gfortran.h (gfc_default_*_kind): Remove prototypes, add extern variable declaration...
[gcc.git] / gcc / regclass.c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "timevar.h"
48
49 static void init_reg_sets_1 (void);
50 static void init_reg_autoinc (void);
51
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
55
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
61 \f
62 /* Register tables used by many passes. */
63
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
68
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
70
71 /* Same info as a HARD_REG_SET. */
72
73 HARD_REG_SET fixed_reg_set;
74
75 /* Data for initializing the above. */
76
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
78
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
84
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
86
87 /* Same info as a HARD_REG_SET. */
88
89 HARD_REG_SET call_used_reg_set;
90
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
93
94 /* Data for initializing the above. */
95
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
97
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
102
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105 #endif
106
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
111
112 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
113
114 /* The same info as a HARD_REG_SET. */
115
116 HARD_REG_SET call_fixed_reg_set;
117
118 /* Number of non-fixed registers. */
119
120 int n_non_fixed_regs;
121
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
126
127 char global_regs[FIRST_PSEUDO_REGISTER];
128
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
135
136 HARD_REG_SET regs_invalidated_by_call;
137
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
141
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
144 #endif
145
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
147
148 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
149
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
154
155 #define N_REG_INTS \
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
157
158 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159 = REG_CLASS_CONTENTS;
160
161 /* For each reg class, number of regs it contains. */
162
163 unsigned int reg_class_size[N_REG_CLASSES];
164
165 /* For each reg class, table listing all the containing classes. */
166
167 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
168
169 /* For each reg class, table listing all the classes contained in it. */
170
171 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
172
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
175
176 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
177
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
180
181 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
182
183 /* Array containing all of the register names. */
184
185 const char * reg_names[] = REGISTER_NAMES;
186
187 /* For each hard register, the widest mode object that it can contain.
188 This will be a MODE_INT mode if the register can hold integers. Otherwise
189 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
190 register. */
191
192 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
193
194 /* 1 if there is a register of given mode. */
195
196 bool have_regs_of_mode [MAX_MACHINE_MODE];
197
198 /* 1 if class does contain register of given mode. */
199
200 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
201
202 /* Maximum cost of moving from a register in one class to a register in
203 another class. Based on REGISTER_MOVE_COST. */
204
205 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
206
207 /* Similar, but here we don't have to move if the first index is a subset
208 of the second so in that case the cost is zero. */
209
210 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
211
212 /* Similar, but here we don't have to move if the first index is a superset
213 of the second so in that case the cost is zero. */
214
215 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
216
217 #ifdef FORBIDDEN_INC_DEC_CLASSES
218
219 /* These are the classes that regs which are auto-incremented or decremented
220 cannot be put in. */
221
222 static int forbidden_inc_dec_class[N_REG_CLASSES];
223
224 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
225 context. */
226
227 static char *in_inc_dec;
228
229 #endif /* FORBIDDEN_INC_DEC_CLASSES */
230
231 #ifdef CANNOT_CHANGE_MODE_CLASS
232 /* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
233 + mode. */
234 bitmap_head subregs_of_mode;
235 #endif
236
237 /* Sample MEM values for use by memory_move_secondary_cost. */
238
239 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
240
241 /* Linked list of reg_info structures allocated for reg_n_info array.
242 Grouping all of the allocated structures together in one lump
243 means only one call to bzero to clear them, rather than n smaller
244 calls. */
245 struct reg_info_data {
246 struct reg_info_data *next; /* next set of reg_info structures */
247 size_t min_index; /* minimum index # */
248 size_t max_index; /* maximum index # */
249 char used_p; /* nonzero if this has been used previously */
250 reg_info data[1]; /* beginning of the reg_info data */
251 };
252
253 static struct reg_info_data *reg_info_head;
254
255 /* No more global register variables may be declared; true once
256 regclass has been initialized. */
257
258 static int no_global_reg_vars = 0;
259
260 /* Specify number of hard registers given machine mode occupy. */
261 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
262
263 /* Function called only once to initialize the above data on reg usage.
264 Once this is done, various switches may override. */
265
266 void
267 init_reg_sets (void)
268 {
269 int i, j;
270
271 /* First copy the register information from the initial int form into
272 the regsets. */
273
274 for (i = 0; i < N_REG_CLASSES; i++)
275 {
276 CLEAR_HARD_REG_SET (reg_class_contents[i]);
277
278 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
279 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
280 if (int_reg_class_contents[i][j / 32]
281 & ((unsigned) 1 << (j % 32)))
282 SET_HARD_REG_BIT (reg_class_contents[i], j);
283 }
284
285 /* Sanity check: make sure the target macros FIXED_REGISTERS and
286 CALL_USED_REGISTERS had the right number of initializers. */
287 if (sizeof fixed_regs != sizeof initial_fixed_regs
288 || sizeof call_used_regs != sizeof initial_call_used_regs)
289 abort();
290
291 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
292 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
293 memset (global_regs, 0, sizeof global_regs);
294
295 /* Do any additional initialization regsets may need. */
296 INIT_ONCE_REG_SET ();
297
298 #ifdef REG_ALLOC_ORDER
299 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
300 inv_reg_alloc_order[reg_alloc_order[i]] = i;
301 #endif
302 }
303
304 /* After switches have been processed, which perhaps alter
305 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
306
307 static void
308 init_reg_sets_1 (void)
309 {
310 unsigned int i, j;
311 unsigned int /* enum machine_mode */ m;
312
313 /* This macro allows the fixed or call-used registers
314 and the register classes to depend on target flags. */
315
316 #ifdef CONDITIONAL_REGISTER_USAGE
317 CONDITIONAL_REGISTER_USAGE;
318 #endif
319
320 /* Compute number of hard regs in each class. */
321
322 memset (reg_class_size, 0, sizeof reg_class_size);
323 for (i = 0; i < N_REG_CLASSES; i++)
324 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
325 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
326 reg_class_size[i]++;
327
328 /* Initialize the table of subunions.
329 reg_class_subunion[I][J] gets the largest-numbered reg-class
330 that is contained in the union of classes I and J. */
331
332 for (i = 0; i < N_REG_CLASSES; i++)
333 {
334 for (j = 0; j < N_REG_CLASSES; j++)
335 {
336 HARD_REG_SET c;
337 int k;
338
339 COPY_HARD_REG_SET (c, reg_class_contents[i]);
340 IOR_HARD_REG_SET (c, reg_class_contents[j]);
341 for (k = 0; k < N_REG_CLASSES; k++)
342 {
343 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
344 subclass1);
345 continue;
346
347 subclass1:
348 /* Keep the largest subclass. */ /* SPEE 900308 */
349 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
350 reg_class_contents[(int) reg_class_subunion[i][j]],
351 subclass2);
352 reg_class_subunion[i][j] = (enum reg_class) k;
353 subclass2:
354 ;
355 }
356 }
357 }
358
359 /* Initialize the table of superunions.
360 reg_class_superunion[I][J] gets the smallest-numbered reg-class
361 containing the union of classes I and J. */
362
363 for (i = 0; i < N_REG_CLASSES; i++)
364 {
365 for (j = 0; j < N_REG_CLASSES; j++)
366 {
367 HARD_REG_SET c;
368 int k;
369
370 COPY_HARD_REG_SET (c, reg_class_contents[i]);
371 IOR_HARD_REG_SET (c, reg_class_contents[j]);
372 for (k = 0; k < N_REG_CLASSES; k++)
373 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
374
375 superclass:
376 reg_class_superunion[i][j] = (enum reg_class) k;
377 }
378 }
379
380 /* Initialize the tables of subclasses and superclasses of each reg class.
381 First clear the whole table, then add the elements as they are found. */
382
383 for (i = 0; i < N_REG_CLASSES; i++)
384 {
385 for (j = 0; j < N_REG_CLASSES; j++)
386 {
387 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
388 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
389 }
390 }
391
392 for (i = 0; i < N_REG_CLASSES; i++)
393 {
394 if (i == (int) NO_REGS)
395 continue;
396
397 for (j = i + 1; j < N_REG_CLASSES; j++)
398 {
399 enum reg_class *p;
400
401 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
402 subclass);
403 continue;
404 subclass:
405 /* Reg class I is a subclass of J.
