optabs.h (enum optab_index): Add new OTI_log1p.
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153 \f
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
173
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
176
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180 static GTY(()) varray_type stack_regs_mentioned_data;
181
182 #ifdef STACK_REGS
183
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
185
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
188
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
192
193 REG_SET indicates which registers are live. */
194
195 typedef struct stack_def
196 {
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
200 } *stack;
201
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
204
205 typedef struct block_info_def
206 {
207 struct stack_def stack_in; /* Input stack configuration. */
208 struct stack_def stack_out; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
211 int predecessors; /* Number of predecessors that needs
212 to be visited. */
213 } *block_info;
214
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
216
217 /* Passed to change_stack to indicate where to emit insns. */
218 enum emit_where
219 {
220 EMIT_AFTER,
221 EMIT_BEFORE
222 };
223
224 /* The block we're currently working on. */
225 static basic_block current_block;
226
227 /* This is the register file for all register after conversion. */
228 static rtx
229 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
230
231 #define FP_MODE_REG(regno,mode) \
232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
233
234 /* Used to initialize uninitialized registers. */
235 static rtx nan;
236
237 /* Forward declarations */
238
239 static int stack_regs_mentioned_p (rtx pat);
240 static void straighten_stack (rtx, stack);
241 static void pop_stack (stack, int);
242 static rtx *get_true_reg (rtx *);
243
244 static int check_asm_stack_operands (rtx);
245 static int get_asm_operand_n_inputs (rtx);
246 static rtx stack_result (tree);
247 static void replace_reg (rtx *, int);
248 static void remove_regno_note (rtx, enum reg_note, unsigned int);
249 static int get_hard_regnum (stack, rtx);
250 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
251 static void emit_swap_insn (rtx, stack, rtx);
252 static void swap_to_top(rtx, stack, rtx, rtx);
253 static bool move_for_stack_reg (rtx, stack, rtx);
254 static int swap_rtx_condition_1 (rtx);
255 static int swap_rtx_condition (rtx);
256 static void compare_for_stack_reg (rtx, stack, rtx);
257 static bool subst_stack_regs_pat (rtx, stack, rtx);
258 static void subst_asm_stack_regs (rtx, stack);
259 static bool subst_stack_regs (rtx, stack);
260 static void change_stack (rtx, stack, stack, enum emit_where);
261 static int convert_regs_entry (void);
262 static void convert_regs_exit (void);
263 static int convert_regs_1 (FILE *, basic_block);
264 static int convert_regs_2 (FILE *, basic_block);
265 static int convert_regs (FILE *);
266 static void print_stack (FILE *, stack);
267 static rtx next_flags_user (rtx);
268 static void record_label_references (rtx, rtx);
269 static bool compensate_edge (edge, FILE *);
270 \f
271 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
272
273 static int
274 stack_regs_mentioned_p (rtx pat)
275 {
276 const char *fmt;
277 int i;
278
279 if (STACK_REG_P (pat))
280 return 1;
281
282 fmt = GET_RTX_FORMAT (GET_CODE (pat));
283 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
284 {
285 if (fmt[i] == 'E')
286 {
287 int j;
288
289 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
290 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
291 return 1;
292 }
293 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
294 return 1;
295 }
296
297 return 0;
298 }
299
300 /* Return nonzero if INSN mentions stacked registers, else return zero. */
301
302 int
303 stack_regs_mentioned (rtx insn)
304 {
305 unsigned int uid, max;
306 int test;
307
308 if (! INSN_P (insn) || !stack_regs_mentioned_data)
309 return 0;
310
311 uid = INSN_UID (insn);
312 max = VARRAY_SIZE (stack_regs_mentioned_data);
313 if (uid >= max)
314 {
315 /* Allocate some extra size to avoid too many reallocs, but
316 do not grow too quickly. */
317 max = uid + uid / 20;
318 VARRAY_GROW (stack_regs_mentioned_data, max);
319 }
320
321 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
322 if (test == 0)
323 {
324 /* This insn has yet to be examined. Do so now. */
325 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
326 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
327 }
328
329 return test == 1;
330 }
331 \f
332 static rtx ix86_flags_rtx;
333
334 static rtx
335 next_flags_user (rtx insn)
336 {
337 /* Search forward looking for the first use of this value.
338 Stop at block boundaries. */
339
340 while (insn != BB_END (current_block))
341 {
342 insn = NEXT_INSN (insn);
343
344 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
345 return insn;
346
347 if (GET_CODE (insn) == CALL_INSN)
348 return NULL_RTX;
349 }
350 return NULL_RTX;
351 }
352 \f
353 /* Reorganize the stack into ascending numbers,
354 after this insn. */
355
356 static void
357 straighten_stack (rtx insn, stack regstack)
358 {
359 struct stack_def temp_stack;
360 int top;
361
362 /* If there is only a single register on the stack, then the stack is
363 already in increasing order and no reorganization is needed.
364
365 Similarly if the stack is empty. */
366 if (regstack->top <= 0)
367 return;
368
369 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
370
371 for (top = temp_stack.top = regstack->top; top >= 0; top--)
372 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
373
374 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
375 }
376
377 /* Pop a register from the stack. */
378
379 static void
380 pop_stack (stack regstack, int regno)
381 {
382 int top = regstack->top;
383
384 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
385 regstack->top--;
386 /* If regno was not at the top of stack then adjust stack. */
387 if (regstack->reg [top] != regno)
388 {
389 int i;
390 for (i = regstack->top; i >= 0; i--)
391 if (regstack->reg [i] == regno)
392 {
393 int j;
394 for (j = i; j < top; j++)
395 regstack->reg [j] = regstack->reg [j + 1];
396 break;
397 }
398 }
399 }
400 \f
401 /* Convert register usage from "flat" register file usage to a "stack
402 register file. FIRST is the first insn in the function, FILE is the
403 dump file, if used.
404
405 Construct a CFG and run life analysis. Then convert each insn one
406 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
407 code duplication created when the converter inserts pop insns on
408 the edges. */
409
410 bool
411 reg_to_stack (rtx first, FILE *file)
412 {
413 basic_block bb;
414 int i;
415 int max_uid;
416
417 /* Clean up previous run. */
418 stack_regs_mentioned_data = 0;
419
420 /* See if there is something to do. Flow analysis is quite
421 expensive so we might save some compilation time. */
422 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
423 if (regs_ever_live[i])
424 break;
425 if (i > LAST_STACK_REG)
426 return false;
427
428 /* Ok, floating point instructions exist. If not optimizing,
429 build the CFG and run life analysis.
430 Also need to rebuild life when superblock scheduling is done
431 as it don't update liveness yet. */
432 if (!optimize
433 || (flag_sched2_use_superblocks
434 && flag_schedule_insns_after_reload))
435 {
436 count_or_remove_death_notes (NULL, 1);
437 life_analysis (first, file, PROP_DEATH_NOTES);
438 }
439 mark_dfs_back_edges ();
440
441 /* Set up block info for each basic block. */
442 alloc_aux_for_blocks (sizeof (struct block_info_def));
443 FOR_EACH_BB_REVERSE (bb)
444 {
445 edge e;
446 for (e = bb->pred; e; e = e->pred_next)
447 if (!(e->flags & EDGE_DFS_BACK)
448 && e->src != ENTRY_BLOCK_PTR)
449 BLOCK_INFO (bb)->predecessors++;
450 }
451
452 /* Create the replacement registers up front. */
453 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
454 {
455 enum machine_mode mode;
456 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
457 mode != VOIDmode;
458 mode = GET_MODE_WIDER_MODE (mode))
459 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
460 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
461 mode != VOIDmode;
462 mode = GET_MODE_WIDER_MODE (mode))
463 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
464 }
465
466 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
467
468 /* A QNaN for initializing uninitialized variables.
469
470 ??? We can't load from constant memory in PIC mode, because
471 we're inserting these instructions before the prologue and
472 the PIC register hasn't been set up. In that case, fall back
473 on zero, which we can get from `ldz'. */
474
475 if (flag_pic)
476 nan = CONST0_RTX (SFmode);
477 else
478 {
479 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
480 nan = force_const_mem (SFmode, nan);
481 }
482
483 /* Allocate a cache for stack_regs_mentioned. */
484 max_uid = get_max_uid ();
485 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
486 "stack_regs_mentioned cache");
487
488 convert_regs (file);
489
490 free_aux_for_blocks ();
491 return true;
492 }
493 \f
494 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
495 label's chain of references, and note which insn contains each
496 reference. */
497
498 static void
499 record_label_references (rtx insn, rtx pat)
500 {
501 enum rtx_code code = GET_CODE (pat);
502 int i;
503 const char *fmt;
504
505 if (code == LABEL_REF)
506 {
507 rtx label = XEXP (pat, 0);
508 rtx ref;
509
510 if (GET_CODE (label) != CODE_LABEL)
511 abort ();
512
513 /* If this is an undefined label, LABEL_REFS (label) contains
514 garbage. */
515 if (INSN_UID (label) == 0)
516 return;
517
518 /* Don't make a duplicate in the code_label's chain. */
519
520 for (ref = LABEL_REFS (label);
521 ref && ref != label;
522 ref = LABEL_NEXTREF (ref))
523 if (CONTAINING_INSN (ref) == insn)
524 return;
525
526 CONTAINING_INSN (pat) = insn;
527 LABEL_NEXTREF (pat) = LABEL_REFS (label);
528 LABEL_REFS (label) = pat;
529
530 return;
531 }
532
533 fmt = GET_RTX_FORMAT (code);
534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
535 {
536 if (fmt[i] == 'e')
537 record_label_references (insn, XEXP (pat, i));
538 if (fmt[i] == 'E')
539 {
540 int j;
541 for (j = 0; j < XVECLEN (pat, i); j++)
542 record_label_references (insn, XVECEXP (pat, i, j));
543 }
544 }
545 }
546 \f
547 /* Return a pointer to the REG expression within PAT. If PAT is not a
548 REG, possible enclosed by a conversion rtx, return the inner part of
549 PAT that stopped the search. */
550
551 static rtx *
552 get_true_reg (rtx *pat)
553 {
554 for (;;)
555 switch (GET_CODE (*pat))
556 {
557 case SUBREG:
558 /* Eliminate FP subregister accesses in favor of the
559 actual FP register in use. */
560 {
561 rtx subreg;
562 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
563 {
564 int regno_off = subreg_regno_offset (REGNO (subreg),
565 GET_MODE (subreg),
566 SUBREG_BYTE (*pat),
567 GET_MODE (*pat));
568 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
569 GET_MODE (subreg));
570 default:
571 return pat;
572 }
573 }
574 case FLOAT:
575 case FIX:
576 case FLOAT_EXTEND:
577 pat = & XEXP (*pat, 0);
578 break;
579
580 case FLOAT_TRUNCATE:
581 if (!flag_unsafe_math_optimizations)
582 return pat;
583 pat = & XEXP (*pat, 0);
584 break;
585 }
586 }
587 \f
588 /* Set if we find any malformed asms in a block. */
589 static bool any_malformed_asm;
590
591 /* There are many rules that an asm statement for stack-like regs must
592 follow. Those rules are explained at the top of this file: the rule
593 numbers below refer to that explanation. */
594
595 static int
596 check_asm_stack_operands (rtx insn)
597 {
598 int i;
599 int n_clobbers;
600 int malformed_asm = 0;
601 rtx body = PATTERN (insn);
602
603 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
604 char implicitly_dies[FIRST_PSEUDO_REGISTER];
605 int alt;
606
607 rtx *clobber_reg = 0;
608 int n_inputs, n_outputs;
609
610 /* Find out what the constraints require. If no constraint
611 alternative matches, this asm is malformed. */
612 extract_insn (insn);
613 constrain_operands (1);
614 alt = which_alternative;
615
616 preprocess_constraints ();
617
618 n_inputs = get_asm_operand_n_inputs (body);
619 n_outputs = recog_data.n_operands - n_inputs;
620
621 if (alt < 0)
622 {
623 malformed_asm = 1;
624 /* Avoid further trouble with this insn. */
625 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
626 return 0;
627 }
628
629 /* Strip SUBREGs here to make the following code simpler. */
630 for (i = 0; i < recog_data.n_operands; i++)
631 if (GET_CODE (recog_data.operand[i]) == SUBREG
632 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
633 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
634
635 /* Set up CLOBBER_REG. */
636
637 n_clobbers = 0;
638
639 if (GET_CODE (body) == PARALLEL)
640 {
641 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
642
643 for (i = 0; i < XVECLEN (body, 0); i++)
644 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
645 {
646 rtx clobber = XVECEXP (body, 0, i);
647 rtx reg = XEXP (clobber, 0);
648
649 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
650 reg = SUBREG_REG (reg);
651
652 if (STACK_REG_P (reg))
653 {
654 clobber_reg[n_clobbers] = reg;
655 n_clobbers++;
656 }
657 }
658 }
659
660 /* Enforce rule #4: Output operands must specifically indicate which
661 reg an output appears in after an asm. "=f" is not allowed: the
662 operand constraints must select a class with a single reg.
