Fix `make bootstrap' failures where libraries are compiled with wrong compiler.
[gcc.git] / gcc / regclass.c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 88, 91-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains two passes of the compiler: reg_scan and reg_class.
23 It also defines some tables of information about the hardware registers
24 and a function init_reg_sets to initialize the tables. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "reload.h"
36 #include "real.h"
37 #include "toplev.h"
38 #include "output.h"
39
40 #ifndef REGISTER_MOVE_COST
41 #define REGISTER_MOVE_COST(x, y) 2
42 #endif
43
44 /* If we have auto-increment or auto-decrement and we can have secondary
45 reloads, we are not allowed to use classes requiring secondary
46 reloads for pseudos auto-incremented since reload can't handle it. */
47
48 #ifdef AUTO_INC_DEC
49 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
50 #define FORBIDDEN_INC_DEC_CLASSES
51 #endif
52 #endif
53 \f
54 /* Register tables used by many passes. */
55
56 /* Indexed by hard register number, contains 1 for registers
57 that are fixed use (stack pointer, pc, frame pointer, etc.).
58 These are the registers that cannot be used to allocate
59 a pseudo reg for general use. */
60
61 char fixed_regs[FIRST_PSEUDO_REGISTER];
62
63 /* Same info as a HARD_REG_SET. */
64
65 HARD_REG_SET fixed_reg_set;
66
67 /* Data for initializing the above. */
68
69 static char initial_fixed_regs[] = FIXED_REGISTERS;
70
71 /* Indexed by hard register number, contains 1 for registers
72 that are fixed use or are clobbered by function calls.
73 These are the registers that cannot be used to allocate
74 a pseudo reg whose life crosses calls unless we are able
75 to save/restore them across the calls. */
76
77 char call_used_regs[FIRST_PSEUDO_REGISTER];
78
79 /* Same info as a HARD_REG_SET. */
80
81 HARD_REG_SET call_used_reg_set;
82
83 /* HARD_REG_SET of registers we want to avoid caller saving. */
84 HARD_REG_SET losing_caller_save_reg_set;
85
86 /* Data for initializing the above. */
87
88 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
89
90 /* Indexed by hard register number, contains 1 for registers that are
91 fixed use or call used registers that cannot hold quantities across
92 calls even if we are willing to save and restore them. call fixed
93 registers are a subset of call used registers. */
94
95 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
96
97 /* The same info as a HARD_REG_SET. */
98
99 HARD_REG_SET call_fixed_reg_set;
100
101 /* Number of non-fixed registers. */
102
103 int n_non_fixed_regs;
104
105 /* Indexed by hard register number, contains 1 for registers
106 that are being used for global register decls.
107 These must be exempt from ordinary flow analysis
108 and are also considered fixed. */
109
110 char global_regs[FIRST_PSEUDO_REGISTER];
111
112 /* Table of register numbers in the order in which to try to use them. */
113 #ifdef REG_ALLOC_ORDER
114 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
115 #endif
116
117 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
118
119 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
120
121 /* The same information, but as an array of unsigned ints. We copy from
122 these unsigned ints to the table above. We do this so the tm.h files
123 do not have to be aware of the wordsize for machines with <= 64 regs. */
124
125 #define N_REG_INTS \
126 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
127
128 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
129 = REG_CLASS_CONTENTS;
130
131 /* For each reg class, number of regs it contains. */
132
133 int reg_class_size[N_REG_CLASSES];
134
135 /* For each reg class, table listing all the containing classes. */
136
137 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
138
139 /* For each reg class, table listing all the classes contained in it. */
140
141 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
142
143 /* For each pair of reg classes,
144 a largest reg class contained in their union. */
145
146 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
147
148 /* For each pair of reg classes,
149 the smallest reg class containing their union. */
150
151 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
152
153 /* Array containing all of the register names */
154
155 char *reg_names[] = REGISTER_NAMES;
156
157 /* For each hard register, the widest mode object that it can contain.
158 This will be a MODE_INT mode if the register can hold integers. Otherwise
159 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
160 register. */
161
162 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
163
164 /* Maximum cost of moving from a register in one class to a register in
165 another class. Based on REGISTER_MOVE_COST. */
166
167 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
168
169 /* Similar, but here we don't have to move if the first index is a subset
170 of the second so in that case the cost is zero. */
171
172 static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
173
174 #ifdef FORBIDDEN_INC_DEC_CLASSES
175
176 /* These are the classes that regs which are auto-incremented or decremented
177 cannot be put in. */
178
179 static int forbidden_inc_dec_class[N_REG_CLASSES];
180
181 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
182 context. */
183
184 static char *in_inc_dec;
185
186 #endif /* FORBIDDEN_INC_DEC_CLASSES */
187
188 #ifdef HAVE_SECONDARY_RELOADS
189
190 /* Sample MEM values for use by memory_move_secondary_cost. */
191
192 static rtx top_of_stack[MAX_MACHINE_MODE];
193
194 #endif /* HAVE_SECONDARY_RELOADS */
195
196 /* Linked list of reg_info structures allocated for reg_n_info array.
197 Grouping all of the allocated structures together in one lump
198 means only one call to bzero to clear them, rather than n smaller
199 calls. */
200 struct reg_info_data {
201 struct reg_info_data *next; /* next set of reg_info structures */
202 size_t min_index; /* minimum index # */
203 size_t max_index; /* maximum index # */
204 char used_p; /* non-zero if this has been used previously */
205 reg_info data[1]; /* beginning of the reg_info data */
206 };
207
208 static struct reg_info_data *reg_info_head;
209
210
211 /* Function called only once to initialize the above data on reg usage.
212 Once this is done, various switches may override. */
213
214 void
215 init_reg_sets ()
216 {
217 register int i, j;
218
219 /* First copy the register information from the initial int form into
220 the regsets. */
221
222 for (i = 0; i < N_REG_CLASSES; i++)
223 {
224 CLEAR_HARD_REG_SET (reg_class_contents[i]);
225
226 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
227 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
228 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
229 SET_HARD_REG_BIT (reg_class_contents[i], j);
230 }
231
232 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
233 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
234 bzero (global_regs, sizeof global_regs);
235
236 /* Compute number of hard regs in each class. */
237
238 bzero ((char *) reg_class_size, sizeof reg_class_size);
239 for (i = 0; i < N_REG_CLASSES; i++)
240 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
241 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
242 reg_class_size[i]++;
243
244 /* Initialize the table of subunions.
245 reg_class_subunion[I][J] gets the largest-numbered reg-class
246 that is contained in the union of classes I and J. */
247
248 for (i = 0; i < N_REG_CLASSES; i++)
249 {
250 for (j = 0; j < N_REG_CLASSES; j++)
251 {
252 #ifdef HARD_REG_SET
253 register /* Declare it register if it's a scalar. */
254 #endif
255 HARD_REG_SET c;
256 register int k;
257
258 COPY_HARD_REG_SET (c, reg_class_contents[i]);
259 IOR_HARD_REG_SET (c, reg_class_contents[j]);
260 for (k = 0; k < N_REG_CLASSES; k++)
261 {
262 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
263 subclass1);
264 continue;
265
266 subclass1:
267 /* keep the largest subclass */ /* SPEE 900308 */
268 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
269 reg_class_contents[(int) reg_class_subunion[i][j]],
270 subclass2);
271 reg_class_subunion[i][j] = (enum reg_class) k;
272 subclass2:
273 ;
274 }
275 }
276 }
277
278 /* Initialize the table of superunions.
279 reg_class_superunion[I][J] gets the smallest-numbered reg-class
280 containing the union of classes I and J. */
281
282 for (i = 0; i < N_REG_CLASSES; i++)
283 {
284 for (j = 0; j < N_REG_CLASSES; j++)
285 {
286 #ifdef HARD_REG_SET
287 register /* Declare it register if it's a scalar. */
288 #endif
289 HARD_REG_SET c;
290 register int k;
291
292 COPY_HARD_REG_SET (c, reg_class_contents[i]);
293 IOR_HARD_REG_SET (c, reg_class_contents[j]);
294 for (k = 0; k < N_REG_CLASSES; k++)
295 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
296
297 superclass:
298 reg_class_superunion[i][j] = (enum reg_class) k;
299 }
300 }
301
302 /* Initialize the tables of subclasses and superclasses of each reg class.