406 Add J to the table of superclasses of I. */
407 p = &reg_class_superclasses[i][0];
408 while (*p != LIM_REG_CLASSES) p++;
409 *p = (enum reg_class) j;
410 /* Add I to the table of superclasses of J. */
411 p = &reg_class_subclasses[j][0];
412 while (*p != LIM_REG_CLASSES) p++;
413 *p = (enum reg_class) i;
414 }
415 }
416
417 /* Initialize "constant" tables. */
418
419 CLEAR_HARD_REG_SET (fixed_reg_set);
420 CLEAR_HARD_REG_SET (call_used_reg_set);
421 CLEAR_HARD_REG_SET (call_fixed_reg_set);
422 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
423
424 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
425
426 n_non_fixed_regs = 0;
427
428 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
429 {
430 #ifdef ENABLE_CHECKING
431 /* call_used_regs must include fixed_regs. */
432 if (fixed_regs[i] && !call_used_regs[i])
433 abort ();
434 #ifdef CALL_REALLY_USED_REGISTERS
435 /* call_used_regs must include call_really_used_regs. */
436 if (call_really_used_regs[i] && !call_used_regs[i])
437 abort ();
438 #endif
439 #endif
440
441 if (fixed_regs[i])
442 SET_HARD_REG_BIT (fixed_reg_set, i);
443 else
444 n_non_fixed_regs++;
445
446 if (call_used_regs[i])
447 SET_HARD_REG_BIT (call_used_reg_set, i);
448 if (call_fixed_regs[i])
449 SET_HARD_REG_BIT (call_fixed_reg_set, i);
450 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
451 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
452
453 /* There are a couple of fixed registers that we know are safe to
454 exclude from being clobbered by calls:
455
456 The frame pointer is always preserved across calls. The arg pointer
457 is if it is fixed. The stack pointer usually is, unless
458 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
459 If we are generating PIC code, the PIC offset table register is
460 preserved across calls, though the target can override that. */
461
462 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
463 ;
464 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i == HARD_FRAME_POINTER_REGNUM)
466 ;
467 #endif
468 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
469 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
470 ;
471 #endif
472 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
473 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
474 ;
475 #endif
476 else if (0
477 #ifdef CALL_REALLY_USED_REGISTERS
478 || call_really_used_regs[i]
479 #else
480 || call_used_regs[i]
481 #endif
482 || global_regs[i])
483 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
484 }
485
486 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
487 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
488 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
489 for (i = 0; i < N_REG_CLASSES; i++)
490 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
491 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
492 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
493 && HARD_REGNO_MODE_OK (j, m))
494 {
495 contains_reg_of_mode [i][m] = 1;
496 have_regs_of_mode [m] = 1;
497 break;
498 }
499
500 /* Initialize the move cost table. Find every subset of each class
501 and take the maximum cost of moving any subset to any other. */
502
503 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
504 if (have_regs_of_mode [m])
505 {
506 for (i = 0; i < N_REG_CLASSES; i++)
507 if (contains_reg_of_mode [i][m])
508 for (j = 0; j < N_REG_CLASSES; j++)
509 {
510 int cost;
511 enum reg_class *p1, *p2;
512
513 if (!contains_reg_of_mode [j][m])
514 {
515 move_cost[m][i][j] = 65536;
516 may_move_in_cost[m][i][j] = 65536;
517 may_move_out_cost[m][i][j] = 65536;
518 }
519 else
520 {
521 cost = REGISTER_MOVE_COST (m, i, j);
522
523 for (p2 = &reg_class_subclasses[j][0];
524 *p2 != LIM_REG_CLASSES;
525 p2++)
526 if (*p2 != i && contains_reg_of_mode [*p2][m])
527 cost = MAX (cost, move_cost [m][i][*p2]);
528
529 for (p1 = &reg_class_subclasses[i][0];
530 *p1 != LIM_REG_CLASSES;
531 p1++)
532 if (*p1 != j && contains_reg_of_mode [*p1][m])
533 cost = MAX (cost, move_cost [m][*p1][j]);
534
535 move_cost[m][i][j] = cost;
536
537 if (reg_class_subset_p (i, j))
538 may_move_in_cost[m][i][j] = 0;
539 else
540 may_move_in_cost[m][i][j] = cost;
541
542 if (reg_class_subset_p (j, i))
543 may_move_out_cost[m][i][j] = 0;
544 else
545 may_move_out_cost[m][i][j] = cost;
546 }
547 }
548 else
549 for (j = 0; j < N_REG_CLASSES; j++)
550 {
551 move_cost[m][i][j] = 65536;
552 may_move_in_cost[m][i][j] = 65536;
553 may_move_out_cost[m][i][j] = 65536;
554 }
555 }
556 }
557
558 /* Compute the table of register modes.
559 These values are used to record death information for individual registers
560 (as opposed to a multi-register mode). */
561
562 void
563 init_reg_modes_once (void)
564 {
565 int i, j;
566
567 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
568 for (j = 0; j < MAX_MACHINE_MODE; j++)
569 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
570
571 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
572 {
573 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
574
575 /* If we couldn't find a valid mode, just use the previous mode.
576 ??? One situation in which we need to do this is on the mips where
577 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
578 to use DF mode for the even registers and VOIDmode for the odd
579 (for the cpu models where the odd ones are inaccessible). */
580 if (reg_raw_mode[i] == VOIDmode)
581 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
582 }
583 }
584
585 /* Finish initializing the register sets and
586 initialize the register modes. */
587
588 void
589 init_regs (void)
590 {
591 /* This finishes what was started by init_reg_sets, but couldn't be done
592 until after register usage was specified. */
593 init_reg_sets_1 ();
594
595 init_reg_autoinc ();
596 }
597
598 /* Initialize some fake stack-frame MEM references for use in
599 memory_move_secondary_cost. */
600
601 void
602 init_fake_stack_mems (void)
603 {
604 #ifdef HAVE_SECONDARY_RELOADS
605 {
606 int i;
607
608 for (i = 0; i < MAX_MACHINE_MODE; i++)
609 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
610 }
611 #endif
612 }
613
614 #ifdef HAVE_SECONDARY_RELOADS
615
616 /* Compute extra cost of moving registers to/from memory due to reloads.
617 Only needed if secondary reloads are required for memory moves. */
618
619 int
620 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
621 {
622 enum reg_class altclass;
623 int partial_cost = 0;
624 /* We need a memory reference to feed to SECONDARY... macros. */
625 /* mem may be unused even if the SECONDARY_ macros are defined. */
626 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
627
628
629 if (in)
630 {
631 #ifdef SECONDARY_INPUT_RELOAD_CLASS
632 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
633 #else
634 altclass = NO_REGS;
635 #endif
636 }
637 else
638 {
639 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
640 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
641 #else
642 altclass = NO_REGS;
643 #endif
644 }
645
646 if (altclass == NO_REGS)
647 return 0;
648
649 if (in)
650 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
651 else
652 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
653
654 if (class == altclass)
655 /* This isn't simply a copy-to-temporary situation. Can't guess
656 what it is, so MEMORY_MOVE_COST really ought not to be calling
657 here in that case.
658
659 I'm tempted to put in an abort here, but returning this will
660 probably only give poor estimates, which is what we would've
661 had before this code anyways. */
662 return partial_cost;
663
664 /* Check if the secondary reload register will also need a
665 secondary reload. */
666 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
667 }
668 #endif
669
670 /* Return a machine mode that is legitimate for hard reg REGNO and large
671 enough to save nregs. If we can't find one, return VOIDmode.
672 If CALL_SAVED is true, only consider modes that are call saved. */
673
674 enum machine_mode
675 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
676 unsigned int nregs, bool call_saved)
677 {
678 unsigned int /* enum machine_mode */ m;
679 enum machine_mode found_mode = VOIDmode, mode;
680
681 /* We first look for the largest integer mode that can be validly
682 held in REGNO. If none, we look for the largest floating-point mode.
683 If we still didn't find a valid mode, try CCmode. */
684
685 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
686 mode != VOIDmode;
687 mode = GET_MODE_WIDER_MODE (mode))
688 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
689 && HARD_REGNO_MODE_OK (regno, mode)
690 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
691 found_mode = mode;
692
693 if (found_mode != VOIDmode)
694 return found_mode;
695
696 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
697 mode != VOIDmode;
698 mode = GET_MODE_WIDER_MODE (mode))
699 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
700 && HARD_REGNO_MODE_OK (regno, mode)
701 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
702 found_mode = mode;
703
704 if (found_mode != VOIDmode)
705 return found_mode;
706
707 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
708 mode != VOIDmode;
709 mode = GET_MODE_WIDER_MODE (mode))
710 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
711 && HARD_REGNO_MODE_OK (regno, mode)
712 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
713 found_mode = mode;
714
715 if (found_mode != VOIDmode)
716 return found_mode;
717
718 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
719 mode != VOIDmode;
720 mode = GET_MODE_WIDER_MODE (mode))
721 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
722 && HARD_REGNO_MODE_OK (regno, mode)
723 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
724 found_mode = mode;
725
726 if (found_mode != VOIDmode)
727 return found_mode;
728
729 /* Iterate over all of the CCmodes. */
730 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
731 {
732 mode = (enum machine_mode) m;
733 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
734 && HARD_REGNO_MODE_OK (regno, mode)
735 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
736 return mode;
737 }
738
739 /* We can't find a mode valid for this register. */
740 return VOIDmode;
741 }
742
743 /* Specify the usage characteristics of the register named NAME.