663
664 Also enforce rule #5: Output operands must start at the top of
665 the reg-stack: output operands may not "skip" a reg. */
666
667 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
668 for (i = 0; i < n_outputs; i++)
669 if (STACK_REG_P (recog_data.operand[i]))
670 {
671 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
672 {
673 error_for_asm (insn, "output constraint %d must specify a single register", i);
674 malformed_asm = 1;
675 }
676 else
677 {
678 int j;
679
680 for (j = 0; j < n_clobbers; j++)
681 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
682 {
683 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
684 i, reg_names [REGNO (clobber_reg[j])]);
685 malformed_asm = 1;
686 break;
687 }
688 if (j == n_clobbers)
689 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
690 }
691 }
692
693
694 /* Search for first non-popped reg. */
695 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
696 if (! reg_used_as_output[i])
697 break;
698
699 /* If there are any other popped regs, that's an error. */
700 for (; i < LAST_STACK_REG + 1; i++)
701 if (reg_used_as_output[i])
702 break;
703
704 if (i != LAST_STACK_REG + 1)
705 {
706 error_for_asm (insn, "output regs must be grouped at top of stack");
707 malformed_asm = 1;
708 }
709
710 /* Enforce rule #2: All implicitly popped input regs must be closer
711 to the top of the reg-stack than any input that is not implicitly
712 popped. */
713
714 memset (implicitly_dies, 0, sizeof (implicitly_dies));
715 for (i = n_outputs; i < n_outputs + n_inputs; i++)
716 if (STACK_REG_P (recog_data.operand[i]))
717 {
718 /* An input reg is implicitly popped if it is tied to an
719 output, or if there is a CLOBBER for it. */
720 int j;
721
722 for (j = 0; j < n_clobbers; j++)
723 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
724 break;
725
726 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
727 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
728 }
729
730 /* Search for first non-popped reg. */
731 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
732 if (! implicitly_dies[i])
733 break;
734
735 /* If there are any other popped regs, that's an error. */
736 for (; i < LAST_STACK_REG + 1; i++)
737 if (implicitly_dies[i])
738 break;
739
740 if (i != LAST_STACK_REG + 1)
741 {
742 error_for_asm (insn,
743 "implicitly popped regs must be grouped at top of stack");
744 malformed_asm = 1;
745 }
746
747 /* Enforce rule #3: If any input operand uses the "f" constraint, all
748 output constraints must use the "&" earlyclobber.
749
750 ??? Detect this more deterministically by having constrain_asm_operands
751 record any earlyclobber. */
752
753 for (i = n_outputs; i < n_outputs + n_inputs; i++)
754 if (recog_op_alt[i][alt].matches == -1)
755 {
756 int j;
757
758 for (j = 0; j < n_outputs; j++)
759 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
760 {
761 error_for_asm (insn,
762 "output operand %d must use `&' constraint", j);
763 malformed_asm = 1;
764 }
765 }
766
767 if (malformed_asm)
768 {
769 /* Avoid further trouble with this insn. */
770 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
771 any_malformed_asm = true;
772 return 0;
773 }
774
775 return 1;
776 }
777 \f
778 /* Calculate the number of inputs and outputs in BODY, an
779 asm_operands. N_OPERANDS is the total number of operands, and
780 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
781 placed. */
782
783 static int
784 get_asm_operand_n_inputs (rtx body)
785 {
786 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
787 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
788
789 else if (GET_CODE (body) == ASM_OPERANDS)
790 return ASM_OPERANDS_INPUT_LENGTH (body);
791
792 else if (GET_CODE (body) == PARALLEL
793 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
794 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
795
796 else if (GET_CODE (body) == PARALLEL
797 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
798 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
799
800 abort ();
801 }
802
803 /* If current function returns its result in an fp stack register,
804 return the REG. Otherwise, return 0. */
805
806 static rtx
807 stack_result (tree decl)
808 {
809 rtx result;
810
811 /* If the value is supposed to be returned in memory, then clearly
812 it is not returned in a stack register. */
813 if (aggregate_value_p (DECL_RESULT (decl), decl))
814 return 0;
815
816 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
817 if (result != 0)
818 {
819 #ifdef FUNCTION_OUTGOING_VALUE
820 result
821 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
822 #else
823 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
824 #endif
825 }
826
827 return result != 0 && STACK_REG_P (result) ? result : 0;
828 }
829 \f
830
831 /*
832 * This section deals with stack register substitution, and forms the second
833 * pass over the RTL.
834 */
835
836 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
837 the desired hard REGNO. */
838
839 static void
840 replace_reg (rtx *reg, int regno)
841 {
842 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
843 || ! STACK_REG_P (*reg))
844 abort ();
845
846 switch (GET_MODE_CLASS (GET_MODE (*reg)))
847 {
848 default: abort ();
849 case MODE_FLOAT:
850 case MODE_COMPLEX_FLOAT:;
851 }
852
853 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
854 }
855
856 /* Remove a note of type NOTE, which must be found, for register
857 number REGNO from INSN. Remove only one such note. */
858
859 static void
860 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
861 {
862 rtx *note_link, this;
863
864 note_link = &REG_NOTES (insn);
865 for (this = *note_link; this; this = XEXP (this, 1))
866 if (REG_NOTE_KIND (this) == note
867 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
868 {
869 *note_link = XEXP (this, 1);
870 return;
871 }
872 else
873 note_link = &XEXP (this, 1);
874
875 abort ();
876 }
877
878 /* Find the hard register number of virtual register REG in REGSTACK.
879 The hard register number is relative to the top of the stack. -1 is
880 returned if the register is not found. */
881
882 static int
883 get_hard_regnum (stack regstack, rtx reg)
884 {
885 int i;
886
887 if (! STACK_REG_P (reg))
888 abort ();
889
890 for (i = regstack->top; i >= 0; i--)
891 if (regstack->reg[i] == REGNO (reg))
892 break;
893
894 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
895 }
896 \f
897 /* Emit an insn to pop virtual register REG before or after INSN.
898 REGSTACK is the stack state after INSN and is updated to reflect this
899 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
900 is represented as a SET whose destination is the register to be popped
901 and source is the top of stack. A death note for the top of stack
902 cases the movdf pattern to pop. */
903
904 static rtx
905 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
906 {
907 rtx pop_insn, pop_rtx;
908 int hard_regno;
909
910 /* For complex types take care to pop both halves. These may survive in
911 CLOBBER and USE expressions. */
912 if (COMPLEX_MODE_P (GET_MODE (reg)))
913 {
914 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
915 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
916
917 pop_insn = NULL_RTX;
918 if (get_hard_regnum (regstack, reg1) >= 0)
919 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
920 if (get_hard_regnum (regstack, reg2) >= 0)
921 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
922 if (!pop_insn)
923 abort ();
924 return pop_insn;
925 }
926
927 hard_regno = get_hard_regnum (regstack, reg);
928
929 if (hard_regno < FIRST_STACK_REG)
930 abort ();
931
932 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
933 FP_MODE_REG (FIRST_STACK_REG, DFmode));
934
935 if (where == EMIT_AFTER)
936 pop_insn = emit_insn_after (pop_rtx, insn);
937 else
938 pop_insn = emit_insn_before (pop_rtx, insn);
939
940 REG_NOTES (pop_insn)
941 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
942 REG_NOTES (pop_insn));
943
944 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
945 = regstack->reg[regstack->top];
946 regstack->top -= 1;
947 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
948
949 return pop_insn;
