f4ed192f4f520b225a33c666da31d0a9b02aaff7
[gcc.git] / gcc / regclass.c
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "basic-block.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "recog.h"
38 #include "reload.h"
39 #include "real.h"
40 #include "toplev.h"
41 #include "output.h"
42 #include "ggc.h"
43
44 #ifndef REGISTER_MOVE_COST
45 #define REGISTER_MOVE_COST(x, y) 2
46 #endif
47
48 static void init_reg_sets_1 PARAMS ((void));
49 static void init_reg_modes PARAMS ((void));
50
51 /* If we have auto-increment or auto-decrement and we can have secondary
52 reloads, we are not allowed to use classes requiring secondary
53 reloads for pseudos auto-incremented since reload can't handle it. */
54
55 #ifdef AUTO_INC_DEC
56 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
57 #define FORBIDDEN_INC_DEC_CLASSES
58 #endif
59 #endif
60 \f
61 /* Register tables used by many passes. */
62
63 /* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
66 a pseudo reg for general use. */
67
68 char fixed_regs[FIRST_PSEUDO_REGISTER];
69
70 /* Same info as a HARD_REG_SET. */
71
72 HARD_REG_SET fixed_reg_set;
73
74 /* Data for initializing the above. */
75
76 static char initial_fixed_regs[] = FIXED_REGISTERS;
77
78 /* Indexed by hard register number, contains 1 for registers
79 that are fixed use or are clobbered by function calls.
80 These are the registers that cannot be used to allocate
81 a pseudo reg whose life crosses calls unless we are able
82 to save/restore them across the calls. */
83
84 char call_used_regs[FIRST_PSEUDO_REGISTER];
85
86 /* Same info as a HARD_REG_SET. */
87
88 HARD_REG_SET call_used_reg_set;
89
90 /* HARD_REG_SET of registers we want to avoid caller saving. */
91 HARD_REG_SET losing_caller_save_reg_set;
92
93 /* Data for initializing the above. */
94
95 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
96
97 /* Indexed by hard register number, contains 1 for registers that are
98 fixed use or call used registers that cannot hold quantities across
99 calls even if we are willing to save and restore them. call fixed
100 registers are a subset of call used registers. */
101
102 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
103
104 /* The same info as a HARD_REG_SET. */
105
106 HARD_REG_SET call_fixed_reg_set;
107
108 /* Number of non-fixed registers. */
109
110 int n_non_fixed_regs;
111
112 /* Indexed by hard register number, contains 1 for registers
113 that are being used for global register decls.
114 These must be exempt from ordinary flow analysis
115 and are also considered fixed. */
116
117 char global_regs[FIRST_PSEUDO_REGISTER];
118
119 /* Table of register numbers in the order in which to try to use them. */
120 #ifdef REG_ALLOC_ORDER
121 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
122
123 /* The inverse of reg_alloc_order. */
124 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
125 #endif
126
127 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
128
129 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
130
131 /* The same information, but as an array of unsigned ints. We copy from
132 these unsigned ints to the table above. We do this so the tm.h files
133 do not have to be aware of the wordsize for machines with <= 64 regs. */
134
135 #define N_REG_INTS \
136 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
137
138 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
139 = REG_CLASS_CONTENTS;
140
141 /* For each reg class, number of regs it contains. */
142
143 unsigned int reg_class_size[N_REG_CLASSES];
144
145 /* For each reg class, table listing all the containing classes. */
146
147 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
148
149 /* For each reg class, table listing all the classes contained in it. */
150
151 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
152
153 /* For each pair of reg classes,
154 a largest reg class contained in their union. */
155
156 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
157
158 /* For each pair of reg classes,
159 the smallest reg class containing their union. */
160
161 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
162
163 /* Array containing all of the register names */
164
165 const char * const reg_names[] = REGISTER_NAMES;
166
167 /* For each hard register, the widest mode object that it can contain.
168 This will be a MODE_INT mode if the register can hold integers. Otherwise
169 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
170 register. */
171
172 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
173
174 /* Maximum cost of moving from a register in one class to a register in
175 another class. Based on REGISTER_MOVE_COST. */
176
177 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
178
179 /* Similar, but here we don't have to move if the first index is a subset
180 of the second so in that case the cost is zero. */
181
182 static int may_move_in_cost[N_REG_CLASSES][N_REG_CLASSES];
183
184 /* Similar, but here we don't have to move if the first index is a superset
185 of the second so in that case the cost is zero. */
186
187 static int may_move_out_cost[N_REG_CLASSES][N_REG_CLASSES];
188
189 #ifdef FORBIDDEN_INC_DEC_CLASSES
190
191 /* These are the classes that regs which are auto-incremented or decremented
192 cannot be put in. */
193
194 static int forbidden_inc_dec_class[N_REG_CLASSES];
195
196 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
197 context. */
198
199 static char *in_inc_dec;
200
201 #endif /* FORBIDDEN_INC_DEC_CLASSES */
202
203 #ifdef HAVE_SECONDARY_RELOADS
204
205 /* Sample MEM values for use by memory_move_secondary_cost. */
206
207 static rtx top_of_stack[MAX_MACHINE_MODE];
208
209 #endif /* HAVE_SECONDARY_RELOADS */
210
211 /* Linked list of reg_info structures allocated for reg_n_info array.
212 Grouping all of the allocated structures together in one lump
213 means only one call to bzero to clear them, rather than n smaller
214 calls. */
215 struct reg_info_data {
216 struct reg_info_data *next; /* next set of reg_info structures */
217 size_t min_index; /* minimum index # */
218 size_t max_index; /* maximum index # */
219 char used_p; /* non-zero if this has been used previously */
220 reg_info data[1]; /* beginning of the reg_info data */
221 };
222
223 static struct reg_info_data *reg_info_head;
224
225 /* No more global register variables may be declared; true once
226 regclass has been initialized. */
227
228 static int no_global_reg_vars = 0;
229
230
231 /* Function called only once to initialize the above data on reg usage.
232 Once this is done, various switches may override. */
233
234 void
235 init_reg_sets ()
236 {
237 register int i, j;
238
239 /* First copy the register information from the initial int form into
240 the regsets. */
241
242 for (i = 0; i < N_REG_CLASSES; i++)
243 {
244 CLEAR_HARD_REG_SET (reg_class_contents[i]);
245
246 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
247 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
248 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
249 SET_HARD_REG_BIT (reg_class_contents[i], j);
250 }
251
252 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
253 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
254 bzero (global_regs, sizeof global_regs);
255
256 /* Do any additional initialization regsets may need */
257 INIT_ONCE_REG_SET ();
258
259 #ifdef REG_ALLOC_ORDER
260 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
261 inv_reg_alloc_order[reg_alloc_order[i]] = i;
262 #endif
263 }
264
265 /* After switches have been processed, which perhaps alter
266 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
267
268 static void
269 init_reg_sets_1 ()
270 {
271 register unsigned int i, j;
272
273 /* This macro allows the fixed or call-used registers
274 and the register classes to depend on target flags. */
275
276 #ifdef CONDITIONAL_REGISTER_USAGE
277 CONDITIONAL_REGISTER_USAGE;
278 #endif
279
280 /* Compute number of hard regs in each class. */
281
282 bzero ((char *) reg_class_size, sizeof reg_class_size);
283 for (i = 0; i < N_REG_CLASSES; i++)
284 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
285 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
286 reg_class_size[i]++;
287
288 /* Initialize the table of subunions.
289 reg_class_subunion[I][J] gets the largest-numbered reg-class
290 that is contained in the union of classes I and J. */
291
292 for (i = 0; i < N_REG_CLASSES; i++)
293 {
294 for (j = 0; j < N_REG_CLASSES; j++)
295 {
296 #ifdef HARD_REG_SET
297 register /* Declare it register if it's a scalar. */
298 #endif
299 HARD_REG_SET c;
300 register int k;
301
302 COPY_HARD_REG_SET (c, reg_class_contents[i]);
303 IOR_HARD_REG_SET (c, reg_class_contents[j]);
304 for (k = 0; k < N_REG_CLASSES; k++)
305 {
306 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
307 subclass1);
308 continue;
309
310 subclass1:
311 /* keep the largest subclass */ /* SPEE 900308 */
312 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
313 reg_class_contents[(int) reg_class_subunion[i][j]],
314 subclass2);
315 reg_class_subunion[i][j] = (enum reg_class) k;
316 subclass2:
317 ;
318 }
319 }
320 }
321
322 /* Initialize the table of superunions.
323 reg_class_superunion[I][J] gets the smallest-numbered reg-class
324 containing the union of classes I and J. */
325
326 for (i = 0; i < N_REG_CLASSES; i++)
327 {
328 for (j = 0; j < N_REG_CLASSES; j++)
329 {
330 #ifdef HARD_REG_SET
331 register /* Declare it register if it's a scalar. */
332 #endif
333 HARD_REG_SET c;
334 register int k;
335
336 COPY_HARD_REG_SET (c, reg_class_contents[i]);
337 IOR_HARD_REG_SET (c, reg_class_contents[j]);
338 for (k = 0; k < N_REG_CLASSES; k++)
339 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
340
341 superclass:
342 reg_class_superunion[i][j] = (enum reg_class) k;
343 }
344 }
345
346 /* Initialize the tables of subclasses and superclasses of each reg class.
