arm.c (ARM_ADDRESS_COST, [...]): Convert macros to inline functions...
[gcc.git] / gcc / regclass.c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "hard-reg-set.h"
32 #include "rtl.h"
33 #include "expr.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "output.h"
45 #include "ggc.h"
46 #include "timevar.h"
47
48 static void init_reg_sets_1 (void);
49 static void init_reg_autoinc (void);
50
51 /* If we have auto-increment or auto-decrement and we can have secondary
52 reloads, we are not allowed to use classes requiring secondary
53 reloads for pseudos auto-incremented since reload can't handle it. */
54
55 #ifdef AUTO_INC_DEC
56 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
57 #define FORBIDDEN_INC_DEC_CLASSES
58 #endif
59 #endif
60 \f
61 /* Register tables used by many passes. */
62
63 /* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
66 a pseudo reg for general use. */
67
68 char fixed_regs[FIRST_PSEUDO_REGISTER];
69
70 /* Same info as a HARD_REG_SET. */
71
72 HARD_REG_SET fixed_reg_set;
73
74 /* Data for initializing the above. */
75
76 static const char initial_fixed_regs[] = FIXED_REGISTERS;
77
78 /* Indexed by hard register number, contains 1 for registers
79 that are fixed use or are clobbered by function calls.
80 These are the registers that cannot be used to allocate
81 a pseudo reg whose life crosses calls unless we are able
82 to save/restore them across the calls. */
83
84 char call_used_regs[FIRST_PSEUDO_REGISTER];
85
86 /* Same info as a HARD_REG_SET. */
87
88 HARD_REG_SET call_used_reg_set;
89
90 /* HARD_REG_SET of registers we want to avoid caller saving. */
91 HARD_REG_SET losing_caller_save_reg_set;
92
93 /* Data for initializing the above. */
94
95 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
96
97 /* This is much like call_used_regs, except it doesn't have to
98 be a superset of FIXED_REGISTERS. This vector indicates
99 what is really call clobbered, and is used when defining
100 regs_invalidated_by_call. */
101
102 #ifdef CALL_REALLY_USED_REGISTERS
103 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
104 #endif
105
106 /* Indexed by hard register number, contains 1 for registers that are
107 fixed use or call used registers that cannot hold quantities across
108 calls even if we are willing to save and restore them. call fixed
109 registers are a subset of call used registers. */
110
111 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
112
113 /* The same info as a HARD_REG_SET. */
114
115 HARD_REG_SET call_fixed_reg_set;
116
117 /* Number of non-fixed registers. */
118
119 int n_non_fixed_regs;
120
121 /* Indexed by hard register number, contains 1 for registers
122 that are being used for global register decls.
123 These must be exempt from ordinary flow analysis
124 and are also considered fixed. */
125
126 char global_regs[FIRST_PSEUDO_REGISTER];
127
128 /* Contains 1 for registers that are set or clobbered by calls. */
129 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
130 for someone's bright idea to have call_used_regs strictly include
131 fixed_regs. Which leaves us guessing as to the set of fixed_regs
132 that are actually preserved. We know for sure that those associated
133 with the local stack frame are safe, but scant others. */
134
135 HARD_REG_SET regs_invalidated_by_call;
136
137 /* Table of register numbers in the order in which to try to use them. */
138 #ifdef REG_ALLOC_ORDER
139 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
140
141 /* The inverse of reg_alloc_order. */
142 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
143 #endif
144
145 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
146
147 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
148
149 /* The same information, but as an array of unsigned ints. We copy from
150 these unsigned ints to the table above. We do this so the tm.h files
151 do not have to be aware of the wordsize for machines with <= 64 regs.
152 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
153
154 #define N_REG_INTS \
155 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
156
157 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
158 = REG_CLASS_CONTENTS;
159
160 /* For each reg class, number of regs it contains. */
161
162 unsigned int reg_class_size[N_REG_CLASSES];
163
164 /* For each reg class, table listing all the containing classes. */
165
166 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
167
168 /* For each reg class, table listing all the classes contained in it. */
169
170 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
171
172 /* For each pair of reg classes,
173 a largest reg class contained in their union. */
174
175 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
176
177 /* For each pair of reg classes,
178 the smallest reg class containing their union. */
179
180 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
181
182 /* Array containing all of the register names. */
183
184 const char * reg_names[] = REGISTER_NAMES;
185
186 /* For each hard register, the widest mode object that it can contain.
187 This will be a MODE_INT mode if the register can hold integers. Otherwise
188 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
189 register. */
190
191 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
192
193 /* 1 if class does contain register of given mode. */
194
195 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
196
197 /* Maximum cost of moving from a register in one class to a register in
198 another class. Based on REGISTER_MOVE_COST. */
199
200 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
201
202 /* Similar, but here we don't have to move if the first index is a subset
203 of the second so in that case the cost is zero. */
204
205 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
206
207 /* Similar, but here we don't have to move if the first index is a superset
208 of the second so in that case the cost is zero. */
209
210 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
211
212 #ifdef FORBIDDEN_INC_DEC_CLASSES
213
214 /* These are the classes that regs which are auto-incremented or decremented
215 cannot be put in. */
216
217 static int forbidden_inc_dec_class[N_REG_CLASSES];
218
219 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
220 context. */
221
222 static char *in_inc_dec;
223
224 #endif /* FORBIDDEN_INC_DEC_CLASSES */
225
226 #ifdef CANNOT_CHANGE_MODE_CLASS
227 /* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
228 + mode. */
229 bitmap_head subregs_of_mode;
230 #endif
231
232 /* Sample MEM values for use by memory_move_secondary_cost. */
233
234 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
235
236 /* Linked list of reg_info structures allocated for reg_n_info array.
237 Grouping all of the allocated structures together in one lump
238 means only one call to bzero to clear them, rather than n smaller
239 calls. */
240 struct reg_info_data {
241 struct reg_info_data *next; /* next set of reg_info structures */
242 size_t min_index; /* minimum index # */
243 size_t max_index; /* maximum index # */
244 char used_p; /* nonzero if this has been used previously */
245 reg_info data[1]; /* beginning of the reg_info data */
246 };
247
248 static struct reg_info_data *reg_info_head;
249
250 /* No more global register variables may be declared; true once
251 regclass has been initialized. */
252
253 static int no_global_reg_vars = 0;
254
255
256 /* Function called only once to initialize the above data on reg usage.
257 Once this is done, various switches may override. */
258
259 void
260 init_reg_sets (void)
261 {
262 int i, j;
263
264 /* First copy the register information from the initial int form into
265 the regsets. */
266
267 for (i = 0; i < N_REG_CLASSES; i++)
268 {
269 CLEAR_HARD_REG_SET (reg_class_contents[i]);
270
271 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
272 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
273 if (int_reg_class_contents[i][j / 32]
274 & ((unsigned) 1 << (j % 32)))
275 SET_HARD_REG_BIT (reg_class_contents[i], j);
276 }
277
278 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
279 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
280 memset (global_regs, 0, sizeof global_regs);
281
282 /* Do any additional initialization regsets may need. */
283 INIT_ONCE_REG_SET ();
284
285 #ifdef REG_ALLOC_ORDER
286 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
287 inv_reg_alloc_order[reg_alloc_order[i]] = i;
288 #endif
289 }
290
291 /* After switches have been processed, which perhaps alter
292 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
293
294 static void
295 init_reg_sets_1 (void)
296 {
297 unsigned int i, j;
298 unsigned int /* enum machine_mode */ m;
299 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
300
301 /* This macro allows the fixed or call-used registers
302 and the register classes to depend on target flags. */
303
304 #ifdef CONDITIONAL_REGISTER_USAGE
305 CONDITIONAL_REGISTER_USAGE;
306 #endif
307
308 /* Compute number of hard regs in each class. */
309
310 memset (reg_class_size, 0, sizeof reg_class_size);
311 for (i = 0; i < N_REG_CLASSES; i++)
312 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
313 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
314 reg_class_size[i]++;
315
316 /* Initialize the table of subunions.
317 reg_class_subunion[I][J] gets the largest-numbered reg-class
318 that is contained in the union of classes I and J. */
319
320 for (i = 0; i < N_REG_CLASSES; i++)
321 {
322 for (j = 0; j < N_REG_CLASSES; j++)
323 {
324 #ifdef HARD_REG_SET
325 register /* Declare it register if it's a scalar. */
326 #endif
327 HARD_REG_SET c;
328 int k;
329
330 COPY_HARD_REG_SET (c, reg_class_contents[i]);
331 IOR_HARD_REG_SET (c, reg_class_contents[j]);
332 for (k = 0; k < N_REG_CLASSES; k++)
333 {
334 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
335 subclass1);
336 continue;
337
338 subclass1:
339 /* Keep the largest subclass. */ /* SPEE 900308 */
340 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
341 reg_class_contents[(int) reg_class_subunion[i][j]],
342 subclass2);
343 reg_class_subunion[i][j] = (enum reg_class) k;
344 subclass2:
345 ;
346 }
347 }
348 }
349
350 /* Initialize the table of superunions.
351 reg_class_superunion[I][J] gets the smallest-numbered reg-class
352 containing the union of classes I and J. */
353
354 for (i = 0; i < N_REG_CLASSES; i++)
355 {
356 for (j = 0; j < N_REG_CLASSES; j++)
357 {
358 #ifdef HARD_REG_SET
359 register /* Declare it register if it's a scalar. */
360 #endif
361 HARD_REG_SET c;
362 int k;
363
364 COPY_HARD_REG_SET (c, reg_class_contents[i]);
365 IOR_HARD_REG_SET (c, reg_class_contents[j]);
366 for (k = 0; k < N_REG_CLASSES; k++)
367 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
368
369 superclass:
370 reg_class_superunion[i][j] = (enum reg_class) k;
371 }
372 }
373
374 /* Initialize the tables of subclasses and superclasses of each reg class.
