tracer.c (tracer): Don't take FLAGS argument.
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153 \f
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "cfglayout.h"
171 #include "varray.h"
172 #include "reload.h"
173 #include "ggc.h"
174 #include "timevar.h"
175 #include "tree-pass.h"
176 #include "target.h"
177 #include "vecprim.h"
178
179 #ifdef STACK_REGS
180
181 /* We use this array to cache info about insns, because otherwise we
182 spend too much time in stack_regs_mentioned_p.
183
184 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
185 the insn uses stack registers, two indicates the insn does not use
186 stack registers. */
187 static VEC(char,heap) *stack_regs_mentioned_data;
188
189 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
190
191 int regstack_completed = 0;
192
193 /* This is the basic stack record. TOP is an index into REG[] such
194 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
195
196 If TOP is -2, REG[] is not yet initialized. Stack initialization
197 consists of placing each live reg in array `reg' and setting `top'
198 appropriately.
199
200 REG_SET indicates which registers are live. */
201
202 typedef struct stack_def
203 {
204 int top; /* index to top stack element */
205 HARD_REG_SET reg_set; /* set of live registers */
206 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
207 } *stack;
208
209 /* This is used to carry information about basic blocks. It is
210 attached to the AUX field of the standard CFG block. */
211
212 typedef struct block_info_def
213 {
214 struct stack_def stack_in; /* Input stack configuration. */
215 struct stack_def stack_out; /* Output stack configuration. */
216 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
217 int done; /* True if block already converted. */
218 int predecessors; /* Number of predecessors that need
219 to be visited. */
220 } *block_info;
221
222 #define BLOCK_INFO(B) ((block_info) (B)->aux)
223
224 /* Passed to change_stack to indicate where to emit insns. */
225 enum emit_where
226 {
227 EMIT_AFTER,
228 EMIT_BEFORE
229 };
230
231 /* The block we're currently working on. */
232 static basic_block current_block;
233
234 /* In the current_block, whether we're processing the first register
235 stack or call instruction, i.e. the regstack is currently the
236 same as BLOCK_INFO(current_block)->stack_in. */
237 static bool starting_stack_p;
238
239 /* This is the register file for all register after conversion. */
240 static rtx
241 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
242
243 #define FP_MODE_REG(regno,mode) \
244 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
245
246 /* Used to initialize uninitialized registers. */
247 static rtx not_a_num;
248
249 /* Forward declarations */
250
251 static int stack_regs_mentioned_p (rtx pat);
252 static void pop_stack (stack, int);
253 static rtx *get_true_reg (rtx *);
254
255 static int check_asm_stack_operands (rtx);
256 static int get_asm_operand_n_inputs (rtx);
257 static rtx stack_result (tree);
258 static void replace_reg (rtx *, int);
259 static void remove_regno_note (rtx, enum reg_note, unsigned int);
260 static int get_hard_regnum (stack, rtx);
261 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
262 static void swap_to_top(rtx, stack, rtx, rtx);
263 static bool move_for_stack_reg (rtx, stack, rtx);
264 static bool move_nan_for_stack_reg (rtx, stack, rtx);
265 static int swap_rtx_condition_1 (rtx);
266 static int swap_rtx_condition (rtx);
267 static void compare_for_stack_reg (rtx, stack, rtx);
268 static bool subst_stack_regs_pat (rtx, stack, rtx);
269 static void subst_asm_stack_regs (rtx, stack);
270 static bool subst_stack_regs (rtx, stack);
271 static void change_stack (rtx, stack, stack, enum emit_where);
272 static void print_stack (FILE *, stack);
273 static rtx next_flags_user (rtx);
274 \f
275 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
276
277 static int
278 stack_regs_mentioned_p (rtx pat)
279 {
280 const char *fmt;
281 int i;
282
283 if (STACK_REG_P (pat))
284 return 1;
285
286 fmt = GET_RTX_FORMAT (GET_CODE (pat));
287 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288 {
289 if (fmt[i] == 'E')
290 {
291 int j;
292
293 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
294 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
295 return 1;
296 }
297 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
298 return 1;
299 }
300
301 return 0;
302 }
303
304 /* Return nonzero if INSN mentions stacked registers, else return zero. */
305
306 int
307 stack_regs_mentioned (rtx insn)
308 {
309 unsigned int uid, max;
310 int test;
311
312 if (! INSN_P (insn) || !stack_regs_mentioned_data)
313 return 0;
314
315 uid = INSN_UID (insn);
316 max = VEC_length (char, stack_regs_mentioned_data);
317 if (uid >= max)
318 {
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max = uid + uid / 20 + 1;
322 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
323 }
324
325 test = VEC_index (char, stack_regs_mentioned_data, uid);
326 if (test == 0)
327 {
328 /* This insn has yet to be examined. Do so now. */
329 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330 VEC_replace (char, stack_regs_mentioned_data, uid, test);
331 }
332
333 return test == 1;
334 }
335 \f
336 static rtx ix86_flags_rtx;
337
338 static rtx
339 next_flags_user (rtx insn)
340 {
341 /* Search forward looking for the first use of this value.
342 Stop at block boundaries. */
343
344 while (insn != BB_END (current_block))
345 {
346 insn = NEXT_INSN (insn);
347
348 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
349 return insn;
350
351 if (CALL_P (insn))
352 return NULL_RTX;
353 }
354 return NULL_RTX;
355 }
356 \f
357 /* Reorganize the stack into ascending numbers, before this insn. */
358
359 static void
360 straighten_stack (rtx insn, stack regstack)
361 {
362 struct stack_def temp_stack;
363 int top;
364
365 /* If there is only a single register on the stack, then the stack is
366 already in increasing order and no reorganization is needed.
367
368 Similarly if the stack is empty. */
369 if (regstack->top <= 0)
370 return;
371
372 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
373
374 for (top = temp_stack.top = regstack->top; top >= 0; top--)
375 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
376
377 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
378 }
379
380 /* Pop a register from the stack. */
381
382 static void
383 pop_stack (stack regstack, int regno)
384 {
385 int top = regstack->top;
386
387 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
388 regstack->top--;
389 /* If regno was not at the top of stack then adjust stack. */
390 if (regstack->reg [top] != regno)
391 {
392 int i;
393 for (i = regstack->top; i >= 0; i--)
394 if (regstack->reg [i] == regno)
395 {
396 int j;
397 for (j = i; j < top; j++)
398 regstack->reg [j] = regstack->reg [j + 1];
399 break;
400 }
401 }
402 }
403 \f
404 /* Return a pointer to the REG expression within PAT. If PAT is not a
405 REG, possible enclosed by a conversion rtx, return the inner part of
406 PAT that stopped the search. */
407
408 static rtx *
409 get_true_reg (rtx *pat)
410 {
411 for (;;)
412 switch (GET_CODE (*pat))
413 {
414 case SUBREG:
415 /* Eliminate FP subregister accesses in favor of the
416 actual FP register in use. */
417 {
418 rtx subreg;
419 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
420 {
421 int regno_off = subreg_regno_offset (REGNO (subreg),
422 GET_MODE (subreg),
423 SUBREG_BYTE (*pat),
424 GET_MODE (*pat));
425 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
426 GET_MODE (subreg));
427 default:
428 return pat;
429 }
430 }
431 case FLOAT:
432 case FIX:
433 case FLOAT_EXTEND:
434 pat = & XEXP (*pat, 0);
435 break;
436
437 case UNSPEC:
438 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
439 pat = & XVECEXP (*pat, 0, 0);
440 return pat;
441
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = & XEXP (*pat, 0);
446 break;
447 }
448 }
449 \f
450 /* Set if we find any malformed asms in a block. */
451 static bool any_malformed_asm;
452
453 /* There are many rules that an asm statement for stack-like regs must
454 follow. Those rules are explained at the top of this file: the rule
455 numbers below refer to that explanation. */
456
457 static int
458 check_asm_stack_operands (rtx insn)
459 {
460 int i;
461 int n_clobbers;
462 int malformed_asm = 0;
463 rtx body = PATTERN (insn);
464
465 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
466 char implicitly_dies[FIRST_PSEUDO_REGISTER];
467 int alt;
468
469 rtx *clobber_reg = 0;
470 int n_inputs, n_outputs;
471
472 /* Find out what the constraints require. If no constraint
473 alternative matches, this asm is malformed. */
474 extract_insn (insn);
475 constrain_operands (1);
476 alt = which_alternative;
477
478 preprocess_constraints ();
479
480 n_inputs = get_asm_operand_n_inputs (body);
481 n_outputs = recog_data.n_operands - n_inputs;
482
483 if (alt < 0)
484 {
485 malformed_asm = 1;
486 /* Avoid further trouble with this insn. */
487 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
488 return 0;
489 }
490
491 /* Strip SUBREGs here to make the following code simpler. */
492 for (i = 0; i < recog_data.n_operands; i++)
493 if (GET_CODE (recog_data.operand[i]) == SUBREG
494 && REG_P (SUBREG_REG (recog_data.operand[i])))
495 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
496
497 /* Set up CLOBBER_REG. */
498
499 n_clobbers = 0;
500
501 if (GET_CODE (body) == PARALLEL)
502 {
503 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
504
505 for (i = 0; i < XVECLEN (body, 0); i++)
506 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
507 {
508 rtx clobber = XVECEXP (body, 0, i);
509 rtx reg = XEXP (clobber, 0);
510
511 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
512 reg = SUBREG_REG (reg);
513
514 if (STACK_REG_P (reg))
515 {
516 clobber_reg[n_clobbers] = reg;
517 n_clobbers++;
518 }
519 }
520 }
521
522 /* Enforce rule #4: Output operands must specifically indicate which
523 reg an output appears in after an asm. "=f" is not allowed: the
524 operand constraints must select a class with a single reg.
525
526 Also enforce rule #5: Output operands must start at the top of
527 the reg-stack: output operands may not "skip" a reg. */
528
529 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
530 for (i = 0; i < n_outputs; i++)
531 if (STACK_REG_P (recog_data.operand[i]))
532 {
533 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
534 {
535 error_for_asm (insn, "output constraint %d must specify a single register", i);
536 malformed_asm = 1;
537 }
538 else
539 {
540 int j;
541
542 for (j = 0; j < n_clobbers; j++)
543 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
544 {
545 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
546 i, reg_names [REGNO (clobber_reg[j])]);
547 malformed_asm = 1;
548 break;
549 }
550 if (j == n_clobbers)
551 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
552 }
553 }
554
555
556 /* Search for first non-popped reg. */
557 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
558 if (! reg_used_as_output[i])
559 break;
560
561 /* If there are any other popped regs, that's an error. */
562 for (; i < LAST_STACK_REG + 1; i++)
563 if (reg_used_as_output[i])
564 break;
565
566 if (i != LAST_STACK_REG + 1)
567 {
568 error_for_asm (insn, "output regs must be grouped at top of stack");
569 malformed_asm = 1;
570 }
571
572 /* Enforce rule #2: All implicitly popped input regs must be closer
573 to the top of the reg-stack than any input that is not implicitly
574 popped. */
575
576 memset (implicitly_dies, 0, sizeof (implicitly_dies));
577 for (i = n_outputs; i < n_outputs + n_inputs; i++)
578 if (STACK_REG_P (recog_data.operand[i]))
579 {
580 /* An input reg is implicitly popped if it is tied to an
581 output, or if there is a CLOBBER for it. */
582 int j;
583
584 for (j = 0; j < n_clobbers; j++)
585 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
586 break;
587
588 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
589 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
590 }
591
592 /* Search for first non-popped reg. */
593 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
594 if (! implicitly_dies[i])
595 break;
596
597 /* If there are any other popped regs, that's an error. */
598 for (; i < LAST_STACK_REG + 1; i++)
599 if (implicitly_dies[i])
600 break;
601
602 if (i != LAST_STACK_REG + 1)
603 {
604 error_for_asm (insn,
605 "implicitly popped regs must be grouped at top of stack");
606 malformed_asm = 1;
607 }
608
609 /* Enforce rule #3: If any input operand uses the "f" constraint, all
610 output constraints must use the "&" earlyclobber.
