Daily bump.
[gcc.git] / gcc / regcprop.c
1 /* Copy propagation on hard registers for the GNU compiler.
2 Copyright (C) 2000-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "df.h"
26 #include "memmodel.h"
27 #include "tm_p.h"
28 #include "insn-config.h"
29 #include "regs.h"
30 #include "emit-rtl.h"
31 #include "recog.h"
32 #include "diagnostic-core.h"
33 #include "addresses.h"
34 #include "tree-pass.h"
35 #include "rtl-iter.h"
36 #include "cfgrtl.h"
37 #include "target.h"
38
39 /* The following code does forward propagation of hard register copies.
40 The object is to eliminate as many dependencies as possible, so that
41 we have the most scheduling freedom. As a side effect, we also clean
42 up some silly register allocation decisions made by reload. This
43 code may be obsoleted by a new register allocator. */
44
45 /* DEBUG_INSNs aren't changed right away, as doing so might extend the
46 lifetime of a register and get the DEBUG_INSN subsequently reset.
47 So they are queued instead, and updated only when the register is
48 used in some subsequent real insn before it is set. */
49 struct queued_debug_insn_change
50 {
51 struct queued_debug_insn_change *next;
52 rtx_insn *insn;
53 rtx *loc;
54 rtx new_rtx;
55 };
56
57 /* For each register, we have a list of registers that contain the same
58 value. The OLDEST_REGNO field points to the head of the list, and
59 the NEXT_REGNO field runs through the list. The MODE field indicates
60 what mode the data is known to be in; this field is VOIDmode when the
61 register is not known to contain valid data. */
62
63 struct value_data_entry
64 {
65 machine_mode mode;
66 unsigned int oldest_regno;
67 unsigned int next_regno;
68 struct queued_debug_insn_change *debug_insn_changes;
69 };
70
71 struct value_data
72 {
73 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
74 unsigned int max_value_regs;
75 unsigned int n_debug_insn_changes;
76 };
77
78 static object_allocator<queued_debug_insn_change> queued_debug_insn_change_pool
79 ("debug insn changes pool");
80
81 static bool skip_debug_insn_p;
82
83 static void kill_value_one_regno (unsigned, struct value_data *);
84 static void kill_value_regno (unsigned, unsigned, struct value_data *);
85 static void kill_value (const_rtx, struct value_data *);
86 static void set_value_regno (unsigned, machine_mode, struct value_data *);
87 static void init_value_data (struct value_data *);
88 static void kill_clobbered_value (rtx, const_rtx, void *);
89 static void kill_set_value (rtx, const_rtx, void *);
90 static void copy_value (rtx, rtx, struct value_data *);
91 static bool mode_change_ok (machine_mode, machine_mode,
92 unsigned int);
93 static rtx maybe_mode_change (machine_mode, machine_mode,
94 machine_mode, unsigned int, unsigned int);
95 static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
96 static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx_insn *,
97 struct value_data *);
98 static bool replace_oldest_value_addr (rtx *, enum reg_class,
99 machine_mode, addr_space_t,
100 rtx_insn *, struct value_data *);
101 static bool replace_oldest_value_mem (rtx, rtx_insn *, struct value_data *);
102 static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
103 extern void debug_value_data (struct value_data *);
104 static void validate_value_data (struct value_data *);
105
106 /* Free all queued updates for DEBUG_INSNs that change some reg to
107 register REGNO. */
108
109 static void
110 free_debug_insn_changes (struct value_data *vd, unsigned int regno)
111 {
112 struct queued_debug_insn_change *cur, *next;
113 for (cur = vd->e[regno].debug_insn_changes; cur; cur = next)
114 {
115 next = cur->next;
116 --vd->n_debug_insn_changes;
117 queued_debug_insn_change_pool.remove (cur);
118 }
119 vd->e[regno].debug_insn_changes = NULL;
120 }
121
122 /* Kill register REGNO. This involves removing it from any value
123 lists, and resetting the value mode to VOIDmode. This is only a
124 helper function; it does not handle any hard registers overlapping
125 with REGNO. */
126
127 static void
128 kill_value_one_regno (unsigned int regno, struct value_data *vd)
129 {
130 unsigned int i, next;
131
132 if (vd->e[regno].oldest_regno != regno)
133 {
134 for (i = vd->e[regno].oldest_regno;
135 vd->e[i].next_regno != regno;
136 i = vd->e[i].next_regno)
137 continue;
138 vd->e[i].next_regno = vd->e[regno].next_regno;
139 }
140 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
141 {
142 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
143 vd->e[i].oldest_regno = next;
144 }
145
146 vd->e[regno].mode = VOIDmode;
147 vd->e[regno].oldest_regno = regno;
148 vd->e[regno].next_regno = INVALID_REGNUM;
149 if (vd->e[regno].debug_insn_changes)
150 free_debug_insn_changes (vd, regno);
151
152 if (flag_checking)
153 validate_value_data (vd);
154 }
155
156 /* Kill the value in register REGNO for NREGS, and any other registers
157 whose values overlap. */
158
159 static void
160 kill_value_regno (unsigned int regno, unsigned int nregs,
161 struct value_data *vd)
162 {
163 unsigned int j;
164
165 /* Kill the value we're told to kill. */
166 for (j = 0; j < nregs; ++j)
167 kill_value_one_regno (regno + j, vd);
168
169 /* Kill everything that overlapped what we're told to kill. */
170 if (regno < vd->max_value_regs)
171 j = 0;
172 else
