bb-reorder.c (make_reorder_chain, [...]): Use FOR_EACH_BB macros to iterate over...
[gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
24
25 * The form of the input:
26
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
36
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
44
45 * The form of the output:
46
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
52
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
55
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
59
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
62
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
66
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
71
72 * Methodology:
73
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
77
78 * asm_operands:
79
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
83
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
87
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
91
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
98
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
101
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
104
105 asm ("foo" : "=t" (a) : "f" (b));
106
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
112
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
115
116 The asm above would be written as
117
118 asm ("foo" : "=&t" (a) : "f" (b));
119
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
124
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
128
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
133
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
136
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
140
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
143
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
152 */
153 \f
154 #include "config.h"
155 #include "system.h"
156 #include "tree.h"
157 #include "rtl.h"
158 #include "tm_p.h"
159 #include "function.h"
160 #include "insn-config.h"
161 #include "regs.h"
162 #include "hard-reg-set.h"
163 #include "flags.h"
164 #include "toplev.h"
165 #include "recog.h"
166 #include "output.h"
167 #include "basic-block.h"
168 #include "varray.h"
169 #include "reload.h"
170
171 #ifdef STACK_REGS
172
173 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
174
175 /* This is the basic stack record. TOP is an index into REG[] such
176 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
177
178 If TOP is -2, REG[] is not yet initialized. Stack initialization
179 consists of placing each live reg in array `reg' and setting `top'
180 appropriately.
181
182 REG_SET indicates which registers are live. */
183
184 typedef struct stack_def
185 {
186 int top; /* index to top stack element */
187 HARD_REG_SET reg_set; /* set of live registers */
188 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
189 } *stack;
190
191 /* This is used to carry information about basic blocks. It is
192 attached to the AUX field of the standard CFG block. */
193
194 typedef struct block_info_def
195 {
196 struct stack_def stack_in; /* Input stack configuration. */
197 struct stack_def stack_out; /* Output stack configuration. */
198 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
199 int done; /* True if block already converted. */
200 int predecessors; /* Number of predecessors that needs
201 to be visited. */
202 } *block_info;
203
204 #define BLOCK_INFO(B) ((block_info) (B)->aux)
205
206 /* Passed to change_stack to indicate where to emit insns. */
207 enum emit_where
208 {
209 EMIT_AFTER,
210 EMIT_BEFORE
211 };
212
213 /* We use this array to cache info about insns, because otherwise we
214 spend too much time in stack_regs_mentioned_p.
215
216 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
217 the insn uses stack registers, two indicates the insn does not use
218 stack registers. */
219 static varray_type stack_regs_mentioned_data;
220
221 /* The block we're currently working on. */
222 static basic_block current_block;
223
224 /* This is the register file for all register after conversion */
225 static rtx
226 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
227
228 #define FP_MODE_REG(regno,mode) \
229 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
230
231 /* Used to initialize uninitialized registers. */
232 static rtx nan;
233
234 /* Forward declarations */
235
236 static int stack_regs_mentioned_p PARAMS ((rtx pat));
237 static void straighten_stack PARAMS ((rtx, stack));
238 static void pop_stack PARAMS ((stack, int));
239 static rtx *get_true_reg PARAMS ((rtx *));
240
241 static int check_asm_stack_operands PARAMS ((rtx));
242 static int get_asm_operand_n_inputs PARAMS ((rtx));
243 static rtx stack_result PARAMS ((tree));
244 static void replace_reg PARAMS ((rtx *, int));
245 static void remove_regno_note PARAMS ((rtx, enum reg_note,
246 unsigned int));
247 static int get_hard_regnum PARAMS ((stack, rtx));
248 static rtx emit_pop_insn PARAMS ((rtx, stack, rtx,
249 enum emit_where));
250 static void emit_swap_insn PARAMS ((rtx, stack, rtx));
251 static void move_for_stack_reg PARAMS ((rtx, stack, rtx));
252 static int swap_rtx_condition_1 PARAMS ((rtx));
253 static int swap_rtx_condition PARAMS ((rtx));
254 static void compare_for_stack_reg PARAMS ((rtx, stack, rtx));
255 static void subst_stack_regs_pat PARAMS ((rtx, stack, rtx));
256 static void subst_asm_stack_regs PARAMS ((rtx, stack));
257 static void subst_stack_regs PARAMS ((rtx, stack));
258 static void change_stack PARAMS ((rtx, stack, stack,
259 enum emit_where));
260 static int convert_regs_entry PARAMS ((void));
261 static void convert_regs_exit PARAMS ((void));
262 static int convert_regs_1 PARAMS ((FILE *, basic_block));
263 static int convert_regs_2 PARAMS ((FILE *, basic_block));
264 static int convert_regs PARAMS ((FILE *));
265 static void print_stack PARAMS ((FILE *, stack));
266 static rtx next_flags_user PARAMS ((rtx));
267 static void record_label_references PARAMS ((rtx, rtx));
268 static bool compensate_edge PARAMS ((edge, FILE *));
269 \f
270 /* Return non-zero if any stack register is mentioned somewhere within PAT. */
271
272 static int
273 stack_regs_mentioned_p (pat)
274 rtx pat;
275 {
276 const char *fmt;
277 int i;
278
279 if (STACK_REG_P (pat))
280 return 1;
281
282 fmt = GET_RTX_FORMAT (GET_CODE (pat));
283 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
284 {
285 if (fmt[i] == 'E')
286 {
287 int j;
288
289 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
290 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
291 return 1;
292 }
293 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
294 return 1;
295 }
296
297 return 0;
298 }
299
300 /* Return nonzero if INSN mentions stacked registers, else return zero. */
301
302 int
303 stack_regs_mentioned (insn)
304 rtx insn;
305 {
306 unsigned int uid, max;
307 int test;
308
309 if (! INSN_P (insn) || !stack_regs_mentioned_data)
310 return 0;
311
312 uid = INSN_UID (insn);
313 max = VARRAY_SIZE (stack_regs_mentioned_data);
314 if (uid >= max)
315 {
316 /* Allocate some extra size to avoid too many reallocs, but
317 do not grow too quickly. */
318 max = uid + uid / 20;
319 VARRAY_GROW (stack_regs_mentioned_data, max);
320 }
321
322 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
323 if (test == 0)
324 {
325 /* This insn has yet to be examined. Do so now. */
326 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
327 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
328 }
329
330 return test == 1;
331 }
332 \f
333 static rtx ix86_flags_rtx;
334
335 static rtx
336 next_flags_user (insn)
337 rtx insn;
338 {
339 /* Search forward looking for the first use of this value.
340 Stop at block boundaries. */
341
342 while (insn != current_block->end)
343 {
344 insn = NEXT_INSN (insn);
345
346 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
347 return insn;
348
349 if (GET_CODE (insn) == CALL_INSN)
350 return NULL_RTX;
351 }
352 return NULL_RTX;
353 }
354 \f
355 /* Reorganise the stack into ascending numbers,
356 after this insn. */
357
358 static void
359 straighten_stack (insn, regstack)
360 rtx insn;
361 stack regstack;
362 {
363 struct stack_def temp_stack;
364 int top;
365
366 /* If there is only a single register on the stack, then the stack is
367 already in increasing order and no reorganization is needed.
368
369 Similarly if the stack is empty. */
370 if (regstack->top <= 0)
371 return;
372
373 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
374
375 for (top = temp_stack.top = regstack->top; top >= 0; top--)
376 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
377
378 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
379 }
380
381 /* Pop a register from the stack */
382
383 static void
384 pop_stack (regstack, regno)
385 stack regstack;
386 int regno;
387 {
388 int top = regstack->top;
389
390 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
391 regstack->top--;
392 /* If regno was not at the top of stack then adjust stack */
393 if (regstack->reg [top] != regno)
394 {
395 int i;
396 for (i = regstack->top; i >= 0; i--)
397 if (regstack->reg [i] == regno)
398 {
399 int j;
400 for (j = i; j < top; j++)
401 regstack->reg [j] = regstack->reg [j + 1];
402 break;
403 }
404 }
405 }
406 \f
407 /* Convert register usage from "flat" register file usage to a "stack
408 register file. FIRST is the first insn in the function, FILE is the
409 dump file, if used.
410
411 Construct a CFG and run life analysis. Then convert each insn one
412 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
413 code duplication created when the converter inserts pop insns on
414 the edges. */
415
416 void
417 reg_to_stack (first, file)
418 rtx first;
419 FILE *file;
420 {
421 basic_block bb;
422 int i;
423 int max_uid;
424
425 /* Clean up previous run. */
426 if (stack_regs_mentioned_data)
427 {
428 VARRAY_FREE (stack_regs_mentioned_data);
429 stack_regs_mentioned_data = 0;
430 }
431
432 if (!optimize)
433 split_all_insns (0);
434
435 /* See if there is something to do. Flow analysis is quite
436 expensive so we might save some compilation time. */
437 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
438 if (regs_ever_live[i])
439 break;
440 if (i > LAST_STACK_REG)
441 return;
442
443 /* Ok, floating point instructions exist. If not optimizing,
444 build the CFG and run life analysis. */
445 if (!optimize)
446 {
447 find_basic_blocks (first, max_reg_num (), file);
448 count_or_remove_death_notes (NULL, 1);
449 life_analysis (first, file, PROP_DEATH_NOTES);
450 }
451 mark_dfs_back_edges ();
452
453 /* Set up block info for each basic block. */
454 alloc_aux_for_blocks (sizeof (struct block_info_def));
455 FOR_EACH_BB_REVERSE (bb)
456 {
457 edge e;
458 for (e = bb->pred; e; e=e->pred_next)
459 if (!(e->flags & EDGE_DFS_BACK)
460 && e->src != ENTRY_BLOCK_PTR)
461 BLOCK_INFO (bb)->predecessors++;
462 }
463
464 /* Create the replacement registers up front. */
465 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
466 {
467 enum machine_mode mode;
468 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
469 mode != VOIDmode;
470 mode = GET_MODE_WIDER_MODE (mode))
471 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
472 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
473 mode != VOIDmode;
474 mode = GET_MODE_WIDER_MODE (mode))
475 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
476 }
477
478 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
479
480 /* A QNaN for initializing uninitialized variables.