744 It should be a fixed register if FIXED and a
745 call-used register if CALL_USED. */
746
747 void
748 fix_register (const char *name, int fixed, int call_used)
749 {
750 int i;
751
752 /* Decode the name and update the primary form of
753 the register info. */
754
755 if ((i = decode_reg_name (name)) >= 0)
756 {
757 if ((i == STACK_POINTER_REGNUM
758 #ifdef HARD_FRAME_POINTER_REGNUM
759 || i == HARD_FRAME_POINTER_REGNUM
760 #else
761 || i == FRAME_POINTER_REGNUM
762 #endif
763 )
764 && (fixed == 0 || call_used == 0))
765 {
766 static const char * const what_option[2][2] = {
767 { "call-saved", "call-used" },
768 { "no-such-option", "fixed" }};
769
770 error ("can't use '%s' as a %s register", name,
771 what_option[fixed][call_used]);
772 }
773 else
774 {
775 fixed_regs[i] = fixed;
776 call_used_regs[i] = call_used;
777 #ifdef CALL_REALLY_USED_REGISTERS
778 if (fixed == 0)
779 call_really_used_regs[i] = call_used;
780 #endif
781 }
782 }
783 else
784 {
785 warning ("unknown register name: %s", name);
786 }
787 }
788
789 /* Mark register number I as global. */
790
791 void
792 globalize_reg (int i)
793 {
794 if (fixed_regs[i] == 0 && no_global_reg_vars)
795 error ("global register variable follows a function definition");
796
797 if (global_regs[i])
798 {
799 warning ("register used for two global register variables");
800 return;
801 }
802
803 if (call_used_regs[i] && ! fixed_regs[i])
804 warning ("call-clobbered register used for global register variable");
805
806 global_regs[i] = 1;
807
808 /* If already fixed, nothing else to do. */
809 if (fixed_regs[i])
810 return;
811
812 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
813 #ifdef CALL_REALLY_USED_REGISTERS
814 call_really_used_regs[i] = 1;
815 #endif
816 n_non_fixed_regs--;
817
818 SET_HARD_REG_BIT (fixed_reg_set, i);
819 SET_HARD_REG_BIT (call_used_reg_set, i);
820 SET_HARD_REG_BIT (call_fixed_reg_set, i);
821 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
822 }
823 \f
824 /* Now the data and code for the `regclass' pass, which happens
825 just before local-alloc. */
826
827 /* The `costs' struct records the cost of using a hard register of each class
828 and of using memory for each pseudo. We use this data to set up
829 register class preferences. */
830
831 struct costs
832 {
833 int cost[N_REG_CLASSES];
834 int mem_cost;
835 };
836
837 /* Structure used to record preferences of given pseudo. */
838 struct reg_pref
839 {
840 /* (enum reg_class) prefclass is the preferred class. */
841 char prefclass;
842
843 /* altclass is a register class that we should use for allocating
844 pseudo if no register in the preferred class is available.
845 If no register in this class is available, memory is preferred.
846
847 It might appear to be more general to have a bitmask of classes here,
848 but since it is recommended that there be a class corresponding to the
849 union of most major pair of classes, that generality is not required. */
850 char altclass;
851 };
852
853 /* Record the cost of each class for each pseudo. */
854
855 static struct costs *costs;
856
857 /* Initialized once, and used to initialize cost values for each insn. */
858
859 static struct costs init_cost;
860
861 /* Record preferences of each pseudo.
862 This is available after `regclass' is run. */
863
864 static struct reg_pref *reg_pref;
865
866 /* Allocated buffers for reg_pref. */
867
868 static struct reg_pref *reg_pref_buffer;
869
870 /* Frequency of executions of current insn. */
871
872 static int frequency;
873
874 static rtx scan_one_insn (rtx, int);
875 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
876 static void dump_regclass (FILE *);
877 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
878 const char **, rtx, struct costs *,
879 struct reg_pref *);
880 static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
881 static void record_address_regs (rtx, enum reg_class, int);
882 #ifdef FORBIDDEN_INC_DEC_CLASSES
883 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
884 #endif
885 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
886
887 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
888 This function is sometimes called before the info has been computed.
889 When that happens, just return GENERAL_REGS, which is innocuous. */
890
891 enum reg_class
892 reg_preferred_class (int regno)
893 {
894 if (reg_pref == 0)
895 return GENERAL_REGS;
896 return (enum reg_class) reg_pref[regno].prefclass;
897 }
898
899 enum reg_class
900 reg_alternate_class (int regno)
901 {
902 if (reg_pref == 0)
903 return ALL_REGS;
904
905 return (enum reg_class) reg_pref[regno].altclass;
906 }
907
908 /* Initialize some global data for this pass. */
909
910 void
911 regclass_init (void)
912 {
913 int i;
914
915 init_cost.mem_cost = 10000;
916 for (i = 0; i < N_REG_CLASSES; i++)
917 init_cost.cost[i] = 10000;
918
919 /* This prevents dump_flow_info from losing if called
920 before regclass is run. */
921 reg_pref = NULL;
922
923 /* No more global register variables may be declared. */
924 no_global_reg_vars = 1;
925 }
926 \f
927 /* Dump register costs. */
928 static void
929 dump_regclass (FILE *dump)
930 {
931 static const char *const reg_class_names[] = REG_CLASS_NAMES;
932 int i;
933 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
934 {
935 int /* enum reg_class */ class;
936 if (REG_N_REFS (i))
937 {
938 fprintf (dump, " Register %i costs:", i);
939 for (class = 0; class < (int) N_REG_CLASSES; class++)
940 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
941 #ifdef FORBIDDEN_INC_DEC_CLASSES
942 && (!in_inc_dec[i]
943 || !forbidden_inc_dec_class[(enum reg_class) class])
944 #endif
945 #ifdef CANNOT_CHANGE_MODE_CLASS
946 && ! invalid_mode_change_p (i, (enum reg_class) class,
947 PSEUDO_REGNO_MODE (i))
948 #endif
949 )
950 fprintf (dump, " %s:%i", reg_class_names[class],
951 costs[i].cost[(enum reg_class) class]);
952 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
953 }
954 }
955 }
956 \f
957
958 /* Calculate the costs of insn operands. */
959
960 static void
961 record_operand_costs (rtx insn, struct costs *op_costs,
962 struct reg_pref *reg_pref)
963 {
964 const char *constraints[MAX_RECOG_OPERANDS];
965 enum machine_mode modes[MAX_RECOG_OPERANDS];
966 int i;
967
968 for (i = 0; i < recog_data.n_operands; i++)
969 {
970 constraints[i] = recog_data.constraints[i];
971 modes[i] = recog_data.operand_mode[i];
972 }
973
974 /* If we get here, we are set up to record the costs of all the
975 operands for this insn. Start by initializing the costs.
976 Then handle any address registers. Finally record the desired
977 classes for any pseudos, doing it twice if some pair of
978 operands are commutative. */
979
980 for (i = 0; i < recog_data.n_operands; i++)
981 {
982 op_costs[i] = init_cost;
983
984 if (GET_CODE (recog_data.operand[i]) == SUBREG)
985 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
986
987 if (MEM_P (recog_data.operand[i]))
988 record_address_regs (XEXP (recog_data.operand[i], 0),
989 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
990 else if (constraints[i][0] == 'p'
991 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
992 record_address_regs (recog_data.operand[i],
993 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
994 }
995
996 /* Check for commutative in a separate loop so everything will
997 have been initialized. We must do this even if one operand
998 is a constant--see addsi3 in m68k.md. */
999
1000 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1001 if (constraints[i][0] == '%')
1002 {
1003 const char *xconstraints[MAX_RECOG_OPERANDS];
1004 int j;
1005
1006 /* Handle commutative operands by swapping the constraints.
1007 We assume the modes are the same. */
1008
1009 for (j = 0; j < recog_data.n_operands; j++)
1010 xconstraints[j] = constraints[j];
1011
1012 xconstraints[i] = constraints[i+1];
1013 xconstraints[i+1] = constraints[i];
1014 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1015 recog_data.operand, modes,
1016 xconstraints, insn, op_costs, reg_pref);
1017 }
1018
1019 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1020 recog_data.operand, modes,
1021 constraints, insn, op_costs, reg_pref);
1022 }
1023 \f
1024 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1025 time it would save code to put a certain register in a certain class.
1026 PASS, when nonzero, inhibits some optimizations which need only be done
1027 once.
1028 Return the last insn processed, so that the scan can be continued from
1029 there. */
1030
1031 static rtx
1032 scan_one_insn (rtx insn, int pass)
1033 {
1034 enum rtx_code pat_code;
1035 rtx set, note;
1036 int i, j;
1037 struct costs op_costs[MAX_RECOG_OPERANDS];
1038
1039 if (!INSN_P (insn))
1040 return insn;
1041
1042 pat_code = GET_CODE (PATTERN (insn));
1043 if (pat_code == USE
1044 || pat_code == CLOBBER
1045 || pat_code == ASM_INPUT
1046 || pat_code == ADDR_VEC
1047 || pat_code == ADDR_DIFF_VEC)
1048 return insn;
1049
1050 set = single_set (insn);
1051 extract_insn (insn);
1052
1053 /* If this insn loads a parameter from its stack slot, then
1054 it represents a savings, rather than a cost, if the
1055 parameter is stored in memory. Record this fact. */
1056
1057 if (set != 0 && REG_P (SET_DEST (set))
1058 && MEM_P (SET_SRC (set))
1059 && (note = find_reg_note (insn, REG_EQUIV,
1060 NULL_RTX)) != 0
1061 && MEM_P (XEXP (note, 0)))
1062 {
1063 costs[REGNO (SET_DEST (set))].mem_cost
1064 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1065 GENERAL_REGS, 1)
1066 * frequency);
1067 record_address_regs (XEXP (SET_SRC (set), 0),
1068 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1069 return insn;
1070 }
1071
1072 /* Improve handling of two-address insns such as
1073 (set X (ashift CONST Y)) where CONST must be made to
1074 match X. Change it into two insns: (set X CONST)
1075 (set X (ashift X Y)). If we left this for reloading, it
1076 would probably get three insns because X and Y might go
1077 in the same place. This prevents X and Y from receiving
1078 the same hard reg.
