g-expect-vms.adb:
[gcc.git] / gcc / regclass.c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "function.h"
41 #include "insn-config.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "real.h"
45 #include "toplev.h"
46 #include "output.h"
47 #include "ggc.h"
48 #include "timevar.h"
49 #include "hashtab.h"
50 #include "target.h"
51
52 static void init_reg_sets_1 (void);
53 static void init_reg_autoinc (void);
54
55 /* If we have auto-increment or auto-decrement and we can have secondary
56 reloads, we are not allowed to use classes requiring secondary
57 reloads for pseudos auto-incremented since reload can't handle it. */
58 /* We leave it to target hooks to decide if we have secondary reloads, so
59 assume that we might have them. */
60 #if defined(AUTO_INC_DEC) /* */
61 #define FORBIDDEN_INC_DEC_CLASSES
62 #endif
63 \f
64 /* Register tables used by many passes. */
65
66 /* Indexed by hard register number, contains 1 for registers
67 that are fixed use (stack pointer, pc, frame pointer, etc.).
68 These are the registers that cannot be used to allocate
69 a pseudo reg for general use. */
70
71 char fixed_regs[FIRST_PSEUDO_REGISTER];
72
73 /* Same info as a HARD_REG_SET. */
74
75 HARD_REG_SET fixed_reg_set;
76
77 /* Data for initializing the above. */
78
79 static const char initial_fixed_regs[] = FIXED_REGISTERS;
80
81 /* Indexed by hard register number, contains 1 for registers
82 that are fixed use or are clobbered by function calls.
83 These are the registers that cannot be used to allocate
84 a pseudo reg whose life crosses calls unless we are able
85 to save/restore them across the calls. */
86
87 char call_used_regs[FIRST_PSEUDO_REGISTER];
88
89 /* Same info as a HARD_REG_SET. */
90
91 HARD_REG_SET call_used_reg_set;
92
93 /* HARD_REG_SET of registers we want to avoid caller saving. */
94 HARD_REG_SET losing_caller_save_reg_set;
95
96 /* Data for initializing the above. */
97
98 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
99
100 /* This is much like call_used_regs, except it doesn't have to
101 be a superset of FIXED_REGISTERS. This vector indicates
102 what is really call clobbered, and is used when defining
103 regs_invalidated_by_call. */
104
105 #ifdef CALL_REALLY_USED_REGISTERS
106 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
107 #endif
108
109 #ifdef CALL_REALLY_USED_REGISTERS
110 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
111 #else
112 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
113 #endif
114
115
116 /* Indexed by hard register number, contains 1 for registers that are
117 fixed use or call used registers that cannot hold quantities across
118 calls even if we are willing to save and restore them. call fixed
119 registers are a subset of call used registers. */
120
121 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
122
123 /* The same info as a HARD_REG_SET. */
124
125 HARD_REG_SET call_fixed_reg_set;
126
127 /* Indexed by hard register number, contains 1 for registers
128 that are being used for global register decls.
129 These must be exempt from ordinary flow analysis
130 and are also considered fixed. */
131
132 char global_regs[FIRST_PSEUDO_REGISTER];
133
134 /* Contains 1 for registers that are set or clobbered by calls. */
135 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
136 for someone's bright idea to have call_used_regs strictly include
137 fixed_regs. Which leaves us guessing as to the set of fixed_regs
138 that are actually preserved. We know for sure that those associated
139 with the local stack frame are safe, but scant others. */
140
141 HARD_REG_SET regs_invalidated_by_call;
142
143 /* Table of register numbers in the order in which to try to use them. */
144 #ifdef REG_ALLOC_ORDER
145 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
146
147 /* The inverse of reg_alloc_order. */
148 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
149 #endif
150
151 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
152
153 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
154
155 /* The same information, but as an array of unsigned ints. We copy from
156 these unsigned ints to the table above. We do this so the tm.h files
157 do not have to be aware of the wordsize for machines with <= 64 regs.
158 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
159
160 #define N_REG_INTS \
161 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
162
163 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
164 = REG_CLASS_CONTENTS;
165
166 /* For each reg class, number of regs it contains. */
167
168 unsigned int reg_class_size[N_REG_CLASSES];
169
170 /* For each reg class, table listing all the containing classes. */
171
172 static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
173
174 /* For each reg class, table listing all the classes contained in it. */
175
176 static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
177
178 /* For each pair of reg classes,
179 a largest reg class contained in their union. */
180
181 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
182
183 /* For each pair of reg classes,
184 the smallest reg class containing their union. */
185
186 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
187
188 /* Array containing all of the register names. */
189
190 const char * reg_names[] = REGISTER_NAMES;
191
192 /* Array containing all of the register class names. */
193
194 const char * reg_class_names[] = REG_CLASS_NAMES;
195
196 /* For each hard register, the widest mode object that it can contain.
197 This will be a MODE_INT mode if the register can hold integers. Otherwise
198 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
199 register. */
200
201 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
202
203 /* 1 if there is a register of given mode. */
204
205 bool have_regs_of_mode [MAX_MACHINE_MODE];
206
207 /* 1 if class does contain register of given mode. */
208
209 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
210
211 /* Maximum cost of moving from a register in one class to a register in
212 another class. Based on REGISTER_MOVE_COST. */
213
214 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
215
216 /* Similar, but here we don't have to move if the first index is a subset
217 of the second so in that case the cost is zero. */
218
219 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
220
221 /* Similar, but here we don't have to move if the first index is a superset
222 of the second so in that case the cost is zero. */
223
224 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
225
226 #ifdef FORBIDDEN_INC_DEC_CLASSES
227
228 /* These are the classes that regs which are auto-incremented or decremented
229 cannot be put in. */
230
231 static int forbidden_inc_dec_class[N_REG_CLASSES];
232
233 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
234 context. */
235
236 static char *in_inc_dec;
237
238 #endif /* FORBIDDEN_INC_DEC_CLASSES */
239
240 /* Sample MEM values for use by memory_move_secondary_cost. */
241
242 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
243
244 /* Linked list of reg_info structures allocated for reg_n_info array.
245 Grouping all of the allocated structures together in one lump
246 means only one call to bzero to clear them, rather than n smaller
247 calls. */
248 struct reg_info_data {
249 struct reg_info_data *next; /* next set of reg_info structures */
250 size_t min_index; /* minimum index # */
251 size_t max_index; /* maximum index # */
252 char used_p; /* nonzero if this has been used previously */
253 reg_info data[1]; /* beginning of the reg_info data */
254 };
255
256 static struct reg_info_data *reg_info_head;
257
258 /* No more global register variables may be declared; true once
259 regclass has been initialized. */
260
261 static int no_global_reg_vars = 0;
262
263 /* Specify number of hard registers given machine mode occupy. */
264 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
265
266 /* Function called only once to initialize the above data on reg usage.
267 Once this is done, various switches may override. */
268
269 void
270 init_reg_sets (void)
271 {
272 int i, j;
273
274 /* First copy the register information from the initial int form into
275 the regsets. */
276
277 for (i = 0; i < N_REG_CLASSES; i++)
278 {
279 CLEAR_HARD_REG_SET (reg_class_contents[i]);
280
281 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
282 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
283 if (int_reg_class_contents[i][j / 32]
284 & ((unsigned) 1 << (j % 32)))
285 SET_HARD_REG_BIT (reg_class_contents[i], j);
286 }
287
288 /* Sanity check: make sure the target macros FIXED_REGISTERS and
289 CALL_USED_REGISTERS had the right number of initializers. */
290 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
291 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
292
293 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
294 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
295 memset (global_regs, 0, sizeof global_regs);
296
297 #ifdef REG_ALLOC_ORDER
298 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
299 inv_reg_alloc_order[reg_alloc_order[i]] = i;
300 #endif
301 }
302
303 /* After switches have been processed, which perhaps alter
304 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
305
306 static void
307 init_reg_sets_1 (void)
308 {
309 unsigned int i, j;
310 unsigned int /* enum machine_mode */ m;
311
312 /* This macro allows the fixed or call-used registers
313 and the register classes to depend on target flags. */
314
315 #ifdef CONDITIONAL_REGISTER_USAGE
316 CONDITIONAL_REGISTER_USAGE;
317 #endif
318
319 /* Compute number of hard regs in each class. */
320
321 memset (reg_class_size, 0, sizeof reg_class_size);
322 for (i = 0; i < N_REG_CLASSES; i++)
323 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
324 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
325 reg_class_size[i]++;
326
327 /* Initialize the table of subunions.
328 reg_class_subunion[I][J] gets the largest-numbered reg-class
329 that is contained in the union of classes I and J. */
330
331 for (i = 0; i < N_REG_CLASSES; i++)
332 {
333 for (j = 0; j < N_REG_CLASSES; j++)
334 {
335 HARD_REG_SET c;
336 int k;
337
338 COPY_HARD_REG_SET (c, reg_class_contents[i]);
339 IOR_HARD_REG_SET (c, reg_class_contents[j]);
340 for (k = 0; k < N_REG_CLASSES; k++)
341 if (hard_reg_set_subset_p (reg_class_contents[k], c)
342 && !hard_reg_set_subset_p (reg_class_contents[k],
343 reg_class_contents
344 [(int) reg_class_subunion[i][j]]))
345 reg_class_subunion[i][j] = (enum reg_class) k;
346 }
347 }
348
349 /* Initialize the table of superunions.
350 reg_class_superunion[I][J] gets the smallest-numbered reg-class
351 containing the union of classes I and J. */
352
353 for (i = 0; i < N_REG_CLASSES; i++)
354 {
355 for (j = 0; j < N_REG_CLASSES; j++)
356 {
357 HARD_REG_SET c;
358 int k;
359
360 COPY_HARD_REG_SET (c, reg_class_contents[i]);
361 IOR_HARD_REG_SET (c, reg_class_contents[j]);
362 for (k = 0; k < N_REG_CLASSES; k++)
363 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
364 break;
365
366 reg_class_superunion[i][j] = (enum reg_class) k;
367 }
368 }
369
370 /* Initialize the tables of subclasses and superclasses of each reg class.