611
612 ??? Detect this more deterministically by having constrain_asm_operands
613 record any earlyclobber. */
614
615 for (i = n_outputs; i < n_outputs + n_inputs; i++)
616 if (recog_op_alt[i][alt].matches == -1)
617 {
618 int j;
619
620 for (j = 0; j < n_outputs; j++)
621 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
622 {
623 error_for_asm (insn,
624 "output operand %d must use %<&%> constraint", j);
625 malformed_asm = 1;
626 }
627 }
628
629 if (malformed_asm)
630 {
631 /* Avoid further trouble with this insn. */
632 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
633 any_malformed_asm = true;
634 return 0;
635 }
636
637 return 1;
638 }
639 \f
640 /* Calculate the number of inputs and outputs in BODY, an
641 asm_operands. N_OPERANDS is the total number of operands, and
642 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
643 placed. */
644
645 static int
646 get_asm_operand_n_inputs (rtx body)
647 {
648 switch (GET_CODE (body))
649 {
650 case SET:
651 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
652 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
653
654 case ASM_OPERANDS:
655 return ASM_OPERANDS_INPUT_LENGTH (body);
656
657 case PARALLEL:
658 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
659
660 default:
661 gcc_unreachable ();
662 }
663 }
664
665 /* If current function returns its result in an fp stack register,
666 return the REG. Otherwise, return 0. */
667
668 static rtx
669 stack_result (tree decl)
670 {
671 rtx result;
672
673 /* If the value is supposed to be returned in memory, then clearly
674 it is not returned in a stack register. */
675 if (aggregate_value_p (DECL_RESULT (decl), decl))
676 return 0;
677
678 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
679 if (result != 0)
680 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
681 decl, true);
682
683 return result != 0 && STACK_REG_P (result) ? result : 0;
684 }
685 \f
686
687 /*
688 * This section deals with stack register substitution, and forms the second
689 * pass over the RTL.
690 */
691
692 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
693 the desired hard REGNO. */
694
695 static void
696 replace_reg (rtx *reg, int regno)
697 {
698 gcc_assert (regno >= FIRST_STACK_REG);
699 gcc_assert (regno <= LAST_STACK_REG);
700 gcc_assert (STACK_REG_P (*reg));
701
702 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
703 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
704
705 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
706 }
707
708 /* Remove a note of type NOTE, which must be found, for register
709 number REGNO from INSN. Remove only one such note. */
710
711 static void
712 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
713 {
714 rtx *note_link, this;
715
716 note_link = &REG_NOTES (insn);
717 for (this = *note_link; this; this = XEXP (this, 1))
718 if (REG_NOTE_KIND (this) == note
719 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
720 {
721 *note_link = XEXP (this, 1);
722 return;
723 }
724 else
725 note_link = &XEXP (this, 1);
726
727 gcc_unreachable ();
728 }
729
730 /* Find the hard register number of virtual register REG in REGSTACK.
731 The hard register number is relative to the top of the stack. -1 is
732 returned if the register is not found. */
733
734 static int
735 get_hard_regnum (stack regstack, rtx reg)
736 {
737 int i;
738
739 gcc_assert (STACK_REG_P (reg));
740
741 for (i = regstack->top; i >= 0; i--)
742 if (regstack->reg[i] == REGNO (reg))
743 break;
744
745 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
746 }
747 \f
748 /* Emit an insn to pop virtual register REG before or after INSN.
749 REGSTACK is the stack state after INSN and is updated to reflect this
750 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
751 is represented as a SET whose destination is the register to be popped
752 and source is the top of stack. A death note for the top of stack
753 cases the movdf pattern to pop. */
754
755 static rtx
756 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
757 {
758 rtx pop_insn, pop_rtx;
759 int hard_regno;
760
761 /* For complex types take care to pop both halves. These may survive in
762 CLOBBER and USE expressions. */
763 if (COMPLEX_MODE_P (GET_MODE (reg)))
764 {
765 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
766 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
767
768 pop_insn = NULL_RTX;
769 if (get_hard_regnum (regstack, reg1) >= 0)
770 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
771 if (get_hard_regnum (regstack, reg2) >= 0)
772 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
773 gcc_assert (pop_insn);
774 return pop_insn;
775 }
776
777 hard_regno = get_hard_regnum (regstack, reg);
778
779 gcc_assert (hard_regno >= FIRST_STACK_REG);
780
781 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
782 FP_MODE_REG (FIRST_STACK_REG, DFmode));
783
784 if (where == EMIT_AFTER)
785 pop_insn = emit_insn_after (pop_rtx, insn);
786 else
787 pop_insn = emit_insn_before (pop_rtx, insn);
788
789 REG_NOTES (pop_insn)
790 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
791 REG_NOTES (pop_insn));
792
793 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
794 = regstack->reg[regstack->top];
795 regstack->top -= 1;
796 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
797
798 return pop_insn;
799 }
800 \f
801 /* Emit an insn before or after INSN to swap virtual register REG with
802 the top of stack. REGSTACK is the stack state before the swap, and
803 is updated to reflect the swap. A swap insn is represented as a
804 PARALLEL of two patterns: each pattern moves one reg to the other.
805
806 If REG is already at the top of the stack, no insn is emitted. */
807
808 static void
809 emit_swap_insn (rtx insn, stack regstack, rtx reg)
810 {
811 int hard_regno;
812 rtx swap_rtx;
813 int tmp, other_reg; /* swap regno temps */
814 rtx i1; /* the stack-reg insn prior to INSN */
815 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
816
817 hard_regno = get_hard_regnum (regstack, reg);
818
819 if (hard_regno == FIRST_STACK_REG)
820 return;
821 if (hard_regno == -1)
822 {
823 /* Something failed if the register wasn't on the stack. If we had
824 malformed asms, we zapped the instruction itself, but that didn't
825 produce the same pattern of register sets as before. To prevent
826 further failure, adjust REGSTACK to include REG at TOP. */
827 gcc_assert (any_malformed_asm);
828 regstack->reg[++regstack->top] = REGNO (reg);
829 return;
830 }
831 gcc_assert (hard_regno >= FIRST_STACK_REG);
832
833 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
834
835 tmp = regstack->reg[other_reg];
836 regstack->reg[other_reg] = regstack->reg[regstack->top];
837 regstack->reg[regstack->top] = tmp;
838
839 /* Find the previous insn involving stack regs, but don't pass a
840 block boundary. */
841 i1 = NULL;
842 if (current_block && insn != BB_HEAD (current_block))
843 {
844 rtx tmp = PREV_INSN (insn);
845 rtx limit = PREV_INSN (BB_HEAD (current_block));
846 while (tmp != limit)
847 {
848 if (LABEL_P (tmp)
849 || CALL_P (tmp)
850 || NOTE_INSN_BASIC_BLOCK_P (tmp)
851 || (NONJUMP_INSN_P (tmp)
852 && stack_regs_mentioned (tmp)))
853 {
854 i1 = tmp;
855 break;
856 }
857 tmp = PREV_INSN (tmp);
858 }
859 }
860
861 if (i1 != NULL_RTX
862 && (i1set = single_set (i1)) != NULL_RTX)
863 {
864 rtx i1src = *get_true_reg (&SET_SRC (i1set));
865 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
866
867 /* If the previous register stack push was from the reg we are to
868 swap with, omit the swap. */
869
870 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
871 && REG_P (i1src)
872 && REGNO (i1src) == (unsigned) hard_regno - 1
873 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
874 return;
875
876 /* If the previous insn wrote to the reg we are to swap with,
877 omit the swap. */
878
879 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
880 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
881 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
882 return;
883 }
884
885 /* Avoid emitting the swap if this is the first register stack insn
886 of the current_block. Instead update the current_block's stack_in
887 and let compensate edges take care of this for us. */
888 if (current_block && starting_stack_p)
889 {
890 BLOCK_INFO (current_block)->stack_in = *regstack;
891 starting_stack_p = false;
892 return;
893 }
894
895 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
896 FP_MODE_REG (FIRST_STACK_REG, XFmode));
897
898 if (i1)
899 emit_insn_after (swap_rtx, i1);
900 else if (current_block)
901 emit_insn_before (swap_rtx, BB_HEAD (current_block));
902 else
903 emit_insn_before (swap_rtx, insn);
904 }
905 \f
906 /* Emit an insns before INSN to swap virtual register SRC1 with
907 the top of stack and virtual register SRC2 with second stack
908 slot. REGSTACK is the stack state before the swaps, and
909 is updated to reflect the swaps. A swap insn is represented as a
910 PARALLEL of two patterns: each pattern moves one reg to the other.
911
912 If SRC1 and/or SRC2 are already at the right place, no swap insn
913 is emitted. */
914
915 static void
916 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
917 {
918 struct stack_def temp_stack;
919 int regno, j, k, temp;
920
921 temp_stack = *regstack;
922
923 /* Place operand 1 at the top of stack. */
924 regno = get_hard_regnum (&temp_stack, src1);
925 gcc_assert (regno >= 0);
926 if (regno != FIRST_STACK_REG)
927 {
928 k = temp_stack.top - (regno - FIRST_STACK_REG);
929 j = temp_stack.top;
930
931 temp = temp_stack.reg[k];
932 temp_stack.reg[k] = temp_stack.reg[j];
933 temp_stack.reg[j] = temp;
934 }
935
936 /* Place operand 2 next on the stack. */
937 regno = get_hard_regnum (&temp_stack, src2);
938 gcc_assert (regno >= 0);
939 if (regno != FIRST_STACK_REG + 1)
940 {
941 k = temp_stack.top - (regno - FIRST_STACK_REG);
942 j = temp_stack.top - 1;
943
944 temp = temp_stack.reg[k];
945 temp_stack.reg[k] = temp_stack.reg[j];
946 temp_stack.reg[j] = temp;
947 }
948
949 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
950 }
951 \f
952 /* Handle a move to or from a stack register in PAT, which is in INSN.
953 REGSTACK is the current stack. Return whether a control flow insn
954 was deleted in the process. */
955
956 static bool
957 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
958 {
959 rtx *psrc = get_true_reg (&SET_SRC (pat));
960 rtx *pdest = get_true_reg (&SET_DEST (pat));
961 rtx src, dest;
962 rtx note;
963 bool control_flow_insn_deleted = false;
964
965 src = *psrc; dest = *pdest;
966
967 if (STACK_REG_P (src) && STACK_REG_P (dest))
968 {
969 /* Write from one stack reg to another. If SRC dies here, then
970 just change the register mapping and delete the insn. */
971
972 note = find_regno_note (insn, REG_DEAD, REGNO (src));
973 if (note)
974 {
975 int i;
976
977 /* If this is a no-op move, there must not be a REG_DEAD note. */
978 gcc_assert (REGNO (src) != REGNO (dest));
979
980 for (i = regstack->top; i >= 0; i--)
981 if (regstack->reg[i] == REGNO (src))
982 break;
983
984 /* The destination must be dead, or life analysis is borked. */
985 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
986
987 /* If the source is not live, this is yet another case of
988 uninitialized variables. Load up a NaN instead. */
989 if (i < 0)
990 return move_nan_for_stack_reg (insn, regstack, dest);
991
992 /* It is possible that the dest is unused after this insn.
