tree.h (enum tree_code_class): Add tcc_vl_exp.
[gcc.git] / gcc / regclass.c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "function.h"
41 #include "insn-config.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "real.h"
45 #include "toplev.h"
46 #include "output.h"
47 #include "ggc.h"
48 #include "timevar.h"
49 #include "hashtab.h"
50 #include "target.h"
51
52 static void init_reg_sets_1 (void);
53 static void init_reg_autoinc (void);
54
55 /* If we have auto-increment or auto-decrement and we can have secondary
56 reloads, we are not allowed to use classes requiring secondary
57 reloads for pseudos auto-incremented since reload can't handle it. */
58 /* We leave it to target hooks to decide if we have secondary reloads, so
59 assume that we might have them. */
60 #if defined(AUTO_INC_DEC) /* */
61 #define FORBIDDEN_INC_DEC_CLASSES
62 #endif
63 \f
64 /* Register tables used by many passes. */
65
66 /* Indexed by hard register number, contains 1 for registers
67 that are fixed use (stack pointer, pc, frame pointer, etc.).
68 These are the registers that cannot be used to allocate
69 a pseudo reg for general use. */
70
71 char fixed_regs[FIRST_PSEUDO_REGISTER];
72
73 /* Same info as a HARD_REG_SET. */
74
75 HARD_REG_SET fixed_reg_set;
76
77 /* Data for initializing the above. */
78
79 static const char initial_fixed_regs[] = FIXED_REGISTERS;
80
81 /* Indexed by hard register number, contains 1 for registers
82 that are fixed use or are clobbered by function calls.
83 These are the registers that cannot be used to allocate
84 a pseudo reg whose life crosses calls unless we are able
85 to save/restore them across the calls. */
86
87 char call_used_regs[FIRST_PSEUDO_REGISTER];
88
89 /* Same info as a HARD_REG_SET. */
90
91 HARD_REG_SET call_used_reg_set;
92
93 /* HARD_REG_SET of registers we want to avoid caller saving. */
94 HARD_REG_SET losing_caller_save_reg_set;
95
96 /* Data for initializing the above. */
97
98 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
99
100 /* This is much like call_used_regs, except it doesn't have to
101 be a superset of FIXED_REGISTERS. This vector indicates
102 what is really call clobbered, and is used when defining
103 regs_invalidated_by_call. */
104
105 #ifdef CALL_REALLY_USED_REGISTERS
106 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
107 #endif
108
109 #ifdef CALL_REALLY_USED_REGISTERS
110 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
111 #else
112 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
113 #endif
114
115
116 /* Indexed by hard register number, contains 1 for registers that are
117 fixed use or call used registers that cannot hold quantities across
118 calls even if we are willing to save and restore them. call fixed
119 registers are a subset of call used registers. */
120
121 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
122
123 /* The same info as a HARD_REG_SET. */
124
125 HARD_REG_SET call_fixed_reg_set;
126
127 /* Indexed by hard register number, contains 1 for registers
128 that are being used for global register decls.
129 These must be exempt from ordinary flow analysis
130 and are also considered fixed. */
131
132 char global_regs[FIRST_PSEUDO_REGISTER];
133
134 /* Contains 1 for registers that are set or clobbered by calls. */
135 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
136 for someone's bright idea to have call_used_regs strictly include
137 fixed_regs. Which leaves us guessing as to the set of fixed_regs
138 that are actually preserved. We know for sure that those associated
139 with the local stack frame are safe, but scant others. */
140
141 HARD_REG_SET regs_invalidated_by_call;
142
143 /* Table of register numbers in the order in which to try to use them. */
144 #ifdef REG_ALLOC_ORDER
145 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
146
147 /* The inverse of reg_alloc_order. */
148 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
149 #endif
150
151 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
152
153 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
154
155 /* The same information, but as an array of unsigned ints. We copy from
156 these unsigned ints to the table above. We do this so the tm.h files
157 do not have to be aware of the wordsize for machines with <= 64 regs.
158 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
159
160 #define N_REG_INTS \
161 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
162
163 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
164 = REG_CLASS_CONTENTS;
165
166 /* For each reg class, number of regs it contains. */
167
168 unsigned int reg_class_size[N_REG_CLASSES];
169
170 /* For each reg class, table listing all the containing classes. */
171
172 static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
173
174 /* For each reg class, table listing all the classes contained in it. */
175
176 static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
177
178 /* For each pair of reg classes,
179 a largest reg class contained in their union. */
180
181 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
182
183 /* For each pair of reg classes,
184 the smallest reg class containing their union. */
185
186 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
187
188 /* Array containing all of the register names. */
189
190 const char * reg_names[] = REGISTER_NAMES;
191
192 /* Array containing all of the register class names. */
193
194 const char * reg_class_names[] = REG_CLASS_NAMES;
195
196 /* For each hard register, the widest mode object that it can contain.
197 This will be a MODE_INT mode if the register can hold integers. Otherwise
198 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
199 register. */
200
201 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
202
203 /* 1 if there is a register of given mode. */
204
205 bool have_regs_of_mode [MAX_MACHINE_MODE];
206
207 /* 1 if class does contain register of given mode. */
208
209 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
210
211 /* Maximum cost of moving from a register in one class to a register in
212 another class. Based on REGISTER_MOVE_COST. */
213
214 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
215
216 /* Similar, but here we don't have to move if the first index is a subset
217 of the second so in that case the cost is zero. */
218
219 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
220
221 /* Similar, but here we don't have to move if the first index is a superset
222 of the second so in that case the cost is zero. */
223
224 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
225
226 #ifdef FORBIDDEN_INC_DEC_CLASSES
227
228 /* These are the classes that regs which are auto-incremented or decremented
229 cannot be put in. */
230
231 static int forbidden_inc_dec_class[N_REG_CLASSES];
232
233 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
234 context. */
235
236 static char *in_inc_dec;
237
238 #endif /* FORBIDDEN_INC_DEC_CLASSES */
239
240 /* Sample MEM values for use by memory_move_secondary_cost. */
241
242 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
243
244 /* Linked list of reg_info structures allocated for reg_n_info array.
245 Grouping all of the allocated structures together in one lump
246 means only one call to bzero to clear them, rather than n smaller
247 calls. */
248 struct reg_info_data {
249 struct reg_info_data *next; /* next set of reg_info structures */
250 size_t min_index; /* minimum index # */
251 size_t max_index; /* maximum index # */
252 char used_p; /* nonzero if this has been used previously */
253 reg_info data[1]; /* beginning of the reg_info data */
254 };
255
256 static struct reg_info_data *reg_info_head;
257
258 /* No more global register variables may be declared; true once
259 regclass has been initialized. */
260
261 static int no_global_reg_vars = 0;
262
263 /* Specify number of hard registers given machine mode occupy. */
264 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
265
266 /* Function called only once to initialize the above data on reg usage.
267 Once this is done, various switches may override. */
268
269 void
270 init_reg_sets (void)
271 {
272 int i, j;
273
274 /* First copy the register information from the initial int form into
275 the regsets. */
276
277 for (i = 0; i < N_REG_CLASSES; i++)
278 {
279 CLEAR_HARD_REG_SET (reg_class_contents[i]);
280
281 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
282 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
283 if (int_reg_class_contents[i][j / 32]
284 & ((unsigned) 1 << (j % 32)))
285 SET_HARD_REG_BIT (reg_class_contents[i], j);
286 }
287
288 /* Sanity check: make sure the target macros FIXED_REGISTERS and
289 CALL_USED_REGISTERS had the right number of initializers. */
290 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
291 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
292
293 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
294 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
295 memset (global_regs, 0, sizeof global_regs);
296
297 #ifdef REG_ALLOC_ORDER
298 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
299 inv_reg_alloc_order[reg_alloc_order[i]] = i;
300 #endif
301 }
302
303 /* After switches have been processed, which perhaps alter
304 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
305
306 static void
307 init_reg_sets_1 (void)
308 {
309 unsigned int i, j;
310 unsigned int /* enum machine_mode */ m;
311
312 /* This macro allows the fixed or call-used registers
313 and the register classes to depend on target flags. */
314
315 #ifdef CONDITIONAL_REGISTER_USAGE
316 CONDITIONAL_REGISTER_USAGE;
317 #endif
318
319 /* Compute number of hard regs in each class. */
320
321 memset (reg_class_size, 0, sizeof reg_class_size);
322 for (i = 0; i < N_REG_CLASSES; i++)
323 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
324 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
325 reg_class_size[i]++;
326
327 /* Initialize the table of subunions.
328 reg_class_subunion[I][J] gets the largest-numbered reg-class
329 that is contained in the union of classes I and J. */
330
331 for (i = 0; i < N_REG_CLASSES; i++)
332 {
333 for (j = 0; j < N_REG_CLASSES; j++)
334 {
335 HARD_REG_SET c;
336 int k;
337
338 COPY_HARD_REG_SET (c, reg_class_contents[i]);
339 IOR_HARD_REG_SET (c, reg_class_contents[j]);
340 for (k = 0; k < N_REG_CLASSES; k++)
341 {
342 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
343 subclass1);
344 continue;
345
346 subclass1:
347 /* Keep the largest subclass. */ /* SPEE 900308 */
348 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
349 reg_class_contents[(int) reg_class_subunion[i][j]],
350 subclass2);
351 reg_class_subunion[i][j] = (enum reg_class) k;
352 subclass2:
353 ;
354 }
355 }
356 }
357
358 /* Initialize the table of superunions.
359 reg_class_superunion[I][J] gets the smallest-numbered reg-class
360 containing the union of classes I and J. */
361
362 for (i = 0; i < N_REG_CLASSES; i++)
363 {
364 for (j = 0; j < N_REG_CLASSES; j++)
365 {
366 HARD_REG_SET c;
367 int k;
368
369 COPY_HARD_REG_SET (c, reg_class_contents[i]);
370 IOR_HARD_REG_SET (c, reg_class_contents[j]);
371 for (k = 0; k < N_REG_CLASSES; k++)
372 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
373
374 superclass:
375 reg_class_superunion[i][j] = (enum reg_class) k;
376 }
377 }
378
379 /* Initialize the tables of subclasses and superclasses of each reg class.