481
482 ??? We can't load from constant memory in PIC mode, because
483 we're insertting these instructions before the prologue and
484 the PIC register hasn't been set up. In that case, fall back
485 on zero, which we can get from `ldz'. */
486
487 if (flag_pic)
488 nan = CONST0_RTX (SFmode);
489 else
490 {
491 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
492 nan = force_const_mem (SFmode, nan);
493 }
494
495 /* Allocate a cache for stack_regs_mentioned. */
496 max_uid = get_max_uid ();
497 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
498 "stack_regs_mentioned cache");
499
500 convert_regs (file);
501
502 free_aux_for_blocks ();
503 }
504 \f
505 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
506 label's chain of references, and note which insn contains each
507 reference. */
508
509 static void
510 record_label_references (insn, pat)
511 rtx insn, pat;
512 {
513 enum rtx_code code = GET_CODE (pat);
514 int i;
515 const char *fmt;
516
517 if (code == LABEL_REF)
518 {
519 rtx label = XEXP (pat, 0);
520 rtx ref;
521
522 if (GET_CODE (label) != CODE_LABEL)
523 abort ();
524
525 /* If this is an undefined label, LABEL_REFS (label) contains
526 garbage. */
527 if (INSN_UID (label) == 0)
528 return;
529
530 /* Don't make a duplicate in the code_label's chain. */
531
532 for (ref = LABEL_REFS (label);
533 ref && ref != label;
534 ref = LABEL_NEXTREF (ref))
535 if (CONTAINING_INSN (ref) == insn)
536 return;
537
538 CONTAINING_INSN (pat) = insn;
539 LABEL_NEXTREF (pat) = LABEL_REFS (label);
540 LABEL_REFS (label) = pat;
541
542 return;
543 }
544
545 fmt = GET_RTX_FORMAT (code);
546 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
547 {
548 if (fmt[i] == 'e')
549 record_label_references (insn, XEXP (pat, i));
550 if (fmt[i] == 'E')
551 {
552 int j;
553 for (j = 0; j < XVECLEN (pat, i); j++)
554 record_label_references (insn, XVECEXP (pat, i, j));
555 }
556 }
557 }
558 \f
559 /* Return a pointer to the REG expression within PAT. If PAT is not a
560 REG, possible enclosed by a conversion rtx, return the inner part of
561 PAT that stopped the search. */
562
563 static rtx *
564 get_true_reg (pat)
565 rtx *pat;
566 {
567 for (;;)
568 switch (GET_CODE (*pat))
569 {
570 case SUBREG:
571 /* Eliminate FP subregister accesses in favour of the
572 actual FP register in use. */
573 {
574 rtx subreg;
575 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
576 {
577 int regno_off = subreg_regno_offset (REGNO (subreg),
578 GET_MODE (subreg),
579 SUBREG_BYTE (*pat),
580 GET_MODE (*pat));
581 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
582 GET_MODE (subreg));
583 default:
584 return pat;
585 }
586 }
587 case FLOAT:
588 case FIX:
589 case FLOAT_EXTEND:
590 pat = & XEXP (*pat, 0);
591 }
592 }
593 \f
594 /* There are many rules that an asm statement for stack-like regs must
595 follow. Those rules are explained at the top of this file: the rule
596 numbers below refer to that explanation. */
597
598 static int
599 check_asm_stack_operands (insn)
600 rtx insn;
601 {
602 int i;
603 int n_clobbers;
604 int malformed_asm = 0;
605 rtx body = PATTERN (insn);
606
607 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
608 char implicitly_dies[FIRST_PSEUDO_REGISTER];
609 int alt;
610
611 rtx *clobber_reg = 0;
612 int n_inputs, n_outputs;
613
614 /* Find out what the constraints require. If no constraint
615 alternative matches, this asm is malformed. */
616 extract_insn (insn);
617 constrain_operands (1);
618 alt = which_alternative;
619
620 preprocess_constraints ();
621
622 n_inputs = get_asm_operand_n_inputs (body);
623 n_outputs = recog_data.n_operands - n_inputs;
624
625 if (alt < 0)
626 {
627 malformed_asm = 1;
628 /* Avoid further trouble with this insn. */
629 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
630 return 0;
631 }
632
633 /* Strip SUBREGs here to make the following code simpler. */
634 for (i = 0; i < recog_data.n_operands; i++)
635 if (GET_CODE (recog_data.operand[i]) == SUBREG
636 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
637 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
638
639 /* Set up CLOBBER_REG. */
640
641 n_clobbers = 0;
642
643 if (GET_CODE (body) == PARALLEL)
644 {
645 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
646
647 for (i = 0; i < XVECLEN (body, 0); i++)
648 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
649 {
650 rtx clobber = XVECEXP (body, 0, i);
651 rtx reg = XEXP (clobber, 0);
652
653 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
654 reg = SUBREG_REG (reg);
655
656 if (STACK_REG_P (reg))
657 {
658 clobber_reg[n_clobbers] = reg;
659 n_clobbers++;
660 }
661 }
662 }
663
664 /* Enforce rule #4: Output operands must specifically indicate which
665 reg an output appears in after an asm. "=f" is not allowed: the
666 operand constraints must select a class with a single reg.
667
668 Also enforce rule #5: Output operands must start at the top of
669 the reg-stack: output operands may not "skip" a reg. */
670
671 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
672 for (i = 0; i < n_outputs; i++)
673 if (STACK_REG_P (recog_data.operand[i]))
674 {
675 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
676 {
677 error_for_asm (insn, "output constraint %d must specify a single register", i);
678 malformed_asm = 1;
679 }
680 else
681 {
682 int j;
683
684 for (j = 0; j < n_clobbers; j++)
685 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
686 {
687 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
688 i, reg_names [REGNO (clobber_reg[j])]);
689 malformed_asm = 1;
690 break;
691 }
692 if (j == n_clobbers)
693 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
694 }
695 }
696
697
698 /* Search for first non-popped reg. */
699 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
700 if (! reg_used_as_output[i])
701 break;
702
703 /* If there are any other popped regs, that's an error. */
704 for (; i < LAST_STACK_REG + 1; i++)
705 if (reg_used_as_output[i])
706 break;
707
708 if (i != LAST_STACK_REG + 1)
709 {
710 error_for_asm (insn, "output regs must be grouped at top of stack");
711 malformed_asm = 1;
712 }
713
714 /* Enforce rule #2: All implicitly popped input regs must be closer
715 to the top of the reg-stack than any input that is not implicitly
716 popped. */
717
718 memset (implicitly_dies, 0, sizeof (implicitly_dies));
719 for (i = n_outputs; i < n_outputs + n_inputs; i++)
720 if (STACK_REG_P (recog_data.operand[i]))
721 {
722 /* An input reg is implicitly popped if it is tied to an
723 output, or if there is a CLOBBER for it. */
724 int j;
725
726 for (j = 0; j < n_clobbers; j++)
727 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
728 break;
729
730 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
731 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
732 }
733
734 /* Search for first non-popped reg. */
735 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
736 if (! implicitly_dies[i])
737 break;
738
739 /* If there are any other popped regs, that's an error. */
740 for (; i < LAST_STACK_REG + 1; i++)
741 if (implicitly_dies[i])
742 break;
743
744 if (i != LAST_STACK_REG + 1)
745 {
746 error_for_asm (insn,
747 "implicitly popped regs must be grouped at top of stack");
748 malformed_asm = 1;
749 }
750
751 /* Enfore rule #3: If any input operand uses the "f" constraint, all
752 output constraints must use the "&" earlyclobber.
753
754 ??? Detect this more deterministically by having constrain_asm_operands
755 record any earlyclobber. */
756
757 for (i = n_outputs; i < n_outputs + n_inputs; i++)
758 if (recog_op_alt[i][alt].matches == -1)
759 {
760 int j;
761
762 for (j = 0; j < n_outputs; j++)
763 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
764 {
765 error_for_asm (insn,
766 "output operand %d must use `&' constraint", j);
767 malformed_asm = 1;
768 }
769 }
770
771 if (malformed_asm)
772 {
773 /* Avoid further trouble with this insn. */
774 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
775 return 0;
776 }
777
778 return 1;
779 }
780 \f
781 /* Calculate the number of inputs and outputs in BODY, an
782 asm_operands. N_OPERANDS is the total number of operands, and
783 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
784 placed. */
785
786 static int
787 get_asm_operand_n_inputs (body)
788 rtx body;
789 {
790 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
791 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
792
793 else if (GET_CODE (body) == ASM_OPERANDS)
794 return ASM_OPERANDS_INPUT_LENGTH (body);
795
796 else if (GET_CODE (body) == PARALLEL
797 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
798 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
799
800 else if (GET_CODE (body) == PARALLEL
801 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
802 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
803
804 abort ();
805 }
806
807 /* If current function returns its result in an fp stack register,
808 return the REG. Otherwise, return 0. */
809
810 static rtx
811 stack_result (decl)
812 tree decl;
813 {
814 rtx result;
815
816 /* If the value is supposed to be returned in memory, then clearly
817 it is not returned in a stack register. */
818 if (aggregate_value_p (DECL_RESULT (decl)))
819 return 0;
820
821 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
822 if (result != 0)
823 {
824 #ifdef FUNCTION_OUTGOING_VALUE
825 result
826 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
827 #else
828 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
829 #endif
830 }
831
832 return result != 0 && STACK_REG_P (result) ? result : 0;
833 }
834 \f
835
836 /*
837 * This section deals with stack register substitution, and forms the second
838 * pass over the RTL.