1079
1080 We can only do this if the modes of operands 0 and 1
1081 (which might not be the same) are tieable and we only need
1082 do this during our first pass. */
1083
1084 if (pass == 0 && optimize
1085 && recog_data.n_operands >= 3
1086 && recog_data.constraints[1][0] == '0'
1087 && recog_data.constraints[1][1] == 0
1088 && CONSTANT_P (recog_data.operand[1])
1089 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1090 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1091 && REG_P (recog_data.operand[0])
1092 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1093 recog_data.operand_mode[1]))
1094 {
1095 rtx previnsn = prev_real_insn (insn);
1096 rtx dest
1097 = gen_lowpart (recog_data.operand_mode[1],
1098 recog_data.operand[0]);
1099 rtx newinsn
1100 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1101
1102 /* If this insn was the start of a basic block,
1103 include the new insn in that block.
1104 We need not check for code_label here;
1105 while a basic block can start with a code_label,
1106 INSN could not be at the beginning of that block. */
1107 if (previnsn == 0 || JUMP_P (previnsn))
1108 {
1109 basic_block b;
1110 FOR_EACH_BB (b)
1111 if (insn == BB_HEAD (b))
1112 BB_HEAD (b) = newinsn;
1113 }
1114
1115 /* This makes one more setting of new insns's dest. */
1116 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1117 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1118 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1119
1120 *recog_data.operand_loc[1] = recog_data.operand[0];
1121 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1122 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1123 for (i = recog_data.n_dups - 1; i >= 0; i--)
1124 if (recog_data.dup_num[i] == 1)
1125 {
1126 *recog_data.dup_loc[i] = recog_data.operand[0];
1127 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1128 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1129 }
1130
1131 return PREV_INSN (newinsn);
1132 }
1133
1134 record_operand_costs (insn, op_costs, reg_pref);
1135
1136 /* Now add the cost for each operand to the total costs for
1137 its register. */
1138
1139 for (i = 0; i < recog_data.n_operands; i++)
1140 if (REG_P (recog_data.operand[i])
1141 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1142 {
1143 int regno = REGNO (recog_data.operand[i]);
1144 struct costs *p = &costs[regno], *q = &op_costs[i];
1145
1146 p->mem_cost += q->mem_cost * frequency;
1147 for (j = 0; j < N_REG_CLASSES; j++)
1148 p->cost[j] += q->cost[j] * frequency;
1149 }
1150
1151 return insn;
1152 }
1153
1154 /* Initialize information about which register classes can be used for
1155 pseudos that are auto-incremented or auto-decremented. */
1156
1157 static void
1158 init_reg_autoinc (void)
1159 {
1160 #ifdef FORBIDDEN_INC_DEC_CLASSES
1161 int i;
1162
1163 for (i = 0; i < N_REG_CLASSES; i++)
1164 {
1165 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1166 enum machine_mode m;
1167 int j;
1168
1169 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1170 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1171 {
1172 REGNO (r) = j;
1173
1174 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1175 m = (enum machine_mode) ((int) m + 1))
1176 if (HARD_REGNO_MODE_OK (j, m))
1177 {
1178 PUT_MODE (r, m);
1179
1180 /* If a register is not directly suitable for an
1181 auto-increment or decrement addressing mode and
1182 requires secondary reloads, disallow its class from
1183 being used in such addresses. */
1184
1185 if ((0
1186 #ifdef SECONDARY_RELOAD_CLASS
1187 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1188 != NO_REGS)
1189 #else
1190 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1191 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1192 != NO_REGS)
1193 #endif
1194 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1195 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1196 != NO_REGS)
1197 #endif
1198 #endif
1199 )
1200 && ! auto_inc_dec_reg_p (r, m))
1201 forbidden_inc_dec_class[i] = 1;
1202 }
1203 }
1204 }
1205 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1206 }
1207
1208 /* This is a pass of the compiler that scans all instructions
1209 and calculates the preferred class for each pseudo-register.
1210 This information can be accessed later by calling `reg_preferred_class'.
1211 This pass comes just before local register allocation. */
1212
1213 void
1214 regclass (rtx f, int nregs, FILE *dump)
1215 {
1216 rtx insn;
1217 int i;
1218 int pass;
1219
1220 init_recog ();
1221
1222 costs = xmalloc (nregs * sizeof (struct costs));
1223
1224 #ifdef FORBIDDEN_INC_DEC_CLASSES
1225
1226 in_inc_dec = xmalloc (nregs);
1227
1228 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1229
1230 /* Normally we scan the insns once and determine the best class to use for
1231 each register. However, if -fexpensive_optimizations are on, we do so
1232 twice, the second time using the tentative best classes to guide the
1233 selection. */
1234
1235 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1236 {
1237 basic_block bb;
1238
1239 if (dump)
1240 fprintf (dump, "\n\nPass %i\n\n",pass);
1241 /* Zero out our accumulation of the cost of each class for each reg. */
1242
1243 memset (costs, 0, nregs * sizeof (struct costs));
1244
1245 #ifdef FORBIDDEN_INC_DEC_CLASSES
1246 memset (in_inc_dec, 0, nregs);
1247 #endif
1248
1249 /* Scan the instructions and record each time it would
1250 save code to put a certain register in a certain class. */
1251
1252 if (!optimize)
1253 {
1254 frequency = REG_FREQ_MAX;
1255 for (insn = f; insn; insn = NEXT_INSN (insn))
1256 insn = scan_one_insn (insn, pass);
1257 }
1258 else
1259 FOR_EACH_BB (bb)
1260 {
1261 /* Show that an insn inside a loop is likely to be executed three
1262 times more than insns outside a loop. This is much more
1263 aggressive than the assumptions made elsewhere and is being
1264 tried as an experiment. */
1265 frequency = REG_FREQ_FROM_BB (bb);
1266 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1267 {
1268 insn = scan_one_insn (insn, pass);
1269 if (insn == BB_END (bb))
1270 break;
1271 }
1272 }
1273
1274 /* Now for each register look at how desirable each class is
1275 and find which class is preferred. Store that in
1276 `prefclass'. Record in `altclass' the largest register
1277 class any of whose registers is better than memory. */
1278
1279 if (pass == 0)
1280 reg_pref = reg_pref_buffer;
1281
1282 if (dump)
1283 {
1284 dump_regclass (dump);
1285 fprintf (dump,"\n");
1286 }
1287 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1288 {
1289 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1290 enum reg_class best = ALL_REGS, alt = NO_REGS;
1291 /* This is an enum reg_class, but we call it an int
1292 to save lots of casts. */
1293 int class;
1294 struct costs *p = &costs[i];
1295
1296 /* In non-optimizing compilation REG_N_REFS is not initialized
1297 yet. */
1298 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1299 continue;
1300
1301 for (class = (int) ALL_REGS - 1; class > 0; class--)
1302 {
1303 /* Ignore classes that are too small for this operand or
1304 invalid for an operand that was auto-incremented. */
1305 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1306 #ifdef FORBIDDEN_INC_DEC_CLASSES
1307 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1308 #endif
1309 #ifdef CANNOT_CHANGE_MODE_CLASS
1310 || invalid_mode_change_p (i, (enum reg_class) class,
1311 PSEUDO_REGNO_MODE (i))
1312 #endif
1313 )
1314 ;
1315 else if (p->cost[class] < best_cost)
1316 {
1317 best_cost = p->cost[class];
1318 best = (enum reg_class) class;
1319 }
1320 else if (p->cost[class] == best_cost)
1321 best = reg_class_subunion[(int) best][class];
1322 }
1323
1324 /* Record the alternate register class; i.e., a class for which
1325 every register in it is better than using memory. If adding a
1326 class would make a smaller class (i.e., no union of just those
1327 classes exists), skip that class. The major unions of classes
1328 should be provided as a register class. Don't do this if we
1329 will be doing it again later. */
1330
1331 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1332 for (class = 0; class < N_REG_CLASSES; class++)
1333 if (p->cost[class] < p->mem_cost
1334 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1335 > reg_class_size[(int) alt])
1336 #ifdef FORBIDDEN_INC_DEC_CLASSES
1337 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1338 #endif
1339 #ifdef CANNOT_CHANGE_MODE_CLASS
1340 && ! invalid_mode_change_p (i, (enum reg_class) class,
1341 PSEUDO_REGNO_MODE (i))
1342 #endif
1343 )
1344 alt = reg_class_subunion[(int) alt][class];
1345
1346 /* If we don't add any classes, nothing to try. */
1347 if (alt == best)
1348 alt = NO_REGS;
1349
1350 if (dump
1351 && (reg_pref[i].prefclass != (int) best
1352 || reg_pref[i].altclass != (int) alt))
1353 {
1354 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1355 fprintf (dump, " Register %i", i);
1356 if (alt == ALL_REGS || best == ALL_REGS)
1357 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1358 else if (alt == NO_REGS)
1359 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1360 else
1361 fprintf (dump, " pref %s, else %s\n",
1362 reg_class_names[(int) best],
1363 reg_class_names[(int) alt]);
1364 }
1365
1366 /* We cast to (int) because (char) hits bugs in some compilers. */
1367 reg_pref[i].prefclass = (int) best;
1368 reg_pref[i].altclass = (int) alt;
1369 }
1370 }
1371
1372 #ifdef FORBIDDEN_INC_DEC_CLASSES
1373 free (in_inc_dec);
1374 #endif
1375 free (costs);
1376 }
1377 \f
1378 /* Record the cost of using memory or registers of various classes for
1379 the operands in INSN.