375 First clear the whole table, then add the elements as they are found. */
376
377 for (i = 0; i < N_REG_CLASSES; i++)
378 {
379 for (j = 0; j < N_REG_CLASSES; j++)
380 {
381 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
382 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
383 }
384 }
385
386 for (i = 0; i < N_REG_CLASSES; i++)
387 {
388 if (i == (int) NO_REGS)
389 continue;
390
391 for (j = i + 1; j < N_REG_CLASSES; j++)
392 {
393 enum reg_class *p;
394
395 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
396 subclass);
397 continue;
398 subclass:
399 /* Reg class I is a subclass of J.
400 Add J to the table of superclasses of I. */
401 p = &reg_class_superclasses[i][0];
402 while (*p != LIM_REG_CLASSES) p++;
403 *p = (enum reg_class) j;
404 /* Add I to the table of superclasses of J. */
405 p = &reg_class_subclasses[j][0];
406 while (*p != LIM_REG_CLASSES) p++;
407 *p = (enum reg_class) i;
408 }
409 }
410
411 /* Initialize "constant" tables. */
412
413 CLEAR_HARD_REG_SET (fixed_reg_set);
414 CLEAR_HARD_REG_SET (call_used_reg_set);
415 CLEAR_HARD_REG_SET (call_fixed_reg_set);
416 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
417
418 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
419
420 n_non_fixed_regs = 0;
421
422 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
423 {
424 if (fixed_regs[i])
425 SET_HARD_REG_BIT (fixed_reg_set, i);
426 else
427 n_non_fixed_regs++;
428
429 if (call_used_regs[i])
430 SET_HARD_REG_BIT (call_used_reg_set, i);
431 if (call_fixed_regs[i])
432 SET_HARD_REG_BIT (call_fixed_reg_set, i);
433 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
434 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
435
436 /* There are a couple of fixed registers that we know are safe to
437 exclude from being clobbered by calls:
438
439 The frame pointer is always preserved across calls. The arg pointer
440 is if it is fixed. The stack pointer usually is, unless
441 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
442 If we are generating PIC code, the PIC offset table register is
443 preserved across calls, though the target can override that. */
444
445 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
446 ;
447 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
448 else if (i == HARD_FRAME_POINTER_REGNUM)
449 ;
450 #endif
451 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
452 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
453 ;
454 #endif
455 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
456 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
457 ;
458 #endif
459 else if (0
460 #ifdef CALL_REALLY_USED_REGISTERS
461 || call_really_used_regs[i]
462 #else
463 || call_used_regs[i]
464 #endif
465 || global_regs[i])
466 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
467 }
468
469 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
470 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
471 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
472 for (i = 0; i < N_REG_CLASSES; i++)
473 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
474 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
475 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
476 && HARD_REGNO_MODE_OK (j, m))
477 {
478 contains_reg_of_mode [i][m] = 1;
479 allocatable_regs_of_mode [m] = 1;
480 break;
481 }
482
483 /* Initialize the move cost table. Find every subset of each class
484 and take the maximum cost of moving any subset to any other. */
485
486 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
487 if (allocatable_regs_of_mode [m])
488 {
489 for (i = 0; i < N_REG_CLASSES; i++)
490 if (contains_reg_of_mode [i][m])
491 for (j = 0; j < N_REG_CLASSES; j++)
492 {
493 int cost;
494 enum reg_class *p1, *p2;
495
496 if (!contains_reg_of_mode [j][m])
497 {
498 move_cost[m][i][j] = 65536;
499 may_move_in_cost[m][i][j] = 65536;
500 may_move_out_cost[m][i][j] = 65536;
501 }
502 else
503 {
504 cost = REGISTER_MOVE_COST (m, i, j);
505
506 for (p2 = &reg_class_subclasses[j][0];
507 *p2 != LIM_REG_CLASSES;
508 p2++)
509 if (*p2 != i && contains_reg_of_mode [*p2][m])
510 cost = MAX (cost, move_cost [m][i][*p2]);
511
512 for (p1 = &reg_class_subclasses[i][0];
513 *p1 != LIM_REG_CLASSES;
514 p1++)
515 if (*p1 != j && contains_reg_of_mode [*p1][m])
516 cost = MAX (cost, move_cost [m][*p1][j]);
517
518 move_cost[m][i][j] = cost;
519
520 if (reg_class_subset_p (i, j))
521 may_move_in_cost[m][i][j] = 0;
522 else
523 may_move_in_cost[m][i][j] = cost;
524
525 if (reg_class_subset_p (j, i))
526 may_move_out_cost[m][i][j] = 0;
527 else
528 may_move_out_cost[m][i][j] = cost;
529 }
530 }
531 else
532 for (j = 0; j < N_REG_CLASSES; j++)
533 {
534 move_cost[m][i][j] = 65536;
535 may_move_in_cost[m][i][j] = 65536;
536 may_move_out_cost[m][i][j] = 65536;
537 }
538 }
539 }
540
541 /* Compute the table of register modes.
542 These values are used to record death information for individual registers
543 (as opposed to a multi-register mode). */
544
545 void
546 init_reg_modes_once (void)
547 {
548 int i;
549
550 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
551 {
552 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
553
554 /* If we couldn't find a valid mode, just use the previous mode.
555 ??? One situation in which we need to do this is on the mips where
556 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
557 to use DF mode for the even registers and VOIDmode for the odd
558 (for the cpu models where the odd ones are inaccessible). */
559 if (reg_raw_mode[i] == VOIDmode)
560 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
561 }
562 }
563
564 /* Finish initializing the register sets and
565 initialize the register modes. */
566
567 void
568 init_regs (void)
569 {
570 /* This finishes what was started by init_reg_sets, but couldn't be done
571 until after register usage was specified. */
572 init_reg_sets_1 ();
573
574 init_reg_autoinc ();
575 }
576
577 /* Initialize some fake stack-frame MEM references for use in
578 memory_move_secondary_cost. */
579
580 void
581 init_fake_stack_mems (void)
582 {
583 #ifdef HAVE_SECONDARY_RELOADS
584 {
585 int i;
586
587 for (i = 0; i < MAX_MACHINE_MODE; i++)
588 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
589 }
590 #endif
591 }
592
593 #ifdef HAVE_SECONDARY_RELOADS
594
595 /* Compute extra cost of moving registers to/from memory due to reloads.
596 Only needed if secondary reloads are required for memory moves. */
597
598 int
599 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
600 {
601 enum reg_class altclass;
602 int partial_cost = 0;
603 /* We need a memory reference to feed to SECONDARY... macros. */
604 /* mem may be unused even if the SECONDARY_ macros are defined. */
605 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
606
607
608 if (in)
609 {
610 #ifdef SECONDARY_INPUT_RELOAD_CLASS
611 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
612 #else
613 altclass = NO_REGS;
614 #endif
615 }
616 else
617 {
618 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
619 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
620 #else
621 altclass = NO_REGS;
622 #endif
623 }
624
625 if (altclass == NO_REGS)
626 return 0;
627
628 if (in)
629 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
630 else
631 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
632
633 if (class == altclass)
634 /* This isn't simply a copy-to-temporary situation. Can't guess
635 what it is, so MEMORY_MOVE_COST really ought not to be calling
636 here in that case.
637
638 I'm tempted to put in an abort here, but returning this will
639 probably only give poor estimates, which is what we would've
640 had before this code anyways. */
641 return partial_cost;
642
643 /* Check if the secondary reload register will also need a
644 secondary reload. */
645 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
646 }
647 #endif
648
649 /* Return a machine mode that is legitimate for hard reg REGNO and large
650 enough to save nregs. If we can't find one, return VOIDmode.
651 If CALL_SAVED is true, only consider modes that are call saved. */
652
653 enum machine_mode
654 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
655 unsigned int nregs, bool call_saved)
656 {
657 unsigned int /* enum machine_mode */ m;
658 enum machine_mode found_mode = VOIDmode, mode;
659
660 /* We first look for the largest integer mode that can be validly
661 held in REGNO. If none, we look for the largest floating-point mode.
662 If we still didn't find a valid mode, try CCmode. */
663
664 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
665 mode != VOIDmode;
666 mode = GET_MODE_WIDER_MODE (mode))
667 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
668 && HARD_REGNO_MODE_OK (regno, mode)
669 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
670 found_mode = mode;
671
672 if (found_mode != VOIDmode)
673 return found_mode;
674
675 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
676 mode != VOIDmode;
677 mode = GET_MODE_WIDER_MODE (mode))
678 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
679 && HARD_REGNO_MODE_OK (regno, mode)
680 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
681 found_mode = mode;
682
683 if (found_mode != VOIDmode)
684 return found_mode;
685
686 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
687 mode != VOIDmode;
688 mode = GET_MODE_WIDER_MODE (mode))
689 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
690 && HARD_REGNO_MODE_OK (regno, mode)
691 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
692 found_mode = mode;
693
694 if (found_mode != VOIDmode)
695 return found_mode;
696
697 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
698 mode != VOIDmode;
699 mode = GET_MODE_WIDER_MODE (mode))
700 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
701 && HARD_REGNO_MODE_OK (regno, mode)
702 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
703 found_mode = mode;
704
705 if (found_mode != VOIDmode)
706 return found_mode;
707
708 /* Iterate over all of the CCmodes. */
709 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
710 {
711 mode = (enum machine_mode) m;
712 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
713 && HARD_REGNO_MODE_OK (regno, mode)
714 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
715 return mode;
716 }
717
718 /* We can't find a mode valid for this register. */
719 return VOIDmode;
720 }
721
722 /* Specify the usage characteristics of the register named NAME.