347 First clear the whole table, then add the elements as they are found. */
348
349 for (i = 0; i < N_REG_CLASSES; i++)
350 {
351 for (j = 0; j < N_REG_CLASSES; j++)
352 {
353 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
354 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
355 }
356 }
357
358 for (i = 0; i < N_REG_CLASSES; i++)
359 {
360 if (i == (int) NO_REGS)
361 continue;
362
363 for (j = i + 1; j < N_REG_CLASSES; j++)
364 {
365 enum reg_class *p;
366
367 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
368 subclass);
369 continue;
370 subclass:
371 /* Reg class I is a subclass of J.
372 Add J to the table of superclasses of I. */
373 p = &reg_class_superclasses[i][0];
374 while (*p != LIM_REG_CLASSES) p++;
375 *p = (enum reg_class) j;
376 /* Add I to the table of superclasses of J. */
377 p = &reg_class_subclasses[j][0];
378 while (*p != LIM_REG_CLASSES) p++;
379 *p = (enum reg_class) i;
380 }
381 }
382
383 /* Initialize "constant" tables. */
384
385 CLEAR_HARD_REG_SET (fixed_reg_set);
386 CLEAR_HARD_REG_SET (call_used_reg_set);
387 CLEAR_HARD_REG_SET (call_fixed_reg_set);
388
389 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
390
391 n_non_fixed_regs = 0;
392
393 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
394 {
395 if (fixed_regs[i])
396 SET_HARD_REG_BIT (fixed_reg_set, i);
397 else
398 n_non_fixed_regs++;
399
400 if (call_used_regs[i])
401 SET_HARD_REG_BIT (call_used_reg_set, i);
402 if (call_fixed_regs[i])
403 SET_HARD_REG_BIT (call_fixed_reg_set, i);
404 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
405 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
406 }
407
408 /* Initialize the move cost table. Find every subset of each class
409 and take the maximum cost of moving any subset to any other. */
410
411 for (i = 0; i < N_REG_CLASSES; i++)
412 for (j = 0; j < N_REG_CLASSES; j++)
413 {
414 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
415 enum reg_class *p1, *p2;
416
417 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
418 if (*p2 != i)
419 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
420
421 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
422 {
423 if (*p1 != j)
424 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
425
426 for (p2 = &reg_class_subclasses[j][0];
427 *p2 != LIM_REG_CLASSES; p2++)
428 if (*p1 != *p2)
429 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
430 }
431
432 move_cost[i][j] = cost;
433
434 if (reg_class_subset_p (i, j))
435 may_move_in_cost[i][j] = 0;
436 else
437 may_move_in_cost[i][j] = cost;
438
439 if (reg_class_subset_p (j, i))
440 may_move_out_cost[i][j] = 0;
441 else
442 may_move_out_cost[i][j] = cost;
443 }
444 }
445
446 /* Compute the table of register modes.
447 These values are used to record death information for individual registers
448 (as opposed to a multi-register mode). */
449
450 static void
451 init_reg_modes ()
452 {
453 register int i;
454
455 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
456 {
457 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
458
459 /* If we couldn't find a valid mode, just use the previous mode.
460 ??? One situation in which we need to do this is on the mips where
461 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
462 to use DF mode for the even registers and VOIDmode for the odd
463 (for the cpu models where the odd ones are inaccessible). */
464 if (reg_raw_mode[i] == VOIDmode)
465 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
466 }
467 }
468
469 /* Finish initializing the register sets and
470 initialize the register modes. */
471
472 void
473 init_regs ()
474 {
475 /* This finishes what was started by init_reg_sets, but couldn't be done
476 until after register usage was specified. */
477 init_reg_sets_1 ();
478
479 init_reg_modes ();
480
481 #ifdef HAVE_SECONDARY_RELOADS
482 {
483 /* Make some fake stack-frame MEM references for use in
484 memory_move_secondary_cost. */
485 int i;
486 for (i = 0; i < MAX_MACHINE_MODE; i++)
487 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
488 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
489 }
490 #endif
491 }
492
493 #ifdef HAVE_SECONDARY_RELOADS
494
495 /* Compute extra cost of moving registers to/from memory due to reloads.
496 Only needed if secondary reloads are required for memory moves. */
497
498 int
499 memory_move_secondary_cost (mode, class, in)
500 enum machine_mode mode;
501 enum reg_class class;
502 int in;
503 {
504 enum reg_class altclass;
505 int partial_cost = 0;
506 /* We need a memory reference to feed to SECONDARY... macros. */
507 /* mem may be unused even if the SECONDARY_ macros are defined. */
508 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
509
510
511 if (in)
512 {
513 #ifdef SECONDARY_INPUT_RELOAD_CLASS
514 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
515 #else
516 altclass = NO_REGS;
517 #endif
518 }
519 else
520 {
521 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
522 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
523 #else
524 altclass = NO_REGS;
525 #endif
526 }
527
528 if (altclass == NO_REGS)
529 return 0;
530
531 if (in)
532 partial_cost = REGISTER_MOVE_COST (altclass, class);
533 else
534 partial_cost = REGISTER_MOVE_COST (class, altclass);
535
536 if (class == altclass)
537 /* This isn't simply a copy-to-temporary situation. Can't guess
538 what it is, so MEMORY_MOVE_COST really ought not to be calling
539 here in that case.
540
541 I'm tempted to put in an abort here, but returning this will
542 probably only give poor estimates, which is what we would've
543 had before this code anyways. */
544 return partial_cost;
545
546 /* Check if the secondary reload register will also need a
547 secondary reload. */
548 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
549 }
550 #endif
551
552 /* Return a machine mode that is legitimate for hard reg REGNO and large
553 enough to save nregs. If we can't find one, return VOIDmode. */
554
555 enum machine_mode
556 choose_hard_reg_mode (regno, nregs)
557 unsigned int regno ATTRIBUTE_UNUSED;
558 unsigned int nregs;
559 {
560 enum machine_mode found_mode = VOIDmode, mode;
561
562 /* We first look for the largest integer mode that can be validly
563 held in REGNO. If none, we look for the largest floating-point mode.
564 If we still didn't find a valid mode, try CCmode. */
565
566 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
567 mode != VOIDmode;
568 mode = GET_MODE_WIDER_MODE (mode))
569 if (HARD_REGNO_NREGS (regno, mode) == nregs
570 && HARD_REGNO_MODE_OK (regno, mode))
571 found_mode = mode;
572
573 if (found_mode != VOIDmode)
574 return found_mode;
575
576 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
577 mode != VOIDmode;
578 mode = GET_MODE_WIDER_MODE (mode))
579 if (HARD_REGNO_NREGS (regno, mode) == nregs
580 && HARD_REGNO_MODE_OK (regno, mode))
581 found_mode = mode;
582
583 if (found_mode != VOIDmode)
584 return found_mode;
585
586 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
587 && HARD_REGNO_MODE_OK (regno, CCmode))
588 return CCmode;
589
590 /* We can't find a mode valid for this register. */
591 return VOIDmode;
592 }
593
594 /* Specify the usage characteristics of the register named NAME.
595 It should be a fixed register if FIXED and a
596 call-used register if CALL_USED. */
597
598 void
599 fix_register (name, fixed, call_used)
600 const char *name;
601 int fixed, call_used;
602 {
603 int i;
604
605 /* Decode the name and update the primary form of
606 the register info. */
607
608 if ((i = decode_reg_name (name)) >= 0)
609 {
610 if ((i == STACK_POINTER_REGNUM
611 #ifdef HARD_FRAME_POINTER_REGNUM
612 || i == HARD_FRAME_POINTER_REGNUM
613 #else
614 || i == FRAME_POINTER_REGNUM
615 #endif
616 )
617 && (fixed == 0 || call_used == 0))
618 {
619 static const char * const what_option[2][2] = {
620 { "call-saved", "call-used" },
621 { "no-such-option", "fixed" }};
622
623 error ("can't use '%s' as a %s register", name,
624 what_option[fixed][call_used]);
625 }
626 else
627 {
628 fixed_regs[i] = fixed;
629 call_used_regs[i] = call_used;
630 }
631 }
632 else
633 {
634 warning ("unknown register name: %s", name);
635 }
636 }
637
638 /* Mark register number I as global. */
639
640 void
641 globalize_reg (i)
642 int i;
643 {
644 if (fixed_regs[i] == 0 && no_global_reg_vars)
645 error ("global register variable follows a function definition");
646
647 if (global_regs[i])
648 {
649 warning ("register used for two global register variables");
650 return;
651 }
652
653 if (call_used_regs[i] && ! fixed_regs[i])
654 warning ("call-clobbered register used for global register variable");
655
656 global_regs[i] = 1;
657
658 /* If already fixed, nothing else to do. */
659 if (fixed_regs[i])
660 return;
661
662 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
663 n_non_fixed_regs--;
664
665 SET_HARD_REG_BIT (fixed_reg_set, i);
666 SET_HARD_REG_BIT (call_used_reg_set, i);
667 SET_HARD_REG_BIT (call_fixed_reg_set, i);
668 }
669 \f
670 /* Now the data and code for the `regclass' pass, which happens
671 just before local-alloc. */
672
673 /* The `costs' struct records the cost of using a hard register of each class
674 and of using memory for each pseudo. We use this data to set up
675 register class preferences. */
676
677 struct costs
678 {
679 int cost[N_REG_CLASSES];
680 int mem_cost;
681 };
682
683 /* Structure used to record preferrences of given pseudo. */
684 struct reg_pref
685 {
686 /* (enum reg_class) prefclass is the preferred class. */
687 char prefclass;
688
689 /* altclass is a register class that we should use for allocating
690 pseudo if no register in the preferred class is available.