1380
1381 N_ALTS is the number of alternatives.
1382
1383 N_OPS is the number of operands.
1384
1385 OPS is an array of the operands.
1386
1387 MODES are the modes of the operands, in case any are VOIDmode.
1388
1389 CONSTRAINTS are the constraints to use for the operands. This array
1390 is modified by this procedure.
1391
1392 This procedure works alternative by alternative. For each alternative
1393 we assume that we will be able to allocate all pseudos to their ideal
1394 register class and calculate the cost of using that alternative. Then
1395 we compute for each operand that is a pseudo-register, the cost of
1396 having the pseudo allocated to each register class and using it in that
1397 alternative. To this cost is added the cost of the alternative.
1398
1399 The cost of each class for this insn is its lowest cost among all the
1400 alternatives. */
1401
1402 static void
1403 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1404 enum machine_mode *modes, const char **constraints,
1405 rtx insn, struct costs *op_costs,
1406 struct reg_pref *reg_pref)
1407 {
1408 int alt;
1409 int i, j;
1410 rtx set;
1411
1412 /* Process each alternative, each time minimizing an operand's cost with
1413 the cost for each operand in that alternative. */
1414
1415 for (alt = 0; alt < n_alts; alt++)
1416 {
1417 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1418 int alt_fail = 0;
1419 int alt_cost = 0;
1420 enum reg_class classes[MAX_RECOG_OPERANDS];
1421 int allows_mem[MAX_RECOG_OPERANDS];
1422 int class;
1423
1424 for (i = 0; i < n_ops; i++)
1425 {
1426 const char *p = constraints[i];
1427 rtx op = ops[i];
1428 enum machine_mode mode = modes[i];
1429 int allows_addr = 0;
1430 int win = 0;
1431 unsigned char c;
1432
1433 /* Initially show we know nothing about the register class. */
1434 classes[i] = NO_REGS;
1435 allows_mem[i] = 0;
1436
1437 /* If this operand has no constraints at all, we can conclude
1438 nothing about it since anything is valid. */
1439
1440 if (*p == 0)
1441 {
1442 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1443 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1444
1445 continue;
1446 }
1447
1448 /* If this alternative is only relevant when this operand
1449 matches a previous operand, we do different things depending
1450 on whether this operand is a pseudo-reg or not. We must process
1451 any modifiers for the operand before we can make this test. */
1452
1453 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1454 p++;
1455
1456 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1457 {
1458 /* Copy class and whether memory is allowed from the matching
1459 alternative. Then perform any needed cost computations
1460 and/or adjustments. */
1461 j = p[0] - '0';
1462 classes[i] = classes[j];
1463 allows_mem[i] = allows_mem[j];
1464
1465 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1466 {
1467 /* If this matches the other operand, we have no added
1468 cost and we win. */
1469 if (rtx_equal_p (ops[j], op))
1470 win = 1;
1471
1472 /* If we can put the other operand into a register, add to
1473 the cost of this alternative the cost to copy this
1474 operand to the register used for the other operand. */
1475
1476 else if (classes[j] != NO_REGS)
1477 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1478 }
1479 else if (!REG_P (ops[j])
1480 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1481 {
1482 /* This op is a pseudo but the one it matches is not. */
1483
1484 /* If we can't put the other operand into a register, this
1485 alternative can't be used. */
1486
1487 if (classes[j] == NO_REGS)
1488 alt_fail = 1;
1489
1490 /* Otherwise, add to the cost of this alternative the cost
1491 to copy the other operand to the register used for this
1492 operand. */
1493
1494 else
1495 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1496 }
1497 else
1498 {
1499 /* The costs of this operand are not the same as the other
1500 operand since move costs are not symmetric. Moreover,
1501 if we cannot tie them, this alternative needs to do a
1502 copy, which is one instruction. */
1503
1504 struct costs *pp = &this_op_costs[i];
1505
1506 for (class = 0; class < N_REG_CLASSES; class++)
1507 pp->cost[class]
1508 = ((recog_data.operand_type[i] != OP_OUT
1509 ? may_move_in_cost[mode][class][(int) classes[i]]
1510 : 0)
1511 + (recog_data.operand_type[i] != OP_IN
1512 ? may_move_out_cost[mode][(int) classes[i]][class]
1513 : 0));
1514
1515 /* If the alternative actually allows memory, make things
1516 a bit cheaper since we won't need an extra insn to
1517 load it. */
1518
1519 pp->mem_cost
1520 = ((recog_data.operand_type[i] != OP_IN
1521 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1522 : 0)
1523 + (recog_data.operand_type[i] != OP_OUT
1524 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1525 : 0) - allows_mem[i]);
1526
1527 /* If we have assigned a class to this register in our
1528 first pass, add a cost to this alternative corresponding
1529 to what we would add if this register were not in the
1530 appropriate class. */
1531
1532 if (reg_pref)
1533 alt_cost
1534 += (may_move_in_cost[mode]
1535 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1536 [(int) classes[i]]);
1537
1538 if (REGNO (ops[i]) != REGNO (ops[j])
1539 && ! find_reg_note (insn, REG_DEAD, op))
1540 alt_cost += 2;
1541
1542 /* This is in place of ordinary cost computation
1543 for this operand, so skip to the end of the
1544 alternative (should be just one character). */
1545 while (*p && *p++ != ',')
1546 ;
1547
1548 constraints[i] = p;
1549 continue;
1550 }
1551 }
1552
1553 /* Scan all the constraint letters. See if the operand matches
1554 any of the constraints. Collect the valid register classes
1555 and see if this operand accepts memory. */
1556
1557 while ((c = *p))
1558 {
1559 switch (c)
1560 {
1561 case ',':
1562 break;
1563 case '*':
1564 /* Ignore the next letter for this pass. */
1565 c = *++p;
1566 break;
1567
1568 case '?':
1569 alt_cost += 2;
1570 case '!': case '#': case '&':
1571 case '0': case '1': case '2': case '3': case '4':
1572 case '5': case '6': case '7': case '8': case '9':
1573 break;
1574
1575 case 'p':
1576 allows_addr = 1;
1577 win = address_operand (op, GET_MODE (op));
1578 /* We know this operand is an address, so we want it to be
1579 allocated to a register that can be the base of an
1580 address, ie BASE_REG_CLASS. */
1581 classes[i]
1582 = reg_class_subunion[(int) classes[i]]
1583 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1584 break;
1585
1586 case 'm': case 'o': case 'V':
1587 /* It doesn't seem worth distinguishing between offsettable
1588 and non-offsettable addresses here. */
1589 allows_mem[i] = 1;
1590 if (MEM_P (op))
1591 win = 1;
1592 break;
1593
1594 case '<':
1595 if (MEM_P (op)
1596 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1597 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1598 win = 1;
1599 break;
1600
1601 case '>':
1602 if (MEM_P (op)
1603 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1604 || GET_CODE (XEXP (op, 0)) == POST_INC))
1605 win = 1;
1606 break;
1607
1608 case 'E':
1609 case 'F':
1610 if (GET_CODE (op) == CONST_DOUBLE
1611 || (GET_CODE (op) == CONST_VECTOR
1612 && (GET_MODE_CLASS (GET_MODE (op))
1613 == MODE_VECTOR_FLOAT)))
1614 win = 1;
1615 break;
1616
1617 case 'G':
1618 case 'H':
1619 if (GET_CODE (op) == CONST_DOUBLE
1620 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1621 win = 1;
1622 break;
1623
1624 case 's':
1625 if (GET_CODE (op) == CONST_INT
1626 || (GET_CODE (op) == CONST_DOUBLE
1627 && GET_MODE (op) == VOIDmode))
1628 break;
1629 case 'i':
1630 if (CONSTANT_P (op)
1631 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1632 win = 1;
1633 break;
1634
1635 case 'n':
1636 if (GET_CODE (op) == CONST_INT
1637 || (GET_CODE (op) == CONST_DOUBLE
1638 && GET_MODE (op) == VOIDmode))
1639 win = 1;
1640 break;
1641
1642 case 'I':
1643 case 'J':
1644 case 'K':
1645 case 'L':
1646 case 'M':
1647 case 'N':
1648 case 'O':
1649 case 'P':
1650 if (GET_CODE (op) == CONST_INT
1651 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1652 win = 1;
1653 break;
1654
1655 case 'X':
1656 win = 1;
1657 break;
1658
1659 case 'g':
1660 if (MEM_P (op)
1661 || (CONSTANT_P (op)
1662 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1663 win = 1;
1664 allows_mem[i] = 1;
1665 case 'r':
1666 classes[i]
1667 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1668 break;
1669
1670 default:
1671 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1672 classes[i]
1673 = reg_class_subunion[(int) classes[i]]
1674 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1675 #ifdef EXTRA_CONSTRAINT_STR
1676 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1677 win = 1;
1678
1679 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1680 {
1681 /* Every MEM can be reloaded to fit. */
1682 allows_mem[i] = 1;
1683 if (MEM_P (op))
1684 win = 1;
1685 }
1686 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1687 {
1688 /* Every address can be reloaded to fit. */
1689 allows_addr = 1;
1690 if (address_operand (op, GET_MODE (op)))
1691 win = 1;
1692 /* We know this operand is an address, so we want it to
1693 be allocated to a register that can be the base of an
1694 address, ie BASE_REG_CLASS. */
1695 classes[i]
1696 = reg_class_subunion[(int) classes[i]]
1697 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1698 }
1699 #endif
1700 break;
1701 }
1702 p += CONSTRAINT_LEN (c, p);
1703 if (c == ',')
1704 break;
1705 }
1706
1707 constraints[i] = p;
1708
1709 /* How we account for this operand now depends on whether it is a
1710 pseudo register or not. If it is, we first check if any
1711 register classes are valid. If not, we ignore this alternative,
1712 since we want to assume that all pseudos get allocated for
1713 register preferencing. If some register class is valid, compute
1714 the costs of moving the pseudo into that class. */
1715
1716 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1717 {
1718 if (classes[i] == NO_REGS)
1719 {
1720 /* We must always fail if the operand is a REG, but
1721 we did not find a suitable class.
