reg-stack.c (get_true_reg): Readability change.
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153 \f
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "cfglayout.h"
171 #include "varray.h"
172 #include "reload.h"
173 #include "ggc.h"
174 #include "timevar.h"
175 #include "tree-pass.h"
176 #include "target.h"
177 #include "vecprim.h"
178
179 #ifdef STACK_REGS
180
181 /* We use this array to cache info about insns, because otherwise we
182 spend too much time in stack_regs_mentioned_p.
183
184 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
185 the insn uses stack registers, two indicates the insn does not use
186 stack registers. */
187 static VEC(char,heap) *stack_regs_mentioned_data;
188
189 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
190
191 int regstack_completed = 0;
192
193 /* This is the basic stack record. TOP is an index into REG[] such
194 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
195
196 If TOP is -2, REG[] is not yet initialized. Stack initialization
197 consists of placing each live reg in array `reg' and setting `top'
198 appropriately.
199
200 REG_SET indicates which registers are live. */
201
202 typedef struct stack_def
203 {
204 int top; /* index to top stack element */
205 HARD_REG_SET reg_set; /* set of live registers */
206 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
207 } *stack;
208
209 /* This is used to carry information about basic blocks. It is
210 attached to the AUX field of the standard CFG block. */
211
212 typedef struct block_info_def
213 {
214 struct stack_def stack_in; /* Input stack configuration. */
215 struct stack_def stack_out; /* Output stack configuration. */
216 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
217 int done; /* True if block already converted. */
218 int predecessors; /* Number of predecessors that need
219 to be visited. */
220 } *block_info;
221
222 #define BLOCK_INFO(B) ((block_info) (B)->aux)
223
224 /* Passed to change_stack to indicate where to emit insns. */
225 enum emit_where
226 {
227 EMIT_AFTER,
228 EMIT_BEFORE
229 };
230
231 /* The block we're currently working on. */
232 static basic_block current_block;
233
234 /* In the current_block, whether we're processing the first register
235 stack or call instruction, i.e. the regstack is currently the
236 same as BLOCK_INFO(current_block)->stack_in. */
237 static bool starting_stack_p;
238
239 /* This is the register file for all register after conversion. */
240 static rtx
241 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
242
243 #define FP_MODE_REG(regno,mode) \
244 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
245
246 /* Used to initialize uninitialized registers. */
247 static rtx not_a_num;
248
249 /* Forward declarations */
250
251 static int stack_regs_mentioned_p (rtx pat);
252 static void pop_stack (stack, int);
253 static rtx *get_true_reg (rtx *);
254
255 static int check_asm_stack_operands (rtx);
256 static int get_asm_operand_n_inputs (rtx);
257 static rtx stack_result (tree);
258 static void replace_reg (rtx *, int);
259 static void remove_regno_note (rtx, enum reg_note, unsigned int);
260 static int get_hard_regnum (stack, rtx);
261 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
262 static void swap_to_top(rtx, stack, rtx, rtx);
263 static bool move_for_stack_reg (rtx, stack, rtx);
264 static bool move_nan_for_stack_reg (rtx, stack, rtx);
265 static int swap_rtx_condition_1 (rtx);
266 static int swap_rtx_condition (rtx);
267 static void compare_for_stack_reg (rtx, stack, rtx);
268 static bool subst_stack_regs_pat (rtx, stack, rtx);
269 static void subst_asm_stack_regs (rtx, stack);
270 static bool subst_stack_regs (rtx, stack);
271 static void change_stack (rtx, stack, stack, enum emit_where);
272 static void print_stack (FILE *, stack);
273 static rtx next_flags_user (rtx);
274 \f
275 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
276
277 static int
278 stack_regs_mentioned_p (rtx pat)
279 {
280 const char *fmt;
281 int i;
282
283 if (STACK_REG_P (pat))
284 return 1;
285
286 fmt = GET_RTX_FORMAT (GET_CODE (pat));
287 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288 {
289 if (fmt[i] == 'E')
290 {
291 int j;
292
293 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
294 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
295 return 1;
296 }
297 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
298 return 1;
299 }
300
301 return 0;
302 }
303
304 /* Return nonzero if INSN mentions stacked registers, else return zero. */
305
306 int
307 stack_regs_mentioned (rtx insn)
308 {
309 unsigned int uid, max;
310 int test;
311
312 if (! INSN_P (insn) || !stack_regs_mentioned_data)
313 return 0;
314
315 uid = INSN_UID (insn);
316 max = VEC_length (char, stack_regs_mentioned_data);
317 if (uid >= max)
318 {
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max = uid + uid / 20 + 1;
322 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
323 }
324
325 test = VEC_index (char, stack_regs_mentioned_data, uid);
326 if (test == 0)
327 {
328 /* This insn has yet to be examined. Do so now. */
329 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330 VEC_replace (char, stack_regs_mentioned_data, uid, test);
331 }
332
333 return test == 1;
334 }
335 \f
336 static rtx ix86_flags_rtx;
337
338 static rtx
339 next_flags_user (rtx insn)
340 {
341 /* Search forward looking for the first use of this value.
342 Stop at block boundaries. */
343
344 while (insn != BB_END (current_block))
345 {
346 insn = NEXT_INSN (insn);
347
348 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
349 return insn;
350
351 if (CALL_P (insn))
352 return NULL_RTX;
353 }
354 return NULL_RTX;
355 }
356 \f
357 /* Reorganize the stack into ascending numbers, before this insn. */
358
359 static void
360 straighten_stack (rtx insn, stack regstack)
361 {
362 struct stack_def temp_stack;
363 int top;
364
365 /* If there is only a single register on the stack, then the stack is
366 already in increasing order and no reorganization is needed.
367
368 Similarly if the stack is empty. */
369 if (regstack->top <= 0)
370 return;
371
372 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
373
374 for (top = temp_stack.top = regstack->top; top >= 0; top--)
375 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
376
377 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
378 }
379
380 /* Pop a register from the stack. */
381
382 static void
383 pop_stack (stack regstack, int regno)
384 {
385 int top = regstack->top;
386
387 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
388 regstack->top--;
389 /* If regno was not at the top of stack then adjust stack. */
390 if (regstack->reg [top] != regno)
391 {
392 int i;
393 for (i = regstack->top; i >= 0; i--)
394 if (regstack->reg [i] == regno)
395 {
396 int j;
397 for (j = i; j < top; j++)
398 regstack->reg [j] = regstack->reg [j + 1];
399 break;
400 }
401 }
402 }
403 \f
404 /* Return a pointer to the REG expression within PAT. If PAT is not a
405 REG, possible enclosed by a conversion rtx, return the inner part of
406 PAT that stopped the search. */
407
408 static rtx *
409 get_true_reg (rtx *pat)
410 {
411 for (;;)
412 switch (GET_CODE (*pat))
413 {
414 case SUBREG:
415 /* Eliminate FP subregister accesses in favor of the
416 actual FP register in use. */
417 {
418 rtx subreg;
419 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
420 {
421 int regno_off = subreg_regno_offset (REGNO (subreg),
422 GET_MODE (subreg),
423 SUBREG_BYTE (*pat),
424 GET_MODE (*pat));
425 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
426 GET_MODE (subreg));
427 return pat;
428 }
429 }
430 case FLOAT:
431 case FIX:
432 case FLOAT_EXTEND:
433 pat = & XEXP (*pat, 0);
434 break;
435
436 case UNSPEC:
437 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
438 pat = & XVECEXP (*pat, 0, 0);
439 return pat;
440
441 case FLOAT_TRUNCATE:
442 if (!flag_unsafe_math_optimizations)
443 return pat;
444 pat = & XEXP (*pat, 0);
445 break;
446
447 default:
448 return pat;
449 }
450 }
451 \f
452 /* Set if we find any malformed asms in a block. */
453 static bool any_malformed_asm;
454
455 /* There are many rules that an asm statement for stack-like regs must
456 follow. Those rules are explained at the top of this file: the rule
457 numbers below refer to that explanation. */
458
459 static int
460 check_asm_stack_operands (rtx insn)
461 {
462 int i;
463 int n_clobbers;
464 int malformed_asm = 0;
465 rtx body = PATTERN (insn);
466
467 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
468 char implicitly_dies[FIRST_PSEUDO_REGISTER];
469 int alt;
470
471 rtx *clobber_reg = 0;
472 int n_inputs, n_outputs;
473
474 /* Find out what the constraints require. If no constraint
475 alternative matches, this asm is malformed. */
476 extract_insn (insn);
477 constrain_operands (1);
478 alt = which_alternative;
479
480 preprocess_constraints ();
481
482 n_inputs = get_asm_operand_n_inputs (body);
483 n_outputs = recog_data.n_operands - n_inputs;
484
485 if (alt < 0)
486 {
487 malformed_asm = 1;
488 /* Avoid further trouble with this insn. */
489 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
490 return 0;
491 }
492
493 /* Strip SUBREGs here to make the following code simpler. */
494 for (i = 0; i < recog_data.n_operands; i++)
495 if (GET_CODE (recog_data.operand[i]) == SUBREG
496 && REG_P (SUBREG_REG (recog_data.operand[i])))
497 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
498
499 /* Set up CLOBBER_REG. */
500
501 n_clobbers = 0;
502
503 if (GET_CODE (body) == PARALLEL)
504 {
505 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
506
507 for (i = 0; i < XVECLEN (body, 0); i++)
508 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
509 {
510 rtx clobber = XVECEXP (body, 0, i);
511 rtx reg = XEXP (clobber, 0);
512
513 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
514 reg = SUBREG_REG (reg);
515
516 if (STACK_REG_P (reg))
517 {
518 clobber_reg[n_clobbers] = reg;
519 n_clobbers++;
520 }
521 }
522 }
523
524 /* Enforce rule #4: Output operands must specifically indicate which
525 reg an output appears in after an asm. "=f" is not allowed: the
526 operand constraints must select a class with a single reg.
527
528 Also enforce rule #5: Output operands must start at the top of
529 the reg-stack: output operands may not "skip" a reg. */
530
531 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
532 for (i = 0; i < n_outputs; i++)
533 if (STACK_REG_P (recog_data.operand[i]))
534 {
535 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
536 {
537 error_for_asm (insn, "output constraint %d must specify a single register", i);
538 malformed_asm = 1;
539 }
540 else
541 {
542 int j;
543
544 for (j = 0; j < n_clobbers; j++)
545 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
546 {
547 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
548 i, reg_names [REGNO (clobber_reg[j])]);
549 malformed_asm = 1;
550 break;
551 }
552 if (j == n_clobbers)
553 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
554 }
555 }
556
557
558 /* Search for first non-popped reg. */
559 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
560 if (! reg_used_as_output[i])
561 break;
562
563 /* If there are any other popped regs, that's an error. */
564 for (; i < LAST_STACK_REG + 1; i++)
565 if (reg_used_as_output[i])
566 break;
567
568 if (i != LAST_STACK_REG + 1)
569 {
570 error_for_asm (insn, "output regs must be grouped at top of stack");
571 malformed_asm = 1;
572 }
573
574 /* Enforce rule #2: All implicitly popped input regs must be closer
575 to the top of the reg-stack than any input that is not implicitly
576 popped. */
577
578 memset (implicitly_dies, 0, sizeof (implicitly_dies));
579 for (i = n_outputs; i < n_outputs + n_inputs; i++)
580 if (STACK_REG_P (recog_data.operand[i]))
581 {
582 /* An input reg is implicitly popped if it is tied to an
583 output, or if there is a CLOBBER for it. */
584 int j;
585
586 for (j = 0; j < n_clobbers; j++)
587 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
588 break;
589
590 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
591 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
592 }
593
594 /* Search for first non-popped reg. */
595 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
596 if (! implicitly_dies[i])
597 break;
598
599 /* If there are any other popped regs, that's an error. */
600 for (; i < LAST_STACK_REG + 1; i++)
601 if (implicitly_dies[i])
602 break;
603
604 if (i != LAST_STACK_REG + 1)
605 {
606 error_for_asm (insn,
607 "implicitly popped regs must be grouped at top of stack");
608 malformed_asm = 1;
609 }
610
611 /* Enforce rule #3: If any input operand uses the "f" constraint, all
612 output constraints must use the "&" earlyclobber.
