533 for (reg = old->top; reg >= 0; reg--)
2534 gcc_assert (old->reg[reg] == new->reg[reg]);
2535 }
2536
2537 if (update_end)
2538 BB_END (current_block) = PREV_INSN (insn);
2539 }
2540 \f
2541 /* Print stack configuration. */
2542
2543 static void
2544 print_stack (FILE *file, stack s)
2545 {
2546 if (! file)
2547 return;
2548
2549 if (s->top == -2)
2550 fprintf (file, "uninitialized\n");
2551 else if (s->top == -1)
2552 fprintf (file, "empty\n");
2553 else
2554 {
2555 int i;
2556 fputs ("[ ", file);
2557 for (i = 0; i <= s->top; ++i)
2558 fprintf (file, "%d ", s->reg[i]);
2559 fputs ("]\n", file);
2560 }
2561 }
2562 \f
2563 /* This function was doing life analysis. We now let the regular live
2564 code do it's job, so we only need to check some extra invariants
2565 that reg-stack expects. Primary among these being that all registers
2566 are initialized before use.
2567
2568 The function returns true when code was emitted to CFG edges and
2569 commit_edge_insertions needs to be called. */
2570
2571 static int
2572 convert_regs_entry (void)
2573 {
2574 int inserted = 0;
2575 edge e;
2576 edge_iterator ei;
2577
2578 /* Load something into each stack register live at function entry.
2579 Such live registers can be caused by uninitialized variables or
2580 functions not returning values on all paths. In order to keep
2581 the push/pop code happy, and to not scrog the register stack, we
2582 must put something in these registers. Use a QNaN.
2583
2584 Note that we are inserting converted code here. This code is
2585 never seen by the convert_regs pass. */
2586
2587 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2588 {
2589 basic_block block = e->dest;
2590 block_info bi = BLOCK_INFO (block);
2591 int reg, top = -1;
2592
2593 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2594 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2595 {
2596 rtx init;
2597
2598 bi->stack_in.reg[++top] = reg;
2599
2600 init = gen_rtx_SET (VOIDmode,
2601 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2602 not_a_num);
2603 insert_insn_on_edge (init, e);
2604 inserted = 1;
2605 }
2606
2607 bi->stack_in.top = top;
2608 }
2609
2610 return inserted;
2611 }
2612
2613 /* Construct the desired stack for function exit. This will either
2614 be `empty', or the function return value at top-of-stack. */
2615
2616 static void
2617 convert_regs_exit (void)
2618 {
2619 int value_reg_low, value_reg_high;
2620 stack output_stack;
2621 rtx retvalue;
2622
2623 retvalue = stack_result (current_function_decl);
2624 value_reg_low = value_reg_high = -1;
2625 if (retvalue)
2626 {
2627 value_reg_low = REGNO (retvalue);
2628 value_reg_high = value_reg_low
2629 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2630 }
2631
2632 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2633 if (value_reg_low == -1)
2634 output_stack->top = -1;
2635 else
2636 {
2637 int reg;
2638
2639 output_stack->top = value_reg_high - value_reg_low;
2640 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2641 {
2642 output_stack->reg[value_reg_high - reg] = reg;
2643 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2644 }
2645 }
2646 }
2647
2648 /* Copy the stack info from the end of edge E's source block to the
2649 start of E's destination block. */
2650
2651 static void
2652 propagate_stack (edge e)
2653 {
2654 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2655 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2656 int reg;
2657
2658 /* Preserve the order of the original stack, but check whether
2659 any pops are needed. */
2660 dest_stack->top = -1;
2661 for (reg = 0; reg <= src_stack->top; ++reg)
2662 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2663 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2664 }
2665
2666
2667 /* Adjust the stack of edge E's source block on exit to match the stack
2668 of it's target block upon input. The stack layouts of both blocks
2669 should have been defined by now. */
2670
2671 static bool
2672 compensate_edge (edge e)
2673 {
2674 basic_block source = e->src, target = e->dest;
2675 stack target_stack = &BLOCK_INFO (target)->stack_in;
2676 stack source_stack = &BLOCK_INFO (source)->stack_out;
2677 struct stack_def regstack;
2678 int reg;
2679
2680 if (dump_file)
2681 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2682
2683 gcc_assert (target_stack->top != -2);
2684
2685 /* Check whether stacks are identical. */
2686 if (target_stack->top == source_stack->top)
2687 {
2688 for (reg = target_stack->top; reg >= 0; --reg)
2689 if (target_stack->reg[reg] != source_stack->reg[reg])
2690 break;
2691
2692 if (reg == -1)
2693 {
2694 if (dump_file)
2695 fprintf (dump_file, "no changes needed\n");
2696 return false;
2697 }
2698 }
2699
2700 if (dump_file)
2701 {
2702 fprintf (dump_file, "correcting stack to ");
2703 print_stack (dump_file, target_stack);
2704 }
2705
2706 /* Abnormal calls may appear to have values live in st(0), but the
2707 abnormal return path will not have actually loaded the values. */
2708 if (e->flags & EDGE_ABNORMAL_CALL)
2709 {
2710 /* Assert that the lifetimes are as we expect -- one value
2711 live at st(0) on the end of the source block, and no
2712 values live at the beginning of the destination block.