173 j = regno - vd->max_value_regs;
174 for (; j < regno; ++j)
175 {
176 unsigned int i, n;
177 if (vd->e[j].mode == VOIDmode)
178 continue;
179 n = hard_regno_nregs (j, vd->e[j].mode);
180 if (j + n > regno)
181 for (i = 0; i < n; ++i)
182 kill_value_one_regno (j + i, vd);
183 }
184 }
185
186 /* Kill X. This is a convenience function wrapping kill_value_regno
187 so that we mind the mode the register is in. */
188
189 static void
190 kill_value (const_rtx x, struct value_data *vd)
191 {
192 if (GET_CODE (x) == SUBREG)
193 {
194 rtx tmp = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
195 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
196 x = tmp ? tmp : SUBREG_REG (x);
197 }
198 if (REG_P (x))
199 kill_value_regno (REGNO (x), REG_NREGS (x), vd);
200 }
201
202 /* Remember that REGNO is valid in MODE. */
203
204 static void
205 set_value_regno (unsigned int regno, machine_mode mode,
206 struct value_data *vd)
207 {
208 unsigned int nregs;
209
210 vd->e[regno].mode = mode;
211
212 nregs = hard_regno_nregs (regno, mode);
213 if (nregs > vd->max_value_regs)
214 vd->max_value_regs = nregs;
215 }
216
217 /* Initialize VD such that there are no known relationships between regs. */
218
219 static void
220 init_value_data (struct value_data *vd)
221 {
222 int i;
223 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
224 {
225 vd->e[i].mode = VOIDmode;
226 vd->e[i].oldest_regno = i;
227 vd->e[i].next_regno = INVALID_REGNUM;
228 vd->e[i].debug_insn_changes = NULL;
229 }
230 vd->max_value_regs = 0;
231 vd->n_debug_insn_changes = 0;
232 }
233
234 /* Called through note_stores. If X is clobbered, kill its value. */
235
236 static void
237 kill_clobbered_value (rtx x, const_rtx set, void *data)
238 {
239 struct value_data *const vd = (struct value_data *) data;
240 gcc_assert (GET_CODE (set) != CLOBBER_HIGH || REG_P (x));
241
242 if (GET_CODE (set) == CLOBBER
243 || (GET_CODE (set) == CLOBBER_HIGH
244 && reg_is_clobbered_by_clobber_high (x, XEXP (set, 0))))
245 kill_value (x, vd);
246 }
247
248 /* A structure passed as data to kill_set_value through note_stores. */
249 struct kill_set_value_data
250 {
251 struct value_data *vd;
252 rtx ignore_set_reg;
253 };
254
255 /* Called through note_stores. If X is set, not clobbered, kill its
256 current value and install it as the root of its own value list. */
257
258 static void
259 kill_set_value (rtx x, const_rtx set, void *data)
260 {
261 struct kill_set_value_data *ksvd = (struct kill_set_value_data *) data;
262 if (rtx_equal_p (x, ksvd->ignore_set_reg))
263 return;
264
265 gcc_assert (GET_CODE (set) != CLOBBER_HIGH || REG_P (x));
266 if (GET_CODE (set) != CLOBBER && GET_CODE (set) != CLOBBER_HIGH)
267 {
268 kill_value (x, ksvd->vd);
269 if (REG_P (x))
270 set_value_regno (REGNO (x), GET_MODE (x), ksvd->vd);
271 }
272 }
273
274 /* Kill any register used in X as the base of an auto-increment expression,
275 and install that register as the root of its own value list. */
276
277 static void
278 kill_autoinc_value (rtx_insn *insn, struct value_data *vd)
279 {
280 subrtx_iterator::array_type array;
281 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
282 {
283 const_rtx x = *iter;
284 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
285 {
286 x = XEXP (x, 0);
287 kill_value (x, vd);
288 set_value_regno (REGNO (x), GET_MODE (x), vd);
289 iter.skip_subrtxes ();
290 }
291 }
292 }
293
294 /* Assert that SRC has been copied to DEST. Adjust the data structures
295 to reflect that SRC contains an older copy of the shared value. */
296
297 static void
298 copy_value (rtx dest, rtx src, struct value_data *vd)
299 {
300 unsigned int dr = REGNO (dest);
301 unsigned int sr = REGNO (src);
302 unsigned int dn, sn;
303 unsigned int i;
304
305 /* ??? At present, it's possible to see noop sets. It'd be nice if
306 this were cleaned up beforehand... */
307 if (sr == dr)
308 return;
309
310 /* Do not propagate copies to the stack pointer, as that can leave
311 memory accesses with no scheduling dependency on the stack update. */
312 if (dr == STACK_POINTER_REGNUM)
313 return;
314
315 /* Likewise with the frame pointer, if we're using one. */
316 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
317 return;
318
319 /* Do not propagate copies to fixed or global registers, patterns
320 can be relying to see particular fixed register or users can
321 expect the chosen global register in asm. */
322 if (fixed_regs[dr] || global_regs[dr])
323 return;
324
325 /* If SRC and DEST overlap, don't record anything. */
326 dn = REG_NREGS (dest);
327 sn = REG_NREGS (src);
328 if ((dr > sr && dr < sr + sn)
329 || (sr > dr && sr < dr + dn))
330 return;
331
332 /* If SRC had no assigned mode (i.e. we didn't know it was live)
333 assign it now and assume the value came from an input argument
334 or somesuch. */
335 if (vd->e[sr].mode == VOIDmode)
336 set_value_regno (sr, vd->e[dr].mode, vd);
337
338 /* If we are narrowing the input to a smaller number of hard regs,
339 and it is in big endian, we are really extracting a high part.
340 Since we generally associate a low part of a value with the value itself,
341 we must not do the same for the high part.
342 Note we can still get low parts for the same mode combination through
343 a two-step copy involving differently sized hard regs.