371 First clear the whole table, then add the elements as they are found. */
372
373 for (i = 0; i < N_REG_CLASSES; i++)
374 {
375 for (j = 0; j < N_REG_CLASSES; j++)
376 {
377 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
378 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
379 }
380 }
381
382 for (i = 0; i < N_REG_CLASSES; i++)
383 {
384 if (i == (int) NO_REGS)
385 continue;
386
387 for (j = i + 1; j < N_REG_CLASSES; j++)
388 if (hard_reg_set_subset_p (reg_class_contents[i],
389 reg_class_contents[j]))
390 {
391 /* Reg class I is a subclass of J.
392 Add J to the table of superclasses of I. */
393 enum reg_class *p;
394
395 p = &reg_class_superclasses[i][0];
396 while (*p != LIM_REG_CLASSES) p++;
397 *p = (enum reg_class) j;
398 /* Add I to the table of superclasses of J. */
399 p = &reg_class_subclasses[j][0];
400 while (*p != LIM_REG_CLASSES) p++;
401 *p = (enum reg_class) i;
402 }
403 }
404
405 /* Initialize "constant" tables. */
406
407 CLEAR_HARD_REG_SET (fixed_reg_set);
408 CLEAR_HARD_REG_SET (call_used_reg_set);
409 CLEAR_HARD_REG_SET (call_fixed_reg_set);
410 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
411
412 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
413
414 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
415 {
416 /* call_used_regs must include fixed_regs. */
417 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
418 #ifdef CALL_REALLY_USED_REGISTERS
419 /* call_used_regs must include call_really_used_regs. */
420 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
421 #endif
422
423 if (fixed_regs[i])
424 SET_HARD_REG_BIT (fixed_reg_set, i);
425
426 if (call_used_regs[i])
427 SET_HARD_REG_BIT (call_used_reg_set, i);
428 if (call_fixed_regs[i])
429 SET_HARD_REG_BIT (call_fixed_reg_set, i);
430 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
431 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
432
433 /* There are a couple of fixed registers that we know are safe to
434 exclude from being clobbered by calls:
435
436 The frame pointer is always preserved across calls. The arg pointer
437 is if it is fixed. The stack pointer usually is, unless
438 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
439 If we are generating PIC code, the PIC offset table register is
440 preserved across calls, though the target can override that. */
441
442 if (i == STACK_POINTER_REGNUM)
443 ;
444 else if (global_regs[i])
445 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
446 else if (i == FRAME_POINTER_REGNUM)
447 ;
448 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
449 else if (i == HARD_FRAME_POINTER_REGNUM)
450 ;
451 #endif
452 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
453 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
454 ;
455 #endif
456 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
457 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
458 ;
459 #endif
460 else if (CALL_REALLY_USED_REGNO_P (i))
461 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
462 }
463
464 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
465 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
466 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
467 for (i = 0; i < N_REG_CLASSES; i++)
468 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
469 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
470 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
471 && HARD_REGNO_MODE_OK (j, m))
472 {
473 contains_reg_of_mode [i][m] = 1;
474 have_regs_of_mode [m] = 1;
475 break;
476 }
477
478 /* Initialize the move cost table. Find every subset of each class
479 and take the maximum cost of moving any subset to any other. */
480
481 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
482 if (have_regs_of_mode [m])
483 {
484 for (i = 0; i < N_REG_CLASSES; i++)
485 if (contains_reg_of_mode [i][m])
486 for (j = 0; j < N_REG_CLASSES; j++)
487 {
488 int cost;
489 enum reg_class *p1, *p2;
490
491 if (!contains_reg_of_mode [j][m])
492 {
493 move_cost[m][i][j] = 65536;
494 may_move_in_cost[m][i][j] = 65536;
495 may_move_out_cost[m][i][j] = 65536;
496 }
497 else
498 {
499 cost = REGISTER_MOVE_COST (m, i, j);
500
501 for (p2 = &reg_class_subclasses[j][0];
502 *p2 != LIM_REG_CLASSES;
503 p2++)
504 if (*p2 != i && contains_reg_of_mode [*p2][m])
505 cost = MAX (cost, move_cost [m][i][*p2]);
506
507 for (p1 = &reg_class_subclasses[i][0];
508 *p1 != LIM_REG_CLASSES;
509 p1++)
510 if (*p1 != j && contains_reg_of_mode [*p1][m])
511 cost = MAX (cost, move_cost [m][*p1][j]);
512
513 move_cost[m][i][j] = cost;
514
515 if (reg_class_subset_p (i, j))
516 may_move_in_cost[m][i][j] = 0;
517 else
518 may_move_in_cost[m][i][j] = cost;
519
520 if (reg_class_subset_p (j, i))
521 may_move_out_cost[m][i][j] = 0;
522 else
523 may_move_out_cost[m][i][j] = cost;
524 }
525 }
526 else
527 for (j = 0; j < N_REG_CLASSES; j++)
528 {
529 move_cost[m][i][j] = 65536;
530 may_move_in_cost[m][i][j] = 65536;
531 may_move_out_cost[m][i][j] = 65536;
532 }
533 }
534 }
535
536 /* Compute the table of register modes.
537 These values are used to record death information for individual registers
538 (as opposed to a multi-register mode). */
539
540 void
541 init_reg_modes_once (void)
542 {
543 int i, j;
544
545 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
546 for (j = 0; j < MAX_MACHINE_MODE; j++)
547 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
548
549 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
550 {
551 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
552
553 /* If we couldn't find a valid mode, just use the previous mode.
554 ??? One situation in which we need to do this is on the mips where
555 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
556 to use DF mode for the even registers and VOIDmode for the odd
557 (for the cpu models where the odd ones are inaccessible). */
558 if (reg_raw_mode[i] == VOIDmode)
559 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
560 }
561 }
562
563 /* Finish initializing the register sets and
564 initialize the register modes. */
565
566 void
567 init_regs (void)
568 {
569 /* This finishes what was started by init_reg_sets, but couldn't be done
570 until after register usage was specified. */
571 init_reg_sets_1 ();
572
573 init_reg_autoinc ();
574 }
575
576 /* Initialize some fake stack-frame MEM references for use in
577 memory_move_secondary_cost. */
578
579 void
580 init_fake_stack_mems (void)
581 {
582 {
583 int i;
584
585 for (i = 0; i < MAX_MACHINE_MODE; i++)
586 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
587 }
588 }
589
590
591 /* Compute extra cost of moving registers to/from memory due to reloads.
592 Only needed if secondary reloads are required for memory moves. */
593
594 int
595 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
596 {
597 enum reg_class altclass;
598 int partial_cost = 0;
599 /* We need a memory reference to feed to SECONDARY... macros. */
600 /* mem may be unused even if the SECONDARY_ macros are defined. */
601 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
602
603
604 altclass = secondary_reload_class (in ? 1 : 0, class, mode, mem);
605
606 if (altclass == NO_REGS)
607 return 0;
608
609 if (in)
610 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
611 else
612 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
613
614 if (class == altclass)
615 /* This isn't simply a copy-to-temporary situation. Can't guess
616 what it is, so MEMORY_MOVE_COST really ought not to be calling
617 here in that case.
618
619 I'm tempted to put in an assert here, but returning this will
620 probably only give poor estimates, which is what we would've
621 had before this code anyways. */
622 return partial_cost;
623
624 /* Check if the secondary reload register will also need a
625 secondary reload. */
626 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
627 }
628
629 /* Return a machine mode that is legitimate for hard reg REGNO and large
630 enough to save nregs. If we can't find one, return VOIDmode.
631 If CALL_SAVED is true, only consider modes that are call saved. */
632
633 enum machine_mode
634 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
635 unsigned int nregs, bool call_saved)
636 {
637 unsigned int /* enum machine_mode */ m;
638 enum machine_mode found_mode = VOIDmode, mode;
639
640 /* We first look for the largest integer mode that can be validly
641 held in REGNO. If none, we look for the largest floating-point mode.
642 If we still didn't find a valid mode, try CCmode. */
643
644 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
645 mode != VOIDmode;
646 mode = GET_MODE_WIDER_MODE (mode))
647 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
648 && HARD_REGNO_MODE_OK (regno, mode)
649 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
650 found_mode = mode;
651
652 if (found_mode != VOIDmode)
653 return found_mode;
654
655 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
656 mode != VOIDmode;
657 mode = GET_MODE_WIDER_MODE (mode))
658 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
659 && HARD_REGNO_MODE_OK (regno, mode)
660 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
661 found_mode = mode;
662
663 if (found_mode != VOIDmode)
664 return found_mode;
665
666 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
667 mode != VOIDmode;
668 mode = GET_MODE_WIDER_MODE (mode))
669 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
670 && HARD_REGNO_MODE_OK (regno, mode)
671 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
672 found_mode = mode;
673
674 if (found_mode != VOIDmode)
675 return found_mode;
676
677 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
678 mode != VOIDmode;
679 mode = GET_MODE_WIDER_MODE (mode))
680 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
681 && HARD_REGNO_MODE_OK (regno, mode)
682 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
683 found_mode = mode;
684
685 if (found_mode != VOIDmode)
686 return found_mode;
687
688 /* Iterate over all of the CCmodes. */
689 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
690 {
691 mode = (enum machine_mode) m;
692 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
693 && HARD_REGNO_MODE_OK (regno, mode)
694 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
695 return mode;
696 }
697
698 /* We can't find a mode valid for this register. */
699 return VOIDmode;
700 }
701
702 /* Specify the usage characteristics of the register named NAME.