380 First clear the whole table, then add the elements as they are found. */
381
382 for (i = 0; i < N_REG_CLASSES; i++)
383 {
384 for (j = 0; j < N_REG_CLASSES; j++)
385 {
386 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
387 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
388 }
389 }
390
391 for (i = 0; i < N_REG_CLASSES; i++)
392 {
393 if (i == (int) NO_REGS)
394 continue;
395
396 for (j = i + 1; j < N_REG_CLASSES; j++)
397 {
398 enum reg_class *p;
399
400 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
401 subclass);
402 continue;
403 subclass:
404 /* Reg class I is a subclass of J.
405 Add J to the table of superclasses of I. */
406 p = &reg_class_superclasses[i][0];
407 while (*p != LIM_REG_CLASSES) p++;
408 *p = (enum reg_class) j;
409 /* Add I to the table of superclasses of J. */
410 p = &reg_class_subclasses[j][0];
411 while (*p != LIM_REG_CLASSES) p++;
412 *p = (enum reg_class) i;
413 }
414 }
415
416 /* Initialize "constant" tables. */
417
418 CLEAR_HARD_REG_SET (fixed_reg_set);
419 CLEAR_HARD_REG_SET (call_used_reg_set);
420 CLEAR_HARD_REG_SET (call_fixed_reg_set);
421 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
422
423 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
424
425 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
426 {
427 /* call_used_regs must include fixed_regs. */
428 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
429 #ifdef CALL_REALLY_USED_REGISTERS
430 /* call_used_regs must include call_really_used_regs. */
431 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
432 #endif
433
434 if (fixed_regs[i])
435 SET_HARD_REG_BIT (fixed_reg_set, i);
436
437 if (call_used_regs[i])
438 SET_HARD_REG_BIT (call_used_reg_set, i);
439 if (call_fixed_regs[i])
440 SET_HARD_REG_BIT (call_fixed_reg_set, i);
441 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
442 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
443
444 /* There are a couple of fixed registers that we know are safe to
445 exclude from being clobbered by calls:
446
447 The frame pointer is always preserved across calls. The arg pointer
448 is if it is fixed. The stack pointer usually is, unless
449 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
450 If we are generating PIC code, the PIC offset table register is
451 preserved across calls, though the target can override that. */
452
453 if (i == STACK_POINTER_REGNUM)
454 ;
455 else if (global_regs[i])
456 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
457 else if (i == FRAME_POINTER_REGNUM)
458 ;
459 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
460 else if (i == HARD_FRAME_POINTER_REGNUM)
461 ;
462 #endif
463 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
464 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
465 ;
466 #endif
467 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
468 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
469 ;
470 #endif
471 else if (CALL_REALLY_USED_REGNO_P (i))
472 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
473 }
474
475 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
476 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
477 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
478 for (i = 0; i < N_REG_CLASSES; i++)
479 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
480 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
481 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
482 && HARD_REGNO_MODE_OK (j, m))
483 {
484 contains_reg_of_mode [i][m] = 1;
485 have_regs_of_mode [m] = 1;
486 break;
487 }
488
489 /* Initialize the move cost table. Find every subset of each class
490 and take the maximum cost of moving any subset to any other. */
491
492 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
493 if (have_regs_of_mode [m])
494 {
495 for (i = 0; i < N_REG_CLASSES; i++)
496 if (contains_reg_of_mode [i][m])
497 for (j = 0; j < N_REG_CLASSES; j++)
498 {
499 int cost;
500 enum reg_class *p1, *p2;
501
502 if (!contains_reg_of_mode [j][m])
503 {
504 move_cost[m][i][j] = 65536;
505 may_move_in_cost[m][i][j] = 65536;
506 may_move_out_cost[m][i][j] = 65536;
507 }
508 else
509 {
510 cost = REGISTER_MOVE_COST (m, i, j);
511
512 for (p2 = &reg_class_subclasses[j][0];
513 *p2 != LIM_REG_CLASSES;
514 p2++)
515 if (*p2 != i && contains_reg_of_mode [*p2][m])
516 cost = MAX (cost, move_cost [m][i][*p2]);
517
518 for (p1 = &reg_class_subclasses[i][0];
519 *p1 != LIM_REG_CLASSES;
520 p1++)
521 if (*p1 != j && contains_reg_of_mode [*p1][m])
522 cost = MAX (cost, move_cost [m][*p1][j]);
523
524 move_cost[m][i][j] = cost;
525
526 if (reg_class_subset_p (i, j))
527 may_move_in_cost[m][i][j] = 0;
528 else
529 may_move_in_cost[m][i][j] = cost;
530
531 if (reg_class_subset_p (j, i))
532 may_move_out_cost[m][i][j] = 0;
533 else
534 may_move_out_cost[m][i][j] = cost;
535 }
536 }
537 else
538 for (j = 0; j < N_REG_CLASSES; j++)
539 {
540 move_cost[m][i][j] = 65536;
541 may_move_in_cost[m][i][j] = 65536;
542 may_move_out_cost[m][i][j] = 65536;
543 }
544 }
545 }
546
547 /* Compute the table of register modes.
548 These values are used to record death information for individual registers
549 (as opposed to a multi-register mode). */
550
551 void
552 init_reg_modes_once (void)
553 {
554 int i, j;
555
556 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
557 for (j = 0; j < MAX_MACHINE_MODE; j++)
558 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
559
560 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
561 {
562 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
563
564 /* If we couldn't find a valid mode, just use the previous mode.
565 ??? One situation in which we need to do this is on the mips where
566 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
567 to use DF mode for the even registers and VOIDmode for the odd
568 (for the cpu models where the odd ones are inaccessible). */
569 if (reg_raw_mode[i] == VOIDmode)
570 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
571 }
572 }
573
574 /* Finish initializing the register sets and
575 initialize the register modes. */
576
577 void
578 init_regs (void)
579 {
580 /* This finishes what was started by init_reg_sets, but couldn't be done
581 until after register usage was specified. */
582 init_reg_sets_1 ();
583
584 init_reg_autoinc ();
585 }
586
587 /* Initialize some fake stack-frame MEM references for use in
588 memory_move_secondary_cost. */
589
590 void
591 init_fake_stack_mems (void)
592 {
593 {
594 int i;
595
596 for (i = 0; i < MAX_MACHINE_MODE; i++)
597 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
598 }
599 }
600
601
602 /* Compute extra cost of moving registers to/from memory due to reloads.
603 Only needed if secondary reloads are required for memory moves. */
604
605 int
606 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
607 {
608 enum reg_class altclass;
609 int partial_cost = 0;
610 /* We need a memory reference to feed to SECONDARY... macros. */
611 /* mem may be unused even if the SECONDARY_ macros are defined. */
612 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
613
614
615 altclass = secondary_reload_class (in ? 1 : 0, class, mode, mem);
616
617 if (altclass == NO_REGS)
618 return 0;
619
620 if (in)
621 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
622 else
623 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
624
625 if (class == altclass)
626 /* This isn't simply a copy-to-temporary situation. Can't guess
627 what it is, so MEMORY_MOVE_COST really ought not to be calling
628 here in that case.
629
630 I'm tempted to put in an assert here, but returning this will
631 probably only give poor estimates, which is what we would've
632 had before this code anyways. */
633 return partial_cost;
634
635 /* Check if the secondary reload register will also need a
636 secondary reload. */
637 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
638 }
639
640 /* Return a machine mode that is legitimate for hard reg REGNO and large
641 enough to save nregs. If we can't find one, return VOIDmode.
642 If CALL_SAVED is true, only consider modes that are call saved. */
643
644 enum machine_mode
645 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
646 unsigned int nregs, bool call_saved)
647 {
648 unsigned int /* enum machine_mode */ m;
649 enum machine_mode found_mode = VOIDmode, mode;
650
651 /* We first look for the largest integer mode that can be validly
652 held in REGNO. If none, we look for the largest floating-point mode.
653 If we still didn't find a valid mode, try CCmode. */
654
655 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
656 mode != VOIDmode;
657 mode = GET_MODE_WIDER_MODE (mode))
658 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
659 && HARD_REGNO_MODE_OK (regno, mode)
660 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
661 found_mode = mode;
662
663 if (found_mode != VOIDmode)
664 return found_mode;
665
666 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
667 mode != VOIDmode;
668 mode = GET_MODE_WIDER_MODE (mode))
669 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
670 && HARD_REGNO_MODE_OK (regno, mode)
671 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
672 found_mode = mode;
673
674 if (found_mode != VOIDmode)
675 return found_mode;
676
677 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
678 mode != VOIDmode;
679 mode = GET_MODE_WIDER_MODE (mode))
680 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
681 && HARD_REGNO_MODE_OK (regno, mode)
682 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
683 found_mode = mode;
684
685 if (found_mode != VOIDmode)
686 return found_mode;
687
688 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
689 mode != VOIDmode;
690 mode = GET_MODE_WIDER_MODE (mode))
691 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
692 && HARD_REGNO_MODE_OK (regno, mode)
693 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
694 found_mode = mode;
695
696 if (found_mode != VOIDmode)
697 return found_mode;
698
699 /* Iterate over all of the CCmodes. */
700 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
701 {
702 mode = (enum machine_mode) m;
703 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
704 && HARD_REGNO_MODE_OK (regno, mode)
705 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
706 return mode;
707 }
708
709 /* We can't find a mode valid for this register. */
710 return VOIDmode;
711 }
712
713 /* Specify the usage characteristics of the register named NAME.