839 */
840
841 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
842 the desired hard REGNO. */
843
844 static void
845 replace_reg (reg, regno)
846 rtx *reg;
847 int regno;
848 {
849 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
850 || ! STACK_REG_P (*reg))
851 abort ();
852
853 switch (GET_MODE_CLASS (GET_MODE (*reg)))
854 {
855 default: abort ();
856 case MODE_FLOAT:
857 case MODE_COMPLEX_FLOAT:;
858 }
859
860 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
861 }
862
863 /* Remove a note of type NOTE, which must be found, for register
864 number REGNO from INSN. Remove only one such note. */
865
866 static void
867 remove_regno_note (insn, note, regno)
868 rtx insn;
869 enum reg_note note;
870 unsigned int regno;
871 {
872 rtx *note_link, this;
873
874 note_link = &REG_NOTES (insn);
875 for (this = *note_link; this; this = XEXP (this, 1))
876 if (REG_NOTE_KIND (this) == note
877 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
878 {
879 *note_link = XEXP (this, 1);
880 return;
881 }
882 else
883 note_link = &XEXP (this, 1);
884
885 abort ();
886 }
887
888 /* Find the hard register number of virtual register REG in REGSTACK.
889 The hard register number is relative to the top of the stack. -1 is
890 returned if the register is not found. */
891
892 static int
893 get_hard_regnum (regstack, reg)
894 stack regstack;
895 rtx reg;
896 {
897 int i;
898
899 if (! STACK_REG_P (reg))
900 abort ();
901
902 for (i = regstack->top; i >= 0; i--)
903 if (regstack->reg[i] == REGNO (reg))
904 break;
905
906 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
907 }
908 \f
909 /* Emit an insn to pop virtual register REG before or after INSN.
910 REGSTACK is the stack state after INSN and is updated to reflect this
911 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
912 is represented as a SET whose destination is the register to be popped
913 and source is the top of stack. A death note for the top of stack
914 cases the movdf pattern to pop. */
915
916 static rtx
917 emit_pop_insn (insn, regstack, reg, where)
918 rtx insn;
919 stack regstack;
920 rtx reg;
921 enum emit_where where;
922 {
923 rtx pop_insn, pop_rtx;
924 int hard_regno;
925
926 /* For complex types take care to pop both halves. These may survive in
927 CLOBBER and USE expressions. */
928 if (COMPLEX_MODE_P (GET_MODE (reg)))
929 {
930 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
931 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
932
933 pop_insn = NULL_RTX;
934 if (get_hard_regnum (regstack, reg1) >= 0)
935 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
936 if (get_hard_regnum (regstack, reg2) >= 0)
937 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
938 if (!pop_insn)
939 abort ();
940 return pop_insn;
941 }
942
943 hard_regno = get_hard_regnum (regstack, reg);
944
945 if (hard_regno < FIRST_STACK_REG)
946 abort ();
947
948 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
949 FP_MODE_REG (FIRST_STACK_REG, DFmode));
950
951 if (where == EMIT_AFTER)
952 pop_insn = emit_insn_after (pop_rtx, insn);
953 else
954 pop_insn = emit_insn_before (pop_rtx, insn);
955
956 REG_NOTES (pop_insn)
957 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
958 REG_NOTES (pop_insn));
959
960 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
961 = regstack->reg[regstack->top];
962 regstack->top -= 1;
963 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
964
965 return pop_insn;
966 }
967 \f
968 /* Emit an insn before or after INSN to swap virtual register REG with
969 the top of stack. REGSTACK is the stack state before the swap, and
970 is updated to reflect the swap. A swap insn is represented as a
971 PARALLEL of two patterns: each pattern moves one reg to the other.
972
973 If REG is already at the top of the stack, no insn is emitted. */
974
975 static void
976 emit_swap_insn (insn, regstack, reg)
977 rtx insn;
978 stack regstack;
979 rtx reg;
980 {
981 int hard_regno;
982 rtx swap_rtx;
983 int tmp, other_reg; /* swap regno temps */
984 rtx i1; /* the stack-reg insn prior to INSN */
985 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
986
987 hard_regno = get_hard_regnum (regstack, reg);
988
989 if (hard_regno < FIRST_STACK_REG)
990 abort ();
991 if (hard_regno == FIRST_STACK_REG)
992 return;
993
994 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
995
996 tmp = regstack->reg[other_reg];
997 regstack->reg[other_reg] = regstack->reg[regstack->top];
998 regstack->reg[regstack->top] = tmp;
999
1000 /* Find the previous insn involving stack regs, but don't pass a
1001 block boundary. */
1002 i1 = NULL;
1003 if (current_block && insn != current_block->head)
1004 {
1005 rtx tmp = PREV_INSN (insn);
1006 rtx limit = PREV_INSN (current_block->head);
1007 while (tmp != limit)
1008 {
1009 if (GET_CODE (tmp) == CODE_LABEL
1010 || GET_CODE (tmp) == CALL_INSN
1011 || NOTE_INSN_BASIC_BLOCK_P (tmp)
1012 || (GET_CODE (tmp) == INSN
1013 && stack_regs_mentioned (tmp)))
1014 {
1015 i1 = tmp;
1016 break;
1017 }
1018 tmp = PREV_INSN (tmp);
1019 }
1020 }
1021
1022 if (i1 != NULL_RTX
1023 && (i1set = single_set (i1)) != NULL_RTX)
1024 {
1025 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1026 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1027
1028 /* If the previous register stack push was from the reg we are to
1029 swap with, omit the swap. */
1030
1031 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1032 && GET_CODE (i1src) == REG
1033 && REGNO (i1src) == (unsigned) hard_regno - 1
1034 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1035 return;
1036
1037 /* If the previous insn wrote to the reg we are to swap with,
1038 omit the swap. */
1039
1040 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
1041 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1042 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1043 return;
1044 }
1045
1046 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1047 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1048
1049 if (i1)
1050 emit_insn_after (swap_rtx, i1);
1051 else if (current_block)
1052 emit_insn_before (swap_rtx, current_block->head);
1053 else
1054 emit_insn_before (swap_rtx, insn);
1055 }
1056 \f
1057 /* Handle a move to or from a stack register in PAT, which is in INSN.
1058 REGSTACK is the current stack. */
1059
1060 static void
1061 move_for_stack_reg (insn, regstack, pat)
1062 rtx insn;
1063 stack regstack;
1064 rtx pat;
1065 {
1066 rtx *psrc = get_true_reg (&SET_SRC (pat));
1067 rtx *pdest = get_true_reg (&SET_DEST (pat));
1068 rtx src, dest;
1069 rtx note;
1070
1071 src = *psrc; dest = *pdest;
1072
1073 if (STACK_REG_P (src) && STACK_REG_P (dest))
1074 {
1075 /* Write from one stack reg to another. If SRC dies here, then
1076 just change the register mapping and delete the insn. */
1077
1078 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1079 if (note)
1080 {
1081 int i;
1082
1083 /* If this is a no-op move, there must not be a REG_DEAD note. */
1084 if (REGNO (src) == REGNO (dest))
1085 abort ();
1086
1087 for (i = regstack->top; i >= 0; i--)
1088 if (regstack->reg[i] == REGNO (src))
1089 break;
1090
1091 /* The source must be live, and the dest must be dead. */
1092 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1093 abort ();
1094
1095 /* It is possible that the dest is unused after this insn.
1096 If so, just pop the src. */
1097
1098 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1099 {
1100 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1101
1102 delete_insn (insn);
1103 return;
1104 }
1105
1106 regstack->reg[i] = REGNO (dest);
1107
1108 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1109 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1110
1111 delete_insn (insn);
1112
1113 return;
1114 }
1115
1116 /* The source reg does not die. */
1117
1118 /* If this appears to be a no-op move, delete it, or else it
1119 will confuse the machine description output patterns. But if
1120 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1121 for REG_UNUSED will not work for deleted insns. */
1122
1123 if (REGNO (src) == REGNO (dest))
1124 {
1125 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1126 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1127
1128 delete_insn (insn);
1129 return;
1130 }
1131
1132 /* The destination ought to be dead */
1133 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1134 abort ();
1135
1136 replace_reg (psrc, get_hard_regnum (regstack, src));
1137
1138 regstack->reg[++regstack->top] = REGNO (dest);
1139 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1140 replace_reg (pdest, FIRST_STACK_REG);
1141 }
1142 else if (STACK_REG_P (src))
1143 {
1144 /* Save from a stack reg to MEM, or possibly integer reg. Since
1145 only top of stack may be saved, emit an exchange first if
1146 needs be. */
1147
1148 emit_swap_insn (insn, regstack, src);
1149
1150 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1151 if (note)
1152 {
1153 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1154 regstack->top--;
1155 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1156 }
1157 else if ((GET_MODE (src) == XFmode || GET_MODE (src) == TFmode)
1158 && regstack->top < REG_STACK_SIZE - 1)
1159 {
1160 /* A 387 cannot write an XFmode value to a MEM without
1161 clobbering the source reg. The output code can handle
1162 this by reading back the value from the MEM.