703 It should be a fixed register if FIXED and a
704 call-used register if CALL_USED. */
705
706 void
707 fix_register (const char *name, int fixed, int call_used)
708 {
709 int i;
710
711 /* Decode the name and update the primary form of
712 the register info. */
713
714 if ((i = decode_reg_name (name)) >= 0)
715 {
716 if ((i == STACK_POINTER_REGNUM
717 #ifdef HARD_FRAME_POINTER_REGNUM
718 || i == HARD_FRAME_POINTER_REGNUM
719 #else
720 || i == FRAME_POINTER_REGNUM
721 #endif
722 )
723 && (fixed == 0 || call_used == 0))
724 {
725 static const char * const what_option[2][2] = {
726 { "call-saved", "call-used" },
727 { "no-such-option", "fixed" }};
728
729 error ("can't use '%s' as a %s register", name,
730 what_option[fixed][call_used]);
731 }
732 else
733 {
734 fixed_regs[i] = fixed;
735 call_used_regs[i] = call_used;
736 #ifdef CALL_REALLY_USED_REGISTERS
737 if (fixed == 0)
738 call_really_used_regs[i] = call_used;
739 #endif
740 }
741 }
742 else
743 {
744 warning (0, "unknown register name: %s", name);
745 }
746 }
747
748 /* Mark register number I as global. */
749
750 void
751 globalize_reg (int i)
752 {
753 if (fixed_regs[i] == 0 && no_global_reg_vars)
754 error ("global register variable follows a function definition");
755
756 if (global_regs[i])
757 {
758 warning (0, "register used for two global register variables");
759 return;
760 }
761
762 if (call_used_regs[i] && ! fixed_regs[i])
763 warning (0, "call-clobbered register used for global register variable");
764
765 global_regs[i] = 1;
766
767 /* If we're globalizing the frame pointer, we need to set the
768 appropriate regs_invalidated_by_call bit, even if it's already
769 set in fixed_regs. */
770 if (i != STACK_POINTER_REGNUM)
771 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
772
773 /* If already fixed, nothing else to do. */
774 if (fixed_regs[i])
775 return;
776
777 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
778 #ifdef CALL_REALLY_USED_REGISTERS
779 call_really_used_regs[i] = 1;
780 #endif
781
782 SET_HARD_REG_BIT (fixed_reg_set, i);
783 SET_HARD_REG_BIT (call_used_reg_set, i);
784 SET_HARD_REG_BIT (call_fixed_reg_set, i);
785 }
786 \f
787 /* Now the data and code for the `regclass' pass, which happens
788 just before local-alloc. */
789
790 /* The `costs' struct records the cost of using a hard register of each class
791 and of using memory for each pseudo. We use this data to set up
792 register class preferences. */
793
794 struct costs
795 {
796 int cost[N_REG_CLASSES];
797 int mem_cost;
798 };
799
800 /* Structure used to record preferences of given pseudo. */
801 struct reg_pref
802 {
803 /* (enum reg_class) prefclass is the preferred class. May be
804 NO_REGS if no class is better than memory. */
805 char prefclass;
806
807 /* altclass is a register class that we should use for allocating
808 pseudo if no register in the preferred class is available.
809 If no register in this class is available, memory is preferred.
810
811 It might appear to be more general to have a bitmask of classes here,
812 but since it is recommended that there be a class corresponding to the
813 union of most major pair of classes, that generality is not required. */
814 char altclass;
815 };
816
817 /* Record the cost of each class for each pseudo. */
818
819 static struct costs *costs;
820
821 /* Initialized once, and used to initialize cost values for each insn. */
822
823 static struct costs init_cost;
824
825 /* Record preferences of each pseudo.
826 This is available after `regclass' is run. */
827
828 static struct reg_pref *reg_pref;
829
830 /* Allocated buffers for reg_pref. */
831
832 static struct reg_pref *reg_pref_buffer;
833
834 /* Frequency of executions of current insn. */
835
836 static int frequency;
837
838 static rtx scan_one_insn (rtx, int);
839 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
840 static void dump_regclass (FILE *);
841 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
842 const char **, rtx, struct costs *,
843 struct reg_pref *);
844 static int copy_cost (rtx, enum machine_mode, enum reg_class, int,
845 secondary_reload_info *);
846 static void record_address_regs (enum machine_mode, rtx, int, enum rtx_code,
847 enum rtx_code, int);
848 #ifdef FORBIDDEN_INC_DEC_CLASSES
849 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
850 #endif
851 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
852
853 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
854
855 static inline bool
856 ok_for_index_p_nonstrict (rtx reg)
857 {
858 unsigned regno = REGNO (reg);
859 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
860 }
861
862 /* A version of regno_ok_for_base_p for use during regclass, when all pseudos
863 should count as OK. Arguments as for regno_ok_for_base_p. */
864
865 static inline bool
866 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
867 enum rtx_code outer_code, enum rtx_code index_code)
868 {
869 unsigned regno = REGNO (reg);
870 if (regno >= FIRST_PSEUDO_REGISTER)
871 return true;
872
873 return ok_for_base_p_1 (regno, mode, outer_code, index_code);
874 }
875
876 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
877 This function is sometimes called before the info has been computed.
878 When that happens, just return GENERAL_REGS, which is innocuous. */
879
880 enum reg_class
881 reg_preferred_class (int regno)
882 {
883 if (reg_pref == 0)
884 return GENERAL_REGS;
885 return (enum reg_class) reg_pref[regno].prefclass;
886 }
887
888 enum reg_class
889 reg_alternate_class (int regno)
890 {
891 if (reg_pref == 0)
892 return ALL_REGS;
893
894 return (enum reg_class) reg_pref[regno].altclass;
895 }
896
897 /* Initialize some global data for this pass. */
898
899 void
900 regclass_init (void)
901 {
902 int i;
903
904 init_cost.mem_cost = 10000;
905 for (i = 0; i < N_REG_CLASSES; i++)
906 init_cost.cost[i] = 10000;
907
908 /* This prevents dump_flow_info from losing if called
909 before regclass is run. */
910 reg_pref = NULL;
911
912 /* No more global register variables may be declared. */
913 no_global_reg_vars = 1;
914 }
915 \f
916 /* Dump register costs. */
917 static void
918 dump_regclass (FILE *dump)
919 {
920 int i;
921 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
922 {
923 int /* enum reg_class */ class;
924 if (REG_N_REFS (i))
925 {
926 fprintf (dump, " Register %i costs:", i);
927 for (class = 0; class < (int) N_REG_CLASSES; class++)
928 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
929 #ifdef FORBIDDEN_INC_DEC_CLASSES
930 && (!in_inc_dec[i]
931 || !forbidden_inc_dec_class[(enum reg_class) class])
932 #endif
933 #ifdef CANNOT_CHANGE_MODE_CLASS
934 && ! invalid_mode_change_p (i, (enum reg_class) class,
935 PSEUDO_REGNO_MODE (i))
936 #endif
937 )
938 fprintf (dump, " %s:%i", reg_class_names[class],
939 costs[i].cost[(enum reg_class) class]);
940 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
941 }
942 }
943 }
944 \f
945
946 /* Calculate the costs of insn operands. */
947
948 static void
949 record_operand_costs (rtx insn, struct costs *op_costs,
950 struct reg_pref *reg_pref)
951 {
952 const char *constraints[MAX_RECOG_OPERANDS];
953 enum machine_mode modes[MAX_RECOG_OPERANDS];
954 int i;
955
956 for (i = 0; i < recog_data.n_operands; i++)
957 {
958 constraints[i] = recog_data.constraints[i];
959 modes[i] = recog_data.operand_mode[i];
960 }
961
962 /* If we get here, we are set up to record the costs of all the
963 operands for this insn. Start by initializing the costs.
964 Then handle any address registers. Finally record the desired
965 classes for any pseudos, doing it twice if some pair of
966 operands are commutative. */
967
968 for (i = 0; i < recog_data.n_operands; i++)
969 {
970 op_costs[i] = init_cost;
971
972 if (GET_CODE (recog_data.operand[i]) == SUBREG)
973 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
974
975 if (MEM_P (recog_data.operand[i]))
976 record_address_regs (GET_MODE (recog_data.operand[i]),
977 XEXP (recog_data.operand[i], 0),
978 0, MEM, SCRATCH, frequency * 2);
979 else if (constraints[i][0] == 'p'
980 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
981 record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
982 SCRATCH, frequency * 2);
983 }
984
985 /* Check for commutative in a separate loop so everything will
986 have been initialized. We must do this even if one operand
987 is a constant--see addsi3 in m68k.md. */
988
989 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
990 if (constraints[i][0] == '%')
991 {
992 const char *xconstraints[MAX_RECOG_OPERANDS];
993 int j;
994
995 /* Handle commutative operands by swapping the constraints.
996 We assume the modes are the same. */
997
998 for (j = 0; j < recog_data.n_operands; j++)
999 xconstraints[j] = constraints[j];
1000
1001 xconstraints[i] = constraints[i+1];
1002 xconstraints[i+1] = constraints[i];
1003 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1004 recog_data.operand, modes,
1005 xconstraints, insn, op_costs, reg_pref);
1006 }
1007
1008 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1009 recog_data.operand, modes,
1010 constraints, insn, op_costs, reg_pref);
1011 }
1012 \f
1013 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1014 time it would save code to put a certain register in a certain class.
1015 PASS, when nonzero, inhibits some optimizations which need only be done
1016 once.