1722
1723 Otherwise we may perform an uninitialized read
1724 from this_op_costs after the `continue' statement
1725 below. */
1726 alt_fail = 1;
1727 }
1728 else
1729 {
1730 struct costs *pp = &this_op_costs[i];
1731
1732 for (class = 0; class < N_REG_CLASSES; class++)
1733 pp->cost[class]
1734 = ((recog_data.operand_type[i] != OP_OUT
1735 ? may_move_in_cost[mode][class][(int) classes[i]]
1736 : 0)
1737 + (recog_data.operand_type[i] != OP_IN
1738 ? may_move_out_cost[mode][(int) classes[i]][class]
1739 : 0));
1740
1741 /* If the alternative actually allows memory, make things
1742 a bit cheaper since we won't need an extra insn to
1743 load it. */
1744
1745 pp->mem_cost
1746 = ((recog_data.operand_type[i] != OP_IN
1747 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1748 : 0)
1749 + (recog_data.operand_type[i] != OP_OUT
1750 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1751 : 0) - allows_mem[i]);
1752
1753 /* If we have assigned a class to this register in our
1754 first pass, add a cost to this alternative corresponding
1755 to what we would add if this register were not in the
1756 appropriate class. */
1757
1758 if (reg_pref)
1759 alt_cost
1760 += (may_move_in_cost[mode]
1761 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1762 [(int) classes[i]]);
1763 }
1764 }
1765
1766 /* Otherwise, if this alternative wins, either because we
1767 have already determined that or if we have a hard register of
1768 the proper class, there is no cost for this alternative. */
1769
1770 else if (win
1771 || (REG_P (op)
1772 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1773 ;
1774
1775 /* If registers are valid, the cost of this alternative includes
1776 copying the object to and/or from a register. */
1777
1778 else if (classes[i] != NO_REGS)
1779 {
1780 if (recog_data.operand_type[i] != OP_OUT)
1781 alt_cost += copy_cost (op, mode, classes[i], 1);
1782
1783 if (recog_data.operand_type[i] != OP_IN)
1784 alt_cost += copy_cost (op, mode, classes[i], 0);
1785 }
1786
1787 /* The only other way this alternative can be used is if this is a
1788 constant that could be placed into memory. */
1789
1790 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1791 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1792 else
1793 alt_fail = 1;
1794 }
1795
1796 if (alt_fail)
1797 continue;
1798
1799 /* Finally, update the costs with the information we've calculated
1800 about this alternative. */
1801
1802 for (i = 0; i < n_ops; i++)
1803 if (REG_P (ops[i])
1804 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1805 {
1806 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1807 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1808
1809 pp->mem_cost = MIN (pp->mem_cost,
1810 (qq->mem_cost + alt_cost) * scale);
1811
1812 for (class = 0; class < N_REG_CLASSES; class++)
1813 pp->cost[class] = MIN (pp->cost[class],
1814 (qq->cost[class] + alt_cost) * scale);
1815 }
1816 }
1817
1818 /* If this insn is a single set copying operand 1 to operand 0
1819 and one operand is a pseudo with the other a hard reg or a pseudo
1820 that prefers a register that is in its own register class then
1821 we may want to adjust the cost of that register class to -1.
1822
1823 Avoid the adjustment if the source does not die to avoid stressing of
1824 register allocator by preferrencing two colliding registers into single
1825 class.
1826
1827 Also avoid the adjustment if a copy between registers of the class
1828 is expensive (ten times the cost of a default copy is considered
1829 arbitrarily expensive). This avoids losing when the preferred class
1830 is very expensive as the source of a copy instruction. */
1831
1832 if ((set = single_set (insn)) != 0
1833 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1834 && REG_P (ops[0]) && REG_P (ops[1])
1835 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1836 for (i = 0; i <= 1; i++)
1837 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1838 {
1839 unsigned int regno = REGNO (ops[!i]);
1840 enum machine_mode mode = GET_MODE (ops[!i]);
1841 int class;
1842 unsigned int nr;
1843
1844 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1845 {
1846 enum reg_class pref = reg_pref[regno].prefclass;
1847
1848 if ((reg_class_size[(unsigned char) pref]
1849 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1850 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1851 op_costs[i].cost[(unsigned char) pref] = -1;
1852 }
1853 else if (regno < FIRST_PSEUDO_REGISTER)
1854 for (class = 0; class < N_REG_CLASSES; class++)
1855 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1856 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1857 {
1858 if (reg_class_size[class] == 1)
1859 op_costs[i].cost[class] = -1;
1860 else
1861 {
1862 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1863 {
1864 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1865 regno + nr))
1866 break;
1867 }
1868
1869 if (nr == (unsigned) hard_regno_nregs[regno][mode])
1870 op_costs[i].cost[class] = -1;
1871 }
1872 }
1873 }
1874 }
1875 \f
1876 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1877 TO_P is zero) a register of class CLASS in mode MODE.
1878
1879 X must not be a pseudo. */
1880
1881 static int
1882 copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1883 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1884 {
1885 #ifdef HAVE_SECONDARY_RELOADS
1886 enum reg_class secondary_class = NO_REGS;
1887 #endif
1888
1889 /* If X is a SCRATCH, there is actually nothing to move since we are
1890 assuming optimal allocation. */
1891
1892 if (GET_CODE (x) == SCRATCH)
1893 return 0;
1894
1895 /* Get the class we will actually use for a reload. */
1896 class = PREFERRED_RELOAD_CLASS (x, class);
1897
1898 #ifdef HAVE_SECONDARY_RELOADS
1899 /* If we need a secondary reload (we assume here that we are using
1900 the secondary reload as an intermediate, not a scratch register), the
1901 cost is that to load the input into the intermediate register, then
1902 to copy them. We use a special value of TO_P to avoid recursion. */
1903
1904 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1905 if (to_p == 1)
1906 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1907 #endif
1908
1909 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1910 if (! to_p)
1911 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1912 #endif
1913
1914 if (secondary_class != NO_REGS)
1915 return (move_cost[mode][(int) secondary_class][(int) class]
1916 + copy_cost (x, mode, secondary_class, 2));
1917 #endif /* HAVE_SECONDARY_RELOADS */
1918
1919 /* For memory, use the memory move cost, for (hard) registers, use the
1920 cost to move between the register classes, and use 2 for everything
1921 else (constants). */
1922
1923 if (MEM_P (x) || class == NO_REGS)
1924 return MEMORY_MOVE_COST (mode, class, to_p);
1925
1926 else if (REG_P (x))
1927 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1928
1929 else
1930 /* If this is a constant, we may eventually want to call rtx_cost here. */
1931 return COSTS_N_INSNS (1);
1932 }
1933 \f
1934 /* Record the pseudo registers we must reload into hard registers
1935 in a subexpression of a memory address, X.
1936
1937 CLASS is the class that the register needs to be in and is either
1938 BASE_REG_CLASS or INDEX_REG_CLASS.
1939
1940 SCALE is twice the amount to multiply the cost by (it is twice so we
1941 can represent half-cost adjustments). */
1942
1943 static void
1944 record_address_regs (rtx x, enum reg_class class, int scale)
1945 {
1946 enum rtx_code code = GET_CODE (x);
1947
1948 switch (code)
1949 {
1950 case CONST_INT:
1951 case CONST:
1952 case CC0:
1953 case PC:
1954 case SYMBOL_REF:
1955 case LABEL_REF:
1956 return;
1957
1958 case PLUS:
1959 /* When we have an address that is a sum,
1960 we must determine whether registers are "base" or "index" regs.
1961 If there is a sum of two registers, we must choose one to be
1962 the "base". Luckily, we can use the REG_POINTER to make a good
1963 choice most of the time. We only need to do this on machines
1964 that can have two registers in an address and where the base
1965 and index register classes are different.