723 It should be a fixed register if FIXED and a
724 call-used register if CALL_USED. */
725
726 void
727 fix_register (const char *name, int fixed, int call_used)
728 {
729 int i;
730
731 /* Decode the name and update the primary form of
732 the register info. */
733
734 if ((i = decode_reg_name (name)) >= 0)
735 {
736 if ((i == STACK_POINTER_REGNUM
737 #ifdef HARD_FRAME_POINTER_REGNUM
738 || i == HARD_FRAME_POINTER_REGNUM
739 #else
740 || i == FRAME_POINTER_REGNUM
741 #endif
742 )
743 && (fixed == 0 || call_used == 0))
744 {
745 static const char * const what_option[2][2] = {
746 { "call-saved", "call-used" },
747 { "no-such-option", "fixed" }};
748
749 error ("can't use '%s' as a %s register", name,
750 what_option[fixed][call_used]);
751 }
752 else
753 {
754 fixed_regs[i] = fixed;
755 call_used_regs[i] = call_used;
756 #ifdef CALL_REALLY_USED_REGISTERS
757 if (fixed == 0)
758 call_really_used_regs[i] = call_used;
759 #endif
760 }
761 }
762 else
763 {
764 warning ("unknown register name: %s", name);
765 }
766 }
767
768 /* Mark register number I as global. */
769
770 void
771 globalize_reg (int i)
772 {
773 if (fixed_regs[i] == 0 && no_global_reg_vars)
774 error ("global register variable follows a function definition");
775
776 if (global_regs[i])
777 {
778 warning ("register used for two global register variables");
779 return;
780 }
781
782 if (call_used_regs[i] && ! fixed_regs[i])
783 warning ("call-clobbered register used for global register variable");
784
785 global_regs[i] = 1;
786
787 /* If already fixed, nothing else to do. */
788 if (fixed_regs[i])
789 return;
790
791 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
792 n_non_fixed_regs--;
793
794 SET_HARD_REG_BIT (fixed_reg_set, i);
795 SET_HARD_REG_BIT (call_used_reg_set, i);
796 SET_HARD_REG_BIT (call_fixed_reg_set, i);
797 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
798 }
799 \f
800 /* Now the data and code for the `regclass' pass, which happens
801 just before local-alloc. */
802
803 /* The `costs' struct records the cost of using a hard register of each class
804 and of using memory for each pseudo. We use this data to set up
805 register class preferences. */
806
807 struct costs
808 {
809 int cost[N_REG_CLASSES];
810 int mem_cost;
811 };
812
813 /* Structure used to record preferences of given pseudo. */
814 struct reg_pref
815 {
816 /* (enum reg_class) prefclass is the preferred class. */
817 char prefclass;
818
819 /* altclass is a register class that we should use for allocating
820 pseudo if no register in the preferred class is available.
821 If no register in this class is available, memory is preferred.
822
823 It might appear to be more general to have a bitmask of classes here,
824 but since it is recommended that there be a class corresponding to the
825 union of most major pair of classes, that generality is not required. */
826 char altclass;
827 };
828
829 /* Record the cost of each class for each pseudo. */
830
831 static struct costs *costs;
832
833 /* Initialized once, and used to initialize cost values for each insn. */
834
835 static struct costs init_cost;
836
837 /* Record preferences of each pseudo.
838 This is available after `regclass' is run. */
839
840 static struct reg_pref *reg_pref;
841
842 /* Allocated buffers for reg_pref. */
843
844 static struct reg_pref *reg_pref_buffer;
845
846 /* Frequency of executions of current insn. */
847
848 static int frequency;
849
850 static rtx scan_one_insn (rtx, int);
851 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
852 static void dump_regclass (FILE *);
853 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
854 const char **, rtx, struct costs *,
855 struct reg_pref *);
856 static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
857 static void record_address_regs (rtx, enum reg_class, int);
858 #ifdef FORBIDDEN_INC_DEC_CLASSES
859 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
860 #endif
861 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
862
863 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
864 This function is sometimes called before the info has been computed.
865 When that happens, just return GENERAL_REGS, which is innocuous. */
866
867 enum reg_class
868 reg_preferred_class (int regno)
869 {
870 if (reg_pref == 0)
871 return GENERAL_REGS;
872 return (enum reg_class) reg_pref[regno].prefclass;
873 }
874
875 enum reg_class
876 reg_alternate_class (int regno)
877 {
878 if (reg_pref == 0)
879 return ALL_REGS;
880
881 return (enum reg_class) reg_pref[regno].altclass;
882 }
883
884 /* Initialize some global data for this pass. */
885
886 void
887 regclass_init (void)
888 {
889 int i;
890
891 init_cost.mem_cost = 10000;
892 for (i = 0; i < N_REG_CLASSES; i++)
893 init_cost.cost[i] = 10000;
894
895 /* This prevents dump_flow_info from losing if called
896 before regclass is run. */
897 reg_pref = NULL;
898
899 /* No more global register variables may be declared. */
900 no_global_reg_vars = 1;
901 }
902 \f
903 /* Dump register costs. */
904 static void
905 dump_regclass (FILE *dump)
906 {
907 static const char *const reg_class_names[] = REG_CLASS_NAMES;
908 int i;
909 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
910 {
911 int /* enum reg_class */ class;
912 if (REG_N_REFS (i))
913 {
914 fprintf (dump, " Register %i costs:", i);
915 for (class = 0; class < (int) N_REG_CLASSES; class++)
916 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
917 #ifdef FORBIDDEN_INC_DEC_CLASSES
918 && (!in_inc_dec[i]
919 || !forbidden_inc_dec_class[(enum reg_class) class])
920 #endif
921 #ifdef CANNOT_CHANGE_MODE_CLASS
922 && ! invalid_mode_change_p (i, (enum reg_class) class,
923 PSEUDO_REGNO_MODE (i))
924 #endif
925 )
926 fprintf (dump, " %s:%i", reg_class_names[class],
927 costs[i].cost[(enum reg_class) class]);
928 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
929 }
930 }
931 }
932 \f
933
934 /* Calculate the costs of insn operands. */
935
936 static void
937 record_operand_costs (rtx insn, struct costs *op_costs,
938 struct reg_pref *reg_pref)
939 {
940 const char *constraints[MAX_RECOG_OPERANDS];
941 enum machine_mode modes[MAX_RECOG_OPERANDS];
942 int i;
943
944 for (i = 0; i < recog_data.n_operands; i++)
945 {
946 constraints[i] = recog_data.constraints[i];
947 modes[i] = recog_data.operand_mode[i];
948 }
949
950 /* If we get here, we are set up to record the costs of all the
951 operands for this insn. Start by initializing the costs.
952 Then handle any address registers. Finally record the desired
953 classes for any pseudos, doing it twice if some pair of
954 operands are commutative. */
955
956 for (i = 0; i < recog_data.n_operands; i++)
957 {
958 op_costs[i] = init_cost;
959
960 if (GET_CODE (recog_data.operand[i]) == SUBREG)
961 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
962
963 if (GET_CODE (recog_data.operand[i]) == MEM)
964 record_address_regs (XEXP (recog_data.operand[i], 0),
965 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
966 else if (constraints[i][0] == 'p'
967 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
968 record_address_regs (recog_data.operand[i],
969 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
970 }
971
972 /* Check for commutative in a separate loop so everything will
973 have been initialized. We must do this even if one operand
974 is a constant--see addsi3 in m68k.md. */
975
976 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
977 if (constraints[i][0] == '%')
978 {
979 const char *xconstraints[MAX_RECOG_OPERANDS];
980 int j;
981
982 /* Handle commutative operands by swapping the constraints.
983 We assume the modes are the same. */
984
985 for (j = 0; j < recog_data.n_operands; j++)
986 xconstraints[j] = constraints[j];
987
988 xconstraints[i] = constraints[i+1];
989 xconstraints[i+1] = constraints[i];
990 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
991 recog_data.operand, modes,
992 xconstraints, insn, op_costs, reg_pref);
993 }
994
995 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
996 recog_data.operand, modes,
997 constraints, insn, op_costs, reg_pref);
998 }
999 \f
1000 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1001 time it would save code to put a certain register in a certain class.
1002 PASS, when nonzero, inhibits some optimizations which need only be done
1003 once.
1004 Return the last insn processed, so that the scan can be continued from
1005 there. */
1006
1007 static rtx
1008 scan_one_insn (rtx insn, int pass)
1009 {
1010 enum rtx_code code = GET_CODE (insn);
1011 enum rtx_code pat_code;
1012 rtx set, note;
1013 int i, j;
1014 struct costs op_costs[MAX_RECOG_OPERANDS];
1015
1016 if (GET_RTX_CLASS (code) != 'i')
1017 return insn;
1018
1019 pat_code = GET_CODE (PATTERN (insn));
1020 if (pat_code == USE
1021 || pat_code == CLOBBER
1022 || pat_code == ASM_INPUT
1023 || pat_code == ADDR_VEC
1024 || pat_code == ADDR_DIFF_VEC)
1025 return insn;
1026
1027 set = single_set (insn);
1028 extract_insn (insn);
1029
1030 /* If this insn loads a parameter from its stack slot, then
1031 it represents a savings, rather than a cost, if the
1032 parameter is stored in memory. Record this fact. */
1033
1034 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1035 && GET_CODE (SET_SRC (set)) == MEM
1036 && (note = find_reg_note (insn, REG_EQUIV,
1037 NULL_RTX)) != 0
1038 && GET_CODE (XEXP (note, 0)) == MEM)
1039 {
1040 costs[REGNO (SET_DEST (set))].mem_cost
1041 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1042 GENERAL_REGS, 1)
1043 * frequency);
1044 record_address_regs (XEXP (SET_SRC (set), 0),
1045 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1046 return insn;
1047 }
1048
1049 /* Improve handling of two-address insns such as
1050 (set X (ashift CONST Y)) where CONST must be made to
1051 match X. Change it into two insns: (set X CONST)
1052 (set X (ashift X Y)). If we left this for reloading, it
1053 would probably get three insns because X and Y might go
1054 in the same place. This prevents X and Y from receiving
1055 the same hard reg.