950 }
951 \f
952 /* Emit an insn before or after INSN to swap virtual register REG with
953 the top of stack. REGSTACK is the stack state before the swap, and
954 is updated to reflect the swap. A swap insn is represented as a
955 PARALLEL of two patterns: each pattern moves one reg to the other.
956
957 If REG is already at the top of the stack, no insn is emitted. */
958
959 static void
960 emit_swap_insn (rtx insn, stack regstack, rtx reg)
961 {
962 int hard_regno;
963 rtx swap_rtx;
964 int tmp, other_reg; /* swap regno temps */
965 rtx i1; /* the stack-reg insn prior to INSN */
966 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
967
968 hard_regno = get_hard_regnum (regstack, reg);
969
970 if (hard_regno < FIRST_STACK_REG)
971 abort ();
972 if (hard_regno == FIRST_STACK_REG)
973 return;
974
975 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
976
977 tmp = regstack->reg[other_reg];
978 regstack->reg[other_reg] = regstack->reg[regstack->top];
979 regstack->reg[regstack->top] = tmp;
980
981 /* Find the previous insn involving stack regs, but don't pass a
982 block boundary. */
983 i1 = NULL;
984 if (current_block && insn != BB_HEAD (current_block))
985 {
986 rtx tmp = PREV_INSN (insn);
987 rtx limit = PREV_INSN (BB_HEAD (current_block));
988 while (tmp != limit)
989 {
990 if (GET_CODE (tmp) == CODE_LABEL
991 || GET_CODE (tmp) == CALL_INSN
992 || NOTE_INSN_BASIC_BLOCK_P (tmp)
993 || (GET_CODE (tmp) == INSN
994 && stack_regs_mentioned (tmp)))
995 {
996 i1 = tmp;
997 break;
998 }
999 tmp = PREV_INSN (tmp);
1000 }
1001 }
1002
1003 if (i1 != NULL_RTX
1004 && (i1set = single_set (i1)) != NULL_RTX)
1005 {
1006 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1007 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1008
1009 /* If the previous register stack push was from the reg we are to
1010 swap with, omit the swap. */
1011
1012 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1013 && GET_CODE (i1src) == REG
1014 && REGNO (i1src) == (unsigned) hard_regno - 1
1015 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1016 return;
1017
1018 /* If the previous insn wrote to the reg we are to swap with,
1019 omit the swap. */
1020
1021 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
1022 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1023 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1024 return;
1025 }
1026
1027 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1028 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1029
1030 if (i1)
1031 emit_insn_after (swap_rtx, i1);
1032 else if (current_block)
1033 emit_insn_before (swap_rtx, BB_HEAD (current_block));
1034 else
1035 emit_insn_before (swap_rtx, insn);
1036 }
1037 \f
1038 /* Emit an insns before INSN to swap virtual register SRC1 with
1039 the top of stack and virtual register SRC2 with second stack
1040 slot. REGSTACK is the stack state before the swaps, and
1041 is updated to reflect the swaps. A swap insn is represented as a
1042 PARALLEL of two patterns: each pattern moves one reg to the other.
1043
1044 If SRC1 and/or SRC2 are already at the right place, no swap insn
1045 is emitted. */
1046
1047 static void
1048 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
1049 {
1050 struct stack_def temp_stack;
1051 int regno, j, k, temp;
1052
1053 temp_stack = *regstack;
1054
1055 /* Place operand 1 at the top of stack. */
1056 regno = get_hard_regnum (&temp_stack, src1);
1057 if (regno < 0)
1058 abort ();
1059 if (regno != FIRST_STACK_REG)
1060 {
1061 k = temp_stack.top - (regno - FIRST_STACK_REG);
1062 j = temp_stack.top;
1063
1064 temp = temp_stack.reg[k];
1065 temp_stack.reg[k] = temp_stack.reg[j];
1066 temp_stack.reg[j] = temp;
1067 }
1068
1069 /* Place operand 2 next on the stack. */
1070 regno = get_hard_regnum (&temp_stack, src2);
1071 if (regno < 0)
1072 abort ();
1073 if (regno != FIRST_STACK_REG + 1)
1074 {
1075 k = temp_stack.top - (regno - FIRST_STACK_REG);
1076 j = temp_stack.top - 1;
1077
1078 temp = temp_stack.reg[k];
1079 temp_stack.reg[k] = temp_stack.reg[j];
1080 temp_stack.reg[j] = temp;
1081 }
1082
1083 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1084 }
1085 \f
1086 /* Handle a move to or from a stack register in PAT, which is in INSN.
1087 REGSTACK is the current stack. Return whether a control flow insn
1088 was deleted in the process. */
1089
1090 static bool
1091 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
1092 {
1093 rtx *psrc = get_true_reg (&SET_SRC (pat));
1094 rtx *pdest = get_true_reg (&SET_DEST (pat));
1095 rtx src, dest;
1096 rtx note;
1097 bool control_flow_insn_deleted = false;
1098
1099 src = *psrc; dest = *pdest;
1100
1101 if (STACK_REG_P (src) && STACK_REG_P (dest))
1102 {
1103 /* Write from one stack reg to another. If SRC dies here, then
1104 just change the register mapping and delete the insn. */
1105
1106 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1107 if (note)
1108 {
1109 int i;
1110
1111 /* If this is a no-op move, there must not be a REG_DEAD note. */
1112 if (REGNO (src) == REGNO (dest))
1113 abort ();
1114
1115 for (i = regstack->top; i >= 0; i--)
1116 if (regstack->reg[i] == REGNO (src))
1117 break;
1118
1119 /* The source must be live, and the dest must be dead. */
1120 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1121 abort ();
1122
1123 /* It is possible that the dest is unused after this insn.
1124 If so, just pop the src. */
1125
1126 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1127 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1128 else
1129 {
1130 regstack->reg[i] = REGNO (dest);
1131 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1132 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1133 }
1134
1135 control_flow_insn_deleted |= control_flow_insn_p (insn);
1136 delete_insn (insn);
1137 return control_flow_insn_deleted;
1138 }
1139
1140 /* The source reg does not die. */
1141
1142 /* If this appears to be a no-op move, delete it, or else it
1143 will confuse the machine description output patterns. But if
1144 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1145 for REG_UNUSED will not work for deleted insns. */
1146
1147 if (REGNO (src) == REGNO (dest))
1148 {
1149 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1150 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1151
1152 control_flow_insn_deleted |= control_flow_insn_p (insn);
1153 delete_insn (insn);
1154 return control_flow_insn_deleted;
1155 }
1156
1157 /* The destination ought to be dead. */
1158 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1159 abort ();
1160
1161 replace_reg (psrc, get_hard_regnum (regstack, src));
1162
1163 regstack->reg[++regstack->top] = REGNO (dest);
1164 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1165 replace_reg (pdest, FIRST_STACK_REG);
1166 }
1167 else if (STACK_REG_P (src))
1168 {
1169 /* Save from a stack reg to MEM, or possibly integer reg. Since
1170 only top of stack may be saved, emit an exchange first if
1171 needs be. */
1172
1173 emit_swap_insn (insn, regstack, src);
1174
1175 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1176 if (note)
1177 {
1178 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1179 regstack->top--;
1180 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1181 }
1182 else if ((GET_MODE (src) == XFmode)
1183 && regstack->top < REG_STACK_SIZE - 1)
1184 {
1185 /* A 387 cannot write an XFmode value to a MEM without
1186 clobbering the source reg. The output code can handle
1187 this by reading back the value from the MEM.
1188 But it is more efficient to use a temp register if one is
1189 available. Push the source value here if the register
1190 stack is not full, and then write the value to memory via
1191 a pop. */
1192 rtx push_rtx, push_insn;
1193 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1194
1195 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1196 push_insn = emit_insn_before (push_rtx, insn);
1197 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1198 REG_NOTES (insn));
1199 }
1200
1201 replace_reg (psrc, FIRST_STACK_REG);
1202 }
1203 else if (STACK_REG_P (dest))
1204 {
1205 /* Load from MEM, or possibly integer REG or constant, into the
1206 stack regs. The actual target is always the top of the
1207 stack. The stack mapping is changed to reflect that DEST is
1208 now at top of stack. */
1209
1210 /* The destination ought to be dead. */
1211 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1212 abort ();
1213
1214 if (regstack->top >= REG_STACK_SIZE)
1215 abort ();
1216
1217 regstack->reg[++regstack->top] = REGNO (dest);
1218 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1219 replace_reg (pdest, FIRST_STACK_REG);
1220 }
1221 else
1222 abort ();
1223
1224 return control_flow_insn_deleted;
1225 }
1226 \f
1227 /* Swap the condition on a branch, if there is one. Return true if we
1228 found a condition to swap. False if the condition was not used as
1229 such. */
1230
1231 static int
1232 swap_rtx_condition_1 (rtx pat)
1233 {
1234 const char *fmt;
1235 int i, r = 0;
1236
1237 if (COMPARISON_P (pat))
1238 {
1239 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1240 r = 1;
1241 }
1242 else
1243 {
1244 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1245 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1246 {
1247 if (fmt[i] == 'E')
1248 {
1249 int j;
1250
1251 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1252 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1253 }
1254 else if (fmt[i] == 'e')
1255 r |= swap_rtx_condition_1 (XEXP (pat, i));
1256 }
1257 }
1258
1259 return r;
1260 }
1261
1262 static int
1263 swap_rtx_condition (rtx insn)
1264 {
1265 rtx pat = PATTERN (insn);
1266
1267 /* We're looking for a single set to cc0 or an HImode temporary. */
1268
1269 if (GET_CODE (pat) == SET
1270 && GET_CODE (SET_DEST (pat)) == REG
1271 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1272 {
1273 insn = next_flags_user (insn);
1274 if (insn == NULL_RTX)
1275 return 0;
1276 pat = PATTERN (insn);
1277 }
1278
1279 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1280 not doing anything with the cc value right now. We may be able to
1281 search for one though. */
1282
1283 if (GET_CODE (pat) == SET
1284 && GET_CODE (SET_SRC (pat)) == UNSPEC
1285 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1286 {
1287 rtx dest = SET_DEST (pat);
1288
1289 /* Search forward looking for the first use of this value.
1290 Stop at block boundaries. */
1291 while (insn != BB_END (current_block))
1292 {
1293 insn = NEXT_INSN (insn);
1294 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1295 break;
1296 if (GET_CODE (insn) == CALL_INSN)
1297 return 0;
1298 }
1299
1300 /* So we've found the insn using this value. If it is anything
1301 other than sahf, aka unspec 10, or the value does not die
1302 (meaning we'd have to search further), then we must give up. */
1303 pat = PATTERN (insn);
1304 if (GET_CODE (pat) != SET
1305 || GET_CODE (SET_SRC (pat)) != UNSPEC
1306 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1307 || ! dead_or_set_p (insn, dest))
1308 return 0;
1309
1310 /* Now we are prepared to handle this as a normal cc0 setter. */
1311 insn = next_flags_user (insn);
1312 if (insn == NULL_RTX)
1313 return 0;
1314 pat = PATTERN (insn);
1315 }
1316
1317 if (swap_rtx_condition_1 (pat))
1318 {
1319 int fail = 0;
1320 INSN_CODE (insn) = -1;
1321 if (recog_memoized (insn) == -1)
1322 fail = 1;
1323 /* In case the flags don't die here, recurse to try fix
1324 following user too. */
1325 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1326 {
1327 insn = next_flags_user (insn);
1328 if (!insn || !swap_rtx_condition (insn))
1329 fail = 1;
1330 }
1331 if (fail)
1332 {
1333 swap_rtx_condition_1 (pat);
1334 return 0;
1335 }
1336 return 1;
1337 }
1338 return 0;
1339 }
1340
1341 /* Handle a comparison. Special care needs to be taken to avoid
1342 causing comparisons that a 387 cannot do correctly, such as EQ.