2713 For complex return values, we may have st(1) live as well. */
2714 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2715 gcc_assert (target_stack->top == -1);
2716 return false;
2717 }
2718
2719 /* Handle non-call EH edges specially. The normal return path have
2720 values in registers. These will be popped en masse by the unwind
2721 library. */
2722 if (e->flags & EDGE_EH)
2723 {
2724 gcc_assert (target_stack->top == -1);
2725 return false;
2726 }
2727
2728 /* We don't support abnormal edges. Global takes care to
2729 avoid any live register across them, so we should never
2730 have to insert instructions on such edges. */
2731 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2732
2733 /* Make a copy of source_stack as change_stack is destructive. */
2734 regstack = *source_stack;
2735
2736 /* It is better to output directly to the end of the block
2737 instead of to the edge, because emit_swap can do minimal
2738 insn scheduling. We can do this when there is only one
2739 edge out, and it is not abnormal. */
2740 if (EDGE_COUNT (source->succs) == 1)
2741 {
2742 current_block = source;
2743 change_stack (BB_END (source), &regstack, target_stack,
2744 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2745 }
2746 else
2747 {
2748 rtx seq, after;
2749
2750 current_block = NULL;
2751 start_sequence ();
2752
2753 /* ??? change_stack needs some point to emit insns after. */
2754 after = emit_note (NOTE_INSN_DELETED);
2755
2756 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2757
2758 seq = get_insns ();
2759 end_sequence ();
2760
2761 insert_insn_on_edge (seq, e);
2762 return true;
2763 }
2764 return false;
2765 }
2766
2767 /* Traverse all non-entry edges in the CFG, and emit the necessary
2768 edge compensation code to change the stack from stack_out of the
2769 source block to the stack_in of the destination block. */
2770
2771 static bool
2772 compensate_edges (void)
2773 {
2774 bool inserted = false;
2775 basic_block bb;
2776
2777 starting_stack_p = false;
2778
2779 FOR_EACH_BB (bb)
2780 if (bb != ENTRY_BLOCK_PTR)
2781 {
2782 edge e;
2783 edge_iterator ei;
2784
2785 FOR_EACH_EDGE (e, ei, bb->succs)
2786 inserted |= compensate_edge (e);
2787 }
2788 return inserted;
2789 }
2790
2791 /* Select the better of two edges E1 and E2 to use to determine the
2792 stack layout for their shared destination basic block. This is
2793 typically the more frequently executed. The edge E1 may be NULL
2794 (in which case E2 is returned), but E2 is always non-NULL. */
2795
2796 static edge
2797 better_edge (edge e1, edge e2)
2798 {
2799 if (!e1)
2800 return e2;
2801
2802 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2803 return e1;
2804 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2805 return e2;
2806
2807 if (e1->count > e2->count)
2808 return e1;
2809 if (e1->count < e2->count)
2810 return e2;
2811
2812 /* Prefer critical edges to minimize inserting compensation code on
2813 critical edges. */
2814
2815 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2816 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2817
2818 /* Avoid non-deterministic behavior. */
2819 return (e1->src->index < e2->src->index) ? e1 : e2;
2820 }
2821
2822 /* Convert stack register references in one block. */
2823
2824 static void
2825 convert_regs_1 (basic_block block)
2826 {
2827 struct stack_def regstack;
2828 block_info bi = BLOCK_INFO (block);
2829 int reg;
2830 rtx insn, next;
2831 bool control_flow_insn_deleted = false;
2832
2833 any_malformed_asm = false;
2834