993 If so, just pop the src. */
994
995 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
996 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
997 else
998 {
999 regstack->reg[i] = REGNO (dest);
1000 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1001 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1002 }
1003
1004 control_flow_insn_deleted |= control_flow_insn_p (insn);
1005 delete_insn (insn);
1006 return control_flow_insn_deleted;
1007 }
1008
1009 /* The source reg does not die. */
1010
1011 /* If this appears to be a no-op move, delete it, or else it
1012 will confuse the machine description output patterns. But if
1013 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1014 for REG_UNUSED will not work for deleted insns. */
1015
1016 if (REGNO (src) == REGNO (dest))
1017 {
1018 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1019 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1020
1021 control_flow_insn_deleted |= control_flow_insn_p (insn);
1022 delete_insn (insn);
1023 return control_flow_insn_deleted;
1024 }
1025
1026 /* The destination ought to be dead. */
1027 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1028
1029 replace_reg (psrc, get_hard_regnum (regstack, src));
1030
1031 regstack->reg[++regstack->top] = REGNO (dest);
1032 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1033 replace_reg (pdest, FIRST_STACK_REG);
1034 }
1035 else if (STACK_REG_P (src))
1036 {
1037 /* Save from a stack reg to MEM, or possibly integer reg. Since
1038 only top of stack may be saved, emit an exchange first if
1039 needs be. */
1040
1041 emit_swap_insn (insn, regstack, src);
1042
1043 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1044 if (note)
1045 {
1046 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1047 regstack->top--;
1048 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1049 }
1050 else if ((GET_MODE (src) == XFmode)
1051 && regstack->top < REG_STACK_SIZE - 1)
1052 {
1053 /* A 387 cannot write an XFmode value to a MEM without
1054 clobbering the source reg. The output code can handle
1055 this by reading back the value from the MEM.
1056 But it is more efficient to use a temp register if one is
1057 available. Push the source value here if the register
1058 stack is not full, and then write the value to memory via
1059 a pop. */
1060 rtx push_rtx;
1061 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1062
1063 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1064 emit_insn_before (push_rtx, insn);
1065 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1066 REG_NOTES (insn));
1067 }
1068
1069 replace_reg (psrc, FIRST_STACK_REG);
1070 }
1071 else
1072 {
1073 rtx pat = PATTERN (insn);
1074
1075 gcc_assert (STACK_REG_P (dest));
1076
1077 /* Load from MEM, or possibly integer REG or constant, into the
1078 stack regs. The actual target is always the top of the
1079 stack. The stack mapping is changed to reflect that DEST is
1080 now at top of stack. */
1081
1082 /* The destination ought to be dead. However, there is a
1083 special case with i387 UNSPEC_TAN, where destination is live
1084 (an argument to fptan) but inherent load of 1.0 is modelled
1085 as a load from a constant. */
1086 if (! (GET_CODE (pat) == PARALLEL
1087 && XVECLEN (pat, 0) == 2
1088 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1089 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1090 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN))
1091 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1092
1093 gcc_assert (regstack->top < REG_STACK_SIZE);
1094
1095 regstack->reg[++regstack->top] = REGNO (dest);
1096 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1097 replace_reg (pdest, FIRST_STACK_REG);
1098 }
1099
1100 return control_flow_insn_deleted;
1101 }
1102
1103 /* A helper function which replaces INSN with a pattern that loads up
1104 a NaN into DEST, then invokes move_for_stack_reg. */
1105
1106 static bool
1107 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1108 {
1109 rtx pat;
1110
1111 dest = FP_MODE_REG (REGNO (dest), SFmode);
1112 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1113 PATTERN (insn) = pat;
1114 INSN_CODE (insn) = -1;
1115
1116 return move_for_stack_reg (insn, regstack, pat);
1117 }
1118 \f
1119 /* Swap the condition on a branch, if there is one. Return true if we
1120 found a condition to swap. False if the condition was not used as
1121 such. */
1122
1123 static int
1124 swap_rtx_condition_1 (rtx pat)
1125 {
1126 const char *fmt;
1127 int i, r = 0;
1128
1129 if (COMPARISON_P (pat))
1130 {
1131 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1132 r = 1;
1133 }
1134 else
1135 {
1136 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1137 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1138 {
1139 if (fmt[i] == 'E')
1140 {
1141 int j;
1142
1143 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1144 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1145 }
1146 else if (fmt[i] == 'e')
1147 r |= swap_rtx_condition_1 (XEXP (pat, i));
1148 }
1149 }
1150
1151 return r;
1152 }
1153
1154 static int
1155 swap_rtx_condition (rtx insn)
1156 {
1157 rtx pat = PATTERN (insn);
1158
1159 /* We're looking for a single set to cc0 or an HImode temporary. */
1160
1161 if (GET_CODE (pat) == SET
1162 && REG_P (SET_DEST (pat))
1163 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1164 {
1165 insn = next_flags_user (insn);
1166 if (insn == NULL_RTX)
1167 return 0;
1168 pat = PATTERN (insn);
1169 }
1170
1171 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1172 with the cc value right now. We may be able to search for one
1173 though. */
1174
1175 if (GET_CODE (pat) == SET
1176 && GET_CODE (SET_SRC (pat)) == UNSPEC
1177 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1178 {
1179 rtx dest = SET_DEST (pat);
1180
1181 /* Search forward looking for the first use of this value.
1182 Stop at block boundaries. */
1183 while (insn != BB_END (current_block))
1184 {
1185 insn = NEXT_INSN (insn);
1186 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1187 break;
1188 if (CALL_P (insn))
1189 return 0;
1190 }
1191
1192 /* We haven't found it. */
1193 if (insn == BB_END (current_block))
1194 return 0;
1195
1196 /* So we've found the insn using this value. If it is anything
1197 other than sahf or the value does not die (meaning we'd have
1198 to search further), then we must give up. */
1199 pat = PATTERN (insn);
1200 if (GET_CODE (pat) != SET
1201 || GET_CODE (SET_SRC (pat)) != UNSPEC
1202 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1203 || ! dead_or_set_p (insn, dest))
1204 return 0;
1205
1206 /* Now we are prepared to handle this as a normal cc0 setter. */
1207 insn = next_flags_user (insn);
1208 if (insn == NULL_RTX)
1209 return 0;
1210 pat = PATTERN (insn);
1211 }
1212
1213 if (swap_rtx_condition_1 (pat))
1214 {
1215 int fail = 0;
1216 INSN_CODE (insn) = -1;
1217 if (recog_memoized (insn) == -1)
1218 fail = 1;
1219 /* In case the flags don't die here, recurse to try fix
1220 following user too. */
1221 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1222 {
1223 insn = next_flags_user (insn);
1224 if (!insn || !swap_rtx_condition (insn))
1225 fail = 1;
1226 }
1227 if (fail)
1228 {
1229 swap_rtx_condition_1 (pat);
1230 return 0;
1231 }
1232 return 1;
1233 }
1234 return 0;
1235 }
1236
1237 /* Handle a comparison. Special care needs to be taken to avoid
1238 causing comparisons that a 387 cannot do correctly, such as EQ.
1239
1240 Also, a pop insn may need to be emitted. The 387 does have an
1241 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1242 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1243 set up. */
1244
1245 static void
1246 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1247 {
1248 rtx *src1, *src2;
1249 rtx src1_note, src2_note;
1250
1251 src1 = get_true_reg (&XEXP (pat_src, 0));
1252 src2 = get_true_reg (&XEXP (pat_src, 1));
1253
1254 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1255 registers that die in this insn - move those to stack top first. */
1256 if ((! STACK_REG_P (*src1)
1257 || (STACK_REG_P (*src2)
1258 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1259 && swap_rtx_condition (insn))
1260 {
1261 rtx temp;
1262 temp = XEXP (pat_src, 0);
1263 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1264 XEXP (pat_src, 1) = temp;
1265
1266 src1 = get_true_reg (&XEXP (pat_src, 0));
1267 src2 = get_true_reg (&XEXP (pat_src, 1));
1268
1269 INSN_CODE (insn) = -1;
1270 }
1271
1272 /* We will fix any death note later. */
1273
1274 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1275
1276 if (STACK_REG_P (*src2))
1277 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1278 else
1279 src2_note = NULL_RTX;
1280
1281 emit_swap_insn (insn, regstack, *src1);
1282
1283 replace_reg (src1, FIRST_STACK_REG);
1284
1285 if (STACK_REG_P (*src2))
1286 replace_reg (src2, get_hard_regnum (regstack, *src2));
1287
1288 if (src1_note)
1289 {
1290 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1291 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1292 }
1293
1294 /* If the second operand dies, handle that. But if the operands are
1295 the same stack register, don't bother, because only one death is
1296 needed, and it was just handled. */
1297
1298 if (src2_note
1299 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1300 && REGNO (*src1) == REGNO (*src2)))
1301 {
1302 /* As a special case, two regs may die in this insn if src2 is
1303 next to top of stack and the top of stack also dies. Since
1304 we have already popped src1, "next to top of stack" is really
1305 at top (FIRST_STACK_REG) now. */
1306
1307 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1308 && src1_note)
1309 {
1310 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1311 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1312 }
1313 else
1314 {
1315 /* The 386 can only represent death of the first operand in
1316 the case handled above. In all other cases, emit a separate
1317 pop and remove the death note from here. */
1318
1319 /* link_cc0_insns (insn); */
1320
1321 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1322
1323 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1324 EMIT_AFTER);
1325 }
1326 }
1327 }
1328 \f
1329 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1330 is the current register layout. Return whether a control flow insn
1331 was deleted in the process. */
1332
1333 static bool
1334 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1335 {
1336 rtx *dest, *src;
1337 bool control_flow_insn_deleted = false;
1338
1339 switch (GET_CODE (pat))
1340 {
1341 case USE:
1342 /* Deaths in USE insns can happen in non optimizing compilation.
1343 Handle them by popping the dying register. */
1344 src = get_true_reg (&XEXP (pat, 0));
1345 if (STACK_REG_P (*src)
1346 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1347 {
1348 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1349 return control_flow_insn_deleted;
1350 }
1351 /* ??? Uninitialized USE should not happen. */
1352 else
1353 gcc_assert (get_hard_regnum (regstack, *src) != -1);
1354 break;
1355
1356 case CLOBBER:
1357 {
1358 rtx note;
1359
1360 dest = get_true_reg (&XEXP (pat, 0));
1361 if (STACK_REG_P (*dest))
1362 {
1363 note = find_reg_note (insn, REG_DEAD, *dest);
1364
1365 if (pat != PATTERN (insn))
1366 {
1367 /* The fix_truncdi_1 pattern wants to be able to allocate
1368 its own scratch register. It does this by clobbering
1369 an fp reg so that it is assured of an empty reg-stack
1370 register. If the register is live, kill it now.