344 Assume hard regs fr* are 32 bits each, while r* are 64 bits each:
345 (set (reg:DI r0) (reg:DI fr0))
346 (set (reg:SI fr2) (reg:SI r0))
347 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
348 (set (reg:SI fr2) (reg:SI fr0))
349 loads the high part of (reg:DI fr0) into fr2.
350
351 We can't properly represent the latter case in our tables, so don't
352 record anything then. */
353 else if (sn < hard_regno_nregs (sr, vd->e[sr].mode)
354 && maybe_ne (subreg_lowpart_offset (GET_MODE (dest),
355 vd->e[sr].mode), 0U))
356 return;
357
358 /* If SRC had been assigned a mode narrower than the copy, we can't
359 link DEST into the chain, because not all of the pieces of the
360 copy came from oldest_regno. */
361 else if (sn > hard_regno_nregs (sr, vd->e[sr].mode))
362 return;
363
364 /* Link DR at the end of the value chain used by SR. */
365
366 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
367
368 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
369 continue;
370 vd->e[i].next_regno = dr;
371
372 if (flag_checking)
373 validate_value_data (vd);
374 }
375
376 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
377
378 static bool
379 mode_change_ok (machine_mode orig_mode, machine_mode new_mode,
380 unsigned int regno ATTRIBUTE_UNUSED)
381 {
382 if (partial_subreg_p (orig_mode, new_mode))
383 return false;
384
385 return REG_CAN_CHANGE_MODE_P (regno, orig_mode, new_mode);
386 }
387
388 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
389 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
390 in NEW_MODE.
391 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
392
393 static rtx
394 maybe_mode_change (machine_mode orig_mode, machine_mode copy_mode,
395 machine_mode new_mode, unsigned int regno,
396 unsigned int copy_regno ATTRIBUTE_UNUSED)
397 {
398 if (partial_subreg_p (copy_mode, orig_mode)
399 && partial_subreg_p (copy_mode, new_mode))
400 return NULL_RTX;
401
402 /* Avoid creating multiple copies of the stack pointer. Some ports
403 assume there is one and only one stack pointer.
404
405 It's unclear if we need to do the same for other special registers. */
406 if (regno == STACK_POINTER_REGNUM)
407 return NULL_RTX;
408
409 if (orig_mode == new_mode)
410 return gen_raw_REG (new_mode, regno);
411 else if (mode_change_ok (orig_mode, new_mode, regno))
412 {
413 int copy_nregs = hard_regno_nregs (copy_regno, copy_mode);
414 int use_nregs = hard_regno_nregs (copy_regno, new_mode);
415 poly_uint64 bytes_per_reg;
416 if (!can_div_trunc_p (GET_MODE_SIZE (copy_mode),
417 copy_nregs, &bytes_per_reg))
418 return NULL_RTX;
419 poly_uint64 copy_offset = bytes_per_reg * (copy_nregs - use_nregs);
420 poly_uint64 offset
421 = subreg_size_lowpart_offset (GET_MODE_SIZE (new_mode) + copy_offset,
422 GET_MODE_SIZE (orig_mode));
423 regno += subreg_regno_offset (regno, orig_mode, offset, new_mode);
424 if (targetm.hard_regno_mode_ok (regno, new_mode))
425 return gen_raw_REG (new_mode, regno);
426 }
427 return NULL_RTX;
428 }
429
430 /* Find the oldest copy of the value contained in REGNO that is in
431 register class CL and has mode MODE. If found, return an rtx
432 of that oldest register, otherwise return NULL. */
433
434 static rtx
435 find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
436 {
437 unsigned int regno = REGNO (reg);
438 machine_mode mode = GET_MODE (reg);
439 unsigned int i;
440
441 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
442
443 /* If we are accessing REG in some mode other that what we set it in,
444 make sure that the replacement is valid. In particular, consider
445 (set (reg:DI r11) (...))
446 (set (reg:SI r9) (reg:SI r11))
447 (set (reg:SI r10) (...))
448 (set (...) (reg:DI r9))
449 Replacing r9 with r11 is invalid. */
450 if (mode != vd->e[regno].mode
451 && REG_NREGS (reg) > hard_regno_nregs (regno, vd->e[regno].mode))
452 return NULL_RTX;
453
454 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
455 {
456 machine_mode oldmode = vd->e[i].mode;
457 rtx new_rtx;
458
459 if (!in_hard_reg_set_p (reg_class_contents[cl], mode, i))
460 continue;
461
462 new_rtx = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
463 if (new_rtx)
464 {
465 ORIGINAL_REGNO (new_rtx) = ORIGINAL_REGNO (reg);
466 REG_ATTRS (new_rtx) = REG_ATTRS (reg);
467 REG_POINTER (new_rtx) = REG_POINTER (reg);
468 return new_rtx;
469 }
470 }
471
472 return NULL_RTX;
473 }
474
475 /* If possible, replace the register at *LOC with the oldest register
476 in register class CL. Return true if successfully replaced. */
477
478 static bool
479 replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx_insn *insn,
480 struct value_data *vd)
481 {