1017 Return the last insn processed, so that the scan can be continued from
1018 there. */
1019
1020 static rtx
1021 scan_one_insn (rtx insn, int pass ATTRIBUTE_UNUSED)
1022 {
1023 enum rtx_code pat_code;
1024 rtx set, note;
1025 int i, j;
1026 struct costs op_costs[MAX_RECOG_OPERANDS];
1027
1028 if (!INSN_P (insn))
1029 return insn;
1030
1031 pat_code = GET_CODE (PATTERN (insn));
1032 if (pat_code == USE
1033 || pat_code == CLOBBER
1034 || pat_code == ASM_INPUT
1035 || pat_code == ADDR_VEC
1036 || pat_code == ADDR_DIFF_VEC)
1037 return insn;
1038
1039 set = single_set (insn);
1040 extract_insn (insn);
1041
1042 /* If this insn loads a parameter from its stack slot, then
1043 it represents a savings, rather than a cost, if the
1044 parameter is stored in memory. Record this fact. */
1045
1046 if (set != 0 && REG_P (SET_DEST (set))
1047 && MEM_P (SET_SRC (set))
1048 && (note = find_reg_note (insn, REG_EQUIV,
1049 NULL_RTX)) != 0
1050 && MEM_P (XEXP (note, 0)))
1051 {
1052 costs[REGNO (SET_DEST (set))].mem_cost
1053 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1054 GENERAL_REGS, 1)
1055 * frequency);
1056 record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
1057 0, MEM, SCRATCH, frequency * 2);
1058 return insn;
1059 }
1060
1061 record_operand_costs (insn, op_costs, reg_pref);
1062
1063 /* Now add the cost for each operand to the total costs for
1064 its register. */
1065
1066 for (i = 0; i < recog_data.n_operands; i++)
1067 if (REG_P (recog_data.operand[i])
1068 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1069 {
1070 int regno = REGNO (recog_data.operand[i]);
1071 struct costs *p = &costs[regno], *q = &op_costs[i];
1072
1073 p->mem_cost += q->mem_cost * frequency;
1074 for (j = 0; j < N_REG_CLASSES; j++)
1075 p->cost[j] += q->cost[j] * frequency;
1076 }
1077
1078 return insn;
1079 }
1080
1081 /* Initialize information about which register classes can be used for
1082 pseudos that are auto-incremented or auto-decremented. */
1083
1084 static void
1085 init_reg_autoinc (void)
1086 {
1087 #ifdef FORBIDDEN_INC_DEC_CLASSES
1088 int i;
1089
1090 for (i = 0; i < N_REG_CLASSES; i++)
1091 {
1092 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1093 enum machine_mode m;
1094 int j;
1095
1096 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1097 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1098 {
1099 REGNO (r) = j;
1100
1101 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1102 m = (enum machine_mode) ((int) m + 1))
1103 if (HARD_REGNO_MODE_OK (j, m))
1104 {
1105 /* ??? There are two assumptions here; that the base class does not
1106 depend on the exact outer code (POST_INC vs. PRE_INC etc.), and
1107 that it does not depend on the machine mode of the memory
1108 reference. */
1109 enum reg_class base_class
1110 = base_reg_class (VOIDmode, POST_INC, SCRATCH);
1111
1112 PUT_MODE (r, m);
1113
1114 /* If a register is not directly suitable for an
1115 auto-increment or decrement addressing mode and
1116 requires secondary reloads, disallow its class from
1117 being used in such addresses. */
1118
1119 if ((secondary_reload_class (1, base_class, m, r)
1120 || secondary_reload_class (1, base_class, m, r))
1121 && ! auto_inc_dec_reg_p (r, m))
1122 forbidden_inc_dec_class[i] = 1;
1123 }
1124 }
1125 }
1126 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1127 }
1128
1129 /* This is a pass of the compiler that scans all instructions
1130 and calculates the preferred class for each pseudo-register.
1131 This information can be accessed later by calling `reg_preferred_class'.
1132 This pass comes just before local register allocation. */
1133
1134 void
1135 regclass (rtx f, int nregs)
1136 {
1137 rtx insn;
1138 int i;
1139 int pass;
1140
1141 init_recog ();
1142
1143 costs = XNEWVEC (struct costs, nregs);
1144
1145 #ifdef FORBIDDEN_INC_DEC_CLASSES
1146
1147 in_inc_dec = XNEWVEC (char, nregs);
1148
1149 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1150
1151 /* Normally we scan the insns once and determine the best class to use for
1152 each register. However, if -fexpensive_optimizations are on, we do so
1153 twice, the second time using the tentative best classes to guide the
1154 selection. */
1155
1156 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1157 {
1158 basic_block bb;
1159
1160 if (dump_file)
1161 fprintf (dump_file, "\n\nPass %i\n\n",pass);
1162 /* Zero out our accumulation of the cost of each class for each reg. */
1163
1164 memset (costs, 0, nregs * sizeof (struct costs));
1165
1166 #ifdef FORBIDDEN_INC_DEC_CLASSES
1167 memset (in_inc_dec, 0, nregs);
1168 #endif
1169
1170 /* Scan the instructions and record each time it would
1171 save code to put a certain register in a certain class. */
1172
1173 if (!optimize)
1174 {
1175 frequency = REG_FREQ_MAX;
1176 for (insn = f; insn; insn = NEXT_INSN (insn))
1177 insn = scan_one_insn (insn, pass);
1178 }
1179 else
1180 FOR_EACH_BB (bb)
1181 {
1182 /* Show that an insn inside a loop is likely to be executed three
1183 times more than insns outside a loop. This is much more
1184 aggressive than the assumptions made elsewhere and is being
1185 tried as an experiment. */
1186 frequency = REG_FREQ_FROM_BB (bb);
1187 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1188 {
1189 insn = scan_one_insn (insn, pass);
1190 if (insn == BB_END (bb))
1191 break;
1192 }
1193 }
1194
1195 /* Now for each register look at how desirable each class is
1196 and find which class is preferred. Store that in
1197 `prefclass'. Record in `altclass' the largest register
1198 class any of whose registers is better than memory. */
1199
1200 if (pass == 0)
1201 reg_pref = reg_pref_buffer;
1202
1203 if (dump_file)
1204 {
1205 dump_regclass (dump_file);
1206 fprintf (dump_file,"\n");
1207 }
1208 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1209 {
1210 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1211 enum reg_class best = ALL_REGS, alt = NO_REGS;
1212 /* This is an enum reg_class, but we call it an int
1213 to save lots of casts. */
1214 int class;
1215 struct costs *p = &costs[i];
1216
1217 if (regno_reg_rtx[i] == NULL)
1218 continue;
1219
1220 /* In non-optimizing compilation REG_N_REFS is not initialized
1221 yet. */
1222 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1223 continue;
1224
1225 for (class = (int) ALL_REGS - 1; class > 0; class--)
1226 {
1227 /* Ignore classes that are too small for this operand or
1228 invalid for an operand that was auto-incremented. */
1229 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1230 #ifdef FORBIDDEN_INC_DEC_CLASSES
1231 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1232 #endif
1233 #ifdef CANNOT_CHANGE_MODE_CLASS
1234 || invalid_mode_change_p (i, (enum reg_class) class,
1235 PSEUDO_REGNO_MODE (i))
1236 #endif
1237 )
1238 ;
1239 else if (p->cost[class] < best_cost)
1240 {
1241 best_cost = p->cost[class];
1242 best = (enum reg_class) class;
1243 }
1244 else if (p->cost[class] == best_cost)
1245 best = reg_class_subunion[(int) best][class];
1246 }
1247
1248 /* If no register class is better than memory, use memory. */
1249 if (p->mem_cost < best_cost)
1250 best = NO_REGS;
1251
1252 /* Record the alternate register class; i.e., a class for which
1253 every register in it is better than using memory. If adding a
1254 class would make a smaller class (i.e., no union of just those
1255 classes exists), skip that class. The major unions of classes
1256 should be provided as a register class. Don't do this if we
1257 will be doing it again later. */
1258
1259 if ((pass == 1 || dump_file) || ! flag_expensive_optimizations)
1260 for (class = 0; class < N_REG_CLASSES; class++)
1261 if (p->cost[class] < p->mem_cost
1262 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1263 > reg_class_size[(int) alt])
1264 #ifdef FORBIDDEN_INC_DEC_CLASSES
1265 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1266 #endif
1267 #ifdef CANNOT_CHANGE_MODE_CLASS
1268 && ! invalid_mode_change_p (i, (enum reg_class) class,
1269 PSEUDO_REGNO_MODE (i))
1270 #endif
1271 )
1272 alt = reg_class_subunion[(int) alt][class];
1273
1274 /* If we don't add any classes, nothing to try. */
1275 if (alt == best)
1276 alt = NO_REGS;
1277
1278 if (dump_file
1279 && (reg_pref[i].prefclass != (int) best
1280 || reg_pref[i].altclass != (int) alt))
1281 {
1282 fprintf (dump_file, " Register %i", i);
1283 if (alt == ALL_REGS || best == ALL_REGS)
1284 fprintf (dump_file, " pref %s\n", reg_class_names[(int) best]);
1285 else if (alt == NO_REGS)
1286 fprintf (dump_file, " pref %s or none\n", reg_class_names[(int) best]);
1287 else
1288 fprintf (dump_file, " pref %s, else %s\n",
1289 reg_class_names[(int) best],
1290 reg_class_names[(int) alt]);
1291 }
1292
1293 /* We cast to (int) because (char) hits bugs in some compilers. */
1294 reg_pref[i].prefclass = (int) best;
1295 reg_pref[i].altclass = (int) alt;
1296 }
1297 }
1298
1299 #ifdef FORBIDDEN_INC_DEC_CLASSES
1300 free (in_inc_dec);
1301 #endif
1302 free (costs);
1303 }
1304 \f
1305 /* Record the cost of using memory or registers of various classes for
1306 the operands in INSN.
1307
1308 N_ALTS is the number of alternatives.
1309
1310 N_OPS is the number of operands.
1311
1312 OPS is an array of the operands.
1313
1314 MODES are the modes of the operands, in case any are VOIDmode.
1315
1316 CONSTRAINTS are the constraints to use for the operands. This array
1317 is modified by this procedure.