1056
1057 We can only do this if the modes of operands 0 and 1
1058 (which might not be the same) are tieable and we only need
1059 do this during our first pass. */
1060
1061 if (pass == 0 && optimize
1062 && recog_data.n_operands >= 3
1063 && recog_data.constraints[1][0] == '0'
1064 && recog_data.constraints[1][1] == 0
1065 && CONSTANT_P (recog_data.operand[1])
1066 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1067 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1068 && GET_CODE (recog_data.operand[0]) == REG
1069 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1070 recog_data.operand_mode[1]))
1071 {
1072 rtx previnsn = prev_real_insn (insn);
1073 rtx dest
1074 = gen_lowpart (recog_data.operand_mode[1],
1075 recog_data.operand[0]);
1076 rtx newinsn
1077 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1078
1079 /* If this insn was the start of a basic block,
1080 include the new insn in that block.
1081 We need not check for code_label here;
1082 while a basic block can start with a code_label,
1083 INSN could not be at the beginning of that block. */
1084 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1085 {
1086 basic_block b;
1087 FOR_EACH_BB (b)
1088 if (insn == BB_HEAD (b))
1089 BB_HEAD (b) = newinsn;
1090 }
1091
1092 /* This makes one more setting of new insns's dest. */
1093 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1094 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1095 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1096
1097 *recog_data.operand_loc[1] = recog_data.operand[0];
1098 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1099 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1100 for (i = recog_data.n_dups - 1; i >= 0; i--)
1101 if (recog_data.dup_num[i] == 1)
1102 {
1103 *recog_data.dup_loc[i] = recog_data.operand[0];
1104 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1105 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1106 }
1107
1108 return PREV_INSN (newinsn);
1109 }
1110
1111 record_operand_costs (insn, op_costs, reg_pref);
1112
1113 /* Now add the cost for each operand to the total costs for
1114 its register. */
1115
1116 for (i = 0; i < recog_data.n_operands; i++)
1117 if (GET_CODE (recog_data.operand[i]) == REG
1118 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1119 {
1120 int regno = REGNO (recog_data.operand[i]);
1121 struct costs *p = &costs[regno], *q = &op_costs[i];
1122
1123 p->mem_cost += q->mem_cost * frequency;
1124 for (j = 0; j < N_REG_CLASSES; j++)
1125 p->cost[j] += q->cost[j] * frequency;
1126 }
1127
1128 return insn;
1129 }
1130
1131 /* Initialize information about which register classes can be used for
1132 pseudos that are auto-incremented or auto-decremented. */
1133
1134 static void
1135 init_reg_autoinc (void)
1136 {
1137 #ifdef FORBIDDEN_INC_DEC_CLASSES
1138 int i;
1139
1140 for (i = 0; i < N_REG_CLASSES; i++)
1141 {
1142 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1143 enum machine_mode m;
1144 int j;
1145
1146 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1147 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1148 {
1149 REGNO (r) = j;
1150
1151 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1152 m = (enum machine_mode) ((int) m + 1))
1153 if (HARD_REGNO_MODE_OK (j, m))
1154 {
1155 PUT_MODE (r, m);
1156
1157 /* If a register is not directly suitable for an
1158 auto-increment or decrement addressing mode and
1159 requires secondary reloads, disallow its class from
1160 being used in such addresses. */
1161
1162 if ((0
1163 #ifdef SECONDARY_RELOAD_CLASS
1164 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1165 != NO_REGS)
1166 #else
1167 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1168 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1169 != NO_REGS)
1170 #endif
1171 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1172 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1173 != NO_REGS)
1174 #endif
1175 #endif
1176 )
1177 && ! auto_inc_dec_reg_p (r, m))
1178 forbidden_inc_dec_class[i] = 1;
1179 }
1180 }
1181 }
1182 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1183 }
1184
1185 /* This is a pass of the compiler that scans all instructions
1186 and calculates the preferred class for each pseudo-register.
1187 This information can be accessed later by calling `reg_preferred_class'.
1188 This pass comes just before local register allocation. */
1189
1190 void
1191 regclass (rtx f, int nregs, FILE *dump)
1192 {
1193 rtx insn;
1194 int i;
1195 int pass;
1196
1197 init_recog ();
1198
1199 costs = xmalloc (nregs * sizeof (struct costs));
1200
1201 #ifdef FORBIDDEN_INC_DEC_CLASSES
1202
1203 in_inc_dec = xmalloc (nregs);
1204
1205 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1206
1207 /* Normally we scan the insns once and determine the best class to use for
1208 each register. However, if -fexpensive_optimizations are on, we do so
1209 twice, the second time using the tentative best classes to guide the
1210 selection. */
1211
1212 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1213 {
1214 basic_block bb;
1215
1216 if (dump)
1217 fprintf (dump, "\n\nPass %i\n\n",pass);
1218 /* Zero out our accumulation of the cost of each class for each reg. */
1219
1220 memset (costs, 0, nregs * sizeof (struct costs));
1221
1222 #ifdef FORBIDDEN_INC_DEC_CLASSES
1223 memset (in_inc_dec, 0, nregs);
1224 #endif
1225
1226 /* Scan the instructions and record each time it would
1227 save code to put a certain register in a certain class. */
1228
1229 if (!optimize)
1230 {
1231 frequency = REG_FREQ_MAX;
1232 for (insn = f; insn; insn = NEXT_INSN (insn))
1233 insn = scan_one_insn (insn, pass);
1234 }
1235 else
1236 FOR_EACH_BB (bb)
1237 {
1238 /* Show that an insn inside a loop is likely to be executed three
1239 times more than insns outside a loop. This is much more
1240 aggressive than the assumptions made elsewhere and is being
1241 tried as an experiment. */
1242 frequency = REG_FREQ_FROM_BB (bb);
1243 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1244 {
1245 insn = scan_one_insn (insn, pass);
1246 if (insn == BB_END (bb))
1247 break;
1248 }
1249 }
1250
1251 /* Now for each register look at how desirable each class is
1252 and find which class is preferred. Store that in
1253 `prefclass'. Record in `altclass' the largest register
1254 class any of whose registers is better than memory. */
1255
1256 if (pass == 0)
1257 reg_pref = reg_pref_buffer;
1258
1259 if (dump)
1260 {
1261 dump_regclass (dump);
1262 fprintf (dump,"\n");
1263 }
1264 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1265 {
1266 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1267 enum reg_class best = ALL_REGS, alt = NO_REGS;
1268 /* This is an enum reg_class, but we call it an int
1269 to save lots of casts. */
1270 int class;
1271 struct costs *p = &costs[i];
1272
1273 /* In non-optimizing compilation REG_N_REFS is not initialized
1274 yet. */
1275 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1276 continue;
1277
1278 for (class = (int) ALL_REGS - 1; class > 0; class--)
1279 {
1280 /* Ignore classes that are too small for this operand or
1281 invalid for an operand that was auto-incremented. */
1282 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1283 #ifdef FORBIDDEN_INC_DEC_CLASSES
1284 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1285 #endif
1286 #ifdef CANNOT_CHANGE_MODE_CLASS
1287 || invalid_mode_change_p (i, (enum reg_class) class,
1288 PSEUDO_REGNO_MODE (i))
1289 #endif
1290 )
1291 ;
1292 else if (p->cost[class] < best_cost)
1293 {
1294 best_cost = p->cost[class];
1295 best = (enum reg_class) class;
1296 }
1297 else if (p->cost[class] == best_cost)
1298 best = reg_class_subunion[(int) best][class];
1299 }
1300
1301 /* Record the alternate register class; i.e., a class for which
1302 every register in it is better than using memory. If adding a
1303 class would make a smaller class (i.e., no union of just those
1304 classes exists), skip that class. The major unions of classes
1305 should be provided as a register class. Don't do this if we
1306 will be doing it again later. */
1307
1308 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1309 for (class = 0; class < N_REG_CLASSES; class++)
1310 if (p->cost[class] < p->mem_cost
1311 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1312 > reg_class_size[(int) alt])
1313 #ifdef FORBIDDEN_INC_DEC_CLASSES
1314 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1315 #endif
1316 #ifdef CANNOT_CHANGE_MODE_CLASS
1317 && ! invalid_mode_change_p (i, (enum reg_class) class,
1318 PSEUDO_REGNO_MODE (i))
1319 #endif
1320 )
1321 alt = reg_class_subunion[(int) alt][class];
1322
1323 /* If we don't add any classes, nothing to try. */
1324 if (alt == best)
1325 alt = NO_REGS;
1326
1327 if (dump
1328 && (reg_pref[i].prefclass != (int) best
1329 || reg_pref[i].altclass != (int) alt))
1330 {
1331 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1332 fprintf (dump, " Register %i", i);
1333 if (alt == ALL_REGS || best == ALL_REGS)
1334 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1335 else if (alt == NO_REGS)
1336 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1337 else
1338 fprintf (dump, " pref %s, else %s\n",
1339 reg_class_names[(int) best],
1340 reg_class_names[(int) alt]);
1341 }
1342
1343 /* We cast to (int) because (char) hits bugs in some compilers. */
1344 reg_pref[i].prefclass = (int) best;
1345 reg_pref[i].altclass = (int) alt;
1346 }
1347 }
1348
1349 #ifdef FORBIDDEN_INC_DEC_CLASSES
1350 free (in_inc_dec);
1351 #endif
1352 free (costs);
1353 }
1354 \f
1355 /* Record the cost of using memory or registers of various classes for
1356 the operands in INSN.