482 rtx new_rtx = find_oldest_value_reg (cl, *loc, vd);
483 if (new_rtx && (!DEBUG_INSN_P (insn) || !skip_debug_insn_p))
484 {
485 if (DEBUG_INSN_P (insn))
486 {
487 struct queued_debug_insn_change *change;
488
489 if (dump_file)
490 fprintf (dump_file, "debug_insn %u: queued replacing reg %u with %u\n",
491 INSN_UID (insn), REGNO (*loc), REGNO (new_rtx));
492
493 change = queued_debug_insn_change_pool.allocate ();
494 change->next = vd->e[REGNO (new_rtx)].debug_insn_changes;
495 change->insn = insn;
496 change->loc = loc;
497 change->new_rtx = new_rtx;
498 vd->e[REGNO (new_rtx)].debug_insn_changes = change;
499 ++vd->n_debug_insn_changes;
500 return true;
501 }
502 if (dump_file)
503 fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
504 INSN_UID (insn), REGNO (*loc), REGNO (new_rtx));
505
506 validate_change (insn, loc, new_rtx, 1);
507 return true;
508 }
509 return false;
510 }
511
512 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
513 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
514 BASE_REG_CLASS depending on how the register is being considered. */
515
516 static bool
517 replace_oldest_value_addr (rtx *loc, enum reg_class cl,
518 machine_mode mode, addr_space_t as,
519 rtx_insn *insn, struct value_data *vd)
520 {
521 rtx x = *loc;
522 RTX_CODE code = GET_CODE (x);
523 const char *fmt;
524 int i, j;
525 bool changed = false;
526
527 switch (code)
528 {
529 case PLUS:
530 if (DEBUG_INSN_P (insn))
531 break;
532
533 {
534 rtx orig_op0 = XEXP (x, 0);
535 rtx orig_op1 = XEXP (x, 1);
536 RTX_CODE code0 = GET_CODE (orig_op0);
537 RTX_CODE code1 = GET_CODE (orig_op1);
538 rtx op0 = orig_op0;
539 rtx op1 = orig_op1;
540 rtx *locI = NULL;
541 rtx *locB = NULL;
542 enum rtx_code index_code = SCRATCH;
543
544 if (GET_CODE (op0) == SUBREG)
545 {
546 op0 = SUBREG_REG (op0);
547 code0 = GET_CODE (op0);
548 }
549
550 if (GET_CODE (op1) == SUBREG)
551 {
552 op1 = SUBREG_REG (op1);
553 code1 = GET_CODE (op1);
554 }
555
556 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
557 || code0 == ZERO_EXTEND || code1 == MEM)
558 {
559 locI = &XEXP (x, 0);
560 locB = &XEXP (x, 1);
561 index_code = GET_CODE (*locI);
562 }
563 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
564 || code1 == ZERO_EXTEND || code0 == MEM)
565 {
566 locI = &XEXP (x, 1);
567 locB = &XEXP (x, 0);
568 index_code = GET_CODE (*locI);
569 }
570 else if (code0 == CONST_INT || code0 == CONST
571 || code0 == SYMBOL_REF || code0 == LABEL_REF)
572 {
573 locB = &XEXP (x, 1);
574 index_code = GET_CODE (XEXP (x, 0));
575 }
576 else if (code1 == CONST_INT || code1 == CONST
577 || code1 == SYMBOL_REF || code1 == LABEL_REF)
578 {
579 locB = &XEXP (x, 0);
580 index_code = GET_CODE (XEXP (x, 1));
581 }
582 else if (code0 == REG && code1 == REG)
583 {
584 int index_op;
585 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
586
587 if (REGNO_OK_FOR_INDEX_P (regno1)
588 && regno_ok_for_base_p (regno0, mode, as, PLUS, REG))
589 index_op = 1;
590 else if (REGNO_OK_FOR_INDEX_P (regno0)
591 && regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
592 index_op = 0;
593 else if (regno_ok_for_base_p (regno0, mode, as, PLUS, REG)
594 || REGNO_OK_FOR_INDEX_P (regno1))
595 index_op = 1;
596 else if (regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
597 index_op = 0;
598 else
599 index_op = 1;
600
601 locI = &XEXP (x, index_op);
602 locB = &XEXP (x, !index_op);
603 index_code = GET_CODE (*locI);
604 }
605 else if (code0 == REG)
606 {
607 locI = &XEXP (x, 0);
608 locB = &XEXP (x, 1);
609 index_code = GET_CODE (*locI);
610 }
611 else if (code1 == REG)
612 {
613 locI = &XEXP (x, 1);
614 locB = &XEXP (x, 0);
615 index_code = GET_CODE (*locI);
616 }
617
618 if (locI)
619 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS,
620 mode, as, insn, vd);
621 if (locB)
622 changed |= replace_oldest_value_addr (locB,
623 base_reg_class (mode, as, PLUS,
624 index_code),
625 mode, as, insn, vd);
626 return changed;
627 }
628
629 case POST_INC:
630 case POST_DEC:
631 case POST_MODIFY:
632 case PRE_INC:
633 case PRE_DEC:
634 case PRE_MODIFY:
635 return false;
636
637 case MEM:
638 return replace_oldest_value_mem (x, insn, vd);
639
640 case REG:
641 return replace_oldest_value_reg (loc, cl, insn, vd);
642
643 default:
644 break;
645 }
646
647 fmt = GET_RTX_FORMAT (code);
648 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
649 {
650 if (fmt[i] == 'e')
651 changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode, as,
652 insn, vd);
653 else if (fmt[i] == 'E')
654 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
655 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
656 mode, as, insn, vd);