691 If no register in this class is available, memory is preferred.
692
693 It might appear to be more general to have a bitmask of classes here,
694 but since it is recommended that there be a class corresponding to the
695 union of most major pair of classes, that generality is not required. */
696 char altclass;
697 };
698
699 /* Record the cost of each class for each pseudo. */
700
701 static struct costs *costs;
702
703 /* Initialized once, and used to initialize cost values for each insn. */
704
705 static struct costs init_cost;
706
707 /* Record preferrences of each pseudo.
708 This is available after `regclass' is run. */
709
710 static struct reg_pref *reg_pref;
711
712 /* Allocated buffers for reg_pref. */
713
714 static struct reg_pref *reg_pref_buffer;
715
716 /* Account for the fact that insns within a loop are executed very commonly,
717 but don't keep doing this as loops go too deep. */
718
719 static int loop_cost;
720
721 static rtx scan_one_insn PARAMS ((rtx, int));
722 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
723 static void dump_regclass PARAMS ((FILE *));
724 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
725 char *, const char **, rtx,
726 struct costs *, struct reg_pref *));
727 static int copy_cost PARAMS ((rtx, enum machine_mode,
728 enum reg_class, int));
729 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
730 #ifdef FORBIDDEN_INC_DEC_CLASSES
731 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
732 #endif
733 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
734
735 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
736 This function is sometimes called before the info has been computed.
737 When that happens, just return GENERAL_REGS, which is innocuous. */
738
739 enum reg_class
740 reg_preferred_class (regno)
741 int regno;
742 {
743 if (reg_pref == 0)
744 return GENERAL_REGS;
745 return (enum reg_class) reg_pref[regno].prefclass;
746 }
747
748 enum reg_class
749 reg_alternate_class (regno)
750 int regno;
751 {
752 if (reg_pref == 0)
753 return ALL_REGS;
754
755 return (enum reg_class) reg_pref[regno].altclass;
756 }
757
758 /* Initialize some global data for this pass. */
759
760 void
761 regclass_init ()
762 {
763 int i;
764
765 init_cost.mem_cost = 10000;
766 for (i = 0; i < N_REG_CLASSES; i++)
767 init_cost.cost[i] = 10000;
768
769 /* This prevents dump_flow_info from losing if called
770 before regclass is run. */
771 reg_pref = NULL;
772
773 /* No more global register variables may be declared. */
774 no_global_reg_vars = 1;
775 }
776 \f
777 /* Dump register costs. */
778 static void
779 dump_regclass (dump)
780 FILE *dump;
781 {
782 static const char *const reg_class_names[] = REG_CLASS_NAMES;
783 int i;
784 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
785 {
786 enum reg_class class;
787 if (REG_N_REFS (i))
788 {
789 fprintf (dump, " Register %i costs:", i);
790 for (class = 0; class < N_REG_CLASSES; class++)
791 fprintf (dump, " %s:%i", reg_class_names[(int) class],
792 costs[i].cost[class]);
793 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
794 }
795 }
796 }
797 \f
798
799 /* Calculate the costs of insn operands. */
800
801 static void
802 record_operand_costs (insn, op_costs, reg_pref)
803 rtx insn;
804 struct costs *op_costs;
805 struct reg_pref *reg_pref;
806 {
807 const char *constraints[MAX_RECOG_OPERANDS];
808 enum machine_mode modes[MAX_RECOG_OPERANDS];
809 char subreg_changes_size[MAX_RECOG_OPERANDS];
810 int i;
811
812 for (i = 0; i < recog_data.n_operands; i++)
813 {
814 constraints[i] = recog_data.constraints[i];
815 modes[i] = recog_data.operand_mode[i];
816 }
817 memset (subreg_changes_size, 0, sizeof (subreg_changes_size));
818
819 /* If we get here, we are set up to record the costs of all the
820 operands for this insn. Start by initializing the costs.
821 Then handle any address registers. Finally record the desired
822 classes for any pseudos, doing it twice if some pair of
823 operands are commutative. */
824
825 for (i = 0; i < recog_data.n_operands; i++)
826 {
827 op_costs[i] = init_cost;
828
829 if (GET_CODE (recog_data.operand[i]) == SUBREG)
830 {
831 rtx inner = SUBREG_REG (recog_data.operand[i]);
832 if (GET_MODE_SIZE (modes[i]) != GET_MODE_SIZE (GET_MODE (inner)))
833 subreg_changes_size[i] = 1;
834 recog_data.operand[i] = inner;
835 }
836
837 if (GET_CODE (recog_data.operand[i]) == MEM)
838 record_address_regs (XEXP (recog_data.operand[i], 0),
839 BASE_REG_CLASS, loop_cost * 2);
840 else if (constraints[i][0] == 'p')
841 record_address_regs (recog_data.operand[i],
842 BASE_REG_CLASS, loop_cost * 2);
843 }
844
845 /* Check for commutative in a separate loop so everything will
846 have been initialized. We must do this even if one operand
847 is a constant--see addsi3 in m68k.md. */
848
849 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
850 if (constraints[i][0] == '%')
851 {
852 const char *xconstraints[MAX_RECOG_OPERANDS];
853 int j;
854
855 /* Handle commutative operands by swapping the constraints.
856 We assume the modes are the same. */
857
858 for (j = 0; j < recog_data.n_operands; j++)
859 xconstraints[j] = constraints[j];
860
861 xconstraints[i] = constraints[i+1];
862 xconstraints[i+1] = constraints[i];
863 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
864 recog_data.operand, modes, subreg_changes_size,
865 xconstraints, insn, op_costs, reg_pref);
866 }
867
868 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
869 recog_data.operand, modes, subreg_changes_size,
870 constraints, insn, op_costs, reg_pref);
871 }
872 \f
873 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
874 time it would save code to put a certain register in a certain class.
875 PASS, when nonzero, inhibits some optimizations which need only be done
876 once.
877 Return the last insn processed, so that the scan can be continued from
878 there. */
879
880 static rtx
881 scan_one_insn (insn, pass)
882 rtx insn;
883 int pass;
884 {
885 enum rtx_code code = GET_CODE (insn);
886 enum rtx_code pat_code;
887 rtx set, note;
888 int i, j;
889 struct costs op_costs[MAX_RECOG_OPERANDS];
890
891 if (GET_RTX_CLASS (code) != 'i')
892 return insn;
893
894 pat_code = GET_CODE (PATTERN (insn));
895 if (pat_code == USE
896 || pat_code == CLOBBER
897 || pat_code == ASM_INPUT
898 || pat_code == ADDR_VEC
899 || pat_code == ADDR_DIFF_VEC)
900 return insn;
901
902 set = single_set (insn);
903 extract_insn (insn);
904
905 /* If this insn loads a parameter from its stack slot, then
906 it represents a savings, rather than a cost, if the
907 parameter is stored in memory. Record this fact. */
908
909 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
910 && GET_CODE (SET_SRC (set)) == MEM
911 && (note = find_reg_note (insn, REG_EQUIV,
912 NULL_RTX)) != 0
913 && GET_CODE (XEXP (note, 0)) == MEM)
914 {
915 costs[REGNO (SET_DEST (set))].mem_cost
916 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
917 GENERAL_REGS, 1)
918 * loop_cost);
919 record_address_regs (XEXP (SET_SRC (set), 0),
920 BASE_REG_CLASS, loop_cost * 2);
921 return insn;
922 }
923
924 /* Improve handling of two-address insns such as
925 (set X (ashift CONST Y)) where CONST must be made to
926 match X. Change it into two insns: (set X CONST)
927 (set X (ashift X Y)). If we left this for reloading, it
928 would probably get three insns because X and Y might go
929 in the same place. This prevents X and Y from receiving
930 the same hard reg.