2835 /* Choose an initial stack layout, if one hasn't already been chosen. */
2836 if (bi->stack_in.top == -2)
2837 {
2838 edge e, beste = NULL;
2839 edge_iterator ei;
2840
2841 /* Select the best incoming edge (typically the most frequent) to
2842 use as a template for this basic block. */
2843 FOR_EACH_EDGE (e, ei, block->preds)
2844 if (BLOCK_INFO (e->src)->done)
2845 beste = better_edge (beste, e);
2846
2847 if (beste)
2848 propagate_stack (beste);
2849 else
2850 {
2851 /* No predecessors. Create an arbitrary input stack. */
2852 bi->stack_in.top = -1;
2853 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2854 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2855 bi->stack_in.reg[++bi->stack_in.top] = reg;
2856 }
2857 }
2858
2859 if (dump_file)
2860 {
2861 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2862 print_stack (dump_file, &bi->stack_in);
2863 }
2864
2865 /* Process all insns in this block. Keep track of NEXT so that we
2866 don't process insns emitted while substituting in INSN. */
2867 current_block = block;
2868 next = BB_HEAD (block);
2869 regstack = bi->stack_in;
2870 starting_stack_p = true;
2871
2872 do
2873 {
2874 insn = next;
2875 next = NEXT_INSN (insn);
2876
2877 /* Ensure we have not missed a block boundary. */
2878 gcc_assert (next);
2879 if (insn == BB_END (block))
2880 next = NULL;
2881
2882 /* Don't bother processing unless there is a stack reg
2883 mentioned or if it's a CALL_INSN. */
2884 if (stack_regs_mentioned (insn)
2885 || CALL_P (insn))
2886 {
2887 if (dump_file)
2888 {
2889 fprintf (dump_file, " insn %d input stack: ",
2890 INSN_UID (insn));
2891 print_stack (dump_file, &regstack);
2892 }
2893 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2894 starting_stack_p = false;
2895 }
2896 }
2897 while (next);
2898
2899 if (dump_file)
2900 {
2901 fprintf (dump_file, "Expected live registers [");
2902 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2903 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2904 fprintf (dump_file, " %d", reg);
2905 fprintf (dump_file, " ]\nOutput stack: ");
2906 print_stack (dump_file, &regstack);
2907 }
2908
2909 insn = BB_END (block);
2910 if (JUMP_P (insn))
2911 insn = PREV_INSN (insn);
2912
2913 /* If the function is declared to return a value, but it returns one
2914 in only some cases, some registers might come live here. Emit
2915 necessary moves for them. */
2916
2917 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2918 {
2919 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2920 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2921 {
2922 rtx set;
2923
2924 if (dump_file)
2925 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2926
2927 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2928 insn = emit_insn_after (set, insn);
2929 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2930 }
2931 }
2932
2933 /* Amongst the insns possibly deleted during the substitution process above,
2934 might have been the only trapping insn in the block. We purge the now
2935 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2936 called at the end of convert_regs. The order in which we process the
2937 blocks ensures that we never delete an already processed edge.
2938
2939 Note that, at this point, the CFG may have been damaged by the emission
2940 of instructions after an abnormal call, which moves the basic block end
2941 (and is the reason why we call fixup_abnormal_edges later). So we must
2942 be sure that the trapping insn has been deleted before trying to purge
2943 dead edges, otherwise we risk purging valid edges.