613
614 ??? Detect this more deterministically by having constrain_asm_operands
615 record any earlyclobber. */
616
617 for (i = n_outputs; i < n_outputs + n_inputs; i++)
618 if (recog_op_alt[i][alt].matches == -1)
619 {
620 int j;
621
622 for (j = 0; j < n_outputs; j++)
623 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
624 {
625 error_for_asm (insn,
626 "output operand %d must use %<&%> constraint", j);
627 malformed_asm = 1;
628 }
629 }
630
631 if (malformed_asm)
632 {
633 /* Avoid further trouble with this insn. */
634 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
635 any_malformed_asm = true;
636 return 0;
637 }
638
639 return 1;
640 }
641 \f
642 /* Calculate the number of inputs and outputs in BODY, an
643 asm_operands. N_OPERANDS is the total number of operands, and
644 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
645 placed. */
646
647 static int
648 get_asm_operand_n_inputs (rtx body)
649 {
650 switch (GET_CODE (body))
651 {
652 case SET:
653 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
654 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
655
656 case ASM_OPERANDS:
657 return ASM_OPERANDS_INPUT_LENGTH (body);
658
659 case PARALLEL:
660 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
661
662 default:
663 gcc_unreachable ();
664 }
665 }
666
667 /* If current function returns its result in an fp stack register,
668 return the REG. Otherwise, return 0. */
669
670 static rtx
671 stack_result (tree decl)
672 {
673 rtx result;
674
675 /* If the value is supposed to be returned in memory, then clearly
676 it is not returned in a stack register. */
677 if (aggregate_value_p (DECL_RESULT (decl), decl))
678 return 0;
679
680 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
681 if (result != 0)
682 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
683 decl, true);
684
685 return result != 0 && STACK_REG_P (result) ? result : 0;
686 }
687 \f
688
689 /*
690 * This section deals with stack register substitution, and forms the second
691 * pass over the RTL.
692 */
693
694 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
695 the desired hard REGNO. */
696
697 static void
698 replace_reg (rtx *reg, int regno)
699 {
700 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
701 gcc_assert (STACK_REG_P (*reg));
702
703 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
704 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
705
706 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
707 }
708
709 /* Remove a note of type NOTE, which must be found, for register
710 number REGNO from INSN. Remove only one such note. */
711
712 static void
713 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
714 {
715 rtx *note_link, this;
716
717 note_link = &REG_NOTES (insn);
718 for (this = *note_link; this; this = XEXP (this, 1))
719 if (REG_NOTE_KIND (this) == note
720 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
721 {
722 *note_link = XEXP (this, 1);
723 return;
724 }
725 else
726 note_link = &XEXP (this, 1);
727
728 gcc_unreachable ();
729 }
730
731 /* Find the hard register number of virtual register REG in REGSTACK.
732 The hard register number is relative to the top of the stack. -1 is
733 returned if the register is not found. */
734
735 static int
736 get_hard_regnum (stack regstack, rtx reg)
737 {
738 int i;
739
740 gcc_assert (STACK_REG_P (reg));
741
742 for (i = regstack->top; i >= 0; i--)
743 if (regstack->reg[i] == REGNO (reg))
744 break;
745
746 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
747 }
748 \f
749 /* Emit an insn to pop virtual register REG before or after INSN.
750 REGSTACK is the stack state after INSN and is updated to reflect this
751 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
752 is represented as a SET whose destination is the register to be popped
753 and source is the top of stack. A death note for the top of stack
754 cases the movdf pattern to pop. */
755
756 static rtx
757 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
758 {
759 rtx pop_insn, pop_rtx;
760 int hard_regno;
761
762 /* For complex types take care to pop both halves. These may survive in
763 CLOBBER and USE expressions. */
764 if (COMPLEX_MODE_P (GET_MODE (reg)))
765 {
766 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
767 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
768
769 pop_insn = NULL_RTX;
770 if (get_hard_regnum (regstack, reg1) >= 0)
771 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
772 if (get_hard_regnum (regstack, reg2) >= 0)
773 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
774 gcc_assert (pop_insn);
775 return pop_insn;
776 }
777
778 hard_regno = get_hard_regnum (regstack, reg);
779
780 gcc_assert (hard_regno >= FIRST_STACK_REG);
781
782 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
783 FP_MODE_REG (FIRST_STACK_REG, DFmode));
784
785 if (where == EMIT_AFTER)
786 pop_insn = emit_insn_after (pop_rtx, insn);
787 else
788 pop_insn = emit_insn_before (pop_rtx, insn);
789
790 REG_NOTES (pop_insn)
791 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
792 REG_NOTES (pop_insn));
793
794 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
795 = regstack->reg[regstack->top];
796 regstack->top -= 1;
797 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
798
799 return pop_insn;
800 }
801 \f
802 /* Emit an insn before or after INSN to swap virtual register REG with
803 the top of stack. REGSTACK is the stack state before the swap, and
804 is updated to reflect the swap. A swap insn is represented as a
805 PARALLEL of two patterns: each pattern moves one reg to the other.
806
807 If REG is already at the top of the stack, no insn is emitted. */
808
809 static void
810 emit_swap_insn (rtx insn, stack regstack, rtx reg)
811 {
812 int hard_regno;
813 rtx swap_rtx;
814 int tmp, other_reg; /* swap regno temps */
815 rtx i1; /* the stack-reg insn prior to INSN */
816 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
817
818 hard_regno = get_hard_regnum (regstack, reg);
819
820 if (hard_regno == FIRST_STACK_REG)
821 return;
822 if (hard_regno == -1)
823 {
824 /* Something failed if the register wasn't on the stack. If we had
825 malformed asms, we zapped the instruction itself, but that didn't
826 produce the same pattern of register sets as before. To prevent
827 further failure, adjust REGSTACK to include REG at TOP. */
828 gcc_assert (any_malformed_asm);
829 regstack->reg[++regstack->top] = REGNO (reg);
830 return;
831 }
832 gcc_assert (hard_regno >= FIRST_STACK_REG);
833
834 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
835
836 tmp = regstack->reg[other_reg];
837 regstack->reg[other_reg] = regstack->reg[regstack->top];
838 regstack->reg[regstack->top] = tmp;
839
840 /* Find the previous insn involving stack regs, but don't pass a
841 block boundary. */
842 i1 = NULL;
843 if (current_block && insn != BB_HEAD (current_block))
844 {
845 rtx tmp = PREV_INSN (insn);
846 rtx limit = PREV_INSN (BB_HEAD (current_block));
847 while (tmp != limit)
848 {
849 if (LABEL_P (tmp)
850 || CALL_P (tmp)
851 || NOTE_INSN_BASIC_BLOCK_P (tmp)
852 || (NONJUMP_INSN_P (tmp)
853 && stack_regs_mentioned (tmp)))
854 {
855 i1 = tmp;
856 break;
857 }
858 tmp = PREV_INSN (tmp);
859 }
860 }
861
862 if (i1 != NULL_RTX
863 && (i1set = single_set (i1)) != NULL_RTX)
864 {
865 rtx i1src = *get_true_reg (&SET_SRC (i1set));
866 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
867
868 /* If the previous register stack push was from the reg we are to
869 swap with, omit the swap. */
870
871 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
872 && REG_P (i1src)
873 && REGNO (i1src) == (unsigned) hard_regno - 1
874 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
875 return;
876
877 /* If the previous insn wrote to the reg we are to swap with,
878 omit the swap. */
879
880 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
881 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
882 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
883 return;
884 }
885
886 /* Avoid emitting the swap if this is the first register stack insn
887 of the current_block. Instead update the current_block's stack_in
888 and let compensate edges take care of this for us. */
889 if (current_block && starting_stack_p)
890 {
891 BLOCK_INFO (current_block)->stack_in = *regstack;
892 starting_stack_p = false;
893 return;
894 }
895
896 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
897 FP_MODE_REG (FIRST_STACK_REG, XFmode));
898
899 if (i1)
900 emit_insn_after (swap_rtx, i1);
901 else if (current_block)
902 emit_insn_before (swap_rtx, BB_HEAD (current_block));
903 else
904 emit_insn_before (swap_rtx, insn);
905 }
906 \f
907 /* Emit an insns before INSN to swap virtual register SRC1 with
908 the top of stack and virtual register SRC2 with second stack
909 slot. REGSTACK is the stack state before the swaps, and
910 is updated to reflect the swaps. A swap insn is represented as a
911 PARALLEL of two patterns: each pattern moves one reg to the other.
912
913 If SRC1 and/or SRC2 are already at the right place, no swap insn
914 is emitted. */
915
916 static void
917 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
918 {
919 struct stack_def temp_stack;
920 int regno, j, k, temp;
921
922 temp_stack = *regstack;
923
924 /* Place operand 1 at the top of stack. */
925 regno = get_hard_regnum (&temp_stack, src1);
926 gcc_assert (regno >= 0);
927 if (regno != FIRST_STACK_REG)
928 {
929 k = temp_stack.top - (regno - FIRST_STACK_REG);
930 j = temp_stack.top;
931
932 temp = temp_stack.reg[k];
933 temp_stack.reg[k] = temp_stack.reg[j];
934 temp_stack.reg[j] = temp;
935 }
936
937 /* Place operand 2 next on the stack. */
938 regno = get_hard_regnum (&temp_stack, src2);
939 gcc_assert (regno >= 0);
940 if (regno != FIRST_STACK_REG + 1)
941 {
942 k = temp_stack.top - (regno - FIRST_STACK_REG);
943 j = temp_stack.top - 1;
944
945 temp = temp_stack.reg[k];
946 temp_stack.reg[k] = temp_stack.reg[j];
947 temp_stack.reg[j] = temp;
948 }
949
950 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
951 }
952 \f
953 /* Handle a move to or from a stack register in PAT, which is in INSN.
954 REGSTACK is the current stack. Return whether a control flow insn
955 was deleted in the process. */
956
957 static bool
958 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
959 {
960 rtx *psrc = get_true_reg (&SET_SRC (pat));
961 rtx *pdest = get_true_reg (&SET_DEST (pat));
962 rtx src, dest;
963 rtx note;
964 bool control_flow_insn_deleted = false;
965
966 src = *psrc; dest = *pdest;
967
968 if (STACK_REG_P (src) && STACK_REG_P (dest))
969 {
970 /* Write from one stack reg to another. If SRC dies here, then
971 just change the register mapping and delete the insn. */
972
973 note = find_regno_note (insn, REG_DEAD, REGNO (src));
974 if (note)
975 {
976 int i;
977
978 /* If this is a no-op move, there must not be a REG_DEAD note. */
979 gcc_assert (REGNO (src) != REGNO (dest));
980
981 for (i = regstack->top; i >= 0; i--)
982 if (regstack->reg[i] == REGNO (src))
983 break;
984
985 /* The destination must be dead, or life analysis is borked. */
986 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
987
988 /* If the source is not live, this is yet another case of
989 uninitialized variables. Load up a NaN instead. */
990 if (i < 0)
991 return move_nan_for_stack_reg (insn, regstack, dest);
992
993 /* It is possible that the dest is unused after this insn.