1343
1344 Also, a pop insn may need to be emitted. The 387 does have an
1345 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1346 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1347 set up. */
1348
1349 static void
1350 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1351 {
1352 rtx *src1, *src2;
1353 rtx src1_note, src2_note;
1354 rtx flags_user;
1355
1356 src1 = get_true_reg (&XEXP (pat_src, 0));
1357 src2 = get_true_reg (&XEXP (pat_src, 1));
1358 flags_user = next_flags_user (insn);
1359
1360 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1361 registers that die in this insn - move those to stack top first. */
1362 if ((! STACK_REG_P (*src1)
1363 || (STACK_REG_P (*src2)
1364 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1365 && swap_rtx_condition (insn))
1366 {
1367 rtx temp;
1368 temp = XEXP (pat_src, 0);
1369 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1370 XEXP (pat_src, 1) = temp;
1371
1372 src1 = get_true_reg (&XEXP (pat_src, 0));
1373 src2 = get_true_reg (&XEXP (pat_src, 1));
1374
1375 INSN_CODE (insn) = -1;
1376 }
1377
1378 /* We will fix any death note later. */
1379
1380 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1381
1382 if (STACK_REG_P (*src2))
1383 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1384 else
1385 src2_note = NULL_RTX;
1386
1387 emit_swap_insn (insn, regstack, *src1);
1388
1389 replace_reg (src1, FIRST_STACK_REG);
1390
1391 if (STACK_REG_P (*src2))
1392 replace_reg (src2, get_hard_regnum (regstack, *src2));
1393
1394 if (src1_note)
1395 {
1396 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1397 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1398 }
1399
1400 /* If the second operand dies, handle that. But if the operands are
1401 the same stack register, don't bother, because only one death is
1402 needed, and it was just handled. */
1403
1404 if (src2_note
1405 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1406 && REGNO (*src1) == REGNO (*src2)))
1407 {
1408 /* As a special case, two regs may die in this insn if src2 is
1409 next to top of stack and the top of stack also dies. Since
1410 we have already popped src1, "next to top of stack" is really
1411 at top (FIRST_STACK_REG) now. */
1412
1413 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1414 && src1_note)
1415 {
1416 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1417 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1418 }
1419 else
1420 {
1421 /* The 386 can only represent death of the first operand in
1422 the case handled above. In all other cases, emit a separate
1423 pop and remove the death note from here. */
1424
1425 /* link_cc0_insns (insn); */
1426
1427 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1428
1429 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1430 EMIT_AFTER);
1431 }
1432 }
1433 }
1434 \f
1435 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1436 is the current register layout. Return whether a control flow insn
1437 was deleted in the process. */
1438
1439 static bool
1440 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1441 {
1442 rtx *dest, *src;
1443 bool control_flow_insn_deleted = false;
1444
1445 switch (GET_CODE (pat))
1446 {
1447 case USE:
1448 /* Deaths in USE insns can happen in non optimizing compilation.
1449 Handle them by popping the dying register. */
1450 src = get_true_reg (&XEXP (pat, 0));
1451 if (STACK_REG_P (*src)
1452 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1453 {
1454 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1455 return control_flow_insn_deleted;
1456 }
1457 /* ??? Uninitialized USE should not happen. */
1458 else if (get_hard_regnum (regstack, *src) == -1)
1459 abort ();
1460 break;
1461
1462 case CLOBBER:
1463 {
1464 rtx note;
1465
1466 dest = get_true_reg (&XEXP (pat, 0));
1467 if (STACK_REG_P (*dest))
1468 {
1469 note = find_reg_note (insn, REG_DEAD, *dest);
1470
1471 if (pat != PATTERN (insn))
1472 {
1473 /* The fix_truncdi_1 pattern wants to be able to allocate
1474 it's own scratch register. It does this by clobbering
1475 an fp reg so that it is assured of an empty reg-stack
1476 register. If the register is live, kill it now.
1477 Remove the DEAD/UNUSED note so we don't try to kill it
1478 later too. */
1479
1480 if (note)
1481 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1482 else
1483 {
1484 note = find_reg_note (insn, REG_UNUSED, *dest);
1485 if (!note)
1486 abort ();
1487 }
1488 remove_note (insn, note);
1489 replace_reg (dest, FIRST_STACK_REG + 1);
1490 }
1491 else
1492 {
1493 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1494 indicates an uninitialized value. Because reload removed
1495 all other clobbers, this must be due to a function
1496 returning without a value. Load up a NaN. */
1497
1498 if (! note
1499 && get_hard_regnum (regstack, *dest) == -1)
1500 {
1501 pat = gen_rtx_SET (VOIDmode,
1502 FP_MODE_REG (REGNO (*dest), SFmode),
1503 nan);
1504 PATTERN (insn) = pat;
1505 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1506 }
1507 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1508 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1509 {
1510 pat = gen_rtx_SET (VOIDmode,
1511 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1512 nan);
1513 PATTERN (insn) = pat;
1514 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1515 }
1516 }
1517 }
1518 break;
1519 }
1520
1521 case SET:
1522 {
1523 rtx *src1 = (rtx *) 0, *src2;
1524 rtx src1_note, src2_note;
1525 rtx pat_src;
1526
1527 dest = get_true_reg (&SET_DEST (pat));
1528 src = get_true_reg (&SET_SRC (pat));
1529 pat_src = SET_SRC (pat);
1530
1531 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1532 if (STACK_REG_P (*src)
1533 || (STACK_REG_P (*dest)
1534 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1535 || GET_CODE (*src) == CONST_DOUBLE)))
1536 {
1537 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1538 break;
1539 }
1540
1541 switch (GET_CODE (pat_src))
1542 {
1543 case COMPARE:
1544 compare_for_stack_reg (insn, regstack, pat_src);
1545 break;
1546
1547 case CALL:
1548 {
1549 int count;
1550 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1551 --count >= 0;)
1552 {
1553 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1554 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1555 }
1556 }
1557 replace_reg (dest, FIRST_STACK_REG);
1558 break;
1559
1560 case REG:
1561 /* This is a `tstM2' case. */
1562 if (*dest != cc0_rtx)
1563 abort ();
1564 src1 = src;
1565
1566 /* Fall through. */
1567
1568 case FLOAT_TRUNCATE:
1569 case SQRT:
1570 case ABS:
1571 case NEG:
1572 /* These insns only operate on the top of the stack. DEST might
1573 be cc0_rtx if we're processing a tstM pattern. Also, it's
1574 possible that the tstM case results in a REG_DEAD note on the
1575 source. */
1576
1577 if (src1 == 0)
1578 src1 = get_true_reg (&XEXP (pat_src, 0));
1579
1580 emit_swap_insn (insn, regstack, *src1);
1581
1582 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1583
1584 if (STACK_REG_P (*dest))
1585 replace_reg (dest, FIRST_STACK_REG);
1586
1587 if (src1_note)
1588 {
1589 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1590 regstack->top--;
1591 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1592 }
1593
1594 replace_reg (src1, FIRST_STACK_REG);
1595 break;
1596
1597 case MINUS:
1598 case DIV:
1599 /* On i386, reversed forms of subM3 and divM3 exist for
1600 MODE_FLOAT, so the same code that works for addM3 and mulM3
1601 can be used. */
1602 case MULT:
1603 case PLUS:
1604 /* These insns can accept the top of stack as a destination
1605 from a stack reg or mem, or can use the top of stack as a
1606 source and some other stack register (possibly top of stack)
1607 as a destination. */
1608
1609 src1 = get_true_reg (&XEXP (pat_src, 0));
1610 src2 = get_true_reg (&XEXP (pat_src, 1));
1611
1612 /* We will fix any death note later. */
1613
1614 if (STACK_REG_P (*src1))
1615 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1616 else
1617 src1_note = NULL_RTX;
1618 if (STACK_REG_P (*src2))
1619 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1620 else
1621 src2_note = NULL_RTX;
1622
1623 /* If either operand is not a stack register, then the dest
1624 must be top of stack. */
1625
1626 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1627 emit_swap_insn (insn, regstack, *dest);
1628 else
1629 {
1630 /* Both operands are REG. If neither operand is already
1631 at the top of stack, choose to make the one that is the dest
1632 the new top of stack. */
1633
1634 int src1_hard_regnum, src2_hard_regnum;
1635
1636 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1637 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1638 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1639 abort ();
1640
1641 if (src1_hard_regnum != FIRST_STACK_REG
1642 && src2_hard_regnum != FIRST_STACK_REG)
1643 emit_swap_insn (insn, regstack, *dest);
1644 }
1645
1646 if (STACK_REG_P (*src1))
1647 replace_reg (src1, get_hard_regnum (regstack, *src1));
1648 if (STACK_REG_P (*src2))
1649 replace_reg (src2, get_hard_regnum (regstack, *src2));
1650
1651 if (src1_note)
1652 {
1653 rtx src1_reg = XEXP (src1_note, 0);
1654
1655 /* If the register that dies is at the top of stack, then
1656 the destination is somewhere else - merely substitute it.