1357
1358 N_ALTS is the number of alternatives.
1359
1360 N_OPS is the number of operands.
1361
1362 OPS is an array of the operands.
1363
1364 MODES are the modes of the operands, in case any are VOIDmode.
1365
1366 CONSTRAINTS are the constraints to use for the operands. This array
1367 is modified by this procedure.
1368
1369 This procedure works alternative by alternative. For each alternative
1370 we assume that we will be able to allocate all pseudos to their ideal
1371 register class and calculate the cost of using that alternative. Then
1372 we compute for each operand that is a pseudo-register, the cost of
1373 having the pseudo allocated to each register class and using it in that
1374 alternative. To this cost is added the cost of the alternative.
1375
1376 The cost of each class for this insn is its lowest cost among all the
1377 alternatives. */
1378
1379 static void
1380 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1381 enum machine_mode *modes, const char **constraints,
1382 rtx insn, struct costs *op_costs,
1383 struct reg_pref *reg_pref)
1384 {
1385 int alt;
1386 int i, j;
1387 rtx set;
1388
1389 /* Process each alternative, each time minimizing an operand's cost with
1390 the cost for each operand in that alternative. */
1391
1392 for (alt = 0; alt < n_alts; alt++)
1393 {
1394 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1395 int alt_fail = 0;
1396 int alt_cost = 0;
1397 enum reg_class classes[MAX_RECOG_OPERANDS];
1398 int allows_mem[MAX_RECOG_OPERANDS];
1399 int class;
1400
1401 for (i = 0; i < n_ops; i++)
1402 {
1403 const char *p = constraints[i];
1404 rtx op = ops[i];
1405 enum machine_mode mode = modes[i];
1406 int allows_addr = 0;
1407 int win = 0;
1408 unsigned char c;
1409
1410 /* Initially show we know nothing about the register class. */
1411 classes[i] = NO_REGS;
1412 allows_mem[i] = 0;
1413
1414 /* If this operand has no constraints at all, we can conclude
1415 nothing about it since anything is valid. */
1416
1417 if (*p == 0)
1418 {
1419 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1420 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1421
1422 continue;
1423 }
1424
1425 /* If this alternative is only relevant when this operand
1426 matches a previous operand, we do different things depending
1427 on whether this operand is a pseudo-reg or not. We must process
1428 any modifiers for the operand before we can make this test. */
1429
1430 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1431 p++;
1432
1433 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1434 {
1435 /* Copy class and whether memory is allowed from the matching
1436 alternative. Then perform any needed cost computations
1437 and/or adjustments. */
1438 j = p[0] - '0';
1439 classes[i] = classes[j];
1440 allows_mem[i] = allows_mem[j];
1441
1442 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1443 {
1444 /* If this matches the other operand, we have no added
1445 cost and we win. */
1446 if (rtx_equal_p (ops[j], op))
1447 win = 1;
1448
1449 /* If we can put the other operand into a register, add to
1450 the cost of this alternative the cost to copy this
1451 operand to the register used for the other operand. */
1452
1453 else if (classes[j] != NO_REGS)
1454 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1455 }
1456 else if (GET_CODE (ops[j]) != REG
1457 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1458 {
1459 /* This op is a pseudo but the one it matches is not. */
1460
1461 /* If we can't put the other operand into a register, this
1462 alternative can't be used. */
1463
1464 if (classes[j] == NO_REGS)
1465 alt_fail = 1;
1466
1467 /* Otherwise, add to the cost of this alternative the cost
1468 to copy the other operand to the register used for this
1469 operand. */
1470
1471 else
1472 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1473 }
1474 else
1475 {
1476 /* The costs of this operand are not the same as the other
1477 operand since move costs are not symmetric. Moreover,
1478 if we cannot tie them, this alternative needs to do a
1479 copy, which is one instruction. */
1480
1481 struct costs *pp = &this_op_costs[i];
1482
1483 for (class = 0; class < N_REG_CLASSES; class++)
1484 pp->cost[class]
1485 = ((recog_data.operand_type[i] != OP_OUT
1486 ? may_move_in_cost[mode][class][(int) classes[i]]
1487 : 0)
1488 + (recog_data.operand_type[i] != OP_IN
1489 ? may_move_out_cost[mode][(int) classes[i]][class]
1490 : 0));
1491
1492 /* If the alternative actually allows memory, make things
1493 a bit cheaper since we won't need an extra insn to
1494 load it. */
1495
1496 pp->mem_cost
1497 = ((recog_data.operand_type[i] != OP_IN
1498 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1499 : 0)
1500 + (recog_data.operand_type[i] != OP_OUT
1501 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1502 : 0) - allows_mem[i]);
1503
1504 /* If we have assigned a class to this register in our
1505 first pass, add a cost to this alternative corresponding
1506 to what we would add if this register were not in the
1507 appropriate class. */
1508
1509 if (reg_pref)
1510 alt_cost
1511 += (may_move_in_cost[mode]
1512 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1513 [(int) classes[i]]);
1514
1515 if (REGNO (ops[i]) != REGNO (ops[j])
1516 && ! find_reg_note (insn, REG_DEAD, op))
1517 alt_cost += 2;
1518
1519 /* This is in place of ordinary cost computation
1520 for this operand, so skip to the end of the
1521 alternative (should be just one character). */
1522 while (*p && *p++ != ',')
1523 ;
1524
1525 constraints[i] = p;
1526 continue;
1527 }
1528 }
1529
1530 /* Scan all the constraint letters. See if the operand matches
1531 any of the constraints. Collect the valid register classes
1532 and see if this operand accepts memory. */
1533
1534 while ((c = *p))
1535 {
1536 switch (c)
1537 {
1538 case ',':
1539 break;
1540 case '*':
1541 /* Ignore the next letter for this pass. */
1542 c = *++p;
1543 break;
1544
1545 case '?':
1546 alt_cost += 2;
1547 case '!': case '#': case '&':
1548 case '0': case '1': case '2': case '3': case '4':
1549 case '5': case '6': case '7': case '8': case '9':
1550 break;
1551
1552 case 'p':
1553 allows_addr = 1;
1554 win = address_operand (op, GET_MODE (op));
1555 /* We know this operand is an address, so we want it to be
1556 allocated to a register that can be the base of an
1557 address, ie BASE_REG_CLASS. */
1558 classes[i]
1559 = reg_class_subunion[(int) classes[i]]
1560 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1561 break;
1562
1563 case 'm': case 'o': case 'V':
1564 /* It doesn't seem worth distinguishing between offsettable
1565 and non-offsettable addresses here. */
1566 allows_mem[i] = 1;
1567 if (GET_CODE (op) == MEM)
1568 win = 1;
1569 break;
1570
1571 case '<':
1572 if (GET_CODE (op) == MEM
1573 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1574 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1575 win = 1;
1576 break;
1577
1578 case '>':
1579 if (GET_CODE (op) == MEM
1580 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1581 || GET_CODE (XEXP (op, 0)) == POST_INC))
1582 win = 1;
1583 break;
1584
1585 case 'E':
1586 case 'F':
1587 if (GET_CODE (op) == CONST_DOUBLE
1588 || (GET_CODE (op) == CONST_VECTOR
1589 && (GET_MODE_CLASS (GET_MODE (op))
1590 == MODE_VECTOR_FLOAT)))
1591 win = 1;
1592 break;
1593
1594 case 'G':
1595 case 'H':
1596 if (GET_CODE (op) == CONST_DOUBLE
1597 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1598 win = 1;
1599 break;
1600
1601 case 's':
1602 if (GET_CODE (op) == CONST_INT
1603 || (GET_CODE (op) == CONST_DOUBLE
1604 && GET_MODE (op) == VOIDmode))
1605 break;
1606 case 'i':
1607 if (CONSTANT_P (op)
1608 #ifdef LEGITIMATE_PIC_OPERAND_P
1609 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1610 #endif
1611 )
1612 win = 1;
1613 break;
1614
1615 case 'n':
1616 if (GET_CODE (op) == CONST_INT
1617 || (GET_CODE (op) == CONST_DOUBLE
1618 && GET_MODE (op) == VOIDmode))
1619 win = 1;
1620 break;
1621
1622 case 'I':
1623 case 'J':
1624 case 'K':
1625 case 'L':
1626 case 'M':
1627 case 'N':
1628 case 'O':
1629 case 'P':
1630 if (GET_CODE (op) == CONST_INT
1631 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1632 win = 1;
1633 break;
1634
1635 case 'X':
1636 win = 1;
1637 break;
1638
1639 case 'g':
1640 if (GET_CODE (op) == MEM
1641 || (CONSTANT_P (op)
1642 #ifdef LEGITIMATE_PIC_OPERAND_P
1643 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1644 #endif
1645 ))
1646 win = 1;
1647 allows_mem[i] = 1;
1648 case 'r':
1649 classes[i]
1650 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1651 break;
1652
1653 default:
1654 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1655 classes[i]
1656 = reg_class_subunion[(int) classes[i]]
1657 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1658 #ifdef EXTRA_CONSTRAINT_STR
1659 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1660 win = 1;
1661
1662 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1663 {
1664 /* Every MEM can be reloaded to fit. */
1665 allows_mem[i] = 1;
1666 if (GET_CODE (op) == MEM)
1667 win = 1;
1668 }
1669 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1670 {
1671 /* Every address can be reloaded to fit. */
1672 allows_addr = 1;
1673 if (address_operand (op, GET_MODE (op)))
1674 win = 1;
1675 /* We know this operand is an address, so we want it to
1676 be allocated to a register that can be the base of an
1677 address, ie BASE_REG_CLASS. */
1678 classes[i]
1679 = reg_class_subunion[(int) classes[i]]
1680 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1681 }
1682 #endif
1683 break;
1684 }
1685 p += CONSTRAINT_LEN (c, p);
1686 if (c == ',')
1687 break;
1688 }
1689
1690 constraints[i] = p;
1691
1692 /* How we account for this operand now depends on whether it is a
1693 pseudo register or not. If it is, we first check if any
1694 register classes are valid. If not, we ignore this alternative,
1695 since we want to assume that all pseudos get allocated for
1696 register preferencing. If some register class is valid, compute
1697 the costs of moving the pseudo into that class. */
1698
1699 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1700 {
1701 if (classes[i] == NO_REGS)
1702 {
1703 /* We must always fail if the operand is a REG, but
1704 we did not find a suitable class.