714 It should be a fixed register if FIXED and a
715 call-used register if CALL_USED. */
716
717 void
718 fix_register (const char *name, int fixed, int call_used)
719 {
720 int i;
721
722 /* Decode the name and update the primary form of
723 the register info. */
724
725 if ((i = decode_reg_name (name)) >= 0)
726 {
727 if ((i == STACK_POINTER_REGNUM
728 #ifdef HARD_FRAME_POINTER_REGNUM
729 || i == HARD_FRAME_POINTER_REGNUM
730 #else
731 || i == FRAME_POINTER_REGNUM
732 #endif
733 )
734 && (fixed == 0 || call_used == 0))
735 {
736 static const char * const what_option[2][2] = {
737 { "call-saved", "call-used" },
738 { "no-such-option", "fixed" }};
739
740 error ("can't use '%s' as a %s register", name,
741 what_option[fixed][call_used]);
742 }
743 else
744 {
745 fixed_regs[i] = fixed;
746 call_used_regs[i] = call_used;
747 #ifdef CALL_REALLY_USED_REGISTERS
748 if (fixed == 0)
749 call_really_used_regs[i] = call_used;
750 #endif
751 }
752 }
753 else
754 {
755 warning (0, "unknown register name: %s", name);
756 }
757 }
758
759 /* Mark register number I as global. */
760
761 void
762 globalize_reg (int i)
763 {
764 if (fixed_regs[i] == 0 && no_global_reg_vars)
765 error ("global register variable follows a function definition");
766
767 if (global_regs[i])
768 {
769 warning (0, "register used for two global register variables");
770 return;
771 }
772
773 if (call_used_regs[i] && ! fixed_regs[i])
774 warning (0, "call-clobbered register used for global register variable");
775
776 global_regs[i] = 1;
777
778 /* If we're globalizing the frame pointer, we need to set the
779 appropriate regs_invalidated_by_call bit, even if it's already
780 set in fixed_regs. */
781 if (i != STACK_POINTER_REGNUM)
782 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
783
784 /* If already fixed, nothing else to do. */
785 if (fixed_regs[i])
786 return;
787
788 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
789 #ifdef CALL_REALLY_USED_REGISTERS
790 call_really_used_regs[i] = 1;
791 #endif
792
793 SET_HARD_REG_BIT (fixed_reg_set, i);
794 SET_HARD_REG_BIT (call_used_reg_set, i);
795 SET_HARD_REG_BIT (call_fixed_reg_set, i);
796 }
797 \f
798 /* Now the data and code for the `regclass' pass, which happens
799 just before local-alloc. */
800
801 /* The `costs' struct records the cost of using a hard register of each class
802 and of using memory for each pseudo. We use this data to set up
803 register class preferences. */
804
805 struct costs
806 {
807 int cost[N_REG_CLASSES];
808 int mem_cost;
809 };
810
811 /* Structure used to record preferences of given pseudo. */
812 struct reg_pref
813 {
814 /* (enum reg_class) prefclass is the preferred class. May be
815 NO_REGS if no class is better than memory. */
816 char prefclass;
817
818 /* altclass is a register class that we should use for allocating
819 pseudo if no register in the preferred class is available.
820 If no register in this class is available, memory is preferred.
821
822 It might appear to be more general to have a bitmask of classes here,
823 but since it is recommended that there be a class corresponding to the
824 union of most major pair of classes, that generality is not required. */
825 char altclass;
826 };
827
828 /* Record the cost of each class for each pseudo. */
829
830 static struct costs *costs;
831
832 /* Initialized once, and used to initialize cost values for each insn. */
833
834 static struct costs init_cost;
835
836 /* Record preferences of each pseudo.
837 This is available after `regclass' is run. */
838
839 static struct reg_pref *reg_pref;
840
841 /* Allocated buffers for reg_pref. */
842
843 static struct reg_pref *reg_pref_buffer;
844
845 /* Frequency of executions of current insn. */
846
847 static int frequency;
848
849 static rtx scan_one_insn (rtx, int);
850 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
851 static void dump_regclass (FILE *);
852 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
853 const char **, rtx, struct costs *,
854 struct reg_pref *);
855 static int copy_cost (rtx, enum machine_mode, enum reg_class, int,
856 secondary_reload_info *);
857 static void record_address_regs (enum machine_mode, rtx, int, enum rtx_code,
858 enum rtx_code, int);
859 #ifdef FORBIDDEN_INC_DEC_CLASSES
860 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
861 #endif
862 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
863
864 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
865
866 static inline bool
867 ok_for_index_p_nonstrict (rtx reg)
868 {
869 unsigned regno = REGNO (reg);
870 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
871 }
872
873 /* A version of regno_ok_for_base_p for use during regclass, when all pseudos
874 should count as OK. Arguments as for regno_ok_for_base_p. */
875
876 static inline bool
877 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
878 enum rtx_code outer_code, enum rtx_code index_code)
879 {
880 unsigned regno = REGNO (reg);
881 if (regno >= FIRST_PSEUDO_REGISTER)
882 return true;
883
884 return ok_for_base_p_1 (regno, mode, outer_code, index_code);
885 }
886
887 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
888 This function is sometimes called before the info has been computed.
889 When that happens, just return GENERAL_REGS, which is innocuous. */
890
891 enum reg_class
892 reg_preferred_class (int regno)
893 {
894 if (reg_pref == 0)
895 return GENERAL_REGS;
896 return (enum reg_class) reg_pref[regno].prefclass;
897 }
898
899 enum reg_class
900 reg_alternate_class (int regno)
901 {
902 if (reg_pref == 0)
903 return ALL_REGS;
904
905 return (enum reg_class) reg_pref[regno].altclass;
906 }
907
908 /* Initialize some global data for this pass. */
909
910 void
911 regclass_init (void)
912 {
913 int i;
914
915 init_cost.mem_cost = 10000;
916 for (i = 0; i < N_REG_CLASSES; i++)
917 init_cost.cost[i] = 10000;
918
919 /* This prevents dump_flow_info from losing if called
920 before regclass is run. */
921 reg_pref = NULL;
922
923 /* No more global register variables may be declared. */
924 no_global_reg_vars = 1;
925 }
926 \f
927 /* Dump register costs. */
928 static void
929 dump_regclass (FILE *dump)
930 {
931 int i;
932 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
933 {
934 int /* enum reg_class */ class;
935 if (REG_N_REFS (i))
936 {
937 fprintf (dump, " Register %i costs:", i);
938 for (class = 0; class < (int) N_REG_CLASSES; class++)
939 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
940 #ifdef FORBIDDEN_INC_DEC_CLASSES
941 && (!in_inc_dec[i]
942 || !forbidden_inc_dec_class[(enum reg_class) class])
943 #endif
944 #ifdef CANNOT_CHANGE_MODE_CLASS
945 && ! invalid_mode_change_p (i, (enum reg_class) class,
946 PSEUDO_REGNO_MODE (i))
947 #endif
948 )
949 fprintf (dump, " %s:%i", reg_class_names[class],
950 costs[i].cost[(enum reg_class) class]);
951 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
952 }
953 }
954 }
955 \f
956
957 /* Calculate the costs of insn operands. */
958
959 static void
960 record_operand_costs (rtx insn, struct costs *op_costs,
961 struct reg_pref *reg_pref)
962 {
963 const char *constraints[MAX_RECOG_OPERANDS];
964 enum machine_mode modes[MAX_RECOG_OPERANDS];
965 int i;
966
967 for (i = 0; i < recog_data.n_operands; i++)
968 {
969 constraints[i] = recog_data.constraints[i];
970 modes[i] = recog_data.operand_mode[i];
971 }
972
973 /* If we get here, we are set up to record the costs of all the
974 operands for this insn. Start by initializing the costs.
975 Then handle any address registers. Finally record the desired
976 classes for any pseudos, doing it twice if some pair of
977 operands are commutative. */
978
979 for (i = 0; i < recog_data.n_operands; i++)
980 {
981 op_costs[i] = init_cost;
982
983 if (GET_CODE (recog_data.operand[i]) == SUBREG)
984 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
985
986 if (MEM_P (recog_data.operand[i]))
987 record_address_regs (GET_MODE (recog_data.operand[i]),
988 XEXP (recog_data.operand[i], 0),
989 0, MEM, SCRATCH, frequency * 2);
990 else if (constraints[i][0] == 'p'
991 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
992 record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
993 SCRATCH, frequency * 2);
994 }
995
996 /* Check for commutative in a separate loop so everything will
997 have been initialized. We must do this even if one operand
998 is a constant--see addsi3 in m68k.md. */
999
1000 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1001 if (constraints[i][0] == '%')
1002 {
1003 const char *xconstraints[MAX_RECOG_OPERANDS];
1004 int j;
1005
1006 /* Handle commutative operands by swapping the constraints.
1007 We assume the modes are the same. */
1008
1009 for (j = 0; j < recog_data.n_operands; j++)
1010 xconstraints[j] = constraints[j];
1011
1012 xconstraints[i] = constraints[i+1];
1013 xconstraints[i+1] = constraints[i];
1014 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1015 recog_data.operand, modes,
1016 xconstraints, insn, op_costs, reg_pref);
1017 }
1018
1019 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1020 recog_data.operand, modes,
1021 constraints, insn, op_costs, reg_pref);
1022 }
1023 \f
1024 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1025 time it would save code to put a certain register in a certain class.
1026 PASS, when nonzero, inhibits some optimizations which need only be done
1027 once.
1028 Return the last insn processed, so that the scan can be continued from
1029 there. */
1030
1031 static rtx
1032 scan_one_insn (rtx insn, int pass)
1033 {
1034 enum rtx_code pat_code;
1035 rtx set, note;
1036 int i, j;
1037 struct costs op_costs[MAX_RECOG_OPERANDS];
1038
1039 if (!INSN_P (insn))
1040 return insn;
1041
1042 pat_code = GET_CODE (PATTERN (insn));
1043 if (pat_code == USE
1044 || pat_code == CLOBBER
1045 || pat_code == ASM_INPUT
1046 || pat_code == ADDR_VEC
1047 || pat_code == ADDR_DIFF_VEC)
1048 return insn;
1049
1050 set = single_set (insn);
1051 extract_insn (insn);
1052
1053 /* If this insn loads a parameter from its stack slot, then
1054 it represents a savings, rather than a cost, if the
1055 parameter is stored in memory. Record this fact. */
1056
1057 if (set != 0 && REG_P (SET_DEST (set))
1058 && MEM_P (SET_SRC (set))
1059 && (note = find_reg_note (insn, REG_EQUIV,
1060 NULL_RTX)) != 0
1061 && MEM_P (XEXP (note, 0)))
1062 {
1063 costs[REGNO (SET_DEST (set))].mem_cost
1064 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1065 GENERAL_REGS, 1)
1066 * frequency);
1067 record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
1068 0, MEM, SCRATCH, frequency * 2);
1069 return insn;
1070 }
1071
1072 /* Improve handling of two-address insns such as
1073 (set X (ashift CONST Y)) where CONST must be made to
1074 match X. Change it into two insns: (set X CONST)
1075 (set X (ashift X Y)). If we left this for reloading, it
1076 would probably get three insns because X and Y might go
1077 in the same place. This prevents X and Y from receiving
1078 the same hard reg.
