acconfig.h: _GLIBCPP_USING_THREADS and some workaround types added.
[gcc.git] / gcc / regclass.c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "basic-block.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "recog.h"
38 #include "reload.h"
39 #include "real.h"
40 #include "toplev.h"
41 #include "output.h"
42 #include "ggc.h"
43
44 #ifndef REGISTER_MOVE_COST
45 #define REGISTER_MOVE_COST(x, y) 2
46 #endif
47
48 static void init_reg_sets_1 PARAMS ((void));
49 static void init_reg_modes PARAMS ((void));
50
51 /* If we have auto-increment or auto-decrement and we can have secondary
52 reloads, we are not allowed to use classes requiring secondary
53 reloads for pseudos auto-incremented since reload can't handle it. */
54
55 #ifdef AUTO_INC_DEC
56 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
57 #define FORBIDDEN_INC_DEC_CLASSES
58 #endif
59 #endif
60 \f
61 /* Register tables used by many passes. */
62
63 /* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
66 a pseudo reg for general use. */
67
68 char fixed_regs[FIRST_PSEUDO_REGISTER];
69
70 /* Same info as a HARD_REG_SET. */
71
72 HARD_REG_SET fixed_reg_set;
73
74 /* Data for initializing the above. */
75
76 static char initial_fixed_regs[] = FIXED_REGISTERS;
77
78 /* Indexed by hard register number, contains 1 for registers
79 that are fixed use or are clobbered by function calls.
80 These are the registers that cannot be used to allocate
81 a pseudo reg whose life crosses calls unless we are able
82 to save/restore them across the calls. */
83
84 char call_used_regs[FIRST_PSEUDO_REGISTER];
85
86 /* Same info as a HARD_REG_SET. */
87
88 HARD_REG_SET call_used_reg_set;
89
90 /* HARD_REG_SET of registers we want to avoid caller saving. */
91 HARD_REG_SET losing_caller_save_reg_set;
92
93 /* Data for initializing the above. */
94
95 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
96
97 /* Indexed by hard register number, contains 1 for registers that are
98 fixed use or call used registers that cannot hold quantities across
99 calls even if we are willing to save and restore them. call fixed
100 registers are a subset of call used registers. */
101
102 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
103
104 /* The same info as a HARD_REG_SET. */
105
106 HARD_REG_SET call_fixed_reg_set;
107
108 /* Number of non-fixed registers. */
109
110 int n_non_fixed_regs;
111
112 /* Indexed by hard register number, contains 1 for registers
113 that are being used for global register decls.
114 These must be exempt from ordinary flow analysis
115 and are also considered fixed. */
116
117 char global_regs[FIRST_PSEUDO_REGISTER];
118
119 /* Table of register numbers in the order in which to try to use them. */
120 #ifdef REG_ALLOC_ORDER
121 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
122
123 /* The inverse of reg_alloc_order. */
124 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
125 #endif
126
127 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
128
129 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
130
131 /* The same information, but as an array of unsigned ints. We copy from
132 these unsigned ints to the table above. We do this so the tm.h files
133 do not have to be aware of the wordsize for machines with <= 64 regs. */
134
135 #define N_REG_INTS \
136 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
137
138 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
139 = REG_CLASS_CONTENTS;
140
141 /* For each reg class, number of regs it contains. */
142
143 unsigned int reg_class_size[N_REG_CLASSES];
144
145 /* For each reg class, table listing all the containing classes. */
146
147 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
148
149 /* For each reg class, table listing all the classes contained in it. */
150
151 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
152
153 /* For each pair of reg classes,
154 a largest reg class contained in their union. */
155
156 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
157
158 /* For each pair of reg classes,
159 the smallest reg class containing their union. */
160
161 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
162
163 /* Array containing all of the register names. Unless
164 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
165
166 #ifdef DEBUG_REGISTER_NAMES
167 const char * reg_names[] = REGISTER_NAMES;
168 #endif
169
170 /* For each hard register, the widest mode object that it can contain.
171 This will be a MODE_INT mode if the register can hold integers. Otherwise
172 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
173 register. */
174
175 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
176
177 /* Maximum cost of moving from a register in one class to a register in
178 another class. Based on REGISTER_MOVE_COST. */
179
180 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
181
182 /* Similar, but here we don't have to move if the first index is a subset
183 of the second so in that case the cost is zero. */
184
185 static int may_move_in_cost[N_REG_CLASSES][N_REG_CLASSES];
186
187 /* Similar, but here we don't have to move if the first index is a superset
188 of the second so in that case the cost is zero. */
189
190 static int may_move_out_cost[N_REG_CLASSES][N_REG_CLASSES];
191
192 #ifdef FORBIDDEN_INC_DEC_CLASSES
193
194 /* These are the classes that regs which are auto-incremented or decremented
195 cannot be put in. */
196
197 static int forbidden_inc_dec_class[N_REG_CLASSES];
198
199 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
200 context. */
201
202 static char *in_inc_dec;
203
204 #endif /* FORBIDDEN_INC_DEC_CLASSES */
205
206 #ifdef CLASS_CANNOT_CHANGE_MODE
207
208 /* These are the classes containing only registers that can be used in
209 a SUBREG expression that changes the mode of the register in some
210 way that is illegal. */
211
212 static int class_can_change_mode[N_REG_CLASSES];
213
214 /* Registers, including pseudos, which change modes in some way that
215 is illegal. */
216
217 static regset reg_changes_mode;
218
219 #endif /* CLASS_CANNOT_CHANGE_MODE */
220
221 #ifdef HAVE_SECONDARY_RELOADS
222
223 /* Sample MEM values for use by memory_move_secondary_cost. */
224
225 static rtx top_of_stack[MAX_MACHINE_MODE];
226
227 #endif /* HAVE_SECONDARY_RELOADS */
228
229 /* Linked list of reg_info structures allocated for reg_n_info array.
230 Grouping all of the allocated structures together in one lump
231 means only one call to bzero to clear them, rather than n smaller
232 calls. */
233 struct reg_info_data {
234 struct reg_info_data *next; /* next set of reg_info structures */
235 size_t min_index; /* minimum index # */
236 size_t max_index; /* maximum index # */
237 char used_p; /* non-zero if this has been used previously */
238 reg_info data[1]; /* beginning of the reg_info data */
239 };
240
241 static struct reg_info_data *reg_info_head;
242
243 /* No more global register variables may be declared; true once
244 regclass has been initialized. */
245
246 static int no_global_reg_vars = 0;
247
248
249 /* Function called only once to initialize the above data on reg usage.
250 Once this is done, various switches may override. */
251
252 void
253 init_reg_sets ()
254 {
255 register int i, j;
256
257 /* First copy the register information from the initial int form into
258 the regsets. */
259
260 for (i = 0; i < N_REG_CLASSES; i++)
261 {
262 CLEAR_HARD_REG_SET (reg_class_contents[i]);
263
264 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
265 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
266 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
267 SET_HARD_REG_BIT (reg_class_contents[i], j);
268 }
269
270 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
271 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
272 bzero (global_regs, sizeof global_regs);
273
274 /* Do any additional initialization regsets may need */
275 INIT_ONCE_REG_SET ();
276
277 #ifdef REG_ALLOC_ORDER
278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
279 inv_reg_alloc_order[reg_alloc_order[i]] = i;
280 #endif
281 }
282
283 /* After switches have been processed, which perhaps alter
284 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
285
286 static void
287 init_reg_sets_1 ()
288 {
289 register unsigned int i, j;
290
291 /* This macro allows the fixed or call-used registers
292 and the register classes to depend on target flags. */
293
294 #ifdef CONDITIONAL_REGISTER_USAGE
295 CONDITIONAL_REGISTER_USAGE;
296 #endif
297
298 /* Compute number of hard regs in each class. */
299
300 bzero ((char *) reg_class_size, sizeof reg_class_size);
301 for (i = 0; i < N_REG_CLASSES; i++)
302 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
303 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
304 reg_class_size[i]++;
305
306 /* Initialize the table of subunions.
307 reg_class_subunion[I][J] gets the largest-numbered reg-class
308 that is contained in the union of classes I and J. */
309
310 for (i = 0; i < N_REG_CLASSES; i++)
311 {
312 for (j = 0; j < N_REG_CLASSES; j++)
313 {
314 #ifdef HARD_REG_SET
315 register /* Declare it register if it's a scalar. */
316 #endif
317 HARD_REG_SET c;
318 register int k;
319
320 COPY_HARD_REG_SET (c, reg_class_contents[i]);
321 IOR_HARD_REG_SET (c, reg_class_contents[j]);
322 for (k = 0; k < N_REG_CLASSES; k++)
323 {
324 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
325 subclass1);
326 continue;
327
328 subclass1:
329 /* keep the largest subclass */ /* SPEE 900308 */
330 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
331 reg_class_contents[(int) reg_class_subunion[i][j]],
332 subclass2);
333 reg_class_subunion[i][j] = (enum reg_class) k;
334 subclass2:
335 ;
336 }
337 }
338 }
339
340 /* Initialize the table of superunions.