1657 But if the reg that dies is not at top of stack, then
1658 move the top of stack to the dead reg, as though we had
1659 done the insn and then a store-with-pop. */
1660
1661 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1662 {
1663 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1664 replace_reg (dest, get_hard_regnum (regstack, *dest));
1665 }
1666 else
1667 {
1668 int regno = get_hard_regnum (regstack, src1_reg);
1669
1670 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1671 replace_reg (dest, regno);
1672
1673 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1674 = regstack->reg[regstack->top];
1675 }
1676
1677 CLEAR_HARD_REG_BIT (regstack->reg_set,
1678 REGNO (XEXP (src1_note, 0)));
1679 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1680 regstack->top--;
1681 }
1682 else if (src2_note)
1683 {
1684 rtx src2_reg = XEXP (src2_note, 0);
1685 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1686 {
1687 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1688 replace_reg (dest, get_hard_regnum (regstack, *dest));
1689 }
1690 else
1691 {
1692 int regno = get_hard_regnum (regstack, src2_reg);
1693
1694 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1695 replace_reg (dest, regno);
1696
1697 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1698 = regstack->reg[regstack->top];
1699 }
1700
1701 CLEAR_HARD_REG_BIT (regstack->reg_set,
1702 REGNO (XEXP (src2_note, 0)));
1703 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1704 regstack->top--;
1705 }
1706 else
1707 {
1708 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1709 replace_reg (dest, get_hard_regnum (regstack, *dest));
1710 }
1711
1712 /* Keep operand 1 matching with destination. */
1713 if (COMMUTATIVE_ARITH_P (pat_src)
1714 && REG_P (*src1) && REG_P (*src2)
1715 && REGNO (*src1) != REGNO (*dest))
1716 {
1717 int tmp = REGNO (*src1);
1718 replace_reg (src1, REGNO (*src2));
1719 replace_reg (src2, tmp);
1720 }
1721 break;
1722
1723 case UNSPEC:
1724 switch (XINT (pat_src, 1))
1725 {
1726 case UNSPEC_SIN:
1727 case UNSPEC_COS:
1728 case UNSPEC_FRNDINT:
1729 case UNSPEC_F2XM1:
1730 /* These insns only operate on the top of the stack. */
1731
1732 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1733
1734 emit_swap_insn (insn, regstack, *src1);
1735
1736 /* Input should never die, it is
1737 replaced with output. */
1738 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1739 if (src1_note)
1740 abort();
1741
1742 if (STACK_REG_P (*dest))
1743 replace_reg (dest, FIRST_STACK_REG);
1744
1745 replace_reg (src1, FIRST_STACK_REG);
1746 break;
1747
1748 case UNSPEC_FPATAN:
1749 case UNSPEC_FYL2X:
1750 case UNSPEC_FYL2XP1:
1751 /* These insns operate on the top two stack slots. */
1752
1753 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1754 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1755
1756 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1757 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1758
1759 swap_to_top (insn, regstack, *src1, *src2);
1760
1761 replace_reg (src1, FIRST_STACK_REG);
1762 replace_reg (src2, FIRST_STACK_REG + 1);
1763
1764 if (src1_note)
1765 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1766 if (src2_note)
1767 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1768
1769 /* Pop both input operands from the stack. */
1770 CLEAR_HARD_REG_BIT (regstack->reg_set,
1771 regstack->reg[regstack->top]);
1772 CLEAR_HARD_REG_BIT (regstack->reg_set,
1773 regstack->reg[regstack->top - 1]);
1774 regstack->top -= 2;
1775
1776 /* Push the result back onto the stack. */
1777 regstack->reg[++regstack->top] = REGNO (*dest);
1778 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1779 replace_reg (dest, FIRST_STACK_REG);
1780 break;
1781
1782 case UNSPEC_FSCALE_FRACT:
1783 case UNSPEC_FPREM_F:
1784 case UNSPEC_FPREM1_F:
1785 /* These insns operate on the top two stack slots.
1786 first part of double input, double output insn. */
1787
1788 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1789 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1790
1791 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1792 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1793
1794 /* Inputs should never die, they are
1795 replaced with outputs. */
1796 if ((src1_note) || (src2_note))
1797 abort();
1798
1799 swap_to_top (insn, regstack, *src1, *src2);
1800
1801 /* Push the result back onto stack. Empty stack slot
1802 will be filled in second part of insn. */
1803 if (STACK_REG_P (*dest)) {
1804 regstack->reg[regstack->top] = REGNO (*dest);
1805 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1806 replace_reg (dest, FIRST_STACK_REG);
1807 }
1808
1809 replace_reg (src1, FIRST_STACK_REG);
1810 replace_reg (src2, FIRST_STACK_REG + 1);
1811 break;
1812
1813 case UNSPEC_FSCALE_EXP:
1814 case UNSPEC_FPREM_U:
1815 case UNSPEC_FPREM1_U:
1816 /* These insns operate on the top two stack slots./
1817 second part of double input, double output insn. */
1818
1819 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1820 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1821
1822 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1823 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1824
1825 /* Inputs should never die, they are
1826 replaced with outputs. */
1827 if ((src1_note) || (src2_note))
1828 abort();
1829
1830 swap_to_top (insn, regstack, *src1, *src2);
1831
1832 /* Push the result back onto stack. Fill empty slot from
1833 first part of insn and fix top of stack pointer. */
1834 if (STACK_REG_P (*dest)) {
1835 regstack->reg[regstack->top - 1] = REGNO (*dest);
1836 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1837 replace_reg (dest, FIRST_STACK_REG + 1);
1838 }
1839
1840 replace_reg (src1, FIRST_STACK_REG);
1841 replace_reg (src2, FIRST_STACK_REG + 1);
1842 break;
1843
1844 case UNSPEC_SINCOS_COS:
1845 case UNSPEC_TAN_ONE:
1846 case UNSPEC_XTRACT_FRACT:
1847 /* These insns operate on the top two stack slots,
1848 first part of one input, double output insn. */
1849
1850 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1851
1852 emit_swap_insn (insn, regstack, *src1);
1853
1854 /* Input should never die, it is
1855 replaced with output. */
1856 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1857 if (src1_note)
1858 abort();
1859
1860 /* Push the result back onto stack. Empty stack slot
1861 will be filled in second part of insn. */
1862 if (STACK_REG_P (*dest)) {
1863 regstack->reg[regstack->top + 1] = REGNO (*dest);
1864 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1865 replace_reg (dest, FIRST_STACK_REG);
1866 }
1867
1868 replace_reg (src1, FIRST_STACK_REG);
1869 break;
1870
1871 case UNSPEC_SINCOS_SIN:
1872 case UNSPEC_TAN_TAN:
1873 case UNSPEC_XTRACT_EXP:
1874 /* These insns operate on the top two stack slots,
1875 second part of one input, double output insn. */
1876
1877 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1878
1879 emit_swap_insn (insn, regstack, *src1);
1880
1881 /* Input should never die, it is
1882 replaced with output. */
1883 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1884 if (src1_note)
1885 abort();
1886
1887 /* Push the result back onto stack. Fill empty slot from
1888 first part of insn and fix top of stack pointer. */
1889 if (STACK_REG_P (*dest)) {
1890 regstack->reg[regstack->top] = REGNO (*dest);
1891 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1892 replace_reg (dest, FIRST_STACK_REG + 1);
1893
1894 regstack->top++;
1895 }
1896
1897 replace_reg (src1, FIRST_STACK_REG);
1898 break;
1899
1900 case UNSPEC_SAHF:
1901 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1902 The combination matches the PPRO fcomi instruction. */
1903
1904 pat_src = XVECEXP (pat_src, 0, 0);
1905 if (GET_CODE (pat_src) != UNSPEC
1906 || XINT (pat_src, 1) != UNSPEC_FNSTSW)
1907 abort ();
1908 /* Fall through. */
1909
1910 case UNSPEC_FNSTSW:
1911 /* Combined fcomp+fnstsw generated for doing well with
1912 CSE. When optimizing this would have been broken
1913 up before now. */
1914
1915 pat_src = XVECEXP (pat_src, 0, 0);
1916 if (GET_CODE (pat_src) != COMPARE)
1917 abort ();
1918
1919 compare_for_stack_reg (insn, regstack, pat_src);
1920 break;
1921
1922 default:
1923 abort ();
1924 }
1925 break;
1926
1927 case IF_THEN_ELSE:
1928 /* This insn requires the top of stack to be the destination. */
1929
1930 src1 = get_true_reg (&XEXP (pat_src, 1));
1931 src2 = get_true_reg (&XEXP (pat_src, 2));
1932
1933 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1934 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1935
1936 /* If the comparison operator is an FP comparison operator,
1937 it is handled correctly by compare_for_stack_reg () who
1938 will move the destination to the top of stack. But if the
1939 comparison operator is not an FP comparison operator, we
1940 have to handle it here. */
1941 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1942 && REGNO (*dest) != regstack->reg[regstack->top])
1943 {
1944 /* In case one of operands is the top of stack and the operands
1945 dies, it is safe to make it the destination operand by
1946 reversing the direction of cmove and avoid fxch. */
1947 if ((REGNO (*src1) == regstack->reg[regstack->top]
1948 && src1_note)
1949 || (REGNO (*src2) == regstack->reg[regstack->top]
1950 && src2_note))
1951 {
1952 int idx1 = (get_hard_regnum (regstack, *src1)
1953 - FIRST_STACK_REG);
1954 int idx2 = (get_hard_regnum (regstack, *src2)
1955 - FIRST_STACK_REG);
1956
1957 /* Make reg-stack believe that the operands are already
1958 swapped on the stack */
1959 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1960 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1961
1962 /* Reverse condition to compensate the operand swap.
1963 i386 do have comparison always reversible. */
1964 PUT_CODE (XEXP (pat_src, 0),
1965 reversed_comparison_code (XEXP (pat_src, 0), insn));
1966 }
1967 else
1968 emit_swap_insn (insn, regstack, *dest);
1969 }
1970
1971 {
1972 rtx src_note [3];
1973 int i;
1974
1975 src_note[0] = 0;
1976 src_note[1] = src1_note;
1977 src_note[2] = src2_note;
1978
1979 if (STACK_REG_P (*src1))
1980 replace_reg (src1, get_hard_regnum (regstack, *src1));
1981 if (STACK_REG_P (*src2))
1982 replace_reg (src2, get_hard_regnum (regstack, *src2));
1983
1984 for (i = 1; i <= 2; i++)
1985 if (src_note [i])
1986 {
1987 int regno = REGNO (XEXP (src_note[i], 0));
1988
1989 /* If the register that dies is not at the top of
1990 stack, then move the top of stack to the dead reg */
1991 if (regno != regstack->reg[regstack->top])
1992 {
1993 remove_regno_note (insn, REG_DEAD, regno);
1994 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1995 EMIT_AFTER);
1996 }
1997 else
1998 /* Top of stack never dies, as it is the
1999 destination. */
2000 abort ();
2001 }
2002 }
2003
2004 /* Make dest the top of stack. Add dest to regstack if
2005 not present. */
2006 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2007 regstack->reg[++regstack->top] = REGNO (*dest);
2008 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2009 replace_reg (dest, FIRST_STACK_REG);
2010 break;
2011
2012 default:
2013 abort ();
2014 }
2015 break;
2016 }
2017
2018 default:
2019 break;
2020 }
2021
2022 return control_flow_insn_deleted;
2023 }
2024 \f
2025 /* Substitute hard regnums for any stack regs in INSN, which has
2026 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2027 before the insn, and is updated with changes made here.