1163 But it is more efficient to use a temp register if one is
1164 available. Push the source value here if the register
1165 stack is not full, and then write the value to memory via
1166 a pop. */
1167 rtx push_rtx, push_insn;
1168 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1169
1170 if (GET_MODE (src) == TFmode)
1171 push_rtx = gen_movtf (top_stack_reg, top_stack_reg);
1172 else
1173 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1174 push_insn = emit_insn_before (push_rtx, insn);
1175 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1176 REG_NOTES (insn));
1177 }
1178
1179 replace_reg (psrc, FIRST_STACK_REG);
1180 }
1181 else if (STACK_REG_P (dest))
1182 {
1183 /* Load from MEM, or possibly integer REG or constant, into the
1184 stack regs. The actual target is always the top of the
1185 stack. The stack mapping is changed to reflect that DEST is
1186 now at top of stack. */
1187
1188 /* The destination ought to be dead */
1189 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1190 abort ();
1191
1192 if (regstack->top >= REG_STACK_SIZE)
1193 abort ();
1194
1195 regstack->reg[++regstack->top] = REGNO (dest);
1196 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1197 replace_reg (pdest, FIRST_STACK_REG);
1198 }
1199 else
1200 abort ();
1201 }
1202 \f
1203 /* Swap the condition on a branch, if there is one. Return true if we
1204 found a condition to swap. False if the condition was not used as
1205 such. */
1206
1207 static int
1208 swap_rtx_condition_1 (pat)
1209 rtx pat;
1210 {
1211 const char *fmt;
1212 int i, r = 0;
1213
1214 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1215 {
1216 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1217 r = 1;
1218 }
1219 else
1220 {
1221 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1222 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1223 {
1224 if (fmt[i] == 'E')
1225 {
1226 int j;
1227
1228 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1229 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1230 }
1231 else if (fmt[i] == 'e')
1232 r |= swap_rtx_condition_1 (XEXP (pat, i));
1233 }
1234 }
1235
1236 return r;
1237 }
1238
1239 static int
1240 swap_rtx_condition (insn)
1241 rtx insn;
1242 {
1243 rtx pat = PATTERN (insn);
1244
1245 /* We're looking for a single set to cc0 or an HImode temporary. */
1246
1247 if (GET_CODE (pat) == SET
1248 && GET_CODE (SET_DEST (pat)) == REG
1249 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1250 {
1251 insn = next_flags_user (insn);
1252 if (insn == NULL_RTX)
1253 return 0;
1254 pat = PATTERN (insn);
1255 }
1256
1257 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1258 not doing anything with the cc value right now. We may be able to
1259 search for one though. */
1260
1261 if (GET_CODE (pat) == SET
1262 && GET_CODE (SET_SRC (pat)) == UNSPEC
1263 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1264 {
1265 rtx dest = SET_DEST (pat);
1266
1267 /* Search forward looking for the first use of this value.
1268 Stop at block boundaries. */
1269 while (insn != current_block->end)
1270 {
1271 insn = NEXT_INSN (insn);
1272 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1273 break;
1274 if (GET_CODE (insn) == CALL_INSN)
1275 return 0;
1276 }
1277
1278 /* So we've found the insn using this value. If it is anything
1279 other than sahf, aka unspec 10, or the value does not die
1280 (meaning we'd have to search further), then we must give up. */
1281 pat = PATTERN (insn);
1282 if (GET_CODE (pat) != SET
1283 || GET_CODE (SET_SRC (pat)) != UNSPEC
1284 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1285 || ! dead_or_set_p (insn, dest))
1286 return 0;
1287
1288 /* Now we are prepared to handle this as a normal cc0 setter. */
1289 insn = next_flags_user (insn);
1290 if (insn == NULL_RTX)
1291 return 0;
1292 pat = PATTERN (insn);
1293 }
1294
1295 if (swap_rtx_condition_1 (pat))
1296 {
1297 int fail = 0;
1298 INSN_CODE (insn) = -1;
1299 if (recog_memoized (insn) == -1)
1300 fail = 1;
1301 /* In case the flags don't die here, recurse to try fix
1302 following user too. */
1303 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1304 {
1305 insn = next_flags_user (insn);
1306 if (!insn || !swap_rtx_condition (insn))
1307 fail = 1;
1308 }
1309 if (fail)
1310 {
1311 swap_rtx_condition_1 (pat);
1312 return 0;
1313 }
1314 return 1;
1315 }
1316 return 0;
1317 }
1318
1319 /* Handle a comparison. Special care needs to be taken to avoid
1320 causing comparisons that a 387 cannot do correctly, such as EQ.
1321
1322 Also, a pop insn may need to be emitted. The 387 does have an
1323 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1324 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1325 set up. */
1326
1327 static void
1328 compare_for_stack_reg (insn, regstack, pat_src)
1329 rtx insn;
1330 stack regstack;
1331 rtx pat_src;
1332 {
1333 rtx *src1, *src2;
1334 rtx src1_note, src2_note;
1335 rtx flags_user;
1336
1337 src1 = get_true_reg (&XEXP (pat_src, 0));
1338 src2 = get_true_reg (&XEXP (pat_src, 1));
1339 flags_user = next_flags_user (insn);
1340
1341 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1342 registers that die in this insn - move those to stack top first. */
1343 if ((! STACK_REG_P (*src1)
1344 || (STACK_REG_P (*src2)
1345 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1346 && swap_rtx_condition (insn))
1347 {
1348 rtx temp;
1349 temp = XEXP (pat_src, 0);
1350 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1351 XEXP (pat_src, 1) = temp;
1352
1353 src1 = get_true_reg (&XEXP (pat_src, 0));
1354 src2 = get_true_reg (&XEXP (pat_src, 1));
1355
1356 INSN_CODE (insn) = -1;
1357 }
1358
1359 /* We will fix any death note later. */
1360
1361 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1362
1363 if (STACK_REG_P (*src2))
1364 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1365 else
1366 src2_note = NULL_RTX;
1367
1368 emit_swap_insn (insn, regstack, *src1);
1369
1370 replace_reg (src1, FIRST_STACK_REG);
1371
1372 if (STACK_REG_P (*src2))
1373 replace_reg (src2, get_hard_regnum (regstack, *src2));
1374
1375 if (src1_note)
1376 {
1377 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1378 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1379 }
1380
1381 /* If the second operand dies, handle that. But if the operands are
1382 the same stack register, don't bother, because only one death is
1383 needed, and it was just handled. */
1384
1385 if (src2_note
1386 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1387 && REGNO (*src1) == REGNO (*src2)))
1388 {
1389 /* As a special case, two regs may die in this insn if src2 is
1390 next to top of stack and the top of stack also dies. Since
1391 we have already popped src1, "next to top of stack" is really
1392 at top (FIRST_STACK_REG) now. */
1393
1394 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1395 && src1_note)
1396 {
1397 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1398 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1399 }
1400 else
1401 {
1402 /* The 386 can only represent death of the first operand in
1403 the case handled above. In all other cases, emit a separate
1404 pop and remove the death note from here. */
1405
1406 /* link_cc0_insns (insn); */
1407
1408 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1409
1410 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1411 EMIT_AFTER);
1412 }
1413 }
1414 }
1415 \f
1416 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1417 is the current register layout. */
1418
1419 static void
1420 subst_stack_regs_pat (insn, regstack, pat)
1421 rtx insn;
1422 stack regstack;
1423 rtx pat;
1424 {
1425 rtx *dest, *src;
1426
1427 switch (GET_CODE (pat))
1428 {
1429 case USE:
1430 /* Deaths in USE insns can happen in non optimizing compilation.
1431 Handle them by popping the dying register. */
1432 src = get_true_reg (&XEXP (pat, 0));
1433 if (STACK_REG_P (*src)
1434 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1435 {
1436 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1437 return;
1438 }
1439 /* ??? Uninitialized USE should not happen. */
1440 else if (get_hard_regnum (regstack, *src) == -1)
1441 abort ();
1442 break;
1443
1444 case CLOBBER:
1445 {
1446 rtx note;
1447
1448 dest = get_true_reg (&XEXP (pat, 0));
1449 if (STACK_REG_P (*dest))
1450 {
1451 note = find_reg_note (insn, REG_DEAD, *dest);
1452
1453 if (pat != PATTERN (insn))
1454 {
1455 /* The fix_truncdi_1 pattern wants to be able to allocate
1456 it's own scratch register. It does this by clobbering
1457 an fp reg so that it is assured of an empty reg-stack
1458 register. If the register is live, kill it now.