994 If so, just pop the src. */
995
996 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
997 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
998 else
999 {
1000 regstack->reg[i] = REGNO (dest);
1001 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1002 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1003 }
1004
1005 control_flow_insn_deleted |= control_flow_insn_p (insn);
1006 delete_insn (insn);
1007 return control_flow_insn_deleted;
1008 }
1009
1010 /* The source reg does not die. */
1011
1012 /* If this appears to be a no-op move, delete it, or else it
1013 will confuse the machine description output patterns. But if
1014 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1015 for REG_UNUSED will not work for deleted insns. */
1016
1017 if (REGNO (src) == REGNO (dest))
1018 {
1019 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1020 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1021
1022 control_flow_insn_deleted |= control_flow_insn_p (insn);
1023 delete_insn (insn);
1024 return control_flow_insn_deleted;
1025 }
1026
1027 /* The destination ought to be dead. */
1028 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1029
1030 replace_reg (psrc, get_hard_regnum (regstack, src));
1031
1032 regstack->reg[++regstack->top] = REGNO (dest);
1033 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1034 replace_reg (pdest, FIRST_STACK_REG);
1035 }
1036 else if (STACK_REG_P (src))
1037 {
1038 /* Save from a stack reg to MEM, or possibly integer reg. Since
1039 only top of stack may be saved, emit an exchange first if
1040 needs be. */
1041
1042 emit_swap_insn (insn, regstack, src);
1043
1044 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1045 if (note)
1046 {
1047 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1048 regstack->top--;
1049 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1050 }
1051 else if ((GET_MODE (src) == XFmode)
1052 && regstack->top < REG_STACK_SIZE - 1)
1053 {
1054 /* A 387 cannot write an XFmode value to a MEM without
1055 clobbering the source reg. The output code can handle
1056 this by reading back the value from the MEM.
1057 But it is more efficient to use a temp register if one is
1058 available. Push the source value here if the register
1059 stack is not full, and then write the value to memory via
1060 a pop. */
1061 rtx push_rtx;
1062 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1063
1064 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1065 emit_insn_before (push_rtx, insn);
1066 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1067 REG_NOTES (insn));
1068 }
1069
1070 replace_reg (psrc, FIRST_STACK_REG);
1071 }
1072 else
1073 {
1074 rtx pat = PATTERN (insn);
1075
1076 gcc_assert (STACK_REG_P (dest));
1077
1078 /* Load from MEM, or possibly integer REG or constant, into the
1079 stack regs. The actual target is always the top of the
1080 stack. The stack mapping is changed to reflect that DEST is
1081 now at top of stack. */
1082
1083 /* The destination ought to be dead. However, there is a
1084 special case with i387 UNSPEC_TAN, where destination is live
1085 (an argument to fptan) but inherent load of 1.0 is modelled
1086 as a load from a constant. */
1087 if (! (GET_CODE (pat) == PARALLEL
1088 && XVECLEN (pat, 0) == 2
1089 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1090 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1091 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN))
1092 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1093
1094 gcc_assert (regstack->top < REG_STACK_SIZE);
1095
1096 regstack->reg[++regstack->top] = REGNO (dest);
1097 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1098 replace_reg (pdest, FIRST_STACK_REG);
1099 }
1100
1101 return control_flow_insn_deleted;
1102 }
1103
1104 /* A helper function which replaces INSN with a pattern that loads up
1105 a NaN into DEST, then invokes move_for_stack_reg. */
1106
1107 static bool
1108 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1109 {
1110 rtx pat;
1111
1112 dest = FP_MODE_REG (REGNO (dest), SFmode);
1113 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1114 PATTERN (insn) = pat;
1115 INSN_CODE (insn) = -1;
1116
1117 return move_for_stack_reg (insn, regstack, pat);
1118 }
1119 \f
1120 /* Swap the condition on a branch, if there is one. Return true if we
1121 found a condition to swap. False if the condition was not used as
1122 such. */
1123
1124 static int
1125 swap_rtx_condition_1 (rtx pat)
1126 {
1127 const char *fmt;
1128 int i, r = 0;
1129
1130 if (COMPARISON_P (pat))
1131 {
1132 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1133 r = 1;
1134 }
1135 else
1136 {
1137 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1138 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1139 {
1140 if (fmt[i] == 'E')
1141 {
1142 int j;
1143
1144 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1145 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1146 }
1147 else if (fmt[i] == 'e')
1148 r |= swap_rtx_condition_1 (XEXP (pat, i));
1149 }
1150 }
1151
1152 return r;
1153 }
1154
1155 static int
1156 swap_rtx_condition (rtx insn)
1157 {
1158 rtx pat = PATTERN (insn);
1159
1160 /* We're looking for a single set to cc0 or an HImode temporary. */
1161
1162 if (GET_CODE (pat) == SET
1163 && REG_P (SET_DEST (pat))
1164 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1165 {
1166 insn = next_flags_user (insn);
1167 if (insn == NULL_RTX)
1168 return 0;
1169 pat = PATTERN (insn);
1170 }
1171
1172 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1173 with the cc value right now. We may be able to search for one
1174 though. */
1175
1176 if (GET_CODE (pat) == SET
1177 && GET_CODE (SET_SRC (pat)) == UNSPEC
1178 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1179 {
1180 rtx dest = SET_DEST (pat);
1181
1182 /* Search forward looking for the first use of this value.
1183 Stop at block boundaries. */
1184 while (insn != BB_END (current_block))
1185 {
1186 insn = NEXT_INSN (insn);
1187 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1188 break;
1189 if (CALL_P (insn))
1190 return 0;
1191 }
1192
1193 /* We haven't found it. */
1194 if (insn == BB_END (current_block))
1195 return 0;
1196
1197 /* So we've found the insn using this value. If it is anything
1198 other than sahf or the value does not die (meaning we'd have
1199 to search further), then we must give up. */
1200 pat = PATTERN (insn);
1201 if (GET_CODE (pat) != SET
1202 || GET_CODE (SET_SRC (pat)) != UNSPEC
1203 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1204 || ! dead_or_set_p (insn, dest))
1205 return 0;
1206
1207 /* Now we are prepared to handle this as a normal cc0 setter. */
1208 insn = next_flags_user (insn);
1209 if (insn == NULL_RTX)
1210 return 0;
1211 pat = PATTERN (insn);
1212 }
1213
1214 if (swap_rtx_condition_1 (pat))
1215 {
1216 int fail = 0;
1217 INSN_CODE (insn) = -1;
1218 if (recog_memoized (insn) == -1)
1219 fail = 1;
1220 /* In case the flags don't die here, recurse to try fix
1221 following user too. */
1222 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1223 {
1224 insn = next_flags_user (insn);
1225 if (!insn || !swap_rtx_condition (insn))
1226 fail = 1;
1227 }
1228 if (fail)
1229 {
1230 swap_rtx_condition_1 (pat);
1231 return 0;
1232 }
1233 return 1;
1234 }
1235 return 0;
1236 }
1237
1238 /* Handle a comparison. Special care needs to be taken to avoid
1239 causing comparisons that a 387 cannot do correctly, such as EQ.
1240
1241 Also, a pop insn may need to be emitted. The 387 does have an
1242 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1243 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1244 set up. */
1245
1246 static void
1247 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1248 {
1249 rtx *src1, *src2;
1250 rtx src1_note, src2_note;
1251
1252 src1 = get_true_reg (&XEXP (pat_src, 0));
1253 src2 = get_true_reg (&XEXP (pat_src, 1));
1254
1255 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1256 registers that die in this insn - move those to stack top first. */
1257 if ((! STACK_REG_P (*src1)
1258 || (STACK_REG_P (*src2)
1259 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1260 && swap_rtx_condition (insn))
1261 {
1262 rtx temp;
1263 temp = XEXP (pat_src, 0);
1264 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1265 XEXP (pat_src, 1) = temp;
1266
1267 src1 = get_true_reg (&XEXP (pat_src, 0));
1268 src2 = get_true_reg (&XEXP (pat_src, 1));
1269
1270 INSN_CODE (insn) = -1;
1271 }
1272
1273 /* We will fix any death note later. */
1274
1275 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1276
1277 if (STACK_REG_P (*src2))
1278 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1279 else
1280 src2_note = NULL_RTX;
1281
1282 emit_swap_insn (insn, regstack, *src1);
1283
1284 replace_reg (src1, FIRST_STACK_REG);
1285
1286 if (STACK_REG_P (*src2))
1287 replace_reg (src2, get_hard_regnum (regstack, *src2));
1288
1289 if (src1_note)
1290 {
1291 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1292 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1293 }
1294
1295 /* If the second operand dies, handle that. But if the operands are
1296 the same stack register, don't bother, because only one death is
1297 needed, and it was just handled. */
1298
1299 if (src2_note
1300 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1301 && REGNO (*src1) == REGNO (*src2)))
1302 {
1303 /* As a special case, two regs may die in this insn if src2 is
1304 next to top of stack and the top of stack also dies. Since
1305 we have already popped src1, "next to top of stack" is really
1306 at top (FIRST_STACK_REG) now. */
1307
1308 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1309 && src1_note)
1310 {
1311 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1312 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1313 }
1314 else
1315 {
1316 /* The 386 can only represent death of the first operand in
1317 the case handled above. In all other cases, emit a separate
1318 pop and remove the death note from here. */
1319
1320 /* link_cc0_insns (insn); */
1321
1322 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1323
1324 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1325 EMIT_AFTER);
1326 }
1327 }
1328 }
1329 \f
1330 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1331 is the current register layout. Return whether a control flow insn
1332 was deleted in the process. */
1333
1334 static bool
1335 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1336 {
1337 rtx *dest, *src;
1338 bool control_flow_insn_deleted = false;
1339
1340 switch (GET_CODE (pat))
1341 {
1342 case USE:
1343 /* Deaths in USE insns can happen in non optimizing compilation.
1344 Handle them by popping the dying register. */
1345 src = get_true_reg (&XEXP (pat, 0));
1346 if (STACK_REG_P (*src)
1347 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1348 {
1349 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1350 return control_flow_insn_deleted;
1351 }
1352 /* ??? Uninitialized USE should not happen. */
1353 else
1354 gcc_assert (get_hard_regnum (regstack, *src) != -1);
1355 break;
1356
1357 case CLOBBER:
1358 {
1359 rtx note;
1360
1361 dest = get_true_reg (&XEXP (pat, 0));
1362 if (STACK_REG_P (*dest))
1363 {
1364 note = find_reg_note (insn, REG_DEAD, *dest);
1365
1366 if (pat != PATTERN (insn))
1367 {
1368 /* The fix_truncdi_1 pattern wants to be able to allocate
1369 its own scratch register. It does this by clobbering
1370 an fp reg so that it is assured of an empty reg-stack
1371 register. If the register is live, kill it now.