657 }
658
659 return changed;
660 }
661
662 /* Similar to replace_oldest_value_reg, but X contains a memory. */
663
664 static bool
665 replace_oldest_value_mem (rtx x, rtx_insn *insn, struct value_data *vd)
666 {
667 enum reg_class cl;
668
669 if (DEBUG_INSN_P (insn))
670 cl = ALL_REGS;
671 else
672 cl = base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x), MEM, SCRATCH);
673
674 return replace_oldest_value_addr (&XEXP (x, 0), cl,
675 GET_MODE (x), MEM_ADDR_SPACE (x),
676 insn, vd);
677 }
678
679 /* Apply all queued updates for DEBUG_INSNs that change some reg to
680 register REGNO. */
681
682 static void
683 apply_debug_insn_changes (struct value_data *vd, unsigned int regno)
684 {
685 struct queued_debug_insn_change *change;
686 rtx_insn *last_insn = vd->e[regno].debug_insn_changes->insn;
687
688 for (change = vd->e[regno].debug_insn_changes;
689 change;
690 change = change->next)
691 {
692 if (last_insn != change->insn)
693 {
694 apply_change_group ();
695 last_insn = change->insn;
696 }
697 validate_change (change->insn, change->loc, change->new_rtx, 1);
698 }
699 apply_change_group ();
700 }
701
702 /* Called via note_uses, for all used registers in a real insn
703 apply DEBUG_INSN changes that change registers to the used
704 registers. */
705
706 static void
707 cprop_find_used_regs (rtx *loc, void *data)
708 {
709 struct value_data *const vd = (struct value_data *) data;
710 subrtx_iterator::array_type array;
711 FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
712 {
713 const_rtx x = *iter;
714 if (REG_P (x))
715 {
716 unsigned int regno = REGNO (x);
717 if (vd->e[regno].debug_insn_changes)
718 {
719 apply_debug_insn_changes (vd, regno);
720 free_debug_insn_changes (vd, regno);
721 }
722 }
723 }
724 }
725
726 /* Apply clobbers of INSN in PATTERN and C_I_F_U to value_data VD. */
727
728 static void
729 kill_clobbered_values (rtx_insn *insn, struct value_data *vd)
730 {
731 note_stores (PATTERN (insn), kill_clobbered_value, vd);
732
733 if (CALL_P (insn))
734 {
735 rtx exp;
736
737 for (exp = CALL_INSN_FUNCTION_USAGE (insn); exp; exp = XEXP (exp, 1))
738 {
739 rtx x = XEXP (exp, 0);
740 if (GET_CODE (x) == CLOBBER)
741 kill_value (SET_DEST (x), vd);
742 }
743 }
744 }
745
746 /* Perform the forward copy propagation on basic block BB. */
747
748 static bool
749 copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
750 {
751 bool anything_changed = false;
752 rtx_insn *insn, *next;
753
754 for (insn = BB_HEAD (bb); ; insn = next)
755 {
756 int n_ops, i, predicated;
757 bool is_asm, any_replacements;
758 rtx set;
759 rtx link;
760 bool changed = false;
761 struct kill_set_value_data ksvd;
762
763 next = NEXT_INSN (insn);
764 if (!NONDEBUG_INSN_P (insn))
765 {
766 if (DEBUG_BIND_INSN_P (insn))
767 {
768 rtx loc = INSN_VAR_LOCATION_LOC (insn);
769 if (!VAR_LOC_UNKNOWN_P (loc))
770 replace_oldest_value_addr (&INSN_VAR_LOCATION_LOC (insn),
771 ALL_REGS, GET_MODE (loc),
772 ADDR_SPACE_GENERIC, insn, vd);
773 }
774
775 if (insn == BB_END (bb))
776 break;
777 else
778 continue;
779 }
780
781 set = single_set (insn);
782
783 /* Detect noop sets and remove them before processing side effects. */
784 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
785 {
786 unsigned int regno = REGNO (SET_SRC (set));
787 rtx r1 = find_oldest_value_reg (REGNO_REG_CLASS (regno),
788 SET_DEST (set), vd);
789 rtx r2 = find_oldest_value_reg (REGNO_REG_CLASS (regno),
790 SET_SRC (set), vd);
791 if (rtx_equal_p (r1 ? r1 : SET_DEST (set), r2 ? r2 : SET_SRC (set)))
792 {
793 bool last = insn == BB_END (bb);
794 delete_insn (insn);
795 if (last)
796 break;
797 continue;
798 }
799 }
800
801 extract_constrain_insn (insn);
802 preprocess_constraints (insn);
803 const operand_alternative *op_alt = which_op_alt ();
804 n_ops = recog_data.n_operands;
805 is_asm = asm_noperands (PATTERN (insn)) >= 0;
806
807 /* Simplify the code below by promoting OP_OUT to OP_INOUT
808 in predicated instructions. */
809
810 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
811 for (i = 0; i < n_ops; ++i)
812 {
813 int matches = op_alt[i].matches;
814 if (matches >= 0 || op_alt[i].matched >= 0
815 || (predicated && recog_data.operand_type[i] == OP_OUT))
816 recog_data.operand_type[i] = OP_INOUT;
817 }
818
819 /* Apply changes to earlier DEBUG_INSNs if possible. */
820 if (vd->n_debug_insn_changes)
821 note_uses (&PATTERN (insn), cprop_find_used_regs, vd);
822
823 /* For each earlyclobber operand, zap the value data. */
824 for (i = 0; i < n_ops; i++)
825 if (op_alt[i].earlyclobber)
826 kill_value (recog_data.operand[i], vd);
827
828 /* Within asms, a clobber cannot overlap inputs or outputs.