1318
1319 This procedure works alternative by alternative. For each alternative
1320 we assume that we will be able to allocate all pseudos to their ideal
1321 register class and calculate the cost of using that alternative. Then
1322 we compute for each operand that is a pseudo-register, the cost of
1323 having the pseudo allocated to each register class and using it in that
1324 alternative. To this cost is added the cost of the alternative.
1325
1326 The cost of each class for this insn is its lowest cost among all the
1327 alternatives. */
1328
1329 static void
1330 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1331 enum machine_mode *modes, const char **constraints,
1332 rtx insn, struct costs *op_costs,
1333 struct reg_pref *reg_pref)
1334 {
1335 int alt;
1336 int i, j;
1337 rtx set;
1338
1339 /* Process each alternative, each time minimizing an operand's cost with
1340 the cost for each operand in that alternative. */
1341
1342 for (alt = 0; alt < n_alts; alt++)
1343 {
1344 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1345 int alt_fail = 0;
1346 int alt_cost = 0;
1347 enum reg_class classes[MAX_RECOG_OPERANDS];
1348 int allows_mem[MAX_RECOG_OPERANDS];
1349 int class;
1350
1351 for (i = 0; i < n_ops; i++)
1352 {
1353 const char *p = constraints[i];
1354 rtx op = ops[i];
1355 enum machine_mode mode = modes[i];
1356 int allows_addr = 0;
1357 int win = 0;
1358 unsigned char c;
1359
1360 /* Initially show we know nothing about the register class. */
1361 classes[i] = NO_REGS;
1362 allows_mem[i] = 0;
1363
1364 /* If this operand has no constraints at all, we can conclude
1365 nothing about it since anything is valid. */
1366
1367 if (*p == 0)
1368 {
1369 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1370 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1371
1372 continue;
1373 }
1374
1375 /* If this alternative is only relevant when this operand
1376 matches a previous operand, we do different things depending
1377 on whether this operand is a pseudo-reg or not. We must process
1378 any modifiers for the operand before we can make this test. */
1379
1380 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1381 p++;
1382
1383 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1384 {
1385 /* Copy class and whether memory is allowed from the matching
1386 alternative. Then perform any needed cost computations
1387 and/or adjustments. */
1388 j = p[0] - '0';
1389 classes[i] = classes[j];
1390 allows_mem[i] = allows_mem[j];
1391
1392 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1393 {
1394 /* If this matches the other operand, we have no added
1395 cost and we win. */
1396 if (rtx_equal_p (ops[j], op))
1397 win = 1;
1398
1399 /* If we can put the other operand into a register, add to
1400 the cost of this alternative the cost to copy this
1401 operand to the register used for the other operand. */
1402
1403 else if (classes[j] != NO_REGS)
1404 {
1405 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
1406 win = 1;
1407 }
1408 }
1409 else if (!REG_P (ops[j])
1410 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1411 {
1412 /* This op is a pseudo but the one it matches is not. */
1413
1414 /* If we can't put the other operand into a register, this
1415 alternative can't be used. */
1416
1417 if (classes[j] == NO_REGS)
1418 alt_fail = 1;
1419
1420 /* Otherwise, add to the cost of this alternative the cost
1421 to copy the other operand to the register used for this
1422 operand. */
1423
1424 else
1425 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
1426 }
1427 else
1428 {
1429 /* The costs of this operand are not the same as the other
1430 operand since move costs are not symmetric. Moreover,
1431 if we cannot tie them, this alternative needs to do a
1432 copy, which is one instruction. */
1433
1434 struct costs *pp = &this_op_costs[i];
1435
1436 for (class = 0; class < N_REG_CLASSES; class++)
1437 pp->cost[class]
1438 = ((recog_data.operand_type[i] != OP_OUT
1439 ? may_move_in_cost[mode][class][(int) classes[i]]
1440 : 0)
1441 + (recog_data.operand_type[i] != OP_IN
1442 ? may_move_out_cost[mode][(int) classes[i]][class]
1443 : 0));
1444
1445 /* If the alternative actually allows memory, make things
1446 a bit cheaper since we won't need an extra insn to
1447 load it. */
1448
1449 pp->mem_cost
1450 = ((recog_data.operand_type[i] != OP_IN
1451 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1452 : 0)
1453 + (recog_data.operand_type[i] != OP_OUT
1454 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1455 : 0) - allows_mem[i]);
1456
1457 /* If we have assigned a class to this register in our
1458 first pass, add a cost to this alternative corresponding
1459 to what we would add if this register were not in the
1460 appropriate class. */
1461
1462 if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
1463 alt_cost
1464 += (may_move_in_cost[mode]
1465 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1466 [(int) classes[i]]);
1467
1468 if (REGNO (ops[i]) != REGNO (ops[j])
1469 && ! find_reg_note (insn, REG_DEAD, op))
1470 alt_cost += 2;
1471
1472 /* This is in place of ordinary cost computation
1473 for this operand, so skip to the end of the
1474 alternative (should be just one character). */
1475 while (*p && *p++ != ',')
1476 ;
1477
1478 constraints[i] = p;
1479 continue;
1480 }
1481 }
1482
1483 /* Scan all the constraint letters. See if the operand matches
1484 any of the constraints. Collect the valid register classes
1485 and see if this operand accepts memory. */
1486
1487 while ((c = *p))
1488 {
1489 switch (c)
1490 {
1491 case ',':
1492 break;
1493 case '*':
1494 /* Ignore the next letter for this pass. */
1495 c = *++p;
1496 break;
1497
1498 case '?':
1499 alt_cost += 2;
1500 case '!': case '#': case '&':
1501 case '0': case '1': case '2': case '3': case '4':
1502 case '5': case '6': case '7': case '8': case '9':
1503 break;
1504
1505 case 'p':
1506 allows_addr = 1;
1507 win = address_operand (op, GET_MODE (op));
1508 /* We know this operand is an address, so we want it to be
1509 allocated to a register that can be the base of an
1510 address, i.e. BASE_REG_CLASS. */
1511 classes[i]
1512 = reg_class_subunion[(int) classes[i]]
1513 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1514 break;
1515
1516 case 'm': case 'o': case 'V':
1517 /* It doesn't seem worth distinguishing between offsettable
1518 and non-offsettable addresses here. */
1519 allows_mem[i] = 1;
1520 if (MEM_P (op))
1521 win = 1;
1522 break;
1523
1524 case '<':
1525 if (MEM_P (op)
1526 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1527 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1528 win = 1;
1529 break;
1530
1531 case '>':
1532 if (MEM_P (op)
1533 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1534 || GET_CODE (XEXP (op, 0)) == POST_INC))
1535 win = 1;
1536 break;
1537
1538 case 'E':
1539 case 'F':
1540 if (GET_CODE (op) == CONST_DOUBLE
1541 || (GET_CODE (op) == CONST_VECTOR
1542 && (GET_MODE_CLASS (GET_MODE (op))
1543 == MODE_VECTOR_FLOAT)))
1544 win = 1;
1545 break;
1546
1547 case 'G':
1548 case 'H':
1549 if (GET_CODE (op) == CONST_DOUBLE
1550 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1551 win = 1;
1552 break;
1553
1554 case 's':
1555 if (GET_CODE (op) == CONST_INT
1556 || (GET_CODE (op) == CONST_DOUBLE
1557 && GET_MODE (op) == VOIDmode))
1558 break;
1559 case 'i':
1560 if (CONSTANT_P (op)
1561 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1562 win = 1;
1563 break;
1564
1565 case 'n':
1566 if (GET_CODE (op) == CONST_INT
1567 || (GET_CODE (op) == CONST_DOUBLE
1568 && GET_MODE (op) == VOIDmode))
1569 win = 1;
1570 break;
1571
1572 case 'I':
1573 case 'J':
1574 case 'K':
1575 case 'L':
1576 case 'M':
1577 case 'N':
1578 case 'O':
1579 case 'P':
1580 if (GET_CODE (op) == CONST_INT
1581 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1582 win = 1;
1583 break;
1584
1585 case 'X':
1586 win = 1;
1587 break;
1588
1589 case 'g':
1590 if (MEM_P (op)
1591 || (CONSTANT_P (op)
1592 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1593 win = 1;
1594 allows_mem[i] = 1;
1595 case 'r':
1596 classes[i]
1597 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1598 break;
1599
1600 default:
1601 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1602 classes[i]
1603 = reg_class_subunion[(int) classes[i]]
1604 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1605 #ifdef EXTRA_CONSTRAINT_STR
1606 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1607 win = 1;
1608
1609 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1610 {
1611 /* Every MEM can be reloaded to fit. */
1612 allows_mem[i] = 1;
1613 if (MEM_P (op))
1614 win = 1;
1615 }
1616 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1617 {
1618 /* Every address can be reloaded to fit. */
1619 allows_addr = 1;
1620 if (address_operand (op, GET_MODE (op)))
1621 win = 1;
1622 /* We know this operand is an address, so we want it to
1623 be allocated to a register that can be the base of an
1624 address, i.e. BASE_REG_CLASS. */
1625 classes[i]
1626 = reg_class_subunion[(int) classes[i]]
1627 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1628 }
1629 #endif
1630 break;
1631 }
1632 p += CONSTRAINT_LEN (c, p);
1633 if (c == ',')
1634 break;
1635 }
1636
1637 constraints[i] = p;
1638
1639 /* How we account for this operand now depends on whether it is a
1640 pseudo register or not. If it is, we first check if any
1641 register classes are valid. If not, we ignore this alternative,
1642 since we want to assume that all pseudos get allocated for
1643 register preferencing. If some register class is valid, compute
1644 the costs of moving the pseudo into that class. */
1645
1646 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1647 {
1648 if (classes[i] == NO_REGS)
1649 {
1650 /* We must always fail if the operand is a REG, but
1651 we did not find a suitable class.