1079
1080 We can only do this if the modes of operands 0 and 1
1081 (which might not be the same) are tieable and we only need
1082 do this during our first pass. */
1083
1084 if (pass == 0 && optimize
1085 && recog_data.n_operands >= 3
1086 && recog_data.constraints[1][0] == '0'
1087 && recog_data.constraints[1][1] == 0
1088 && CONSTANT_P (recog_data.operand[1])
1089 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1090 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1091 && REG_P (recog_data.operand[0])
1092 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1093 recog_data.operand_mode[1]))
1094 {
1095 rtx previnsn = prev_real_insn (insn);
1096 rtx dest
1097 = gen_lowpart (recog_data.operand_mode[1],
1098 recog_data.operand[0]);
1099 rtx newinsn
1100 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1101
1102 /* If this insn was the start of a basic block,
1103 include the new insn in that block.
1104 We need not check for code_label here;
1105 while a basic block can start with a code_label,
1106 INSN could not be at the beginning of that block. */
1107 if (previnsn == 0 || JUMP_P (previnsn))
1108 {
1109 basic_block b;
1110 FOR_EACH_BB (b)
1111 if (insn == BB_HEAD (b))
1112 BB_HEAD (b) = newinsn;
1113 }
1114
1115 /* This makes one more setting of new insns's dest. */
1116 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1117 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1118 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1119
1120 *recog_data.operand_loc[1] = recog_data.operand[0];
1121 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1122 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1123 for (i = recog_data.n_dups - 1; i >= 0; i--)
1124 if (recog_data.dup_num[i] == 1)
1125 {
1126 *recog_data.dup_loc[i] = recog_data.operand[0];
1127 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1128 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1129 }
1130
1131 return PREV_INSN (newinsn);
1132 }
1133
1134 record_operand_costs (insn, op_costs, reg_pref);
1135
1136 /* Now add the cost for each operand to the total costs for
1137 its register. */
1138
1139 for (i = 0; i < recog_data.n_operands; i++)
1140 if (REG_P (recog_data.operand[i])
1141 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1142 {
1143 int regno = REGNO (recog_data.operand[i]);
1144 struct costs *p = &costs[regno], *q = &op_costs[i];
1145
1146 p->mem_cost += q->mem_cost * frequency;
1147 for (j = 0; j < N_REG_CLASSES; j++)
1148 p->cost[j] += q->cost[j] * frequency;
1149 }
1150
1151 return insn;
1152 }
1153
1154 /* Initialize information about which register classes can be used for
1155 pseudos that are auto-incremented or auto-decremented. */
1156
1157 static void
1158 init_reg_autoinc (void)
1159 {
1160 #ifdef FORBIDDEN_INC_DEC_CLASSES
1161 int i;
1162
1163 for (i = 0; i < N_REG_CLASSES; i++)
1164 {
1165 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1166 enum machine_mode m;
1167 int j;
1168
1169 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1170 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1171 {
1172 REGNO (r) = j;
1173
1174 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1175 m = (enum machine_mode) ((int) m + 1))
1176 if (HARD_REGNO_MODE_OK (j, m))
1177 {
1178 /* ??? There are two assumptions here; that the base class does not
1179 depend on the exact outer code (POST_INC vs. PRE_INC etc.), and
1180 that it does not depend on the machine mode of the memory
1181 reference. */
1182 enum reg_class base_class
1183 = base_reg_class (VOIDmode, POST_INC, SCRATCH);
1184
1185 PUT_MODE (r, m);
1186
1187 /* If a register is not directly suitable for an
1188 auto-increment or decrement addressing mode and
1189 requires secondary reloads, disallow its class from
1190 being used in such addresses. */
1191
1192 if ((secondary_reload_class (1, base_class, m, r)
1193 || secondary_reload_class (1, base_class, m, r))
1194 && ! auto_inc_dec_reg_p (r, m))
1195 forbidden_inc_dec_class[i] = 1;
1196 }
1197 }
1198 }
1199 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1200 }
1201
1202 /* This is a pass of the compiler that scans all instructions
1203 and calculates the preferred class for each pseudo-register.
1204 This information can be accessed later by calling `reg_preferred_class'.
1205 This pass comes just before local register allocation. */
1206
1207 void
1208 regclass (rtx f, int nregs)
1209 {
1210 rtx insn;
1211 int i;
1212 int pass;
1213
1214 init_recog ();
1215
1216 costs = XNEWVEC (struct costs, nregs);
1217
1218 #ifdef FORBIDDEN_INC_DEC_CLASSES
1219
1220 in_inc_dec = XNEWVEC (char, nregs);
1221
1222 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1223
1224 /* Normally we scan the insns once and determine the best class to use for
1225 each register. However, if -fexpensive_optimizations are on, we do so
1226 twice, the second time using the tentative best classes to guide the
1227 selection. */
1228
1229 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1230 {
1231 basic_block bb;
1232
1233 if (dump_file)
1234 fprintf (dump_file, "\n\nPass %i\n\n",pass);
1235 /* Zero out our accumulation of the cost of each class for each reg. */
1236
1237 memset (costs, 0, nregs * sizeof (struct costs));
1238
1239 #ifdef FORBIDDEN_INC_DEC_CLASSES
1240 memset (in_inc_dec, 0, nregs);
1241 #endif
1242
1243 /* Scan the instructions and record each time it would
1244 save code to put a certain register in a certain class. */
1245
1246 if (!optimize)
1247 {
1248 frequency = REG_FREQ_MAX;
1249 for (insn = f; insn; insn = NEXT_INSN (insn))
1250 insn = scan_one_insn (insn, pass);
1251 }
1252 else
1253 FOR_EACH_BB (bb)
1254 {
1255 /* Show that an insn inside a loop is likely to be executed three
1256 times more than insns outside a loop. This is much more
1257 aggressive than the assumptions made elsewhere and is being
1258 tried as an experiment. */
1259 frequency = REG_FREQ_FROM_BB (bb);
1260 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1261 {
1262 insn = scan_one_insn (insn, pass);
1263 if (insn == BB_END (bb))
1264 break;
1265 }
1266 }
1267
1268 /* Now for each register look at how desirable each class is
1269 and find which class is preferred. Store that in
1270 `prefclass'. Record in `altclass' the largest register
1271 class any of whose registers is better than memory. */
1272
1273 if (pass == 0)
1274 reg_pref = reg_pref_buffer;
1275
1276 if (dump_file)
1277 {
1278 dump_regclass (dump_file);
1279 fprintf (dump_file,"\n");
1280 }
1281 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1282 {
1283 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1284 enum reg_class best = ALL_REGS, alt = NO_REGS;
1285 /* This is an enum reg_class, but we call it an int
1286 to save lots of casts. */
1287 int class;
1288 struct costs *p = &costs[i];
1289
1290 /* In non-optimizing compilation REG_N_REFS is not initialized
1291 yet. */
1292 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1293 continue;
1294
1295 for (class = (int) ALL_REGS - 1; class > 0; class--)
1296 {
1297 /* Ignore classes that are too small for this operand or
1298 invalid for an operand that was auto-incremented. */
1299 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1300 #ifdef FORBIDDEN_INC_DEC_CLASSES
1301 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1302 #endif
1303 #ifdef CANNOT_CHANGE_MODE_CLASS
1304 || invalid_mode_change_p (i, (enum reg_class) class,
1305 PSEUDO_REGNO_MODE (i))
1306 #endif
1307 )
1308 ;
1309 else if (p->cost[class] < best_cost)
1310 {
1311 best_cost = p->cost[class];
1312 best = (enum reg_class) class;
1313 }
1314 else if (p->cost[class] == best_cost)
1315 best = reg_class_subunion[(int) best][class];
1316 }
1317
1318 /* If no register class is better than memory, use memory. */
1319 if (p->mem_cost < best_cost)
1320 best = NO_REGS;
1321
1322 /* Record the alternate register class; i.e., a class for which
1323 every register in it is better than using memory. If adding a
1324 class would make a smaller class (i.e., no union of just those
1325 classes exists), skip that class. The major unions of classes
1326 should be provided as a register class. Don't do this if we
1327 will be doing it again later. */
1328
1329 if ((pass == 1 || dump_file) || ! flag_expensive_optimizations)
1330 for (class = 0; class < N_REG_CLASSES; class++)
1331 if (p->cost[class] < p->mem_cost
1332 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1333 > reg_class_size[(int) alt])
1334 #ifdef FORBIDDEN_INC_DEC_CLASSES
1335 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1336 #endif
1337 #ifdef CANNOT_CHANGE_MODE_CLASS
1338 && ! invalid_mode_change_p (i, (enum reg_class) class,
1339 PSEUDO_REGNO_MODE (i))
1340 #endif
1341 )
1342 alt = reg_class_subunion[(int) alt][class];
1343
1344 /* If we don't add any classes, nothing to try. */
1345 if (alt == best)
1346 alt = NO_REGS;
1347
1348 if (dump_file
1349 && (reg_pref[i].prefclass != (int) best
1350 || reg_pref[i].altclass != (int) alt))
1351 {
1352 fprintf (dump_file, " Register %i", i);
1353 if (alt == ALL_REGS || best == ALL_REGS)
1354 fprintf (dump_file, " pref %s\n", reg_class_names[(int) best]);
1355 else if (alt == NO_REGS)
1356 fprintf (dump_file, " pref %s or none\n", reg_class_names[(int) best]);
1357 else
1358 fprintf (dump_file, " pref %s, else %s\n",
1359 reg_class_names[(int) best],
1360 reg_class_names[(int) alt]);
1361 }
1362
1363 /* We cast to (int) because (char) hits bugs in some compilers. */
1364 reg_pref[i].prefclass = (int) best;
1365 reg_pref[i].altclass = (int) alt;
1366 }
1367 }
1368
1369 #ifdef FORBIDDEN_INC_DEC_CLASSES
1370 free (in_inc_dec);
1371 #endif
1372 free (costs);
1373 }
1374 \f
1375 /* Record the cost of using memory or registers of various classes for
1376 the operands in INSN.