1372 Remove the DEAD/UNUSED note so we don't try to kill it
1373 later too. */
1374
1375 if (note)
1376 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1377 else
1378 {
1379 note = find_reg_note (insn, REG_UNUSED, *dest);
1380 gcc_assert (note);
1381 }
1382 remove_note (insn, note);
1383 replace_reg (dest, FIRST_STACK_REG + 1);
1384 }
1385 else
1386 {
1387 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1388 indicates an uninitialized value. Because reload removed
1389 all other clobbers, this must be due to a function
1390 returning without a value. Load up a NaN. */
1391
1392 if (!note)
1393 {
1394 rtx t = *dest;
1395 if (COMPLEX_MODE_P (GET_MODE (t)))
1396 {
1397 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1398 if (get_hard_regnum (regstack, u) == -1)
1399 {
1400 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1401 rtx insn2 = emit_insn_before (pat2, insn);
1402 control_flow_insn_deleted
1403 |= move_nan_for_stack_reg (insn2, regstack, u);
1404 }
1405 }
1406 if (get_hard_regnum (regstack, t) == -1)
1407 control_flow_insn_deleted
1408 |= move_nan_for_stack_reg (insn, regstack, t);
1409 }
1410 }
1411 }
1412 break;
1413 }
1414
1415 case SET:
1416 {
1417 rtx *src1 = (rtx *) 0, *src2;
1418 rtx src1_note, src2_note;
1419 rtx pat_src;
1420
1421 dest = get_true_reg (&SET_DEST (pat));
1422 src = get_true_reg (&SET_SRC (pat));
1423 pat_src = SET_SRC (pat);
1424
1425 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1426 if (STACK_REG_P (*src)
1427 || (STACK_REG_P (*dest)
1428 && (REG_P (*src) || MEM_P (*src)
1429 || GET_CODE (*src) == CONST_DOUBLE)))
1430 {
1431 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1432 break;
1433 }
1434
1435 switch (GET_CODE (pat_src))
1436 {
1437 case COMPARE:
1438 compare_for_stack_reg (insn, regstack, pat_src);
1439 break;
1440
1441 case CALL:
1442 {
1443 int count;
1444 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1445 --count >= 0;)
1446 {
1447 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1448 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1449 }
1450 }
1451 replace_reg (dest, FIRST_STACK_REG);
1452 break;
1453
1454 case REG:
1455 /* This is a `tstM2' case. */
1456 gcc_assert (*dest == cc0_rtx);
1457 src1 = src;
1458
1459 /* Fall through. */
1460
1461 case FLOAT_TRUNCATE:
1462 case SQRT:
1463 case ABS:
1464 case NEG:
1465 /* These insns only operate on the top of the stack. DEST might
1466 be cc0_rtx if we're processing a tstM pattern. Also, it's
1467 possible that the tstM case results in a REG_DEAD note on the
1468 source. */
1469
1470 if (src1 == 0)
1471 src1 = get_true_reg (&XEXP (pat_src, 0));
1472
1473 emit_swap_insn (insn, regstack, *src1);
1474
1475 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1476
1477 if (STACK_REG_P (*dest))
1478 replace_reg (dest, FIRST_STACK_REG);
1479
1480 if (src1_note)
1481 {
1482 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1483 regstack->top--;
1484 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1485 }
1486
1487 replace_reg (src1, FIRST_STACK_REG);
1488 break;
1489
1490 case MINUS:
1491 case DIV:
1492 /* On i386, reversed forms of subM3 and divM3 exist for
1493 MODE_FLOAT, so the same code that works for addM3 and mulM3
1494 can be used. */
1495 case MULT:
1496 case PLUS:
1497 /* These insns can accept the top of stack as a destination
1498 from a stack reg or mem, or can use the top of stack as a
1499 source and some other stack register (possibly top of stack)
1500 as a destination. */
1501
1502 src1 = get_true_reg (&XEXP (pat_src, 0));
1503 src2 = get_true_reg (&XEXP (pat_src, 1));
1504
1505 /* We will fix any death note later. */
1506
1507 if (STACK_REG_P (*src1))
1508 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1509 else
1510 src1_note = NULL_RTX;
1511 if (STACK_REG_P (*src2))
1512 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1513 else
1514 src2_note = NULL_RTX;
1515
1516 /* If either operand is not a stack register, then the dest
1517 must be top of stack. */
1518
1519 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1520 emit_swap_insn (insn, regstack, *dest);
1521 else
1522 {
1523 /* Both operands are REG. If neither operand is already
1524 at the top of stack, choose to make the one that is the dest
1525 the new top of stack. */
1526
1527 int src1_hard_regnum, src2_hard_regnum;
1528
1529 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1530 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1531 gcc_assert (src1_hard_regnum != -1);
1532 gcc_assert (src2_hard_regnum != -1);
1533
1534 if (src1_hard_regnum != FIRST_STACK_REG
1535 && src2_hard_regnum != FIRST_STACK_REG)
1536 emit_swap_insn (insn, regstack, *dest);
1537 }
1538
1539 if (STACK_REG_P (*src1))
1540 replace_reg (src1, get_hard_regnum (regstack, *src1));
1541 if (STACK_REG_P (*src2))
1542 replace_reg (src2, get_hard_regnum (regstack, *src2));
1543
1544 if (src1_note)
1545 {
1546 rtx src1_reg = XEXP (src1_note, 0);
1547
1548 /* If the register that dies is at the top of stack, then
1549 the destination is somewhere else - merely substitute it.
1550 But if the reg that dies is not at top of stack, then
1551 move the top of stack to the dead reg, as though we had
1552 done the insn and then a store-with-pop. */
1553
1554 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1555 {
1556 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1557 replace_reg (dest, get_hard_regnum (regstack, *dest));
1558 }
1559 else
1560 {
1561 int regno = get_hard_regnum (regstack, src1_reg);
1562
1563 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1564 replace_reg (dest, regno);
1565
1566 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1567 = regstack->reg[regstack->top];
1568 }
1569
1570 CLEAR_HARD_REG_BIT (regstack->reg_set,
1571 REGNO (XEXP (src1_note, 0)));
1572 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1573 regstack->top--;
1574 }
1575 else if (src2_note)
1576 {
1577 rtx src2_reg = XEXP (src2_note, 0);
1578 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1579 {
1580 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1581 replace_reg (dest, get_hard_regnum (regstack, *dest));
1582 }
1583 else
1584 {
1585 int regno = get_hard_regnum (regstack, src2_reg);
1586
1587 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1588 replace_reg (dest, regno);
1589
1590 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1591 = regstack->reg[regstack->top];
1592 }
1593
1594 CLEAR_HARD_REG_BIT (regstack->reg_set,
1595 REGNO (XEXP (src2_note, 0)));
1596 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1597 regstack->top--;
1598 }
1599 else
1600 {
1601 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1602 replace_reg (dest, get_hard_regnum (regstack, *dest));
1603 }
1604
1605 /* Keep operand 1 matching with destination. */
1606 if (COMMUTATIVE_ARITH_P (pat_src)
1607 && REG_P (*src1) && REG_P (*src2)
1608 && REGNO (*src1) != REGNO (*dest))
1609 {
1610 int tmp = REGNO (*src1);
1611 replace_reg (src1, REGNO (*src2));
1612 replace_reg (src2, tmp);
1613 }
1614 break;
1615
1616 case UNSPEC:
1617 switch (XINT (pat_src, 1))
1618 {
1619 case UNSPEC_FIST:
1620
1621 case UNSPEC_FIST_FLOOR:
1622 case UNSPEC_FIST_CEIL:
1623
1624 /* These insns only operate on the top of the stack. */
1625
1626 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1627 emit_swap_insn (insn, regstack, *src1);
1628
1629 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1630
1631 if (STACK_REG_P (*dest))
1632 replace_reg (dest, FIRST_STACK_REG);
1633
1634 if (src1_note)
1635 {
1636 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1637 regstack->top--;
1638 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1639 }
1640
1641 replace_reg (src1, FIRST_STACK_REG);
1642 break;
1643
1644 case UNSPEC_FXAM:
1645
1646 /* This insn only operate on the top of the stack. */
1647
1648 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1649 emit_swap_insn (insn, regstack, *src1);
1650
1651 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1652
1653 replace_reg (src1, FIRST_STACK_REG);
1654
1655 if (src1_note)
1656 {
1657 remove_regno_note (insn, REG_DEAD,
1658 REGNO (XEXP (src1_note, 0)));
1659 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1660 EMIT_AFTER);
1661 }
1662
1663 break;
1664
1665 case UNSPEC_SIN:
1666 case UNSPEC_COS:
1667 case UNSPEC_FRNDINT:
1668 case UNSPEC_F2XM1:
1669
1670 case UNSPEC_FRNDINT_FLOOR:
1671 case UNSPEC_FRNDINT_CEIL:
1672 case UNSPEC_FRNDINT_TRUNC:
1673 case UNSPEC_FRNDINT_MASK_PM:
1674
1675 /* Above insns operate on the top of the stack. */
1676
1677 case UNSPEC_SINCOS_COS:
1678 case UNSPEC_XTRACT_FRACT:
1679
1680 /* Above insns operate on the top two stack slots,
1681 first part of one input, double output insn. */
1682
1683 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1684
1685 emit_swap_insn (insn, regstack, *src1);
1686
1687 /* Input should never die, it is replaced with output. */
1688 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1689 gcc_assert (!src1_note);
1690
1691 if (STACK_REG_P (*dest))
1692 replace_reg (dest, FIRST_STACK_REG);
1693
1694 replace_reg (src1, FIRST_STACK_REG);
1695 break;
1696
1697 case UNSPEC_SINCOS_SIN:
1698 case UNSPEC_XTRACT_EXP:
1699
1700 /* These insns operate on the top two stack slots,
1701 second part of one input, double output insn. */
1702
1703 regstack->top++;
1704 /* FALLTHRU */
1705
1706 case UNSPEC_TAN:
1707
1708 /* For UNSPEC_TAN, regstack->top is already increased
1709 by inherent load of constant 1.0. */
1710
1711 /* Output value is generated in the second stack slot.