303 First clear the whole table, then add the elements as they are found. */
304
305 for (i = 0; i < N_REG_CLASSES; i++)
306 {
307 for (j = 0; j < N_REG_CLASSES; j++)
308 {
309 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
310 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
311 }
312 }
313
314 for (i = 0; i < N_REG_CLASSES; i++)
315 {
316 if (i == (int) NO_REGS)
317 continue;
318
319 for (j = i + 1; j < N_REG_CLASSES; j++)
320 {
321 enum reg_class *p;
322
323 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
324 subclass);
325 continue;
326 subclass:
327 /* Reg class I is a subclass of J.
328 Add J to the table of superclasses of I. */
329 p = &reg_class_superclasses[i][0];
330 while (*p != LIM_REG_CLASSES) p++;
331 *p = (enum reg_class) j;
332 /* Add I to the table of superclasses of J. */
333 p = &reg_class_subclasses[j][0];
334 while (*p != LIM_REG_CLASSES) p++;
335 *p = (enum reg_class) i;
336 }
337 }
338
339 /* Do any additional initialization regsets may need */
340 INIT_ONCE_REG_SET ();
341 }
342
343 /* After switches have been processed, which perhaps alter
344 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
345
346 static void
347 init_reg_sets_1 ()
348 {
349 register unsigned int i, j;
350
351 /* This macro allows the fixed or call-used registers
352 to depend on target flags. */
353
354 #ifdef CONDITIONAL_REGISTER_USAGE
355 CONDITIONAL_REGISTER_USAGE;
356 #endif
357
358 /* Initialize "constant" tables. */
359
360 CLEAR_HARD_REG_SET (fixed_reg_set);
361 CLEAR_HARD_REG_SET (call_used_reg_set);
362 CLEAR_HARD_REG_SET (call_fixed_reg_set);
363
364 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
365
366 n_non_fixed_regs = 0;
367
368 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
369 {
370 if (fixed_regs[i])
371 SET_HARD_REG_BIT (fixed_reg_set, i);
372 else
373 n_non_fixed_regs++;
374
375 if (call_used_regs[i])
376 SET_HARD_REG_BIT (call_used_reg_set, i);
377 if (call_fixed_regs[i])
378 SET_HARD_REG_BIT (call_fixed_reg_set, i);
379 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
380 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
381 }
382
383 /* Initialize the move cost table. Find every subset of each class
384 and take the maximum cost of moving any subset to any other. */
385
386 for (i = 0; i < N_REG_CLASSES; i++)
387 for (j = 0; j < N_REG_CLASSES; j++)
388 {
389 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
390 enum reg_class *p1, *p2;
391
392 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
393 if (*p2 != i)
394 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
395
396 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
397 {
398 if (*p1 != j)
399 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
400
401 for (p2 = &reg_class_subclasses[j][0];
402 *p2 != LIM_REG_CLASSES; p2++)
403 if (*p1 != *p2)
404 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
405 }
406
407 move_cost[i][j] = cost;
408
409 if (reg_class_subset_p (i, j))
410 cost = 0;
411
412 may_move_cost[i][j] = cost;
413 }
414 }
415
416 /* Compute the table of register modes.
417 These values are used to record death information for individual registers
418 (as opposed to a multi-register mode). */
419
420 static void
421 init_reg_modes ()
422 {
423 register int i;
424
425 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
426 {
427 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
428
429 /* If we couldn't find a valid mode, just use the previous mode.
430 ??? One situation in which we need to do this is on the mips where
431 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
432 to use DF mode for the even registers and VOIDmode for the odd
433 (for the cpu models where the odd ones are inaccessible). */
434 if (reg_raw_mode[i] == VOIDmode)
435 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
436 }
437 }
438
439 /* Finish initializing the register sets and
440 initialize the register modes. */
441
442 void
443 init_regs ()
444 {
445 /* This finishes what was started by init_reg_sets, but couldn't be done
446 until after register usage was specified. */
447 init_reg_sets_1 ();
448
449 init_reg_modes ();
450
451 #ifdef HAVE_SECONDARY_RELOADS
452 {
453 /* Make some fake stack-frame MEM references for use in
454 memory_move_secondary_cost. */
455 int i;
456 for (i = 0; i < MAX_MACHINE_MODE; i++)
457 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
458 }
459 #endif
460 }
461
462 #ifdef HAVE_SECONDARY_RELOADS
463
464 /* Compute extra cost of moving registers to/from memory due to reloads.
465 Only needed if secondary reloads are required for memory moves. */
466
467 int
468 memory_move_secondary_cost (mode, class, in)
469 enum machine_mode mode;
470 enum reg_class class;
471 int in;
472 {
473 enum reg_class altclass;
474 int partial_cost = 0;
475 /* We need a memory reference to feed to SECONDARY... macros. */
476 rtx mem = top_of_stack[(int) mode];
477
478 if (in)
479 {
480 #ifdef SECONDARY_INPUT_RELOAD_CLASS
481 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
482 #else
483 altclass = NO_REGS;
484 #endif
485 }
486 else
487 {
488 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
489 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
490 #else
491 altclass = NO_REGS;
492 #endif
493 }
494
495 if (altclass == NO_REGS)
496 return 0;
497
498 if (in)
499 partial_cost = REGISTER_MOVE_COST (altclass, class);
500 else
501 partial_cost = REGISTER_MOVE_COST (class, altclass);
502
503 if (class == altclass)
504 /* This isn't simply a copy-to-temporary situation. Can't guess
505 what it is, so MEMORY_MOVE_COST really ought not to be calling
506 here in that case.
507
508 I'm tempted to put in an abort here, but returning this will
509 probably only give poor estimates, which is what we would've
510 had before this code anyways. */
511 return partial_cost;
512
513 /* Check if the secondary reload register will also need a
514 secondary reload. */
515 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
516 }
517 #endif
518
519 /* Return a machine mode that is legitimate for hard reg REGNO and large
520 enough to save nregs. If we can't find one, return VOIDmode. */
521
522 enum machine_mode
523 choose_hard_reg_mode (regno, nregs)
524 int regno;
525 int nregs;
526 {
527 enum machine_mode found_mode = VOIDmode, mode;
528
529 /* We first look for the largest integer mode that can be validly
530 held in REGNO. If none, we look for the largest floating-point mode.
531 If we still didn't find a valid mode, try CCmode. */
532
533 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
534 mode != VOIDmode;
535 mode = GET_MODE_WIDER_MODE (mode))
536 if (HARD_REGNO_NREGS (regno, mode) == nregs
537 && HARD_REGNO_MODE_OK (regno, mode))
538 found_mode = mode;
539
540 if (found_mode != VOIDmode)
541 return found_mode;
542
543 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
544 mode != VOIDmode;
545 mode = GET_MODE_WIDER_MODE (mode))
546 if (HARD_REGNO_NREGS (regno, mode) == nregs
547 && HARD_REGNO_MODE_OK (regno, mode))
548 found_mode = mode;
549
550 if (found_mode != VOIDmode)
551 return found_mode;
552
553 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
554 && HARD_REGNO_MODE_OK (regno, CCmode))
555 return CCmode;
556
557 /* We can't find a mode valid for this register. */
558 return VOIDmode;
559 }
560
561 /* Specify the usage characteristics of the register named NAME.