1652
1653 Otherwise we may perform an uninitialized read
1654 from this_op_costs after the `continue' statement
1655 below. */
1656 alt_fail = 1;
1657 }
1658 else
1659 {
1660 struct costs *pp = &this_op_costs[i];
1661
1662 for (class = 0; class < N_REG_CLASSES; class++)
1663 pp->cost[class]
1664 = ((recog_data.operand_type[i] != OP_OUT
1665 ? may_move_in_cost[mode][class][(int) classes[i]]
1666 : 0)
1667 + (recog_data.operand_type[i] != OP_IN
1668 ? may_move_out_cost[mode][(int) classes[i]][class]
1669 : 0));
1670
1671 /* If the alternative actually allows memory, make things
1672 a bit cheaper since we won't need an extra insn to
1673 load it. */
1674
1675 pp->mem_cost
1676 = ((recog_data.operand_type[i] != OP_IN
1677 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1678 : 0)
1679 + (recog_data.operand_type[i] != OP_OUT
1680 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1681 : 0) - allows_mem[i]);
1682
1683 /* If we have assigned a class to this register in our
1684 first pass, add a cost to this alternative corresponding
1685 to what we would add if this register were not in the
1686 appropriate class. */
1687
1688 if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
1689 alt_cost
1690 += (may_move_in_cost[mode]
1691 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1692 [(int) classes[i]]);
1693 }
1694 }
1695
1696 /* Otherwise, if this alternative wins, either because we
1697 have already determined that or if we have a hard register of
1698 the proper class, there is no cost for this alternative. */
1699
1700 else if (win
1701 || (REG_P (op)
1702 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1703 ;
1704
1705 /* If registers are valid, the cost of this alternative includes
1706 copying the object to and/or from a register. */
1707
1708 else if (classes[i] != NO_REGS)
1709 {
1710 if (recog_data.operand_type[i] != OP_OUT)
1711 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1712
1713 if (recog_data.operand_type[i] != OP_IN)
1714 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1715 }
1716
1717 /* The only other way this alternative can be used is if this is a
1718 constant that could be placed into memory. */
1719
1720 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1721 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1722 else
1723 alt_fail = 1;
1724 }
1725
1726 if (alt_fail)
1727 continue;
1728
1729 /* Finally, update the costs with the information we've calculated
1730 about this alternative. */
1731
1732 for (i = 0; i < n_ops; i++)
1733 if (REG_P (ops[i])
1734 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1735 {
1736 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1737 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1738
1739 pp->mem_cost = MIN (pp->mem_cost,
1740 (qq->mem_cost + alt_cost) * scale);
1741
1742 for (class = 0; class < N_REG_CLASSES; class++)
1743 pp->cost[class] = MIN (pp->cost[class],
1744 (qq->cost[class] + alt_cost) * scale);
1745 }
1746 }
1747
1748 /* If this insn is a single set copying operand 1 to operand 0
1749 and one operand is a pseudo with the other a hard reg or a pseudo
1750 that prefers a register that is in its own register class then
1751 we may want to adjust the cost of that register class to -1.
1752
1753 Avoid the adjustment if the source does not die to avoid stressing of
1754 register allocator by preferrencing two colliding registers into single
1755 class.
1756
1757 Also avoid the adjustment if a copy between registers of the class
1758 is expensive (ten times the cost of a default copy is considered
1759 arbitrarily expensive). This avoids losing when the preferred class
1760 is very expensive as the source of a copy instruction. */
1761
1762 if ((set = single_set (insn)) != 0
1763 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1764 && REG_P (ops[0]) && REG_P (ops[1])
1765 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1766 for (i = 0; i <= 1; i++)
1767 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1768 {
1769 unsigned int regno = REGNO (ops[!i]);
1770 enum machine_mode mode = GET_MODE (ops[!i]);
1771 int class;
1772
1773 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0
1774 && reg_pref[regno].prefclass != NO_REGS)
1775 {
1776 enum reg_class pref = reg_pref[regno].prefclass;
1777
1778 if ((reg_class_size[(unsigned char) pref]
1779 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1780 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1781 op_costs[i].cost[(unsigned char) pref] = -1;
1782 }
1783 else if (regno < FIRST_PSEUDO_REGISTER)
1784 for (class = 0; class < N_REG_CLASSES; class++)
1785 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1786 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1787 {
1788 if (reg_class_size[class] == 1)
1789 op_costs[i].cost[class] = -1;
1790 else if (in_hard_reg_set_p (reg_class_contents[class],
1791 mode, regno))
1792 op_costs[i].cost[class] = -1;
1793 }
1794 }
1795 }
1796 \f
1797 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1798 TO_P is zero) a register of class CLASS in mode MODE.
1799
1800 X must not be a pseudo. */
1801
1802 static int
1803 copy_cost (rtx x, enum machine_mode mode, enum reg_class class, int to_p,
1804 secondary_reload_info *prev_sri)
1805 {
1806 enum reg_class secondary_class = NO_REGS;
1807 secondary_reload_info sri;
1808
1809 /* If X is a SCRATCH, there is actually nothing to move since we are
1810 assuming optimal allocation. */
1811
1812 if (GET_CODE (x) == SCRATCH)
1813 return 0;
1814
1815 /* Get the class we will actually use for a reload. */
1816 class = PREFERRED_RELOAD_CLASS (x, class);
1817
1818 /* If we need a secondary reload for an intermediate, the
1819 cost is that to load the input into the intermediate register, then
1820 to copy it. */
1821
1822 sri.prev_sri = prev_sri;
1823 sri.extra_cost = 0;
1824 secondary_class = targetm.secondary_reload (to_p, x, class, mode, &sri);
1825
1826 if (secondary_class != NO_REGS)
1827 return (move_cost[mode][(int) secondary_class][(int) class]
1828 + sri.extra_cost
1829 + copy_cost (x, mode, secondary_class, to_p, &sri));
1830
1831 /* For memory, use the memory move cost, for (hard) registers, use the
1832 cost to move between the register classes, and use 2 for everything
1833 else (constants). */
1834
1835 if (MEM_P (x) || class == NO_REGS)
1836 return sri.extra_cost + MEMORY_MOVE_COST (mode, class, to_p);
1837
1838 else if (REG_P (x))
1839 return (sri.extra_cost
1840 + move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class]);
1841
1842 else
1843 /* If this is a constant, we may eventually want to call rtx_cost here. */
1844 return sri.extra_cost + COSTS_N_INSNS (1);
1845 }
1846 \f
1847 /* Record the pseudo registers we must reload into hard registers
1848 in a subexpression of a memory address, X.
1849
1850 If CONTEXT is 0, we are looking at the base part of an address, otherwise we
1851 are looking at the index part.
1852
1853 MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
1854 give the context that the rtx appears in. These three arguments are
1855 passed down to base_reg_class.
1856
1857 SCALE is twice the amount to multiply the cost by (it is twice so we
1858 can represent half-cost adjustments). */
1859
1860 static void
1861 record_address_regs (enum machine_mode mode, rtx x, int context,
1862 enum rtx_code outer_code, enum rtx_code index_code,
1863 int scale)
1864 {
1865 enum rtx_code code = GET_CODE (x);
1866 enum reg_class class;
1867
1868 if (context == 1)
1869 class = INDEX_REG_CLASS;
1870 else
1871 class = base_reg_class (mode, outer_code, index_code);
1872
1873 switch (code)
1874 {
1875 case CONST_INT:
1876 case CONST:
1877 case CC0:
1878 case PC:
1879 case SYMBOL_REF:
1880 case LABEL_REF:
1881 return;
1882
1883 case PLUS:
1884 /* When we have an address that is a sum,
1885 we must determine whether registers are "base" or "index" regs.
1886 If there is a sum of two registers, we must choose one to be
1887 the "base". Luckily, we can use the REG_POINTER to make a good
1888 choice most of the time. We only need to do this on machines
1889 that can have two registers in an address and where the base
1890 and index register classes are different.