2028
2029 There are several requirements and assumptions about the use of
2030 stack-like regs in asm statements. These rules are enforced by
2031 record_asm_stack_regs; see comments there for details. Any
2032 asm_operands left in the RTL at this point may be assume to meet the
2033 requirements, since record_asm_stack_regs removes any problem asm. */
2034
2035 static void
2036 subst_asm_stack_regs (rtx insn, stack regstack)
2037 {
2038 rtx body = PATTERN (insn);
2039 int alt;
2040
2041 rtx *note_reg; /* Array of note contents */
2042 rtx **note_loc; /* Address of REG field of each note */
2043 enum reg_note *note_kind; /* The type of each note */
2044
2045 rtx *clobber_reg = 0;
2046 rtx **clobber_loc = 0;
2047
2048 struct stack_def temp_stack;
2049 int n_notes;
2050 int n_clobbers;
2051 rtx note;
2052 int i;
2053 int n_inputs, n_outputs;
2054
2055 if (! check_asm_stack_operands (insn))
2056 return;
2057
2058 /* Find out what the constraints required. If no constraint
2059 alternative matches, that is a compiler bug: we should have caught
2060 such an insn in check_asm_stack_operands. */
2061 extract_insn (insn);
2062 constrain_operands (1);
2063 alt = which_alternative;
2064
2065 preprocess_constraints ();
2066
2067 n_inputs = get_asm_operand_n_inputs (body);
2068 n_outputs = recog_data.n_operands - n_inputs;
2069
2070 if (alt < 0)
2071 abort ();
2072
2073 /* Strip SUBREGs here to make the following code simpler. */
2074 for (i = 0; i < recog_data.n_operands; i++)
2075 if (GET_CODE (recog_data.operand[i]) == SUBREG
2076 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
2077 {
2078 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2079 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2080 }
2081
2082 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2083
2084 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2085 i++;
2086
2087 note_reg = alloca (i * sizeof (rtx));
2088 note_loc = alloca (i * sizeof (rtx *));
2089 note_kind = alloca (i * sizeof (enum reg_note));
2090
2091 n_notes = 0;
2092 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2093 {
2094 rtx reg = XEXP (note, 0);
2095 rtx *loc = & XEXP (note, 0);
2096
2097 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
2098 {
2099 loc = & SUBREG_REG (reg);
2100 reg = SUBREG_REG (reg);
2101 }
2102
2103 if (STACK_REG_P (reg)
2104 && (REG_NOTE_KIND (note) == REG_DEAD
2105 || REG_NOTE_KIND (note) == REG_UNUSED))
2106 {
2107 note_reg[n_notes] = reg;
2108 note_loc[n_notes] = loc;
2109 note_kind[n_notes] = REG_NOTE_KIND (note);
2110 n_notes++;
2111 }
2112 }
2113
2114 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2115
2116 n_clobbers = 0;
2117
2118 if (GET_CODE (body) == PARALLEL)
2119 {
2120 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2121 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2122
2123 for (i = 0; i < XVECLEN (body, 0); i++)
2124 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2125 {
2126 rtx clobber = XVECEXP (body, 0, i);
2127 rtx reg = XEXP (clobber, 0);
2128 rtx *loc = & XEXP (clobber, 0);
2129
2130 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
2131 {
2132 loc = & SUBREG_REG (reg);
2133 reg = SUBREG_REG (reg);
2134 }
2135
2136 if (STACK_REG_P (reg))
2137 {
2138 clobber_reg[n_clobbers] = reg;
2139 clobber_loc[n_clobbers] = loc;
2140 n_clobbers++;
2141 }
2142 }
2143 }
2144
2145 temp_stack = *regstack;
2146
2147 /* Put the input regs into the desired place in TEMP_STACK. */
2148
2149 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2150 if (STACK_REG_P (recog_data.operand[i])
2151 && reg_class_subset_p (recog_op_alt[i][alt].class,
2152 FLOAT_REGS)
2153 && recog_op_alt[i][alt].class != FLOAT_REGS)
2154 {
2155 /* If an operand needs to be in a particular reg in
2156 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2157 these constraints are for single register classes, and
2158 reload guaranteed that operand[i] is already in that class,
2159 we can just use REGNO (recog_data.operand[i]) to know which
2160 actual reg this operand needs to be in. */
2161
2162 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2163
2164 if (regno < 0)
2165 abort ();
2166
2167 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2168 {
2169 /* recog_data.operand[i] is not in the right place. Find
2170 it and swap it with whatever is already in I's place.
2171 K is where recog_data.operand[i] is now. J is where it
2172 should be. */
2173 int j, k, temp;
2174
2175 k = temp_stack.top - (regno - FIRST_STACK_REG);
2176 j = (temp_stack.top
2177 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2178
2179 temp = temp_stack.reg[k];
2180 temp_stack.reg[k] = temp_stack.reg[j];
2181 temp_stack.reg[j] = temp;
2182 }
2183 }
2184
2185 /* Emit insns before INSN to make sure the reg-stack is in the right
2186 order. */
2187
2188 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2189
2190 /* Make the needed input register substitutions. Do death notes and
2191 clobbers too, because these are for inputs, not outputs. */
2192
2193 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2194 if (STACK_REG_P (recog_data.operand[i]))
2195 {
2196 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2197
2198 if (regnum < 0)
2199 abort ();
2200
2201 replace_reg (recog_data.operand_loc[i], regnum);
2202 }
2203
2204 for (i = 0; i < n_notes; i++)
2205 if (note_kind[i] == REG_DEAD)
2206 {
2207 int regnum = get_hard_regnum (regstack, note_reg[i]);
2208
2209 if (regnum < 0)
2210 abort ();
2211
2212 replace_reg (note_loc[i], regnum);
2213 }
2214
2215 for (i = 0; i < n_clobbers; i++)
2216 {
2217 /* It's OK for a CLOBBER to reference a reg that is not live.
2218 Don't try to replace it in that case. */
2219 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2220
2221 if (regnum >= 0)
2222 {
2223 /* Sigh - clobbers always have QImode. But replace_reg knows
2224 that these regs can't be MODE_INT and will abort. Just put
2225 the right reg there without calling replace_reg. */
2226
2227 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2228 }
2229 }
2230
2231 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2232
2233 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2234 if (STACK_REG_P (recog_data.operand[i]))
2235 {
2236 /* An input reg is implicitly popped if it is tied to an
2237 output, or if there is a CLOBBER for it. */
2238 int j;
2239
2240 for (j = 0; j < n_clobbers; j++)
2241 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2242 break;
2243
2244 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2245 {
2246 /* recog_data.operand[i] might not be at the top of stack.
2247 But that's OK, because all we need to do is pop the
2248 right number of regs off of the top of the reg-stack.
2249 record_asm_stack_regs guaranteed that all implicitly
2250 popped regs were grouped at the top of the reg-stack. */
2251
2252 CLEAR_HARD_REG_BIT (regstack->reg_set,
2253 regstack->reg[regstack->top]);
2254 regstack->top--;
2255 }
2256 }
2257
2258 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2259 Note that there isn't any need to substitute register numbers.
2260 ??? Explain why this is true. */
2261
2262 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2263 {
2264 /* See if there is an output for this hard reg. */
2265 int j;
2266
2267 for (j = 0; j < n_outputs; j++)
2268 if (STACK_REG_P (recog_data.operand[j])
2269 && REGNO (recog_data.operand[j]) == (unsigned) i)
2270 {
2271 regstack->reg[++regstack->top] = i;
2272 SET_HARD_REG_BIT (regstack->reg_set, i);
2273 break;
2274 }
2275 }
2276
2277 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2278 input that the asm didn't implicitly pop. If the asm didn't
2279 implicitly pop an input reg, that reg will still be live.
2280
2281 Note that we can't use find_regno_note here: the register numbers
2282 in the death notes have already been substituted. */
2283
2284 for (i = 0; i < n_outputs; i++)
2285 if (STACK_REG_P (recog_data.operand[i]))
2286 {
2287 int j;
2288
2289 for (j = 0; j < n_notes; j++)
2290 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2291 && note_kind[j] == REG_UNUSED)
2292 {
2293 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2294 EMIT_AFTER);
2295 break;
2296 }
2297 }
2298
2299 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2300 if (STACK_REG_P (recog_data.operand[i]))
2301 {
2302 int j;
2303
2304 for (j = 0; j < n_notes; j++)
2305 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2306 && note_kind[j] == REG_DEAD
2307 && TEST_HARD_REG_BIT (regstack->reg_set,
2308 REGNO (recog_data.operand[i])))
2309 {
2310 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2311 EMIT_AFTER);
2312 break;
2313 }
2314 }
2315 }
2316 \f
2317 /* Substitute stack hard reg numbers for stack virtual registers in
2318 INSN. Non-stack register numbers are not changed. REGSTACK is the
2319 current stack content. Insns may be emitted as needed to arrange the
2320 stack for the 387 based on the contents of the insn. Return whether
2321 a control flow insn was deleted in the process. */
2322
2323 static bool
2324 subst_stack_regs (rtx insn, stack regstack)
2325 {
2326 rtx *note_link, note;
2327 bool control_flow_insn_deleted = false;
2328 int i;
2329
2330 if (GET_CODE (insn) == CALL_INSN)
2331 {
2332 int top = regstack->top;
2333
2334 /* If there are any floating point parameters to be passed in
2335 registers for this call, make sure they are in the right
2336 order. */
2337
2338 if (top >= 0)
2339 {
2340 straighten_stack (PREV_INSN (insn), regstack);
2341
2342 /* Now mark the arguments as dead after the call. */
2343
2344 while (regstack->top >= 0)
2345 {
2346 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2347 regstack->top--;
2348 }
2349 }
2350 }
2351
2352 /* Do the actual substitution if any stack regs are mentioned.
2353 Since we only record whether entire insn mentions stack regs, and
2354 subst_stack_regs_pat only works for patterns that contain stack regs,
2355 we must check each pattern in a parallel here. A call_value_pop could
2356 fail otherwise. */
2357
2358 if (stack_regs_mentioned (insn))
2359 {
2360 int n_operands = asm_noperands (PATTERN (insn));
2361 if (n_operands >= 0)
2362 {
2363 /* This insn is an `asm' with operands. Decode the operands,
2364 decide how many are inputs, and do register substitution.