562 It should be a fixed register if FIXED and a
563 call-used register if CALL_USED. */
564
565 void
566 fix_register (name, fixed, call_used)
567 char *name;
568 int fixed, call_used;
569 {
570 int i;
571
572 /* Decode the name and update the primary form of
573 the register info. */
574
575 if ((i = decode_reg_name (name)) >= 0)
576 {
577 fixed_regs[i] = fixed;
578 call_used_regs[i] = call_used;
579 }
580 else
581 {
582 warning ("unknown register name: %s", name);
583 }
584 }
585
586 /* Mark register number I as global. */
587
588 void
589 globalize_reg (i)
590 int i;
591 {
592 if (global_regs[i])
593 {
594 warning ("register used for two global register variables");
595 return;
596 }
597
598 if (call_used_regs[i] && ! fixed_regs[i])
599 warning ("call-clobbered register used for global register variable");
600
601 global_regs[i] = 1;
602
603 /* If already fixed, nothing else to do. */
604 if (fixed_regs[i])
605 return;
606
607 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
608 n_non_fixed_regs--;
609
610 SET_HARD_REG_BIT (fixed_reg_set, i);
611 SET_HARD_REG_BIT (call_used_reg_set, i);
612 SET_HARD_REG_BIT (call_fixed_reg_set, i);
613 }
614 \f
615 /* Now the data and code for the `regclass' pass, which happens
616 just before local-alloc. */
617
618 /* The `costs' struct records the cost of using a hard register of each class
619 and of using memory for each pseudo. We use this data to set up
620 register class preferences. */
621
622 struct costs
623 {
624 int cost[N_REG_CLASSES];
625 int mem_cost;
626 };
627
628 /* Record the cost of each class for each pseudo. */
629
630 static struct costs *costs;
631
632 /* Record the same data by operand number, accumulated for each alternative
633 in an insn. The contribution to a pseudo is that of the minimum-cost
634 alternative. */
635
636 static struct costs op_costs[MAX_RECOG_OPERANDS];
637
638 /* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
639 This is available after `regclass' is run. */
640
641 static char *prefclass;
642
643 /* altclass[R] is a register class that we should use for allocating
644 pseudo number R if no register in the preferred class is available.
645 If no register in this class is available, memory is preferred.
646
647 It might appear to be more general to have a bitmask of classes here,
648 but since it is recommended that there be a class corresponding to the
649 union of most major pair of classes, that generality is not required.
650
651 This is available after `regclass' is run. */
652
653 static char *altclass;
654
655 /* Allocated buffers for prefclass and altclass. */
656 static char *prefclass_buffer;
657 static char *altclass_buffer;
658
659 /* Record the depth of loops that we are in. */
660
661 static int loop_depth;
662
663 /* Account for the fact that insns within a loop are executed very commonly,
664 but don't keep doing this as loops go too deep. */
665
666 static int loop_cost;
667
668 static void record_reg_classes PROTO((int, int, rtx *, enum machine_mode *,
669 char **, rtx));
670 static int copy_cost PROTO((rtx, enum machine_mode,
671 enum reg_class, int));
672 static void record_address_regs PROTO((rtx, enum reg_class, int));
673 #ifdef FORBIDDEN_INC_DEC_CLASSES
674 static int auto_inc_dec_reg_p PROTO((rtx, enum machine_mode));
675 #endif
676 static void reg_scan_mark_refs PROTO((rtx, rtx, int, int));
677
678 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
679 This function is sometimes called before the info has been computed.
680 When that happens, just return GENERAL_REGS, which is innocuous. */
681
682 enum reg_class
683 reg_preferred_class (regno)
684 int regno;
685 {
686 if (prefclass == 0)
687 return GENERAL_REGS;
688 return (enum reg_class) prefclass[regno];
689 }
690
691 enum reg_class
692 reg_alternate_class (regno)
693 int regno;
694 {
695 if (prefclass == 0)
696 return ALL_REGS;
697
698 return (enum reg_class) altclass[regno];
699 }
700
701 /* This prevents dump_flow_info from losing if called
702 before regclass is run. */
703
704 void
705 regclass_init ()
706 {
707 prefclass = 0;
708 }
709 \f
710 /* This is a pass of the compiler that scans all instructions
711 and calculates the preferred class for each pseudo-register.
712 This information can be accessed later by calling `reg_preferred_class'.
713 This pass comes just before local register allocation. */
714
715 void
716 regclass (f, nregs)
717 rtx f;
718 int nregs;
719 {
720 #ifdef REGISTER_CONSTRAINTS
721 register rtx insn;
722 register int i, j;
723 struct costs init_cost;
724 rtx set;
725 int pass;
726
727 init_recog ();
728
729 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
730
731 #ifdef FORBIDDEN_INC_DEC_CLASSES
732
733 in_inc_dec = (char *) alloca (nregs);
734
735 /* Initialize information about which register classes can be used for
736 pseudos that are auto-incremented or auto-decremented. It would
737 seem better to put this in init_reg_sets, but we need to be able
738 to allocate rtx, which we can't do that early. */
739
740 for (i = 0; i < N_REG_CLASSES; i++)
741 {
742 rtx r = gen_rtx_REG (VOIDmode, 0);
743 enum machine_mode m;
744
745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
746 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
747 {
748 REGNO (r) = j;
749
750 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
751 m = (enum machine_mode) ((int) m + 1))
752 if (HARD_REGNO_MODE_OK (j, m))
753 {
754 PUT_MODE (r, m);
755
756 /* If a register is not directly suitable for an
757 auto-increment or decrement addressing mode and
758 requires secondary reloads, disallow its class from
759 being used in such addresses. */
760
761 if ((0
762 #ifdef SECONDARY_RELOAD_CLASS
763 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
764 != NO_REGS)
765 #else
766 #ifdef SECONDARY_INPUT_RELOAD_CLASS
767 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
768 != NO_REGS)
769 #endif
770 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
771 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
772 != NO_REGS)
773 #endif
774 #endif
775 )
776 && ! auto_inc_dec_reg_p (r, m))
777 forbidden_inc_dec_class[i] = 1;
778 }
779 }
780 }
781 #endif /* FORBIDDEN_INC_DEC_CLASSES */
782
783 init_cost.mem_cost = 10000;
784 for (i = 0; i < N_REG_CLASSES; i++)
785 init_cost.cost[i] = 10000;
786
787 /* Normally we scan the insns once and determine the best class to use for
788 each register. However, if -fexpensive_optimizations are on, we do so
789 twice, the second time using the tentative best classes to guide the
790 selection. */
791
792 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
793 {
794 /* Zero out our accumulation of the cost of each class for each reg. */
795
796 bzero ((char *) costs, nregs * sizeof (struct costs));
797
798 #ifdef FORBIDDEN_INC_DEC_CLASSES
799 bzero (in_inc_dec, nregs);
800 #endif
801
802 loop_depth = 0, loop_cost = 1;
803
804 /* Scan the instructions and record each time it would
805 save code to put a certain register in a certain class. */
806
807 for (insn = f; insn; insn = NEXT_INSN (insn))
808 {
809 char *constraints[MAX_RECOG_OPERANDS];
810 enum machine_mode modes[MAX_RECOG_OPERANDS];
811 int nalternatives;
812 int noperands;
813
814 /* Show that an insn inside a loop is likely to be executed three
815 times more than insns outside a loop. This is much more aggressive
816 than the assumptions made elsewhere and is being tried as an
817 experiment. */
818
819 if (GET_CODE (insn) == NOTE
820 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
821 loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
822 else if (GET_CODE (insn) == NOTE
823 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
824 loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
825
826 else if ((GET_CODE (insn) == INSN
827 && GET_CODE (PATTERN (insn)) != USE
828 && GET_CODE (PATTERN (insn)) != CLOBBER
829 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
830 || (GET_CODE (insn) == JUMP_INSN
831 && GET_CODE (PATTERN (insn)) != ADDR_VEC
832 && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
833 || GET_CODE (insn) == CALL_INSN)
834 {
835 if (GET_CODE (insn) == INSN
836 && (noperands = asm_noperands (PATTERN (insn))) >= 0)
837 {
838 decode_asm_operands (PATTERN (insn), recog_operand, NULL_PTR,
839 constraints, modes);
840 nalternatives = (noperands == 0 ? 0
841 : n_occurrences (',', constraints[0]) + 1);
842 }
843 else
844 {
845 int insn_code_number = recog_memoized (insn);
846 rtx note;
847
848 set = single_set (insn);
849 insn_extract (insn);
850
851 nalternatives = insn_n_alternatives[insn_code_number];
852 noperands = insn_n_operands[insn_code_number];
853
854 /* If this insn loads a parameter from its stack slot, then
855 it represents a savings, rather than a cost, if the
856 parameter is stored in memory. Record this fact. */
857
858 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
859 && GET_CODE (SET_SRC (set)) == MEM
860 && (note = find_reg_note (insn, REG_EQUIV,
861 NULL_RTX)) != 0
862 && GET_CODE (XEXP (note, 0)) == MEM)
863 {
864 costs[REGNO (SET_DEST (set))].mem_cost
865 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
866 GENERAL_REGS, 1)
867 * loop_cost);
868 record_address_regs (XEXP (SET_SRC (set), 0),
869 BASE_REG_CLASS, loop_cost * 2);
870 continue;
871 }
872
873 /* Improve handling of two-address insns such as
874 (set X (ashift CONST Y)) where CONST must be made to
875 match X. Change it into two insns: (set X CONST)
876 (set X (ashift X Y)). If we left this for reloading, it
877 would probably get three insns because X and Y might go
878 in the same place. This prevents X and Y from receiving
879 the same hard reg.