341 reg_class_superunion[I][J] gets the smallest-numbered reg-class
342 containing the union of classes I and J. */
343
344 for (i = 0; i < N_REG_CLASSES; i++)
345 {
346 for (j = 0; j < N_REG_CLASSES; j++)
347 {
348 #ifdef HARD_REG_SET
349 register /* Declare it register if it's a scalar. */
350 #endif
351 HARD_REG_SET c;
352 register int k;
353
354 COPY_HARD_REG_SET (c, reg_class_contents[i]);
355 IOR_HARD_REG_SET (c, reg_class_contents[j]);
356 for (k = 0; k < N_REG_CLASSES; k++)
357 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
358
359 superclass:
360 reg_class_superunion[i][j] = (enum reg_class) k;
361 }
362 }
363
364 /* Initialize the tables of subclasses and superclasses of each reg class.
365 First clear the whole table, then add the elements as they are found. */
366
367 for (i = 0; i < N_REG_CLASSES; i++)
368 {
369 for (j = 0; j < N_REG_CLASSES; j++)
370 {
371 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
372 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
373 }
374 }
375
376 for (i = 0; i < N_REG_CLASSES; i++)
377 {
378 if (i == (int) NO_REGS)
379 continue;
380
381 for (j = i + 1; j < N_REG_CLASSES; j++)
382 {
383 enum reg_class *p;
384
385 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
386 subclass);
387 continue;
388 subclass:
389 /* Reg class I is a subclass of J.
390 Add J to the table of superclasses of I. */
391 p = &reg_class_superclasses[i][0];
392 while (*p != LIM_REG_CLASSES) p++;
393 *p = (enum reg_class) j;
394 /* Add I to the table of superclasses of J. */
395 p = &reg_class_subclasses[j][0];
396 while (*p != LIM_REG_CLASSES) p++;
397 *p = (enum reg_class) i;
398 }
399 }
400
401 /* Initialize "constant" tables. */
402
403 CLEAR_HARD_REG_SET (fixed_reg_set);
404 CLEAR_HARD_REG_SET (call_used_reg_set);
405 CLEAR_HARD_REG_SET (call_fixed_reg_set);
406
407 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
408
409 n_non_fixed_regs = 0;
410
411 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
412 {
413 if (fixed_regs[i])
414 SET_HARD_REG_BIT (fixed_reg_set, i);
415 else
416 n_non_fixed_regs++;
417
418 if (call_used_regs[i])
419 SET_HARD_REG_BIT (call_used_reg_set, i);
420 if (call_fixed_regs[i])
421 SET_HARD_REG_BIT (call_fixed_reg_set, i);
422 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
423 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
424 }
425
426 /* Initialize the move cost table. Find every subset of each class
427 and take the maximum cost of moving any subset to any other. */
428
429 for (i = 0; i < N_REG_CLASSES; i++)
430 for (j = 0; j < N_REG_CLASSES; j++)
431 {
432 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
433 enum reg_class *p1, *p2;
434
435 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
436 if (*p2 != i)
437 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
438
439 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
440 {
441 if (*p1 != j)
442 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
443
444 for (p2 = &reg_class_subclasses[j][0];
445 *p2 != LIM_REG_CLASSES; p2++)
446 if (*p1 != *p2)
447 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
448 }
449
450 move_cost[i][j] = cost;
451
452 if (reg_class_subset_p (i, j))
453 may_move_in_cost[i][j] = 0;
454 else
455 may_move_in_cost[i][j] = cost;
456
457 if (reg_class_subset_p (j, i))
458 may_move_out_cost[i][j] = 0;
459 else
460 may_move_out_cost[i][j] = cost;
461 }
462
463 #ifdef CLASS_CANNOT_CHANGE_MODE
464 {
465 HARD_REG_SET c;
466 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
467
468 for (i = 0; i < N_REG_CLASSES; i++)
469 {
470 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
471 class_can_change_mode [i] = 0;
472 continue;
473 ok_class:
474 class_can_change_mode [i] = 1;
475 }
476 }
477 #endif /* CLASS_CANNOT_CHANGE_MODE */
478 }
479
480 /* Compute the table of register modes.
481 These values are used to record death information for individual registers
482 (as opposed to a multi-register mode). */
483
484 static void
485 init_reg_modes ()
486 {
487 register int i;
488
489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
490 {
491 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
492
493 /* If we couldn't find a valid mode, just use the previous mode.
494 ??? One situation in which we need to do this is on the mips where
495 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
496 to use DF mode for the even registers and VOIDmode for the odd
497 (for the cpu models where the odd ones are inaccessible). */
498 if (reg_raw_mode[i] == VOIDmode)
499 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
500 }
501 }
502
503 /* Finish initializing the register sets and
504 initialize the register modes. */
505
506 void
507 init_regs ()
508 {
509 /* This finishes what was started by init_reg_sets, but couldn't be done
510 until after register usage was specified. */
511 init_reg_sets_1 ();
512
513 init_reg_modes ();
514
515 #ifdef HAVE_SECONDARY_RELOADS
516 {
517 /* Make some fake stack-frame MEM references for use in
518 memory_move_secondary_cost. */
519 int i;
520
521 for (i = 0; i < MAX_MACHINE_MODE; i++)
522 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
523 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
524 }
525 #endif
526 }
527
528 #ifdef HAVE_SECONDARY_RELOADS
529
530 /* Compute extra cost of moving registers to/from memory due to reloads.
531 Only needed if secondary reloads are required for memory moves. */
532
533 int
534 memory_move_secondary_cost (mode, class, in)
535 enum machine_mode mode;
536 enum reg_class class;
537 int in;
538 {
539 enum reg_class altclass;
540 int partial_cost = 0;
541 /* We need a memory reference to feed to SECONDARY... macros. */
542 /* mem may be unused even if the SECONDARY_ macros are defined. */
543 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
544
545
546 if (in)
547 {
548 #ifdef SECONDARY_INPUT_RELOAD_CLASS
549 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
550 #else
551 altclass = NO_REGS;
552 #endif
553 }
554 else
555 {
556 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
557 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
558 #else
559 altclass = NO_REGS;
560 #endif
561 }
562
563 if (altclass == NO_REGS)
564 return 0;
565
566 if (in)
567 partial_cost = REGISTER_MOVE_COST (altclass, class);
568 else
569 partial_cost = REGISTER_MOVE_COST (class, altclass);
570
571 if (class == altclass)
572 /* This isn't simply a copy-to-temporary situation. Can't guess
573 what it is, so MEMORY_MOVE_COST really ought not to be calling
574 here in that case.
575
576 I'm tempted to put in an abort here, but returning this will
577 probably only give poor estimates, which is what we would've
578 had before this code anyways. */
579 return partial_cost;
580
581 /* Check if the secondary reload register will also need a
582 secondary reload. */
583 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
584 }
585 #endif
586
587 /* Return a machine mode that is legitimate for hard reg REGNO and large
588 enough to save nregs. If we can't find one, return VOIDmode. */
589
590 enum machine_mode
591 choose_hard_reg_mode (regno, nregs)
592 unsigned int regno ATTRIBUTE_UNUSED;
593 unsigned int nregs;
594 {
595 enum machine_mode found_mode = VOIDmode, mode;
596
597 /* We first look for the largest integer mode that can be validly
598 held in REGNO. If none, we look for the largest floating-point mode.
599 If we still didn't find a valid mode, try CCmode. */
600
601 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
602 mode != VOIDmode;
603 mode = GET_MODE_WIDER_MODE (mode))
604 if (HARD_REGNO_NREGS (regno, mode) == nregs
605 && HARD_REGNO_MODE_OK (regno, mode))
606 found_mode = mode;
607
608 if (found_mode != VOIDmode)
609 return found_mode;
610
611 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
612 mode != VOIDmode;
613 mode = GET_MODE_WIDER_MODE (mode))
614 if (HARD_REGNO_NREGS (regno, mode) == nregs
615 && HARD_REGNO_MODE_OK (regno, mode))
616 found_mode = mode;
617
618 if (found_mode != VOIDmode)
619 return found_mode;
620
621 /* Iterate over all of the CCmodes. */
622 for (mode = CCmode; mode < NUM_MACHINE_MODES; ++mode)
623 if (HARD_REGNO_NREGS (regno, mode) == nregs
624 && HARD_REGNO_MODE_OK (regno, mode))
625 return mode;
626
627 /* We can't find a mode valid for this register. */
628 return VOIDmode;
629 }
630
631 /* Specify the usage characteristics of the register named NAME.