931
932 We can only do this if the modes of operands 0 and 1
933 (which might not be the same) are tieable and we only need
934 do this during our first pass. */
935
936 if (pass == 0 && optimize
937 && recog_data.n_operands >= 3
938 && recog_data.constraints[1][0] == '0'
939 && recog_data.constraints[1][1] == 0
940 && CONSTANT_P (recog_data.operand[1])
941 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
942 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
943 && GET_CODE (recog_data.operand[0]) == REG
944 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
945 recog_data.operand_mode[1]))
946 {
947 rtx previnsn = prev_real_insn (insn);
948 rtx dest
949 = gen_lowpart (recog_data.operand_mode[1],
950 recog_data.operand[0]);
951 rtx newinsn
952 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
953
954 /* If this insn was the start of a basic block,
955 include the new insn in that block.
956 We need not check for code_label here;
957 while a basic block can start with a code_label,
958 INSN could not be at the beginning of that block. */
959 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
960 {
961 int b;
962 for (b = 0; b < n_basic_blocks; b++)
963 if (insn == BLOCK_HEAD (b))
964 BLOCK_HEAD (b) = newinsn;
965 }
966
967 /* This makes one more setting of new insns's dest. */
968 REG_N_SETS (REGNO (recog_data.operand[0]))++;
969
970 *recog_data.operand_loc[1] = recog_data.operand[0];
971 for (i = recog_data.n_dups - 1; i >= 0; i--)
972 if (recog_data.dup_num[i] == 1)
973 *recog_data.dup_loc[i] = recog_data.operand[0];
974
975 return PREV_INSN (newinsn);
976 }
977
978 record_operand_costs (insn, op_costs, reg_pref);
979
980 /* Now add the cost for each operand to the total costs for
981 its register. */
982
983 for (i = 0; i < recog_data.n_operands; i++)
984 if (GET_CODE (recog_data.operand[i]) == REG
985 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
986 {
987 int regno = REGNO (recog_data.operand[i]);
988 struct costs *p = &costs[regno], *q = &op_costs[i];
989
990 p->mem_cost += q->mem_cost * loop_cost;
991 for (j = 0; j < N_REG_CLASSES; j++)
992 p->cost[j] += q->cost[j] * loop_cost;
993 }
994
995 return insn;
996 }
997
998 /* This is a pass of the compiler that scans all instructions
999 and calculates the preferred class for each pseudo-register.
1000 This information can be accessed later by calling `reg_preferred_class'.
1001 This pass comes just before local register allocation. */
1002
1003 void
1004 regclass (f, nregs, dump)
1005 rtx f;
1006 int nregs;
1007 FILE *dump;
1008 {
1009 register rtx insn;
1010 register int i;
1011 int pass;
1012
1013 init_recog ();
1014
1015 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1016
1017 #ifdef FORBIDDEN_INC_DEC_CLASSES
1018
1019 in_inc_dec = (char *) xmalloc (nregs);
1020
1021 /* Initialize information about which register classes can be used for
1022 pseudos that are auto-incremented or auto-decremented. It would
1023 seem better to put this in init_reg_sets, but we need to be able
1024 to allocate rtx, which we can't do that early. */
1025
1026 for (i = 0; i < N_REG_CLASSES; i++)
1027 {
1028 rtx r = gen_rtx_REG (VOIDmode, 0);
1029 enum machine_mode m;
1030 register int j;
1031
1032 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1033 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1034 {
1035 REGNO (r) = j;
1036
1037 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1038 m = (enum machine_mode) ((int) m + 1))
1039 if (HARD_REGNO_MODE_OK (j, m))
1040 {
1041 PUT_MODE (r, m);
1042
1043 /* If a register is not directly suitable for an
1044 auto-increment or decrement addressing mode and
1045 requires secondary reloads, disallow its class from
1046 being used in such addresses. */
1047
1048 if ((0
1049 #ifdef SECONDARY_RELOAD_CLASS
1050 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1051 != NO_REGS)
1052 #else
1053 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1054 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1055 != NO_REGS)
1056 #endif
1057 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1058 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1059 != NO_REGS)
1060 #endif
1061 #endif
1062 )
1063 && ! auto_inc_dec_reg_p (r, m))
1064 forbidden_inc_dec_class[i] = 1;
1065 }
1066 }
1067 }
1068 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1069
1070 /* Normally we scan the insns once and determine the best class to use for
1071 each register. However, if -fexpensive_optimizations are on, we do so
1072 twice, the second time using the tentative best classes to guide the
1073 selection. */
1074
1075 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1076 {
1077 int index;
1078
1079 if (dump)
1080 fprintf (dump, "\n\nPass %i\n\n",pass);
1081 /* Zero out our accumulation of the cost of each class for each reg. */
1082
1083 bzero ((char *) costs, nregs * sizeof (struct costs));
1084
1085 #ifdef FORBIDDEN_INC_DEC_CLASSES
1086 bzero (in_inc_dec, nregs);
1087 #endif
1088
1089 /* Scan the instructions and record each time it would
1090 save code to put a certain register in a certain class. */
1091
1092 if (!optimize)
1093 {
1094 loop_cost = 1;
1095 for (insn = f; insn; insn = NEXT_INSN (insn))
1096 insn = scan_one_insn (insn, pass);
1097 }
1098 else
1099 for (index = 0; index < n_basic_blocks; index++)
1100 {
1101 basic_block bb = BASIC_BLOCK (index);
1102
1103 /* Show that an insn inside a loop is likely to be executed three
1104 times more than insns outside a loop. This is much more
1105 aggressive than the assumptions made elsewhere and is being
1106 tried as an experiment. */
1107 if (optimize_size)
1108 loop_cost = 1;
1109 else
1110 loop_cost = 1 << (2 * MIN (bb->loop_depth, 5));
1111 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1112 {
1113 insn = scan_one_insn (insn, pass);
1114 if (insn == bb->end)
1115 break;
1116 }
1117 }
1118
1119 /* Now for each register look at how desirable each class is
1120 and find which class is preferred. Store that in
1121 `prefclass'. Record in `altclass' the largest register
1122 class any of whose registers is better than memory. */
1123
1124 if (pass == 0)
1125 reg_pref = reg_pref_buffer;
1126
1127 if (dump)
1128 {
1129 dump_regclass (dump);
1130 fprintf (dump,"\n");
1131 }
1132 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1133 {
1134 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1135 enum reg_class best = ALL_REGS, alt = NO_REGS;
1136 /* This is an enum reg_class, but we call it an int
1137 to save lots of casts. */
1138 register int class;
1139 register struct costs *p = &costs[i];
1140
1141 /* In non-optimizing compilation REG_N_REFS is not initialized
1142 yet. */
1143 if (optimize && !REG_N_REFS (i))
1144 continue;
1145
1146 for (class = (int) ALL_REGS - 1; class > 0; class--)
1147 {
1148 /* Ignore classes that are too small for this operand or
1149 invalid for a operand that was auto-incremented. */
1150 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1151 > reg_class_size[class]
1152 #ifdef FORBIDDEN_INC_DEC_CLASSES
1153 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1154 #endif
1155 )
1156 ;
1157 else if (p->cost[class] < best_cost)
1158 {
1159 best_cost = p->cost[class];
1160 best = (enum reg_class) class;
1161 }
1162 else if (p->cost[class] == best_cost)
1163 best = reg_class_subunion[(int)best][class];
1164 }
1165
1166 /* Record the alternate register class; i.e., a class for which
1167 every register in it is better than using memory. If adding a
1168 class would make a smaller class (i.e., no union of just those
1169 classes exists), skip that class. The major unions of classes
1170 should be provided as a register class. Don't do this if we
1171 will be doing it again later. */
1172
1173 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1174 for (class = 0; class < N_REG_CLASSES; class++)
1175 if (p->cost[class] < p->mem_cost
1176 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1177 > reg_class_size[(int) alt])
1178 #ifdef FORBIDDEN_INC_DEC_CLASSES
1179 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1180 #endif
1181 )
1182 alt = reg_class_subunion[(int) alt][class];
1183
1184 /* If we don't add any classes, nothing to try. */
1185 if (alt == best)
1186 alt = NO_REGS;
1187
1188 if (dump
1189 && (reg_pref[i].prefclass != (int) best
1190 || reg_pref[i].altclass != (int) alt))
1191 {
1192 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1193 fprintf (dump, " Register %i", i);
1194 if (alt == ALL_REGS || best == ALL_REGS)
1195 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1196 else if (alt == NO_REGS)
1197 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1198 else
1199 fprintf (dump, " pref %s, else %s\n",
1200 reg_class_names[(int) best],
1201 reg_class_names[(int) alt]);
1202 }
1203
1204 /* We cast to (int) because (char) hits bugs in some compilers. */
1205 reg_pref[i].prefclass = (int) best;
1206 reg_pref[i].altclass = (int) alt;
1207 }
1208 }
1209
1210 #ifdef FORBIDDEN_INC_DEC_CLASSES
1211 free (in_inc_dec);
1212 #endif
1213 free (costs);
1214 }
1215 \f
1216 /* Record the cost of using memory or registers of various classes for
1217 the operands in INSN.