1705
1706 Otherwise we may perform an uninitialized read
1707 from this_op_costs after the `continue' statement
1708 below. */
1709 alt_fail = 1;
1710 }
1711 else
1712 {
1713 struct costs *pp = &this_op_costs[i];
1714
1715 for (class = 0; class < N_REG_CLASSES; class++)
1716 pp->cost[class]
1717 = ((recog_data.operand_type[i] != OP_OUT
1718 ? may_move_in_cost[mode][class][(int) classes[i]]
1719 : 0)
1720 + (recog_data.operand_type[i] != OP_IN
1721 ? may_move_out_cost[mode][(int) classes[i]][class]
1722 : 0));
1723
1724 /* If the alternative actually allows memory, make things
1725 a bit cheaper since we won't need an extra insn to
1726 load it. */
1727
1728 pp->mem_cost
1729 = ((recog_data.operand_type[i] != OP_IN
1730 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1731 : 0)
1732 + (recog_data.operand_type[i] != OP_OUT
1733 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1734 : 0) - allows_mem[i]);
1735
1736 /* If we have assigned a class to this register in our
1737 first pass, add a cost to this alternative corresponding
1738 to what we would add if this register were not in the
1739 appropriate class. */
1740
1741 if (reg_pref)
1742 alt_cost
1743 += (may_move_in_cost[mode]
1744 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1745 [(int) classes[i]]);
1746 }
1747 }
1748
1749 /* Otherwise, if this alternative wins, either because we
1750 have already determined that or if we have a hard register of
1751 the proper class, there is no cost for this alternative. */
1752
1753 else if (win
1754 || (GET_CODE (op) == REG
1755 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1756 ;
1757
1758 /* If registers are valid, the cost of this alternative includes
1759 copying the object to and/or from a register. */
1760
1761 else if (classes[i] != NO_REGS)
1762 {
1763 if (recog_data.operand_type[i] != OP_OUT)
1764 alt_cost += copy_cost (op, mode, classes[i], 1);
1765
1766 if (recog_data.operand_type[i] != OP_IN)
1767 alt_cost += copy_cost (op, mode, classes[i], 0);
1768 }
1769
1770 /* The only other way this alternative can be used is if this is a
1771 constant that could be placed into memory. */
1772
1773 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1774 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1775 else
1776 alt_fail = 1;
1777 }
1778
1779 if (alt_fail)
1780 continue;
1781
1782 /* Finally, update the costs with the information we've calculated
1783 about this alternative. */
1784
1785 for (i = 0; i < n_ops; i++)
1786 if (GET_CODE (ops[i]) == REG
1787 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1788 {
1789 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1790 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1791
1792 pp->mem_cost = MIN (pp->mem_cost,
1793 (qq->mem_cost + alt_cost) * scale);
1794
1795 for (class = 0; class < N_REG_CLASSES; class++)
1796 pp->cost[class] = MIN (pp->cost[class],
1797 (qq->cost[class] + alt_cost) * scale);
1798 }
1799 }
1800
1801 /* If this insn is a single set copying operand 1 to operand 0
1802 and one operand is a pseudo with the other a hard reg or a pseudo
1803 that prefers a register that is in its own register class then
1804 we may want to adjust the cost of that register class to -1.
1805
1806 Avoid the adjustment if the source does not die to avoid stressing of
1807 register allocator by preferrencing two colliding registers into single
1808 class.
1809
1810 Also avoid the adjustment if a copy between registers of the class
1811 is expensive (ten times the cost of a default copy is considered
1812 arbitrarily expensive). This avoids losing when the preferred class
1813 is very expensive as the source of a copy instruction. */
1814
1815 if ((set = single_set (insn)) != 0
1816 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1817 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1818 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1819 for (i = 0; i <= 1; i++)
1820 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1821 {
1822 unsigned int regno = REGNO (ops[!i]);
1823 enum machine_mode mode = GET_MODE (ops[!i]);
1824 int class;
1825 unsigned int nr;
1826
1827 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1828 {
1829 enum reg_class pref = reg_pref[regno].prefclass;
1830
1831 if ((reg_class_size[(unsigned char) pref]
1832 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1833 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1834 op_costs[i].cost[(unsigned char) pref] = -1;
1835 }
1836 else if (regno < FIRST_PSEUDO_REGISTER)
1837 for (class = 0; class < N_REG_CLASSES; class++)
1838 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1839 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1840 {
1841 if (reg_class_size[class] == 1)
1842 op_costs[i].cost[class] = -1;
1843 else
1844 {
1845 for (nr = 0; nr < (unsigned) HARD_REGNO_NREGS (regno, mode); nr++)
1846 {
1847 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1848 regno + nr))
1849 break;
1850 }
1851
1852 if (nr == (unsigned) HARD_REGNO_NREGS (regno,mode))
1853 op_costs[i].cost[class] = -1;
1854 }
1855 }
1856 }
1857 }
1858 \f
1859 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1860 TO_P is zero) a register of class CLASS in mode MODE.
1861
1862 X must not be a pseudo. */
1863
1864 static int
1865 copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1866 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1867 {
1868 #ifdef HAVE_SECONDARY_RELOADS
1869 enum reg_class secondary_class = NO_REGS;
1870 #endif
1871
1872 /* If X is a SCRATCH, there is actually nothing to move since we are
1873 assuming optimal allocation. */
1874
1875 if (GET_CODE (x) == SCRATCH)
1876 return 0;
1877
1878 /* Get the class we will actually use for a reload. */
1879 class = PREFERRED_RELOAD_CLASS (x, class);
1880
1881 #ifdef HAVE_SECONDARY_RELOADS
1882 /* If we need a secondary reload (we assume here that we are using
1883 the secondary reload as an intermediate, not a scratch register), the
1884 cost is that to load the input into the intermediate register, then
1885 to copy them. We use a special value of TO_P to avoid recursion. */
1886
1887 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1888 if (to_p == 1)
1889 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1890 #endif
1891
1892 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1893 if (! to_p)
1894 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1895 #endif
1896
1897 if (secondary_class != NO_REGS)
1898 return (move_cost[mode][(int) secondary_class][(int) class]
1899 + copy_cost (x, mode, secondary_class, 2));
1900 #endif /* HAVE_SECONDARY_RELOADS */
1901
1902 /* For memory, use the memory move cost, for (hard) registers, use the
1903 cost to move between the register classes, and use 2 for everything
1904 else (constants). */
1905
1906 if (GET_CODE (x) == MEM || class == NO_REGS)
1907 return MEMORY_MOVE_COST (mode, class, to_p);
1908
1909 else if (GET_CODE (x) == REG)
1910 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1911
1912 else
1913 /* If this is a constant, we may eventually want to call rtx_cost here. */
1914 return COSTS_N_INSNS (1);
1915 }
1916 \f
1917 /* Record the pseudo registers we must reload into hard registers
1918 in a subexpression of a memory address, X.
1919
1920 CLASS is the class that the register needs to be in and is either
1921 BASE_REG_CLASS or INDEX_REG_CLASS.
1922
1923 SCALE is twice the amount to multiply the cost by (it is twice so we
1924 can represent half-cost adjustments). */
1925
1926 static void
1927 record_address_regs (rtx x, enum reg_class class, int scale)
1928 {
1929 enum rtx_code code = GET_CODE (x);
1930
1931 switch (code)
1932 {
1933 case CONST_INT:
1934 case CONST:
1935 case CC0:
1936 case PC:
1937 case SYMBOL_REF:
1938 case LABEL_REF:
1939 return;
1940
1941 case PLUS:
1942 /* When we have an address that is a sum,
1943 we must determine whether registers are "base" or "index" regs.
1944 If there is a sum of two registers, we must choose one to be
1945 the "base". Luckily, we can use the REG_POINTER to make a good
1946 choice most of the time. We only need to do this on machines
1947 that can have two registers in an address and where the base
1948 and index register classes are different.