2365 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2366
2367 subst_asm_stack_regs (insn, regstack);
2368 return control_flow_insn_deleted;
2369 }
2370
2371 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2372 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2373 {
2374 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2375 {
2376 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2377 XVECEXP (PATTERN (insn), 0, i)
2378 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2379 control_flow_insn_deleted
2380 |= subst_stack_regs_pat (insn, regstack,
2381 XVECEXP (PATTERN (insn), 0, i));
2382 }
2383 }
2384 else
2385 control_flow_insn_deleted
2386 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2387 }
2388
2389 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2390 REG_UNUSED will already have been dealt with, so just return. */
2391
2392 if (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn))
2393 return control_flow_insn_deleted;
2394
2395 /* If there is a REG_UNUSED note on a stack register on this insn,
2396 the indicated reg must be popped. The REG_UNUSED note is removed,
2397 since the form of the newly emitted pop insn references the reg,
2398 making it no longer `unset'. */
2399
2400 note_link = &REG_NOTES (insn);
2401 for (note = *note_link; note; note = XEXP (note, 1))
2402 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2403 {
2404 *note_link = XEXP (note, 1);
2405 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2406 }
2407 else
2408 note_link = &XEXP (note, 1);
2409
2410 return control_flow_insn_deleted;
2411 }
2412 \f
2413 /* Change the organization of the stack so that it fits a new basic
2414 block. Some registers might have to be popped, but there can never be
2415 a register live in the new block that is not now live.
2416
2417 Insert any needed insns before or after INSN, as indicated by
2418 WHERE. OLD is the original stack layout, and NEW is the desired
2419 form. OLD is updated to reflect the code emitted, ie, it will be
2420 the same as NEW upon return.
2421
2422 This function will not preserve block_end[]. But that information
2423 is no longer needed once this has executed. */
2424
2425 static void
2426 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2427 {
2428 int reg;
2429 int update_end = 0;
2430
2431 /* We will be inserting new insns "backwards". If we are to insert
2432 after INSN, find the next insn, and insert before it. */
2433
2434 if (where == EMIT_AFTER)
2435 {
2436 if (current_block && BB_END (current_block) == insn)
2437 update_end = 1;
2438 insn = NEXT_INSN (insn);
2439 }
2440
2441 /* Pop any registers that are not needed in the new block. */
2442
2443 for (reg = old->top; reg >= 0; reg--)
2444 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2445 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2446 EMIT_BEFORE);
2447
2448 if (new->top == -2)
2449 {
2450 /* If the new block has never been processed, then it can inherit
2451 the old stack order. */
2452
2453 new->top = old->top;
2454 memcpy (new->reg, old->reg, sizeof (new->reg));
2455 }
2456 else
2457 {
2458 /* This block has been entered before, and we must match the
2459 previously selected stack order. */
2460
2461 /* By now, the only difference should be the order of the stack,
2462 not their depth or liveliness. */
2463
2464 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2465 abort ();
2466 win:
2467 if (old->top != new->top)
2468 abort ();
2469
2470 /* If the stack is not empty (new->top != -1), loop here emitting
2471 swaps until the stack is correct.
2472
2473 The worst case number of swaps emitted is N + 2, where N is the
2474 depth of the stack. In some cases, the reg at the top of
2475 stack may be correct, but swapped anyway in order to fix
2476 other regs. But since we never swap any other reg away from
2477 its correct slot, this algorithm will converge. */
2478
2479 if (new->top != -1)
2480 do
2481 {
2482 /* Swap the reg at top of stack into the position it is
2483 supposed to be in, until the correct top of stack appears. */
2484
2485 while (old->reg[old->top] != new->reg[new->top])
2486 {
2487 for (reg = new->top; reg >= 0; reg--)
2488 if (new->reg[reg] == old->reg[old->top])
2489 break;
2490
2491 if (reg == -1)
2492 abort ();
2493
2494 emit_swap_insn (insn, old,
2495 FP_MODE_REG (old->reg[reg], DFmode));
2496 }
2497
2498 /* See if any regs remain incorrect. If so, bring an
2499 incorrect reg to the top of stack, and let the while loop
2500 above fix it. */
2501
2502 for (reg = new->top; reg >= 0; reg--)
2503 if (new->reg[reg] != old->reg[reg])
2504 {
2505 emit_swap_insn (insn, old,
2506 FP_MODE_REG (old->reg[reg], DFmode));
2507 break;
2508 }
2509 } while (reg >= 0);
2510
2511 /* At this point there must be no differences. */
2512
2513 for (reg = old->top; reg >= 0; reg--)
2514 if (old->reg[reg] != new->reg[reg])
2515 abort ();
2516 }
2517
2518 if (update_end)
2519 BB_END (current_block) = PREV_INSN (insn);
2520 }
2521 \f
2522 /* Print stack configuration. */
2523
2524 static void
2525 print_stack (FILE *file, stack s)
2526 {
2527 if (! file)
2528 return;
2529
2530 if (s->top == -2)
2531 fprintf (file, "uninitialized\n");
2532 else if (s->top == -1)
2533 fprintf (file, "empty\n");
2534 else
2535 {
2536 int i;
2537 fputs ("[ ", file);
2538 for (i = 0; i <= s->top; ++i)
2539 fprintf (file, "%d ", s->reg[i]);
2540 fputs ("]\n", file);
2541 }
2542 }
2543 \f
2544 /* This function was doing life analysis. We now let the regular live
2545 code do it's job, so we only need to check some extra invariants
2546 that reg-stack expects. Primary among these being that all registers
2547 are initialized before use.
2548
2549 The function returns true when code was emitted to CFG edges and
2550 commit_edge_insertions needs to be called. */
2551
2552 static int
2553 convert_regs_entry (void)
2554 {
2555 int inserted = 0;
2556 edge e;
2557 basic_block block;
2558
2559 FOR_EACH_BB_REVERSE (block)
2560 {
2561 block_info bi = BLOCK_INFO (block);
2562 int reg;
2563
2564 /* Set current register status at last instruction `uninitialized'. */
2565 bi->stack_in.top = -2;
2566
2567 /* Copy live_at_end and live_at_start into temporaries. */
2568 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2569 {
2570 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2571 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2572 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2573 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2574 }
2575 }
2576
2577 /* Load something into each stack register live at function entry.
2578 Such live registers can be caused by uninitialized variables or
2579 functions not returning values on all paths. In order to keep
2580 the push/pop code happy, and to not scrog the register stack, we
2581 must put something in these registers. Use a QNaN.
2582
2583 Note that we are inserting converted code here. This code is
2584 never seen by the convert_regs pass. */
2585
2586 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2587 {
2588 basic_block block = e->dest;
2589 block_info bi = BLOCK_INFO (block);
2590 int reg, top = -1;
2591
2592 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2593 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2594 {
2595 rtx init;
2596
2597 bi->stack_in.reg[++top] = reg;
2598
2599 init = gen_rtx_SET (VOIDmode,
2600 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2601 nan);
2602 insert_insn_on_edge (init, e);
2603 inserted = 1;
2604 }
2605
2606 bi->stack_in.top = top;
2607 }
2608
2609 return inserted;
2610 }
2611
2612 /* Construct the desired stack for function exit. This will either
2613 be `empty', or the function return value at top-of-stack. */
2614
2615 static void
2616 convert_regs_exit (void)
2617 {
2618 int value_reg_low, value_reg_high;
2619 stack output_stack;
2620 rtx retvalue;
2621
2622 retvalue = stack_result (current_function_decl);
2623 value_reg_low = value_reg_high = -1;
2624 if (retvalue)
2625 {
2626 value_reg_low = REGNO (retvalue);
2627 value_reg_high = value_reg_low
2628 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2629 }
2630
2631 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2632 if (value_reg_low == -1)
2633 output_stack->top = -1;
2634 else
2635 {
2636 int reg;
2637
2638 output_stack->top = value_reg_high - value_reg_low;
2639 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2640 {
2641 output_stack->reg[value_reg_high - reg] = reg;
2642 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2643 }
2644 }
2645 }
2646
2647 /* Adjust the stack of this block on exit to match the stack of the
2648 target block, or copy stack info into the stack of the successor
2649 of the successor hasn't been processed yet. */
2650 static bool
2651 compensate_edge (edge e, FILE *file)
2652 {
2653 basic_block block = e->src, target = e->dest;
2654 block_info bi = BLOCK_INFO (block);
2655 struct stack_def regstack, tmpstack;
2656 stack target_stack = &BLOCK_INFO (target)->stack_in;
2657 int reg;
2658
2659 current_block = block;
2660 regstack = bi->stack_out;
2661 if (file)
2662 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2663
2664 if (target_stack->top == -2)
2665 {
2666 /* The target block hasn't had a stack order selected.
2667 We need merely ensure that no pops are needed. */
2668 for (reg = regstack.top; reg >= 0; --reg)
2669 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2670 break;
2671
2672 if (reg == -1)
2673 {
2674 if (file)
2675 fprintf (file, "new block; copying stack position\n");
2676
2677 /* change_stack kills values in regstack. */
2678 tmpstack = regstack;
2679
2680 change_stack (BB_END (block), &tmpstack, target_stack, EMIT_AFTER);
2681 return false;
2682 }
2683
2684 if (file)
2685 fprintf (file, "new block; pops needed\n");
2686 }
2687 else
2688 {
2689 if (target_stack->top == regstack.top)
2690 {
2691 for (reg = target_stack->top; reg >= 0; --reg)
2692 if (target_stack->reg[reg] != regstack.reg[reg])
2693 break;
2694
2695 if (reg == -1)
2696 {
2697 if (file)
2698 fprintf (file, "no changes needed\n");
2699 return false;
2700 }
2701 }
2702
2703 if (file)
2704 {
2705 fprintf (file, "correcting stack to ");
2706 print_stack (file, target_stack);
2707 }
2708 }
2709
2710 /* Care for non-call EH edges specially. The normal return path have
2711 values in registers. These will be popped en masse by the unwind
2712 library. */
2713 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2714 target_stack->top = -1;
2715
2716 /* Other calls may appear to have values live in st(0), but the
2717 abnormal return path will not have actually loaded the values. */
2718 else if (e->flags & EDGE_ABNORMAL_CALL)
2719 {
2720 /* Assert that the lifetimes are as we expect -- one value
2721 live at st(0) on the end of the source block, and no
2722 values live at the beginning of the destination block. */
2723 HARD_REG_SET tmp;
2724
2725 CLEAR_HARD_REG_SET (tmp);
2726 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2727 abort ();
2728 eh1:
2729
2730 /* We are sure that there is st(0) live, otherwise we won't compensate.