1459 Remove the DEAD/UNUSED note so we don't try to kill it
1460 later too. */
1461
1462 if (note)
1463 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1464 else
1465 {
1466 note = find_reg_note (insn, REG_UNUSED, *dest);
1467 if (!note)
1468 abort ();
1469 }
1470 remove_note (insn, note);
1471 replace_reg (dest, LAST_STACK_REG);
1472 }
1473 else
1474 {
1475 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1476 indicates an uninitialized value. Because reload removed
1477 all other clobbers, this must be due to a function
1478 returning without a value. Load up a NaN. */
1479
1480 if (! note
1481 && get_hard_regnum (regstack, *dest) == -1)
1482 {
1483 pat = gen_rtx_SET (VOIDmode,
1484 FP_MODE_REG (REGNO (*dest), SFmode),
1485 nan);
1486 PATTERN (insn) = pat;
1487 move_for_stack_reg (insn, regstack, pat);
1488 }
1489 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1490 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1491 {
1492 pat = gen_rtx_SET (VOIDmode,
1493 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1494 nan);
1495 PATTERN (insn) = pat;
1496 move_for_stack_reg (insn, regstack, pat);
1497 }
1498 }
1499 }
1500 break;
1501 }
1502
1503 case SET:
1504 {
1505 rtx *src1 = (rtx *) 0, *src2;
1506 rtx src1_note, src2_note;
1507 rtx pat_src;
1508
1509 dest = get_true_reg (&SET_DEST (pat));
1510 src = get_true_reg (&SET_SRC (pat));
1511 pat_src = SET_SRC (pat);
1512
1513 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1514 if (STACK_REG_P (*src)
1515 || (STACK_REG_P (*dest)
1516 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1517 || GET_CODE (*src) == CONST_DOUBLE)))
1518 {
1519 move_for_stack_reg (insn, regstack, pat);
1520 break;
1521 }
1522
1523 switch (GET_CODE (pat_src))
1524 {
1525 case COMPARE:
1526 compare_for_stack_reg (insn, regstack, pat_src);
1527 break;
1528
1529 case CALL:
1530 {
1531 int count;
1532 for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1533 --count >= 0;)
1534 {
1535 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1536 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1537 }
1538 }
1539 replace_reg (dest, FIRST_STACK_REG);
1540 break;
1541
1542 case REG:
1543 /* This is a `tstM2' case. */
1544 if (*dest != cc0_rtx)
1545 abort ();
1546 src1 = src;
1547
1548 /* Fall through. */
1549
1550 case FLOAT_TRUNCATE:
1551 case SQRT:
1552 case ABS:
1553 case NEG:
1554 /* These insns only operate on the top of the stack. DEST might
1555 be cc0_rtx if we're processing a tstM pattern. Also, it's
1556 possible that the tstM case results in a REG_DEAD note on the
1557 source. */
1558
1559 if (src1 == 0)
1560 src1 = get_true_reg (&XEXP (pat_src, 0));
1561
1562 emit_swap_insn (insn, regstack, *src1);
1563
1564 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1565
1566 if (STACK_REG_P (*dest))
1567 replace_reg (dest, FIRST_STACK_REG);
1568
1569 if (src1_note)
1570 {
1571 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1572 regstack->top--;
1573 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1574 }
1575
1576 replace_reg (src1, FIRST_STACK_REG);
1577 break;
1578
1579 case MINUS:
1580 case DIV:
1581 /* On i386, reversed forms of subM3 and divM3 exist for
1582 MODE_FLOAT, so the same code that works for addM3 and mulM3
1583 can be used. */
1584 case MULT:
1585 case PLUS:
1586 /* These insns can accept the top of stack as a destination
1587 from a stack reg or mem, or can use the top of stack as a
1588 source and some other stack register (possibly top of stack)
1589 as a destination. */
1590
1591 src1 = get_true_reg (&XEXP (pat_src, 0));
1592 src2 = get_true_reg (&XEXP (pat_src, 1));
1593
1594 /* We will fix any death note later. */
1595
1596 if (STACK_REG_P (*src1))
1597 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1598 else
1599 src1_note = NULL_RTX;
1600 if (STACK_REG_P (*src2))
1601 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1602 else
1603 src2_note = NULL_RTX;
1604
1605 /* If either operand is not a stack register, then the dest
1606 must be top of stack. */
1607
1608 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1609 emit_swap_insn (insn, regstack, *dest);
1610 else
1611 {
1612 /* Both operands are REG. If neither operand is already
1613 at the top of stack, choose to make the one that is the dest
1614 the new top of stack. */
1615
1616 int src1_hard_regnum, src2_hard_regnum;
1617
1618 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1619 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1620 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1621 abort ();
1622
1623 if (src1_hard_regnum != FIRST_STACK_REG
1624 && src2_hard_regnum != FIRST_STACK_REG)
1625 emit_swap_insn (insn, regstack, *dest);
1626 }
1627
1628 if (STACK_REG_P (*src1))
1629 replace_reg (src1, get_hard_regnum (regstack, *src1));
1630 if (STACK_REG_P (*src2))
1631 replace_reg (src2, get_hard_regnum (regstack, *src2));
1632
1633 if (src1_note)
1634 {
1635 rtx src1_reg = XEXP (src1_note, 0);
1636
1637 /* If the register that dies is at the top of stack, then
1638 the destination is somewhere else - merely substitute it.
1639 But if the reg that dies is not at top of stack, then
1640 move the top of stack to the dead reg, as though we had
1641 done the insn and then a store-with-pop. */
1642
1643 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1644 {
1645 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1646 replace_reg (dest, get_hard_regnum (regstack, *dest));
1647 }
1648 else
1649 {
1650 int regno = get_hard_regnum (regstack, src1_reg);
1651
1652 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1653 replace_reg (dest, regno);
1654
1655 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1656 = regstack->reg[regstack->top];
1657 }
1658
1659 CLEAR_HARD_REG_BIT (regstack->reg_set,
1660 REGNO (XEXP (src1_note, 0)));
1661 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1662 regstack->top--;
1663 }
1664 else if (src2_note)
1665 {
1666 rtx src2_reg = XEXP (src2_note, 0);
1667 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1668 {
1669 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1670 replace_reg (dest, get_hard_regnum (regstack, *dest));
1671 }
1672 else
1673 {
1674 int regno = get_hard_regnum (regstack, src2_reg);
1675
1676 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1677 replace_reg (dest, regno);
1678
1679 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1680 = regstack->reg[regstack->top];
1681 }
1682
1683 CLEAR_HARD_REG_BIT (regstack->reg_set,
1684 REGNO (XEXP (src2_note, 0)));
1685 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1686 regstack->top--;
1687 }
1688 else
1689 {
1690 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1691 replace_reg (dest, get_hard_regnum (regstack, *dest));
1692 }
1693
1694 /* Keep operand 1 maching with destination. */
1695 if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
1696 && REG_P (*src1) && REG_P (*src2)
1697 && REGNO (*src1) != REGNO (*dest))
1698 {
1699 int tmp = REGNO (*src1);
1700 replace_reg (src1, REGNO (*src2));
1701 replace_reg (src2, tmp);
1702 }
1703 break;
1704
1705 case UNSPEC:
1706 switch (XINT (pat_src, 1))
1707 {
1708 case UNSPEC_SIN:
1709 case UNSPEC_COS:
1710 /* These insns only operate on the top of the stack. */
1711
1712 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1713
1714 emit_swap_insn (insn, regstack, *src1);
1715
1716 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1717
1718 if (STACK_REG_P (*dest))
1719 replace_reg (dest, FIRST_STACK_REG);
1720
1721 if (src1_note)
1722 {
1723 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1724 regstack->top--;
1725 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1726 }
1727
1728 replace_reg (src1, FIRST_STACK_REG);
1729 break;
1730
1731 case UNSPEC_SAHF:
1732 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1733 The combination matches the PPRO fcomi instruction. */
1734
1735 pat_src = XVECEXP (pat_src, 0, 0);
1736 if (GET_CODE (pat_src) != UNSPEC
1737 || XINT (pat_src, 1) != UNSPEC_FNSTSW)
1738 abort ();
1739 /* FALLTHRU */
1740
1741 case UNSPEC_FNSTSW:
1742 /* Combined fcomp+fnstsw generated for doing well with
1743 CSE. When optimizing this would have been broken
1744 up before now. */
1745
1746 pat_src = XVECEXP (pat_src, 0, 0);
1747 if (GET_CODE (pat_src) != COMPARE)
1748 abort ();
1749
1750 compare_for_stack_reg (insn, regstack, pat_src);
1751 break;
1752
1753 default:
1754 abort ();
1755 }
1756 break;
1757
1758 case IF_THEN_ELSE:
1759 /* This insn requires the top of stack to be the destination. */
1760
1761 src1 = get_true_reg (&XEXP (pat_src, 1));
1762 src2 = get_true_reg (&XEXP (pat_src, 2));
1763
1764 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1765 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1766
1767 /* If the comparison operator is an FP comparison operator,
1768 it is handled correctly by compare_for_stack_reg () who
1769 will move the destination to the top of stack. But if the
1770 comparison operator is not an FP comparison operator, we
1771 have to handle it here. */
1772 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1773 && REGNO (*dest) != regstack->reg[regstack->top])
1774 {
1775 /* In case one of operands is the top of stack and the operands
1776 dies, it is safe to make it the destination operand by
1777 reversing the direction of cmove and avoid fxch. */
1778 if ((REGNO (*src1) == regstack->reg[regstack->top]
1779 && src1_note)
1780 || (REGNO (*src2) == regstack->reg[regstack->top]
1781 && src2_note))
1782 {
1783 int idx1 = (get_hard_regnum (regstack, *src1)
1784 - FIRST_STACK_REG);
1785 int idx2 = (get_hard_regnum (regstack, *src2)
1786 - FIRST_STACK_REG);
1787
1788 /* Make reg-stack believe that the operands are already
1789 swapped on the stack */
1790 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1791 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1792
1793 /* Reverse condition to compensate the operand swap.
1794 i386 do have comparison always reversible. */
1795 PUT_CODE (XEXP (pat_src, 0),
1796 reversed_comparison_code (XEXP (pat_src, 0), insn));
1797 }
1798 else
1799 emit_swap_insn (insn, regstack, *dest);
1800 }
1801
1802 {
1803 rtx src_note [3];
1804 int i;
1805
1806 src_note[0] = 0;
1807 src_note[1] = src1_note;
1808 src_note[2] = src2_note;
1809
1810 if (STACK_REG_P (*src1))
1811 replace_reg (src1, get_hard_regnum (regstack, *src1));
1812 if (STACK_REG_P (*src2))
1813 replace_reg (src2, get_hard_regnum (regstack, *src2));
1814
1815 for (i = 1; i <= 2; i++)
1816 if (src_note [i])
1817 {
1818 int regno = REGNO (XEXP (src_note[i], 0));
1819
1820 /* If the register that dies is not at the top of
1821 stack, then move the top of stack to the dead reg */
1822 if (regno != regstack->reg[regstack->top])
1823 {
1824 remove_regno_note (insn, REG_DEAD, regno);
1825 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1826 EMIT_AFTER);
1827 }
1828 else
1829 /* Top of stack never dies, as it is the
1830 destination. */
1831 abort ();
1832 }
1833 }
1834
1835 /* Make dest the top of stack. Add dest to regstack if
1836 not present. */
1837 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1838 regstack->reg[++regstack->top] = REGNO (*dest);
1839 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1840 replace_reg (dest, FIRST_STACK_REG);
1841 break;
1842
1843 default:
1844 abort ();
1845 }
1846 break;
1847 }
1848
1849 default:
1850 break;
1851 }
1852 }
1853 \f
1854 /* Substitute hard regnums for any stack regs in INSN, which has
1855 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1856 before the insn, and is updated with changes made here.