1712 Move current value from second slot to the top. */
1713 regstack->reg[regstack->top]
1714 = regstack->reg[regstack->top - 1];
1715
1716 gcc_assert (STACK_REG_P (*dest));
1717
1718 regstack->reg[regstack->top - 1] = REGNO (*dest);
1719 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1720 replace_reg (dest, FIRST_STACK_REG + 1);
1721
1722 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1723
1724 replace_reg (src1, FIRST_STACK_REG);
1725 break;
1726
1727 case UNSPEC_FPATAN:
1728 case UNSPEC_FYL2X:
1729 case UNSPEC_FYL2XP1:
1730 /* These insns operate on the top two stack slots. */
1731
1732 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1733 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1734
1735 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1736 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1737
1738 swap_to_top (insn, regstack, *src1, *src2);
1739
1740 replace_reg (src1, FIRST_STACK_REG);
1741 replace_reg (src2, FIRST_STACK_REG + 1);
1742
1743 if (src1_note)
1744 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1745 if (src2_note)
1746 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1747
1748 /* Pop both input operands from the stack. */
1749 CLEAR_HARD_REG_BIT (regstack->reg_set,
1750 regstack->reg[regstack->top]);
1751 CLEAR_HARD_REG_BIT (regstack->reg_set,
1752 regstack->reg[regstack->top - 1]);
1753 regstack->top -= 2;
1754
1755 /* Push the result back onto the stack. */
1756 regstack->reg[++regstack->top] = REGNO (*dest);
1757 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1758 replace_reg (dest, FIRST_STACK_REG);
1759 break;
1760
1761 case UNSPEC_FSCALE_FRACT:
1762 case UNSPEC_FPREM_F:
1763 case UNSPEC_FPREM1_F:
1764 /* These insns operate on the top two stack slots,
1765 first part of double input, double output insn. */
1766
1767 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1768 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1769
1770 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1771 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1772
1773 /* Inputs should never die, they are
1774 replaced with outputs. */
1775 gcc_assert (!src1_note);
1776 gcc_assert (!src2_note);
1777
1778 swap_to_top (insn, regstack, *src1, *src2);
1779
1780 /* Push the result back onto stack. Empty stack slot
1781 will be filled in second part of insn. */
1782 if (STACK_REG_P (*dest))
1783 {
1784 regstack->reg[regstack->top] = REGNO (*dest);
1785 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1786 replace_reg (dest, FIRST_STACK_REG);
1787 }
1788
1789 replace_reg (src1, FIRST_STACK_REG);
1790 replace_reg (src2, FIRST_STACK_REG + 1);
1791 break;
1792
1793 case UNSPEC_FSCALE_EXP:
1794 case UNSPEC_FPREM_U:
1795 case UNSPEC_FPREM1_U:
1796 /* These insns operate on the top two stack slots,
1797 second part of double input, double output insn. */
1798
1799 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1800 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1801
1802 /* Push the result back onto stack. Fill empty slot from
1803 first part of insn and fix top of stack pointer. */
1804 if (STACK_REG_P (*dest))
1805 {
1806 regstack->reg[regstack->top - 1] = REGNO (*dest);
1807 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1808 replace_reg (dest, FIRST_STACK_REG + 1);
1809 }
1810
1811 replace_reg (src1, FIRST_STACK_REG);
1812 replace_reg (src2, FIRST_STACK_REG + 1);
1813 break;
1814
1815 case UNSPEC_C2_FLAG:
1816 /* This insn operates on the top two stack slots,
1817 third part of C2 setting double input insn. */
1818
1819 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1820 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1821
1822 replace_reg (src1, FIRST_STACK_REG);
1823 replace_reg (src2, FIRST_STACK_REG + 1);
1824 break;
1825
1826 case UNSPEC_SAHF:
1827 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1828 The combination matches the PPRO fcomi instruction. */
1829
1830 pat_src = XVECEXP (pat_src, 0, 0);
1831 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1832 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1833 /* Fall through. */
1834
1835 case UNSPEC_FNSTSW:
1836 /* Combined fcomp+fnstsw generated for doing well with
1837 CSE. When optimizing this would have been broken
1838 up before now. */
1839
1840 pat_src = XVECEXP (pat_src, 0, 0);
1841 gcc_assert (GET_CODE (pat_src) == COMPARE);
1842
1843 compare_for_stack_reg (insn, regstack, pat_src);
1844 break;
1845
1846 default:
1847 gcc_unreachable ();
1848 }
1849 break;
1850
1851 case IF_THEN_ELSE:
1852 /* This insn requires the top of stack to be the destination. */
1853
1854 src1 = get_true_reg (&XEXP (pat_src, 1));
1855 src2 = get_true_reg (&XEXP (pat_src, 2));
1856
1857 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1858 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1859
1860 /* If the comparison operator is an FP comparison operator,
1861 it is handled correctly by compare_for_stack_reg () who
1862 will move the destination to the top of stack. But if the
1863 comparison operator is not an FP comparison operator, we
1864 have to handle it here. */
1865 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1866 && REGNO (*dest) != regstack->reg[regstack->top])
1867 {
1868 /* In case one of operands is the top of stack and the operands
1869 dies, it is safe to make it the destination operand by
1870 reversing the direction of cmove and avoid fxch. */
1871 if ((REGNO (*src1) == regstack->reg[regstack->top]
1872 && src1_note)
1873 || (REGNO (*src2) == regstack->reg[regstack->top]
1874 && src2_note))
1875 {
1876 int idx1 = (get_hard_regnum (regstack, *src1)
1877 - FIRST_STACK_REG);
1878 int idx2 = (get_hard_regnum (regstack, *src2)
1879 - FIRST_STACK_REG);
1880
1881 /* Make reg-stack believe that the operands are already
1882 swapped on the stack */
1883 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1884 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1885
1886 /* Reverse condition to compensate the operand swap.
1887 i386 do have comparison always reversible. */
1888 PUT_CODE (XEXP (pat_src, 0),
1889 reversed_comparison_code (XEXP (pat_src, 0), insn));
1890 }
1891 else
1892 emit_swap_insn (insn, regstack, *dest);
1893 }
1894
1895 {
1896 rtx src_note [3];
1897 int i;
1898
1899 src_note[0] = 0;
1900 src_note[1] = src1_note;
1901 src_note[2] = src2_note;
1902
1903 if (STACK_REG_P (*src1))
1904 replace_reg (src1, get_hard_regnum (regstack, *src1));
1905 if (STACK_REG_P (*src2))
1906 replace_reg (src2, get_hard_regnum (regstack, *src2));
1907
1908 for (i = 1; i <= 2; i++)
1909 if (src_note [i])
1910 {
1911 int regno = REGNO (XEXP (src_note[i], 0));
1912
1913 /* If the register that dies is not at the top of
1914 stack, then move the top of stack to the dead reg.
1915 Top of stack should never die, as it is the
1916 destination. */
1917 gcc_assert (regno != regstack->reg[regstack->top]);
1918 remove_regno_note (insn, REG_DEAD, regno);
1919 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1920 EMIT_AFTER);
1921 }
1922 }
1923
1924 /* Make dest the top of stack. Add dest to regstack if
1925 not present. */
1926 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1927 regstack->reg[++regstack->top] = REGNO (*dest);
1928 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1929 replace_reg (dest, FIRST_STACK_REG);
1930 break;
1931
1932 default:
1933 gcc_unreachable ();
1934 }
1935 break;
1936 }
1937
1938 default:
1939 break;
1940 }
1941
1942 return control_flow_insn_deleted;
1943 }
1944 \f
1945 /* Substitute hard regnums for any stack regs in INSN, which has
1946 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1947 before the insn, and is updated with changes made here.
1948
1949 There are several requirements and assumptions about the use of
1950 stack-like regs in asm statements. These rules are enforced by
1951 record_asm_stack_regs; see comments there for details. Any
1952 asm_operands left in the RTL at this point may be assume to meet the
1953 requirements, since record_asm_stack_regs removes any problem asm. */
1954
1955 static void
1956 subst_asm_stack_regs (rtx insn, stack regstack)
1957 {
1958 rtx body = PATTERN (insn);
1959 int alt;
1960
1961 rtx *note_reg; /* Array of note contents */
1962 rtx **note_loc; /* Address of REG field of each note */
1963 enum reg_note *note_kind; /* The type of each note */
1964
1965 rtx *clobber_reg = 0;
1966 rtx **clobber_loc = 0;
1967
1968 struct stack_def temp_stack;
1969 int n_notes;
1970 int n_clobbers;
1971 rtx note;
1972 int i;
1973 int n_inputs, n_outputs;
1974
1975 if (! check_asm_stack_operands (insn))
1976 return;
1977
1978 /* Find out what the constraints required. If no constraint
1979 alternative matches, that is a compiler bug: we should have caught
1980 such an insn in check_asm_stack_operands. */
1981 extract_insn (insn);
1982 constrain_operands (1);
1983 alt = which_alternative;
1984
1985 preprocess_constraints ();
1986
1987 n_inputs = get_asm_operand_n_inputs (body);
1988 n_outputs = recog_data.n_operands - n_inputs;
1989
1990 gcc_assert (alt >= 0);
1991
1992 /* Strip SUBREGs here to make the following code simpler. */
1993 for (i = 0; i < recog_data.n_operands; i++)
1994 if (GET_CODE (recog_data.operand[i]) == SUBREG
1995 && REG_P (SUBREG_REG (recog_data.operand[i])))
1996 {
1997 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1998 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1999 }
2000
2001 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2002
2003 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2004 i++;
2005
2006 note_reg = alloca (i * sizeof (rtx));
2007 note_loc = alloca (i * sizeof (rtx *));
2008 note_kind = alloca (i * sizeof (enum reg_note));
2009
2010 n_notes = 0;
2011 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2012 {
2013 rtx reg = XEXP (note, 0);
2014 rtx *loc = & XEXP (note, 0);
2015
2016 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2017 {
2018 loc = & SUBREG_REG (reg);
2019 reg = SUBREG_REG (reg);
2020 }
2021
2022 if (STACK_REG_P (reg)
2023 && (REG_NOTE_KIND (note) == REG_DEAD
2024 || REG_NOTE_KIND (note) == REG_UNUSED))
2025 {
2026 note_reg[n_notes] = reg;
2027 note_loc[n_notes] = loc;
2028 note_kind[n_notes] = REG_NOTE_KIND (note);
2029 n_notes++;
2030 }
2031 }
2032
2033 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2034
2035 n_clobbers = 0;
2036
2037 if (GET_CODE (body) == PARALLEL)
2038 {
2039 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2040 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2041
2042 for (i = 0; i < XVECLEN (body, 0); i++)
2043 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2044 {
2045 rtx clobber = XVECEXP (body, 0, i);
2046 rtx reg = XEXP (clobber, 0);
2047 rtx *loc = & XEXP (clobber, 0);
2048
2049 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2050 {
2051 loc = & SUBREG_REG (reg);
2052 reg = SUBREG_REG (reg);
2053 }
2054
2055 if (STACK_REG_P (reg))
2056 {
2057 clobber_reg[n_clobbers] = reg;
2058 clobber_loc[n_clobbers] = loc;
2059 n_clobbers++;
2060 }
2061 }
2062 }
2063
2064 temp_stack = *regstack;
2065
2066 /* Put the input regs into the desired place in TEMP_STACK. */
2067
2068 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2069 if (STACK_REG_P (recog_data.operand[i])
2070 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2071 FLOAT_REGS)
2072 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2073 {
2074 /* If an operand needs to be in a particular reg in
2075 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2076 these constraints are for single register classes, and
2077 reload guaranteed that operand[i] is already in that class,
2078 we can just use REGNO (recog_data.operand[i]) to know which
2079 actual reg this operand needs to be in. */
2080
2081 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2082
2083 gcc_assert (regno >= 0);
2084
2085 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2086 {
2087 /* recog_data.operand[i] is not in the right place. Find
2088 it and swap it with whatever is already in I's place.