632 It should be a fixed register if FIXED and a
633 call-used register if CALL_USED. */
634
635 void
636 fix_register (name, fixed, call_used)
637 const char *name;
638 int fixed, call_used;
639 {
640 int i;
641
642 /* Decode the name and update the primary form of
643 the register info. */
644
645 if ((i = decode_reg_name (name)) >= 0)
646 {
647 if ((i == STACK_POINTER_REGNUM
648 #ifdef HARD_FRAME_POINTER_REGNUM
649 || i == HARD_FRAME_POINTER_REGNUM
650 #else
651 || i == FRAME_POINTER_REGNUM
652 #endif
653 )
654 && (fixed == 0 || call_used == 0))
655 {
656 static const char * const what_option[2][2] = {
657 { "call-saved", "call-used" },
658 { "no-such-option", "fixed" }};
659
660 error ("can't use '%s' as a %s register", name,
661 what_option[fixed][call_used]);
662 }
663 else
664 {
665 fixed_regs[i] = fixed;
666 call_used_regs[i] = call_used;
667 }
668 }
669 else
670 {
671 warning ("unknown register name: %s", name);
672 }
673 }
674
675 /* Mark register number I as global. */
676
677 void
678 globalize_reg (i)
679 int i;
680 {
681 if (fixed_regs[i] == 0 && no_global_reg_vars)
682 error ("global register variable follows a function definition");
683
684 if (global_regs[i])
685 {
686 warning ("register used for two global register variables");
687 return;
688 }
689
690 if (call_used_regs[i] && ! fixed_regs[i])
691 warning ("call-clobbered register used for global register variable");
692
693 global_regs[i] = 1;
694
695 /* If already fixed, nothing else to do. */
696 if (fixed_regs[i])
697 return;
698
699 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
700 n_non_fixed_regs--;
701
702 SET_HARD_REG_BIT (fixed_reg_set, i);
703 SET_HARD_REG_BIT (call_used_reg_set, i);
704 SET_HARD_REG_BIT (call_fixed_reg_set, i);
705 }
706 \f
707 /* Now the data and code for the `regclass' pass, which happens
708 just before local-alloc. */
709
710 /* The `costs' struct records the cost of using a hard register of each class
711 and of using memory for each pseudo. We use this data to set up
712 register class preferences. */
713
714 struct costs
715 {
716 int cost[N_REG_CLASSES];
717 int mem_cost;
718 };
719
720 /* Structure used to record preferrences of given pseudo. */
721 struct reg_pref
722 {
723 /* (enum reg_class) prefclass is the preferred class. */
724 char prefclass;
725
726 /* altclass is a register class that we should use for allocating
727 pseudo if no register in the preferred class is available.
728 If no register in this class is available, memory is preferred.
729
730 It might appear to be more general to have a bitmask of classes here,
731 but since it is recommended that there be a class corresponding to the
732 union of most major pair of classes, that generality is not required. */
733 char altclass;
734 };
735
736 /* Record the cost of each class for each pseudo. */
737
738 static struct costs *costs;
739
740 /* Initialized once, and used to initialize cost values for each insn. */
741
742 static struct costs init_cost;
743
744 /* Record preferrences of each pseudo.
745 This is available after `regclass' is run. */
746
747 static struct reg_pref *reg_pref;
748
749 /* Allocated buffers for reg_pref. */
750
751 static struct reg_pref *reg_pref_buffer;
752
753 /* Account for the fact that insns within a loop are executed very commonly,
754 but don't keep doing this as loops go too deep. */
755
756 static int loop_cost;
757
758 static rtx scan_one_insn PARAMS ((rtx, int));
759 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
760 static void dump_regclass PARAMS ((FILE *));
761 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
762 const char **, rtx,
763 struct costs *, struct reg_pref *));
764 static int copy_cost PARAMS ((rtx, enum machine_mode,
765 enum reg_class, int));
766 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
767 #ifdef FORBIDDEN_INC_DEC_CLASSES
768 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
769 #endif
770 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
771
772 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
773 This function is sometimes called before the info has been computed.
774 When that happens, just return GENERAL_REGS, which is innocuous. */
775
776 enum reg_class
777 reg_preferred_class (regno)
778 int regno;
779 {
780 if (reg_pref == 0)
781 return GENERAL_REGS;
782 return (enum reg_class) reg_pref[regno].prefclass;
783 }
784
785 enum reg_class
786 reg_alternate_class (regno)
787 int regno;
788 {
789 if (reg_pref == 0)
790 return ALL_REGS;
791
792 return (enum reg_class) reg_pref[regno].altclass;
793 }
794
795 /* Initialize some global data for this pass. */
796
797 void
798 regclass_init ()
799 {
800 int i;
801
802 init_cost.mem_cost = 10000;
803 for (i = 0; i < N_REG_CLASSES; i++)
804 init_cost.cost[i] = 10000;
805
806 /* This prevents dump_flow_info from losing if called
807 before regclass is run. */
808 reg_pref = NULL;
809
810 /* No more global register variables may be declared. */
811 no_global_reg_vars = 1;
812 }
813 \f
814 /* Dump register costs. */
815 static void
816 dump_regclass (dump)
817 FILE *dump;
818 {
819 static const char *const reg_class_names[] = REG_CLASS_NAMES;
820 int i;
821 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
822 {
823 enum reg_class class;
824 if (REG_N_REFS (i))
825 {
826 fprintf (dump, " Register %i costs:", i);
827 for (class = 0; class < N_REG_CLASSES; class++)
828 fprintf (dump, " %s:%i", reg_class_names[(int) class],
829 costs[i].cost[class]);
830 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
831 }
832 }
833 }
834 \f
835
836 /* Calculate the costs of insn operands. */
837
838 static void
839 record_operand_costs (insn, op_costs, reg_pref)
840 rtx insn;
841 struct costs *op_costs;
842 struct reg_pref *reg_pref;
843 {
844 const char *constraints[MAX_RECOG_OPERANDS];
845 enum machine_mode modes[MAX_RECOG_OPERANDS];
846 int i;
847
848 for (i = 0; i < recog_data.n_operands; i++)
849 {
850 constraints[i] = recog_data.constraints[i];
851 modes[i] = recog_data.operand_mode[i];
852 }
853
854 /* If we get here, we are set up to record the costs of all the
855 operands for this insn. Start by initializing the costs.
856 Then handle any address registers. Finally record the desired
857 classes for any pseudos, doing it twice if some pair of
858 operands are commutative. */
859
860 for (i = 0; i < recog_data.n_operands; i++)
861 {
862 op_costs[i] = init_cost;
863
864 if (GET_CODE (recog_data.operand[i]) == SUBREG)
865 {
866 rtx inner = SUBREG_REG (recog_data.operand[i]);
867 #ifdef CLASS_CANNOT_CHANGE_MODE
868 if (GET_CODE (inner) == REG
869 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
870 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
871 #endif
872 recog_data.operand[i] = inner;
873 }
874
875 if (GET_CODE (recog_data.operand[i]) == MEM)
876 record_address_regs (XEXP (recog_data.operand[i], 0),
877 BASE_REG_CLASS, loop_cost * 2);
878 else if (constraints[i][0] == 'p')
879 record_address_regs (recog_data.operand[i],
880 BASE_REG_CLASS, loop_cost * 2);
881 }
882
883 /* Check for commutative in a separate loop so everything will
884 have been initialized. We must do this even if one operand
885 is a constant--see addsi3 in m68k.md. */
886
887 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
888 if (constraints[i][0] == '%')
889 {
890 const char *xconstraints[MAX_RECOG_OPERANDS];
891 int j;
892
893 /* Handle commutative operands by swapping the constraints.
894 We assume the modes are the same. */
895
896 for (j = 0; j < recog_data.n_operands; j++)
897 xconstraints[j] = constraints[j];
898
899 xconstraints[i] = constraints[i+1];
900 xconstraints[i+1] = constraints[i];
901 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
902 recog_data.operand, modes,
903 xconstraints, insn, op_costs, reg_pref);
904 }
905
906 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
907 recog_data.operand, modes,
908 constraints, insn, op_costs, reg_pref);
909 }
910 \f
911 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
912 time it would save code to put a certain register in a certain class.
913 PASS, when nonzero, inhibits some optimizations which need only be done
914 once.
915 Return the last insn processed, so that the scan can be continued from
916 there. */
917
918 static rtx
919 scan_one_insn (insn, pass)
920 rtx insn;
921 int pass;
922 {
923 enum rtx_code code = GET_CODE (insn);
924 enum rtx_code pat_code;
925 rtx set, note;
926 int i, j;
927 struct costs op_costs[MAX_RECOG_OPERANDS];
928
929 if (GET_RTX_CLASS (code) != 'i')
930 return insn;
931
932 pat_code = GET_CODE (PATTERN (insn));
933 if (pat_code == USE
934 || pat_code == CLOBBER
935 || pat_code == ASM_INPUT
936 || pat_code == ADDR_VEC
937 || pat_code == ADDR_DIFF_VEC)
938 return insn;
939
940 set = single_set (insn);
941 extract_insn (insn);
942
943 /* If this insn loads a parameter from its stack slot, then
944 it represents a savings, rather than a cost, if the
945 parameter is stored in memory. Record this fact. */
946
947 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
948 && GET_CODE (SET_SRC (set)) == MEM
949 && (note = find_reg_note (insn, REG_EQUIV,
950 NULL_RTX)) != 0
951 && GET_CODE (XEXP (note, 0)) == MEM)
952 {
953 costs[REGNO (SET_DEST (set))].mem_cost
954 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
955 GENERAL_REGS, 1)
956 * loop_cost);
957 record_address_regs (XEXP (SET_SRC (set), 0),
958 BASE_REG_CLASS, loop_cost * 2);
959 return insn;
960 }
961
962 /* Improve handling of two-address insns such as
963 (set X (ashift CONST Y)) where CONST must be made to
964 match X. Change it into two insns: (set X CONST)
965 (set X (ashift X Y)). If we left this for reloading, it
966 would probably get three insns because X and Y might go
967 in the same place. This prevents X and Y from receiving
968 the same hard reg.