1371 Remove the DEAD/UNUSED note so we don't try to kill it
1372 later too. */
1373
1374 if (note)
1375 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1376 else
1377 {
1378 note = find_reg_note (insn, REG_UNUSED, *dest);
1379 gcc_assert (note);
1380 }
1381 remove_note (insn, note);
1382 replace_reg (dest, FIRST_STACK_REG + 1);
1383 }
1384 else
1385 {
1386 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1387 indicates an uninitialized value. Because reload removed
1388 all other clobbers, this must be due to a function
1389 returning without a value. Load up a NaN. */
1390
1391 if (!note)
1392 {
1393 rtx t = *dest;
1394 if (COMPLEX_MODE_P (GET_MODE (t)))
1395 {
1396 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1397 if (get_hard_regnum (regstack, u) == -1)
1398 {
1399 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1400 rtx insn2 = emit_insn_before (pat2, insn);
1401 control_flow_insn_deleted
1402 |= move_nan_for_stack_reg (insn2, regstack, u);
1403 }
1404 }
1405 if (get_hard_regnum (regstack, t) == -1)
1406 control_flow_insn_deleted
1407 |= move_nan_for_stack_reg (insn, regstack, t);
1408 }
1409 }
1410 }
1411 break;
1412 }
1413
1414 case SET:
1415 {
1416 rtx *src1 = (rtx *) 0, *src2;
1417 rtx src1_note, src2_note;
1418 rtx pat_src;
1419
1420 dest = get_true_reg (&SET_DEST (pat));
1421 src = get_true_reg (&SET_SRC (pat));
1422 pat_src = SET_SRC (pat);
1423
1424 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1425 if (STACK_REG_P (*src)
1426 || (STACK_REG_P (*dest)
1427 && (REG_P (*src) || MEM_P (*src)
1428 || GET_CODE (*src) == CONST_DOUBLE)))
1429 {
1430 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1431 break;
1432 }
1433
1434 switch (GET_CODE (pat_src))
1435 {
1436 case COMPARE:
1437 compare_for_stack_reg (insn, regstack, pat_src);
1438 break;
1439
1440 case CALL:
1441 {
1442 int count;
1443 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1444 --count >= 0;)
1445 {
1446 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1447 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1448 }
1449 }
1450 replace_reg (dest, FIRST_STACK_REG);
1451 break;
1452
1453 case REG:
1454 /* This is a `tstM2' case. */
1455 gcc_assert (*dest == cc0_rtx);
1456 src1 = src;
1457
1458 /* Fall through. */
1459
1460 case FLOAT_TRUNCATE:
1461 case SQRT:
1462 case ABS:
1463 case NEG:
1464 /* These insns only operate on the top of the stack. DEST might
1465 be cc0_rtx if we're processing a tstM pattern. Also, it's
1466 possible that the tstM case results in a REG_DEAD note on the
1467 source. */
1468
1469 if (src1 == 0)
1470 src1 = get_true_reg (&XEXP (pat_src, 0));
1471
1472 emit_swap_insn (insn, regstack, *src1);
1473
1474 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1475
1476 if (STACK_REG_P (*dest))
1477 replace_reg (dest, FIRST_STACK_REG);
1478
1479 if (src1_note)
1480 {
1481 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1482 regstack->top--;
1483 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1484 }
1485
1486 replace_reg (src1, FIRST_STACK_REG);
1487 break;
1488
1489 case MINUS:
1490 case DIV:
1491 /* On i386, reversed forms of subM3 and divM3 exist for
1492 MODE_FLOAT, so the same code that works for addM3 and mulM3
1493 can be used. */
1494 case MULT:
1495 case PLUS:
1496 /* These insns can accept the top of stack as a destination
1497 from a stack reg or mem, or can use the top of stack as a
1498 source and some other stack register (possibly top of stack)
1499 as a destination. */
1500
1501 src1 = get_true_reg (&XEXP (pat_src, 0));
1502 src2 = get_true_reg (&XEXP (pat_src, 1));
1503
1504 /* We will fix any death note later. */
1505
1506 if (STACK_REG_P (*src1))
1507 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1508 else
1509 src1_note = NULL_RTX;
1510 if (STACK_REG_P (*src2))
1511 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1512 else
1513 src2_note = NULL_RTX;
1514
1515 /* If either operand is not a stack register, then the dest
1516 must be top of stack. */
1517
1518 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1519 emit_swap_insn (insn, regstack, *dest);
1520 else
1521 {
1522 /* Both operands are REG. If neither operand is already
1523 at the top of stack, choose to make the one that is the dest
1524 the new top of stack. */
1525
1526 int src1_hard_regnum, src2_hard_regnum;
1527
1528 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1529 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1530 gcc_assert (src1_hard_regnum != -1);
1531 gcc_assert (src2_hard_regnum != -1);
1532
1533 if (src1_hard_regnum != FIRST_STACK_REG
1534 && src2_hard_regnum != FIRST_STACK_REG)
1535 emit_swap_insn (insn, regstack, *dest);
1536 }
1537
1538 if (STACK_REG_P (*src1))
1539 replace_reg (src1, get_hard_regnum (regstack, *src1));
1540 if (STACK_REG_P (*src2))
1541 replace_reg (src2, get_hard_regnum (regstack, *src2));
1542
1543 if (src1_note)
1544 {
1545 rtx src1_reg = XEXP (src1_note, 0);
1546
1547 /* If the register that dies is at the top of stack, then
1548 the destination is somewhere else - merely substitute it.
1549 But if the reg that dies is not at top of stack, then
1550 move the top of stack to the dead reg, as though we had
1551 done the insn and then a store-with-pop. */
1552
1553 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1554 {
1555 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1556 replace_reg (dest, get_hard_regnum (regstack, *dest));
1557 }
1558 else
1559 {
1560 int regno = get_hard_regnum (regstack, src1_reg);
1561
1562 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1563 replace_reg (dest, regno);
1564
1565 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1566 = regstack->reg[regstack->top];
1567 }
1568
1569 CLEAR_HARD_REG_BIT (regstack->reg_set,
1570 REGNO (XEXP (src1_note, 0)));
1571 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1572 regstack->top--;
1573 }
1574 else if (src2_note)
1575 {
1576 rtx src2_reg = XEXP (src2_note, 0);
1577 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1578 {
1579 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1580 replace_reg (dest, get_hard_regnum (regstack, *dest));
1581 }
1582 else
1583 {
1584 int regno = get_hard_regnum (regstack, src2_reg);
1585
1586 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1587 replace_reg (dest, regno);
1588
1589 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1590 = regstack->reg[regstack->top];
1591 }
1592
1593 CLEAR_HARD_REG_BIT (regstack->reg_set,
1594 REGNO (XEXP (src2_note, 0)));
1595 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1596 regstack->top--;
1597 }
1598 else
1599 {
1600 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1601 replace_reg (dest, get_hard_regnum (regstack, *dest));
1602 }
1603
1604 /* Keep operand 1 matching with destination. */
1605 if (COMMUTATIVE_ARITH_P (pat_src)
1606 && REG_P (*src1) && REG_P (*src2)
1607 && REGNO (*src1) != REGNO (*dest))
1608 {
1609 int tmp = REGNO (*src1);
1610 replace_reg (src1, REGNO (*src2));
1611 replace_reg (src2, tmp);
1612 }
1613 break;
1614
1615 case UNSPEC:
1616 switch (XINT (pat_src, 1))
1617 {
1618 case UNSPEC_FIST:
1619
1620 case UNSPEC_FIST_FLOOR:
1621 case UNSPEC_FIST_CEIL:
1622
1623 /* These insns only operate on the top of the stack. */
1624
1625 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1626 emit_swap_insn (insn, regstack, *src1);
1627
1628 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1629
1630 if (STACK_REG_P (*dest))
1631 replace_reg (dest, FIRST_STACK_REG);
1632
1633 if (src1_note)
1634 {
1635 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1636 regstack->top--;
1637 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1638 }
1639
1640 replace_reg (src1, FIRST_STACK_REG);
1641 break;
1642
1643 case UNSPEC_FXAM:
1644
1645 /* This insn only operate on the top of the stack. */
1646
1647 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1648 emit_swap_insn (insn, regstack, *src1);
1649
1650 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1651
1652 replace_reg (src1, FIRST_STACK_REG);
1653
1654 if (src1_note)
1655 {
1656 remove_regno_note (insn, REG_DEAD,
1657 REGNO (XEXP (src1_note, 0)));
1658 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1659 EMIT_AFTER);
1660 }
1661
1662 break;
1663
1664 case UNSPEC_SIN:
1665 case UNSPEC_COS:
1666 case UNSPEC_FRNDINT:
1667 case UNSPEC_F2XM1:
1668
1669 case UNSPEC_FRNDINT_FLOOR:
1670 case UNSPEC_FRNDINT_CEIL:
1671 case UNSPEC_FRNDINT_TRUNC:
1672 case UNSPEC_FRNDINT_MASK_PM:
1673
1674 /* Above insns operate on the top of the stack. */
1675
1676 case UNSPEC_SINCOS_COS:
1677 case UNSPEC_XTRACT_FRACT:
1678
1679 /* Above insns operate on the top two stack slots,
1680 first part of one input, double output insn. */
1681
1682 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1683
1684 emit_swap_insn (insn, regstack, *src1);
1685
1686 /* Input should never die, it is replaced with output. */
1687 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1688 gcc_assert (!src1_note);
1689
1690 if (STACK_REG_P (*dest))
1691 replace_reg (dest, FIRST_STACK_REG);
1692
1693 replace_reg (src1, FIRST_STACK_REG);
1694 break;
1695
1696 case UNSPEC_SINCOS_SIN:
1697 case UNSPEC_XTRACT_EXP:
1698
1699 /* These insns operate on the top two stack slots,
1700 second part of one input, double output insn. */
1701
1702 regstack->top++;
1703 /* FALLTHRU */
1704
1705 case UNSPEC_TAN:
1706
1707 /* For UNSPEC_TAN, regstack->top is already increased
1708 by inherent load of constant 1.0. */
1709
1710 /* Output value is generated in the second stack slot.