1857
1858 There are several requirements and assumptions about the use of
1859 stack-like regs in asm statements. These rules are enforced by
1860 record_asm_stack_regs; see comments there for details. Any
1861 asm_operands left in the RTL at this point may be assume to meet the
1862 requirements, since record_asm_stack_regs removes any problem asm. */
1863
1864 static void
1865 subst_asm_stack_regs (insn, regstack)
1866 rtx insn;
1867 stack regstack;
1868 {
1869 rtx body = PATTERN (insn);
1870 int alt;
1871
1872 rtx *note_reg; /* Array of note contents */
1873 rtx **note_loc; /* Address of REG field of each note */
1874 enum reg_note *note_kind; /* The type of each note */
1875
1876 rtx *clobber_reg = 0;
1877 rtx **clobber_loc = 0;
1878
1879 struct stack_def temp_stack;
1880 int n_notes;
1881 int n_clobbers;
1882 rtx note;
1883 int i;
1884 int n_inputs, n_outputs;
1885
1886 if (! check_asm_stack_operands (insn))
1887 return;
1888
1889 /* Find out what the constraints required. If no constraint
1890 alternative matches, that is a compiler bug: we should have caught
1891 such an insn in check_asm_stack_operands. */
1892 extract_insn (insn);
1893 constrain_operands (1);
1894 alt = which_alternative;
1895
1896 preprocess_constraints ();
1897
1898 n_inputs = get_asm_operand_n_inputs (body);
1899 n_outputs = recog_data.n_operands - n_inputs;
1900
1901 if (alt < 0)
1902 abort ();
1903
1904 /* Strip SUBREGs here to make the following code simpler. */
1905 for (i = 0; i < recog_data.n_operands; i++)
1906 if (GET_CODE (recog_data.operand[i]) == SUBREG
1907 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
1908 {
1909 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1910 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1911 }
1912
1913 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1914
1915 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1916 i++;
1917
1918 note_reg = (rtx *) alloca (i * sizeof (rtx));
1919 note_loc = (rtx **) alloca (i * sizeof (rtx *));
1920 note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
1921
1922 n_notes = 0;
1923 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1924 {
1925 rtx reg = XEXP (note, 0);
1926 rtx *loc = & XEXP (note, 0);
1927
1928 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1929 {
1930 loc = & SUBREG_REG (reg);
1931 reg = SUBREG_REG (reg);
1932 }
1933
1934 if (STACK_REG_P (reg)
1935 && (REG_NOTE_KIND (note) == REG_DEAD
1936 || REG_NOTE_KIND (note) == REG_UNUSED))
1937 {
1938 note_reg[n_notes] = reg;
1939 note_loc[n_notes] = loc;
1940 note_kind[n_notes] = REG_NOTE_KIND (note);
1941 n_notes++;
1942 }
1943 }
1944
1945 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1946
1947 n_clobbers = 0;
1948
1949 if (GET_CODE (body) == PARALLEL)
1950 {
1951 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
1952 clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
1953
1954 for (i = 0; i < XVECLEN (body, 0); i++)
1955 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1956 {
1957 rtx clobber = XVECEXP (body, 0, i);
1958 rtx reg = XEXP (clobber, 0);
1959 rtx *loc = & XEXP (clobber, 0);
1960
1961 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1962 {
1963 loc = & SUBREG_REG (reg);
1964 reg = SUBREG_REG (reg);
1965 }
1966
1967 if (STACK_REG_P (reg))
1968 {
1969 clobber_reg[n_clobbers] = reg;
1970 clobber_loc[n_clobbers] = loc;
1971 n_clobbers++;
1972 }
1973 }
1974 }
1975
1976 temp_stack = *regstack;
1977
1978 /* Put the input regs into the desired place in TEMP_STACK. */
1979
1980 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1981 if (STACK_REG_P (recog_data.operand[i])
1982 && reg_class_subset_p (recog_op_alt[i][alt].class,
1983 FLOAT_REGS)
1984 && recog_op_alt[i][alt].class != FLOAT_REGS)
1985 {
1986 /* If an operand needs to be in a particular reg in
1987 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1988 these constraints are for single register classes, and
1989 reload guaranteed that operand[i] is already in that class,
1990 we can just use REGNO (recog_data.operand[i]) to know which
1991 actual reg this operand needs to be in. */
1992
1993 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
1994
1995 if (regno < 0)
1996 abort ();
1997
1998 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
1999 {
2000 /* recog_data.operand[i] is not in the right place. Find
2001 it and swap it with whatever is already in I's place.
2002 K is where recog_data.operand[i] is now. J is where it
2003 should be. */
2004 int j, k, temp;
2005
2006 k = temp_stack.top - (regno - FIRST_STACK_REG);
2007 j = (temp_stack.top
2008 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2009
2010 temp = temp_stack.reg[k];
2011 temp_stack.reg[k] = temp_stack.reg[j];
2012 temp_stack.reg[j] = temp;
2013 }
2014 }
2015
2016 /* Emit insns before INSN to make sure the reg-stack is in the right
2017 order. */
2018
2019 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2020
2021 /* Make the needed input register substitutions. Do death notes and
2022 clobbers too, because these are for inputs, not outputs. */
2023
2024 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2025 if (STACK_REG_P (recog_data.operand[i]))
2026 {
2027 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2028
2029 if (regnum < 0)
2030 abort ();
2031
2032 replace_reg (recog_data.operand_loc[i], regnum);
2033 }
2034
2035 for (i = 0; i < n_notes; i++)
2036 if (note_kind[i] == REG_DEAD)
2037 {
2038 int regnum = get_hard_regnum (regstack, note_reg[i]);
2039
2040 if (regnum < 0)
2041 abort ();
2042
2043 replace_reg (note_loc[i], regnum);
2044 }
2045
2046 for (i = 0; i < n_clobbers; i++)
2047 {
2048 /* It's OK for a CLOBBER to reference a reg that is not live.
2049 Don't try to replace it in that case. */
2050 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2051
2052 if (regnum >= 0)
2053 {
2054 /* Sigh - clobbers always have QImode. But replace_reg knows
2055 that these regs can't be MODE_INT and will abort. Just put
2056 the right reg there without calling replace_reg. */
2057
2058 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2059 }
2060 }
2061
2062 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2063
2064 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2065 if (STACK_REG_P (recog_data.operand[i]))
2066 {
2067 /* An input reg is implicitly popped if it is tied to an
2068 output, or if there is a CLOBBER for it. */
2069 int j;
2070
2071 for (j = 0; j < n_clobbers; j++)
2072 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2073 break;
2074
2075 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2076 {
2077 /* recog_data.operand[i] might not be at the top of stack.
2078 But that's OK, because all we need to do is pop the
2079 right number of regs off of the top of the reg-stack.
2080 record_asm_stack_regs guaranteed that all implicitly
2081 popped regs were grouped at the top of the reg-stack. */
2082
2083 CLEAR_HARD_REG_BIT (regstack->reg_set,
2084 regstack->reg[regstack->top]);
2085 regstack->top--;
2086 }
2087 }
2088
2089 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2090 Note that there isn't any need to substitute register numbers.
2091 ??? Explain why this is true. */
2092
2093 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2094 {
2095 /* See if there is an output for this hard reg. */
2096 int j;
2097
2098 for (j = 0; j < n_outputs; j++)
2099 if (STACK_REG_P (recog_data.operand[j])
2100 && REGNO (recog_data.operand[j]) == (unsigned) i)
2101 {
2102 regstack->reg[++regstack->top] = i;
2103 SET_HARD_REG_BIT (regstack->reg_set, i);
2104 break;
2105 }
2106 }
2107
2108 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2109 input that the asm didn't implicitly pop. If the asm didn't
2110 implicitly pop an input reg, that reg will still be live.
2111
2112 Note that we can't use find_regno_note here: the register numbers
2113 in the death notes have already been substituted. */
2114
2115 for (i = 0; i < n_outputs; i++)
2116 if (STACK_REG_P (recog_data.operand[i]))
2117 {
2118 int j;
2119
2120 for (j = 0; j < n_notes; j++)
2121 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2122 && note_kind[j] == REG_UNUSED)
2123 {
2124 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2125 EMIT_AFTER);
2126 break;
2127 }
2128 }
2129
2130 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2131 if (STACK_REG_P (recog_data.operand[i]))
2132 {
2133 int j;
2134
2135 for (j = 0; j < n_notes; j++)
2136 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2137 && note_kind[j] == REG_DEAD
2138 && TEST_HARD_REG_BIT (regstack->reg_set,
2139 REGNO (recog_data.operand[i])))
2140 {
2141 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2142 EMIT_AFTER);
2143 break;
2144 }
2145 }
2146 }
2147 \f
2148 /* Substitute stack hard reg numbers for stack virtual registers in
2149 INSN. Non-stack register numbers are not changed. REGSTACK is the
2150 current stack content. Insns may be emitted as needed to arrange the
2151 stack for the 387 based on the contents of the insn. */
2152
2153 static void
2154 subst_stack_regs (insn, regstack)
2155 rtx insn;
2156 stack regstack;
2157 {
2158 rtx *note_link, note;
2159 int i;
2160
2161 if (GET_CODE (insn) == CALL_INSN)
2162 {
2163 int top = regstack->top;
2164
2165 /* If there are any floating point parameters to be passed in
2166 registers for this call, make sure they are in the right
2167 order. */
2168
2169 if (top >= 0)
2170 {
2171 straighten_stack (PREV_INSN (insn), regstack);
2172
2173 /* Now mark the arguments as dead after the call. */
2174
2175 while (regstack->top >= 0)
2176 {
2177 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2178 regstack->top--;
2179 }
2180 }
2181 }
2182
2183 /* Do the actual substitution if any stack regs are mentioned.