829 I wouldn't think this were true for regular insns, but
830 scan_rtx treats them like that... */
831 kill_clobbered_values (insn, vd);
832
833 /* Kill all auto-incremented values. */
834 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
835 kill_autoinc_value (insn, vd);
836
837 /* Kill all early-clobbered operands. */
838 for (i = 0; i < n_ops; i++)
839 if (op_alt[i].earlyclobber)
840 kill_value (recog_data.operand[i], vd);
841
842 /* If we have dead sets in the insn, then we need to note these as we
843 would clobbers. */
844 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
845 {
846 if (REG_NOTE_KIND (link) == REG_UNUSED)
847 {
848 kill_value (XEXP (link, 0), vd);
849 /* Furthermore, if the insn looked like a single-set,
850 but the dead store kills the source value of that
851 set, then we can no-longer use the plain move
852 special case below. */
853 if (set
854 && reg_overlap_mentioned_p (XEXP (link, 0), SET_SRC (set)))
855 set = NULL;
856 }
857
858 /* We need to keep CFI info correct, and the same on all paths,
859 so we cannot normally replace the registers REG_CFA_REGISTER
860 refers to. Bail. */
861 if (REG_NOTE_KIND (link) == REG_CFA_REGISTER)
862 goto did_replacement;
863 }
864
865 /* Special-case plain move instructions, since we may well
866 be able to do the move from a different register class. */
867 if (set && REG_P (SET_SRC (set)))
868 {
869 rtx src = SET_SRC (set);
870 unsigned int regno = REGNO (src);
871 machine_mode mode = GET_MODE (src);
872 unsigned int i;
873 rtx new_rtx;
874
875 /* If we are accessing SRC in some mode other that what we
876 set it in, make sure that the replacement is valid. */
877 if (mode != vd->e[regno].mode)
878 {
879 if (REG_NREGS (src)
880 > hard_regno_nregs (regno, vd->e[regno].mode))
881 goto no_move_special_case;
882
883 /* And likewise, if we are narrowing on big endian the transformation
884 is also invalid. */
885 if (REG_NREGS (src) < hard_regno_nregs (regno, vd->e[regno].mode)
886 && maybe_ne (subreg_lowpart_offset (mode,
887 vd->e[regno].mode), 0U))
888 goto no_move_special_case;
889 }
890
891 /* If the destination is also a register, try to find a source
892 register in the same class. */
893 if (REG_P (SET_DEST (set)))
894 {
895 new_rtx = find_oldest_value_reg (REGNO_REG_CLASS (regno),
896 src, vd);
897
898 if (new_rtx && validate_change (insn, &SET_SRC (set), new_rtx, 0))
899 {
900 if (dump_file)
901 fprintf (dump_file,
902 "insn %u: replaced reg %u with %u\n",
903 INSN_UID (insn), regno, REGNO (new_rtx));
904 changed = true;
905 goto did_replacement;
906 }
907 /* We need to re-extract as validate_change clobbers
908 recog_data. */
909 extract_constrain_insn (insn);
910 preprocess_constraints (insn);
911 }
912
913 /* Otherwise, try all valid registers and see if its valid. */
914 for (i = vd->e[regno].oldest_regno; i != regno;
915 i = vd->e[i].next_regno)
916 {
917 new_rtx = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
918 mode, i, regno);
919 if (new_rtx != NULL_RTX)
920 {
921 if (validate_change (insn, &SET_SRC (set), new_rtx, 0))
922 {
923 ORIGINAL_REGNO (new_rtx) = ORIGINAL_REGNO (src);
924 REG_ATTRS (new_rtx) = REG_ATTRS (src);
925 REG_POINTER (new_rtx) = REG_POINTER (src);
926 if (dump_file)
927 fprintf (dump_file,
928 "insn %u: replaced reg %u with %u\n",
929 INSN_UID (insn), regno, REGNO (new_rtx));
930 changed = true;
931 goto did_replacement;
932 }
933 /* We need to re-extract as validate_change clobbers
934 recog_data. */
935 extract_constrain_insn (insn);
936 preprocess_constraints (insn);
937 }
938 }
939 }
940 no_move_special_case:
941
942 any_replacements = false;
943
944 /* For each input operand, replace a hard register with the
945 eldest live copy that's in an appropriate register class. */
946 for (i = 0; i < n_ops; i++)
947 {
948 bool replaced = false;
949
950 /* Don't scan match_operand here, since we've no reg class
951 information to pass down. Any operands that we could
952 substitute in will be represented elsewhere. */
953 if (recog_data.constraints[i][0] == '\0')
954 continue;
955
956 /* Don't replace in asms intentionally referencing hard regs. */
957 if (is_asm && REG_P (recog_data.operand[i])
958 && (REGNO (recog_data.operand[i])
959 == ORIGINAL_REGNO (recog_data.operand[i])))
960 continue;
961
962 if (recog_data.operand_type[i] == OP_IN)
963 {
964 if (op_alt[i].is_address)
965 replaced
966 = replace_oldest_value_addr (recog_data.operand_loc[i],
967 alternative_class (op_alt, i),
968 VOIDmode, ADDR_SPACE_GENERIC,
969 insn, vd);
970 else if (REG_P (recog_data.operand[i]))
971 replaced
972 = replace_oldest_value_reg (recog_data.operand_loc[i],
973 alternative_class (op_alt, i),
974 insn, vd);
975 else if (MEM_P (recog_data.operand[i]))
976 replaced = replace_oldest_value_mem (recog_data.operand[i],
977 insn, vd);
978 }
979 else if (MEM_P (recog_data.operand[i]))
980 replaced = replace_oldest_value_mem (recog_data.operand[i],
981 insn, vd);
982
983 /* If we performed any replacement, update match_dups. */