1891
1892 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1893 that seems bogus since it should only be set when we are sure
1894 the register is being used as a pointer. */
1895
1896 {
1897 rtx arg0 = XEXP (x, 0);
1898 rtx arg1 = XEXP (x, 1);
1899 enum rtx_code code0 = GET_CODE (arg0);
1900 enum rtx_code code1 = GET_CODE (arg1);
1901
1902 /* Look inside subregs. */
1903 if (code0 == SUBREG)
1904 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1905 if (code1 == SUBREG)
1906 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1907
1908 /* If this machine only allows one register per address, it must
1909 be in the first operand. */
1910
1911 if (MAX_REGS_PER_ADDRESS == 1)
1912 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
1913
1914 /* If index and base registers are the same on this machine, just
1915 record registers in any non-constant operands. We assume here,
1916 as well as in the tests below, that all addresses are in
1917 canonical form. */
1918
1919 else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
1920 {
1921 record_address_regs (mode, arg0, context, PLUS, code1, scale);
1922 if (! CONSTANT_P (arg1))
1923 record_address_regs (mode, arg1, context, PLUS, code0, scale);
1924 }
1925
1926 /* If the second operand is a constant integer, it doesn't change
1927 what class the first operand must be. */
1928
1929 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1930 record_address_regs (mode, arg0, context, PLUS, code1, scale);
1931
1932 /* If the second operand is a symbolic constant, the first operand
1933 must be an index register. */
1934
1935 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1936 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
1937
1938 /* If both operands are registers but one is already a hard register
1939 of index or reg-base class, give the other the class that the
1940 hard register is not. */
1941
1942 else if (code0 == REG && code1 == REG
1943 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1944 && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
1945 || ok_for_index_p_nonstrict (arg0)))
1946 record_address_regs (mode, arg1,
1947 ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
1948 ? 1 : 0,
1949 PLUS, REG, scale);
1950 else if (code0 == REG && code1 == REG
1951 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1952 && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
1953 || ok_for_index_p_nonstrict (arg1)))
1954 record_address_regs (mode, arg0,
1955 ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
1956 ? 1 : 0,
1957 PLUS, REG, scale);
1958
1959 /* If one operand is known to be a pointer, it must be the base
1960 with the other operand the index. Likewise if the other operand
1961 is a MULT. */
1962
1963 else if ((code0 == REG && REG_POINTER (arg0))
1964 || code1 == MULT)
1965 {
1966 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
1967 record_address_regs (mode, arg1, 1, PLUS, code0, scale);
1968 }
1969 else if ((code1 == REG && REG_POINTER (arg1))
1970 || code0 == MULT)
1971 {
1972 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
1973 record_address_regs (mode, arg1, 0, PLUS, code0, scale);
1974 }
1975
1976 /* Otherwise, count equal chances that each might be a base
1977 or index register. This case should be rare. */
1978
1979 else
1980 {
1981 record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
1982 record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
1983 record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
1984 record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
1985 }
1986 }
1987 break;
1988
1989 /* Double the importance of a pseudo register that is incremented
1990 or decremented, since it would take two extra insns
1991 if it ends up in the wrong place. */
1992 case POST_MODIFY:
1993 case PRE_MODIFY:
1994 record_address_regs (mode, XEXP (x, 0), 0, code,
1995 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1996 if (REG_P (XEXP (XEXP (x, 1), 1)))
1997 record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
1998 2 * scale);
1999 break;
2000
2001 case POST_INC:
2002 case PRE_INC:
2003 case POST_DEC:
2004 case PRE_DEC:
2005 /* Double the importance of a pseudo register that is incremented
2006 or decremented, since it would take two extra insns
2007 if it ends up in the wrong place. If the operand is a pseudo,
2008 show it is being used in an INC_DEC context. */
2009
2010 #ifdef FORBIDDEN_INC_DEC_CLASSES
2011 if (REG_P (XEXP (x, 0))
2012 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2013 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2014 #endif
2015
2016 record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
2017 break;
2018
2019 case REG:
2020 {
2021 struct costs *pp = &costs[REGNO (x)];
2022 int i;
2023
2024 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2025
2026 for (i = 0; i < N_REG_CLASSES; i++)
2027 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2028 }
2029 break;
2030
2031 default:
2032 {
2033 const char *fmt = GET_RTX_FORMAT (code);
2034 int i;
2035 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2036 if (fmt[i] == 'e')
2037 record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
2038 scale);
2039 }
2040 }
2041 }
2042 \f
2043 #ifdef FORBIDDEN_INC_DEC_CLASSES
2044
2045 /* Return 1 if REG is valid as an auto-increment memory reference
2046 to an object of MODE. */
2047
2048 static int
2049 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2050 {
2051 if (HAVE_POST_INCREMENT
2052 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2053 return 1;
2054
2055 if (HAVE_POST_DECREMENT
2056 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2057 return 1;
2058
2059 if (HAVE_PRE_INCREMENT
2060 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2061 return 1;
2062
2063 if (HAVE_PRE_DECREMENT
2064 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2065 return 1;
2066
2067 return 0;
2068 }
2069 #endif
2070 \f
2071 static short *renumber;
2072 static size_t regno_allocated;
2073 static unsigned int reg_n_max;
2074
2075 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2076 reg_scan and flow_analysis that are indexed by the register number. If
2077 NEW_P is nonzero, initialize all of the registers, otherwise only
2078 initialize the new registers allocated. The same table is kept from
2079 function to function, only reallocating it when we need more room. If
2080 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2081
2082 void
2083 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2084 {
2085 size_t size_info;
2086 size_t size_renumber;
2087 size_t min = (new_p) ? 0 : reg_n_max;
2088 struct reg_info_data *reg_data;
2089
2090 if (num_regs > regno_allocated)
2091 {
2092 size_t old_allocated = regno_allocated;
2093
2094 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2095 size_renumber = regno_allocated * sizeof (short);
2096
2097 if (!reg_n_info)
2098 {
2099 reg_n_info = VEC_alloc (reg_info_p, heap, regno_allocated);
2100 VEC_safe_grow_cleared (reg_info_p, heap, reg_n_info,
2101 regno_allocated);
2102 renumber = xmalloc (size_renumber);
2103 reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
2104 }
2105 else
2106 {
2107 size_t old_length = VEC_length (reg_info_p, reg_n_info);
2108 if (old_length < regno_allocated)
2109 {
2110 VEC_safe_grow_cleared (reg_info_p, heap, reg_n_info,
2111 regno_allocated);
2112 }
2113 else if (regno_allocated < old_length)
2114 {
2115 VEC_truncate (reg_info_p, reg_n_info, regno_allocated);
2116 }
2117
2118 if (new_p) /* If we're zapping everything, no need to realloc. */
2119 {
2120 free ((char *) renumber);
2121 free ((char *) reg_pref);
2122 renumber = xmalloc (size_renumber);
2123 reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
2124 }
2125
2126 else
2127 {
2128 renumber = xrealloc (renumber, size_renumber);
2129 reg_pref_buffer = (struct reg_pref *) xrealloc (reg_pref_buffer,
2130 regno_allocated
2131 * sizeof (struct reg_pref));
2132 }
2133 }
2134
2135 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2136 + sizeof (struct reg_info_data) - sizeof (reg_info);
2137 reg_data = xcalloc (size_info, 1);
2138 reg_data->min_index = old_allocated;
2139 reg_data->max_index = regno_allocated - 1;
2140 reg_data->next = reg_info_head;
2141 reg_info_head = reg_data;
2142 }
2143
2144 reg_n_max = num_regs;
2145 if (min < num_regs)
2146 {
2147 /* Loop through each of the segments allocated for the actual
2148 reg_info pages, and set up the pointers, zero the pages, etc. */
2149 for (reg_data = reg_info_head;
2150 reg_data && reg_data->max_index >= min;
2151 reg_data = reg_data->next)
2152 {
2153 size_t min_index = reg_data->min_index;
2154 size_t max_index = reg_data->max_index;
2155 size_t max = MIN (max_index, num_regs);
2156 size_t local_min = min - min_index;
2157 size_t i;
2158
2159 if (reg_data->min_index > num_regs)
2160 continue;
2161
2162 if (min < min_index)
2163 local_min = 0;
2164 if (!reg_data->used_p) /* page just allocated with calloc */
2165 reg_data->used_p = 1; /* no need to zero */
2166 else
2167 memset (&reg_data->data[local_min], 0,
2168 sizeof (reg_info) * (max - min_index - local_min + 1));
2169
2170 for (i = min_index+local_min; i <= max; i++)
2171 {
2172 VEC_replace (reg_info_p, reg_n_info, i,
2173 &reg_data->data[i-min_index]);
2174 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2175 renumber[i] = -1;
2176 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2177 reg_pref_buffer[i].altclass = (char) NO_REGS;
2178 }
2179 }
2180 }
2181
2182 /* If {pref,alt}class have already been allocated, update the pointers to
2183 the newly realloced ones. */
2184 if (reg_pref)
2185 reg_pref = reg_pref_buffer;
2186
2187 if (renumber_p)
2188 reg_renumber = renumber;
2189 }
2190
2191 /* Free up the space allocated by allocate_reg_info. */
2192 void
2193 free_reg_info (void)
2194 {
2195 if (reg_n_info)
2196 {
2197 struct reg_info_data *reg_data;
2198 struct reg_info_data *reg_next;
2199
2200 VEC_free (reg_info_p, heap, reg_n_info);
2201 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2202 {
2203 reg_next = reg_data->next;
2204 free ((char *) reg_data);
2205 }
2206
2207 free (reg_pref_buffer);
2208 reg_pref_buffer = (struct reg_pref *) 0;
2209 reg_info_head = (struct reg_info_data *) 0;
2210 renumber = (short *) 0;
2211 }
2212 regno_allocated = 0;
2213 reg_n_max = 0;
2214 }
2215
2216 /* Clear the information stored for REGNO. */
2217 void
2218 clear_reg_info_regno (unsigned int regno)
2219 {
2220 if (regno < regno_allocated)
2221 memset (VEC_index (reg_info_p, reg_n_info, regno), 0, sizeof (reg_info));
2222 }
2223 \f
2224 /* This is the `regscan' pass of the compiler, run just before cse
2225 and again just before loop.
2226
2227 It finds the first and last use of each pseudo-register
2228 and records them in the vectors regno_first_uid, regno_last_uid
2229 and counts the number of sets in the vector reg_n_sets.
2230
2231 REPEAT is nonzero the second time this is called. */
2232
2233 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2234 Always at least 3, since the combiner could put that many together
2235 and we want this to remain correct for all the remaining passes.
2236 This corresponds to the maximum number of times note_stores will call
2237 a function for any insn. */
2238
2239 int max_parallel;
2240
2241 /* Used as a temporary to record the largest number of registers in
2242 PARALLEL in a SET_DEST. This is added to max_parallel. */
2243
2244 static int max_set_parallel;
2245
2246 void
2247 reg_scan (rtx f, unsigned int nregs)
2248 {
2249 rtx insn;
2250
2251 timevar_push (TV_REG_SCAN);
2252
2253 allocate_reg_info (nregs, TRUE, FALSE);
2254 max_parallel = 3;
2255 max_set_parallel = 0;
2256
2257 for (insn = f; insn; insn = NEXT_INSN (insn))
2258 if (INSN_P (insn))
2259 {
2260 rtx pat = PATTERN (insn);
2261 if (GET_CODE (pat) == PARALLEL
2262 && XVECLEN (pat, 0) > max_parallel)
2263 max_parallel = XVECLEN (pat, 0);
2264 reg_scan_mark_refs (pat, insn, 0, 0);
2265
2266 if (REG_NOTES (insn))
2267 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2268 }
2269
2270 max_parallel += max_set_parallel;
2271
2272 timevar_pop (TV_REG_SCAN);
2273 }
2274
2275 /* Update 'regscan' information by looking at the insns
2276 from FIRST to LAST. Some new REGs have been created,
2277 and any REG with number greater than OLD_MAX_REGNO is
2278 such a REG. We only update information for those. */
2279
2280 void
2281 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2282 {
2283 rtx insn;
2284
2285 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2286
2287 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2288 if (INSN_P (insn))
2289 {
2290 rtx pat = PATTERN (insn);
2291 if (GET_CODE (pat) == PARALLEL
2292 && XVECLEN (pat, 0) > max_parallel)
2293 max_parallel = XVECLEN (pat, 0);
2294 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2295
2296 if (REG_NOTES (insn))
2297 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2298 }
2299 }
2300
2301 /* X is the expression to scan. INSN is the insn it appears in.