1218
1219 N_ALTS is the number of alternatives.
1220
1221 N_OPS is the number of operands.
1222
1223 OPS is an array of the operands.
1224
1225 MODES are the modes of the operands, in case any are VOIDmode.
1226
1227 CONSTRAINTS are the constraints to use for the operands. This array
1228 is modified by this procedure.
1229
1230 This procedure works alternative by alternative. For each alternative
1231 we assume that we will be able to allocate all pseudos to their ideal
1232 register class and calculate the cost of using that alternative. Then
1233 we compute for each operand that is a pseudo-register, the cost of
1234 having the pseudo allocated to each register class and using it in that
1235 alternative. To this cost is added the cost of the alternative.
1236
1237 The cost of each class for this insn is its lowest cost among all the
1238 alternatives. */
1239
1240 static void
1241 record_reg_classes (n_alts, n_ops, ops, modes, subreg_changes_size,
1242 constraints, insn, op_costs, reg_pref)
1243 int n_alts;
1244 int n_ops;
1245 rtx *ops;
1246 enum machine_mode *modes;
1247 char *subreg_changes_size ATTRIBUTE_UNUSED;
1248 const char **constraints;
1249 rtx insn;
1250 struct costs *op_costs;
1251 struct reg_pref *reg_pref;
1252 {
1253 int alt;
1254 int i, j;
1255 rtx set;
1256
1257 /* Process each alternative, each time minimizing an operand's cost with
1258 the cost for each operand in that alternative. */
1259
1260 for (alt = 0; alt < n_alts; alt++)
1261 {
1262 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1263 int alt_fail = 0;
1264 int alt_cost = 0;
1265 enum reg_class classes[MAX_RECOG_OPERANDS];
1266 int allows_mem[MAX_RECOG_OPERANDS];
1267 int class;
1268
1269 for (i = 0; i < n_ops; i++)
1270 {
1271 const char *p = constraints[i];
1272 rtx op = ops[i];
1273 enum machine_mode mode = modes[i];
1274 int allows_addr = 0;
1275 int win = 0;
1276 unsigned char c;
1277
1278 /* Initially show we know nothing about the register class. */
1279 classes[i] = NO_REGS;
1280 allows_mem[i] = 0;
1281
1282 /* If this operand has no constraints at all, we can conclude
1283 nothing about it since anything is valid. */
1284
1285 if (*p == 0)
1286 {
1287 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1288 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1289
1290 continue;
1291 }
1292
1293 /* If this alternative is only relevant when this operand
1294 matches a previous operand, we do different things depending
1295 on whether this operand is a pseudo-reg or not. We must process
1296 any modifiers for the operand before we can make this test. */
1297
1298 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1299 p++;
1300
1301 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1302 {
1303 /* Copy class and whether memory is allowed from the matching
1304 alternative. Then perform any needed cost computations
1305 and/or adjustments. */
1306 j = p[0] - '0';
1307 classes[i] = classes[j];
1308 allows_mem[i] = allows_mem[j];
1309
1310 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1311 {
1312 /* If this matches the other operand, we have no added
1313 cost and we win. */
1314 if (rtx_equal_p (ops[j], op))
1315 win = 1;
1316
1317 /* If we can put the other operand into a register, add to
1318 the cost of this alternative the cost to copy this
1319 operand to the register used for the other operand. */
1320
1321 else if (classes[j] != NO_REGS)
1322 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1323 }
1324 else if (GET_CODE (ops[j]) != REG
1325 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1326 {
1327 /* This op is a pseudo but the one it matches is not. */
1328
1329 /* If we can't put the other operand into a register, this
1330 alternative can't be used. */
1331
1332 if (classes[j] == NO_REGS)
1333 alt_fail = 1;
1334
1335 /* Otherwise, add to the cost of this alternative the cost
1336 to copy the other operand to the register used for this
1337 operand. */
1338
1339 else
1340 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1341 }
1342 else
1343 {
1344 /* The costs of this operand are not the same as the other
1345 operand since move costs are not symmetric. Moreover,
1346 if we cannot tie them, this alternative needs to do a
1347 copy, which is one instruction. */
1348
1349 struct costs *pp = &this_op_costs[i];
1350
1351 for (class = 0; class < N_REG_CLASSES; class++)
1352 pp->cost[class]
1353 = ((recog_data.operand_type[i] != OP_OUT
1354 ? may_move_in_cost[class][(int) classes[i]]
1355 : 0)
1356 + (recog_data.operand_type[i] != OP_IN
1357 ? may_move_out_cost[(int) classes[i]][class]
1358 : 0));
1359
1360 /* If the alternative actually allows memory, make things
1361 a bit cheaper since we won't need an extra insn to
1362 load it. */
1363
1364 pp->mem_cost
1365 = ((recog_data.operand_type[i] != OP_IN
1366 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1367 : 0)
1368 + (recog_data.operand_type[i] != OP_OUT
1369 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1370 : 0) - allows_mem[i]);
1371
1372 /* If we have assigned a class to this register in our
1373 first pass, add a cost to this alternative corresponding
1374 to what we would add if this register were not in the
1375 appropriate class. */
1376
1377 if (reg_pref)
1378 alt_cost
1379 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
1380 [(int) classes[i]]);
1381
1382 if (REGNO (ops[i]) != REGNO (ops[j])
1383 && ! find_reg_note (insn, REG_DEAD, op))
1384 alt_cost += 2;
1385
1386 /* This is in place of ordinary cost computation
1387 for this operand, so skip to the end of the
1388 alternative (should be just one character). */
1389 while (*p && *p++ != ',')
1390 ;
1391
1392 constraints[i] = p;
1393 continue;
1394 }
1395 }
1396
1397 /* Scan all the constraint letters. See if the operand matches
1398 any of the constraints. Collect the valid register classes
1399 and see if this operand accepts memory. */
1400
1401 while (*p && (c = *p++) != ',')
1402 switch (c)
1403 {
1404 case '*':
1405 /* Ignore the next letter for this pass. */
1406 p++;
1407 break;
1408
1409 case '?':
1410 alt_cost += 2;
1411 case '!': case '#': case '&':
1412 case '0': case '1': case '2': case '3': case '4':
1413 case '5': case '6': case '7': case '8': case '9':
1414 break;
1415
1416 case 'p':
1417 allows_addr = 1;
1418 win = address_operand (op, GET_MODE (op));
1419 /* We know this operand is an address, so we want it to be
1420 allocated to a register that can be the base of an
1421 address, ie BASE_REG_CLASS. */
1422 classes[i]
1423 = reg_class_subunion[(int) classes[i]]
1424 [(int) BASE_REG_CLASS];
1425 break;
1426
1427 case 'm': case 'o': case 'V':
1428 /* It doesn't seem worth distinguishing between offsettable
1429 and non-offsettable addresses here. */
1430 allows_mem[i] = 1;
1431 if (GET_CODE (op) == MEM)
1432 win = 1;
1433 break;
1434
1435 case '<':
1436 if (GET_CODE (op) == MEM
1437 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1438 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1439 win = 1;
1440 break;
1441
1442 case '>':
1443 if (GET_CODE (op) == MEM
1444 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1445 || GET_CODE (XEXP (op, 0)) == POST_INC))
1446 win = 1;
1447 break;
1448
1449 case 'E':
1450 #ifndef REAL_ARITHMETIC
1451 /* Match any floating double constant, but only if
1452 we can examine the bits of it reliably. */
1453 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1454 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1455 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1456 break;
1457 #endif
1458 if (GET_CODE (op) == CONST_DOUBLE)
1459 win = 1;
1460 break;
1461
1462 case 'F':
1463 if (GET_CODE (op) == CONST_DOUBLE)
1464 win = 1;
1465 break;
1466
1467 case 'G':
1468 case 'H':
1469 if (GET_CODE (op) == CONST_DOUBLE
1470 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1471 win = 1;
1472 break;
1473
1474 case 's':
1475 if (GET_CODE (op) == CONST_INT
1476 || (GET_CODE (op) == CONST_DOUBLE
1477 && GET_MODE (op) == VOIDmode))
1478 break;
1479 case 'i':
1480 if (CONSTANT_P (op)
1481 #ifdef LEGITIMATE_PIC_OPERAND_P
1482 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1483 #endif
1484 )
1485 win = 1;
1486 break;
1487
1488 case 'n':
1489 if (GET_CODE (op) == CONST_INT
1490 || (GET_CODE (op) == CONST_DOUBLE
1491 && GET_MODE (op) == VOIDmode))
1492 win = 1;
1493 break;
1494
1495 case 'I':
1496 case 'J':
1497 case 'K':
1498 case 'L':
1499 case 'M':
1500 case 'N':
1501 case 'O':
1502 case 'P':
1503 if (GET_CODE (op) == CONST_INT
1504 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1505 win = 1;
1506 break;
1507
1508 case 'X':
1509 win = 1;
1510 break;
1511
1512 #ifdef EXTRA_CONSTRAINT
1513 case 'Q':
1514 case 'R':
1515 case 'S':
1516 case 'T':
1517 case 'U':
1518 if (EXTRA_CONSTRAINT (op, c))
1519 win = 1;
1520 break;
1521 #endif
1522
1523 case 'g':
1524 if (GET_CODE (op) == MEM
1525 || (CONSTANT_P (op)
1526 #ifdef LEGITIMATE_PIC_OPERAND_P
1527 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1528 #endif
1529 ))
1530 win = 1;
1531 allows_mem[i] = 1;
1532 case 'r':
1533 classes[i]
1534 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1535 break;
1536
1537 default:
1538 classes[i]
1539 = reg_class_subunion[(int) classes[i]]
1540 [(int) REG_CLASS_FROM_LETTER (c)];
1541 }
1542
1543 constraints[i] = p;
1544
1545 #ifdef CLASS_CANNOT_CHANGE_SIZE
1546 /* If we noted a subreg earlier, and the selected class is a
1547 subclass of CLASS_CANNOT_CHANGE_SIZE, zap it. */
1548 if (subreg_changes_size[i]
1549 && (reg_class_subunion[(int) CLASS_CANNOT_CHANGE_SIZE]
1550 [(int) classes[i]]
1551 == CLASS_CANNOT_CHANGE_SIZE))
1552 classes[i] = NO_REGS;
1553 #endif
1554
1555 /* How we account for this operand now depends on whether it is a
1556 pseudo register or not. If it is, we first check if any
1557 register classes are valid. If not, we ignore this alternative,
1558 since we want to assume that all pseudos get allocated for
1559 register preferencing. If some register class is valid, compute
1560 the costs of moving the pseudo into that class. */
1561
1562 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1563 {
1564 if (classes[i] == NO_REGS)
1565 {
1566 /* We must always fail if the operand is a REG, but
1567 we did not find a suitable class.