1966
1967 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1968 that seems bogus since it should only be set when we are sure
1969 the register is being used as a pointer. */
1970
1971 {
1972 rtx arg0 = XEXP (x, 0);
1973 rtx arg1 = XEXP (x, 1);
1974 enum rtx_code code0 = GET_CODE (arg0);
1975 enum rtx_code code1 = GET_CODE (arg1);
1976
1977 /* Look inside subregs. */
1978 if (code0 == SUBREG)
1979 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1980 if (code1 == SUBREG)
1981 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1982
1983 /* If this machine only allows one register per address, it must
1984 be in the first operand. */
1985
1986 if (MAX_REGS_PER_ADDRESS == 1)
1987 record_address_regs (arg0, class, scale);
1988
1989 /* If index and base registers are the same on this machine, just
1990 record registers in any non-constant operands. We assume here,
1991 as well as in the tests below, that all addresses are in
1992 canonical form. */
1993
1994 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1995 {
1996 record_address_regs (arg0, class, scale);
1997 if (! CONSTANT_P (arg1))
1998 record_address_regs (arg1, class, scale);
1999 }
2000
2001 /* If the second operand is a constant integer, it doesn't change
2002 what class the first operand must be. */
2003
2004 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2005 record_address_regs (arg0, class, scale);
2006
2007 /* If the second operand is a symbolic constant, the first operand
2008 must be an index register. */
2009
2010 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2011 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2012
2013 /* If both operands are registers but one is already a hard register
2014 of index or base class, give the other the class that the hard
2015 register is not. */
2016
2017 #ifdef REG_OK_FOR_BASE_P
2018 else if (code0 == REG && code1 == REG
2019 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2020 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2021 record_address_regs (arg1,
2022 REG_OK_FOR_BASE_P (arg0)
2023 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2024 scale);
2025 else if (code0 == REG && code1 == REG
2026 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2027 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2028 record_address_regs (arg0,
2029 REG_OK_FOR_BASE_P (arg1)
2030 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2031 scale);
2032 #endif
2033
2034 /* If one operand is known to be a pointer, it must be the base
2035 with the other operand the index. Likewise if the other operand
2036 is a MULT. */
2037
2038 else if ((code0 == REG && REG_POINTER (arg0))
2039 || code1 == MULT)
2040 {
2041 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2042 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2043 }
2044 else if ((code1 == REG && REG_POINTER (arg1))
2045 || code0 == MULT)
2046 {
2047 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2048 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2049 }
2050
2051 /* Otherwise, count equal chances that each might be a base
2052 or index register. This case should be rare. */
2053
2054 else
2055 {
2056 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2057 scale / 2);
2058 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2059 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2060 scale / 2);
2061 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2062 }
2063 }
2064 break;
2065
2066 /* Double the importance of a pseudo register that is incremented
2067 or decremented, since it would take two extra insns
2068 if it ends up in the wrong place. */
2069 case POST_MODIFY:
2070 case PRE_MODIFY:
2071 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2072 2 * scale);
2073 if (REG_P (XEXP (XEXP (x, 1), 1)))
2074 record_address_regs (XEXP (XEXP (x, 1), 1),
2075 INDEX_REG_CLASS, 2 * scale);
2076 break;
2077
2078 case POST_INC:
2079 case PRE_INC:
2080 case POST_DEC:
2081 case PRE_DEC:
2082 /* Double the importance of a pseudo register that is incremented
2083 or decremented, since it would take two extra insns
2084 if it ends up in the wrong place. If the operand is a pseudo,
2085 show it is being used in an INC_DEC context. */
2086
2087 #ifdef FORBIDDEN_INC_DEC_CLASSES
2088 if (REG_P (XEXP (x, 0))
2089 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2090 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2091 #endif
2092
2093 record_address_regs (XEXP (x, 0), class, 2 * scale);
2094 break;
2095
2096 case REG:
2097 {
2098 struct costs *pp = &costs[REGNO (x)];
2099 int i;
2100
2101 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2102
2103 for (i = 0; i < N_REG_CLASSES; i++)
2104 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2105 }
2106 break;
2107
2108 default:
2109 {
2110 const char *fmt = GET_RTX_FORMAT (code);
2111 int i;
2112 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2113 if (fmt[i] == 'e')
2114 record_address_regs (XEXP (x, i), class, scale);
2115 }
2116 }
2117 }
2118 \f
2119 #ifdef FORBIDDEN_INC_DEC_CLASSES
2120
2121 /* Return 1 if REG is valid as an auto-increment memory reference
2122 to an object of MODE. */
2123
2124 static int
2125 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2126 {
2127 if (HAVE_POST_INCREMENT
2128 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2129 return 1;
2130
2131 if (HAVE_POST_DECREMENT
2132 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2133 return 1;
2134
2135 if (HAVE_PRE_INCREMENT
2136 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2137 return 1;
2138
2139 if (HAVE_PRE_DECREMENT
2140 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2141 return 1;
2142
2143 return 0;
2144 }
2145 #endif
2146 \f
2147 static short *renumber;
2148 static size_t regno_allocated;
2149 static unsigned int reg_n_max;
2150
2151 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2152 reg_scan and flow_analysis that are indexed by the register number. If
2153 NEW_P is nonzero, initialize all of the registers, otherwise only
2154 initialize the new registers allocated. The same table is kept from
2155 function to function, only reallocating it when we need more room. If
2156 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2157
2158 void
2159 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2160 {
2161 size_t size_info;
2162 size_t size_renumber;
2163 size_t min = (new_p) ? 0 : reg_n_max;
2164 struct reg_info_data *reg_data;
2165
2166 if (num_regs > regno_allocated)
2167 {
2168 size_t old_allocated = regno_allocated;
2169
2170 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2171 size_renumber = regno_allocated * sizeof (short);
2172
2173 if (!reg_n_info)
2174 {
2175 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2176 renumber = xmalloc (size_renumber);
2177 reg_pref_buffer = xmalloc (regno_allocated
2178 * sizeof (struct reg_pref));
2179 }
2180
2181 else
2182 {
2183 VARRAY_GROW (reg_n_info, regno_allocated);
2184
2185 if (new_p) /* If we're zapping everything, no need to realloc. */
2186 {
2187 free ((char *) renumber);
2188 free ((char *) reg_pref);
2189 renumber = xmalloc (size_renumber);
2190 reg_pref_buffer = xmalloc (regno_allocated
2191 * sizeof (struct reg_pref));
2192 }
2193
2194 else
2195 {
2196 renumber = xrealloc (renumber, size_renumber);
2197 reg_pref_buffer = xrealloc (reg_pref_buffer,
2198 regno_allocated
2199 * sizeof (struct reg_pref));
2200 }
2201 }
2202
2203 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2204 + sizeof (struct reg_info_data) - sizeof (reg_info);
2205 reg_data = xcalloc (size_info, 1);
2206 reg_data->min_index = old_allocated;
2207 reg_data->max_index = regno_allocated - 1;
2208 reg_data->next = reg_info_head;
2209 reg_info_head = reg_data;
2210 }
2211
2212 reg_n_max = num_regs;
2213 if (min < num_regs)
2214 {
2215 /* Loop through each of the segments allocated for the actual
2216 reg_info pages, and set up the pointers, zero the pages, etc. */
2217 for (reg_data = reg_info_head;
2218 reg_data && reg_data->max_index >= min;
2219 reg_data = reg_data->next)
2220 {
2221 size_t min_index = reg_data->min_index;
2222 size_t max_index = reg_data->max_index;
2223 size_t max = MIN (max_index, num_regs);
2224 size_t local_min = min - min_index;
2225 size_t i;
2226
2227 if (reg_data->min_index > num_regs)
2228 continue;
2229
2230 if (min < min_index)
2231 local_min = 0;
2232 if (!reg_data->used_p) /* page just allocated with calloc */
2233 reg_data->used_p = 1; /* no need to zero */
2234 else
2235 memset (&reg_data->data[local_min], 0,
2236 sizeof (reg_info) * (max - min_index - local_min + 1));
2237
2238 for (i = min_index+local_min; i <= max; i++)
2239 {
2240 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2241 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2242 renumber[i] = -1;
2243 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2244 reg_pref_buffer[i].altclass = (char) NO_REGS;
2245 }
2246 }
2247 }
2248
2249 /* If {pref,alt}class have already been allocated, update the pointers to
2250 the newly realloced ones. */
2251 if (reg_pref)
2252 reg_pref = reg_pref_buffer;
2253
2254 if (renumber_p)
2255 reg_renumber = renumber;
2256
2257 /* Tell the regset code about the new number of registers. */
2258 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2259 }
2260
2261 /* Free up the space allocated by allocate_reg_info. */
2262 void
2263 free_reg_info (void)
2264 {
2265 if (reg_n_info)
2266 {
2267 struct reg_info_data *reg_data;
2268 struct reg_info_data *reg_next;
2269
2270 VARRAY_FREE (reg_n_info);
2271 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2272 {
2273 reg_next = reg_data->next;
2274 free ((char *) reg_data);
2275 }
2276
2277 free (reg_pref_buffer);
2278 reg_pref_buffer = (struct reg_pref *) 0;
2279 reg_info_head = (struct reg_info_data *) 0;
2280 renumber = (short *) 0;
2281 }
2282 regno_allocated = 0;
2283 reg_n_max = 0;
2284 }
2285 \f
2286 /* This is the `regscan' pass of the compiler, run just before cse
2287 and again just before loop.
2288
2289 It finds the first and last use of each pseudo-register
2290 and records them in the vectors regno_first_uid, regno_last_uid
2291 and counts the number of sets in the vector reg_n_sets.
2292
2293 REPEAT is nonzero the second time this is called. */
2294
2295 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2296 Always at least 3, since the combiner could put that many together
2297 and we want this to remain correct for all the remaining passes.