880
881 We can only do this if the modes of operands 0 and 1
882 (which might not be the same) are tieable and we only need
883 do this during our first pass. */
884
885 if (pass == 0 && optimize
886 && noperands >= 3
887 && insn_operand_constraint[insn_code_number][1][0] == '0'
888 && insn_operand_constraint[insn_code_number][1][1] == 0
889 && CONSTANT_P (recog_operand[1])
890 && ! rtx_equal_p (recog_operand[0], recog_operand[1])
891 && ! rtx_equal_p (recog_operand[0], recog_operand[2])
892 && GET_CODE (recog_operand[0]) == REG
893 && MODES_TIEABLE_P (GET_MODE (recog_operand[0]),
894 insn_operand_mode[insn_code_number][1]))
895 {
896 rtx previnsn = prev_real_insn (insn);
897 rtx dest
898 = gen_lowpart (insn_operand_mode[insn_code_number][1],
899 recog_operand[0]);
900 rtx newinsn
901 = emit_insn_before (gen_move_insn (dest,
902 recog_operand[1]),
903 insn);
904
905 /* If this insn was the start of a basic block,
906 include the new insn in that block.
907 We need not check for code_label here;
908 while a basic block can start with a code_label,
909 INSN could not be at the beginning of that block. */
910 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
911 {
912 int b;
913 for (b = 0; b < n_basic_blocks; b++)
914 if (insn == basic_block_head[b])
915 basic_block_head[b] = newinsn;
916 }
917
918 /* This makes one more setting of new insns's dest. */
919 REG_N_SETS (REGNO (recog_operand[0]))++;
920
921 *recog_operand_loc[1] = recog_operand[0];
922 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
923 if (recog_dup_num[i] == 1)
924 *recog_dup_loc[i] = recog_operand[0];
925
926 insn = PREV_INSN (newinsn);
927 continue;
928 }
929
930 for (i = 0; i < noperands; i++)
931 {
932 constraints[i]
933 = insn_operand_constraint[insn_code_number][i];
934 modes[i] = insn_operand_mode[insn_code_number][i];
935 }
936 }
937
938 /* If we get here, we are set up to record the costs of all the
939 operands for this insn. Start by initializing the costs.
940 Then handle any address registers. Finally record the desired
941 classes for any pseudos, doing it twice if some pair of
942 operands are commutative. */
943
944 for (i = 0; i < noperands; i++)
945 {
946 op_costs[i] = init_cost;
947
948 if (GET_CODE (recog_operand[i]) == SUBREG)
949 recog_operand[i] = SUBREG_REG (recog_operand[i]);
950
951 if (GET_CODE (recog_operand[i]) == MEM)
952 record_address_regs (XEXP (recog_operand[i], 0),
953 BASE_REG_CLASS, loop_cost * 2);
954 else if (constraints[i][0] == 'p')
955 record_address_regs (recog_operand[i],
956 BASE_REG_CLASS, loop_cost * 2);
957 }
958
959 /* Check for commutative in a separate loop so everything will
960 have been initialized. We must do this even if one operand
961 is a constant--see addsi3 in m68k.md. */
962
963 for (i = 0; i < noperands - 1; i++)
964 if (constraints[i][0] == '%')
965 {
966 char *xconstraints[MAX_RECOG_OPERANDS];
967 int j;
968
969 /* Handle commutative operands by swapping the constraints.
970 We assume the modes are the same. */
971
972 for (j = 0; j < noperands; j++)
973 xconstraints[j] = constraints[j];
974
975 xconstraints[i] = constraints[i+1];
976 xconstraints[i+1] = constraints[i];
977 record_reg_classes (nalternatives, noperands,
978 recog_operand, modes, xconstraints,
979 insn);
980 }
981
982 record_reg_classes (nalternatives, noperands, recog_operand,
983 modes, constraints, insn);
984
985 /* Now add the cost for each operand to the total costs for
986 its register. */
987
988 for (i = 0; i < noperands; i++)
989 if (GET_CODE (recog_operand[i]) == REG
990 && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
991 {
992 int regno = REGNO (recog_operand[i]);
993 struct costs *p = &costs[regno], *q = &op_costs[i];
994
995 p->mem_cost += q->mem_cost * loop_cost;
996 for (j = 0; j < N_REG_CLASSES; j++)
997 p->cost[j] += q->cost[j] * loop_cost;
998 }
999 }
1000 }
1001
1002 /* Now for each register look at how desirable each class is
1003 and find which class is preferred. Store that in
1004 `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
1005 class any of whose registers is better than memory. */
1006
1007 if (pass == 0)
1008 {
1009 prefclass = prefclass_buffer;
1010 altclass = altclass_buffer;
1011 }
1012
1013 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1014 {
1015 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1016 enum reg_class best = ALL_REGS, alt = NO_REGS;
1017 /* This is an enum reg_class, but we call it an int
1018 to save lots of casts. */
1019 register int class;
1020 register struct costs *p = &costs[i];
1021
1022 for (class = (int) ALL_REGS - 1; class > 0; class--)
1023 {
1024 /* Ignore classes that are too small for this operand or
1025 invalid for a operand that was auto-incremented. */
1026 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1027 > reg_class_size[class]
1028 #ifdef FORBIDDEN_INC_DEC_CLASSES
1029 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1030 #endif
1031 )
1032 ;
1033 else if (p->cost[class] < best_cost)
1034 {
1035 best_cost = p->cost[class];
1036 best = (enum reg_class) class;
1037 }
1038 else if (p->cost[class] == best_cost)
1039 best = reg_class_subunion[(int)best][class];
1040 }
1041
1042 /* Record the alternate register class; i.e., a class for which
1043 every register in it is better than using memory. If adding a
1044 class would make a smaller class (i.e., no union of just those
1045 classes exists), skip that class. The major unions of classes
1046 should be provided as a register class. Don't do this if we
1047 will be doing it again later. */
1048
1049 if (pass == 1 || ! flag_expensive_optimizations)
1050 for (class = 0; class < N_REG_CLASSES; class++)
1051 if (p->cost[class] < p->mem_cost
1052 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1053 > reg_class_size[(int) alt])
1054 #ifdef FORBIDDEN_INC_DEC_CLASSES
1055 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1056 #endif
1057 )
1058 alt = reg_class_subunion[(int) alt][class];
1059
1060 /* If we don't add any classes, nothing to try. */
1061 if (alt == best)
1062 alt = NO_REGS;
1063
1064 /* We cast to (int) because (char) hits bugs in some compilers. */
1065 prefclass[i] = (int) best;
1066 altclass[i] = (int) alt;
1067 }
1068 }
1069 #endif /* REGISTER_CONSTRAINTS */
1070
1071 free (costs);
1072 }
1073 \f
1074 #ifdef REGISTER_CONSTRAINTS
1075
1076 /* Record the cost of using memory or registers of various classes for
1077 the operands in INSN.
1078
1079 N_ALTS is the number of alternatives.
1080
1081 N_OPS is the number of operands.
1082
1083 OPS is an array of the operands.
1084
1085 MODES are the modes of the operands, in case any are VOIDmode.
1086
1087 CONSTRAINTS are the constraints to use for the operands. This array
1088 is modified by this procedure.