1377
1378 N_ALTS is the number of alternatives.
1379
1380 N_OPS is the number of operands.
1381
1382 OPS is an array of the operands.
1383
1384 MODES are the modes of the operands, in case any are VOIDmode.
1385
1386 CONSTRAINTS are the constraints to use for the operands. This array
1387 is modified by this procedure.
1388
1389 This procedure works alternative by alternative. For each alternative
1390 we assume that we will be able to allocate all pseudos to their ideal
1391 register class and calculate the cost of using that alternative. Then
1392 we compute for each operand that is a pseudo-register, the cost of
1393 having the pseudo allocated to each register class and using it in that
1394 alternative. To this cost is added the cost of the alternative.
1395
1396 The cost of each class for this insn is its lowest cost among all the
1397 alternatives. */
1398
1399 static void
1400 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1401 enum machine_mode *modes, const char **constraints,
1402 rtx insn, struct costs *op_costs,
1403 struct reg_pref *reg_pref)
1404 {
1405 int alt;
1406 int i, j;
1407 rtx set;
1408
1409 /* Process each alternative, each time minimizing an operand's cost with
1410 the cost for each operand in that alternative. */
1411
1412 for (alt = 0; alt < n_alts; alt++)
1413 {
1414 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1415 int alt_fail = 0;
1416 int alt_cost = 0;
1417 enum reg_class classes[MAX_RECOG_OPERANDS];
1418 int allows_mem[MAX_RECOG_OPERANDS];
1419 int class;
1420
1421 for (i = 0; i < n_ops; i++)
1422 {
1423 const char *p = constraints[i];
1424 rtx op = ops[i];
1425 enum machine_mode mode = modes[i];
1426 int allows_addr = 0;
1427 int win = 0;
1428 unsigned char c;
1429
1430 /* Initially show we know nothing about the register class. */
1431 classes[i] = NO_REGS;
1432 allows_mem[i] = 0;
1433
1434 /* If this operand has no constraints at all, we can conclude
1435 nothing about it since anything is valid. */
1436
1437 if (*p == 0)
1438 {
1439 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1440 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1441
1442 continue;
1443 }
1444
1445 /* If this alternative is only relevant when this operand
1446 matches a previous operand, we do different things depending
1447 on whether this operand is a pseudo-reg or not. We must process
1448 any modifiers for the operand before we can make this test. */
1449
1450 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1451 p++;
1452
1453 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1454 {
1455 /* Copy class and whether memory is allowed from the matching
1456 alternative. Then perform any needed cost computations
1457 and/or adjustments. */
1458 j = p[0] - '0';
1459 classes[i] = classes[j];
1460 allows_mem[i] = allows_mem[j];
1461
1462 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1463 {
1464 /* If this matches the other operand, we have no added
1465 cost and we win. */
1466 if (rtx_equal_p (ops[j], op))
1467 win = 1;
1468
1469 /* If we can put the other operand into a register, add to
1470 the cost of this alternative the cost to copy this
1471 operand to the register used for the other operand. */
1472
1473 else if (classes[j] != NO_REGS)
1474 {
1475 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
1476 win = 1;
1477 }
1478 }
1479 else if (!REG_P (ops[j])
1480 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1481 {
1482 /* This op is a pseudo but the one it matches is not. */
1483
1484 /* If we can't put the other operand into a register, this
1485 alternative can't be used. */
1486
1487 if (classes[j] == NO_REGS)
1488 alt_fail = 1;
1489
1490 /* Otherwise, add to the cost of this alternative the cost
1491 to copy the other operand to the register used for this
1492 operand. */
1493
1494 else
1495 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
1496 }
1497 else
1498 {
1499 /* The costs of this operand are not the same as the other
1500 operand since move costs are not symmetric. Moreover,
1501 if we cannot tie them, this alternative needs to do a
1502 copy, which is one instruction. */
1503
1504 struct costs *pp = &this_op_costs[i];
1505
1506 for (class = 0; class < N_REG_CLASSES; class++)
1507 pp->cost[class]
1508 = ((recog_data.operand_type[i] != OP_OUT
1509 ? may_move_in_cost[mode][class][(int) classes[i]]
1510 : 0)
1511 + (recog_data.operand_type[i] != OP_IN
1512 ? may_move_out_cost[mode][(int) classes[i]][class]
1513 : 0));
1514
1515 /* If the alternative actually allows memory, make things
1516 a bit cheaper since we won't need an extra insn to
1517 load it. */
1518
1519 pp->mem_cost
1520 = ((recog_data.operand_type[i] != OP_IN
1521 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1522 : 0)
1523 + (recog_data.operand_type[i] != OP_OUT
1524 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1525 : 0) - allows_mem[i]);
1526
1527 /* If we have assigned a class to this register in our
1528 first pass, add a cost to this alternative corresponding
1529 to what we would add if this register were not in the
1530 appropriate class. */
1531
1532 if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
1533 alt_cost
1534 += (may_move_in_cost[mode]
1535 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1536 [(int) classes[i]]);
1537
1538 if (REGNO (ops[i]) != REGNO (ops[j])
1539 && ! find_reg_note (insn, REG_DEAD, op))
1540 alt_cost += 2;
1541
1542 /* This is in place of ordinary cost computation
1543 for this operand, so skip to the end of the
1544 alternative (should be just one character). */
1545 while (*p && *p++ != ',')
1546 ;
1547
1548 constraints[i] = p;
1549 continue;
1550 }
1551 }
1552
1553 /* Scan all the constraint letters. See if the operand matches
1554 any of the constraints. Collect the valid register classes
1555 and see if this operand accepts memory. */
1556
1557 while ((c = *p))
1558 {
1559 switch (c)
1560 {
1561 case ',':
1562 break;
1563 case '*':
1564 /* Ignore the next letter for this pass. */
1565 c = *++p;
1566 break;
1567
1568 case '?':
1569 alt_cost += 2;
1570 case '!': case '#': case '&':
1571 case '0': case '1': case '2': case '3': case '4':
1572 case '5': case '6': case '7': case '8': case '9':
1573 break;
1574
1575 case 'p':
1576 allows_addr = 1;
1577 win = address_operand (op, GET_MODE (op));
1578 /* We know this operand is an address, so we want it to be
1579 allocated to a register that can be the base of an
1580 address, i.e. BASE_REG_CLASS. */
1581 classes[i]
1582 = reg_class_subunion[(int) classes[i]]
1583 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1584 break;
1585
1586 case 'm': case 'o': case 'V':
1587 /* It doesn't seem worth distinguishing between offsettable
1588 and non-offsettable addresses here. */
1589 allows_mem[i] = 1;
1590 if (MEM_P (op))
1591 win = 1;
1592 break;
1593
1594 case '<':
1595 if (MEM_P (op)
1596 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1597 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1598 win = 1;
1599 break;
1600
1601 case '>':
1602 if (MEM_P (op)
1603 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1604 || GET_CODE (XEXP (op, 0)) == POST_INC))
1605 win = 1;
1606 break;
1607
1608 case 'E':
1609 case 'F':
1610 if (GET_CODE (op) == CONST_DOUBLE
1611 || (GET_CODE (op) == CONST_VECTOR
1612 && (GET_MODE_CLASS (GET_MODE (op))
1613 == MODE_VECTOR_FLOAT)))
1614 win = 1;
1615 break;
1616
1617 case 'G':
1618 case 'H':
1619 if (GET_CODE (op) == CONST_DOUBLE
1620 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1621 win = 1;
1622 break;
1623
1624 case 's':
1625 if (GET_CODE (op) == CONST_INT
1626 || (GET_CODE (op) == CONST_DOUBLE
1627 && GET_MODE (op) == VOIDmode))
1628 break;
1629 case 'i':
1630 if (CONSTANT_P (op)
1631 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1632 win = 1;
1633 break;
1634
1635 case 'n':
1636 if (GET_CODE (op) == CONST_INT
1637 || (GET_CODE (op) == CONST_DOUBLE
1638 && GET_MODE (op) == VOIDmode))
1639 win = 1;
1640 break;
1641
1642 case 'I':
1643 case 'J':
1644 case 'K':
1645 case 'L':
1646 case 'M':
1647 case 'N':
1648 case 'O':
1649 case 'P':
1650 if (GET_CODE (op) == CONST_INT
1651 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1652 win = 1;
1653 break;
1654
1655 case 'X':
1656 win = 1;
1657 break;
1658
1659 case 'g':
1660 if (MEM_P (op)
1661 || (CONSTANT_P (op)
1662 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1663 win = 1;
1664 allows_mem[i] = 1;
1665 case 'r':
1666 classes[i]
1667 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1668 break;
1669
1670 default:
1671 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1672 classes[i]
1673 = reg_class_subunion[(int) classes[i]]
1674 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1675 #ifdef EXTRA_CONSTRAINT_STR
1676 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1677 win = 1;
1678
1679 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1680 {
1681 /* Every MEM can be reloaded to fit. */
1682 allows_mem[i] = 1;
1683 if (MEM_P (op))
1684 win = 1;
1685 }
1686 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1687 {
1688 /* Every address can be reloaded to fit. */
1689 allows_addr = 1;
1690 if (address_operand (op, GET_MODE (op)))
1691 win = 1;
1692 /* We know this operand is an address, so we want it to
1693 be allocated to a register that can be the base of an
1694 address, i.e. BASE_REG_CLASS. */
1695 classes[i]
1696 = reg_class_subunion[(int) classes[i]]
1697 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1698 }
1699 #endif
1700 break;
1701 }
1702 p += CONSTRAINT_LEN (c, p);
1703 if (c == ',')
1704 break;
1705 }
1706
1707 constraints[i] = p;
1708
1709 /* How we account for this operand now depends on whether it is a
1710 pseudo register or not. If it is, we first check if any
1711 register classes are valid. If not, we ignore this alternative,
1712 since we want to assume that all pseudos get allocated for
1713 register preferencing. If some register class is valid, compute
1714 the costs of moving the pseudo into that class. */
1715
1716 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1717 {
1718 if (classes[i] == NO_REGS)
1719 {
1720 /* We must always fail if the operand is a REG, but
1721 we did not find a suitable class.