2089 K is where recog_data.operand[i] is now. J is where it
2090 should be. */
2091 int j, k, temp;
2092
2093 k = temp_stack.top - (regno - FIRST_STACK_REG);
2094 j = (temp_stack.top
2095 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2096
2097 temp = temp_stack.reg[k];
2098 temp_stack.reg[k] = temp_stack.reg[j];
2099 temp_stack.reg[j] = temp;
2100 }
2101 }
2102
2103 /* Emit insns before INSN to make sure the reg-stack is in the right
2104 order. */
2105
2106 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2107
2108 /* Make the needed input register substitutions. Do death notes and
2109 clobbers too, because these are for inputs, not outputs. */
2110
2111 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2112 if (STACK_REG_P (recog_data.operand[i]))
2113 {
2114 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2115
2116 gcc_assert (regnum >= 0);
2117
2118 replace_reg (recog_data.operand_loc[i], regnum);
2119 }
2120
2121 for (i = 0; i < n_notes; i++)
2122 if (note_kind[i] == REG_DEAD)
2123 {
2124 int regnum = get_hard_regnum (regstack, note_reg[i]);
2125
2126 gcc_assert (regnum >= 0);
2127
2128 replace_reg (note_loc[i], regnum);
2129 }
2130
2131 for (i = 0; i < n_clobbers; i++)
2132 {
2133 /* It's OK for a CLOBBER to reference a reg that is not live.
2134 Don't try to replace it in that case. */
2135 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2136
2137 if (regnum >= 0)
2138 {
2139 /* Sigh - clobbers always have QImode. But replace_reg knows
2140 that these regs can't be MODE_INT and will assert. Just put
2141 the right reg there without calling replace_reg. */
2142
2143 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2144 }
2145 }
2146
2147 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2148
2149 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2150 if (STACK_REG_P (recog_data.operand[i]))
2151 {
2152 /* An input reg is implicitly popped if it is tied to an
2153 output, or if there is a CLOBBER for it. */
2154 int j;
2155
2156 for (j = 0; j < n_clobbers; j++)
2157 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2158 break;
2159
2160 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2161 {
2162 /* recog_data.operand[i] might not be at the top of stack.
2163 But that's OK, because all we need to do is pop the
2164 right number of regs off of the top of the reg-stack.
2165 record_asm_stack_regs guaranteed that all implicitly
2166 popped regs were grouped at the top of the reg-stack. */
2167
2168 CLEAR_HARD_REG_BIT (regstack->reg_set,
2169 regstack->reg[regstack->top]);
2170 regstack->top--;
2171 }
2172 }
2173
2174 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2175 Note that there isn't any need to substitute register numbers.
2176 ??? Explain why this is true. */
2177
2178 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2179 {
2180 /* See if there is an output for this hard reg. */
2181 int j;
2182
2183 for (j = 0; j < n_outputs; j++)
2184 if (STACK_REG_P (recog_data.operand[j])
2185 && REGNO (recog_data.operand[j]) == (unsigned) i)
2186 {
2187 regstack->reg[++regstack->top] = i;
2188 SET_HARD_REG_BIT (regstack->reg_set, i);
2189 break;
2190 }
2191 }
2192
2193 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2194 input that the asm didn't implicitly pop. If the asm didn't
2195 implicitly pop an input reg, that reg will still be live.
2196
2197 Note that we can't use find_regno_note here: the register numbers
2198 in the death notes have already been substituted. */
2199
2200 for (i = 0; i < n_outputs; i++)
2201 if (STACK_REG_P (recog_data.operand[i]))
2202 {
2203 int j;
2204
2205 for (j = 0; j < n_notes; j++)
2206 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2207 && note_kind[j] == REG_UNUSED)
2208 {
2209 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2210 EMIT_AFTER);
2211 break;
2212 }
2213 }
2214
2215 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2216 if (STACK_REG_P (recog_data.operand[i]))
2217 {
2218 int j;
2219
2220 for (j = 0; j < n_notes; j++)
2221 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2222 && note_kind[j] == REG_DEAD
2223 && TEST_HARD_REG_BIT (regstack->reg_set,
2224 REGNO (recog_data.operand[i])))
2225 {
2226 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2227 EMIT_AFTER);
2228 break;
2229 }
2230 }
2231 }
2232 \f
2233 /* Substitute stack hard reg numbers for stack virtual registers in
2234 INSN. Non-stack register numbers are not changed. REGSTACK is the
2235 current stack content. Insns may be emitted as needed to arrange the
2236 stack for the 387 based on the contents of the insn. Return whether
2237 a control flow insn was deleted in the process. */
2238
2239 static bool
2240 subst_stack_regs (rtx insn, stack regstack)
2241 {
2242 rtx *note_link, note;
2243 bool control_flow_insn_deleted = false;
2244 int i;
2245
2246 if (CALL_P (insn))
2247 {
2248 int top = regstack->top;
2249
2250 /* If there are any floating point parameters to be passed in
2251 registers for this call, make sure they are in the right
2252 order. */
2253
2254 if (top >= 0)
2255 {
2256 straighten_stack (insn, regstack);
2257
2258 /* Now mark the arguments as dead after the call. */
2259
2260 while (regstack->top >= 0)
2261 {
2262 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2263 regstack->top--;
2264 }
2265 }
2266 }
2267
2268 /* Do the actual substitution if any stack regs are mentioned.
2269 Since we only record whether entire insn mentions stack regs, and
2270 subst_stack_regs_pat only works for patterns that contain stack regs,
2271 we must check each pattern in a parallel here. A call_value_pop could
2272 fail otherwise. */
2273
2274 if (stack_regs_mentioned (insn))
2275 {
2276 int n_operands = asm_noperands (PATTERN (insn));
2277 if (n_operands >= 0)
2278 {
2279 /* This insn is an `asm' with operands. Decode the operands,
2280 decide how many are inputs, and do register substitution.
2281 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2282
2283 subst_asm_stack_regs (insn, regstack);
2284 return control_flow_insn_deleted;
2285 }
2286
2287 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2288 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2289 {
2290 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2291 {
2292 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2293 XVECEXP (PATTERN (insn), 0, i)
2294 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2295 control_flow_insn_deleted
2296 |= subst_stack_regs_pat (insn, regstack,
2297 XVECEXP (PATTERN (insn), 0, i));
2298 }
2299 }
2300 else
2301 control_flow_insn_deleted
2302 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2303 }
2304
2305 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2306 REG_UNUSED will already have been dealt with, so just return. */
2307
2308 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2309 return control_flow_insn_deleted;
2310
2311 /* If this a noreturn call, we can't insert pop insns after it.
2312 Instead, reset the stack state to empty. */
2313 if (CALL_P (insn)
2314 && find_reg_note (insn, REG_NORETURN, NULL))
2315 {
2316 regstack->top = -1;
2317 CLEAR_HARD_REG_SET (regstack->reg_set);
2318 return control_flow_insn_deleted;
2319 }
2320
2321 /* If there is a REG_UNUSED note on a stack register on this insn,
2322 the indicated reg must be popped. The REG_UNUSED note is removed,
2323 since the form of the newly emitted pop insn references the reg,
2324 making it no longer `unset'. */
2325
2326 note_link = &REG_NOTES (insn);
2327 for (note = *note_link; note; note = XEXP (note, 1))
2328 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2329 {
2330 *note_link = XEXP (note, 1);
2331 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2332 }
2333 else
2334 note_link = &XEXP (note, 1);
2335
2336 return control_flow_insn_deleted;
2337 }
2338 \f
2339 /* Change the organization of the stack so that it fits a new basic
2340 block. Some registers might have to be popped, but there can never be
2341 a register live in the new block that is not now live.
2342
2343 Insert any needed insns before or after INSN, as indicated by
2344 WHERE. OLD is the original stack layout, and NEW is the desired
2345 form. OLD is updated to reflect the code emitted, i.e., it will be
2346 the same as NEW upon return.
2347
2348 This function will not preserve block_end[]. But that information
2349 is no longer needed once this has executed. */
2350
2351 static void
2352 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2353 {
2354 int reg;
2355 int update_end = 0;
2356
2357 /* Stack adjustments for the first insn in a block update the
2358 current_block's stack_in instead of inserting insns directly.
2359 compensate_edges will add the necessary code later. */
2360 if (current_block
2361 && starting_stack_p
2362 && where == EMIT_BEFORE)
2363 {
2364 BLOCK_INFO (current_block)->stack_in = *new;
2365 starting_stack_p = false;
2366 *old = *new;
2367 return;
2368 }
2369
2370 /* We will be inserting new insns "backwards". If we are to insert
2371 after INSN, find the next insn, and insert before it. */
2372
2373 if (where == EMIT_AFTER)
2374 {
2375 if (current_block && BB_END (current_block) == insn)
2376 update_end = 1;
2377 insn = NEXT_INSN (insn);
2378 }
2379
2380 /* Pop any registers that are not needed in the new block. */
2381
2382 /* If the destination block's stack already has a specified layout
2383 and contains two or more registers, use a more intelligent algorithm
2384 to pop registers that minimizes the number number of fxchs below. */
2385 if (new->top > 0)
2386 {
2387 bool slots[REG_STACK_SIZE];
2388 int pops[REG_STACK_SIZE];
2389 int next, dest, topsrc;
2390
2391 /* First pass to determine the free slots. */
2392 for (reg = 0; reg <= new->top; reg++)
2393 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2394
2395 /* Second pass to allocate preferred slots. */
2396 topsrc = -1;
2397 for (reg = old->top; reg > new->top; reg--)
2398 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2399 {
2400 dest = -1;
2401 for (next = 0; next <= new->top; next++)
2402 if (!slots[next] && new->reg[next] == old->reg[reg])
2403 {
2404 /* If this is a preference for the new top of stack, record
2405 the fact by remembering it's old->reg in topsrc. */
2406 if (next == new->top)
2407 topsrc = reg;
2408 slots[next] = true;
2409 dest = next;
2410 break;
2411 }
2412 pops[reg] = dest;
2413 }
2414 else
2415 pops[reg] = reg;
2416
2417 /* Intentionally, avoid placing the top of stack in it's correct
2418 location, if we still need to permute the stack below and we
2419 can usefully place it somewhere else. This is the case if any
2420 slot is still unallocated, in which case we should place the
2421 top of stack there. */
2422 if (topsrc != -1)
2423 for (reg = 0; reg < new->top; reg++)
2424 if (!slots[reg])
2425 {
2426 pops[topsrc] = reg;
2427 slots[new->top] = false;
2428 slots[reg] = true;
2429 break;
2430 }
2431
2432 /* Third pass allocates remaining slots and emits pop insns. */
2433 next = new->top;
2434 for (reg = old->top; reg > new->top; reg--)
2435 {
2436 dest = pops[reg];
2437 if (dest == -1)
2438 {
2439 /* Find next free slot. */
2440 while (slots[next])
2441 next--;
2442 dest = next--;
2443 }
2444 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2445 EMIT_BEFORE);
2446 }
2447 }
2448 else
2449 {
2450 /* The following loop attempts to maximize the number of times we
2451 pop the top of the stack, as this permits the use of the faster
2452 ffreep instruction on platforms that support it. */
2453 int live, next;
2454
2455 live = 0;
2456 for (reg = 0; reg <= old->top; reg++)
2457 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2458 live++;
2459
2460 next = live;
2461 while (old->top >= live)
2462 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2463 {
2464 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2465 next--;
2466 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2467 EMIT_BEFORE);
2468 }
2469 else
2470 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2471 EMIT_BEFORE);
2472 }
2473
2474 if (new->top == -2)
2475 {
2476 /* If the new block has never been processed, then it can inherit
2477 the old stack order. */
2478
2479 new->top = old->top;
2480 memcpy (new->reg, old->reg, sizeof (new->reg));
2481 }
2482 else
2483 {
2484 /* This block has been entered before, and we must match the
2485 previously selected stack order. */
2486
2487 /* By now, the only difference should be the order of the stack,
2488 not their depth or liveliness. */
2489
2490 gcc_assert (hard_reg_set_equal_p (old->reg_set, new->reg_set));
2491 gcc_assert (old->top == new->top);
2492
2493 /* If the stack is not empty (new->top != -1), loop here emitting
2494 swaps until the stack is correct.