1568
1569 Otherwise we may perform an uninitialized read
1570 from this_op_costs after the `continue' statement
1571 below. */
1572 alt_fail = 1;
1573 }
1574 else
1575 {
1576 struct costs *pp = &this_op_costs[i];
1577
1578 for (class = 0; class < N_REG_CLASSES; class++)
1579 pp->cost[class]
1580 = ((recog_data.operand_type[i] != OP_OUT
1581 ? may_move_in_cost[class][(int) classes[i]]
1582 : 0)
1583 + (recog_data.operand_type[i] != OP_IN
1584 ? may_move_out_cost[(int) classes[i]][class]
1585 : 0));
1586
1587 /* If the alternative actually allows memory, make things
1588 a bit cheaper since we won't need an extra insn to
1589 load it. */
1590
1591 pp->mem_cost
1592 = ((recog_data.operand_type[i] != OP_IN
1593 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1594 : 0)
1595 + (recog_data.operand_type[i] != OP_OUT
1596 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1597 : 0) - allows_mem[i]);
1598
1599 /* If we have assigned a class to this register in our
1600 first pass, add a cost to this alternative corresponding
1601 to what we would add if this register were not in the
1602 appropriate class. */
1603
1604 if (reg_pref)
1605 alt_cost
1606 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
1607 [(int) classes[i]]);
1608 }
1609 }
1610
1611 /* Otherwise, if this alternative wins, either because we
1612 have already determined that or if we have a hard register of
1613 the proper class, there is no cost for this alternative. */
1614
1615 else if (win
1616 || (GET_CODE (op) == REG
1617 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1618 ;
1619
1620 /* If registers are valid, the cost of this alternative includes
1621 copying the object to and/or from a register. */
1622
1623 else if (classes[i] != NO_REGS)
1624 {
1625 if (recog_data.operand_type[i] != OP_OUT)
1626 alt_cost += copy_cost (op, mode, classes[i], 1);
1627
1628 if (recog_data.operand_type[i] != OP_IN)
1629 alt_cost += copy_cost (op, mode, classes[i], 0);
1630 }
1631
1632 /* The only other way this alternative can be used is if this is a
1633 constant that could be placed into memory. */
1634
1635 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1636 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1637 else
1638 alt_fail = 1;
1639 }
1640
1641 if (alt_fail)
1642 continue;
1643
1644 /* Finally, update the costs with the information we've calculated
1645 about this alternative. */
1646
1647 for (i = 0; i < n_ops; i++)
1648 if (GET_CODE (ops[i]) == REG
1649 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1650 {
1651 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1652 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1653
1654 pp->mem_cost = MIN (pp->mem_cost,
1655 (qq->mem_cost + alt_cost) * scale);
1656
1657 for (class = 0; class < N_REG_CLASSES; class++)
1658 pp->cost[class] = MIN (pp->cost[class],
1659 (qq->cost[class] + alt_cost) * scale);
1660 }
1661 }
1662
1663 /* If this insn is a single set copying operand 1 to operand 0
1664 and one operand is a pseudo with the other a hard reg or a pseudo
1665 that prefers a register that is in its own register class then
1666 we may want to adjust the cost of that register class to -1.
1667
1668 Avoid the adjustment if the source does not die to avoid stressing of
1669 register allocator by preferrencing two coliding registers into single
1670 class.
1671
1672 Also avoid the adjustment if a copy between registers of the class
1673 is expensive (ten times the cost of a default copy is considered
1674 arbitrarily expensive). This avoids losing when the preferred class
1675 is very expensive as the source of a copy instruction. */
1676
1677 if ((set = single_set (insn)) != 0
1678 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1679 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1680 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1681 for (i = 0; i <= 1; i++)
1682 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1683 {
1684 unsigned int regno = REGNO (ops[!i]);
1685 enum machine_mode mode = GET_MODE (ops[!i]);
1686 int class;
1687 unsigned int nr;
1688
1689 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1690 {
1691 enum reg_class pref = reg_pref[regno].prefclass;
1692
1693 if ((reg_class_size[(unsigned char) pref]
1694 == CLASS_MAX_NREGS (pref, mode))
1695 && REGISTER_MOVE_COST (pref, pref) < 10 * 2)
1696 op_costs[i].cost[(unsigned char) pref] = -1;
1697 }
1698 else if (regno < FIRST_PSEUDO_REGISTER)
1699 for (class = 0; class < N_REG_CLASSES; class++)
1700 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1701 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1702 {
1703 if (reg_class_size[class] == 1)
1704 op_costs[i].cost[class] = -1;
1705 else
1706 {
1707 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1708 {
1709 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1710 regno + nr))
1711 break;
1712 }
1713
1714 if (nr == HARD_REGNO_NREGS (regno,mode))
1715 op_costs[i].cost[class] = -1;
1716 }
1717 }
1718 }
1719 }
1720 \f
1721 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1722 TO_P is zero) a register of class CLASS in mode MODE.
1723
1724 X must not be a pseudo. */
1725
1726 static int
1727 copy_cost (x, mode, class, to_p)
1728 rtx x;
1729 enum machine_mode mode ATTRIBUTE_UNUSED;
1730 enum reg_class class;
1731 int to_p ATTRIBUTE_UNUSED;
1732 {
1733 #ifdef HAVE_SECONDARY_RELOADS
1734 enum reg_class secondary_class = NO_REGS;
1735 #endif
1736
1737 /* If X is a SCRATCH, there is actually nothing to move since we are
1738 assuming optimal allocation. */
1739
1740 if (GET_CODE (x) == SCRATCH)
1741 return 0;
1742
1743 /* Get the class we will actually use for a reload. */
1744 class = PREFERRED_RELOAD_CLASS (x, class);
1745
1746 #ifdef HAVE_SECONDARY_RELOADS
1747 /* If we need a secondary reload (we assume here that we are using
1748 the secondary reload as an intermediate, not a scratch register), the
1749 cost is that to load the input into the intermediate register, then
1750 to copy them. We use a special value of TO_P to avoid recursion. */
1751
1752 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1753 if (to_p == 1)
1754 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1755 #endif
1756
1757 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1758 if (! to_p)
1759 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1760 #endif
1761
1762 if (secondary_class != NO_REGS)
1763 return (move_cost[(int) secondary_class][(int) class]
1764 + copy_cost (x, mode, secondary_class, 2));
1765 #endif /* HAVE_SECONDARY_RELOADS */
1766
1767 /* For memory, use the memory move cost, for (hard) registers, use the
1768 cost to move between the register classes, and use 2 for everything
1769 else (constants). */
1770
1771 if (GET_CODE (x) == MEM || class == NO_REGS)
1772 return MEMORY_MOVE_COST (mode, class, to_p);
1773
1774 else if (GET_CODE (x) == REG)
1775 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1776
1777 else
1778 /* If this is a constant, we may eventually want to call rtx_cost here. */
1779 return 2;
1780 }
1781 \f
1782 /* Record the pseudo registers we must reload into hard registers
1783 in a subexpression of a memory address, X.