2731 For complex return values, we may have st(1) live as well. */
2732 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2733 if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2734 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
2735 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2736 abort ();
2737 eh2:
2738
2739 target_stack->top = -1;
2740 }
2741
2742 /* It is better to output directly to the end of the block
2743 instead of to the edge, because emit_swap can do minimal
2744 insn scheduling. We can do this when there is only one
2745 edge out, and it is not abnormal. */
2746 else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2747 {
2748 /* change_stack kills values in regstack. */
2749 tmpstack = regstack;
2750
2751 change_stack (BB_END (block), &tmpstack, target_stack,
2752 (GET_CODE (BB_END (block)) == JUMP_INSN
2753 ? EMIT_BEFORE : EMIT_AFTER));
2754 }
2755 else
2756 {
2757 rtx seq, after;
2758
2759 /* We don't support abnormal edges. Global takes care to
2760 avoid any live register across them, so we should never
2761 have to insert instructions on such edges. */
2762 if (e->flags & EDGE_ABNORMAL)
2763 abort ();
2764
2765 current_block = NULL;
2766 start_sequence ();
2767
2768 /* ??? change_stack needs some point to emit insns after. */
2769 after = emit_note (NOTE_INSN_DELETED);
2770
2771 tmpstack = regstack;
2772 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2773
2774 seq = get_insns ();
2775 end_sequence ();
2776
2777 insert_insn_on_edge (seq, e);
2778 return true;
2779 }
2780 return false;
2781 }
2782
2783 /* Convert stack register references in one block. */
2784
2785 static int
2786 convert_regs_1 (FILE *file, basic_block block)
2787 {
2788 struct stack_def regstack;
2789 block_info bi = BLOCK_INFO (block);
2790 int deleted, inserted, reg;
2791 rtx insn, next;
2792 edge e, beste = NULL;
2793 bool control_flow_insn_deleted = false;
2794
2795 inserted = 0;
2796 deleted = 0;
2797 any_malformed_asm = false;
2798
2799 /* Find the edge we will copy stack from. It should be the most frequent
2800 one as it will get cheapest after compensation code is generated,
2801 if multiple such exists, take one with largest count, prefer critical
2802 one (as splitting critical edges is more expensive), or one with lowest
2803 index, to avoid random changes with different orders of the edges. */
2804 for (e = block->pred; e ; e = e->pred_next)
2805 {
2806 if (e->flags & EDGE_DFS_BACK)
2807 ;
2808 else if (! beste)
2809 beste = e;
2810 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2811 beste = e;
2812 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2813 ;
2814 else if (beste->count < e->count)
2815 beste = e;
2816 else if (beste->count > e->count)
2817 ;
2818 else if ((EDGE_CRITICAL_P (e) != 0)
2819 != (EDGE_CRITICAL_P (beste) != 0))
2820 {
2821 if (EDGE_CRITICAL_P (e))
2822 beste = e;
2823 }
2824 else if (e->src->index < beste->src->index)
2825 beste = e;
2826 }
2827
2828 /* Initialize stack at block entry. */
2829 if (bi->stack_in.top == -2)
2830 {
2831 if (beste)
2832 inserted |= compensate_edge (beste, file);
2833 else
2834 {
2835 /* No predecessors. Create an arbitrary input stack. */
2836 int reg;
2837
2838 bi->stack_in.top = -1;
2839 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2840 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2841 bi->stack_in.reg[++bi->stack_in.top] = reg;
2842 }
2843 }
2844 else
2845 /* Entry blocks do have stack already initialized. */
2846 beste = NULL;
2847
2848 current_block = block;
2849
2850 if (file)
2851 {
2852 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2853 print_stack (file, &bi->stack_in);
2854 }
2855
2856 /* Process all insns in this block. Keep track of NEXT so that we
2857 don't process insns emitted while substituting in INSN. */
2858 next = BB_HEAD (block);
2859 regstack = bi->stack_in;
2860 do
2861 {
2862 insn = next;
2863 next = NEXT_INSN (insn);
2864
2865 /* Ensure we have not missed a block boundary. */
2866 if (next == NULL)
2867 abort ();
2868 if (insn == BB_END (block))
2869 next = NULL;
2870
2871 /* Don't bother processing unless there is a stack reg
2872 mentioned or if it's a CALL_INSN. */
2873 if (stack_regs_mentioned (insn)
2874 || GET_CODE (insn) == CALL_INSN)
2875 {
2876 if (file)
2877 {
2878 fprintf (file, " insn %d input stack: ",
2879 INSN_UID (insn));
2880 print_stack (file, &regstack);
2881 }
2882 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2883 }
2884 }
2885 while (next);
2886
2887 if (file)
2888 {
2889 fprintf (file, "Expected live registers [");
2890 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2891 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2892 fprintf (file, " %d", reg);
2893 fprintf (file, " ]\nOutput stack: ");
2894 print_stack (file, &regstack);
2895 }
2896
2897 insn = BB_END (block);
2898 if (GET_CODE (insn) == JUMP_INSN)
2899 insn = PREV_INSN (insn);
2900
2901 /* If the function is declared to return a value, but it returns one
2902 in only some cases, some registers might come live here. Emit
2903 necessary moves for them. */
2904
2905 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2906 {
2907 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2908 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2909 {
2910 rtx set;
2911
2912 if (file)
2913 {
2914 fprintf (file, "Emitting insn initializing reg %d\n",
2915 reg);
2916 }
2917
2918 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2919 nan);
2920 insn = emit_insn_after (set, insn);
2921 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2922 }
2923 }
2924
2925 /* Amongst the insns possibly deleted during the substitution process above,
2926 might have been the only trapping insn in the block. We purge the now
2927 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2928 called at the end of convert_regs. The order in which we process the
2929 blocks ensures that we never delete an already processed edge.
2930
2931 Note that, at this point, the CFG may have been damaged by the emission
2932 of instructions after an abnormal call, which moves the basic block end
2933 (and is the reason why we call fixup_abnormal_edges later). So we must
2934 be sure that the trapping insn has been deleted before trying to purge
2935 dead edges, otherwise we risk purging valid edges.
2936
2937 ??? We are normally supposed not to delete trapping insns, so we pretend
2938 that the insns deleted above don't actually trap. It would have been
2939 better to detect this earlier and avoid creating the EH edge in the first
2940 place, still, but we don't have enough information at that time. */
2941
2942 if (control_flow_insn_deleted)
2943 purge_dead_edges (block);
2944
2945 /* Something failed if the stack lives don't match. If we had malformed
2946 asms, we zapped the instruction itself, but that didn't produce the
2947 same pattern of register kills as before. */
2948 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2949 if (!any_malformed_asm)
2950 abort ();
2951 win:
2952 bi->stack_out = regstack;
2953
2954 /* Compensate the back edges, as those wasn't visited yet. */
2955 for (e = block->succ; e ; e = e->succ_next)
2956 {
2957 if (e->flags & EDGE_DFS_BACK
2958 || (e->dest == EXIT_BLOCK_PTR))
2959 {
2960 if (!BLOCK_INFO (e->dest)->done
2961 && e->dest != block)
2962 abort ();
2963 inserted |= compensate_edge (e, file);
2964 }
2965 }
2966 for (e = block->pred; e ; e = e->pred_next)
2967 {
2968 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2969 && e->src != ENTRY_BLOCK_PTR)
2970 {
2971 if (!BLOCK_INFO (e->src)->done)
2972 abort ();
2973 inserted |= compensate_edge (e, file);
2974 }
2975 }
2976
2977 return inserted;
2978 }
2979
2980 /* Convert registers in all blocks reachable from BLOCK. */
2981
2982 static int
2983 convert_regs_2 (FILE *file, basic_block block)
2984 {
2985 basic_block *stack, *sp;
2986 int inserted;
2987
2988 /* We process the blocks in a top-down manner, in a way such that one block
2989 is only processed after all its predecessors. The number of predecessors
2990 of every block has already been computed. */
2991
2992 stack = xmalloc (sizeof (*stack) * n_basic_blocks);
2993 sp = stack;
2994
2995 *sp++ = block;
2996
2997 inserted = 0;
2998 do
2999 {
3000 edge e;
3001
3002 block = *--sp;
3003
3004 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3005 some dead EH outgoing edge after the deletion of the trapping
3006 insn inside the block. Since the number of predecessors of
3007 BLOCK's successors was computed based on the initial edge set,
3008 we check the necessity to process some of these successors
3009 before such an edge deletion may happen. However, there is
3010 a pitfall: if BLOCK is the only predecessor of a successor and
3011 the edge between them happens to be deleted, the successor
3012 becomes unreachable and should not be processed. The problem
3013 is that there is no way to preventively detect this case so we
3014 stack the successor in all cases and hand over the task of
3015 fixing up the discrepancy to convert_regs_1. */
3016
3017 for (e = block->succ; e ; e = e->succ_next)
3018 if (! (e->flags & EDGE_DFS_BACK))
3019 {
3020 BLOCK_INFO (e->dest)->predecessors--;
3021 if (!BLOCK_INFO (e->dest)->predecessors)
3022 *sp++ = e->dest;
3023 }
3024
3025 inserted |= convert_regs_1 (file, block);
3026 BLOCK_INFO (block)->done = 1;
3027 }
3028 while (sp != stack);
3029
3030 return inserted;
3031 }
3032
3033 /* Traverse all basic blocks in a function, converting the register
3034 references in each insn from the "flat" register file that gcc uses,
3035 to the stack-like registers the 387 uses. */
3036
3037 static int
3038 convert_regs (FILE *file)
3039 {
3040 int inserted;
3041 basic_block b;
3042 edge e;
3043
3044 /* Initialize uninitialized registers on function entry. */
3045 inserted = convert_regs_entry ();
3046
3047 /* Construct the desired stack for function exit. */
3048 convert_regs_exit ();
3049 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3050
3051 /* ??? Future: process inner loops first, and give them arbitrary
3052 initial stacks which emit_swap_insn can modify. This ought to
3053 prevent double fxch that often appears at the head of a loop. */
3054
3055 /* Process all blocks reachable from all entry points. */
3056 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
3057 inserted |= convert_regs_2 (file, e->dest);
3058
3059 /* ??? Process all unreachable blocks. Though there's no excuse
3060 for keeping these even when not optimizing. */
3061 FOR_EACH_BB (b)
3062 {
3063 block_info bi = BLOCK_INFO (b);
3064
3065 if (! bi->done)
3066 inserted |= convert_regs_2 (file, b);
3067 }
3068 clear_aux_for_blocks ();
3069
3070 fixup_abnormal_edges ();
3071 if (inserted)
3072 commit_edge_insertions ();
3073
3074 if (file)
3075 fputc ('\n', file);
3076
3077 return inserted;
3078 }
3079 #endif /* STACK_REGS */
3080
3081 #include "gt-reg-stack.h"