2184 Since we only record whether entire insn mentions stack regs, and
2185 subst_stack_regs_pat only works for patterns that contain stack regs,
2186 we must check each pattern in a parallel here. A call_value_pop could
2187 fail otherwise. */
2188
2189 if (stack_regs_mentioned (insn))
2190 {
2191 int n_operands = asm_noperands (PATTERN (insn));
2192 if (n_operands >= 0)
2193 {
2194 /* This insn is an `asm' with operands. Decode the operands,
2195 decide how many are inputs, and do register substitution.
2196 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2197
2198 subst_asm_stack_regs (insn, regstack);
2199 return;
2200 }
2201
2202 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2203 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2204 {
2205 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2206 subst_stack_regs_pat (insn, regstack,
2207 XVECEXP (PATTERN (insn), 0, i));
2208 }
2209 else
2210 subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2211 }
2212
2213 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2214 REG_UNUSED will already have been dealt with, so just return. */
2215
2216 if (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn))
2217 return;
2218
2219 /* If there is a REG_UNUSED note on a stack register on this insn,
2220 the indicated reg must be popped. The REG_UNUSED note is removed,
2221 since the form of the newly emitted pop insn references the reg,
2222 making it no longer `unset'. */
2223
2224 note_link = &REG_NOTES (insn);
2225 for (note = *note_link; note; note = XEXP (note, 1))
2226 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2227 {
2228 *note_link = XEXP (note, 1);
2229 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2230 }
2231 else
2232 note_link = &XEXP (note, 1);
2233 }
2234 \f
2235 /* Change the organization of the stack so that it fits a new basic
2236 block. Some registers might have to be popped, but there can never be
2237 a register live in the new block that is not now live.
2238
2239 Insert any needed insns before or after INSN, as indicated by
2240 WHERE. OLD is the original stack layout, and NEW is the desired
2241 form. OLD is updated to reflect the code emitted, ie, it will be
2242 the same as NEW upon return.
2243
2244 This function will not preserve block_end[]. But that information
2245 is no longer needed once this has executed. */
2246
2247 static void
2248 change_stack (insn, old, new, where)
2249 rtx insn;
2250 stack old;
2251 stack new;
2252 enum emit_where where;
2253 {
2254 int reg;
2255 int update_end = 0;
2256
2257 /* We will be inserting new insns "backwards". If we are to insert
2258 after INSN, find the next insn, and insert before it. */
2259
2260 if (where == EMIT_AFTER)
2261 {
2262 if (current_block && current_block->end == insn)
2263 update_end = 1;
2264 insn = NEXT_INSN (insn);
2265 }
2266
2267 /* Pop any registers that are not needed in the new block. */
2268
2269 for (reg = old->top; reg >= 0; reg--)
2270 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2271 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2272 EMIT_BEFORE);
2273
2274 if (new->top == -2)
2275 {
2276 /* If the new block has never been processed, then it can inherit
2277 the old stack order. */
2278
2279 new->top = old->top;
2280 memcpy (new->reg, old->reg, sizeof (new->reg));
2281 }
2282 else
2283 {
2284 /* This block has been entered before, and we must match the
2285 previously selected stack order. */
2286
2287 /* By now, the only difference should be the order of the stack,
2288 not their depth or liveliness. */
2289
2290 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2291 abort ();
2292 win:
2293 if (old->top != new->top)
2294 abort ();
2295
2296 /* If the stack is not empty (new->top != -1), loop here emitting
2297 swaps until the stack is correct.
2298
2299 The worst case number of swaps emitted is N + 2, where N is the
2300 depth of the stack. In some cases, the reg at the top of
2301 stack may be correct, but swapped anyway in order to fix
2302 other regs. But since we never swap any other reg away from
2303 its correct slot, this algorithm will converge. */
2304
2305 if (new->top != -1)
2306 do
2307 {
2308 /* Swap the reg at top of stack into the position it is
2309 supposed to be in, until the correct top of stack appears. */
2310
2311 while (old->reg[old->top] != new->reg[new->top])
2312 {
2313 for (reg = new->top; reg >= 0; reg--)
2314 if (new->reg[reg] == old->reg[old->top])
2315 break;
2316
2317 if (reg == -1)
2318 abort ();
2319
2320 emit_swap_insn (insn, old,
2321 FP_MODE_REG (old->reg[reg], DFmode));
2322 }
2323
2324 /* See if any regs remain incorrect. If so, bring an
2325 incorrect reg to the top of stack, and let the while loop
2326 above fix it. */
2327
2328 for (reg = new->top; reg >= 0; reg--)
2329 if (new->reg[reg] != old->reg[reg])
2330 {
2331 emit_swap_insn (insn, old,
2332 FP_MODE_REG (old->reg[reg], DFmode));
2333 break;
2334 }
2335 } while (reg >= 0);
2336
2337 /* At this point there must be no differences. */
2338
2339 for (reg = old->top; reg >= 0; reg--)
2340 if (old->reg[reg] != new->reg[reg])
2341 abort ();
2342 }
2343
2344 if (update_end)
2345 current_block->end = PREV_INSN (insn);
2346 }
2347 \f
2348 /* Print stack configuration. */
2349
2350 static void
2351 print_stack (file, s)
2352 FILE *file;
2353 stack s;
2354 {
2355 if (! file)
2356 return;
2357
2358 if (s->top == -2)
2359 fprintf (file, "uninitialized\n");
2360 else if (s->top == -1)
2361 fprintf (file, "empty\n");
2362 else
2363 {
2364 int i;
2365 fputs ("[ ", file);
2366 for (i = 0; i <= s->top; ++i)
2367 fprintf (file, "%d ", s->reg[i]);
2368 fputs ("]\n", file);
2369 }
2370 }
2371 \f
2372 /* This function was doing life analysis. We now let the regular live
2373 code do it's job, so we only need to check some extra invariants
2374 that reg-stack expects. Primary among these being that all registers
2375 are initialized before use.
2376
2377 The function returns true when code was emitted to CFG edges and
2378 commit_edge_insertions needs to be called. */
2379
2380 static int
2381 convert_regs_entry ()
2382 {
2383 int inserted = 0;
2384 edge e;
2385 basic_block block;
2386
2387 FOR_EACH_BB_REVERSE (block)
2388 {
2389 block_info bi = BLOCK_INFO (block);
2390 int reg;
2391
2392 /* Set current register status at last instruction `uninitialized'. */
2393 bi->stack_in.top = -2;
2394
2395 /* Copy live_at_end and live_at_start into temporaries. */
2396 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2397 {
2398 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2399 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2400 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2401 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2402 }
2403 }
2404
2405 /* Load something into each stack register live at function entry.
2406 Such live registers can be caused by uninitialized variables or
2407 functions not returning values on all paths. In order to keep
2408 the push/pop code happy, and to not scrog the register stack, we
2409 must put something in these registers. Use a QNaN.
2410
2411 Note that we are insertting converted code here. This code is
2412 never seen by the convert_regs pass. */
2413
2414 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2415 {
2416 basic_block block = e->dest;
2417 block_info bi = BLOCK_INFO (block);
2418 int reg, top = -1;
2419
2420 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2421 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2422 {
2423 rtx init;
2424
2425 bi->stack_in.reg[++top] = reg;
2426
2427 init = gen_rtx_SET (VOIDmode,
2428 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2429 nan);
2430 insert_insn_on_edge (init, e);
2431 inserted = 1;
2432 }
2433
2434 bi->stack_in.top = top;
2435 }
2436
2437 return inserted;
2438 }
2439
2440 /* Construct the desired stack for function exit. This will either
2441 be `empty', or the function return value at top-of-stack. */
2442
2443 static void
2444 convert_regs_exit ()
2445 {
2446 int value_reg_low, value_reg_high;
2447 stack output_stack;
2448 rtx retvalue;
2449
2450 retvalue = stack_result (current_function_decl);
2451 value_reg_low = value_reg_high = -1;
2452 if (retvalue)
2453 {
2454 value_reg_low = REGNO (retvalue);
2455 value_reg_high = value_reg_low
2456 + HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2457 }
2458
2459 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2460 if (value_reg_low == -1)
2461 output_stack->top = -1;
2462 else
2463 {
2464 int reg;
2465
2466 output_stack->top = value_reg_high - value_reg_low;
2467 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2468 {
2469 output_stack->reg[reg - value_reg_low] = reg;
2470 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2471 }
2472 }
2473 }
2474
2475 /* Adjust the stack of this block on exit to match the stack of the
2476 target block, or copy stack info into the stack of the successor
2477 of the successor hasn't been processed yet. */
2478 static bool
2479 compensate_edge (e, file)
2480 edge e;
2481 FILE *file;
2482 {
2483 basic_block block = e->src, target = e->dest;
2484 block_info bi = BLOCK_INFO (block);
2485 struct stack_def regstack, tmpstack;
2486 stack target_stack = &BLOCK_INFO (target)->stack_in;
2487 int reg;
2488
2489 current_block = block;
2490 regstack = bi->stack_out;
2491 if (file)
2492 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2493
2494 if (target_stack->top == -2)
2495 {
2496 /* The target block hasn't had a stack order selected.