2944
2945 ??? We are normally supposed not to delete trapping insns, so we pretend
2946 that the insns deleted above don't actually trap. It would have been
2947 better to detect this earlier and avoid creating the EH edge in the first
2948 place, still, but we don't have enough information at that time. */
2949
2950 if (control_flow_insn_deleted)
2951 purge_dead_edges (block);
2952
2953 /* Something failed if the stack lives don't match. If we had malformed
2954 asms, we zapped the instruction itself, but that didn't produce the
2955 same pattern of register kills as before. */
2956 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
2957 || any_malformed_asm);
2958 bi->stack_out = regstack;
2959 bi->done = true;
2960 }
2961
2962 /* Convert registers in all blocks reachable from BLOCK. */
2963
2964 static void
2965 convert_regs_2 (basic_block block)
2966 {
2967 basic_block *stack, *sp;
2968
2969 /* We process the blocks in a top-down manner, in a way such that one block
2970 is only processed after all its predecessors. The number of predecessors
2971 of every block has already been computed. */
2972
2973 stack = XNEWVEC (basic_block, n_basic_blocks);
2974 sp = stack;
2975
2976 *sp++ = block;
2977
2978 do
2979 {
2980 edge e;
2981 edge_iterator ei;
2982
2983 block = *--sp;
2984
2985 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2986 some dead EH outgoing edge after the deletion of the trapping
2987 insn inside the block. Since the number of predecessors of
2988 BLOCK's successors was computed based on the initial edge set,
2989 we check the necessity to process some of these successors
2990 before such an edge deletion may happen. However, there is
2991 a pitfall: if BLOCK is the only predecessor of a successor and
2992 the edge between them happens to be deleted, the successor
2993 becomes unreachable and should not be processed. The problem
2994 is that there is no way to preventively detect this case so we
2995 stack the successor in all cases and hand over the task of
2996 fixing up the discrepancy to convert_regs_1. */
2997
2998 FOR_EACH_EDGE (e, ei, block->succs)
2999 if (! (e->flags & EDGE_DFS_BACK))
3000 {
3001 BLOCK_INFO (e->dest)->predecessors--;
3002 if (!BLOCK_INFO (e->dest)->predecessors)
3003 *sp++ = e->dest;
3004 }
3005
3006 convert_regs_1 (block);
3007 }
3008 while (sp != stack);
3009
3010 free (stack);
3011 }
3012
3013 /* Traverse all basic blocks in a function, converting the register
3014 references in each insn from the "flat" register file that gcc uses,
3015 to the stack-like registers the 387 uses. */
3016
3017 static void
3018 convert_regs (void)
3019 {
3020 int inserted;
3021 basic_block b;
3022 edge e;
3023 edge_iterator ei;
3024
3025 /* Initialize uninitialized registers on function entry. */
3026 inserted = convert_regs_entry ();
3027
3028 /* Construct the desired stack for function exit. */
3029 convert_regs_exit ();
3030 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3031
3032 /* ??? Future: process inner loops first, and give them arbitrary
3033 initial stacks which emit_swap_insn can modify. This ought to
3034 prevent double fxch that often appears at the head of a loop. */
3035
3036 /* Process all blocks reachable from all entry points. */
3037 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3038 convert_regs_2 (e->dest);
3039
3040 /* ??? Process all unreachable blocks. Though there's no excuse
3041 for keeping these even when not optimizing. */
3042 FOR_EACH_BB (b)
3043 {
3044 block_info bi = BLOCK_INFO (b);
3045
3046 if (! bi->done)
3047 convert_regs_2 (b);
3048 }
3049
3050 inserted |= compensate_edges ();
3051
3052 clear_aux_for_blocks ();
3053
3054 fixup_abnormal_edges ();
3055 if (inserted)
3056 commit_edge_insertions ();
3057
3058 if (dump_file)
3059 fputc ('\n', dump_file);
3060 }
3061 \f
3062 /* Convert register usage from "flat" register file usage to a "stack
3063 register file. FILE is the dump file, if used.
3064
3065 Construct a CFG and run life analysis. Then convert each insn one
3066 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3067 code duplication created when the converter inserts pop insns on
3068 the edges. */
3069
3070 static bool
3071 reg_to_stack (void)
3072 {
3073 basic_block bb;
3074 int i;
3075 int max_uid;
3076
3077 /* Clean up previous run. */
3078 if (stack_regs_mentioned_data != NULL)
3079 VEC_free (char, heap, stack_regs_mentioned_data);
3080
3081 /* See if there is something to do. Flow analysis is quite
3082 expensive so we might save some compilation time. */
3083 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3084 if (regs_ever_live[i])
3085 break;
3086 if (i > LAST_STACK_REG)
3087 return false;
3088
3089 /* Ok, floating point instructions exist. If not optimizing,
3090 build the CFG and run life analysis.