1089
1090 This procedure works alternative by alternative. For each alternative
1091 we assume that we will be able to allocate all pseudos to their ideal
1092 register class and calculate the cost of using that alternative. Then
1093 we compute for each operand that is a pseudo-register, the cost of
1094 having the pseudo allocated to each register class and using it in that
1095 alternative. To this cost is added the cost of the alternative.
1096
1097 The cost of each class for this insn is its lowest cost among all the
1098 alternatives. */
1099
1100 static void
1101 record_reg_classes (n_alts, n_ops, ops, modes, constraints, insn)
1102 int n_alts;
1103 int n_ops;
1104 rtx *ops;
1105 enum machine_mode *modes;
1106 char **constraints;
1107 rtx insn;
1108 {
1109 int alt;
1110 enum op_type {OP_READ, OP_WRITE, OP_READ_WRITE} op_types[MAX_RECOG_OPERANDS];
1111 int i, j;
1112 rtx set;
1113
1114 /* By default, each operand is an input operand. */
1115
1116 for (i = 0; i < n_ops; i++)
1117 op_types[i] = OP_READ;
1118
1119 /* Process each alternative, each time minimizing an operand's cost with
1120 the cost for each operand in that alternative. */
1121
1122 for (alt = 0; alt < n_alts; alt++)
1123 {
1124 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1125 int alt_fail = 0;
1126 int alt_cost = 0;
1127 enum reg_class classes[MAX_RECOG_OPERANDS];
1128 int class;
1129
1130 for (i = 0; i < n_ops; i++)
1131 {
1132 char *p = constraints[i];
1133 rtx op = ops[i];
1134 enum machine_mode mode = modes[i];
1135 int allows_mem = 0;
1136 int win = 0;
1137 char c;
1138
1139 /* If this operand has no constraints at all, we can conclude
1140 nothing about it since anything is valid. */
1141
1142 if (*p == 0)
1143 {
1144 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1145 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1146
1147 continue;
1148 }
1149
1150 if (*p == '%')
1151 p++;
1152
1153 /* If this alternative is only relevant when this operand
1154 matches a previous operand, we do different things depending
1155 on whether this operand is a pseudo-reg or not. */
1156
1157 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1158 {
1159 j = p[0] - '0';
1160 classes[i] = classes[j];
1161
1162 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1163 {
1164 /* If this matches the other operand, we have no added
1165 cost and we win. */
1166 if (rtx_equal_p (ops[j], op))
1167 win = 1;
1168
1169 /* If we can put the other operand into a register, add to
1170 the cost of this alternative the cost to copy this
1171 operand to the register used for the other operand. */
1172
1173 else if (classes[j] != NO_REGS)
1174 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1175 }
1176 else if (GET_CODE (ops[j]) != REG
1177 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1178 {
1179 /* This op is a pseudo but the one it matches is not. */
1180
1181 /* If we can't put the other operand into a register, this
1182 alternative can't be used. */
1183
1184 if (classes[j] == NO_REGS)
1185 alt_fail = 1;
1186
1187 /* Otherwise, add to the cost of this alternative the cost
1188 to copy the other operand to the register used for this
1189 operand. */
1190
1191 else
1192 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1193 }
1194 else
1195 {
1196 /* The costs of this operand are the same as that of the
1197 other operand. However, if we cannot tie them, this
1198 alternative needs to do a copy, which is one
1199 instruction. */
1200
1201 this_op_costs[i] = this_op_costs[j];
1202 if (REGNO (ops[i]) != REGNO (ops[j])
1203 && ! find_reg_note (insn, REG_DEAD, op))
1204 alt_cost += 2;
1205
1206 /* This is in place of ordinary cost computation
1207 for this operand, so skip to the end of the
1208 alternative (should be just one character). */
1209 while (*p && *p++ != ',')
1210 ;
1211
1212 constraints[i] = p;
1213 continue;
1214 }
1215 }
1216
1217 /* Scan all the constraint letters. See if the operand matches
1218 any of the constraints. Collect the valid register classes
1219 and see if this operand accepts memory. */
1220
1221 classes[i] = NO_REGS;
1222 while (*p && (c = *p++) != ',')
1223 switch (c)
1224 {
1225 case '=':
1226 op_types[i] = OP_WRITE;
1227 break;
1228
1229 case '+':
1230 op_types[i] = OP_READ_WRITE;
1231 break;
1232
1233 case '*':
1234 /* Ignore the next letter for this pass. */
1235 p++;
1236 break;
1237
1238 case '?':
1239 alt_cost += 2;
1240 case '%':
1241 case '!': case '#':
1242 case '&':
1243 case '0': case '1': case '2': case '3': case '4':
1244 case 'p':
1245 break;
1246
1247 case 'm': case 'o': case 'V':
1248 /* It doesn't seem worth distinguishing between offsettable
1249 and non-offsettable addresses here. */
1250 allows_mem = 1;
1251 if (GET_CODE (op) == MEM)
1252 win = 1;
1253 break;
1254
1255 case '<':
1256 if (GET_CODE (op) == MEM
1257 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1258 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1259 win = 1;
1260 break;
1261
1262 case '>':
1263 if (GET_CODE (op) == MEM
1264 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1265 || GET_CODE (XEXP (op, 0)) == POST_INC))
1266 win = 1;
1267 break;
1268
1269 case 'E':
1270 #ifndef REAL_ARITHMETIC
1271 /* Match any floating double constant, but only if
1272 we can examine the bits of it reliably. */
1273 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1274 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1275 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1276 break;
1277 #endif
1278 if (GET_CODE (op) == CONST_DOUBLE)
1279 win = 1;
1280 break;
1281
1282 case 'F':
1283 if (GET_CODE (op) == CONST_DOUBLE)
1284 win = 1;
1285 break;
1286
1287 case 'G':
1288 case 'H':
1289 if (GET_CODE (op) == CONST_DOUBLE
1290 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1291 win = 1;
1292 break;
1293
1294 case 's':
1295 if (GET_CODE (op) == CONST_INT
1296 || (GET_CODE (op) == CONST_DOUBLE
1297 && GET_MODE (op) == VOIDmode))
1298 break;
1299 case 'i':
1300 if (CONSTANT_P (op)
1301 #ifdef LEGITIMATE_PIC_OPERAND_P
1302 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1303 #endif
1304 )
1305 win = 1;
1306 break;
1307
1308 case 'n':
1309 if (GET_CODE (op) == CONST_INT
1310 || (GET_CODE (op) == CONST_DOUBLE
1311 && GET_MODE (op) == VOIDmode))
1312 win = 1;
1313 break;
1314
1315 case 'I':
1316 case 'J':
1317 case 'K':
1318 case 'L':
1319 case 'M':
1320 case 'N':
1321 case 'O':
1322 case 'P':
1323 if (GET_CODE (op) == CONST_INT
1324 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1325 win = 1;
1326 break;
1327
1328 case 'X':
1329 win = 1;
1330 break;
1331
1332 #ifdef EXTRA_CONSTRAINT
1333 case 'Q':
1334 case 'R':
1335 case 'S':
1336 case 'T':
1337 case 'U':
1338 if (EXTRA_CONSTRAINT (op, c))
1339 win = 1;
1340 break;
1341 #endif
1342
1343 case 'g':
1344 if (GET_CODE (op) == MEM
1345 || (CONSTANT_P (op)
1346 #ifdef LEGITIMATE_PIC_OPERAND_P
1347 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1348 #endif
1349 ))
1350 win = 1;
1351 allows_mem = 1;
1352 case 'r':
1353 classes[i]
1354 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1355 break;
1356
1357 default:
1358 classes[i]
1359 = reg_class_subunion[(int) classes[i]]
1360 [(int) REG_CLASS_FROM_LETTER (c)];
1361 }
1362
1363 constraints[i] = p;
1364
1365 /* How we account for this operand now depends on whether it is a