969
970 We can only do this if the modes of operands 0 and 1
971 (which might not be the same) are tieable and we only need
972 do this during our first pass. */
973
974 if (pass == 0 && optimize
975 && recog_data.n_operands >= 3
976 && recog_data.constraints[1][0] == '0'
977 && recog_data.constraints[1][1] == 0
978 && CONSTANT_P (recog_data.operand[1])
979 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
980 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
981 && GET_CODE (recog_data.operand[0]) == REG
982 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
983 recog_data.operand_mode[1]))
984 {
985 rtx previnsn = prev_real_insn (insn);
986 rtx dest
987 = gen_lowpart (recog_data.operand_mode[1],
988 recog_data.operand[0]);
989 rtx newinsn
990 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
991
992 /* If this insn was the start of a basic block,
993 include the new insn in that block.
994 We need not check for code_label here;
995 while a basic block can start with a code_label,
996 INSN could not be at the beginning of that block. */
997 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
998 {
999 int b;
1000 for (b = 0; b < n_basic_blocks; b++)
1001 if (insn == BLOCK_HEAD (b))
1002 BLOCK_HEAD (b) = newinsn;
1003 }
1004
1005 /* This makes one more setting of new insns's dest. */
1006 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1007
1008 *recog_data.operand_loc[1] = recog_data.operand[0];
1009 for (i = recog_data.n_dups - 1; i >= 0; i--)
1010 if (recog_data.dup_num[i] == 1)
1011 *recog_data.dup_loc[i] = recog_data.operand[0];
1012
1013 return PREV_INSN (newinsn);
1014 }
1015
1016 record_operand_costs (insn, op_costs, reg_pref);
1017
1018 /* Now add the cost for each operand to the total costs for
1019 its register. */
1020
1021 for (i = 0; i < recog_data.n_operands; i++)
1022 if (GET_CODE (recog_data.operand[i]) == REG
1023 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1024 {
1025 int regno = REGNO (recog_data.operand[i]);
1026 struct costs *p = &costs[regno], *q = &op_costs[i];
1027
1028 p->mem_cost += q->mem_cost * loop_cost;
1029 for (j = 0; j < N_REG_CLASSES; j++)
1030 p->cost[j] += q->cost[j] * loop_cost;
1031 }
1032
1033 return insn;
1034 }
1035
1036 /* This is a pass of the compiler that scans all instructions
1037 and calculates the preferred class for each pseudo-register.
1038 This information can be accessed later by calling `reg_preferred_class'.
1039 This pass comes just before local register allocation. */
1040
1041 void
1042 regclass (f, nregs, dump)
1043 rtx f;
1044 int nregs;
1045 FILE *dump;
1046 {
1047 register rtx insn;
1048 register int i;
1049 int pass;
1050
1051 init_recog ();
1052
1053 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1054
1055 #ifdef CLASS_CANNOT_CHANGE_MODE
1056 reg_changes_mode = BITMAP_XMALLOC();
1057 #endif
1058
1059 #ifdef FORBIDDEN_INC_DEC_CLASSES
1060
1061 in_inc_dec = (char *) xmalloc (nregs);
1062
1063 /* Initialize information about which register classes can be used for
1064 pseudos that are auto-incremented or auto-decremented. It would
1065 seem better to put this in init_reg_sets, but we need to be able
1066 to allocate rtx, which we can't do that early. */
1067
1068 for (i = 0; i < N_REG_CLASSES; i++)
1069 {
1070 rtx r = gen_rtx_REG (VOIDmode, 0);
1071 enum machine_mode m;
1072 register int j;
1073
1074 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1075 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1076 {
1077 REGNO (r) = j;
1078
1079 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1080 m = (enum machine_mode) ((int) m + 1))
1081 if (HARD_REGNO_MODE_OK (j, m))
1082 {
1083 PUT_MODE (r, m);
1084
1085 /* If a register is not directly suitable for an
1086 auto-increment or decrement addressing mode and
1087 requires secondary reloads, disallow its class from
1088 being used in such addresses. */
1089
1090 if ((0
1091 #ifdef SECONDARY_RELOAD_CLASS
1092 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1093 != NO_REGS)
1094 #else
1095 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1096 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1097 != NO_REGS)
1098 #endif
1099 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1100 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1101 != NO_REGS)
1102 #endif
1103 #endif
1104 )
1105 && ! auto_inc_dec_reg_p (r, m))
1106 forbidden_inc_dec_class[i] = 1;
1107 }
1108 }
1109 }
1110 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1111
1112 /* Normally we scan the insns once and determine the best class to use for
1113 each register. However, if -fexpensive_optimizations are on, we do so
1114 twice, the second time using the tentative best classes to guide the
1115 selection. */
1116
1117 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1118 {
1119 int index;
1120
1121 if (dump)
1122 fprintf (dump, "\n\nPass %i\n\n",pass);
1123 /* Zero out our accumulation of the cost of each class for each reg. */
1124
1125 bzero ((char *) costs, nregs * sizeof (struct costs));
1126
1127 #ifdef FORBIDDEN_INC_DEC_CLASSES
1128 bzero (in_inc_dec, nregs);
1129 #endif
1130
1131 /* Scan the instructions and record each time it would
1132 save code to put a certain register in a certain class. */
1133
1134 if (!optimize)
1135 {
1136 loop_cost = 1;
1137 for (insn = f; insn; insn = NEXT_INSN (insn))
1138 insn = scan_one_insn (insn, pass);
1139 }
1140 else
1141 for (index = 0; index < n_basic_blocks; index++)
1142 {
1143 basic_block bb = BASIC_BLOCK (index);
1144
1145 /* Show that an insn inside a loop is likely to be executed three
1146 times more than insns outside a loop. This is much more
1147 aggressive than the assumptions made elsewhere and is being
1148 tried as an experiment. */
1149 if (optimize_size)
1150 loop_cost = 1;
1151 else
1152 loop_cost = 1 << (2 * MIN (bb->loop_depth, 5));
1153 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1154 {
1155 insn = scan_one_insn (insn, pass);
1156 if (insn == bb->end)
1157 break;
1158 }
1159 }
1160
1161 /* Now for each register look at how desirable each class is
1162 and find which class is preferred. Store that in
1163 `prefclass'. Record in `altclass' the largest register
1164 class any of whose registers is better than memory. */
1165
1166 if (pass == 0)
1167 reg_pref = reg_pref_buffer;
1168
1169 if (dump)
1170 {
1171 dump_regclass (dump);
1172 fprintf (dump,"\n");
1173 }
1174 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1175 {
1176 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1177 enum reg_class best = ALL_REGS, alt = NO_REGS;
1178 /* This is an enum reg_class, but we call it an int
1179 to save lots of casts. */
1180 register int class;
1181 register struct costs *p = &costs[i];
1182
1183 /* In non-optimizing compilation REG_N_REFS is not initialized
1184 yet. */
1185 if (optimize && !REG_N_REFS (i))
1186 continue;
1187
1188 for (class = (int) ALL_REGS - 1; class > 0; class--)
1189 {
1190 /* Ignore classes that are too small for this operand or
1191 invalid for a operand that was auto-incremented. */
1192 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1193 > reg_class_size[class]
1194 #ifdef FORBIDDEN_INC_DEC_CLASSES
1195 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1196 #endif
1197 #ifdef CLASS_CANNOT_CHANGE_MODE
1198 || (REGNO_REG_SET_P (reg_changes_mode, i)
1199 && ! class_can_change_mode [class])
1200 #endif
1201 )
1202 ;
1203 else if (p->cost[class] < best_cost)
1204 {
1205 best_cost = p->cost[class];
1206 best = (enum reg_class) class;
1207 }
1208 else if (p->cost[class] == best_cost)
1209 best = reg_class_subunion[(int)best][class];
1210 }
1211
1212 /* Record the alternate register class; i.e., a class for which
1213 every register in it is better than using memory. If adding a
1214 class would make a smaller class (i.e., no union of just those
1215 classes exists), skip that class. The major unions of classes
1216 should be provided as a register class. Don't do this if we
1217 will be doing it again later. */
1218
1219 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1220 for (class = 0; class < N_REG_CLASSES; class++)
1221 if (p->cost[class] < p->mem_cost
1222 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1223 > reg_class_size[(int) alt])
1224 #ifdef FORBIDDEN_INC_DEC_CLASSES
1225 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1226 #endif
1227 #ifdef CLASS_CANNOT_CHANGE_MODE
1228 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1229 && ! class_can_change_mode [class])
1230 #endif
1231 )
1232 alt = reg_class_subunion[(int) alt][class];
1233
1234 /* If we don't add any classes, nothing to try. */
1235 if (alt == best)
1236 alt = NO_REGS;
1237
1238 if (dump
1239 && (reg_pref[i].prefclass != (int) best
1240 || reg_pref[i].altclass != (int) alt))
1241 {
1242 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1243 fprintf (dump, " Register %i", i);
1244 if (alt == ALL_REGS || best == ALL_REGS)
1245 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1246 else if (alt == NO_REGS)
1247 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1248 else
1249 fprintf (dump, " pref %s, else %s\n",
1250 reg_class_names[(int) best],
1251 reg_class_names[(int) alt]);
1252 }
1253
1254 /* We cast to (int) because (char) hits bugs in some compilers. */
1255 reg_pref[i].prefclass = (int) best;
1256 reg_pref[i].altclass = (int) alt;
1257 }
1258 }
1259
1260 #ifdef FORBIDDEN_INC_DEC_CLASSES
1261 free (in_inc_dec);
1262 #endif
1263 #ifdef CLASS_CANNOT_CHANGE_MODE
1264 BITMAP_XFREE (reg_changes_mode);
1265 #endif
1266 free (costs);
1267 }
1268 \f
1269 /* Record the cost of using memory or registers of various classes for
1270 the operands in INSN.