1784
1785 CLASS is the class that the register needs to be in and is either
1786 BASE_REG_CLASS or INDEX_REG_CLASS.
1787
1788 SCALE is twice the amount to multiply the cost by (it is twice so we
1789 can represent half-cost adjustments). */
1790
1791 static void
1792 record_address_regs (x, class, scale)
1793 rtx x;
1794 enum reg_class class;
1795 int scale;
1796 {
1797 register enum rtx_code code = GET_CODE (x);
1798
1799 switch (code)
1800 {
1801 case CONST_INT:
1802 case CONST:
1803 case CC0:
1804 case PC:
1805 case SYMBOL_REF:
1806 case LABEL_REF:
1807 return;
1808
1809 case PLUS:
1810 /* When we have an address that is a sum,
1811 we must determine whether registers are "base" or "index" regs.
1812 If there is a sum of two registers, we must choose one to be
1813 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1814 to make a good choice most of the time. We only need to do this
1815 on machines that can have two registers in an address and where
1816 the base and index register classes are different.
1817
1818 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1819 that seems bogus since it should only be set when we are sure
1820 the register is being used as a pointer. */
1821
1822 {
1823 rtx arg0 = XEXP (x, 0);
1824 rtx arg1 = XEXP (x, 1);
1825 register enum rtx_code code0 = GET_CODE (arg0);
1826 register enum rtx_code code1 = GET_CODE (arg1);
1827
1828 /* Look inside subregs. */
1829 if (code0 == SUBREG)
1830 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1831 if (code1 == SUBREG)
1832 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1833
1834 /* If this machine only allows one register per address, it must
1835 be in the first operand. */
1836
1837 if (MAX_REGS_PER_ADDRESS == 1)
1838 record_address_regs (arg0, class, scale);
1839
1840 /* If index and base registers are the same on this machine, just
1841 record registers in any non-constant operands. We assume here,
1842 as well as in the tests below, that all addresses are in
1843 canonical form. */
1844
1845 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1846 {
1847 record_address_regs (arg0, class, scale);
1848 if (! CONSTANT_P (arg1))
1849 record_address_regs (arg1, class, scale);
1850 }
1851
1852 /* If the second operand is a constant integer, it doesn't change
1853 what class the first operand must be. */
1854
1855 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1856 record_address_regs (arg0, class, scale);
1857
1858 /* If the second operand is a symbolic constant, the first operand
1859 must be an index register. */
1860
1861 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1862 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1863
1864 /* If both operands are registers but one is already a hard register
1865 of index or base class, give the other the class that the hard
1866 register is not. */
1867
1868 #ifdef REG_OK_FOR_BASE_P
1869 else if (code0 == REG && code1 == REG
1870 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1871 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1872 record_address_regs (arg1,
1873 REG_OK_FOR_BASE_P (arg0)
1874 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1875 scale);
1876 else if (code0 == REG && code1 == REG
1877 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1878 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1879 record_address_regs (arg0,
1880 REG_OK_FOR_BASE_P (arg1)
1881 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1882 scale);
1883 #endif
1884
1885 /* If one operand is known to be a pointer, it must be the base
1886 with the other operand the index. Likewise if the other operand
1887 is a MULT. */
1888
1889 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1890 || code1 == MULT)
1891 {
1892 record_address_regs (arg0, BASE_REG_CLASS, scale);
1893 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1894 }
1895 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1896 || code0 == MULT)
1897 {
1898 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1899 record_address_regs (arg1, BASE_REG_CLASS, scale);
1900 }
1901
1902 /* Otherwise, count equal chances that each might be a base
1903 or index register. This case should be rare. */
1904
1905 else
1906 {
1907 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1908 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1909 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1910 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1911 }
1912 }
1913 break;
1914
1915 case POST_INC:
1916 case PRE_INC:
1917 case POST_DEC:
1918 case PRE_DEC:
1919 /* Double the importance of a pseudo register that is incremented
1920 or decremented, since it would take two extra insns
1921 if it ends up in the wrong place. If the operand is a pseudo,
1922 show it is being used in an INC_DEC context. */
1923
1924 #ifdef FORBIDDEN_INC_DEC_CLASSES
1925 if (GET_CODE (XEXP (x, 0)) == REG
1926 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1927 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1928 #endif
1929
1930 record_address_regs (XEXP (x, 0), class, 2 * scale);
1931 break;
1932
1933 case REG:
1934 {
1935 register struct costs *pp = &costs[REGNO (x)];
1936 register int i;
1937
1938 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1939
1940 for (i = 0; i < N_REG_CLASSES; i++)
1941 pp->cost[i] += (may_move_in_cost[i][(int) class] * scale) / 2;
1942 }
1943 break;
1944
1945 default:
1946 {
1947 register const char *fmt = GET_RTX_FORMAT (code);
1948 register int i;
1949 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1950 if (fmt[i] == 'e')
1951 record_address_regs (XEXP (x, i), class, scale);
1952 }
1953 }
1954 }
1955 \f
1956 #ifdef FORBIDDEN_INC_DEC_CLASSES
1957
1958 /* Return 1 if REG is valid as an auto-increment memory reference
1959 to an object of MODE. */
1960
1961 static int
1962 auto_inc_dec_reg_p (reg, mode)
1963 rtx reg;
1964 enum machine_mode mode;
1965 {
1966 if (HAVE_POST_INCREMENT
1967 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
1968 return 1;
1969
1970 if (HAVE_POST_DECREMENT
1971 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
1972 return 1;
1973
1974 if (HAVE_PRE_INCREMENT
1975 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
1976 return 1;
1977
1978 if (HAVE_PRE_DECREMENT
1979 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
1980 return 1;
1981
1982 return 0;
1983 }
1984 #endif
1985 \f
1986 static short *renumber;
1987 static size_t regno_allocated;
1988 static unsigned int reg_n_max;
1989
1990 /* Allocate enough space to hold NUM_REGS registers for the tables used for
1991 reg_scan and flow_analysis that are indexed by the register number. If
1992 NEW_P is non zero, initialize all of the registers, otherwise only
1993 initialize the new registers allocated. The same table is kept from
1994 function to function, only reallocating it when we need more room. If
1995 RENUMBER_P is non zero, allocate the reg_renumber array also. */
1996
1997 void
1998 allocate_reg_info (num_regs, new_p, renumber_p)
1999 size_t num_regs;
2000 int new_p;
2001 int renumber_p;
2002 {
2003 size_t size_info;
2004 size_t size_renumber;
2005 size_t min = (new_p) ? 0 : reg_n_max;
2006 struct reg_info_data *reg_data;
2007
2008 if (num_regs > regno_allocated)
2009 {
2010 size_t old_allocated = regno_allocated;
2011
2012 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2013 size_renumber = regno_allocated * sizeof (short);
2014
2015 if (!reg_n_info)
2016 {
2017 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2018 renumber = (short *) xmalloc (size_renumber);
2019 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2020 * sizeof (struct reg_pref));
2021 }
2022
2023 else
2024 {
2025 VARRAY_GROW (reg_n_info, regno_allocated);
2026
2027 if (new_p) /* if we're zapping everything, no need to realloc */
2028 {
2029 free ((char *)renumber);
2030 free ((char *)reg_pref);
2031 renumber = (short *) xmalloc (size_renumber);
2032 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2033 * sizeof (struct reg_pref));
2034 }
2035
2036 else
2037 {
2038 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
2039 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2040 regno_allocated
2041 * sizeof (struct reg_pref));
2042 }
2043 }
2044
2045 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2046 + sizeof (struct reg_info_data) - sizeof (reg_info);
2047 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2048 reg_data->min_index = old_allocated;
2049 reg_data->max_index = regno_allocated - 1;
2050 reg_data->next = reg_info_head;
2051 reg_info_head = reg_data;
2052 }
2053
2054 reg_n_max = num_regs;
2055 if (min < num_regs)
2056 {
2057 /* Loop through each of the segments allocated for the actual
2058 reg_info pages, and set up the pointers, zero the pages, etc. */
2059 for (reg_data = reg_info_head;
2060 reg_data && reg_data->max_index >= min;
2061 reg_data = reg_data->next)
2062 {
2063 size_t min_index = reg_data->min_index;
2064 size_t max_index = reg_data->max_index;
2065 size_t max = MIN (max_index, num_regs);
2066 size_t local_min = min - min_index;
2067 size_t i;
2068
2069 if (reg_data->min_index > num_regs)
2070 continue;
2071
2072 if (min < min_index)
2073 local_min = 0;
2074 if (!reg_data->used_p) /* page just allocated with calloc */
2075 reg_data->used_p = 1; /* no need to zero */
2076 else
2077 bzero ((char *) &reg_data->data[local_min],
2078 sizeof (reg_info) * (max - min_index - local_min + 1));
2079
2080 for (i = min_index+local_min; i <= max; i++)
2081 {
2082 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2083 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2084 renumber[i] = -1;
2085 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2086 reg_pref_buffer[i].altclass = (char) NO_REGS;
2087 }
2088 }
2089 }
2090
2091 /* If {pref,alt}class have already been allocated, update the pointers to
2092 the newly realloced ones. */
2093 if (reg_pref)
2094 reg_pref = reg_pref_buffer;
2095
2096 if (renumber_p)
2097 reg_renumber = renumber;
2098
2099 /* Tell the regset code about the new number of registers */
2100 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2101 }
2102
2103 /* Free up the space allocated by allocate_reg_info. */
2104 void
2105 free_reg_info ()
2106 {
2107 if (reg_n_info)
2108 {
2109 struct reg_info_data *reg_data;
2110 struct reg_info_data *reg_next;
2111
2112 VARRAY_FREE (reg_n_info);
2113 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2114 {
2115 reg_next = reg_data->next;
2116 free ((char *)reg_data);
2117 }
2118
2119 free (reg_pref_buffer);
2120 reg_pref_buffer = (struct reg_pref *)0;
2121 reg_info_head = (struct reg_info_data *)0;
2122 renumber = (short *)0;
2123 }
2124 regno_allocated = 0;
2125 reg_n_max = 0;
2126 }
2127 \f
2128 /* This is the `regscan' pass of the compiler, run just before cse
2129 and again just before loop.