1366 pseudo register or not. If it is, we first check if any
1367 register classes are valid. If not, we ignore this alternative,
1368 since we want to assume that all pseudos get allocated for
1369 register preferencing. If some register class is valid, compute
1370 the costs of moving the pseudo into that class. */
1371
1372 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1373 {
1374 if (classes[i] == NO_REGS)
1375 alt_fail = 1;
1376 else
1377 {
1378 struct costs *pp = &this_op_costs[i];
1379
1380 for (class = 0; class < N_REG_CLASSES; class++)
1381 pp->cost[class] = may_move_cost[class][(int) classes[i]];
1382
1383 /* If the alternative actually allows memory, make things
1384 a bit cheaper since we won't need an extra insn to
1385 load it. */
1386
1387 pp->mem_cost = (MEMORY_MOVE_COST (mode, classes[i], 1)
1388 - allows_mem);
1389
1390 /* If we have assigned a class to this register in our
1391 first pass, add a cost to this alternative corresponding
1392 to what we would add if this register were not in the
1393 appropriate class. */
1394
1395 if (prefclass)
1396 alt_cost
1397 += may_move_cost[prefclass[REGNO (op)]][(int) classes[i]];
1398 }
1399 }
1400
1401 /* Otherwise, if this alternative wins, either because we
1402 have already determined that or if we have a hard register of
1403 the proper class, there is no cost for this alternative. */
1404
1405 else if (win
1406 || (GET_CODE (op) == REG
1407 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1408 ;
1409
1410 /* If registers are valid, the cost of this alternative includes
1411 copying the object to and/or from a register. */
1412
1413 else if (classes[i] != NO_REGS)
1414 {
1415 if (op_types[i] != OP_WRITE)
1416 alt_cost += copy_cost (op, mode, classes[i], 1);
1417
1418 if (op_types[i] != OP_READ)
1419 alt_cost += copy_cost (op, mode, classes[i], 0);
1420 }
1421
1422 /* The only other way this alternative can be used is if this is a
1423 constant that could be placed into memory. */
1424
1425 else if (CONSTANT_P (op) && allows_mem)
1426 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1427 else
1428 alt_fail = 1;
1429 }
1430
1431 if (alt_fail)
1432 continue;
1433
1434 /* Finally, update the costs with the information we've calculated
1435 about this alternative. */
1436
1437 for (i = 0; i < n_ops; i++)
1438 if (GET_CODE (ops[i]) == REG
1439 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1440 {
1441 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1442 int scale = 1 + (op_types[i] == OP_READ_WRITE);
1443
1444 pp->mem_cost = MIN (pp->mem_cost,
1445 (qq->mem_cost + alt_cost) * scale);
1446
1447 for (class = 0; class < N_REG_CLASSES; class++)
1448 pp->cost[class] = MIN (pp->cost[class],
1449 (qq->cost[class] + alt_cost) * scale);
1450 }
1451 }
1452
1453 /* If this insn is a single set copying operand 1 to operand 0
1454 and one is a pseudo with the other a hard reg that is in its
1455 own register class, set the cost of that register class to -1. */
1456
1457 if ((set = single_set (insn)) != 0
1458 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1459 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG)
1460 for (i = 0; i <= 1; i++)
1461 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1462 {
1463 int regno = REGNO (ops[!i]);
1464 enum machine_mode mode = GET_MODE (ops[!i]);
1465 int class;
1466 int nr;
1467
1468 if (regno >= FIRST_PSEUDO_REGISTER && prefclass != 0
1469 && (reg_class_size[prefclass[regno]]
1470 == CLASS_MAX_NREGS (prefclass[regno], mode)))
1471 op_costs[i].cost[prefclass[regno]] = -1;
1472 else if (regno < FIRST_PSEUDO_REGISTER)
1473 for (class = 0; class < N_REG_CLASSES; class++)
1474 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1475 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1476 {
1477 if (reg_class_size[class] == 1)
1478 op_costs[i].cost[class] = -1;
1479 else
1480 {
1481 for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
1482 {
1483 if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
1484 break;
1485 }
1486
1487 if (nr == HARD_REGNO_NREGS(regno,mode))
1488 op_costs[i].cost[class] = -1;
1489 }
1490 }
1491 }
1492 }
1493 \f
1494 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1495 TO_P is zero) a register of class CLASS in mode MODE.
1496
1497 X must not be a pseudo. */
1498
1499 static int
1500 copy_cost (x, mode, class, to_p)
1501 rtx x;
1502 enum machine_mode mode;
1503 enum reg_class class;
1504 int to_p;
1505 {
1506 #ifdef HAVE_SECONDARY_RELOADS
1507 enum reg_class secondary_class = NO_REGS;
1508 #endif
1509
1510 /* If X is a SCRATCH, there is actually nothing to move since we are
1511 assuming optimal allocation. */
1512
1513 if (GET_CODE (x) == SCRATCH)
1514 return 0;
1515
1516 /* Get the class we will actually use for a reload. */
1517 class = PREFERRED_RELOAD_CLASS (x, class);
1518
1519 #ifdef HAVE_SECONDARY_RELOADS
1520 /* If we need a secondary reload (we assume here that we are using
1521 the secondary reload as an intermediate, not a scratch register), the
1522 cost is that to load the input into the intermediate register, then
1523 to copy them. We use a special value of TO_P to avoid recursion. */
1524
1525 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1526 if (to_p == 1)
1527 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1528 #endif
1529
1530 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1531 if (! to_p)
1532 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1533 #endif
1534
1535 if (secondary_class != NO_REGS)
1536 return (move_cost[(int) secondary_class][(int) class]
1537 + copy_cost (x, mode, secondary_class, 2));
1538 #endif /* HAVE_SECONDARY_RELOADS */
1539
1540 /* For memory, use the memory move cost, for (hard) registers, use the
1541 cost to move between the register classes, and use 2 for everything
1542 else (constants). */
1543
1544 if (GET_CODE (x) == MEM || class == NO_REGS)
1545 return MEMORY_MOVE_COST (mode, class, to_p);
1546
1547 else if (GET_CODE (x) == REG)
1548 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1549
1550 else
1551 /* If this is a constant, we may eventually want to call rtx_cost here. */
1552 return 2;
1553 }
1554 \f
1555 /* Record the pseudo registers we must reload into hard registers
1556 in a subexpression of a memory address, X.
1557
1558 CLASS is the class that the register needs to be in and is either
1559 BASE_REG_CLASS or INDEX_REG_CLASS.
1560
1561 SCALE is twice the amount to multiply the cost by (it is twice so we
1562 can represent half-cost adjustments). */
1563
1564 static void
1565 record_address_regs (x, class, scale)
1566 rtx x;
1567 enum reg_class class;
1568 int scale;
1569 {
1570 register enum rtx_code code = GET_CODE (x);
1571
1572 switch (code)
1573 {
1574 case CONST_INT:
1575 case CONST:
1576 case CC0:
1577 case PC:
1578 case SYMBOL_REF:
1579 case LABEL_REF:
1580 return;
1581
1582 case PLUS:
1583 /* When we have an address that is a sum,
1584 we must determine whether registers are "base" or "index" regs.
1585 If there is a sum of two registers, we must choose one to be
1586 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1587 to make a good choice most of the time. We only need to do this
1588 on machines that can have two registers in an address and where
1589 the base and index register classes are different.