2495
2496 The worst case number of swaps emitted is N + 2, where N is the
2497 depth of the stack. In some cases, the reg at the top of
2498 stack may be correct, but swapped anyway in order to fix
2499 other regs. But since we never swap any other reg away from
2500 its correct slot, this algorithm will converge. */
2501
2502 if (new->top != -1)
2503 do
2504 {
2505 /* Swap the reg at top of stack into the position it is
2506 supposed to be in, until the correct top of stack appears. */
2507
2508 while (old->reg[old->top] != new->reg[new->top])
2509 {
2510 for (reg = new->top; reg >= 0; reg--)
2511 if (new->reg[reg] == old->reg[old->top])
2512 break;
2513
2514 gcc_assert (reg != -1);
2515
2516 emit_swap_insn (insn, old,
2517 FP_MODE_REG (old->reg[reg], DFmode));
2518 }
2519
2520 /* See if any regs remain incorrect. If so, bring an
2521 incorrect reg to the top of stack, and let the while loop
2522 above fix it. */
2523
2524 for (reg = new->top; reg >= 0; reg--)
2525 if (new->reg[reg] != old->reg[reg])
2526 {
2527 emit_swap_insn (insn, old,
2528 FP_MODE_REG (old->reg[reg], DFmode));
2529 break;
2530 }
2531 } while (reg >= 0);
2532
2533 /* At this point there must be no differences. */
2534
2535 for (reg = old->top; reg >= 0; reg--)
2536 gcc_assert (old->reg[reg] == new->reg[reg]);
2537 }
2538
2539 if (update_end)
2540 BB_END (current_block) = PREV_INSN (insn);
2541 }
2542 \f
2543 /* Print stack configuration. */
2544
2545 static void
2546 print_stack (FILE *file, stack s)
2547 {
2548 if (! file)
2549 return;
2550
2551 if (s->top == -2)
2552 fprintf (file, "uninitialized\n");
2553 else if (s->top == -1)
2554 fprintf (file, "empty\n");
2555 else
2556 {
2557 int i;
2558 fputs ("[ ", file);
2559 for (i = 0; i <= s->top; ++i)
2560 fprintf (file, "%d ", s->reg[i]);
2561 fputs ("]\n", file);
2562 }
2563 }
2564 \f
2565 /* This function was doing life analysis. We now let the regular live
2566 code do it's job, so we only need to check some extra invariants
2567 that reg-stack expects. Primary among these being that all registers
2568 are initialized before use.
2569
2570 The function returns true when code was emitted to CFG edges and
2571 commit_edge_insertions needs to be called. */
2572
2573 static int
2574 convert_regs_entry (void)
2575 {
2576 int inserted = 0;
2577 edge e;
2578 edge_iterator ei;
2579
2580 /* Load something into each stack register live at function entry.
2581 Such live registers can be caused by uninitialized variables or
2582 functions not returning values on all paths. In order to keep
2583 the push/pop code happy, and to not scrog the register stack, we
2584 must put something in these registers. Use a QNaN.
2585
2586 Note that we are inserting converted code here. This code is
2587 never seen by the convert_regs pass. */
2588
2589 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2590 {
2591 basic_block block = e->dest;
2592 block_info bi = BLOCK_INFO (block);
2593 int reg, top = -1;
2594
2595 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2596 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2597 {
2598 rtx init;
2599
2600 bi->stack_in.reg[++top] = reg;
2601
2602 init = gen_rtx_SET (VOIDmode,
2603 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2604 not_a_num);
2605 insert_insn_on_edge (init, e);
2606 inserted = 1;
2607 }
2608
2609 bi->stack_in.top = top;
2610 }
2611
2612 return inserted;
2613 }
2614
2615 /* Construct the desired stack for function exit. This will either
2616 be `empty', or the function return value at top-of-stack. */
2617
2618 static void
2619 convert_regs_exit (void)
2620 {
2621 int value_reg_low, value_reg_high;
2622 stack output_stack;
2623 rtx retvalue;
2624
2625 retvalue = stack_result (current_function_decl);
2626 value_reg_low = value_reg_high = -1;
2627 if (retvalue)
2628 {
2629 value_reg_low = REGNO (retvalue);
2630 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2631 }
2632
2633 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2634 if (value_reg_low == -1)
2635 output_stack->top = -1;
2636 else
2637 {
2638 int reg;
2639
2640 output_stack->top = value_reg_high - value_reg_low;
2641 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2642 {
2643 output_stack->reg[value_reg_high - reg] = reg;
2644 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2645 }
2646 }
2647 }
2648
2649 /* Copy the stack info from the end of edge E's source block to the
2650 start of E's destination block. */
2651
2652 static void
2653 propagate_stack (edge e)
2654 {
2655 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2656 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2657 int reg;
2658
2659 /* Preserve the order of the original stack, but check whether
2660 any pops are needed. */
2661 dest_stack->top = -1;
2662 for (reg = 0; reg <= src_stack->top; ++reg)
2663 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2664 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2665 }
2666
2667
2668 /* Adjust the stack of edge E's source block on exit to match the stack
2669 of it's target block upon input. The stack layouts of both blocks
2670 should have been defined by now. */
2671
2672 static bool
2673 compensate_edge (edge e)
2674 {
2675 basic_block source = e->src, target = e->dest;
2676 stack target_stack = &BLOCK_INFO (target)->stack_in;
2677 stack source_stack = &BLOCK_INFO (source)->stack_out;
2678 struct stack_def regstack;
2679 int reg;
2680
2681 if (dump_file)
2682 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2683
2684 gcc_assert (target_stack->top != -2);
2685
2686 /* Check whether stacks are identical. */
2687 if (target_stack->top == source_stack->top)
2688 {
2689 for (reg = target_stack->top; reg >= 0; --reg)
2690 if (target_stack->reg[reg] != source_stack->reg[reg])
2691 break;
2692
2693 if (reg == -1)
2694 {
2695 if (dump_file)
2696 fprintf (dump_file, "no changes needed\n");
2697 return false;
2698 }
2699 }
2700
2701 if (dump_file)
2702 {
2703 fprintf (dump_file, "correcting stack to ");
2704 print_stack (dump_file, target_stack);
2705 }
2706
2707 /* Abnormal calls may appear to have values live in st(0), but the
2708 abnormal return path will not have actually loaded the values. */
2709 if (e->flags & EDGE_ABNORMAL_CALL)
2710 {
2711 /* Assert that the lifetimes are as we expect -- one value
2712 live at st(0) on the end of the source block, and no
2713 values live at the beginning of the destination block.
2714 For complex return values, we may have st(1) live as well. */
2715 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2716 gcc_assert (target_stack->top == -1);
2717 return false;
2718 }
2719
2720 /* Handle non-call EH edges specially. The normal return path have
2721 values in registers. These will be popped en masse by the unwind
2722 library. */
2723 if (e->flags & EDGE_EH)
2724 {
2725 gcc_assert (target_stack->top == -1);
2726 return false;
2727 }
2728
2729 /* We don't support abnormal edges. Global takes care to
2730 avoid any live register across them, so we should never
2731 have to insert instructions on such edges. */
2732 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2733
2734 /* Make a copy of source_stack as change_stack is destructive. */
2735 regstack = *source_stack;
2736
2737 /* It is better to output directly to the end of the block
2738 instead of to the edge, because emit_swap can do minimal
2739 insn scheduling. We can do this when there is only one
2740 edge out, and it is not abnormal. */
2741 if (EDGE_COUNT (source->succs) == 1)
2742 {
2743 current_block = source;
2744 change_stack (BB_END (source), &regstack, target_stack,
2745 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2746 }
2747 else
2748 {
2749 rtx seq, after;
2750
2751 current_block = NULL;
2752 start_sequence ();
2753
2754 /* ??? change_stack needs some point to emit insns after. */
2755 after = emit_note (NOTE_INSN_DELETED);
2756
2757 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2758
2759 seq = get_insns ();
2760 end_sequence ();
2761
2762 insert_insn_on_edge (seq, e);
2763 return true;
2764 }
2765 return false;
2766 }
2767
2768 /* Traverse all non-entry edges in the CFG, and emit the necessary
2769 edge compensation code to change the stack from stack_out of the
2770 source block to the stack_in of the destination block. */
2771
2772 static bool
2773 compensate_edges (void)
2774 {
2775 bool inserted = false;
2776 basic_block bb;
2777
2778 starting_stack_p = false;
2779
2780 FOR_EACH_BB (bb)
2781 if (bb != ENTRY_BLOCK_PTR)
2782 {
2783 edge e;
2784 edge_iterator ei;
2785
2786 FOR_EACH_EDGE (e, ei, bb->succs)
2787 inserted |= compensate_edge (e);
2788 }
2789 return inserted;
2790 }
2791
2792 /* Select the better of two edges E1 and E2 to use to determine the
2793 stack layout for their shared destination basic block. This is
2794 typically the more frequently executed. The edge E1 may be NULL
2795 (in which case E2 is returned), but E2 is always non-NULL. */
2796
2797 static edge
2798 better_edge (edge e1, edge e2)
2799 {
2800 if (!e1)
2801 return e2;
2802
2803 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2804 return e1;
2805 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2806 return e2;
2807
2808 if (e1->count > e2->count)
2809 return e1;
2810 if (e1->count < e2->count)
2811 return e2;
2812
2813 /* Prefer critical edges to minimize inserting compensation code on
2814 critical edges. */
2815
2816 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2817 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2818
2819 /* Avoid non-deterministic behavior. */
2820 return (e1->src->index < e2->src->index) ? e1 : e2;
2821 }
2822
2823 /* Convert stack register references in one block. */
2824
2825 static void
2826 convert_regs_1 (basic_block block)
2827 {
2828 struct stack_def regstack;
2829 block_info bi = BLOCK_INFO (block);
2830 int reg;
2831 rtx insn, next;
2832 bool control_flow_insn_deleted = false;
2833
2834 any_malformed_asm = false;
2835
2836 /* Choose an initial stack layout, if one hasn't already been chosen. */
2837 if (bi->stack_in.top == -2)
2838 {
2839 edge e, beste = NULL;
2840 edge_iterator ei;
2841
2842 /* Select the best incoming edge (typically the most frequent) to
2843 use as a template for this basic block. */
2844 FOR_EACH_EDGE (e, ei, block->preds)
2845 if (BLOCK_INFO (e->src)->done)
2846 beste = better_edge (beste, e);
2847
2848 if (beste)
2849 propagate_stack (beste);
2850 else
2851 {
2852 /* No predecessors. Create an arbitrary input stack. */
2853 bi->stack_in.top = -1;
2854 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2855 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2856 bi->stack_in.reg[++bi->stack_in.top] = reg;
2857 }
2858 }
2859
2860 if (dump_file)
2861 {
2862 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2863 print_stack (dump_file, &bi->stack_in);
2864 }
2865
2866 /* Process all insns in this block. Keep track of NEXT so that we
2867 don't process insns emitted while substituting in INSN. */
2868 current_block = block;
2869 next = BB_HEAD (block);
2870 regstack = bi->stack_in;
2871 starting_stack_p = true;
2872
2873 do
2874 {
2875 insn = next;
2876 next = NEXT_INSN (insn);
2877
2878 /* Ensure we have not missed a block boundary. */
2879 gcc_assert (next);
2880 if (insn == BB_END (block))
2881 next = NULL;
2882
2883 /* Don't bother processing unless there is a stack reg
2884 mentioned or if it's a CALL_INSN. */
2885 if (stack_regs_mentioned (insn)
2886 || CALL_P (insn))
2887 {
2888 if (dump_file)
2889 {
2890 fprintf (dump_file, " insn %d input stack: ",
2891 INSN_UID (insn));
2892 print_stack (dump_file, &regstack);
2893 }
2894 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2895 starting_stack_p = false;
2896 }
2897 }
2898 while (next);
2899
2900 if (dump_file)
2901 {
2902 fprintf (dump_file, "Expected live registers [");
2903 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2904 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2905 fprintf (dump_file, " %d", reg);
2906 fprintf (dump_file, " ]\nOutput stack: ");
2907 print_stack (dump_file, &regstack);
2908 }
2909
2910 insn = BB_END (block);
2911 if (JUMP_P (insn))
2912 insn = PREV_INSN (insn);
2913
2914 /* If the function is declared to return a value, but it returns one
2915 in only some cases, some registers might come live here. Emit
2916 necessary moves for them. */
2917
2918 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2919 {
2920 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2921 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2922 {
2923 rtx set;
2924
2925 if (dump_file)
2926 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2927
2928 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2929 insn = emit_insn_after (set, insn);
2930 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2931 }
2932 }
2933
2934 /* Amongst the insns possibly deleted during the substitution process above,
2935 might have been the only trapping insn in the block. We purge the now
2936 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2937 called at the end of convert_regs. The order in which we process the
2938 blocks ensures that we never delete an already processed edge.