1271
1272 N_ALTS is the number of alternatives.
1273
1274 N_OPS is the number of operands.
1275
1276 OPS is an array of the operands.
1277
1278 MODES are the modes of the operands, in case any are VOIDmode.
1279
1280 CONSTRAINTS are the constraints to use for the operands. This array
1281 is modified by this procedure.
1282
1283 This procedure works alternative by alternative. For each alternative
1284 we assume that we will be able to allocate all pseudos to their ideal
1285 register class and calculate the cost of using that alternative. Then
1286 we compute for each operand that is a pseudo-register, the cost of
1287 having the pseudo allocated to each register class and using it in that
1288 alternative. To this cost is added the cost of the alternative.
1289
1290 The cost of each class for this insn is its lowest cost among all the
1291 alternatives. */
1292
1293 static void
1294 record_reg_classes (n_alts, n_ops, ops, modes,
1295 constraints, insn, op_costs, reg_pref)
1296 int n_alts;
1297 int n_ops;
1298 rtx *ops;
1299 enum machine_mode *modes;
1300 const char **constraints;
1301 rtx insn;
1302 struct costs *op_costs;
1303 struct reg_pref *reg_pref;
1304 {
1305 int alt;
1306 int i, j;
1307 rtx set;
1308
1309 /* Process each alternative, each time minimizing an operand's cost with
1310 the cost for each operand in that alternative. */
1311
1312 for (alt = 0; alt < n_alts; alt++)
1313 {
1314 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1315 int alt_fail = 0;
1316 int alt_cost = 0;
1317 enum reg_class classes[MAX_RECOG_OPERANDS];
1318 int allows_mem[MAX_RECOG_OPERANDS];
1319 int class;
1320
1321 for (i = 0; i < n_ops; i++)
1322 {
1323 const char *p = constraints[i];
1324 rtx op = ops[i];
1325 enum machine_mode mode = modes[i];
1326 int allows_addr = 0;
1327 int win = 0;
1328 unsigned char c;
1329
1330 /* Initially show we know nothing about the register class. */
1331 classes[i] = NO_REGS;
1332 allows_mem[i] = 0;
1333
1334 /* If this operand has no constraints at all, we can conclude
1335 nothing about it since anything is valid. */
1336
1337 if (*p == 0)
1338 {
1339 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1340 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1341
1342 continue;
1343 }
1344
1345 /* If this alternative is only relevant when this operand
1346 matches a previous operand, we do different things depending
1347 on whether this operand is a pseudo-reg or not. We must process
1348 any modifiers for the operand before we can make this test. */
1349
1350 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1351 p++;
1352
1353 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1354 {
1355 /* Copy class and whether memory is allowed from the matching
1356 alternative. Then perform any needed cost computations
1357 and/or adjustments. */
1358 j = p[0] - '0';
1359 classes[i] = classes[j];
1360 allows_mem[i] = allows_mem[j];
1361
1362 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1363 {
1364 /* If this matches the other operand, we have no added
1365 cost and we win. */
1366 if (rtx_equal_p (ops[j], op))
1367 win = 1;
1368
1369 /* If we can put the other operand into a register, add to
1370 the cost of this alternative the cost to copy this
1371 operand to the register used for the other operand. */
1372
1373 else if (classes[j] != NO_REGS)
1374 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1375 }
1376 else if (GET_CODE (ops[j]) != REG
1377 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1378 {
1379 /* This op is a pseudo but the one it matches is not. */
1380
1381 /* If we can't put the other operand into a register, this
1382 alternative can't be used. */
1383
1384 if (classes[j] == NO_REGS)
1385 alt_fail = 1;
1386
1387 /* Otherwise, add to the cost of this alternative the cost
1388 to copy the other operand to the register used for this
1389 operand. */
1390
1391 else
1392 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1393 }
1394 else
1395 {
1396 /* The costs of this operand are not the same as the other
1397 operand since move costs are not symmetric. Moreover,
1398 if we cannot tie them, this alternative needs to do a
1399 copy, which is one instruction. */
1400
1401 struct costs *pp = &this_op_costs[i];
1402
1403 for (class = 0; class < N_REG_CLASSES; class++)
1404 pp->cost[class]
1405 = ((recog_data.operand_type[i] != OP_OUT
1406 ? may_move_in_cost[class][(int) classes[i]]
1407 : 0)
1408 + (recog_data.operand_type[i] != OP_IN
1409 ? may_move_out_cost[(int) classes[i]][class]
1410 : 0));
1411
1412 /* If the alternative actually allows memory, make things
1413 a bit cheaper since we won't need an extra insn to
1414 load it. */
1415
1416 pp->mem_cost
1417 = ((recog_data.operand_type[i] != OP_IN
1418 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1419 : 0)
1420 + (recog_data.operand_type[i] != OP_OUT
1421 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1422 : 0) - allows_mem[i]);
1423
1424 /* If we have assigned a class to this register in our
1425 first pass, add a cost to this alternative corresponding
1426 to what we would add if this register were not in the
1427 appropriate class. */
1428
1429 if (reg_pref)
1430 alt_cost
1431 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
1432 [(int) classes[i]]);
1433
1434 if (REGNO (ops[i]) != REGNO (ops[j])
1435 && ! find_reg_note (insn, REG_DEAD, op))
1436 alt_cost += 2;
1437
1438 /* This is in place of ordinary cost computation
1439 for this operand, so skip to the end of the
1440 alternative (should be just one character). */
1441 while (*p && *p++ != ',')
1442 ;
1443
1444 constraints[i] = p;
1445 continue;
1446 }
1447 }
1448
1449 /* Scan all the constraint letters. See if the operand matches
1450 any of the constraints. Collect the valid register classes
1451 and see if this operand accepts memory. */
1452
1453 while (*p && (c = *p++) != ',')
1454 switch (c)
1455 {
1456 case '*':
1457 /* Ignore the next letter for this pass. */
1458 p++;
1459 break;
1460
1461 case '?':
1462 alt_cost += 2;
1463 case '!': case '#': case '&':
1464 case '0': case '1': case '2': case '3': case '4':
1465 case '5': case '6': case '7': case '8': case '9':
1466 break;
1467
1468 case 'p':
1469 allows_addr = 1;
1470 win = address_operand (op, GET_MODE (op));
1471 /* We know this operand is an address, so we want it to be
1472 allocated to a register that can be the base of an
1473 address, ie BASE_REG_CLASS. */
1474 classes[i]
1475 = reg_class_subunion[(int) classes[i]]
1476 [(int) BASE_REG_CLASS];
1477 break;
1478
1479 case 'm': case 'o': case 'V':
1480 /* It doesn't seem worth distinguishing between offsettable
1481 and non-offsettable addresses here. */
1482 allows_mem[i] = 1;
1483 if (GET_CODE (op) == MEM)
1484 win = 1;
1485 break;
1486
1487 case '<':
1488 if (GET_CODE (op) == MEM
1489 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1490 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1491 win = 1;
1492 break;
1493
1494 case '>':
1495 if (GET_CODE (op) == MEM
1496 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1497 || GET_CODE (XEXP (op, 0)) == POST_INC))
1498 win = 1;
1499 break;
1500
1501 case 'E':
1502 #ifndef REAL_ARITHMETIC
1503 /* Match any floating double constant, but only if
1504 we can examine the bits of it reliably. */
1505 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1506 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1507 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1508 break;
1509 #endif
1510 if (GET_CODE (op) == CONST_DOUBLE)
1511 win = 1;
1512 break;
1513
1514 case 'F':
1515 if (GET_CODE (op) == CONST_DOUBLE)
1516 win = 1;
1517 break;
1518
1519 case 'G':
1520 case 'H':
1521 if (GET_CODE (op) == CONST_DOUBLE
1522 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1523 win = 1;
1524 break;
1525
1526 case 's':
1527 if (GET_CODE (op) == CONST_INT
1528 || (GET_CODE (op) == CONST_DOUBLE
1529 && GET_MODE (op) == VOIDmode))
1530 break;
1531 case 'i':
1532 if (CONSTANT_P (op)
1533 #ifdef LEGITIMATE_PIC_OPERAND_P
1534 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1535 #endif
1536 )
1537 win = 1;
1538 break;
1539
1540 case 'n':
1541 if (GET_CODE (op) == CONST_INT
1542 || (GET_CODE (op) == CONST_DOUBLE
1543 && GET_MODE (op) == VOIDmode))
1544 win = 1;
1545 break;
1546
1547 case 'I':
1548 case 'J':
1549 case 'K':
1550 case 'L':
1551 case 'M':
1552 case 'N':
1553 case 'O':
1554 case 'P':
1555 if (GET_CODE (op) == CONST_INT
1556 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1557 win = 1;
1558 break;
1559
1560 case 'X':
1561 win = 1;
1562 break;
1563
1564 #ifdef EXTRA_CONSTRAINT
1565 case 'Q':
1566 case 'R':
1567 case 'S':
1568 case 'T':
1569 case 'U':
1570 if (EXTRA_CONSTRAINT (op, c))
1571 win = 1;
1572 break;
1573 #endif
1574
1575 case 'g':
1576 if (GET_CODE (op) == MEM
1577 || (CONSTANT_P (op)
1578 #ifdef LEGITIMATE_PIC_OPERAND_P
1579 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1580 #endif
1581 ))
1582 win = 1;
1583 allows_mem[i] = 1;
1584 case 'r':
1585 classes[i]
1586 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1587 break;
1588
1589 default:
1590 classes[i]
1591 = reg_class_subunion[(int) classes[i]]
1592 [(int) REG_CLASS_FROM_LETTER (c)];
1593 }
1594
1595 constraints[i] = p;
1596
1597 /* How we account for this operand now depends on whether it is a
1598 pseudo register or not. If it is, we first check if any
1599 register classes are valid. If not, we ignore this alternative,
1600 since we want to assume that all pseudos get allocated for
1601 register preferencing. If some register class is valid, compute
1602 the costs of moving the pseudo into that class. */
1603
1604 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1605 {
1606 if (classes[i] == NO_REGS)
1607 {
1608 /* We must always fail if the operand is a REG, but
1609 we did not find a suitable class.