1711 Move current value from second slot to the top. */
1712 regstack->reg[regstack->top]
1713 = regstack->reg[regstack->top - 1];
1714
1715 gcc_assert (STACK_REG_P (*dest));
1716
1717 regstack->reg[regstack->top - 1] = REGNO (*dest);
1718 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1719 replace_reg (dest, FIRST_STACK_REG + 1);
1720
1721 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1722
1723 replace_reg (src1, FIRST_STACK_REG);
1724 break;
1725
1726 case UNSPEC_FPATAN:
1727 case UNSPEC_FYL2X:
1728 case UNSPEC_FYL2XP1:
1729 /* These insns operate on the top two stack slots. */
1730
1731 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1732 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1733
1734 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1735 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1736
1737 swap_to_top (insn, regstack, *src1, *src2);
1738
1739 replace_reg (src1, FIRST_STACK_REG);
1740 replace_reg (src2, FIRST_STACK_REG + 1);
1741
1742 if (src1_note)
1743 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1744 if (src2_note)
1745 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1746
1747 /* Pop both input operands from the stack. */
1748 CLEAR_HARD_REG_BIT (regstack->reg_set,
1749 regstack->reg[regstack->top]);
1750 CLEAR_HARD_REG_BIT (regstack->reg_set,
1751 regstack->reg[regstack->top - 1]);
1752 regstack->top -= 2;
1753
1754 /* Push the result back onto the stack. */
1755 regstack->reg[++regstack->top] = REGNO (*dest);
1756 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1757 replace_reg (dest, FIRST_STACK_REG);
1758 break;
1759
1760 case UNSPEC_FSCALE_FRACT:
1761 case UNSPEC_FPREM_F:
1762 case UNSPEC_FPREM1_F:
1763 /* These insns operate on the top two stack slots,
1764 first part of double input, double output insn. */
1765
1766 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1767 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1768
1769 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1770 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1771
1772 /* Inputs should never die, they are
1773 replaced with outputs. */
1774 gcc_assert (!src1_note);
1775 gcc_assert (!src2_note);
1776
1777 swap_to_top (insn, regstack, *src1, *src2);
1778
1779 /* Push the result back onto stack. Empty stack slot
1780 will be filled in second part of insn. */
1781 if (STACK_REG_P (*dest))
1782 {
1783 regstack->reg[regstack->top] = REGNO (*dest);
1784 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1785 replace_reg (dest, FIRST_STACK_REG);
1786 }
1787
1788 replace_reg (src1, FIRST_STACK_REG);
1789 replace_reg (src2, FIRST_STACK_REG + 1);
1790 break;
1791
1792 case UNSPEC_FSCALE_EXP:
1793 case UNSPEC_FPREM_U:
1794 case UNSPEC_FPREM1_U:
1795 /* These insns operate on the top two stack slots,
1796 second part of double input, double output insn. */
1797
1798 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1799 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1800
1801 /* Push the result back onto stack. Fill empty slot from
1802 first part of insn and fix top of stack pointer. */
1803 if (STACK_REG_P (*dest))
1804 {
1805 regstack->reg[regstack->top - 1] = REGNO (*dest);
1806 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1807 replace_reg (dest, FIRST_STACK_REG + 1);
1808 }
1809
1810 replace_reg (src1, FIRST_STACK_REG);
1811 replace_reg (src2, FIRST_STACK_REG + 1);
1812 break;
1813
1814 case UNSPEC_C2_FLAG:
1815 /* This insn operates on the top two stack slots,
1816 third part of C2 setting double input insn. */
1817
1818 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1819 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1820
1821 replace_reg (src1, FIRST_STACK_REG);
1822 replace_reg (src2, FIRST_STACK_REG + 1);
1823 break;
1824
1825 case UNSPEC_SAHF:
1826 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1827 The combination matches the PPRO fcomi instruction. */
1828
1829 pat_src = XVECEXP (pat_src, 0, 0);
1830 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1831 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1832 /* Fall through. */
1833
1834 case UNSPEC_FNSTSW:
1835 /* Combined fcomp+fnstsw generated for doing well with
1836 CSE. When optimizing this would have been broken
1837 up before now. */
1838
1839 pat_src = XVECEXP (pat_src, 0, 0);
1840 gcc_assert (GET_CODE (pat_src) == COMPARE);
1841
1842 compare_for_stack_reg (insn, regstack, pat_src);
1843 break;
1844
1845 default:
1846 gcc_unreachable ();
1847 }
1848 break;
1849
1850 case IF_THEN_ELSE:
1851 /* This insn requires the top of stack to be the destination. */
1852
1853 src1 = get_true_reg (&XEXP (pat_src, 1));
1854 src2 = get_true_reg (&XEXP (pat_src, 2));
1855
1856 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1857 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1858
1859 /* If the comparison operator is an FP comparison operator,
1860 it is handled correctly by compare_for_stack_reg () who
1861 will move the destination to the top of stack. But if the
1862 comparison operator is not an FP comparison operator, we
1863 have to handle it here. */
1864 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1865 && REGNO (*dest) != regstack->reg[regstack->top])
1866 {
1867 /* In case one of operands is the top of stack and the operands
1868 dies, it is safe to make it the destination operand by
1869 reversing the direction of cmove and avoid fxch. */
1870 if ((REGNO (*src1) == regstack->reg[regstack->top]
1871 && src1_note)
1872 || (REGNO (*src2) == regstack->reg[regstack->top]
1873 && src2_note))
1874 {
1875 int idx1 = (get_hard_regnum (regstack, *src1)
1876 - FIRST_STACK_REG);
1877 int idx2 = (get_hard_regnum (regstack, *src2)
1878 - FIRST_STACK_REG);
1879
1880 /* Make reg-stack believe that the operands are already
1881 swapped on the stack */
1882 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1883 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1884
1885 /* Reverse condition to compensate the operand swap.
1886 i386 do have comparison always reversible. */
1887 PUT_CODE (XEXP (pat_src, 0),
1888 reversed_comparison_code (XEXP (pat_src, 0), insn));
1889 }
1890 else
1891 emit_swap_insn (insn, regstack, *dest);
1892 }
1893
1894 {
1895 rtx src_note [3];
1896 int i;
1897
1898 src_note[0] = 0;
1899 src_note[1] = src1_note;
1900 src_note[2] = src2_note;
1901
1902 if (STACK_REG_P (*src1))
1903 replace_reg (src1, get_hard_regnum (regstack, *src1));
1904 if (STACK_REG_P (*src2))
1905 replace_reg (src2, get_hard_regnum (regstack, *src2));
1906
1907 for (i = 1; i <= 2; i++)
1908 if (src_note [i])
1909 {
1910 int regno = REGNO (XEXP (src_note[i], 0));
1911
1912 /* If the register that dies is not at the top of
1913 stack, then move the top of stack to the dead reg.
1914 Top of stack should never die, as it is the
1915 destination. */
1916 gcc_assert (regno != regstack->reg[regstack->top]);
1917 remove_regno_note (insn, REG_DEAD, regno);
1918 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1919 EMIT_AFTER);
1920 }
1921 }
1922
1923 /* Make dest the top of stack. Add dest to regstack if
1924 not present. */
1925 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1926 regstack->reg[++regstack->top] = REGNO (*dest);
1927 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1928 replace_reg (dest, FIRST_STACK_REG);
1929 break;
1930
1931 default:
1932 gcc_unreachable ();
1933 }
1934 break;
1935 }
1936
1937 default:
1938 break;
1939 }
1940
1941 return control_flow_insn_deleted;
1942 }
1943 \f
1944 /* Substitute hard regnums for any stack regs in INSN, which has
1945 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1946 before the insn, and is updated with changes made here.
1947
1948 There are several requirements and assumptions about the use of
1949 stack-like regs in asm statements. These rules are enforced by
1950 record_asm_stack_regs; see comments there for details. Any
1951 asm_operands left in the RTL at this point may be assume to meet the
1952 requirements, since record_asm_stack_regs removes any problem asm. */
1953
1954 static void
1955 subst_asm_stack_regs (rtx insn, stack regstack)
1956 {
1957 rtx body = PATTERN (insn);
1958 int alt;
1959
1960 rtx *note_reg; /* Array of note contents */
1961 rtx **note_loc; /* Address of REG field of each note */
1962 enum reg_note *note_kind; /* The type of each note */
1963
1964 rtx *clobber_reg = 0;
1965 rtx **clobber_loc = 0;
1966
1967 struct stack_def temp_stack;
1968 int n_notes;
1969 int n_clobbers;
1970 rtx note;
1971 int i;
1972 int n_inputs, n_outputs;
1973
1974 if (! check_asm_stack_operands (insn))
1975 return;
1976
1977 /* Find out what the constraints required. If no constraint
1978 alternative matches, that is a compiler bug: we should have caught
1979 such an insn in check_asm_stack_operands. */
1980 extract_insn (insn);
1981 constrain_operands (1);
1982 alt = which_alternative;
1983
1984 preprocess_constraints ();
1985
1986 n_inputs = get_asm_operand_n_inputs (body);
1987 n_outputs = recog_data.n_operands - n_inputs;
1988
1989 gcc_assert (alt >= 0);
1990
1991 /* Strip SUBREGs here to make the following code simpler. */
1992 for (i = 0; i < recog_data.n_operands; i++)
1993 if (GET_CODE (recog_data.operand[i]) == SUBREG
1994 && REG_P (SUBREG_REG (recog_data.operand[i])))
1995 {
1996 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1997 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1998 }
1999
2000 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2001
2002 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2003 i++;
2004
2005 note_reg = alloca (i * sizeof (rtx));
2006 note_loc = alloca (i * sizeof (rtx *));
2007 note_kind = alloca (i * sizeof (enum reg_note));
2008
2009 n_notes = 0;
2010 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2011 {
2012 rtx reg = XEXP (note, 0);
2013 rtx *loc = & XEXP (note, 0);
2014
2015 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2016 {
2017 loc = & SUBREG_REG (reg);
2018 reg = SUBREG_REG (reg);
2019 }
2020
2021 if (STACK_REG_P (reg)
2022 && (REG_NOTE_KIND (note) == REG_DEAD
2023 || REG_NOTE_KIND (note) == REG_UNUSED))
2024 {
2025 note_reg[n_notes] = reg;
2026 note_loc[n_notes] = loc;
2027 note_kind[n_notes] = REG_NOTE_KIND (note);
2028 n_notes++;
2029 }
2030 }
2031
2032 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2033
2034 n_clobbers = 0;
2035
2036 if (GET_CODE (body) == PARALLEL)
2037 {
2038 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2039 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2040
2041 for (i = 0; i < XVECLEN (body, 0); i++)
2042 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2043 {
2044 rtx clobber = XVECEXP (body, 0, i);
2045 rtx reg = XEXP (clobber, 0);
2046 rtx *loc = & XEXP (clobber, 0);
2047
2048 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2049 {
2050 loc = & SUBREG_REG (reg);
2051 reg = SUBREG_REG (reg);
2052 }
2053
2054 if (STACK_REG_P (reg))
2055 {
2056 clobber_reg[n_clobbers] = reg;
2057 clobber_loc[n_clobbers] = loc;
2058 n_clobbers++;
2059 }
2060 }
2061 }
2062
2063 temp_stack = *regstack;
2064
2065 /* Put the input regs into the desired place in TEMP_STACK. */
2066
2067 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2068 if (STACK_REG_P (recog_data.operand[i])
2069 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2070 FLOAT_REGS)
2071 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2072 {
2073 /* If an operand needs to be in a particular reg in
2074 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2075 these constraints are for single register classes, and
2076 reload guaranteed that operand[i] is already in that class,
2077 we can just use REGNO (recog_data.operand[i]) to know which
2078 actual reg this operand needs to be in. */
2079
2080 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2081
2082 gcc_assert (regno >= 0);
2083
2084 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2085 {
2086 /* recog_data.operand[i] is not in the right place. Find
2087 it and swap it with whatever is already in I's place.