2298 This corresponds to the maximum number of times note_stores will call
2299 a function for any insn. */
2300
2301 int max_parallel;
2302
2303 /* Used as a temporary to record the largest number of registers in
2304 PARALLEL in a SET_DEST. This is added to max_parallel. */
2305
2306 static int max_set_parallel;
2307
2308 void
2309 reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
2310 {
2311 rtx insn;
2312
2313 timevar_push (TV_REG_SCAN);
2314
2315 allocate_reg_info (nregs, TRUE, FALSE);
2316 max_parallel = 3;
2317 max_set_parallel = 0;
2318
2319 for (insn = f; insn; insn = NEXT_INSN (insn))
2320 if (INSN_P (insn))
2321 {
2322 rtx pat = PATTERN (insn);
2323 if (GET_CODE (pat) == PARALLEL
2324 && XVECLEN (pat, 0) > max_parallel)
2325 max_parallel = XVECLEN (pat, 0);
2326 reg_scan_mark_refs (pat, insn, 0, 0);
2327
2328 if (REG_NOTES (insn))
2329 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2330 }
2331
2332 max_parallel += max_set_parallel;
2333
2334 timevar_pop (TV_REG_SCAN);
2335 }
2336
2337 /* Update 'regscan' information by looking at the insns
2338 from FIRST to LAST. Some new REGs have been created,
2339 and any REG with number greater than OLD_MAX_REGNO is
2340 such a REG. We only update information for those. */
2341
2342 void
2343 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2344 {
2345 rtx insn;
2346
2347 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2348
2349 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2350 if (INSN_P (insn))
2351 {
2352 rtx pat = PATTERN (insn);
2353 if (GET_CODE (pat) == PARALLEL
2354 && XVECLEN (pat, 0) > max_parallel)
2355 max_parallel = XVECLEN (pat, 0);
2356 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2357
2358 if (REG_NOTES (insn))
2359 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2360 }
2361 }
2362
2363 /* X is the expression to scan. INSN is the insn it appears in.
2364 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2365 We should only record information for REGs with numbers
2366 greater than or equal to MIN_REGNO. */
2367
2368 static void
2369 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2370 {
2371 enum rtx_code code;
2372 rtx dest;
2373 rtx note;
2374
2375 if (!x)
2376 return;
2377 code = GET_CODE (x);
2378 switch (code)
2379 {
2380 case CONST:
2381 case CONST_INT:
2382 case CONST_DOUBLE:
2383 case CONST_VECTOR:
2384 case CC0:
2385 case PC:
2386 case SYMBOL_REF:
2387 case LABEL_REF:
2388 case ADDR_VEC:
2389 case ADDR_DIFF_VEC:
2390 return;
2391
2392 case REG:
2393 {
2394 unsigned int regno = REGNO (x);
2395
2396 if (regno >= min_regno)
2397 {
2398 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2399 if (!note_flag)
2400 REGNO_LAST_UID (regno) = INSN_UID (insn);
2401 if (REGNO_FIRST_UID (regno) == 0)
2402 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2403 /* If we are called by reg_scan_update() (indicated by min_regno
2404 being set), we also need to update the reference count. */
2405 if (min_regno)
2406 REG_N_REFS (regno)++;
2407 }
2408 }
2409 break;
2410
2411 case EXPR_LIST:
2412 if (XEXP (x, 0))
2413 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2414 if (XEXP (x, 1))
2415 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2416 break;
2417
2418 case INSN_LIST:
2419 if (XEXP (x, 1))
2420 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2421 break;
2422
2423 case CLOBBER:
2424 {
2425 rtx reg = XEXP (x, 0);
2426 if (REG_P (reg)
2427 && REGNO (reg) >= min_regno)
2428 {
2429 REG_N_SETS (REGNO (reg))++;
2430 REG_N_REFS (REGNO (reg))++;
2431 }
2432 else if (MEM_P (reg))
2433 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
2434 }
2435 break;
2436
2437 case SET:
2438 /* Count a set of the destination if it is a register. */
2439 for (dest = SET_DEST (x);
2440 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2441 || GET_CODE (dest) == ZERO_EXTEND;
2442 dest = XEXP (dest, 0))
2443 ;
2444
2445 /* For a PARALLEL, record the number of things (less the usual one for a
2446 SET) that are set. */
2447 if (GET_CODE (dest) == PARALLEL)
2448 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2449
2450 if (REG_P (dest)
2451 && REGNO (dest) >= min_regno)
2452 {
2453 REG_N_SETS (REGNO (dest))++;
2454 REG_N_REFS (REGNO (dest))++;
2455 }
2456
2457 /* If this is setting a pseudo from another pseudo or the sum of a
2458 pseudo and a constant integer and the other pseudo is known to be
2459 a pointer, set the destination to be a pointer as well.
2460
2461 Likewise if it is setting the destination from an address or from a
2462 value equivalent to an address or to the sum of an address and
2463 something else.
2464
2465 But don't do any of this if the pseudo corresponds to a user
2466 variable since it should have already been set as a pointer based
2467 on the type. */
2468
2469 if (REG_P (SET_DEST (x))
2470 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2471 && REGNO (SET_DEST (x)) >= min_regno
2472 /* If the destination pseudo is set more than once, then other
2473 sets might not be to a pointer value (consider access to a
2474 union in two threads of control in the presence of global
2475 optimizations). So only set REG_POINTER on the destination
2476 pseudo if this is the only set of that pseudo. */
2477 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2478 && ! REG_USERVAR_P (SET_DEST (x))
2479 && ! REG_POINTER (SET_DEST (x))
2480 && ((REG_P (SET_SRC (x))
2481 && REG_POINTER (SET_SRC (x)))
2482 || ((GET_CODE (SET_SRC (x)) == PLUS
2483 || GET_CODE (SET_SRC (x)) == LO_SUM)
2484 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2485 && REG_P (XEXP (SET_SRC (x), 0))
2486 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2487 || GET_CODE (SET_SRC (x)) == CONST
2488 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2489 || GET_CODE (SET_SRC (x)) == LABEL_REF
2490 || (GET_CODE (SET_SRC (x)) == HIGH
2491 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2492 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2493 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2494 || ((GET_CODE (SET_SRC (x)) == PLUS
2495 || GET_CODE (SET_SRC (x)) == LO_SUM)
2496 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2497 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2498 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2499 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2500 && (GET_CODE (XEXP (note, 0)) == CONST
2501 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2502 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2503 REG_POINTER (SET_DEST (x)) = 1;
2504
2505 /* If this is setting a register from a register or from a simple
2506 conversion of a register, propagate REG_EXPR. */
2507 if (REG_P (dest))
2508 {
2509 rtx src = SET_SRC (x);
2510
2511 while (GET_CODE (src) == SIGN_EXTEND
2512 || GET_CODE (src) == ZERO_EXTEND
2513 || GET_CODE (src) == TRUNCATE
2514 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2515 src = XEXP (src, 0);
2516
2517 if (!REG_ATTRS (dest) && REG_P (src))
2518 REG_ATTRS (dest) = REG_ATTRS (src);
2519 if (!REG_ATTRS (dest) && MEM_P (src))
2520 set_reg_attrs_from_mem (dest, src);
2521 }
2522
2523 /* ... fall through ... */
2524
2525 default:
2526 {
2527 const char *fmt = GET_RTX_FORMAT (code);
2528 int i;
2529 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2530 {
2531 if (fmt[i] == 'e')
2532 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2533 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2534 {
2535 int j;
2536 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2537 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2538 }
2539 }
2540 }
2541 }
2542 }
2543 \f
2544 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2545 is also in C2. */
2546
2547 int
2548 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2549 {
2550 if (c1 == c2) return 1;
2551
2552 if (c2 == ALL_REGS)
2553 win:
2554 return 1;
2555 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2556 reg_class_contents[(int) c2],
2557 win);
2558 return 0;
2559 }
2560
2561 /* Return nonzero if there is a register that is in both C1 and C2. */
2562
2563 int
2564 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2565 {
2566 HARD_REG_SET c;
2567
2568 if (c1 == c2) return 1;
2569
2570 if (c1 == ALL_REGS || c2 == ALL_REGS)
2571 return 1;
2572
2573 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2574 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2575
2576 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2577 return 1;
2578
2579 lose:
2580 return 0;
2581 }
2582
2583 /* Release any memory allocated by register sets. */
2584
2585 void
2586 regset_release_memory (void)
2587 {
2588 bitmap_release_memory ();
2589 }
2590
2591 #ifdef CANNOT_CHANGE_MODE_CLASS
2592 /* Set bits in *USED which correspond to registers which can't change
2593 their mode from FROM to any mode in which REGNO was encountered. */
2594
2595 void
2596 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2597 unsigned int regno)
2598 {
2599 enum machine_mode to;
2600 int n, i;
2601 int start = regno * MAX_MACHINE_MODE;
2602
2603 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2604 if (n >= MAX_MACHINE_MODE + start)
2605 return;
2606 to = n - start;
2607 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2608 if (! TEST_HARD_REG_BIT (*used, i)
2609 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2610 SET_HARD_REG_BIT (*used, i);
2611 );
2612 }
2613
2614 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2615 mode. */
2616
2617 bool
2618 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2619 enum machine_mode from_mode)
2620 {
2621 enum machine_mode to_mode;
2622 int n;
2623 int start = regno * MAX_MACHINE_MODE;
2624
2625 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2626 if (n >= MAX_MACHINE_MODE + start)
2627 return 0;
2628 to_mode = n - start;
2629 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
2630 return 1;
2631 );
2632 return 0;
2633 }
2634 #endif /* CANNOT_CHANGE_MODE_CLASS */
2635
2636 #include "gt-regclass.h"