1610
1611 Otherwise we may perform an uninitialized read
1612 from this_op_costs after the `continue' statement
1613 below. */
1614 alt_fail = 1;
1615 }
1616 else
1617 {
1618 struct costs *pp = &this_op_costs[i];
1619
1620 for (class = 0; class < N_REG_CLASSES; class++)
1621 pp->cost[class]
1622 = ((recog_data.operand_type[i] != OP_OUT
1623 ? may_move_in_cost[class][(int) classes[i]]
1624 : 0)
1625 + (recog_data.operand_type[i] != OP_IN
1626 ? may_move_out_cost[(int) classes[i]][class]
1627 : 0));
1628
1629 /* If the alternative actually allows memory, make things
1630 a bit cheaper since we won't need an extra insn to
1631 load it. */
1632
1633 pp->mem_cost
1634 = ((recog_data.operand_type[i] != OP_IN
1635 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1636 : 0)
1637 + (recog_data.operand_type[i] != OP_OUT
1638 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1639 : 0) - allows_mem[i]);
1640
1641 /* If we have assigned a class to this register in our
1642 first pass, add a cost to this alternative corresponding
1643 to what we would add if this register were not in the
1644 appropriate class. */
1645
1646 if (reg_pref)
1647 alt_cost
1648 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
1649 [(int) classes[i]]);
1650 }
1651 }
1652
1653 /* Otherwise, if this alternative wins, either because we
1654 have already determined that or if we have a hard register of
1655 the proper class, there is no cost for this alternative. */
1656
1657 else if (win
1658 || (GET_CODE (op) == REG
1659 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1660 ;
1661
1662 /* If registers are valid, the cost of this alternative includes
1663 copying the object to and/or from a register. */
1664
1665 else if (classes[i] != NO_REGS)
1666 {
1667 if (recog_data.operand_type[i] != OP_OUT)
1668 alt_cost += copy_cost (op, mode, classes[i], 1);
1669
1670 if (recog_data.operand_type[i] != OP_IN)
1671 alt_cost += copy_cost (op, mode, classes[i], 0);
1672 }
1673
1674 /* The only other way this alternative can be used is if this is a
1675 constant that could be placed into memory. */
1676
1677 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1678 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1679 else
1680 alt_fail = 1;
1681 }
1682
1683 if (alt_fail)
1684 continue;
1685
1686 /* Finally, update the costs with the information we've calculated
1687 about this alternative. */
1688
1689 for (i = 0; i < n_ops; i++)
1690 if (GET_CODE (ops[i]) == REG
1691 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1692 {
1693 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1694 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1695
1696 pp->mem_cost = MIN (pp->mem_cost,
1697 (qq->mem_cost + alt_cost) * scale);
1698
1699 for (class = 0; class < N_REG_CLASSES; class++)
1700 pp->cost[class] = MIN (pp->cost[class],
1701 (qq->cost[class] + alt_cost) * scale);
1702 }
1703 }
1704
1705 /* If this insn is a single set copying operand 1 to operand 0
1706 and one operand is a pseudo with the other a hard reg or a pseudo
1707 that prefers a register that is in its own register class then
1708 we may want to adjust the cost of that register class to -1.
1709
1710 Avoid the adjustment if the source does not die to avoid stressing of
1711 register allocator by preferrencing two coliding registers into single
1712 class.
1713
1714 Also avoid the adjustment if a copy between registers of the class
1715 is expensive (ten times the cost of a default copy is considered
1716 arbitrarily expensive). This avoids losing when the preferred class
1717 is very expensive as the source of a copy instruction. */
1718
1719 if ((set = single_set (insn)) != 0
1720 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1721 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1722 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1723 for (i = 0; i <= 1; i++)
1724 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1725 {
1726 unsigned int regno = REGNO (ops[!i]);
1727 enum machine_mode mode = GET_MODE (ops[!i]);
1728 int class;
1729 unsigned int nr;
1730
1731 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1732 {
1733 enum reg_class pref = reg_pref[regno].prefclass;
1734
1735 if ((reg_class_size[(unsigned char) pref]
1736 == CLASS_MAX_NREGS (pref, mode))
1737 && REGISTER_MOVE_COST (pref, pref) < 10 * 2)
1738 op_costs[i].cost[(unsigned char) pref] = -1;
1739 }
1740 else if (regno < FIRST_PSEUDO_REGISTER)
1741 for (class = 0; class < N_REG_CLASSES; class++)
1742 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1743 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1744 {
1745 if (reg_class_size[class] == 1)
1746 op_costs[i].cost[class] = -1;
1747 else
1748 {
1749 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1750 {
1751 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1752 regno + nr))
1753 break;
1754 }
1755
1756 if (nr == HARD_REGNO_NREGS (regno,mode))
1757 op_costs[i].cost[class] = -1;
1758 }
1759 }
1760 }
1761 }
1762 \f
1763 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1764 TO_P is zero) a register of class CLASS in mode MODE.
1765
1766 X must not be a pseudo. */
1767
1768 static int
1769 copy_cost (x, mode, class, to_p)
1770 rtx x;
1771 enum machine_mode mode ATTRIBUTE_UNUSED;
1772 enum reg_class class;
1773 int to_p ATTRIBUTE_UNUSED;
1774 {
1775 #ifdef HAVE_SECONDARY_RELOADS
1776 enum reg_class secondary_class = NO_REGS;
1777 #endif
1778
1779 /* If X is a SCRATCH, there is actually nothing to move since we are
1780 assuming optimal allocation. */
1781
1782 if (GET_CODE (x) == SCRATCH)
1783 return 0;
1784
1785 /* Get the class we will actually use for a reload. */
1786 class = PREFERRED_RELOAD_CLASS (x, class);
1787
1788 #ifdef HAVE_SECONDARY_RELOADS
1789 /* If we need a secondary reload (we assume here that we are using
1790 the secondary reload as an intermediate, not a scratch register), the
1791 cost is that to load the input into the intermediate register, then
1792 to copy them. We use a special value of TO_P to avoid recursion. */
1793
1794 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1795 if (to_p == 1)
1796 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1797 #endif
1798
1799 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1800 if (! to_p)
1801 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1802 #endif
1803
1804 if (secondary_class != NO_REGS)
1805 return (move_cost[(int) secondary_class][(int) class]
1806 + copy_cost (x, mode, secondary_class, 2));
1807 #endif /* HAVE_SECONDARY_RELOADS */
1808
1809 /* For memory, use the memory move cost, for (hard) registers, use the
1810 cost to move between the register classes, and use 2 for everything
1811 else (constants). */
1812
1813 if (GET_CODE (x) == MEM || class == NO_REGS)
1814 return MEMORY_MOVE_COST (mode, class, to_p);
1815
1816 else if (GET_CODE (x) == REG)
1817 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1818
1819 else
1820 /* If this is a constant, we may eventually want to call rtx_cost here. */
1821 return 2;
1822 }
1823 \f
1824 /* Record the pseudo registers we must reload into hard registers
1825 in a subexpression of a memory address, X.