2088 K is where recog_data.operand[i] is now. J is where it
2089 should be. */
2090 int j, k, temp;
2091
2092 k = temp_stack.top - (regno - FIRST_STACK_REG);
2093 j = (temp_stack.top
2094 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2095
2096 temp = temp_stack.reg[k];
2097 temp_stack.reg[k] = temp_stack.reg[j];
2098 temp_stack.reg[j] = temp;
2099 }
2100 }
2101
2102 /* Emit insns before INSN to make sure the reg-stack is in the right
2103 order. */
2104
2105 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2106
2107 /* Make the needed input register substitutions. Do death notes and
2108 clobbers too, because these are for inputs, not outputs. */
2109
2110 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2111 if (STACK_REG_P (recog_data.operand[i]))
2112 {
2113 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2114
2115 gcc_assert (regnum >= 0);
2116
2117 replace_reg (recog_data.operand_loc[i], regnum);
2118 }
2119
2120 for (i = 0; i < n_notes; i++)
2121 if (note_kind[i] == REG_DEAD)
2122 {
2123 int regnum = get_hard_regnum (regstack, note_reg[i]);
2124
2125 gcc_assert (regnum >= 0);
2126
2127 replace_reg (note_loc[i], regnum);
2128 }
2129
2130 for (i = 0; i < n_clobbers; i++)
2131 {
2132 /* It's OK for a CLOBBER to reference a reg that is not live.
2133 Don't try to replace it in that case. */
2134 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2135
2136 if (regnum >= 0)
2137 {
2138 /* Sigh - clobbers always have QImode. But replace_reg knows
2139 that these regs can't be MODE_INT and will assert. Just put
2140 the right reg there without calling replace_reg. */
2141
2142 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2143 }
2144 }
2145
2146 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2147
2148 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2149 if (STACK_REG_P (recog_data.operand[i]))
2150 {
2151 /* An input reg is implicitly popped if it is tied to an
2152 output, or if there is a CLOBBER for it. */
2153 int j;
2154
2155 for (j = 0; j < n_clobbers; j++)
2156 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2157 break;
2158
2159 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2160 {
2161 /* recog_data.operand[i] might not be at the top of stack.
2162 But that's OK, because all we need to do is pop the
2163 right number of regs off of the top of the reg-stack.
2164 record_asm_stack_regs guaranteed that all implicitly
2165 popped regs were grouped at the top of the reg-stack. */
2166
2167 CLEAR_HARD_REG_BIT (regstack->reg_set,
2168 regstack->reg[regstack->top]);
2169 regstack->top--;
2170 }
2171 }
2172
2173 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2174 Note that there isn't any need to substitute register numbers.
2175 ??? Explain why this is true. */
2176
2177 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2178 {
2179 /* See if there is an output for this hard reg. */
2180 int j;
2181
2182 for (j = 0; j < n_outputs; j++)
2183 if (STACK_REG_P (recog_data.operand[j])
2184 && REGNO (recog_data.operand[j]) == (unsigned) i)
2185 {
2186 regstack->reg[++regstack->top] = i;
2187 SET_HARD_REG_BIT (regstack->reg_set, i);
2188 break;
2189 }
2190 }
2191
2192 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2193 input that the asm didn't implicitly pop. If the asm didn't
2194 implicitly pop an input reg, that reg will still be live.
2195
2196 Note that we can't use find_regno_note here: the register numbers
2197 in the death notes have already been substituted. */
2198
2199 for (i = 0; i < n_outputs; i++)
2200 if (STACK_REG_P (recog_data.operand[i]))
2201 {
2202 int j;
2203
2204 for (j = 0; j < n_notes; j++)
2205 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2206 && note_kind[j] == REG_UNUSED)
2207 {
2208 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2209 EMIT_AFTER);
2210 break;
2211 }
2212 }
2213
2214 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2215 if (STACK_REG_P (recog_data.operand[i]))
2216 {
2217 int j;
2218
2219 for (j = 0; j < n_notes; j++)
2220 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2221 && note_kind[j] == REG_DEAD
2222 && TEST_HARD_REG_BIT (regstack->reg_set,
2223 REGNO (recog_data.operand[i])))
2224 {
2225 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2226 EMIT_AFTER);
2227 break;
2228 }
2229 }
2230 }
2231 \f
2232 /* Substitute stack hard reg numbers for stack virtual registers in
2233 INSN. Non-stack register numbers are not changed. REGSTACK is the
2234 current stack content. Insns may be emitted as needed to arrange the
2235 stack for the 387 based on the contents of the insn. Return whether
2236 a control flow insn was deleted in the process. */
2237
2238 static bool
2239 subst_stack_regs (rtx insn, stack regstack)
2240 {
2241 rtx *note_link, note;
2242 bool control_flow_insn_deleted = false;
2243 int i;
2244
2245 if (CALL_P (insn))
2246 {
2247 int top = regstack->top;
2248
2249 /* If there are any floating point parameters to be passed in
2250 registers for this call, make sure they are in the right
2251 order. */
2252
2253 if (top >= 0)
2254 {
2255 straighten_stack (insn, regstack);
2256
2257 /* Now mark the arguments as dead after the call. */
2258
2259 while (regstack->top >= 0)
2260 {
2261 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2262 regstack->top--;
2263 }
2264 }
2265 }
2266
2267 /* Do the actual substitution if any stack regs are mentioned.
2268 Since we only record whether entire insn mentions stack regs, and
2269 subst_stack_regs_pat only works for patterns that contain stack regs,
2270 we must check each pattern in a parallel here. A call_value_pop could
2271 fail otherwise. */
2272
2273 if (stack_regs_mentioned (insn))
2274 {
2275 int n_operands = asm_noperands (PATTERN (insn));
2276 if (n_operands >= 0)
2277 {
2278 /* This insn is an `asm' with operands. Decode the operands,
2279 decide how many are inputs, and do register substitution.
2280 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2281
2282 subst_asm_stack_regs (insn, regstack);
2283 return control_flow_insn_deleted;
2284 }
2285
2286 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2287 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2288 {
2289 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2290 {
2291 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2292 XVECEXP (PATTERN (insn), 0, i)
2293 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2294 control_flow_insn_deleted
2295 |= subst_stack_regs_pat (insn, regstack,
2296 XVECEXP (PATTERN (insn), 0, i));
2297 }
2298 }
2299 else
2300 control_flow_insn_deleted
2301 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2302 }
2303
2304 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2305 REG_UNUSED will already have been dealt with, so just return. */
2306
2307 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2308 return control_flow_insn_deleted;
2309
2310 /* If this a noreturn call, we can't insert pop insns after it.
2311 Instead, reset the stack state to empty. */
2312 if (CALL_P (insn)
2313 && find_reg_note (insn, REG_NORETURN, NULL))
2314 {
2315 regstack->top = -1;
2316 CLEAR_HARD_REG_SET (regstack->reg_set);
2317 return control_flow_insn_deleted;
2318 }
2319
2320 /* If there is a REG_UNUSED note on a stack register on this insn,
2321 the indicated reg must be popped. The REG_UNUSED note is removed,
2322 since the form of the newly emitted pop insn references the reg,
2323 making it no longer `unset'. */
2324
2325 note_link = &REG_NOTES (insn);
2326 for (note = *note_link; note; note = XEXP (note, 1))
2327 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2328 {
2329 *note_link = XEXP (note, 1);
2330 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2331 }
2332 else
2333 note_link = &XEXP (note, 1);
2334
2335 return control_flow_insn_deleted;
2336 }
2337 \f
2338 /* Change the organization of the stack so that it fits a new basic
2339 block. Some registers might have to be popped, but there can never be
2340 a register live in the new block that is not now live.
2341
2342 Insert any needed insns before or after INSN, as indicated by
2343 WHERE. OLD is the original stack layout, and NEW is the desired
2344 form. OLD is updated to reflect the code emitted, i.e., it will be
2345 the same as NEW upon return.
2346
2347 This function will not preserve block_end[]. But that information
2348 is no longer needed once this has executed. */
2349
2350 static void
2351 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2352 {
2353 int reg;
2354 int update_end = 0;
2355
2356 /* Stack adjustments for the first insn in a block update the
2357 current_block's stack_in instead of inserting insns directly.
2358 compensate_edges will add the necessary code later. */
2359 if (current_block
2360 && starting_stack_p
2361 && where == EMIT_BEFORE)
2362 {
2363 BLOCK_INFO (current_block)->stack_in = *new;
2364 starting_stack_p = false;
2365 *old = *new;
2366 return;
2367 }
2368
2369 /* We will be inserting new insns "backwards". If we are to insert
2370 after INSN, find the next insn, and insert before it. */
2371
2372 if (where == EMIT_AFTER)
2373 {
2374 if (current_block && BB_END (current_block) == insn)
2375 update_end = 1;
2376 insn = NEXT_INSN (insn);
2377 }
2378
2379 /* Pop any registers that are not needed in the new block. */
2380
2381 /* If the destination block's stack already has a specified layout
2382 and contains two or more registers, use a more intelligent algorithm
2383 to pop registers that minimizes the number number of fxchs below. */
2384 if (new->top > 0)
2385 {
2386 bool slots[REG_STACK_SIZE];
2387 int pops[REG_STACK_SIZE];
2388 int next, dest, topsrc;
2389
2390 /* First pass to determine the free slots. */
2391 for (reg = 0; reg <= new->top; reg++)
2392 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2393
2394 /* Second pass to allocate preferred slots. */
2395 topsrc = -1;
2396 for (reg = old->top; reg > new->top; reg--)
2397 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2398 {
2399 dest = -1;
2400 for (next = 0; next <= new->top; next++)
2401 if (!slots[next] && new->reg[next] == old->reg[reg])
2402 {
2403 /* If this is a preference for the new top of stack, record
2404 the fact by remembering it's old->reg in topsrc. */
2405 if (next == new->top)
2406 topsrc = reg;
2407 slots[next] = true;
2408 dest = next;
2409 break;
2410 }
2411 pops[reg] = dest;
2412 }
2413 else
2414 pops[reg] = reg;
2415
2416 /* Intentionally, avoid placing the top of stack in it's correct
2417 location, if we still need to permute the stack below and we
2418 can usefully place it somewhere else. This is the case if any
2419 slot is still unallocated, in which case we should place the
2420 top of stack there. */
2421 if (topsrc != -1)
2422 for (reg = 0; reg < new->top; reg++)
2423 if (!slots[reg])
2424 {
2425 pops[topsrc] = reg;
2426 slots[new->top] = false;
2427 slots[reg] = true;
2428 break;
2429 }
2430
2431 /* Third pass allocates remaining slots and emits pop insns. */
2432 next = new->top;
2433 for (reg = old->top; reg > new->top; reg--)
2434 {
2435 dest = pops[reg];
2436 if (dest == -1)
2437 {
2438 /* Find next free slot. */
2439 while (slots[next])
2440 next--;
2441 dest = next--;
2442 }
2443 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2444 EMIT_BEFORE);
2445 }
2446 }
2447 else
2448 {
2449 /* The following loop attempts to maximize the number of times we
2450 pop the top of the stack, as this permits the use of the faster
2451 ffreep instruction on platforms that support it. */
2452 int live, next;
2453
2454 live = 0;
2455 for (reg = 0; reg <= old->top; reg++)
2456 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2457 live++;
2458
2459 next = live;
2460 while (old->top >= live)
2461 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2462 {
2463 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2464 next--;
2465 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2466 EMIT_BEFORE);
2467 }
2468 else
2469 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2470 EMIT_BEFORE);
2471 }
2472
2473 if (new->top == -2)
2474 {
2475 /* If the new block has never been processed, then it can inherit
2476 the old stack order. */
2477
2478 new->top = old->top;
2479 memcpy (new->reg, old->reg, sizeof (new->reg));
2480 }
2481 else
2482 {
2483 /* This block has been entered before, and we must match the
2484 previously selected stack order. */
2485
2486 /* By now, the only difference should be the order of the stack,
2487 not their depth or liveliness. */
2488
2489 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2490 gcc_unreachable ();
2491 win:
2492 gcc_assert (old->top == new->top);
2493
2494 /* If the stack is not empty (new->top != -1), loop here emitting
2495 swaps until the stack is correct.