2497 We need merely ensure that no pops are needed. */
2498 for (reg = regstack.top; reg >= 0; --reg)
2499 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2500 break;
2501
2502 if (reg == -1)
2503 {
2504 if (file)
2505 fprintf (file, "new block; copying stack position\n");
2506
2507 /* change_stack kills values in regstack. */
2508 tmpstack = regstack;
2509
2510 change_stack (block->end, &tmpstack, target_stack, EMIT_AFTER);
2511 return false;
2512 }
2513
2514 if (file)
2515 fprintf (file, "new block; pops needed\n");
2516 }
2517 else
2518 {
2519 if (target_stack->top == regstack.top)
2520 {
2521 for (reg = target_stack->top; reg >= 0; --reg)
2522 if (target_stack->reg[reg] != regstack.reg[reg])
2523 break;
2524
2525 if (reg == -1)
2526 {
2527 if (file)
2528 fprintf (file, "no changes needed\n");
2529 return false;
2530 }
2531 }
2532
2533 if (file)
2534 {
2535 fprintf (file, "correcting stack to ");
2536 print_stack (file, target_stack);
2537 }
2538 }
2539
2540 /* Care for non-call EH edges specially. The normal return path have
2541 values in registers. These will be popped en masse by the unwind
2542 library. */
2543 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2544 target_stack->top = -1;
2545
2546 /* Other calls may appear to have values live in st(0), but the
2547 abnormal return path will not have actually loaded the values. */
2548 else if (e->flags & EDGE_ABNORMAL_CALL)
2549 {
2550 /* Assert that the lifetimes are as we expect -- one value
2551 live at st(0) on the end of the source block, and no
2552 values live at the beginning of the destination block. */
2553 HARD_REG_SET tmp;
2554
2555 CLEAR_HARD_REG_SET (tmp);
2556 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2557 abort ();
2558 eh1:
2559
2560 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2561 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2562 abort ();
2563 eh2:
2564
2565 target_stack->top = -1;
2566 }
2567
2568 /* It is better to output directly to the end of the block
2569 instead of to the edge, because emit_swap can do minimal
2570 insn scheduling. We can do this when there is only one
2571 edge out, and it is not abnormal. */
2572 else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2573 {
2574 /* change_stack kills values in regstack. */
2575 tmpstack = regstack;
2576
2577 change_stack (block->end, &tmpstack, target_stack,
2578 (GET_CODE (block->end) == JUMP_INSN
2579 ? EMIT_BEFORE : EMIT_AFTER));
2580 }
2581 else
2582 {
2583 rtx seq, after;
2584
2585 /* We don't support abnormal edges. Global takes care to
2586 avoid any live register across them, so we should never
2587 have to insert instructions on such edges. */
2588 if (e->flags & EDGE_ABNORMAL)
2589 abort ();
2590
2591 current_block = NULL;
2592 start_sequence ();
2593
2594 /* ??? change_stack needs some point to emit insns after.
2595 Also needed to keep gen_sequence from returning a
2596 pattern as opposed to a sequence, which would lose
2597 REG_DEAD notes. */
2598 after = emit_note (NULL, NOTE_INSN_DELETED);
2599
2600 tmpstack = regstack;
2601 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2602
2603 seq = gen_sequence ();
2604 end_sequence ();
2605
2606 insert_insn_on_edge (seq, e);
2607 return true;
2608 }
2609 return false;
2610 }
2611
2612 /* Convert stack register references in one block. */
2613
2614 static int
2615 convert_regs_1 (file, block)
2616 FILE *file;
2617 basic_block block;
2618 {
2619 struct stack_def regstack;
2620 block_info bi = BLOCK_INFO (block);
2621 int inserted, reg;
2622 rtx insn, next;
2623 edge e, beste = NULL;
2624
2625 inserted = 0;
2626
2627 /* Find the edge we will copy stack from. It should be the most frequent
2628 one as it will get cheapest after compensation code is generated,
2629 if multiple such exists, take one with largest count, prefer critical
2630 one (as splitting critical edges is more expensive), or one with lowest
2631 index, to avoid random changes with different orders of the edges. */
2632 for (e = block->pred; e ; e = e->pred_next)
2633 {
2634 if (e->flags & EDGE_DFS_BACK)
2635 ;
2636 else if (! beste)
2637 beste = e;
2638 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2639 beste = e;
2640 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2641 ;
2642 else if (beste->count < e->count)
2643 beste = e;
2644 else if (beste->count > e->count)
2645 ;
2646 else if ((EDGE_CRITICAL_P (e) != 0)
2647 != (EDGE_CRITICAL_P (beste) != 0))
2648 {
2649 if (EDGE_CRITICAL_P (e))
2650 beste = e;
2651 }
2652 else if (e->src->index < beste->src->index)
2653 beste = e;
2654 }
2655
2656 /* Entry block does have stack already initialized. */
2657 if (bi->stack_in.top == -2)
2658 inserted |= compensate_edge (beste, file);
2659 else
2660 beste = NULL;
2661
2662 current_block = block;
2663
2664 if (file)
2665 {
2666 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2667 print_stack (file, &bi->stack_in);
2668 }
2669
2670 /* Process all insns in this block. Keep track of NEXT so that we
2671 don't process insns emitted while substituting in INSN. */
2672 next = block->head;
2673 regstack = bi->stack_in;
2674 do
2675 {
2676 insn = next;
2677 next = NEXT_INSN (insn);
2678
2679 /* Ensure we have not missed a block boundary. */
2680 if (next == NULL)
2681 abort ();
2682 if (insn == block->end)
2683 next = NULL;
2684
2685 /* Don't bother processing unless there is a stack reg
2686 mentioned or if it's a CALL_INSN. */
2687 if (stack_regs_mentioned (insn)
2688 || GET_CODE (insn) == CALL_INSN)
2689 {
2690 if (file)
2691 {
2692 fprintf (file, " insn %d input stack: ",
2693 INSN_UID (insn));
2694 print_stack (file, &regstack);
2695 }
2696 subst_stack_regs (insn, &regstack);
2697 }
2698 }
2699 while (next);
2700
2701 if (file)
2702 {
2703 fprintf (file, "Expected live registers [");
2704 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2705 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2706 fprintf (file, " %d", reg);
2707 fprintf (file, " ]\nOutput stack: ");
2708 print_stack (file, &regstack);
2709 }
2710
2711 insn = block->end;
2712 if (GET_CODE (insn) == JUMP_INSN)
2713 insn = PREV_INSN (insn);
2714
2715 /* If the function is declared to return a value, but it returns one
2716 in only some cases, some registers might come live here. Emit
2717 necessary moves for them. */
2718
2719 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2720 {
2721 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2722 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2723 {
2724 rtx set;
2725
2726 if (file)
2727 {
2728 fprintf (file, "Emitting insn initializing reg %d\n",
2729 reg);
2730 }
2731
2732 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2733 nan);
2734 insn = emit_insn_after (set, insn);
2735 subst_stack_regs (insn, &regstack);
2736 }
2737 }
2738
2739 /* Something failed if the stack lives don't match. */
2740 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2741 abort ();
2742 win:
2743 bi->stack_out = regstack;
2744
2745 /* Compensate the back edges, as those wasn't visited yet. */
2746 for (e = block->succ; e ; e = e->succ_next)
2747 {
2748 if (e->flags & EDGE_DFS_BACK
2749 || (e->dest == EXIT_BLOCK_PTR))
2750 {
2751 if (!BLOCK_INFO (e->dest)->done
2752 && e->dest != block)
2753 abort ();
2754 inserted |= compensate_edge (e, file);
2755 }
2756 }
2757 for (e = block->pred; e ; e = e->pred_next)
2758 {
2759 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2760 && e->src != ENTRY_BLOCK_PTR)
2761 {
2762 if (!BLOCK_INFO (e->src)->done)
2763 abort ();
2764 inserted |= compensate_edge (e, file);
2765 }
2766 }
2767
2768 return inserted;
2769 }
2770
2771 /* Convert registers in all blocks reachable from BLOCK. */
2772
2773 static int
2774 convert_regs_2 (file, block)
2775 FILE *file;
2776 basic_block block;
2777 {
2778 basic_block *stack, *sp;
2779 int inserted;
2780
2781 stack = (basic_block *) xmalloc (sizeof (*stack) * n_basic_blocks);
2782 sp = stack;
2783
2784 *sp++ = block;
2785
2786 inserted = 0;
2787 do
2788 {
2789 edge e;
2790
2791 block = *--sp;
2792 inserted |= convert_regs_1 (file, block);
2793 BLOCK_INFO (block)->done = 1;
2794
2795 for (e = block->succ; e ; e = e->succ_next)
2796 if (! (e->flags & EDGE_DFS_BACK))
2797 {
2798 BLOCK_INFO (e->dest)->predecessors--;
2799 if (!BLOCK_INFO (e->dest)->predecessors)
2800 *sp++ = e->dest;
2801 }
2802 }
2803 while (sp != stack);
2804
2805 return inserted;
2806 }
2807
2808 /* Traverse all basic blocks in a function, converting the register
2809 references in each insn from the "flat" register file that gcc uses,
2810 to the stack-like registers the 387 uses. */
2811
2812 static int
2813 convert_regs (file)
2814 FILE *file;
2815 {
2816 int inserted;
2817 basic_block b;
2818 edge e;
2819
2820 /* Initialize uninitialized registers on function entry. */
2821 inserted = convert_regs_entry ();
2822
2823 /* Construct the desired stack for function exit. */
2824 convert_regs_exit ();
2825 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2826
2827 /* ??? Future: process inner loops first, and give them arbitrary
2828 initial stacks which emit_swap_insn can modify. This ought to
2829 prevent double fxch that aften appears at the head of a loop. */
2830
2831 /* Process all blocks reachable from all entry points. */
2832 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2833 inserted |= convert_regs_2 (file, e->dest);
2834
2835 /* ??? Process all unreachable blocks. Though there's no excuse
2836 for keeping these even when not optimizing. */
2837 FOR_EACH_BB (b)
2838 {
2839 block_info bi = BLOCK_INFO (b);
2840
2841 if (! bi->done)
2842 {
2843 int reg;
2844
2845 /* Create an arbitrary input stack. */
2846 bi->stack_in.top = -1;
2847 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2848 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2849 bi->stack_in.reg[++bi->stack_in.top] = reg;
2850
2851 inserted |= convert_regs_2 (file, b);
2852 }
2853 }
2854
2855 fixup_abnormal_edges ();
2856 if (inserted)
2857 commit_edge_insertions ();
2858
2859 if (file)
2860 fputc ('\n', file);
2861
2862 return inserted;
2863 }
2864 #endif /* STACK_REGS */