1722
1723 Otherwise we may perform an uninitialized read
1724 from this_op_costs after the `continue' statement
1725 below. */
1726 alt_fail = 1;
1727 }
1728 else
1729 {
1730 struct costs *pp = &this_op_costs[i];
1731
1732 for (class = 0; class < N_REG_CLASSES; class++)
1733 pp->cost[class]
1734 = ((recog_data.operand_type[i] != OP_OUT
1735 ? may_move_in_cost[mode][class][(int) classes[i]]
1736 : 0)
1737 + (recog_data.operand_type[i] != OP_IN
1738 ? may_move_out_cost[mode][(int) classes[i]][class]
1739 : 0));
1740
1741 /* If the alternative actually allows memory, make things
1742 a bit cheaper since we won't need an extra insn to
1743 load it. */
1744
1745 pp->mem_cost
1746 = ((recog_data.operand_type[i] != OP_IN
1747 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1748 : 0)
1749 + (recog_data.operand_type[i] != OP_OUT
1750 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1751 : 0) - allows_mem[i]);
1752
1753 /* If we have assigned a class to this register in our
1754 first pass, add a cost to this alternative corresponding
1755 to what we would add if this register were not in the
1756 appropriate class. */
1757
1758 if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
1759 alt_cost
1760 += (may_move_in_cost[mode]
1761 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1762 [(int) classes[i]]);
1763 }
1764 }
1765
1766 /* Otherwise, if this alternative wins, either because we
1767 have already determined that or if we have a hard register of
1768 the proper class, there is no cost for this alternative. */
1769
1770 else if (win
1771 || (REG_P (op)
1772 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1773 ;
1774
1775 /* If registers are valid, the cost of this alternative includes
1776 copying the object to and/or from a register. */
1777
1778 else if (classes[i] != NO_REGS)
1779 {
1780 if (recog_data.operand_type[i] != OP_OUT)
1781 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1782
1783 if (recog_data.operand_type[i] != OP_IN)
1784 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1785 }
1786
1787 /* The only other way this alternative can be used is if this is a
1788 constant that could be placed into memory. */
1789
1790 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1791 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1792 else
1793 alt_fail = 1;
1794 }
1795
1796 if (alt_fail)
1797 continue;
1798
1799 /* Finally, update the costs with the information we've calculated
1800 about this alternative. */
1801
1802 for (i = 0; i < n_ops; i++)
1803 if (REG_P (ops[i])
1804 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1805 {
1806 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1807 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1808
1809 pp->mem_cost = MIN (pp->mem_cost,
1810 (qq->mem_cost + alt_cost) * scale);
1811
1812 for (class = 0; class < N_REG_CLASSES; class++)
1813 pp->cost[class] = MIN (pp->cost[class],
1814 (qq->cost[class] + alt_cost) * scale);
1815 }
1816 }
1817
1818 /* If this insn is a single set copying operand 1 to operand 0
1819 and one operand is a pseudo with the other a hard reg or a pseudo
1820 that prefers a register that is in its own register class then
1821 we may want to adjust the cost of that register class to -1.
1822
1823 Avoid the adjustment if the source does not die to avoid stressing of
1824 register allocator by preferrencing two colliding registers into single
1825 class.
1826
1827 Also avoid the adjustment if a copy between registers of the class
1828 is expensive (ten times the cost of a default copy is considered
1829 arbitrarily expensive). This avoids losing when the preferred class
1830 is very expensive as the source of a copy instruction. */
1831
1832 if ((set = single_set (insn)) != 0
1833 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1834 && REG_P (ops[0]) && REG_P (ops[1])
1835 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1836 for (i = 0; i <= 1; i++)
1837 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1838 {
1839 unsigned int regno = REGNO (ops[!i]);
1840 enum machine_mode mode = GET_MODE (ops[!i]);
1841 int class;
1842 unsigned int nr;
1843
1844 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0
1845 && reg_pref[regno].prefclass != NO_REGS)
1846 {
1847 enum reg_class pref = reg_pref[regno].prefclass;
1848
1849 if ((reg_class_size[(unsigned char) pref]
1850 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1851 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1852 op_costs[i].cost[(unsigned char) pref] = -1;
1853 }
1854 else if (regno < FIRST_PSEUDO_REGISTER)
1855 for (class = 0; class < N_REG_CLASSES; class++)
1856 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1857 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1858 {
1859 if (reg_class_size[class] == 1)
1860 op_costs[i].cost[class] = -1;
1861 else
1862 {
1863 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1864 {
1865 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1866 regno + nr))
1867 break;
1868 }
1869
1870 if (nr == (unsigned) hard_regno_nregs[regno][mode])
1871 op_costs[i].cost[class] = -1;
1872 }
1873 }
1874 }
1875 }
1876 \f
1877 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1878 TO_P is zero) a register of class CLASS in mode MODE.
1879
1880 X must not be a pseudo. */
1881
1882 static int
1883 copy_cost (rtx x, enum machine_mode mode, enum reg_class class, int to_p,
1884 secondary_reload_info *prev_sri)
1885 {
1886 enum reg_class secondary_class = NO_REGS;
1887 secondary_reload_info sri;
1888
1889 /* If X is a SCRATCH, there is actually nothing to move since we are
1890 assuming optimal allocation. */
1891
1892 if (GET_CODE (x) == SCRATCH)
1893 return 0;
1894
1895 /* Get the class we will actually use for a reload. */
1896 class = PREFERRED_RELOAD_CLASS (x, class);
1897
1898 /* If we need a secondary reload for an intermediate, the
1899 cost is that to load the input into the intermediate register, then
1900 to copy it. */
1901
1902 sri.prev_sri = prev_sri;
1903 sri.extra_cost = 0;
1904 secondary_class = targetm.secondary_reload (to_p, x, class, mode, &sri);
1905
1906 if (secondary_class != NO_REGS)
1907 return (move_cost[mode][(int) secondary_class][(int) class]
1908 + sri.extra_cost
1909 + copy_cost (x, mode, secondary_class, to_p, &sri));
1910
1911 /* For memory, use the memory move cost, for (hard) registers, use the
1912 cost to move between the register classes, and use 2 for everything
1913 else (constants). */
1914
1915 if (MEM_P (x) || class == NO_REGS)
1916 return sri.extra_cost + MEMORY_MOVE_COST (mode, class, to_p);
1917
1918 else if (REG_P (x))
1919 return (sri.extra_cost
1920 + move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class]);
1921
1922 else
1923 /* If this is a constant, we may eventually want to call rtx_cost here. */
1924 return sri.extra_cost + COSTS_N_INSNS (1);
1925 }
1926 \f
1927 /* Record the pseudo registers we must reload into hard registers
1928 in a subexpression of a memory address, X.
1929
1930 If CONTEXT is 0, we are looking at the base part of an address, otherwise we
1931 are looking at the index part.
1932
1933 MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
1934 give the context that the rtx appears in. These three arguments are
1935 passed down to base_reg_class.
1936
1937 SCALE is twice the amount to multiply the cost by (it is twice so we
1938 can represent half-cost adjustments). */
1939
1940 static void
1941 record_address_regs (enum machine_mode mode, rtx x, int context,
1942 enum rtx_code outer_code, enum rtx_code index_code,
1943 int scale)
1944 {
1945 enum rtx_code code = GET_CODE (x);
1946 enum reg_class class;
1947
1948 if (context == 1)
1949 class = INDEX_REG_CLASS;
1950 else
1951 class = base_reg_class (mode, outer_code, index_code);
1952
1953 switch (code)
1954 {
1955 case CONST_INT:
1956 case CONST:
1957 case CC0:
1958 case PC:
1959 case SYMBOL_REF:
1960 case LABEL_REF:
1961 return;
1962
1963 case PLUS:
1964 /* When we have an address that is a sum,
1965 we must determine whether registers are "base" or "index" regs.
1966 If there is a sum of two registers, we must choose one to be
1967 the "base". Luckily, we can use the REG_POINTER to make a good
1968 choice most of the time. We only need to do this on machines
1969 that can have two registers in an address and where the base
1970 and index register classes are different.