2496
2497 The worst case number of swaps emitted is N + 2, where N is the
2498 depth of the stack. In some cases, the reg at the top of
2499 stack may be correct, but swapped anyway in order to fix
2500 other regs. But since we never swap any other reg away from
2501 its correct slot, this algorithm will converge. */
2502
2503 if (new->top != -1)
2504 do
2505 {
2506 /* Swap the reg at top of stack into the position it is
2507 supposed to be in, until the correct top of stack appears. */
2508
2509 while (old->reg[old->top] != new->reg[new->top])
2510 {
2511 for (reg = new->top; reg >= 0; reg--)
2512 if (new->reg[reg] == old->reg[old->top])
2513 break;
2514
2515 gcc_assert (reg != -1);
2516
2517 emit_swap_insn (insn, old,
2518 FP_MODE_REG (old->reg[reg], DFmode));
2519 }
2520
2521 /* See if any regs remain incorrect. If so, bring an
2522 incorrect reg to the top of stack, and let the while loop
2523 above fix it. */
2524
2525 for (reg = new->top; reg >= 0; reg--)
2526 if (new->reg[reg] != old->reg[reg])
2527 {
2528 emit_swap_insn (insn, old,
2529 FP_MODE_REG (old->reg[reg], DFmode));
2530 break;
2531 }
2532 } while (reg >= 0);
2533
2534 /* At this point there must be no differences. */
2535
2536 for (reg = old->top; reg >= 0; reg--)
2537 gcc_assert (old->reg[reg] == new->reg[reg]);
2538 }
2539
2540 if (update_end)
2541 BB_END (current_block) = PREV_INSN (insn);
2542 }
2543 \f
2544 /* Print stack configuration. */
2545
2546 static void
2547 print_stack (FILE *file, stack s)
2548 {
2549 if (! file)
2550 return;
2551
2552 if (s->top == -2)
2553 fprintf (file, "uninitialized\n");
2554 else if (s->top == -1)
2555 fprintf (file, "empty\n");
2556 else
2557 {
2558 int i;
2559 fputs ("[ ", file);
2560 for (i = 0; i <= s->top; ++i)
2561 fprintf (file, "%d ", s->reg[i]);
2562 fputs ("]\n", file);
2563 }
2564 }
2565 \f
2566 /* This function was doing life analysis. We now let the regular live
2567 code do it's job, so we only need to check some extra invariants
2568 that reg-stack expects. Primary among these being that all registers
2569 are initialized before use.
2570
2571 The function returns true when code was emitted to CFG edges and
2572 commit_edge_insertions needs to be called. */
2573
2574 static int
2575 convert_regs_entry (void)
2576 {
2577 int inserted = 0;
2578 edge e;
2579 edge_iterator ei;
2580
2581 /* Load something into each stack register live at function entry.
2582 Such live registers can be caused by uninitialized variables or
2583 functions not returning values on all paths. In order to keep
2584 the push/pop code happy, and to not scrog the register stack, we
2585 must put something in these registers. Use a QNaN.
2586
2587 Note that we are inserting converted code here. This code is
2588 never seen by the convert_regs pass. */
2589
2590 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2591 {
2592 basic_block block = e->dest;
2593 block_info bi = BLOCK_INFO (block);
2594 int reg, top = -1;
2595
2596 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2597 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2598 {
2599 rtx init;
2600
2601 bi->stack_in.reg[++top] = reg;
2602
2603 init = gen_rtx_SET (VOIDmode,
2604 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2605 not_a_num);
2606 insert_insn_on_edge (init, e);
2607 inserted = 1;
2608 }
2609
2610 bi->stack_in.top = top;
2611 }
2612
2613 return inserted;
2614 }
2615
2616 /* Construct the desired stack for function exit. This will either
2617 be `empty', or the function return value at top-of-stack. */
2618
2619 static void
2620 convert_regs_exit (void)
2621 {
2622 int value_reg_low, value_reg_high;
2623 stack output_stack;
2624 rtx retvalue;
2625
2626 retvalue = stack_result (current_function_decl);
2627 value_reg_low = value_reg_high = -1;
2628 if (retvalue)
2629 {
2630 value_reg_low = REGNO (retvalue);
2631 value_reg_high = value_reg_low
2632 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2633 }
2634
2635 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2636 if (value_reg_low == -1)
2637 output_stack->top = -1;
2638 else
2639 {
2640 int reg;
2641
2642 output_stack->top = value_reg_high - value_reg_low;
2643 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2644 {
2645 output_stack->reg[value_reg_high - reg] = reg;
2646 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2647 }
2648 }
2649 }
2650
2651 /* Copy the stack info from the end of edge E's source block to the
2652 start of E's destination block. */
2653
2654 static void
2655 propagate_stack (edge e)
2656 {
2657 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2658 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2659 int reg;
2660
2661 /* Preserve the order of the original stack, but check whether
2662 any pops are needed. */
2663 dest_stack->top = -1;
2664 for (reg = 0; reg <= src_stack->top; ++reg)
2665 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2666 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2667 }
2668
2669
2670 /* Adjust the stack of edge E's source block on exit to match the stack
2671 of it's target block upon input. The stack layouts of both blocks
2672 should have been defined by now. */
2673
2674 static bool
2675 compensate_edge (edge e)
2676 {
2677 basic_block source = e->src, target = e->dest;
2678 stack target_stack = &BLOCK_INFO (target)->stack_in;
2679 stack source_stack = &BLOCK_INFO (source)->stack_out;
2680 struct stack_def regstack;
2681 int reg;
2682
2683 if (dump_file)
2684 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2685
2686 gcc_assert (target_stack->top != -2);
2687
2688 /* Check whether stacks are identical. */
2689 if (target_stack->top == source_stack->top)
2690 {
2691 for (reg = target_stack->top; reg >= 0; --reg)
2692 if (target_stack->reg[reg] != source_stack->reg[reg])
2693 break;
2694
2695 if (reg == -1)
2696 {
2697 if (dump_file)
2698 fprintf (dump_file, "no changes needed\n");
2699 return false;
2700 }
2701 }
2702
2703 if (dump_file)
2704 {
2705 fprintf (dump_file, "correcting stack to ");
2706 print_stack (dump_file, target_stack);
2707 }
2708
2709 /* Abnormal calls may appear to have values live in st(0), but the
2710 abnormal return path will not have actually loaded the values. */
2711 if (e->flags & EDGE_ABNORMAL_CALL)
2712 {
2713 /* Assert that the lifetimes are as we expect -- one value
2714 live at st(0) on the end of the source block, and no
2715 values live at the beginning of the destination block.
2716 For complex return values, we may have st(1) live as well. */
2717 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2718 gcc_assert (target_stack->top == -1);
2719 return false;
2720 }
2721
2722 /* Handle non-call EH edges specially. The normal return path have
2723 values in registers. These will be popped en masse by the unwind
2724 library. */
2725 if (e->flags & EDGE_EH)
2726 {
2727 gcc_assert (target_stack->top == -1);
2728 return false;
2729 }
2730
2731 /* We don't support abnormal edges. Global takes care to
2732 avoid any live register across them, so we should never
2733 have to insert instructions on such edges. */
2734 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2735
2736 /* Make a copy of source_stack as change_stack is destructive. */
2737 regstack = *source_stack;
2738
2739 /* It is better to output directly to the end of the block
2740 instead of to the edge, because emit_swap can do minimal
2741 insn scheduling. We can do this when there is only one
2742 edge out, and it is not abnormal. */
2743 if (EDGE_COUNT (source->succs) == 1)
2744 {
2745 current_block = source;
2746 change_stack (BB_END (source), &regstack, target_stack,
2747 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2748 }
2749 else
2750 {
2751 rtx seq, after;
2752
2753 current_block = NULL;
2754 start_sequence ();
2755
2756 /* ??? change_stack needs some point to emit insns after. */
2757 after = emit_note (NOTE_INSN_DELETED);
2758
2759 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2760
2761 seq = get_insns ();
2762 end_sequence ();
2763
2764 insert_insn_on_edge (seq, e);
2765 return true;
2766 }
2767 return false;
2768 }
2769
2770 /* Traverse all non-entry edges in the CFG, and emit the necessary
2771 edge compensation code to change the stack from stack_out of the
2772 source block to the stack_in of the destination block. */
2773
2774 static bool
2775 compensate_edges (void)
2776 {
2777 bool inserted = false;
2778 basic_block bb;
2779
2780 starting_stack_p = false;
2781
2782 FOR_EACH_BB (bb)
2783 if (bb != ENTRY_BLOCK_PTR)
2784 {
2785 edge e;
2786 edge_iterator ei;
2787
2788 FOR_EACH_EDGE (e, ei, bb->succs)
2789 inserted |= compensate_edge (e);
2790 }
2791 return inserted;
2792 }
2793
2794 /* Select the better of two edges E1 and E2 to use to determine the
2795 stack layout for their shared destination basic block. This is
2796 typically the more frequently executed. The edge E1 may be NULL
2797 (in which case E2 is returned), but E2 is always non-NULL. */
2798
2799 static edge
2800 better_edge (edge e1, edge e2)
2801 {
2802 if (!e1)
2803 return e2;
2804
2805 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2806 return e1;
2807 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2808 return e2;
2809
2810 if (e1->count > e2->count)
2811 return e1;
2812 if (e1->count < e2->count)
2813 return e2;
2814
2815 /* Prefer critical edges to minimize inserting compensation code on
2816 critical edges. */
2817
2818 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2819 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2820
2821 /* Avoid non-deterministic behavior. */
2822 return (e1->src->index < e2->src->index) ? e1 : e2;
2823 }
2824
2825 /* Convert stack register references in one block. */
2826
2827 static void
2828 convert_regs_1 (basic_block block)
2829 {
2830 struct stack_def regstack;
2831 block_info bi = BLOCK_INFO (block);
2832 int reg;
2833 rtx insn, next;
2834 bool control_flow_insn_deleted = false;
2835
2836 any_malformed_asm = false;
2837
2838 /* Choose an initial stack layout, if one hasn't already been chosen. */
2839 if (bi->stack_in.top == -2)
2840 {
2841 edge e, beste = NULL;
2842 edge_iterator ei;
2843
2844 /* Select the best incoming edge (typically the most frequent) to
2845 use as a template for this basic block. */
2846 FOR_EACH_EDGE (e, ei, block->preds)
2847 if (BLOCK_INFO (e->src)->done)
2848 beste = better_edge (beste, e);
2849
2850 if (beste)
2851 propagate_stack (beste);
2852 else
2853 {
2854 /* No predecessors. Create an arbitrary input stack. */
2855 bi->stack_in.top = -1;
2856 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2857 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2858 bi->stack_in.reg[++bi->stack_in.top] = reg;
2859 }
2860 }
2861
2862 if (dump_file)
2863 {
2864 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2865 print_stack (dump_file, &bi->stack_in);
2866 }
2867
2868 /* Process all insns in this block. Keep track of NEXT so that we
2869 don't process insns emitted while substituting in INSN. */
2870 current_block = block;
2871 next = BB_HEAD (block);
2872 regstack = bi->stack_in;
2873 starting_stack_p = true;
2874
2875 do
2876 {
2877 insn = next;
2878 next = NEXT_INSN (insn);
2879
2880 /* Ensure we have not missed a block boundary. */
2881 gcc_assert (next);
2882 if (insn == BB_END (block))
2883 next = NULL;
2884
2885 /* Don't bother processing unless there is a stack reg
2886 mentioned or if it's a CALL_INSN. */
2887 if (stack_regs_mentioned (insn)
2888 || CALL_P (insn))
2889 {
2890 if (dump_file)
2891 {
2892 fprintf (dump_file, " insn %d input stack: ",
2893 INSN_UID (insn));
2894 print_stack (dump_file, &regstack);
2895 }
2896 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2897 starting_stack_p = false;
2898 }
2899 }
2900 while (next);
2901
2902 if (dump_file)
2903 {
2904 fprintf (dump_file, "Expected live registers [");
2905 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2906 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2907 fprintf (dump_file, " %d", reg);
2908 fprintf (dump_file, " ]\nOutput stack: ");
2909 print_stack (dump_file, &regstack);
2910 }
2911
2912 insn = BB_END (block);
2913 if (JUMP_P (insn))
2914 insn = PREV_INSN (insn);
2915
2916 /* If the function is declared to return a value, but it returns one
2917 in only some cases, some registers might come live here. Emit
2918 necessary moves for them. */
2919
2920 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2921 {
2922 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2923 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2924 {
2925 rtx set;
2926
2927 if (dump_file)
2928 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2929
2930 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2931 insn = emit_insn_after (set, insn);
2932 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2933 }
2934 }
2935
2936 /* Amongst the insns possibly deleted during the substitution process above,
2937 might have been the only trapping insn in the block. We purge the now
2938 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2939 called at the end of convert_regs. The order in which we process the
2940 blocks ensures that we never delete an already processed edge.