3091 Also need to rebuild life when superblock scheduling is done
3092 as it don't update liveness yet. */
3093 if (!optimize
3094 || ((flag_sched2_use_superblocks || flag_sched2_use_traces)
3095 && flag_schedule_insns_after_reload))
3096 {
3097 count_or_remove_death_notes (NULL, 1);
3098 life_analysis (PROP_DEATH_NOTES);
3099 }
3100 mark_dfs_back_edges ();
3101
3102 /* Set up block info for each basic block. */
3103 alloc_aux_for_blocks (sizeof (struct block_info_def));
3104 FOR_EACH_BB (bb)
3105 {
3106 block_info bi = BLOCK_INFO (bb);
3107 edge_iterator ei;
3108 edge e;
3109 int reg;
3110
3111 FOR_EACH_EDGE (e, ei, bb->preds)
3112 if (!(e->flags & EDGE_DFS_BACK)
3113 && e->src != ENTRY_BLOCK_PTR)
3114 bi->predecessors++;
3115
3116 /* Set current register status at last instruction `uninitialized'. */
3117 bi->stack_in.top = -2;
3118
3119 /* Copy live_at_end and live_at_start into temporaries. */
3120 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3121 {
3122 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_end, reg))
3123 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3124 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
3125 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3126 }
3127 }
3128
3129 /* Create the replacement registers up front. */
3130 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3131 {
3132 enum machine_mode mode;
3133 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3134 mode != VOIDmode;
3135 mode = GET_MODE_WIDER_MODE (mode))
3136 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3137 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3138 mode != VOIDmode;
3139 mode = GET_MODE_WIDER_MODE (mode))
3140 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3141 }
3142
3143 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3144
3145 /* A QNaN for initializing uninitialized variables.
3146
3147 ??? We can't load from constant memory in PIC mode, because
3148 we're inserting these instructions before the prologue and
3149 the PIC register hasn't been set up. In that case, fall back
3150 on zero, which we can get from `ldz'. */
3151
3152 if ((flag_pic && !TARGET_64BIT)
3153 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3154 not_a_num = CONST0_RTX (SFmode);
3155 else
3156 {
3157 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3158 not_a_num = force_const_mem (SFmode, not_a_num);
3159 }
3160
3161 /* Allocate a cache for stack_regs_mentioned. */
3162 max_uid = get_max_uid ();
3163 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3164 memset (VEC_address (char, stack_regs_mentioned_data),
3165 0, sizeof (char) * max_uid + 1);
3166
3167 convert_regs ();
3168
3169 free_aux_for_blocks ();
3170 return true;
3171 }
3172 #endif /* STACK_REGS */
3173 \f
3174 static bool
3175 gate_handle_stack_regs (void)
3176 {
3177 #ifdef STACK_REGS
3178 return 1;
3179 #else
3180 return 0;
3181 #endif
3182 }
3183
3184 /* Convert register usage from flat register file usage to a stack
3185 register file. */
3186 static unsigned int
3187 rest_of_handle_stack_regs (void)
3188 {
3189 #ifdef STACK_REGS
3190 if (reg_to_stack () && optimize)
3191 {
3192 regstack_completed = 1;
3193 if (cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK
3194 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0))
3195 && (flag_reorder_blocks || flag_reorder_blocks_and_partition))
3196 {
3197 basic_block bb;
3198
3199 cfg_layout_initialize (0);
3200
3201 reorder_basic_blocks ();
3202 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK);
3203
3204 FOR_EACH_BB (bb)
3205 if (bb->next_bb != EXIT_BLOCK_PTR)
3206 bb->aux = bb->next_bb;
3207 cfg_layout_finalize ();
3208 }
3209 }
3210 else
3211 regstack_completed = 1;
3212 #endif
3213 return 0;
3214 }
3215
3216 struct tree_opt_pass pass_stack_regs =
3217 {
3218 "stack", /* name */
3219 gate_handle_stack_regs, /* gate */
3220 rest_of_handle_stack_regs, /* execute */
3221 NULL, /* sub */
3222 NULL, /* next */
3223 0, /* static_pass_number */
3224 TV_REG_STACK, /* tv_id */
3225 0, /* properties_required */
3226 0, /* properties_provided */
3227 0, /* properties_destroyed */
3228 0, /* todo_flags_start */
3229 TODO_dump_func |
3230 TODO_ggc_collect, /* todo_flags_finish */
3231 'k' /* letter */
3232 };