1949
1950 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1951 that seems bogus since it should only be set when we are sure
1952 the register is being used as a pointer. */
1953
1954 {
1955 rtx arg0 = XEXP (x, 0);
1956 rtx arg1 = XEXP (x, 1);
1957 enum rtx_code code0 = GET_CODE (arg0);
1958 enum rtx_code code1 = GET_CODE (arg1);
1959
1960 /* Look inside subregs. */
1961 if (code0 == SUBREG)
1962 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1963 if (code1 == SUBREG)
1964 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1965
1966 /* If this machine only allows one register per address, it must
1967 be in the first operand. */
1968
1969 if (MAX_REGS_PER_ADDRESS == 1)
1970 record_address_regs (arg0, class, scale);
1971
1972 /* If index and base registers are the same on this machine, just
1973 record registers in any non-constant operands. We assume here,
1974 as well as in the tests below, that all addresses are in
1975 canonical form. */
1976
1977 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1978 {
1979 record_address_regs (arg0, class, scale);
1980 if (! CONSTANT_P (arg1))
1981 record_address_regs (arg1, class, scale);
1982 }
1983
1984 /* If the second operand is a constant integer, it doesn't change
1985 what class the first operand must be. */
1986
1987 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1988 record_address_regs (arg0, class, scale);
1989
1990 /* If the second operand is a symbolic constant, the first operand
1991 must be an index register. */
1992
1993 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1994 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1995
1996 /* If both operands are registers but one is already a hard register
1997 of index or base class, give the other the class that the hard
1998 register is not. */
1999
2000 #ifdef REG_OK_FOR_BASE_P
2001 else if (code0 == REG && code1 == REG
2002 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2003 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2004 record_address_regs (arg1,
2005 REG_OK_FOR_BASE_P (arg0)
2006 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2007 scale);
2008 else if (code0 == REG && code1 == REG
2009 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2010 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2011 record_address_regs (arg0,
2012 REG_OK_FOR_BASE_P (arg1)
2013 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2014 scale);
2015 #endif
2016
2017 /* If one operand is known to be a pointer, it must be the base
2018 with the other operand the index. Likewise if the other operand
2019 is a MULT. */
2020
2021 else if ((code0 == REG && REG_POINTER (arg0))
2022 || code1 == MULT)
2023 {
2024 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2025 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2026 }
2027 else if ((code1 == REG && REG_POINTER (arg1))
2028 || code0 == MULT)
2029 {
2030 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2031 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2032 }
2033
2034 /* Otherwise, count equal chances that each might be a base
2035 or index register. This case should be rare. */
2036
2037 else
2038 {
2039 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2040 scale / 2);
2041 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2042 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2043 scale / 2);
2044 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2045 }
2046 }
2047 break;
2048
2049 /* Double the importance of a pseudo register that is incremented
2050 or decremented, since it would take two extra insns
2051 if it ends up in the wrong place. */
2052 case POST_MODIFY:
2053 case PRE_MODIFY:
2054 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2055 2 * scale);
2056 if (REG_P (XEXP (XEXP (x, 1), 1)))
2057 record_address_regs (XEXP (XEXP (x, 1), 1),
2058 INDEX_REG_CLASS, 2 * scale);
2059 break;
2060
2061 case POST_INC:
2062 case PRE_INC:
2063 case POST_DEC:
2064 case PRE_DEC:
2065 /* Double the importance of a pseudo register that is incremented
2066 or decremented, since it would take two extra insns
2067 if it ends up in the wrong place. If the operand is a pseudo,
2068 show it is being used in an INC_DEC context. */
2069
2070 #ifdef FORBIDDEN_INC_DEC_CLASSES
2071 if (GET_CODE (XEXP (x, 0)) == REG
2072 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2073 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2074 #endif
2075
2076 record_address_regs (XEXP (x, 0), class, 2 * scale);
2077 break;
2078
2079 case REG:
2080 {
2081 struct costs *pp = &costs[REGNO (x)];
2082 int i;
2083
2084 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2085
2086 for (i = 0; i < N_REG_CLASSES; i++)
2087 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2088 }
2089 break;
2090
2091 default:
2092 {
2093 const char *fmt = GET_RTX_FORMAT (code);
2094 int i;
2095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2096 if (fmt[i] == 'e')
2097 record_address_regs (XEXP (x, i), class, scale);
2098 }
2099 }
2100 }
2101 \f
2102 #ifdef FORBIDDEN_INC_DEC_CLASSES
2103
2104 /* Return 1 if REG is valid as an auto-increment memory reference
2105 to an object of MODE. */
2106
2107 static int
2108 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2109 {
2110 if (HAVE_POST_INCREMENT
2111 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2112 return 1;
2113
2114 if (HAVE_POST_DECREMENT
2115 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2116 return 1;
2117
2118 if (HAVE_PRE_INCREMENT
2119 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2120 return 1;
2121
2122 if (HAVE_PRE_DECREMENT
2123 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2124 return 1;
2125
2126 return 0;
2127 }
2128 #endif
2129 \f
2130 static short *renumber;
2131 static size_t regno_allocated;
2132 static unsigned int reg_n_max;
2133
2134 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2135 reg_scan and flow_analysis that are indexed by the register number. If
2136 NEW_P is nonzero, initialize all of the registers, otherwise only
2137 initialize the new registers allocated. The same table is kept from
2138 function to function, only reallocating it when we need more room. If
2139 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2140
2141 void
2142 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2143 {
2144 size_t size_info;
2145 size_t size_renumber;
2146 size_t min = (new_p) ? 0 : reg_n_max;
2147 struct reg_info_data *reg_data;
2148
2149 if (num_regs > regno_allocated)
2150 {
2151 size_t old_allocated = regno_allocated;
2152
2153 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2154 size_renumber = regno_allocated * sizeof (short);
2155
2156 if (!reg_n_info)
2157 {
2158 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2159 renumber = xmalloc (size_renumber);
2160 reg_pref_buffer = xmalloc (regno_allocated
2161 * sizeof (struct reg_pref));
2162 }
2163
2164 else
2165 {
2166 VARRAY_GROW (reg_n_info, regno_allocated);
2167
2168 if (new_p) /* If we're zapping everything, no need to realloc. */
2169 {
2170 free ((char *) renumber);
2171 free ((char *) reg_pref);
2172 renumber = xmalloc (size_renumber);
2173 reg_pref_buffer = xmalloc (regno_allocated
2174 * sizeof (struct reg_pref));
2175 }
2176
2177 else
2178 {
2179 renumber = xrealloc (renumber, size_renumber);
2180 reg_pref_buffer = xrealloc (reg_pref_buffer,
2181 regno_allocated
2182 * sizeof (struct reg_pref));
2183 }
2184 }
2185
2186 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2187 + sizeof (struct reg_info_data) - sizeof (reg_info);
2188 reg_data = xcalloc (size_info, 1);
2189 reg_data->min_index = old_allocated;
2190 reg_data->max_index = regno_allocated - 1;
2191 reg_data->next = reg_info_head;
2192 reg_info_head = reg_data;
2193 }
2194
2195 reg_n_max = num_regs;
2196 if (min < num_regs)
2197 {
2198 /* Loop through each of the segments allocated for the actual
2199 reg_info pages, and set up the pointers, zero the pages, etc. */
2200 for (reg_data = reg_info_head;
2201 reg_data && reg_data->max_index >= min;
2202 reg_data = reg_data->next)
2203 {
2204 size_t min_index = reg_data->min_index;
2205 size_t max_index = reg_data->max_index;
2206 size_t max = MIN (max_index, num_regs);
2207 size_t local_min = min - min_index;
2208 size_t i;
2209
2210 if (reg_data->min_index > num_regs)
2211 continue;
2212
2213 if (min < min_index)
2214 local_min = 0;
2215 if (!reg_data->used_p) /* page just allocated with calloc */
2216 reg_data->used_p = 1; /* no need to zero */
2217 else
2218 memset (&reg_data->data[local_min], 0,
2219 sizeof (reg_info) * (max - min_index - local_min + 1));
2220
2221 for (i = min_index+local_min; i <= max; i++)
2222 {
2223 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2224 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2225 renumber[i] = -1;
2226 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2227 reg_pref_buffer[i].altclass = (char) NO_REGS;
2228 }
2229 }
2230 }
2231
2232 /* If {pref,alt}class have already been allocated, update the pointers to
2233 the newly realloced ones. */
2234 if (reg_pref)
2235 reg_pref = reg_pref_buffer;
2236
2237 if (renumber_p)
2238 reg_renumber = renumber;
2239
2240 /* Tell the regset code about the new number of registers. */
2241 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2242 }
2243
2244 /* Free up the space allocated by allocate_reg_info. */
2245 void
2246 free_reg_info (void)
2247 {
2248 if (reg_n_info)
2249 {
2250 struct reg_info_data *reg_data;
2251 struct reg_info_data *reg_next;
2252
2253 VARRAY_FREE (reg_n_info);
2254 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2255 {
2256 reg_next = reg_data->next;
2257 free ((char *) reg_data);
2258 }
2259
2260 free (reg_pref_buffer);
2261 reg_pref_buffer = (struct reg_pref *) 0;
2262 reg_info_head = (struct reg_info_data *) 0;
2263 renumber = (short *) 0;
2264 }
2265 regno_allocated = 0;
2266 reg_n_max = 0;
2267 }
2268 \f
2269 /* This is the `regscan' pass of the compiler, run just before cse
2270 and again just before loop.
2271
2272 It finds the first and last use of each pseudo-register
2273 and records them in the vectors regno_first_uid, regno_last_uid
2274 and counts the number of sets in the vector reg_n_sets.
2275
2276 REPEAT is nonzero the second time this is called. */
2277
2278 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2279 Always at least 3, since the combiner could put that many together
2280 and we want this to remain correct for all the remaining passes.