2939
2940 Note that, at this point, the CFG may have been damaged by the emission
2941 of instructions after an abnormal call, which moves the basic block end
2942 (and is the reason why we call fixup_abnormal_edges later). So we must
2943 be sure that the trapping insn has been deleted before trying to purge
2944 dead edges, otherwise we risk purging valid edges.
2945
2946 ??? We are normally supposed not to delete trapping insns, so we pretend
2947 that the insns deleted above don't actually trap. It would have been
2948 better to detect this earlier and avoid creating the EH edge in the first
2949 place, still, but we don't have enough information at that time. */
2950
2951 if (control_flow_insn_deleted)
2952 purge_dead_edges (block);
2953
2954 /* Something failed if the stack lives don't match. If we had malformed
2955 asms, we zapped the instruction itself, but that didn't produce the
2956 same pattern of register kills as before. */
2957 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
2958 || any_malformed_asm);
2959 bi->stack_out = regstack;
2960 bi->done = true;
2961 }
2962
2963 /* Convert registers in all blocks reachable from BLOCK. */
2964
2965 static void
2966 convert_regs_2 (basic_block block)
2967 {
2968 basic_block *stack, *sp;
2969
2970 /* We process the blocks in a top-down manner, in a way such that one block
2971 is only processed after all its predecessors. The number of predecessors
2972 of every block has already been computed. */
2973
2974 stack = XNEWVEC (basic_block, n_basic_blocks);
2975 sp = stack;
2976
2977 *sp++ = block;
2978
2979 do
2980 {
2981 edge e;
2982 edge_iterator ei;
2983
2984 block = *--sp;
2985
2986 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2987 some dead EH outgoing edge after the deletion of the trapping
2988 insn inside the block. Since the number of predecessors of
2989 BLOCK's successors was computed based on the initial edge set,
2990 we check the necessity to process some of these successors
2991 before such an edge deletion may happen. However, there is
2992 a pitfall: if BLOCK is the only predecessor of a successor and
2993 the edge between them happens to be deleted, the successor
2994 becomes unreachable and should not be processed. The problem
2995 is that there is no way to preventively detect this case so we
2996 stack the successor in all cases and hand over the task of
2997 fixing up the discrepancy to convert_regs_1. */
2998
2999 FOR_EACH_EDGE (e, ei, block->succs)
3000 if (! (e->flags & EDGE_DFS_BACK))
3001 {
3002 BLOCK_INFO (e->dest)->predecessors--;
3003 if (!BLOCK_INFO (e->dest)->predecessors)
3004 *sp++ = e->dest;
3005 }
3006
3007 convert_regs_1 (block);
3008 }
3009 while (sp != stack);
3010
3011 free (stack);
3012 }
3013
3014 /* Traverse all basic blocks in a function, converting the register
3015 references in each insn from the "flat" register file that gcc uses,
3016 to the stack-like registers the 387 uses. */
3017
3018 static void
3019 convert_regs (void)
3020 {
3021 int inserted;
3022 basic_block b;
3023 edge e;
3024 edge_iterator ei;
3025
3026 /* Initialize uninitialized registers on function entry. */
3027 inserted = convert_regs_entry ();
3028
3029 /* Construct the desired stack for function exit. */
3030 convert_regs_exit ();
3031 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3032
3033 /* ??? Future: process inner loops first, and give them arbitrary
3034 initial stacks which emit_swap_insn can modify. This ought to
3035 prevent double fxch that often appears at the head of a loop. */
3036
3037 /* Process all blocks reachable from all entry points. */
3038 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3039 convert_regs_2 (e->dest);
3040
3041 /* ??? Process all unreachable blocks. Though there's no excuse
3042 for keeping these even when not optimizing. */
3043 FOR_EACH_BB (b)
3044 {
3045 block_info bi = BLOCK_INFO (b);
3046
3047 if (! bi->done)
3048 convert_regs_2 (b);
3049 }
3050
3051 inserted |= compensate_edges ();
3052
3053 clear_aux_for_blocks ();
3054
3055 fixup_abnormal_edges ();
3056 if (inserted)
3057 commit_edge_insertions ();
3058
3059 if (dump_file)
3060 fputc ('\n', dump_file);
3061 }
3062 \f
3063 /* Convert register usage from "flat" register file usage to a "stack
3064 register file. FILE is the dump file, if used.
3065
3066 Construct a CFG and run life analysis. Then convert each insn one
3067 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3068 code duplication created when the converter inserts pop insns on
3069 the edges. */
3070
3071 static bool
3072 reg_to_stack (void)
3073 {
3074 basic_block bb;
3075 int i;
3076 int max_uid;
3077
3078 /* Clean up previous run. */
3079 if (stack_regs_mentioned_data != NULL)
3080 VEC_free (char, heap, stack_regs_mentioned_data);
3081
3082 /* See if there is something to do. Flow analysis is quite
3083 expensive so we might save some compilation time. */
3084 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3085 if (regs_ever_live[i])
3086 break;
3087 if (i > LAST_STACK_REG)
3088 return false;
3089
3090 /* Ok, floating point instructions exist. If not optimizing,
3091 build the CFG and run life analysis.
3092 Also need to rebuild life when superblock scheduling is done
3093 as it don't update liveness yet. */
3094 if (!optimize
3095 || ((flag_sched2_use_superblocks || flag_sched2_use_traces)
3096 && flag_schedule_insns_after_reload))
3097 {
3098 count_or_remove_death_notes (NULL, 1);
3099 life_analysis (PROP_DEATH_NOTES);
3100 }
3101 mark_dfs_back_edges ();
3102
3103 /* Set up block info for each basic block. */
3104 alloc_aux_for_blocks (sizeof (struct block_info_def));
3105 FOR_EACH_BB (bb)
3106 {
3107 block_info bi = BLOCK_INFO (bb);
3108 edge_iterator ei;
3109 edge e;
3110 int reg;
3111
3112 FOR_EACH_EDGE (e, ei, bb->preds)
3113 if (!(e->flags & EDGE_DFS_BACK)
3114 && e->src != ENTRY_BLOCK_PTR)
3115 bi->predecessors++;
3116
3117 /* Set current register status at last instruction `uninitialized'. */
3118 bi->stack_in.top = -2;
3119
3120 /* Copy live_at_end and live_at_start into temporaries. */
3121 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3122 {
3123 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_end, reg))
3124 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3125 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
3126 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3127 }
3128 }
3129
3130 /* Create the replacement registers up front. */
3131 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3132 {
3133 enum machine_mode mode;
3134 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3135 mode != VOIDmode;
3136 mode = GET_MODE_WIDER_MODE (mode))
3137 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3138 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3139 mode != VOIDmode;
3140 mode = GET_MODE_WIDER_MODE (mode))
3141 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3142 }
3143
3144 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3145
3146 /* A QNaN for initializing uninitialized variables.
3147
3148 ??? We can't load from constant memory in PIC mode, because
3149 we're inserting these instructions before the prologue and
3150 the PIC register hasn't been set up. In that case, fall back
3151 on zero, which we can get from `ldz'. */
3152
3153 if ((flag_pic && !TARGET_64BIT)
3154 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3155 not_a_num = CONST0_RTX (SFmode);
3156 else
3157 {
3158 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3159 not_a_num = force_const_mem (SFmode, not_a_num);
3160 }
3161
3162 /* Allocate a cache for stack_regs_mentioned. */
3163 max_uid = get_max_uid ();
3164 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3165 memset (VEC_address (char, stack_regs_mentioned_data),
3166 0, sizeof (char) * max_uid + 1);
3167
3168 convert_regs ();
3169
3170 free_aux_for_blocks ();
3171 return true;
3172 }
3173 #endif /* STACK_REGS */
3174 \f
3175 static bool
3176 gate_handle_stack_regs (void)
3177 {
3178 #ifdef STACK_REGS
3179 return 1;
3180 #else
3181 return 0;
3182 #endif
3183 }
3184
3185 /* Convert register usage from flat register file usage to a stack
3186 register file. */
3187 static unsigned int
3188 rest_of_handle_stack_regs (void)
3189 {
3190 #ifdef STACK_REGS
3191 if (reg_to_stack () && optimize)
3192 {
3193 regstack_completed = 1;
3194 if (cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK
3195 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0))
3196 && (flag_reorder_blocks || flag_reorder_blocks_and_partition))
3197 {
3198 basic_block bb;
3199
3200 cfg_layout_initialize (0);
3201
3202 reorder_basic_blocks ();
3203 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK);
3204
3205 FOR_EACH_BB (bb)
3206 if (bb->next_bb != EXIT_BLOCK_PTR)
3207 bb->aux = bb->next_bb;
3208 cfg_layout_finalize ();
3209 }
3210 }
3211 else
3212 regstack_completed = 1;
3213 #endif
3214 return 0;
3215 }
3216
3217 struct tree_opt_pass pass_stack_regs =
3218 {
3219 "stack", /* name */
3220 gate_handle_stack_regs, /* gate */
3221 rest_of_handle_stack_regs, /* execute */
3222 NULL, /* sub */
3223 NULL, /* next */
3224 0, /* static_pass_number */
3225 TV_REG_STACK, /* tv_id */
3226 0, /* properties_required */
3227 0, /* properties_provided */
3228 0, /* properties_destroyed */
3229 0, /* todo_flags_start */
3230 TODO_dump_func |
3231 TODO_ggc_collect, /* todo_flags_finish */
3232 'k' /* letter */
3233 };