1971
1972 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1973 that seems bogus since it should only be set when we are sure
1974 the register is being used as a pointer. */
1975
1976 {
1977 rtx arg0 = XEXP (x, 0);
1978 rtx arg1 = XEXP (x, 1);
1979 enum rtx_code code0 = GET_CODE (arg0);
1980 enum rtx_code code1 = GET_CODE (arg1);
1981
1982 /* Look inside subregs. */
1983 if (code0 == SUBREG)
1984 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1985 if (code1 == SUBREG)
1986 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1987
1988 /* If this machine only allows one register per address, it must
1989 be in the first operand. */
1990
1991 if (MAX_REGS_PER_ADDRESS == 1)
1992 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
1993
1994 /* If index and base registers are the same on this machine, just
1995 record registers in any non-constant operands. We assume here,
1996 as well as in the tests below, that all addresses are in
1997 canonical form. */
1998
1999 else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
2000 {
2001 record_address_regs (mode, arg0, context, PLUS, code1, scale);
2002 if (! CONSTANT_P (arg1))
2003 record_address_regs (mode, arg1, context, PLUS, code0, scale);
2004 }
2005
2006 /* If the second operand is a constant integer, it doesn't change
2007 what class the first operand must be. */
2008
2009 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2010 record_address_regs (mode, arg0, context, PLUS, code1, scale);
2011
2012 /* If the second operand is a symbolic constant, the first operand
2013 must be an index register. */
2014
2015 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2016 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
2017
2018 /* If both operands are registers but one is already a hard register
2019 of index or reg-base class, give the other the class that the
2020 hard register is not. */
2021
2022 else if (code0 == REG && code1 == REG
2023 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2024 && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
2025 || ok_for_index_p_nonstrict (arg0)))
2026 record_address_regs (mode, arg1,
2027 ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
2028 ? 1 : 0,
2029 PLUS, REG, scale);
2030 else if (code0 == REG && code1 == REG
2031 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2032 && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
2033 || ok_for_index_p_nonstrict (arg1)))
2034 record_address_regs (mode, arg0,
2035 ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
2036 ? 1 : 0,
2037 PLUS, REG, scale);
2038
2039 /* If one operand is known to be a pointer, it must be the base
2040 with the other operand the index. Likewise if the other operand
2041 is a MULT. */
2042
2043 else if ((code0 == REG && REG_POINTER (arg0))
2044 || code1 == MULT)
2045 {
2046 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
2047 record_address_regs (mode, arg1, 1, PLUS, code0, scale);
2048 }
2049 else if ((code1 == REG && REG_POINTER (arg1))
2050 || code0 == MULT)
2051 {
2052 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
2053 record_address_regs (mode, arg1, 0, PLUS, code0, scale);
2054 }
2055
2056 /* Otherwise, count equal chances that each might be a base
2057 or index register. This case should be rare. */
2058
2059 else
2060 {
2061 record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
2062 record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
2063 record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
2064 record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
2065 }
2066 }
2067 break;
2068
2069 /* Double the importance of a pseudo register that is incremented
2070 or decremented, since it would take two extra insns
2071 if it ends up in the wrong place. */
2072 case POST_MODIFY:
2073 case PRE_MODIFY:
2074 record_address_regs (mode, XEXP (x, 0), 0, code,
2075 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
2076 if (REG_P (XEXP (XEXP (x, 1), 1)))
2077 record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
2078 2 * scale);
2079 break;
2080
2081 case POST_INC:
2082 case PRE_INC:
2083 case POST_DEC:
2084 case PRE_DEC:
2085 /* Double the importance of a pseudo register that is incremented
2086 or decremented, since it would take two extra insns
2087 if it ends up in the wrong place. If the operand is a pseudo,
2088 show it is being used in an INC_DEC context. */
2089
2090 #ifdef FORBIDDEN_INC_DEC_CLASSES
2091 if (REG_P (XEXP (x, 0))
2092 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2093 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2094 #endif
2095
2096 record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
2097 break;
2098
2099 case REG:
2100 {
2101 struct costs *pp = &costs[REGNO (x)];
2102 int i;
2103
2104 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2105
2106 for (i = 0; i < N_REG_CLASSES; i++)
2107 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2108 }
2109 break;
2110
2111 default:
2112 {
2113 const char *fmt = GET_RTX_FORMAT (code);
2114 int i;
2115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2116 if (fmt[i] == 'e')
2117 record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
2118 scale);
2119 }
2120 }
2121 }
2122 \f
2123 #ifdef FORBIDDEN_INC_DEC_CLASSES
2124
2125 /* Return 1 if REG is valid as an auto-increment memory reference
2126 to an object of MODE. */
2127
2128 static int
2129 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2130 {
2131 if (HAVE_POST_INCREMENT
2132 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2133 return 1;
2134
2135 if (HAVE_POST_DECREMENT
2136 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2137 return 1;
2138
2139 if (HAVE_PRE_INCREMENT
2140 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2141 return 1;
2142
2143 if (HAVE_PRE_DECREMENT
2144 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2145 return 1;
2146
2147 return 0;
2148 }
2149 #endif
2150 \f
2151 static short *renumber;
2152 static size_t regno_allocated;
2153 static unsigned int reg_n_max;
2154
2155 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2156 reg_scan and flow_analysis that are indexed by the register number. If
2157 NEW_P is nonzero, initialize all of the registers, otherwise only
2158 initialize the new registers allocated. The same table is kept from
2159 function to function, only reallocating it when we need more room. If
2160 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2161
2162 void
2163 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2164 {
2165 size_t size_info;
2166 size_t size_renumber;
2167 size_t min = (new_p) ? 0 : reg_n_max;
2168 struct reg_info_data *reg_data;
2169
2170 if (num_regs > regno_allocated)
2171 {
2172 size_t old_allocated = regno_allocated;
2173
2174 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2175 size_renumber = regno_allocated * sizeof (short);
2176
2177 if (!reg_n_info)
2178 {
2179 reg_n_info = VEC_alloc (reg_info_p, heap, regno_allocated);
2180 VEC_safe_grow_cleared (reg_info_p, heap, reg_n_info,
2181 regno_allocated);
2182 renumber = xmalloc (size_renumber);
2183 reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
2184 }
2185 else
2186 {
2187 size_t old_length = VEC_length (reg_info_p, reg_n_info);
2188 if (old_length < regno_allocated)
2189 {
2190 VEC_safe_grow_cleared (reg_info_p, heap, reg_n_info,
2191 regno_allocated);
2192 }
2193 else if (regno_allocated < old_length)
2194 {
2195 VEC_truncate (reg_info_p, reg_n_info, regno_allocated);
2196 }
2197
2198 if (new_p) /* If we're zapping everything, no need to realloc. */
2199 {
2200 free ((char *) renumber);
2201 free ((char *) reg_pref);
2202 renumber = xmalloc (size_renumber);
2203 reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
2204 }
2205
2206 else
2207 {
2208 renumber = xrealloc (renumber, size_renumber);
2209 reg_pref_buffer = (struct reg_pref *) xrealloc (reg_pref_buffer,
2210 regno_allocated
2211 * sizeof (struct reg_pref));
2212 }
2213 }
2214
2215 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2216 + sizeof (struct reg_info_data) - sizeof (reg_info);
2217 reg_data = xcalloc (size_info, 1);
2218 reg_data->min_index = old_allocated;
2219 reg_data->max_index = regno_allocated - 1;
2220 reg_data->next = reg_info_head;
2221 reg_info_head = reg_data;
2222 }
2223
2224 reg_n_max = num_regs;
2225 if (min < num_regs)
2226 {
2227 /* Loop through each of the segments allocated for the actual
2228 reg_info pages, and set up the pointers, zero the pages, etc. */
2229 for (reg_data = reg_info_head;
2230 reg_data && reg_data->max_index >= min;
2231 reg_data = reg_data->next)
2232 {
2233 size_t min_index = reg_data->min_index;
2234 size_t max_index = reg_data->max_index;
2235 size_t max = MIN (max_index, num_regs);
2236 size_t local_min = min - min_index;
2237 size_t i;
2238
2239 if (reg_data->min_index > num_regs)
2240 continue;
2241
2242 if (min < min_index)
2243 local_min = 0;
2244 if (!reg_data->used_p) /* page just allocated with calloc */
2245 reg_data->used_p = 1; /* no need to zero */
2246 else
2247 memset (&reg_data->data[local_min], 0,
2248 sizeof (reg_info) * (max - min_index - local_min + 1));
2249
2250 for (i = min_index+local_min; i <= max; i++)
2251 {
2252 VEC_replace (reg_info_p, reg_n_info, i,
2253 &reg_data->data[i-min_index]);
2254 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2255 renumber[i] = -1;
2256 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2257 reg_pref_buffer[i].altclass = (char) NO_REGS;
2258 }
2259 }
2260 }
2261
2262 /* If {pref,alt}class have already been allocated, update the pointers to
2263 the newly realloced ones. */
2264 if (reg_pref)
2265 reg_pref = reg_pref_buffer;
2266
2267 if (renumber_p)
2268 reg_renumber = renumber;
2269 }
2270
2271 /* Free up the space allocated by allocate_reg_info. */
2272 void
2273 free_reg_info (void)
2274 {
2275 if (reg_n_info)
2276 {
2277 struct reg_info_data *reg_data;
2278 struct reg_info_data *reg_next;
2279
2280 VEC_free (reg_info_p, heap, reg_n_info);
2281 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2282 {
2283 reg_next = reg_data->next;
2284 free ((char *) reg_data);
2285 }
2286
2287 free (reg_pref_buffer);
2288 reg_pref_buffer = (struct reg_pref *) 0;
2289 reg_info_head = (struct reg_info_data *) 0;
2290 renumber = (short *) 0;
2291 }
2292 regno_allocated = 0;
2293 reg_n_max = 0;
2294 }
2295
2296 /* Clear the information stored for REGNO. */
2297 void
2298 clear_reg_info_regno (unsigned int regno)
2299 {
2300 if (regno < regno_allocated)
2301 memset (VEC_index (reg_info_p, reg_n_info, regno), 0, sizeof (reg_info));
2302 }
2303 \f
2304 /* This is the `regscan' pass of the compiler, run just before cse
2305 and again just before loop.
2306
2307 It finds the first and last use of each pseudo-register
2308 and records them in the vectors regno_first_uid, regno_last_uid
2309 and counts the number of sets in the vector reg_n_sets.
2310
2311 REPEAT is nonzero the second time this is called. */
2312
2313 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2314 Always at least 3, since the combiner could put that many together
2315 and we want this to remain correct for all the remaining passes.
2316 This corresponds to the maximum number of times note_stores will call
2317 a function for any insn. */
2318
2319 int max_parallel;
2320
2321 /* Used as a temporary to record the largest number of registers in
2322 PARALLEL in a SET_DEST. This is added to max_parallel. */
2323
2324 static int max_set_parallel;
2325
2326 void
2327 reg_scan (rtx f, unsigned int nregs)
2328 {
2329 rtx insn;
2330
2331 timevar_push (TV_REG_SCAN);
2332
2333 allocate_reg_info (nregs, TRUE, FALSE);
2334 max_parallel = 3;
2335 max_set_parallel = 0;
2336
2337 for (insn = f; insn; insn = NEXT_INSN (insn))
2338 if (INSN_P (insn))
2339 {
2340 rtx pat = PATTERN (insn);
2341 if (GET_CODE (pat) == PARALLEL
2342 && XVECLEN (pat, 0) > max_parallel)
2343 max_parallel = XVECLEN (pat, 0);
2344 reg_scan_mark_refs (pat, insn, 0, 0);
2345
2346 if (REG_NOTES (insn))
2347 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2348 }
2349
2350 max_parallel += max_set_parallel;
2351
2352 timevar_pop (TV_REG_SCAN);
2353 }
2354
2355 /* Update 'regscan' information by looking at the insns
2356 from FIRST to LAST. Some new REGs have been created,
2357 and any REG with number greater than OLD_MAX_REGNO is
2358 such a REG. We only update information for those. */
2359
2360 void
2361 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2362 {
2363 rtx insn;
2364
2365 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2366
2367 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2368 if (INSN_P (insn))
2369 {
2370 rtx pat = PATTERN (insn);
2371 if (GET_CODE (pat) == PARALLEL
2372 && XVECLEN (pat, 0) > max_parallel)
2373 max_parallel = XVECLEN (pat, 0);
2374 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2375
2376 if (REG_NOTES (insn))
2377 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2378 }
2379 }
2380
2381 /* X is the expression to scan. INSN is the insn it appears in.