1590
1591 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1592 that seems bogus since it should only be set when we are sure
1593 the register is being used as a pointer. */
1594
1595 {
1596 rtx arg0 = XEXP (x, 0);
1597 rtx arg1 = XEXP (x, 1);
1598 register enum rtx_code code0 = GET_CODE (arg0);
1599 register enum rtx_code code1 = GET_CODE (arg1);
1600
1601 /* Look inside subregs. */
1602 if (code0 == SUBREG)
1603 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1604 if (code1 == SUBREG)
1605 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1606
1607 /* If this machine only allows one register per address, it must
1608 be in the first operand. */
1609
1610 if (MAX_REGS_PER_ADDRESS == 1)
1611 record_address_regs (arg0, class, scale);
1612
1613 /* If index and base registers are the same on this machine, just
1614 record registers in any non-constant operands. We assume here,
1615 as well as in the tests below, that all addresses are in
1616 canonical form. */
1617
1618 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1619 {
1620 record_address_regs (arg0, class, scale);
1621 if (! CONSTANT_P (arg1))
1622 record_address_regs (arg1, class, scale);
1623 }
1624
1625 /* If the second operand is a constant integer, it doesn't change
1626 what class the first operand must be. */
1627
1628 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1629 record_address_regs (arg0, class, scale);
1630
1631 /* If the second operand is a symbolic constant, the first operand
1632 must be an index register. */
1633
1634 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1635 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1636
1637 /* If both operands are registers but one is already a hard register
1638 of index or base class, give the other the class that the hard
1639 register is not. */
1640
1641 #ifdef REG_OK_FOR_BASE_P
1642 else if (code0 == REG && code1 == REG
1643 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1644 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1645 record_address_regs (arg1,
1646 REG_OK_FOR_BASE_P (arg0)
1647 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1648 scale);
1649 else if (code0 == REG && code1 == REG
1650 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1651 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1652 record_address_regs (arg0,
1653 REG_OK_FOR_BASE_P (arg1)
1654 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1655 scale);
1656 #endif
1657
1658 /* If one operand is known to be a pointer, it must be the base
1659 with the other operand the index. Likewise if the other operand
1660 is a MULT. */
1661
1662 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1663 || code1 == MULT)
1664 {
1665 record_address_regs (arg0, BASE_REG_CLASS, scale);
1666 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1667 }
1668 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1669 || code0 == MULT)
1670 {
1671 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1672 record_address_regs (arg1, BASE_REG_CLASS, scale);
1673 }
1674
1675 /* Otherwise, count equal chances that each might be a base
1676 or index register. This case should be rare. */
1677
1678 else
1679 {
1680 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1681 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1682 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1683 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1684 }
1685 }
1686 break;
1687
1688 case POST_INC:
1689 case PRE_INC:
1690 case POST_DEC:
1691 case PRE_DEC:
1692 /* Double the importance of a pseudo register that is incremented
1693 or decremented, since it would take two extra insns
1694 if it ends up in the wrong place. If the operand is a pseudo,
1695 show it is being used in an INC_DEC context. */
1696
1697 #ifdef FORBIDDEN_INC_DEC_CLASSES
1698 if (GET_CODE (XEXP (x, 0)) == REG
1699 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1700 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1701 #endif
1702
1703 record_address_regs (XEXP (x, 0), class, 2 * scale);
1704 break;
1705
1706 case REG:
1707 {
1708 register struct costs *pp = &costs[REGNO (x)];
1709 register int i;
1710
1711 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1712
1713 for (i = 0; i < N_REG_CLASSES; i++)
1714 pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
1715 }
1716 break;
1717
1718 default:
1719 {
1720 register char *fmt = GET_RTX_FORMAT (code);
1721 register int i;
1722 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1723 if (fmt[i] == 'e')
1724 record_address_regs (XEXP (x, i), class, scale);
1725 }
1726 }
1727 }
1728 \f
1729 #ifdef FORBIDDEN_INC_DEC_CLASSES
1730
1731 /* Return 1 if REG is valid as an auto-increment memory reference
1732 to an object of MODE. */
1733
1734 static int
1735 auto_inc_dec_reg_p (reg, mode)
1736 rtx reg;
1737 enum machine_mode mode;
1738 {
1739 #ifdef HAVE_POST_INCREMENT
1740 if (memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
1741 return 1;
1742 #endif
1743
1744 #ifdef HAVE_POST_DECREMENT
1745 if (memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
1746 return 1;
1747 #endif
1748
1749 #ifdef HAVE_PRE_INCREMENT
1750 if (memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
1751 return 1;
1752 #endif
1753
1754 #ifdef HAVE_PRE_DECREMENT
1755 if (memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
1756 return 1;
1757 #endif
1758
1759 return 0;
1760 }
1761 #endif
1762
1763 #endif /* REGISTER_CONSTRAINTS */
1764 \f
1765 /* Allocate enough space to hold NUM_REGS registers for the tables used for
1766 reg_scan and flow_analysis that are indexed by the register number. If
1767 NEW_P is non zero, initialize all of the registers, otherwise only
1768 initialize the new registers allocated. The same table is kept from
1769 function to function, only reallocating it when we need more room. If
1770 RENUMBER_P is non zero, allocate the reg_renumber array also. */
1771
1772 void
1773 allocate_reg_info (num_regs, new_p, renumber_p)
1774 size_t num_regs;
1775 int new_p;
1776 int renumber_p;
1777 {
1778 static size_t regno_allocated = 0;
1779 static short *renumber = (short *)0;
1780 int i;
1781 size_t size_info;
1782 size_t size_renumber;
1783 size_t min = (new_p) ? 0 : reg_n_max;
1784 struct reg_info_data *reg_data;
1785 struct reg_info_data *reg_next;
1786
1787 /* Free up all storage allocated */
1788 if (num_regs < 0)
1789 {
1790 if (reg_n_info)
1791 {
1792 VARRAY_FREE (reg_n_info);
1793 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1794 {
1795 reg_next = reg_data->next;
1796 free ((char *)reg_data);
1797 }
1798
1799 free (prefclass_buffer);
1800 free (altclass_buffer);
1801 prefclass_buffer = (char *)0;
1802 altclass_buffer = (char *)0;
1803 reg_info_head = (struct reg_info_data *)0;
1804 renumber = (short *)0;
1805 }
1806 regno_allocated = 0;
1807 reg_n_max = 0;
1808 return;
1809 }
1810
1811 if (num_regs > regno_allocated)
1812 {
1813 size_t old_allocated = regno_allocated;
1814
1815 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
1816 size_renumber = regno_allocated * sizeof (short);
1817
1818 if (!reg_n_info)
1819 {
1820 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
1821 renumber = (short *) xmalloc (size_renumber);
1822 prefclass_buffer = (char *) xmalloc (regno_allocated);
1823 altclass_buffer = (char *) xmalloc (regno_allocated);
1824 }
1825
1826 else
1827 {
1828 VARRAY_GROW (reg_n_info, regno_allocated);
1829
1830 if (new_p) /* if we're zapping everything, no need to realloc */
1831 {
1832 free ((char *)renumber);
1833 free ((char *)prefclass_buffer);
1834 free ((char *)altclass_buffer);
1835 renumber = (short *) xmalloc (size_renumber);
1836 prefclass_buffer = (char *) xmalloc (regno_allocated);
1837 altclass_buffer = (char *) xmalloc (regno_allocated);
1838 }
1839
1840 else
1841 {
1842 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
1843 prefclass_buffer = (char *) xrealloc ((char *)prefclass_buffer,
1844 regno_allocated);
1845
1846 altclass_buffer = (char *) xrealloc ((char *)altclass_buffer,
1847 regno_allocated);
1848 }
1849 }
1850
1851 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
1852 + sizeof (struct reg_info_data) - sizeof (reg_info);
1853 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
1854 reg_data->min_index = old_allocated;
1855 reg_data->max_index = regno_allocated - 1;
1856 reg_data->next = reg_info_head;
1857 reg_info_head = reg_data;
1858 }
1859
1860 reg_n_max = num_regs;
1861 if (min < num_regs)
1862 {
1863 /* Loop through each of the segments allocated for the actual
1864 reg_info pages, and set up the pointers, zero the pages, etc. */
1865 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1866 {
1867 size_t min_index = reg_data->min_index;
1868 size_t max_index = reg_data->max_index;
1869
1870 reg_next = reg_data->next;
1871 if (min <= max_index)
1872 {
1873 size_t max = max_index;
1874 size_t local_min = min - min_index;
1875 if (min < min_index)
1876 local_min = 0;
1877 if (!reg_data->used_p) /* page just allocated with calloc */
1878 reg_data->used_p = 1; /* no need to zero */
1879 else
1880 bzero ((char *) &reg_data->data[local_min],
1881 sizeof (reg_info) * (max - min_index - local_min + 1));
1882
1883 for (i = min_index+local_min; i <= max; i++)
1884 {
1885 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
1886 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1887 renumber[i] = -1;
1888 prefclass_buffer[i] = (char) NO_REGS;
1889 altclass_buffer[i] = (char) NO_REGS;
1890 }
1891 }
1892 }
1893 }
1894
1895 /* If {pref,alt}class have already been allocated, update the pointers to
1896 the newly realloced ones. */
1897 if (prefclass)
1898 {
1899 prefclass = prefclass_buffer;
1900 altclass = altclass_buffer;
1901 }
1902
1903 if (renumber_p)
1904 reg_renumber = renumber;
1905
1906 /* Tell the regset code about the new number of registers */
1907 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
1908 }
1909
1910 \f
1911 /* This is the `regscan' pass of the compiler, run just before cse
1912 and again just before loop.