2130
2131 It finds the first and last use of each pseudo-register
2132 and records them in the vectors regno_first_uid, regno_last_uid
2133 and counts the number of sets in the vector reg_n_sets.
2134
2135 REPEAT is nonzero the second time this is called. */
2136
2137 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2138 Always at least 3, since the combiner could put that many together
2139 and we want this to remain correct for all the remaining passes. */
2140
2141 int max_parallel;
2142
2143 void
2144 reg_scan (f, nregs, repeat)
2145 rtx f;
2146 unsigned int nregs;
2147 int repeat ATTRIBUTE_UNUSED;
2148 {
2149 register rtx insn;
2150
2151 allocate_reg_info (nregs, TRUE, FALSE);
2152 max_parallel = 3;
2153
2154 for (insn = f; insn; insn = NEXT_INSN (insn))
2155 if (GET_CODE (insn) == INSN
2156 || GET_CODE (insn) == CALL_INSN
2157 || GET_CODE (insn) == JUMP_INSN)
2158 {
2159 if (GET_CODE (PATTERN (insn)) == PARALLEL
2160 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2161 max_parallel = XVECLEN (PATTERN (insn), 0);
2162 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2163
2164 if (REG_NOTES (insn))
2165 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2166 }
2167 }
2168
2169 /* Update 'regscan' information by looking at the insns
2170 from FIRST to LAST. Some new REGs have been created,
2171 and any REG with number greater than OLD_MAX_REGNO is
2172 such a REG. We only update information for those. */
2173
2174 void
2175 reg_scan_update (first, last, old_max_regno)
2176 rtx first;
2177 rtx last;
2178 unsigned int old_max_regno;
2179 {
2180 register rtx insn;
2181
2182 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2183
2184 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2185 if (GET_CODE (insn) == INSN
2186 || GET_CODE (insn) == CALL_INSN
2187 || GET_CODE (insn) == JUMP_INSN)
2188 {
2189 if (GET_CODE (PATTERN (insn)) == PARALLEL
2190 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2191 max_parallel = XVECLEN (PATTERN (insn), 0);
2192 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2193
2194 if (REG_NOTES (insn))
2195 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2196 }
2197 }
2198
2199 /* X is the expression to scan. INSN is the insn it appears in.
2200 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2201 We should only record information for REGs with numbers
2202 greater than or equal to MIN_REGNO. */
2203
2204 static void
2205 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2206 rtx x;
2207 rtx insn;
2208 int note_flag;
2209 unsigned int min_regno;
2210 {
2211 register enum rtx_code code;
2212 register rtx dest;
2213 register rtx note;
2214
2215 code = GET_CODE (x);
2216 switch (code)
2217 {
2218 case CONST:
2219 case CONST_INT:
2220 case CONST_DOUBLE:
2221 case CC0:
2222 case PC:
2223 case SYMBOL_REF:
2224 case LABEL_REF:
2225 case ADDR_VEC:
2226 case ADDR_DIFF_VEC:
2227 return;
2228
2229 case REG:
2230 {
2231 unsigned int regno = REGNO (x);
2232
2233 if (regno >= min_regno)
2234 {
2235 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2236 if (!note_flag)
2237 REGNO_LAST_UID (regno) = INSN_UID (insn);
2238 if (REGNO_FIRST_UID (regno) == 0)
2239 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2240 }
2241 }
2242 break;
2243
2244 case EXPR_LIST:
2245 if (XEXP (x, 0))
2246 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2247 if (XEXP (x, 1))
2248 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2249 break;
2250
2251 case INSN_LIST:
2252 if (XEXP (x, 1))
2253 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2254 break;
2255
2256 case SET:
2257 /* Count a set of the destination if it is a register. */
2258 for (dest = SET_DEST (x);
2259 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2260 || GET_CODE (dest) == ZERO_EXTEND;
2261 dest = XEXP (dest, 0))
2262 ;
2263
2264 if (GET_CODE (dest) == REG
2265 && REGNO (dest) >= min_regno)
2266 REG_N_SETS (REGNO (dest))++;
2267
2268 /* If this is setting a pseudo from another pseudo or the sum of a
2269 pseudo and a constant integer and the other pseudo is known to be
2270 a pointer, set the destination to be a pointer as well.
2271
2272 Likewise if it is setting the destination from an address or from a
2273 value equivalent to an address or to the sum of an address and
2274 something else.
2275
2276 But don't do any of this if the pseudo corresponds to a user
2277 variable since it should have already been set as a pointer based
2278 on the type. */
2279
2280 if (GET_CODE (SET_DEST (x)) == REG
2281 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2282 && REGNO (SET_DEST (x)) >= min_regno
2283 /* If the destination pseudo is set more than once, then other
2284 sets might not be to a pointer value (consider access to a
2285 union in two threads of control in the presense of global
2286 optimizations). So only set REGNO_POINTER_FLAG on the destination
2287 pseudo if this is the only set of that pseudo. */
2288 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2289 && ! REG_USERVAR_P (SET_DEST (x))
2290 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2291 && ((GET_CODE (SET_SRC (x)) == REG
2292 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2293 || ((GET_CODE (SET_SRC (x)) == PLUS
2294 || GET_CODE (SET_SRC (x)) == LO_SUM)
2295 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2296 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2297 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2298 || GET_CODE (SET_SRC (x)) == CONST
2299 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2300 || GET_CODE (SET_SRC (x)) == LABEL_REF
2301 || (GET_CODE (SET_SRC (x)) == HIGH
2302 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2303 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2304 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2305 || ((GET_CODE (SET_SRC (x)) == PLUS
2306 || GET_CODE (SET_SRC (x)) == LO_SUM)
2307 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2308 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2309 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2310 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2311 && (GET_CODE (XEXP (note, 0)) == CONST
2312 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2313 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2314 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2315
2316 /* ... fall through ... */
2317
2318 default:
2319 {
2320 register const char *fmt = GET_RTX_FORMAT (code);
2321 register int i;
2322 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2323 {
2324 if (fmt[i] == 'e')
2325 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2326 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2327 {
2328 register int j;
2329 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2330 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2331 }
2332 }
2333 }
2334 }
2335 }
2336 \f
2337 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2338 is also in C2. */
2339
2340 int
2341 reg_class_subset_p (c1, c2)
2342 register enum reg_class c1;
2343 register enum reg_class c2;
2344 {
2345 if (c1 == c2) return 1;
2346
2347 if (c2 == ALL_REGS)
2348 win:
2349 return 1;
2350 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2351 reg_class_contents[(int)c2],
2352 win);
2353 return 0;
2354 }
2355
2356 /* Return nonzero if there is a register that is in both C1 and C2. */
2357
2358 int
2359 reg_classes_intersect_p (c1, c2)
2360 register enum reg_class c1;
2361 register enum reg_class c2;
2362 {
2363 #ifdef HARD_REG_SET
2364 register
2365 #endif
2366 HARD_REG_SET c;
2367
2368 if (c1 == c2) return 1;
2369
2370 if (c1 == ALL_REGS || c2 == ALL_REGS)
2371 return 1;
2372
2373 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2374 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2375
2376 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2377 return 1;
2378
2379 lose:
2380 return 0;
2381 }
2382
2383 /* Release any memory allocated by register sets. */
2384
2385 void
2386 regset_release_memory ()
2387 {
2388 bitmap_release_memory ();
2389 }