984 if (replaced)
985 {
986 int j;
987 rtx new_rtx;
988
989 new_rtx = *recog_data.operand_loc[i];
990 recog_data.operand[i] = new_rtx;
991 for (j = 0; j < recog_data.n_dups; j++)
992 if (recog_data.dup_num[j] == i)
993 validate_unshare_change (insn, recog_data.dup_loc[j], new_rtx, 1);
994
995 any_replacements = true;
996 }
997 }
998
999 if (any_replacements)
1000 {
1001 if (! apply_change_group ())
1002 {
1003 if (dump_file)
1004 fprintf (dump_file,
1005 "insn %u: reg replacements not verified\n",
1006 INSN_UID (insn));
1007 }
1008 else
1009 changed = true;
1010 }
1011
1012 did_replacement:
1013 if (changed)
1014 {
1015 anything_changed = true;
1016
1017 /* If something changed, perhaps further changes to earlier
1018 DEBUG_INSNs can be applied. */
1019 if (vd->n_debug_insn_changes)
1020 note_uses (&PATTERN (insn), cprop_find_used_regs, vd);
1021 }
1022
1023 ksvd.vd = vd;
1024 ksvd.ignore_set_reg = NULL_RTX;
1025
1026 /* Clobber call-clobbered registers. */
1027 if (CALL_P (insn))
1028 {
1029 unsigned int set_regno = INVALID_REGNUM;
1030 unsigned int set_nregs = 0;
1031 unsigned int regno;
1032 rtx exp;
1033 HARD_REG_SET regs_invalidated_by_this_call;
1034
1035 for (exp = CALL_INSN_FUNCTION_USAGE (insn); exp; exp = XEXP (exp, 1))
1036 {
1037 rtx x = XEXP (exp, 0);
1038 if (GET_CODE (x) == SET)
1039 {
1040 rtx dest = SET_DEST (x);
1041 kill_value (dest, vd);
1042 set_value_regno (REGNO (dest), GET_MODE (dest), vd);
1043 copy_value (dest, SET_SRC (x), vd);
1044 ksvd.ignore_set_reg = dest;
1045 set_regno = REGNO (dest);
1046 set_nregs = REG_NREGS (dest);
1047 break;
1048 }
1049 }
1050
1051 get_call_reg_set_usage (insn,
1052 &regs_invalidated_by_this_call,
1053 regs_invalidated_by_call);
1054 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1055 if ((TEST_HARD_REG_BIT (regs_invalidated_by_this_call, regno)
1056 || (targetm.hard_regno_call_part_clobbered
1057 (regno, vd->e[regno].mode)))
1058 && (regno < set_regno || regno >= set_regno + set_nregs))
1059 kill_value_regno (regno, 1, vd);
1060
1061 /* If SET was seen in CALL_INSN_FUNCTION_USAGE, and SET_SRC
1062 of the SET isn't in regs_invalidated_by_call hard reg set,
1063 but instead among CLOBBERs on the CALL_INSN, we could wrongly
1064 assume the value in it is still live. */
1065 if (ksvd.ignore_set_reg)
1066 kill_clobbered_values (insn, vd);
1067 }
1068
1069 bool copy_p = (set
1070 && REG_P (SET_DEST (set))
1071 && REG_P (SET_SRC (set)));
1072 bool noop_p = (copy_p
1073 && rtx_equal_p (SET_DEST (set), SET_SRC (set)));
1074
1075 /* If a noop move is using narrower mode than we have recorded,
1076 we need to either remove the noop move, or kill_set_value. */
1077 if (noop_p
1078 && partial_subreg_p (GET_MODE (SET_DEST (set)),
1079 vd->e[REGNO (SET_DEST (set))].mode))
1080 {
1081 if (noop_move_p (insn))
1082 {
1083 bool last = insn == BB_END (bb);
1084 delete_insn (insn);
1085 if (last)
1086 break;
1087 }
1088 else
1089 noop_p = false;
1090 }
1091
1092 if (!noop_p)
1093 {
1094 /* Notice stores. */
1095 note_stores (PATTERN (insn), kill_set_value, &ksvd);
1096
1097 /* Notice copies. */
1098 if (copy_p)
1099 copy_value (SET_DEST (set), SET_SRC (set), vd);
1100 }
1101
1102 if (insn == BB_END (bb))
1103 break;
1104 }
1105
1106 return anything_changed;
1107 }
1108
1109 /* Dump the value chain data to stderr. */
1110
1111 DEBUG_FUNCTION void
1112 debug_value_data (struct value_data *vd)
1113 {
1114 HARD_REG_SET set;
1115 unsigned int i, j;
1116
1117 CLEAR_HARD_REG_SET (set);
1118
1119 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1120 if (vd->e[i].oldest_regno == i)
1121 {
1122 if (vd->e[i].mode == VOIDmode)
1123 {
1124 if (vd->e[i].next_regno != INVALID_REGNUM)
1125 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1126 i, vd->e[i].next_regno);
1127 continue;
1128 }
1129
1130 SET_HARD_REG_BIT (set, i);
1131 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1132
1133 for (j = vd->e[i].next_regno;
1134 j != INVALID_REGNUM;
1135 j = vd->e[j].next_regno)
1136 {
1137 if (TEST_HARD_REG_BIT (set, j))
1138 {
1139 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1140 return;
1141 }
1142
1143 if (vd->e[j].oldest_regno != i)
1144 {
1145 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1146 j, vd->e[j].oldest_regno);
1147 return;
1148 }
1149 SET_HARD_REG_BIT (set, j);
1150 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1151 }
1152 fputc ('\n', stderr);
1153 }
1154
1155 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1156 if (! TEST_HARD_REG_BIT (set, i)
1157 && (vd->e[i].mode != VOIDmode
1158 || vd->e[i].oldest_regno != i
1159 || vd->e[i].next_regno != INVALID_REGNUM))
1160 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1161 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1162 vd->e[i].next_regno);
1163 }
1164
1165 /* Do copyprop_hardreg_forward_1 for a single basic block BB.
1166 DEBUG_INSN is skipped since we do not want to involve DF related
1167 staff as how it is handled in function pass_cprop_hardreg::execute.