2382 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2383 We should only record information for REGs with numbers
2384 greater than or equal to MIN_REGNO. */
2385
2386 static void
2387 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2388 {
2389 enum rtx_code code;
2390 rtx dest;
2391 rtx note;
2392
2393 if (!x)
2394 return;
2395 code = GET_CODE (x);
2396 switch (code)
2397 {
2398 case CONST:
2399 case CONST_INT:
2400 case CONST_DOUBLE:
2401 case CONST_VECTOR:
2402 case CC0:
2403 case PC:
2404 case SYMBOL_REF:
2405 case LABEL_REF:
2406 case ADDR_VEC:
2407 case ADDR_DIFF_VEC:
2408 return;
2409
2410 case REG:
2411 {
2412 unsigned int regno = REGNO (x);
2413
2414 if (regno >= min_regno)
2415 {
2416 if (!note_flag)
2417 REGNO_LAST_UID (regno) = INSN_UID (insn);
2418 if (REGNO_FIRST_UID (regno) == 0)
2419 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2420 /* If we are called by reg_scan_update() (indicated by min_regno
2421 being set), we also need to update the reference count. */
2422 if (min_regno)
2423 REG_N_REFS (regno)++;
2424 }
2425 }
2426 break;
2427
2428 case EXPR_LIST:
2429 if (XEXP (x, 0))
2430 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2431 if (XEXP (x, 1))
2432 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2433 break;
2434
2435 case INSN_LIST:
2436 if (XEXP (x, 1))
2437 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2438 break;
2439
2440 case CLOBBER:
2441 {
2442 rtx reg = XEXP (x, 0);
2443 if (REG_P (reg)
2444 && REGNO (reg) >= min_regno)
2445 {
2446 REG_N_SETS (REGNO (reg))++;
2447 REG_N_REFS (REGNO (reg))++;
2448 }
2449 else if (MEM_P (reg))
2450 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
2451 }
2452 break;
2453
2454 case SET:
2455 /* Count a set of the destination if it is a register. */
2456 for (dest = SET_DEST (x);
2457 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2458 || GET_CODE (dest) == ZERO_EXTEND;
2459 dest = XEXP (dest, 0))
2460 ;
2461
2462 /* For a PARALLEL, record the number of things (less the usual one for a
2463 SET) that are set. */
2464 if (GET_CODE (dest) == PARALLEL)
2465 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2466
2467 if (REG_P (dest)
2468 && REGNO (dest) >= min_regno)
2469 {
2470 REG_N_SETS (REGNO (dest))++;
2471 REG_N_REFS (REGNO (dest))++;
2472 }
2473
2474 /* If this is setting a pseudo from another pseudo or the sum of a
2475 pseudo and a constant integer and the other pseudo is known to be
2476 a pointer, set the destination to be a pointer as well.
2477
2478 Likewise if it is setting the destination from an address or from a
2479 value equivalent to an address or to the sum of an address and
2480 something else.
2481
2482 But don't do any of this if the pseudo corresponds to a user
2483 variable since it should have already been set as a pointer based
2484 on the type. */
2485
2486 if (REG_P (SET_DEST (x))
2487 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2488 && REGNO (SET_DEST (x)) >= min_regno
2489 /* If the destination pseudo is set more than once, then other
2490 sets might not be to a pointer value (consider access to a
2491 union in two threads of control in the presence of global
2492 optimizations). So only set REG_POINTER on the destination
2493 pseudo if this is the only set of that pseudo. */
2494 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2495 && ! REG_USERVAR_P (SET_DEST (x))
2496 && ! REG_POINTER (SET_DEST (x))
2497 && ((REG_P (SET_SRC (x))
2498 && REG_POINTER (SET_SRC (x)))
2499 || ((GET_CODE (SET_SRC (x)) == PLUS
2500 || GET_CODE (SET_SRC (x)) == LO_SUM)
2501 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2502 && REG_P (XEXP (SET_SRC (x), 0))
2503 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2504 || GET_CODE (SET_SRC (x)) == CONST
2505 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2506 || GET_CODE (SET_SRC (x)) == LABEL_REF
2507 || (GET_CODE (SET_SRC (x)) == HIGH
2508 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2509 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2510 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2511 || ((GET_CODE (SET_SRC (x)) == PLUS
2512 || GET_CODE (SET_SRC (x)) == LO_SUM)
2513 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2514 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2515 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2516 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2517 && (GET_CODE (XEXP (note, 0)) == CONST
2518 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2519 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2520 REG_POINTER (SET_DEST (x)) = 1;
2521
2522 /* If this is setting a register from a register or from a simple
2523 conversion of a register, propagate REG_EXPR. */
2524 if (REG_P (dest))
2525 {
2526 rtx src = SET_SRC (x);
2527
2528 while (GET_CODE (src) == SIGN_EXTEND
2529 || GET_CODE (src) == ZERO_EXTEND
2530 || GET_CODE (src) == TRUNCATE
2531 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2532 src = XEXP (src, 0);
2533
2534 if (!REG_ATTRS (dest) && REG_P (src))
2535 REG_ATTRS (dest) = REG_ATTRS (src);
2536 if (!REG_ATTRS (dest) && MEM_P (src))
2537 set_reg_attrs_from_mem (dest, src);
2538 }
2539
2540 /* ... fall through ... */
2541
2542 default:
2543 {
2544 const char *fmt = GET_RTX_FORMAT (code);
2545 int i;
2546 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2547 {
2548 if (fmt[i] == 'e')
2549 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2550 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2551 {
2552 int j;
2553 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2554 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2555 }
2556 }
2557 }
2558 }
2559 }
2560 \f
2561 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2562 is also in C2. */
2563
2564 int
2565 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2566 {
2567 if (c1 == c2) return 1;
2568
2569 if (c2 == ALL_REGS)
2570 win:
2571 return 1;
2572 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2573 reg_class_contents[(int) c2],
2574 win);
2575 return 0;
2576 }
2577
2578 /* Return nonzero if there is a register that is in both C1 and C2. */
2579
2580 int
2581 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2582 {
2583 HARD_REG_SET c;
2584
2585 if (c1 == c2) return 1;
2586
2587 if (c1 == ALL_REGS || c2 == ALL_REGS)
2588 return 1;
2589
2590 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2591 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2592
2593 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2594 return 1;
2595
2596 lose:
2597 return 0;
2598 }
2599
2600 #ifdef CANNOT_CHANGE_MODE_CLASS
2601
2602 struct subregs_of_mode_node
2603 {
2604 unsigned int block;
2605 unsigned char modes[MAX_MACHINE_MODE];
2606 };
2607
2608 static htab_t subregs_of_mode;
2609
2610 static hashval_t
2611 som_hash (const void *x)
2612 {
2613 const struct subregs_of_mode_node *a = x;
2614 return a->block;
2615 }
2616
2617 static int
2618 som_eq (const void *x, const void *y)
2619 {
2620 const struct subregs_of_mode_node *a = x;
2621 const struct subregs_of_mode_node *b = y;
2622 return a->block == b->block;
2623 }
2624
2625 void
2626 init_subregs_of_mode (void)
2627 {
2628 if (subregs_of_mode)
2629 htab_empty (subregs_of_mode);
2630 else
2631 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2632 }
2633
2634 void
2635 record_subregs_of_mode (rtx subreg)
2636 {
2637 struct subregs_of_mode_node dummy, *node;
2638 enum machine_mode mode;
2639 unsigned int regno;
2640 void **slot;
2641
2642 if (!REG_P (SUBREG_REG (subreg)))
2643 return;
2644
2645 regno = REGNO (SUBREG_REG (subreg));
2646 mode = GET_MODE (subreg);
2647
2648 if (regno < FIRST_PSEUDO_REGISTER)
2649 return;
2650
2651 dummy.block = regno & -8;
2652 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2653 dummy.block, INSERT);
2654 node = *slot;
2655 if (node == NULL)
2656 {
2657 node = XCNEW (struct subregs_of_mode_node);
2658 node->block = regno & -8;
2659 *slot = node;
2660 }
2661
2662 node->modes[mode] |= 1 << (regno & 7);
2663 }
2664
2665 /* Set bits in *USED which correspond to registers which can't change
2666 their mode from FROM to any mode in which REGNO was encountered. */
2667
2668 void
2669 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2670 unsigned int regno)
2671 {
2672 struct subregs_of_mode_node dummy, *node;
2673 enum machine_mode to;
2674 unsigned char mask;
2675 unsigned int i;
2676
2677 dummy.block = regno & -8;
2678 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2679 if (node == NULL)
2680 return;
2681
2682 mask = 1 << (regno & 7);
2683 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2684 if (node->modes[to] & mask)
2685 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2686 if (!TEST_HARD_REG_BIT (*used, i)
2687 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2688 SET_HARD_REG_BIT (*used, i);
2689 }
2690
2691 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2692 mode. */
2693
2694 bool
2695 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2696 enum machine_mode from)
2697 {
2698 struct subregs_of_mode_node dummy, *node;
2699 enum machine_mode to;
2700 unsigned char mask;
2701
2702 dummy.block = regno & -8;
2703 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2704 if (node == NULL)
2705 return false;
2706
2707 mask = 1 << (regno & 7);
2708 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2709 if (node->modes[to] & mask)
2710 if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2711 return true;
2712
2713 return false;
2714 }
2715 #endif /* CANNOT_CHANGE_MODE_CLASS */
2716
2717 #include "gt-regclass.h"