1913
1914 It finds the first and last use of each pseudo-register
1915 and records them in the vectors regno_first_uid, regno_last_uid
1916 and counts the number of sets in the vector reg_n_sets.
1917
1918 REPEAT is nonzero the second time this is called. */
1919
1920 /* Maximum number of parallel sets and clobbers in any insn in this fn.
1921 Always at least 3, since the combiner could put that many together
1922 and we want this to remain correct for all the remaining passes. */
1923
1924 int max_parallel;
1925
1926 void
1927 reg_scan (f, nregs, repeat)
1928 rtx f;
1929 int nregs;
1930 int repeat;
1931 {
1932 register rtx insn;
1933
1934 allocate_reg_info (nregs, TRUE, FALSE);
1935 max_parallel = 3;
1936
1937 for (insn = f; insn; insn = NEXT_INSN (insn))
1938 if (GET_CODE (insn) == INSN
1939 || GET_CODE (insn) == CALL_INSN
1940 || GET_CODE (insn) == JUMP_INSN)
1941 {
1942 if (GET_CODE (PATTERN (insn)) == PARALLEL
1943 && XVECLEN (PATTERN (insn), 0) > max_parallel)
1944 max_parallel = XVECLEN (PATTERN (insn), 0);
1945 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
1946
1947 if (REG_NOTES (insn))
1948 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
1949 }
1950 }
1951
1952 /* Update 'regscan' information by looking at the insns
1953 from FIRST to LAST. Some new REGs have been created,
1954 and any REG with number greater than OLD_MAX_REGNO is
1955 such a REG. We only update information for those. */
1956
1957 void
1958 reg_scan_update(first, last, old_max_regno)
1959 rtx first;
1960 rtx last;
1961 int old_max_regno;
1962 {
1963 register rtx insn;
1964
1965 allocate_reg_info (max_reg_num (), FALSE, FALSE);
1966
1967 for (insn = first; insn != last; insn = NEXT_INSN (insn))
1968 if (GET_CODE (insn) == INSN
1969 || GET_CODE (insn) == CALL_INSN
1970 || GET_CODE (insn) == JUMP_INSN)
1971 {
1972 if (GET_CODE (PATTERN (insn)) == PARALLEL
1973 && XVECLEN (PATTERN (insn), 0) > max_parallel)
1974 max_parallel = XVECLEN (PATTERN (insn), 0);
1975 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
1976
1977 if (REG_NOTES (insn))
1978 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
1979 }
1980 }
1981
1982 /* X is the expression to scan. INSN is the insn it appears in.
1983 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
1984 We should only record information for REGs with numbers
1985 greater than or equal to MIN_REGNO. */
1986
1987 static void
1988 reg_scan_mark_refs (x, insn, note_flag, min_regno)
1989 rtx x;
1990 rtx insn;
1991 int note_flag;
1992 int min_regno;
1993 {
1994 register enum rtx_code code = GET_CODE (x);
1995 register rtx dest;
1996 register rtx note;
1997
1998 switch (code)
1999 {
2000 case CONST_INT:
2001 case CONST:
2002 case CONST_DOUBLE:
2003 case CC0:
2004 case PC:
2005 case SYMBOL_REF:
2006 case LABEL_REF:
2007 case ADDR_VEC:
2008 case ADDR_DIFF_VEC:
2009 return;
2010
2011 case REG:
2012 {
2013 register int regno = REGNO (x);
2014
2015 if (regno >= min_regno)
2016 {
2017 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2018 if (!note_flag)
2019 REGNO_LAST_UID (regno) = INSN_UID (insn);
2020 if (REGNO_FIRST_UID (regno) == 0)
2021 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2022 }
2023 }
2024 break;
2025
2026 case EXPR_LIST:
2027 if (XEXP (x, 0))
2028 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2029 if (XEXP (x, 1))
2030 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2031 break;
2032
2033 case INSN_LIST:
2034 if (XEXP (x, 1))
2035 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2036 break;
2037
2038 case SET:
2039 /* Count a set of the destination if it is a register. */
2040 for (dest = SET_DEST (x);
2041 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2042 || GET_CODE (dest) == ZERO_EXTEND;
2043 dest = XEXP (dest, 0))
2044 ;
2045
2046 if (GET_CODE (dest) == REG
2047 && REGNO (dest) >= min_regno)
2048 REG_N_SETS (REGNO (dest))++;
2049
2050 /* If this is setting a pseudo from another pseudo or the sum of a
2051 pseudo and a constant integer and the other pseudo is known to be
2052 a pointer, set the destination to be a pointer as well.
2053
2054 Likewise if it is setting the destination from an address or from a
2055 value equivalent to an address or to the sum of an address and
2056 something else.
2057
2058 But don't do any of this if the pseudo corresponds to a user
2059 variable since it should have already been set as a pointer based
2060 on the type. */
2061
2062 if (GET_CODE (SET_DEST (x)) == REG
2063 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2064 && REGNO (SET_DEST (x)) >= min_regno
2065 /* If the destination pseudo is set more than once, then other
2066 sets might not be to a pointer value (consider access to a
2067 union in two threads of control in the presense of global
2068 optimizations). So only set REGNO_POINTER_FLAG on the destination
2069 pseudo if this is the only set of that pseudo. */
2070 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2071 && ! REG_USERVAR_P (SET_DEST (x))
2072 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2073 && ((GET_CODE (SET_SRC (x)) == REG
2074 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2075 || ((GET_CODE (SET_SRC (x)) == PLUS
2076 || GET_CODE (SET_SRC (x)) == LO_SUM)
2077 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2078 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2079 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2080 || GET_CODE (SET_SRC (x)) == CONST
2081 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2082 || GET_CODE (SET_SRC (x)) == LABEL_REF
2083 || (GET_CODE (SET_SRC (x)) == HIGH
2084 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2085 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2086 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2087 || ((GET_CODE (SET_SRC (x)) == PLUS
2088 || GET_CODE (SET_SRC (x)) == LO_SUM)
2089 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2090 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2091 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2092 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2093 && (GET_CODE (XEXP (note, 0)) == CONST
2094 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2095 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2096 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2097
2098 /* ... fall through ... */
2099
2100 default:
2101 {
2102 register char *fmt = GET_RTX_FORMAT (code);
2103 register int i;
2104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2105 {
2106 if (fmt[i] == 'e')
2107 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2108 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2109 {
2110 register int j;
2111 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2112 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2113 }
2114 }
2115 }
2116 }
2117 }
2118 \f
2119 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2120 is also in C2. */
2121
2122 int
2123 reg_class_subset_p (c1, c2)
2124 register enum reg_class c1;
2125 register enum reg_class c2;
2126 {
2127 if (c1 == c2) return 1;
2128
2129 if (c2 == ALL_REGS)
2130 win:
2131 return 1;
2132 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2133 reg_class_contents[(int)c2],
2134 win);
2135 return 0;
2136 }
2137
2138 /* Return nonzero if there is a register that is in both C1 and C2. */
2139
2140 int
2141 reg_classes_intersect_p (c1, c2)
2142 register enum reg_class c1;
2143 register enum reg_class c2;
2144 {
2145 #ifdef HARD_REG_SET
2146 register
2147 #endif
2148 HARD_REG_SET c;
2149
2150 if (c1 == c2) return 1;
2151
2152 if (c1 == ALL_REGS || c2 == ALL_REGS)
2153 return 1;
2154
2155 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2156 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2157
2158 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2159 return 1;
2160
2161 lose:
2162 return 0;
2163 }
2164
2165 /* Release any memory allocated by register sets. */
2166
2167 void
2168 regset_release_memory ()
2169 {
2170 if (basic_block_live_at_start)
2171 {
2172 free_regset_vector (basic_block_live_at_start, n_basic_blocks);
2173 basic_block_live_at_start = 0;
2174 }
2175
2176 FREE_REG_SET (regs_live_at_setjmp);
2177 bitmap_release_memory ();
2178 }