2302 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2303 We should only record information for REGs with numbers
2304 greater than or equal to MIN_REGNO. */
2305
2306 static void
2307 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2308 {
2309 enum rtx_code code;
2310 rtx dest;
2311 rtx note;
2312
2313 if (!x)
2314 return;
2315 code = GET_CODE (x);
2316 switch (code)
2317 {
2318 case CONST:
2319 case CONST_INT:
2320 case CONST_DOUBLE:
2321 case CONST_VECTOR:
2322 case CC0:
2323 case PC:
2324 case SYMBOL_REF:
2325 case LABEL_REF:
2326 case ADDR_VEC:
2327 case ADDR_DIFF_VEC:
2328 return;
2329
2330 case REG:
2331 {
2332 unsigned int regno = REGNO (x);
2333
2334 if (regno >= min_regno)
2335 {
2336 if (!note_flag)
2337 REGNO_LAST_UID (regno) = INSN_UID (insn);
2338 if (REGNO_FIRST_UID (regno) == 0)
2339 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2340 /* If we are called by reg_scan_update() (indicated by min_regno
2341 being set), we also need to update the reference count. */
2342 if (min_regno)
2343 REG_N_REFS (regno)++;
2344 }
2345 }
2346 break;
2347
2348 case EXPR_LIST:
2349 if (XEXP (x, 0))
2350 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2351 if (XEXP (x, 1))
2352 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2353 break;
2354
2355 case INSN_LIST:
2356 if (XEXP (x, 1))
2357 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2358 break;
2359
2360 case CLOBBER:
2361 {
2362 rtx reg = XEXP (x, 0);
2363 if (REG_P (reg)
2364 && REGNO (reg) >= min_regno)
2365 {
2366 REG_N_SETS (REGNO (reg))++;
2367 REG_N_REFS (REGNO (reg))++;
2368 }
2369 else if (MEM_P (reg))
2370 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
2371 }
2372 break;
2373
2374 case SET:
2375 /* Count a set of the destination if it is a register. */
2376 for (dest = SET_DEST (x);
2377 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2378 || GET_CODE (dest) == ZERO_EXTEND;
2379 dest = XEXP (dest, 0))
2380 ;
2381
2382 /* For a PARALLEL, record the number of things (less the usual one for a
2383 SET) that are set. */
2384 if (GET_CODE (dest) == PARALLEL)
2385 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2386
2387 if (REG_P (dest)
2388 && REGNO (dest) >= min_regno)
2389 {
2390 REG_N_SETS (REGNO (dest))++;
2391 REG_N_REFS (REGNO (dest))++;
2392 }
2393
2394 /* If this is setting a pseudo from another pseudo or the sum of a
2395 pseudo and a constant integer and the other pseudo is known to be
2396 a pointer, set the destination to be a pointer as well.
2397
2398 Likewise if it is setting the destination from an address or from a
2399 value equivalent to an address or to the sum of an address and
2400 something else.
2401
2402 But don't do any of this if the pseudo corresponds to a user
2403 variable since it should have already been set as a pointer based
2404 on the type. */
2405
2406 if (REG_P (SET_DEST (x))
2407 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2408 && REGNO (SET_DEST (x)) >= min_regno
2409 /* If the destination pseudo is set more than once, then other
2410 sets might not be to a pointer value (consider access to a
2411 union in two threads of control in the presence of global
2412 optimizations). So only set REG_POINTER on the destination
2413 pseudo if this is the only set of that pseudo. */
2414 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2415 && ! REG_USERVAR_P (SET_DEST (x))
2416 && ! REG_POINTER (SET_DEST (x))
2417 && ((REG_P (SET_SRC (x))
2418 && REG_POINTER (SET_SRC (x)))
2419 || ((GET_CODE (SET_SRC (x)) == PLUS
2420 || GET_CODE (SET_SRC (x)) == LO_SUM)
2421 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2422 && REG_P (XEXP (SET_SRC (x), 0))
2423 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2424 || GET_CODE (SET_SRC (x)) == CONST
2425 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2426 || GET_CODE (SET_SRC (x)) == LABEL_REF
2427 || (GET_CODE (SET_SRC (x)) == HIGH
2428 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2429 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2430 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2431 || ((GET_CODE (SET_SRC (x)) == PLUS
2432 || GET_CODE (SET_SRC (x)) == LO_SUM)
2433 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2434 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2435 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2436 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2437 && (GET_CODE (XEXP (note, 0)) == CONST
2438 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2439 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2440 REG_POINTER (SET_DEST (x)) = 1;
2441
2442 /* If this is setting a register from a register or from a simple
2443 conversion of a register, propagate REG_EXPR. */
2444 if (REG_P (dest))
2445 {
2446 rtx src = SET_SRC (x);
2447
2448 while (GET_CODE (src) == SIGN_EXTEND
2449 || GET_CODE (src) == ZERO_EXTEND
2450 || GET_CODE (src) == TRUNCATE
2451 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2452 src = XEXP (src, 0);
2453
2454 if (!REG_ATTRS (dest) && REG_P (src))
2455 REG_ATTRS (dest) = REG_ATTRS (src);
2456 if (!REG_ATTRS (dest) && MEM_P (src))
2457 set_reg_attrs_from_mem (dest, src);
2458 }
2459
2460 /* ... fall through ... */
2461
2462 default:
2463 {
2464 const char *fmt = GET_RTX_FORMAT (code);
2465 int i;
2466 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2467 {
2468 if (fmt[i] == 'e')
2469 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2470 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2471 {
2472 int j;
2473 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2474 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2475 }
2476 }
2477 }
2478 }
2479 }
2480 \f
2481 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2482 is also in C2. */
2483
2484 int
2485 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2486 {
2487 return (c1 == c2
2488 || c2 == ALL_REGS
2489 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
2490 reg_class_contents[(int) c2]));
2491 }
2492
2493 /* Return nonzero if there is a register that is in both C1 and C2. */
2494
2495 int
2496 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2497 {
2498 return (c1 == c2
2499 || c1 == ALL_REGS
2500 || c2 == ALL_REGS
2501 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
2502 reg_class_contents[(int) c2]));
2503 }
2504
2505 #ifdef CANNOT_CHANGE_MODE_CLASS
2506
2507 struct subregs_of_mode_node
2508 {
2509 unsigned int block;
2510 unsigned char modes[MAX_MACHINE_MODE];
2511 };
2512
2513 static htab_t subregs_of_mode;
2514
2515 static hashval_t
2516 som_hash (const void *x)
2517 {
2518 const struct subregs_of_mode_node *a = x;
2519 return a->block;
2520 }
2521
2522 static int
2523 som_eq (const void *x, const void *y)
2524 {
2525 const struct subregs_of_mode_node *a = x;
2526 const struct subregs_of_mode_node *b = y;
2527 return a->block == b->block;
2528 }
2529
2530 void
2531 init_subregs_of_mode (void)
2532 {
2533 if (subregs_of_mode)
2534 htab_empty (subregs_of_mode);
2535 else
2536 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2537 }
2538
2539 void
2540 record_subregs_of_mode (rtx subreg)
2541 {
2542 struct subregs_of_mode_node dummy, *node;
2543 enum machine_mode mode;
2544 unsigned int regno;
2545 void **slot;
2546
2547 if (!REG_P (SUBREG_REG (subreg)))
2548 return;
2549
2550 regno = REGNO (SUBREG_REG (subreg));
2551 mode = GET_MODE (subreg);
2552
2553 if (regno < FIRST_PSEUDO_REGISTER)
2554 return;
2555
2556 dummy.block = regno & -8;
2557 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2558 dummy.block, INSERT);
2559 node = *slot;
2560 if (node == NULL)
2561 {
2562 node = XCNEW (struct subregs_of_mode_node);
2563 node->block = regno & -8;
2564 *slot = node;
2565 }
2566
2567 node->modes[mode] |= 1 << (regno & 7);
2568 }
2569
2570 /* Set bits in *USED which correspond to registers which can't change
2571 their mode from FROM to any mode in which REGNO was encountered. */
2572
2573 void
2574 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2575 unsigned int regno)
2576 {
2577 struct subregs_of_mode_node dummy, *node;
2578 enum machine_mode to;
2579 unsigned char mask;
2580 unsigned int i;
2581
2582 dummy.block = regno & -8;
2583 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2584 if (node == NULL)
2585 return;
2586
2587 mask = 1 << (regno & 7);
2588 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2589 if (node->modes[to] & mask)
2590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2591 if (!TEST_HARD_REG_BIT (*used, i)
2592 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2593 SET_HARD_REG_BIT (*used, i);
2594 }
2595
2596 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2597 mode. */
2598
2599 bool
2600 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2601 enum machine_mode from)
2602 {
2603 struct subregs_of_mode_node dummy, *node;
2604 enum machine_mode to;
2605 unsigned char mask;
2606
2607 dummy.block = regno & -8;
2608 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2609 if (node == NULL)
2610 return false;
2611
2612 mask = 1 << (regno & 7);
2613 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2614 if (node->modes[to] & mask)
2615 if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2616 return true;
2617
2618 return false;
2619 }
2620 #endif /* CANNOT_CHANGE_MODE_CLASS */
2621
2622 #include "gt-regclass.h"