1168
1169 NOTE: Currently it is only used for shrink-wrap. Maybe extend it
1170 to handle DEBUG_INSN for other uses. */
1171
1172 void
1173 copyprop_hardreg_forward_bb_without_debug_insn (basic_block bb)
1174 {
1175 struct value_data *vd;
1176 vd = XNEWVEC (struct value_data, 1);
1177 init_value_data (vd);
1178
1179 skip_debug_insn_p = true;
1180 copyprop_hardreg_forward_1 (bb, vd);
1181 free (vd);
1182 skip_debug_insn_p = false;
1183 }
1184
1185 static void
1186 validate_value_data (struct value_data *vd)
1187 {
1188 HARD_REG_SET set;
1189 unsigned int i, j;
1190
1191 CLEAR_HARD_REG_SET (set);
1192
1193 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1194 if (vd->e[i].oldest_regno == i)
1195 {
1196 if (vd->e[i].mode == VOIDmode)
1197 {
1198 if (vd->e[i].next_regno != INVALID_REGNUM)
1199 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1200 i, vd->e[i].next_regno);
1201 continue;
1202 }
1203
1204 SET_HARD_REG_BIT (set, i);
1205
1206 for (j = vd->e[i].next_regno;
1207 j != INVALID_REGNUM;
1208 j = vd->e[j].next_regno)
1209 {
1210 if (TEST_HARD_REG_BIT (set, j))
1211 internal_error ("validate_value_data: Loop in regno chain (%u)",
1212 j);
1213 if (vd->e[j].oldest_regno != i)
1214 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1215 j, vd->e[j].oldest_regno);
1216
1217 SET_HARD_REG_BIT (set, j);
1218 }
1219 }
1220
1221 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1222 if (! TEST_HARD_REG_BIT (set, i)
1223 && (vd->e[i].mode != VOIDmode
1224 || vd->e[i].oldest_regno != i
1225 || vd->e[i].next_regno != INVALID_REGNUM))
1226 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1227 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1228 vd->e[i].next_regno);
1229 }
1230
1231 \f
1232 namespace {
1233
1234 const pass_data pass_data_cprop_hardreg =
1235 {
1236 RTL_PASS, /* type */
1237 "cprop_hardreg", /* name */
1238 OPTGROUP_NONE, /* optinfo_flags */
1239 TV_CPROP_REGISTERS, /* tv_id */
1240 0, /* properties_required */
1241 0, /* properties_provided */
1242 0, /* properties_destroyed */
1243 0, /* todo_flags_start */
1244 TODO_df_finish, /* todo_flags_finish */
1245 };
1246
1247 class pass_cprop_hardreg : public rtl_opt_pass
1248 {
1249 public:
1250 pass_cprop_hardreg (gcc::context *ctxt)
1251 : rtl_opt_pass (pass_data_cprop_hardreg, ctxt)
1252 {}
1253
1254 /* opt_pass methods: */
1255 virtual bool gate (function *)
1256 {
1257 return (optimize > 0 && (flag_cprop_registers));
1258 }
1259
1260 virtual unsigned int execute (function *);
1261
1262 }; // class pass_cprop_hardreg
1263
1264 unsigned int
1265 pass_cprop_hardreg::execute (function *fun)
1266 {
1267 struct value_data *all_vd;
1268 basic_block bb;
1269 bool analyze_called = false;
1270
1271 all_vd = XNEWVEC (struct value_data, last_basic_block_for_fn (fun));
1272
1273 auto_sbitmap visited (last_basic_block_for_fn (fun));
1274 bitmap_clear (visited);
1275
1276 FOR_EACH_BB_FN (bb, fun)
1277 {
1278 bitmap_set_bit (visited, bb->index);
1279
1280 /* If a block has a single predecessor, that we've already
1281 processed, begin with the value data that was live at
1282 the end of the predecessor block. */
1283 /* ??? Ought to use more intelligent queuing of blocks. */
1284 if (single_pred_p (bb)
1285 && bitmap_bit_p (visited, single_pred (bb)->index)
1286 && ! (single_pred_edge (bb)->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
1287 {
1288 all_vd[bb->index] = all_vd[single_pred (bb)->index];
1289 if (all_vd[bb->index].n_debug_insn_changes)
1290 {
1291 unsigned int regno;
1292
1293 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1294 {
1295 if (all_vd[bb->index].e[regno].debug_insn_changes)
1296 {
1297 all_vd[bb->index].e[regno].debug_insn_changes = NULL;
1298 if (--all_vd[bb->index].n_debug_insn_changes == 0)
1299 break;
1300 }
1301 }
1302 }
1303 }
1304 else
1305 init_value_data (all_vd + bb->index);
1306
1307 copyprop_hardreg_forward_1 (bb, all_vd + bb->index);
1308 }
1309
1310 if (MAY_HAVE_DEBUG_BIND_INSNS)
1311 {
1312 FOR_EACH_BB_FN (bb, fun)
1313 if (bitmap_bit_p (visited, bb->index)
1314 && all_vd[bb->index].n_debug_insn_changes)
1315 {
1316 unsigned int regno;
1317 bitmap live;
1318
1319 if (!analyze_called)
1320 {
1321 df_analyze ();
1322 analyze_called = true;
1323 }
1324 live = df_get_live_out (bb);
1325 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1326 if (all_vd[bb->index].e[regno].debug_insn_changes)
1327 {
1328 if (REGNO_REG_SET_P (live, regno))
1329 apply_debug_insn_changes (all_vd + bb->index, regno);
1330 if (all_vd[bb->index].n_debug_insn_changes == 0)
1331 break;
1332 }
1333 }
1334
1335 queued_debug_insn_change_pool.release ();
1336 }
1337
1338 free (all_vd);
1339 return 0;
1340 }
1341
1342 } // anon namespace
1343
1344 rtl_opt_pass *
1345 make_pass_cprop_hardreg (gcc::context *ctxt)
1346 {
1347 return new pass_cprop_hardreg (ctxt);
1348 }