2281 This corresponds to the maximum number of times note_stores will call
2282 a function for any insn. */
2283
2284 int max_parallel;
2285
2286 /* Used as a temporary to record the largest number of registers in
2287 PARALLEL in a SET_DEST. This is added to max_parallel. */
2288
2289 static int max_set_parallel;
2290
2291 void
2292 reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
2293 {
2294 rtx insn;
2295
2296 timevar_push (TV_REG_SCAN);
2297
2298 allocate_reg_info (nregs, TRUE, FALSE);
2299 max_parallel = 3;
2300 max_set_parallel = 0;
2301
2302 for (insn = f; insn; insn = NEXT_INSN (insn))
2303 if (INSN_P (insn))
2304 {
2305 rtx pat = PATTERN (insn);
2306 if (GET_CODE (pat) == PARALLEL
2307 && XVECLEN (pat, 0) > max_parallel)
2308 max_parallel = XVECLEN (pat, 0);
2309 reg_scan_mark_refs (pat, insn, 0, 0);
2310
2311 if (REG_NOTES (insn))
2312 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2313 }
2314
2315 max_parallel += max_set_parallel;
2316
2317 timevar_pop (TV_REG_SCAN);
2318 }
2319
2320 /* Update 'regscan' information by looking at the insns
2321 from FIRST to LAST. Some new REGs have been created,
2322 and any REG with number greater than OLD_MAX_REGNO is
2323 such a REG. We only update information for those. */
2324
2325 void
2326 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2327 {
2328 rtx insn;
2329
2330 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2331
2332 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2333 if (INSN_P (insn))
2334 {
2335 rtx pat = PATTERN (insn);
2336 if (GET_CODE (pat) == PARALLEL
2337 && XVECLEN (pat, 0) > max_parallel)
2338 max_parallel = XVECLEN (pat, 0);
2339 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2340
2341 if (REG_NOTES (insn))
2342 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2343 }
2344 }
2345
2346 /* X is the expression to scan. INSN is the insn it appears in.
2347 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2348 We should only record information for REGs with numbers
2349 greater than or equal to MIN_REGNO. */
2350
2351 static void
2352 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2353 {
2354 enum rtx_code code;
2355 rtx dest;
2356 rtx note;
2357
2358 if (!x)
2359 return;
2360 code = GET_CODE (x);
2361 switch (code)
2362 {
2363 case CONST:
2364 case CONST_INT:
2365 case CONST_DOUBLE:
2366 case CONST_VECTOR:
2367 case CC0:
2368 case PC:
2369 case SYMBOL_REF:
2370 case LABEL_REF:
2371 case ADDR_VEC:
2372 case ADDR_DIFF_VEC:
2373 return;
2374
2375 case REG:
2376 {
2377 unsigned int regno = REGNO (x);
2378
2379 if (regno >= min_regno)
2380 {
2381 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2382 if (!note_flag)
2383 REGNO_LAST_UID (regno) = INSN_UID (insn);
2384 if (REGNO_FIRST_UID (regno) == 0)
2385 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2386 /* If we are called by reg_scan_update() (indicated by min_regno
2387 being set), we also need to update the reference count. */
2388 if (min_regno)
2389 REG_N_REFS (regno)++;
2390 }
2391 }
2392 break;
2393
2394 case EXPR_LIST:
2395 if (XEXP (x, 0))
2396 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2397 if (XEXP (x, 1))
2398 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2399 break;
2400
2401 case INSN_LIST:
2402 if (XEXP (x, 1))
2403 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2404 break;
2405
2406 case CLOBBER:
2407 {
2408 rtx reg = XEXP (x, 0);
2409 if (REG_P (reg)
2410 && REGNO (reg) >= min_regno)
2411 {
2412 REG_N_SETS (REGNO (reg))++;
2413 REG_N_REFS (REGNO (reg))++;
2414 }
2415 }
2416 break;
2417
2418 case SET:
2419 /* Count a set of the destination if it is a register. */
2420 for (dest = SET_DEST (x);
2421 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2422 || GET_CODE (dest) == ZERO_EXTEND;
2423 dest = XEXP (dest, 0))
2424 ;
2425
2426 /* For a PARALLEL, record the number of things (less the usual one for a
2427 SET) that are set. */
2428 if (GET_CODE (dest) == PARALLEL)
2429 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2430
2431 if (GET_CODE (dest) == REG
2432 && REGNO (dest) >= min_regno)
2433 {
2434 REG_N_SETS (REGNO (dest))++;
2435 REG_N_REFS (REGNO (dest))++;
2436 }
2437
2438 /* If this is setting a pseudo from another pseudo or the sum of a
2439 pseudo and a constant integer and the other pseudo is known to be
2440 a pointer, set the destination to be a pointer as well.
2441
2442 Likewise if it is setting the destination from an address or from a
2443 value equivalent to an address or to the sum of an address and
2444 something else.
2445
2446 But don't do any of this if the pseudo corresponds to a user
2447 variable since it should have already been set as a pointer based
2448 on the type. */
2449
2450 if (GET_CODE (SET_DEST (x)) == REG
2451 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2452 && REGNO (SET_DEST (x)) >= min_regno
2453 /* If the destination pseudo is set more than once, then other
2454 sets might not be to a pointer value (consider access to a
2455 union in two threads of control in the presence of global
2456 optimizations). So only set REG_POINTER on the destination
2457 pseudo if this is the only set of that pseudo. */
2458 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2459 && ! REG_USERVAR_P (SET_DEST (x))
2460 && ! REG_POINTER (SET_DEST (x))
2461 && ((GET_CODE (SET_SRC (x)) == REG
2462 && REG_POINTER (SET_SRC (x)))
2463 || ((GET_CODE (SET_SRC (x)) == PLUS
2464 || GET_CODE (SET_SRC (x)) == LO_SUM)
2465 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2466 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2467 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2468 || GET_CODE (SET_SRC (x)) == CONST
2469 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2470 || GET_CODE (SET_SRC (x)) == LABEL_REF
2471 || (GET_CODE (SET_SRC (x)) == HIGH
2472 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2473 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2474 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2475 || ((GET_CODE (SET_SRC (x)) == PLUS
2476 || GET_CODE (SET_SRC (x)) == LO_SUM)
2477 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2478 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2479 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2480 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2481 && (GET_CODE (XEXP (note, 0)) == CONST
2482 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2483 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2484 REG_POINTER (SET_DEST (x)) = 1;
2485
2486 /* If this is setting a register from a register or from a simple
2487 conversion of a register, propagate REG_EXPR. */
2488 if (GET_CODE (dest) == REG)
2489 {
2490 rtx src = SET_SRC (x);
2491
2492 while (GET_CODE (src) == SIGN_EXTEND
2493 || GET_CODE (src) == ZERO_EXTEND
2494 || GET_CODE (src) == TRUNCATE
2495 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2496 src = XEXP (src, 0);
2497
2498 if (!REG_ATTRS (dest) && REG_P (src))
2499 REG_ATTRS (dest) = REG_ATTRS (src);
2500 if (!REG_ATTRS (dest) && GET_CODE (src) == MEM)
2501 set_reg_attrs_from_mem (dest, src);
2502 }
2503
2504 /* ... fall through ... */
2505
2506 default:
2507 {
2508 const char *fmt = GET_RTX_FORMAT (code);
2509 int i;
2510 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2511 {
2512 if (fmt[i] == 'e')
2513 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2514 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2515 {
2516 int j;
2517 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2518 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2519 }
2520 }
2521 }
2522 }
2523 }
2524 \f
2525 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2526 is also in C2. */
2527
2528 int
2529 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2530 {
2531 if (c1 == c2) return 1;
2532
2533 if (c2 == ALL_REGS)
2534 win:
2535 return 1;
2536 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2537 reg_class_contents[(int) c2],
2538 win);
2539 return 0;
2540 }
2541
2542 /* Return nonzero if there is a register that is in both C1 and C2. */
2543
2544 int
2545 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2546 {
2547 #ifdef HARD_REG_SET
2548 register
2549 #endif
2550 HARD_REG_SET c;
2551
2552 if (c1 == c2) return 1;
2553
2554 if (c1 == ALL_REGS || c2 == ALL_REGS)
2555 return 1;
2556
2557 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2558 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2559
2560 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2561 return 1;
2562
2563 lose:
2564 return 0;
2565 }
2566
2567 /* Release any memory allocated by register sets. */
2568
2569 void
2570 regset_release_memory (void)
2571 {
2572 bitmap_release_memory ();
2573 }
2574
2575 #ifdef CANNOT_CHANGE_MODE_CLASS
2576 /* Set bits in *USED which correspond to registers which can't change
2577 their mode from FROM to any mode in which REGNO was encountered. */
2578
2579 void
2580 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2581 unsigned int regno)
2582 {
2583 enum machine_mode to;
2584 int n, i;
2585 int start = regno * MAX_MACHINE_MODE;
2586
2587 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2588 if (n >= MAX_MACHINE_MODE + start)
2589 return;
2590 to = n - start;
2591 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2592 if (! TEST_HARD_REG_BIT (*used, i)
2593 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2594 SET_HARD_REG_BIT (*used, i);
2595 );
2596 }
2597
2598 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2599 mode. */
2600
2601 bool
2602 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2603 enum machine_mode from_mode)
2604 {
2605 enum machine_mode to_mode;
2606 int n;
2607 int start = regno * MAX_MACHINE_MODE;
2608
2609 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2610 if (n >= MAX_MACHINE_MODE + start)
2611 return 0;
2612 to_mode = n - start;
2613 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
2614 return 1;
2615 );
2616 return 0;
2617 }
2618 #endif /* CANNOT_CHANGE_MODE_CLASS */
2619
2620 #include "gt-regclass.h"