2941
2942 Note that, at this point, the CFG may have been damaged by the emission
2943 of instructions after an abnormal call, which moves the basic block end
2944 (and is the reason why we call fixup_abnormal_edges later). So we must
2945 be sure that the trapping insn has been deleted before trying to purge
2946 dead edges, otherwise we risk purging valid edges.
2947
2948 ??? We are normally supposed not to delete trapping insns, so we pretend
2949 that the insns deleted above don't actually trap. It would have been
2950 better to detect this earlier and avoid creating the EH edge in the first
2951 place, still, but we don't have enough information at that time. */
2952
2953 if (control_flow_insn_deleted)
2954 purge_dead_edges (block);
2955
2956 /* Something failed if the stack lives don't match. If we had malformed
2957 asms, we zapped the instruction itself, but that didn't produce the
2958 same pattern of register kills as before. */
2959 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2960 gcc_assert (any_malformed_asm);
2961 win:
2962 bi->stack_out = regstack;
2963 bi->done = true;
2964 }
2965
2966 /* Convert registers in all blocks reachable from BLOCK. */
2967
2968 static void
2969 convert_regs_2 (basic_block block)
2970 {
2971 basic_block *stack, *sp;
2972
2973 /* We process the blocks in a top-down manner, in a way such that one block
2974 is only processed after all its predecessors. The number of predecessors
2975 of every block has already been computed. */
2976
2977 stack = XNEWVEC (basic_block, n_basic_blocks);
2978 sp = stack;
2979
2980 *sp++ = block;
2981
2982 do
2983 {
2984 edge e;
2985 edge_iterator ei;
2986
2987 block = *--sp;
2988
2989 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2990 some dead EH outgoing edge after the deletion of the trapping
2991 insn inside the block. Since the number of predecessors of
2992 BLOCK's successors was computed based on the initial edge set,
2993 we check the necessity to process some of these successors
2994 before such an edge deletion may happen. However, there is
2995 a pitfall: if BLOCK is the only predecessor of a successor and
2996 the edge between them happens to be deleted, the successor
2997 becomes unreachable and should not be processed. The problem
2998 is that there is no way to preventively detect this case so we
2999 stack the successor in all cases and hand over the task of
3000 fixing up the discrepancy to convert_regs_1. */
3001
3002 FOR_EACH_EDGE (e, ei, block->succs)
3003 if (! (e->flags & EDGE_DFS_BACK))
3004 {
3005 BLOCK_INFO (e->dest)->predecessors--;
3006 if (!BLOCK_INFO (e->dest)->predecessors)
3007 *sp++ = e->dest;
3008 }
3009
3010 convert_regs_1 (block);
3011 }
3012 while (sp != stack);
3013
3014 free (stack);
3015 }
3016
3017 /* Traverse all basic blocks in a function, converting the register
3018 references in each insn from the "flat" register file that gcc uses,
3019 to the stack-like registers the 387 uses. */
3020
3021 static void
3022 convert_regs (void)
3023 {
3024 int inserted;
3025 basic_block b;
3026 edge e;
3027 edge_iterator ei;
3028
3029 /* Initialize uninitialized registers on function entry. */
3030 inserted = convert_regs_entry ();
3031
3032 /* Construct the desired stack for function exit. */
3033 convert_regs_exit ();
3034 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3035
3036 /* ??? Future: process inner loops first, and give them arbitrary
3037 initial stacks which emit_swap_insn can modify. This ought to
3038 prevent double fxch that often appears at the head of a loop. */
3039
3040 /* Process all blocks reachable from all entry points. */
3041 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3042 convert_regs_2 (e->dest);
3043
3044 /* ??? Process all unreachable blocks. Though there's no excuse
3045 for keeping these even when not optimizing. */
3046 FOR_EACH_BB (b)
3047 {
3048 block_info bi = BLOCK_INFO (b);
3049
3050 if (! bi->done)
3051 convert_regs_2 (b);
3052 }
3053
3054 inserted |= compensate_edges ();
3055
3056 clear_aux_for_blocks ();
3057
3058 fixup_abnormal_edges ();
3059 if (inserted)
3060 commit_edge_insertions ();
3061
3062 if (dump_file)
3063 fputc ('\n', dump_file);
3064 }
3065 \f
3066 /* Convert register usage from "flat" register file usage to a "stack
3067 register file. FILE is the dump file, if used.
3068
3069 Construct a CFG and run life analysis. Then convert each insn one
3070 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3071 code duplication created when the converter inserts pop insns on
3072 the edges. */
3073
3074 static bool
3075 reg_to_stack (void)
3076 {
3077 basic_block bb;
3078 int i;
3079 int max_uid;
3080
3081 /* Clean up previous run. */
3082 if (stack_regs_mentioned_data != NULL)
3083 VEC_free (char, heap, stack_regs_mentioned_data);
3084
3085 /* See if there is something to do. Flow analysis is quite
3086 expensive so we might save some compilation time. */
3087 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3088 if (regs_ever_live[i])
3089 break;
3090 if (i > LAST_STACK_REG)
3091 return false;
3092
3093 /* Ok, floating point instructions exist. If not optimizing,
3094 build the CFG and run life analysis.
3095 Also need to rebuild life when superblock scheduling is done
3096 as it don't update liveness yet. */
3097 if (!optimize
3098 || ((flag_sched2_use_superblocks || flag_sched2_use_traces)
3099 && flag_schedule_insns_after_reload))
3100 {
3101 count_or_remove_death_notes (NULL, 1);
3102 life_analysis (PROP_DEATH_NOTES);
3103 }
3104 mark_dfs_back_edges ();
3105
3106 /* Set up block info for each basic block. */
3107 alloc_aux_for_blocks (sizeof (struct block_info_def));
3108 FOR_EACH_BB (bb)
3109 {
3110 block_info bi = BLOCK_INFO (bb);
3111 edge_iterator ei;
3112 edge e;
3113 int reg;
3114
3115 FOR_EACH_EDGE (e, ei, bb->preds)
3116 if (!(e->flags & EDGE_DFS_BACK)
3117 && e->src != ENTRY_BLOCK_PTR)
3118 bi->predecessors++;
3119
3120 /* Set current register status at last instruction `uninitialized'. */
3121 bi->stack_in.top = -2;
3122
3123 /* Copy live_at_end and live_at_start into temporaries. */
3124 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3125 {
3126 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_end, reg))
3127 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3128 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
3129 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3130 }
3131 }
3132
3133 /* Create the replacement registers up front. */
3134 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3135 {
3136 enum machine_mode mode;
3137 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3138 mode != VOIDmode;
3139 mode = GET_MODE_WIDER_MODE (mode))
3140 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3141 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3142 mode != VOIDmode;
3143 mode = GET_MODE_WIDER_MODE (mode))
3144 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3145 }
3146
3147 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3148
3149 /* A QNaN for initializing uninitialized variables.
3150
3151 ??? We can't load from constant memory in PIC mode, because
3152 we're inserting these instructions before the prologue and
3153 the PIC register hasn't been set up. In that case, fall back
3154 on zero, which we can get from `ldz'. */
3155
3156 if ((flag_pic && !TARGET_64BIT)
3157 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3158 not_a_num = CONST0_RTX (SFmode);
3159 else
3160 {
3161 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3162 not_a_num = force_const_mem (SFmode, not_a_num);
3163 }
3164
3165 /* Allocate a cache for stack_regs_mentioned. */
3166 max_uid = get_max_uid ();
3167 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3168 memset (VEC_address (char, stack_regs_mentioned_data),
3169 0, sizeof (char) * max_uid + 1);
3170
3171 convert_regs ();
3172
3173 free_aux_for_blocks ();
3174 return true;
3175 }
3176 #endif /* STACK_REGS */
3177 \f
3178 static bool
3179 gate_handle_stack_regs (void)
3180 {
3181 #ifdef STACK_REGS
3182 return 1;
3183 #else
3184 return 0;
3185 #endif
3186 }
3187
3188 /* Convert register usage from flat register file usage to a stack
3189 register file. */
3190 static unsigned int
3191 rest_of_handle_stack_regs (void)
3192 {
3193 #ifdef STACK_REGS
3194 if (reg_to_stack () && optimize)
3195 {
3196 regstack_completed = 1;
3197 if (cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK
3198 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0))
3199 && (flag_reorder_blocks || flag_reorder_blocks_and_partition))
3200 {
3201 basic_block bb;
3202
3203 cfg_layout_initialize (0);
3204
3205 reorder_basic_blocks ();
3206 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK);
3207
3208 FOR_EACH_BB (bb)
3209 if (bb->next_bb != EXIT_BLOCK_PTR)
3210 bb->aux = bb->next_bb;
3211 cfg_layout_finalize ();
3212 }
3213 }
3214 else
3215 regstack_completed = 1;
3216 #endif
3217 return 0;
3218 }
3219
3220 struct tree_opt_pass pass_stack_regs =
3221 {
3222 "stack", /* name */
3223 gate_handle_stack_regs, /* gate */
3224 rest_of_handle_stack_regs, /* execute */
3225 NULL, /* sub */
3226 NULL, /* next */
3227 0, /* static_pass_number */
3228 TV_REG_STACK, /* tv_id */
3229 0, /* properties_required */
3230 0, /* properties_provided */
3231 0, /* properties_destroyed */
3232 0, /* todo_flags_start */
3233 TODO_dump_func |
3234 TODO_ggc_collect, /* todo_flags_finish */
3235 'k' /* letter */
3236 };