1826
1827 CLASS is the class that the register needs to be in and is either
1828 BASE_REG_CLASS or INDEX_REG_CLASS.
1829
1830 SCALE is twice the amount to multiply the cost by (it is twice so we
1831 can represent half-cost adjustments). */
1832
1833 static void
1834 record_address_regs (x, class, scale)
1835 rtx x;
1836 enum reg_class class;
1837 int scale;
1838 {
1839 register enum rtx_code code = GET_CODE (x);
1840
1841 switch (code)
1842 {
1843 case CONST_INT:
1844 case CONST:
1845 case CC0:
1846 case PC:
1847 case SYMBOL_REF:
1848 case LABEL_REF:
1849 return;
1850
1851 case PLUS:
1852 /* When we have an address that is a sum,
1853 we must determine whether registers are "base" or "index" regs.
1854 If there is a sum of two registers, we must choose one to be
1855 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1856 to make a good choice most of the time. We only need to do this
1857 on machines that can have two registers in an address and where
1858 the base and index register classes are different.
1859
1860 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1861 that seems bogus since it should only be set when we are sure
1862 the register is being used as a pointer. */
1863
1864 {
1865 rtx arg0 = XEXP (x, 0);
1866 rtx arg1 = XEXP (x, 1);
1867 register enum rtx_code code0 = GET_CODE (arg0);
1868 register enum rtx_code code1 = GET_CODE (arg1);
1869
1870 /* Look inside subregs. */
1871 if (code0 == SUBREG)
1872 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1873 if (code1 == SUBREG)
1874 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1875
1876 /* If this machine only allows one register per address, it must
1877 be in the first operand. */
1878
1879 if (MAX_REGS_PER_ADDRESS == 1)
1880 record_address_regs (arg0, class, scale);
1881
1882 /* If index and base registers are the same on this machine, just
1883 record registers in any non-constant operands. We assume here,
1884 as well as in the tests below, that all addresses are in
1885 canonical form. */
1886
1887 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1888 {
1889 record_address_regs (arg0, class, scale);
1890 if (! CONSTANT_P (arg1))
1891 record_address_regs (arg1, class, scale);
1892 }
1893
1894 /* If the second operand is a constant integer, it doesn't change
1895 what class the first operand must be. */
1896
1897 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1898 record_address_regs (arg0, class, scale);
1899
1900 /* If the second operand is a symbolic constant, the first operand
1901 must be an index register. */
1902
1903 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1904 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1905
1906 /* If both operands are registers but one is already a hard register
1907 of index or base class, give the other the class that the hard
1908 register is not. */
1909
1910 #ifdef REG_OK_FOR_BASE_P
1911 else if (code0 == REG && code1 == REG
1912 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1913 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1914 record_address_regs (arg1,
1915 REG_OK_FOR_BASE_P (arg0)
1916 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1917 scale);
1918 else if (code0 == REG && code1 == REG
1919 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1920 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1921 record_address_regs (arg0,
1922 REG_OK_FOR_BASE_P (arg1)
1923 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1924 scale);
1925 #endif
1926
1927 /* If one operand is known to be a pointer, it must be the base
1928 with the other operand the index. Likewise if the other operand
1929 is a MULT. */
1930
1931 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1932 || code1 == MULT)
1933 {
1934 record_address_regs (arg0, BASE_REG_CLASS, scale);
1935 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1936 }
1937 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1938 || code0 == MULT)
1939 {
1940 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1941 record_address_regs (arg1, BASE_REG_CLASS, scale);
1942 }
1943
1944 /* Otherwise, count equal chances that each might be a base
1945 or index register. This case should be rare. */
1946
1947 else
1948 {
1949 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1950 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1951 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1952 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1953 }
1954 }
1955 break;
1956
1957 /* Double the importance of a pseudo register that is incremented
1958 or decremented, since it would take two extra insns
1959 if it ends up in the wrong place. */
1960 case POST_MODIFY:
1961 case PRE_MODIFY:
1962 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
1963 if (REG_P (XEXP (XEXP (x, 1), 1)))
1964 record_address_regs (XEXP (XEXP (x, 1), 1),
1965 INDEX_REG_CLASS, 2 * scale);
1966 break;
1967
1968 case POST_INC:
1969 case PRE_INC:
1970 case POST_DEC:
1971 case PRE_DEC:
1972 /* Double the importance of a pseudo register that is incremented
1973 or decremented, since it would take two extra insns
1974 if it ends up in the wrong place. If the operand is a pseudo,
1975 show it is being used in an INC_DEC context. */
1976
1977 #ifdef FORBIDDEN_INC_DEC_CLASSES
1978 if (GET_CODE (XEXP (x, 0)) == REG
1979 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1980 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1981 #endif
1982
1983 record_address_regs (XEXP (x, 0), class, 2 * scale);
1984 break;
1985
1986 case REG:
1987 {
1988 register struct costs *pp = &costs[REGNO (x)];
1989 register int i;
1990
1991 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1992
1993 for (i = 0; i < N_REG_CLASSES; i++)
1994 pp->cost[i] += (may_move_in_cost[i][(int) class] * scale) / 2;
1995 }
1996 break;
1997
1998 default:
1999 {
2000 register const char *fmt = GET_RTX_FORMAT (code);
2001 register int i;
2002 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2003 if (fmt[i] == 'e')
2004 record_address_regs (XEXP (x, i), class, scale);
2005 }
2006 }
2007 }
2008 \f
2009 #ifdef FORBIDDEN_INC_DEC_CLASSES
2010
2011 /* Return 1 if REG is valid as an auto-increment memory reference
2012 to an object of MODE. */
2013
2014 static int
2015 auto_inc_dec_reg_p (reg, mode)
2016 rtx reg;
2017 enum machine_mode mode;
2018 {
2019 if (HAVE_POST_INCREMENT
2020 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2021 return 1;
2022
2023 if (HAVE_POST_DECREMENT
2024 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2025 return 1;
2026
2027 if (HAVE_PRE_INCREMENT
2028 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2029 return 1;
2030
2031 if (HAVE_PRE_DECREMENT
2032 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2033 return 1;
2034
2035 return 0;
2036 }
2037 #endif
2038 \f
2039 static short *renumber;
2040 static size_t regno_allocated;
2041 static unsigned int reg_n_max;
2042
2043 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2044 reg_scan and flow_analysis that are indexed by the register number. If
2045 NEW_P is non zero, initialize all of the registers, otherwise only
2046 initialize the new registers allocated. The same table is kept from
2047 function to function, only reallocating it when we need more room. If
2048 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2049
2050 void
2051 allocate_reg_info (num_regs, new_p, renumber_p)
2052 size_t num_regs;
2053 int new_p;
2054 int renumber_p;
2055 {
2056 size_t size_info;
2057 size_t size_renumber;
2058 size_t min = (new_p) ? 0 : reg_n_max;
2059 struct reg_info_data *reg_data;
2060
2061 if (num_regs > regno_allocated)
2062 {
2063 size_t old_allocated = regno_allocated;
2064
2065 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2066 size_renumber = regno_allocated * sizeof (short);
2067
2068 if (!reg_n_info)
2069 {
2070 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2071 renumber = (short *) xmalloc (size_renumber);
2072 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2073 * sizeof (struct reg_pref));
2074 }
2075
2076 else
2077 {
2078 VARRAY_GROW (reg_n_info, regno_allocated);
2079
2080 if (new_p) /* if we're zapping everything, no need to realloc */
2081 {
2082 free ((char *)renumber);
2083 free ((char *)reg_pref);
2084 renumber = (short *) xmalloc (size_renumber);
2085 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2086 * sizeof (struct reg_pref));
2087 }
2088
2089 else
2090 {
2091 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
2092 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2093 regno_allocated
2094 * sizeof (struct reg_pref));
2095 }
2096 }
2097
2098 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2099 + sizeof (struct reg_info_data) - sizeof (reg_info);
2100 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2101 reg_data->min_index = old_allocated;
2102 reg_data->max_index = regno_allocated - 1;
2103 reg_data->next = reg_info_head;
2104 reg_info_head = reg_data;
2105 }
2106
2107 reg_n_max = num_regs;
2108 if (min < num_regs)
2109 {
2110 /* Loop through each of the segments allocated for the actual
2111 reg_info pages, and set up the pointers, zero the pages, etc. */
2112 for (reg_data = reg_info_head;
2113 reg_data && reg_data->max_index >= min;
2114 reg_data = reg_data->next)
2115 {
2116 size_t min_index = reg_data->min_index;
2117 size_t max_index = reg_data->max_index;
2118 size_t max = MIN (max_index, num_regs);
2119 size_t local_min = min - min_index;
2120 size_t i;
2121
2122 if (reg_data->min_index > num_regs)
2123 continue;
2124
2125 if (min < min_index)
2126 local_min = 0;
2127 if (!reg_data->used_p) /* page just allocated with calloc */
2128 reg_data->used_p = 1; /* no need to zero */
2129 else
2130 bzero ((char *) &reg_data->data[local_min],
2131 sizeof (reg_info) * (max - min_index - local_min + 1));
2132
2133 for (i = min_index+local_min; i <= max; i++)
2134 {
2135 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2136 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2137 renumber[i] = -1;
2138 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2139 reg_pref_buffer[i].altclass = (char) NO_REGS;
2140 }
2141 }
2142 }
2143
2144 /* If {pref,alt}class have already been allocated, update the pointers to
2145 the newly realloced ones. */
2146 if (reg_pref)
2147 reg_pref = reg_pref_buffer;
2148
2149 if (renumber_p)
2150 reg_renumber = renumber;
2151
2152 /* Tell the regset code about the new number of registers */
2153 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2154 }
2155
2156 /* Free up the space allocated by allocate_reg_info. */
2157 void
2158 free_reg_info ()
2159 {
2160 if (reg_n_info)
2161 {
2162 struct reg_info_data *reg_data;
2163 struct reg_info_data *reg_next;
2164
2165 VARRAY_FREE (reg_n_info);
2166 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2167 {
2168 reg_next = reg_data->next;
2169 free ((char *)reg_data);
2170 }
2171
2172 free (reg_pref_buffer);
2173 reg_pref_buffer = (struct reg_pref *)0;
2174 reg_info_head = (struct reg_info_data *)0;
2175 renumber = (short *)0;
2176 }
2177 regno_allocated = 0;
2178 reg_n_max = 0;
2179 }
2180 \f
2181 /* This is the `regscan' pass of the compiler, run just before cse
2182 and again just before loop.
2183
2184 It finds the first and last use of each pseudo-register
2185 and records them in the vectors regno_first_uid, regno_last_uid
2186 and counts the number of sets in the vector reg_n_sets.
2187
2188 REPEAT is nonzero the second time this is called. */
2189
2190 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2191 Always at least 3, since the combiner could put that many together
2192 and we want this to remain correct for all the remaining passes. */
2193
2194 int max_parallel;
2195
2196 void
2197 reg_scan (f, nregs, repeat)
2198 rtx f;
2199 unsigned int nregs;
2200 int repeat ATTRIBUTE_UNUSED;
2201 {
2202 register rtx insn;
2203
2204 allocate_reg_info (nregs, TRUE, FALSE);
2205 max_parallel = 3;
2206
2207 for (insn = f; insn; insn = NEXT_INSN (insn))
2208 if (GET_CODE (insn) == INSN
2209 || GET_CODE (insn) == CALL_INSN
2210 || GET_CODE (insn) == JUMP_INSN)
2211 {
2212 if (GET_CODE (PATTERN (insn)) == PARALLEL
2213 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2214 max_parallel = XVECLEN (PATTERN (insn), 0);
2215 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2216
2217 if (REG_NOTES (insn))
2218 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2219 }
2220 }
2221
2222 /* Update 'regscan' information by looking at the insns
2223 from FIRST to LAST. Some new REGs have been created,
2224 and any REG with number greater than OLD_MAX_REGNO is
2225 such a REG. We only update information for those. */
2226
2227 void
2228 reg_scan_update (first, last, old_max_regno)
2229 rtx first;
2230 rtx last;
2231 unsigned int old_max_regno;
2232 {
2233 register rtx insn;
2234
2235 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2236
2237 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2238 if (GET_CODE (insn) == INSN
2239 || GET_CODE (insn) == CALL_INSN
2240 || GET_CODE (insn) == JUMP_INSN)
2241 {
2242 if (GET_CODE (PATTERN (insn)) == PARALLEL
2243 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2244 max_parallel = XVECLEN (PATTERN (insn), 0);
2245 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2246
2247 if (REG_NOTES (insn))
2248 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2249 }
2250 }
2251
2252 /* X is the expression to scan. INSN is the insn it appears in.
2253 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2254 We should only record information for REGs with numbers
2255 greater than or equal to MIN_REGNO. */
2256
2257 static void
2258 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2259 rtx x;
2260 rtx insn;
2261 int note_flag;
2262 unsigned int min_regno;
2263 {
2264 register enum rtx_code code;
2265 register rtx dest;
2266 register rtx note;
2267
2268 code = GET_CODE (x);
2269 switch (code)
2270 {
2271 case CONST:
2272 case CONST_INT:
2273 case CONST_DOUBLE:
2274 case CC0:
2275 case PC:
2276 case SYMBOL_REF:
2277 case LABEL_REF:
2278 case ADDR_VEC:
2279 case ADDR_DIFF_VEC:
2280 return;
2281
2282 case REG:
2283 {
2284 unsigned int regno = REGNO (x);
2285
2286 if (regno >= min_regno)
2287 {
2288 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2289 if (!note_flag)
2290 REGNO_LAST_UID (regno) = INSN_UID (insn);
2291 if (REGNO_FIRST_UID (regno) == 0)
2292 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2293 }
2294 }
2295 break;
2296
2297 case EXPR_LIST:
2298 if (XEXP (x, 0))
2299 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2300 if (XEXP (x, 1))
2301 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2302 break;
2303
2304 case INSN_LIST:
2305 if (XEXP (x, 1))
2306 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2307 break;
2308
2309 case SET:
2310 /* Count a set of the destination if it is a register. */
2311 for (dest = SET_DEST (x);
2312 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2313 || GET_CODE (dest) == ZERO_EXTEND;
2314 dest = XEXP (dest, 0))
2315 ;
2316
2317 if (GET_CODE (dest) == REG
2318 && REGNO (dest) >= min_regno)
2319 REG_N_SETS (REGNO (dest))++;
2320
2321 /* If this is setting a pseudo from another pseudo or the sum of a
2322 pseudo and a constant integer and the other pseudo is known to be
2323 a pointer, set the destination to be a pointer as well.
2324
2325 Likewise if it is setting the destination from an address or from a
2326 value equivalent to an address or to the sum of an address and
2327 something else.
2328
2329 But don't do any of this if the pseudo corresponds to a user
2330 variable since it should have already been set as a pointer based
2331 on the type. */
2332
2333 if (GET_CODE (SET_DEST (x)) == REG
2334 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2335 && REGNO (SET_DEST (x)) >= min_regno
2336 /* If the destination pseudo is set more than once, then other
2337 sets might not be to a pointer value (consider access to a
2338 union in two threads of control in the presense of global
2339 optimizations). So only set REGNO_POINTER_FLAG on the destination
2340 pseudo if this is the only set of that pseudo. */
2341 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2342 && ! REG_USERVAR_P (SET_DEST (x))
2343 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2344 && ((GET_CODE (SET_SRC (x)) == REG
2345 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2346 || ((GET_CODE (SET_SRC (x)) == PLUS
2347 || GET_CODE (SET_SRC (x)) == LO_SUM)
2348 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2349 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2350 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2351 || GET_CODE (SET_SRC (x)) == CONST
2352 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2353 || GET_CODE (SET_SRC (x)) == LABEL_REF
2354 || (GET_CODE (SET_SRC (x)) == HIGH
2355 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2356 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2357 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2358 || ((GET_CODE (SET_SRC (x)) == PLUS
2359 || GET_CODE (SET_SRC (x)) == LO_SUM)
2360 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2361 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2362 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2363 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2364 && (GET_CODE (XEXP (note, 0)) == CONST
2365 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2366 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2367 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2368
2369 /* ... fall through ... */
2370
2371 default:
2372 {
2373 register const char *fmt = GET_RTX_FORMAT (code);
2374 register int i;
2375 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2376 {
2377 if (fmt[i] == 'e')
2378 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2379 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2380 {
2381 register int j;
2382 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2383 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2384 }
2385 }
2386 }
2387 }
2388 }
2389 \f
2390 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2391 is also in C2. */
2392
2393 int
2394 reg_class_subset_p (c1, c2)
2395 register enum reg_class c1;
2396 register enum reg_class c2;
2397 {
2398 if (c1 == c2) return 1;
2399
2400 if (c2 == ALL_REGS)
2401 win:
2402 return 1;
2403 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2404 reg_class_contents[(int)c2],
2405 win);
2406 return 0;
2407 }
2408
2409 /* Return nonzero if there is a register that is in both C1 and C2. */
2410
2411 int
2412 reg_classes_intersect_p (c1, c2)
2413 register enum reg_class c1;
2414 register enum reg_class c2;
2415 {
2416 #ifdef HARD_REG_SET
2417 register
2418 #endif
2419 HARD_REG_SET c;
2420
2421 if (c1 == c2) return 1;
2422
2423 if (c1 == ALL_REGS || c2 == ALL_REGS)
2424 return 1;
2425
2426 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2427 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2428
2429 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2430 return 1;
2431
2432 lose:
2433 return 0;
2434 }
2435
2436 /* Release any memory allocated by register sets. */
2437
2438 void
2439 regset_release_memory ()
2440 {
2441 bitmap_release_memory ();
2442 }