coarray_data_1.f90: Link against libatomic if target libatomic_available.
[gcc.git] / gcc / regcprop.c
1 /* Copy propagation on hard registers for the GNU compiler.
2 Copyright (C) 2000-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "df.h"
26 #include "memmodel.h"
27 #include "tm_p.h"
28 #include "insn-config.h"
29 #include "regs.h"
30 #include "emit-rtl.h"
31 #include "recog.h"
32 #include "diagnostic-core.h"
33 #include "addresses.h"
34 #include "tree-pass.h"
35 #include "rtl-iter.h"
36 #include "cfgrtl.h"
37 #include "target.h"
38
39 /* The following code does forward propagation of hard register copies.
40 The object is to eliminate as many dependencies as possible, so that
41 we have the most scheduling freedom. As a side effect, we also clean
42 up some silly register allocation decisions made by reload. This
43 code may be obsoleted by a new register allocator. */
44
45 /* DEBUG_INSNs aren't changed right away, as doing so might extend the
46 lifetime of a register and get the DEBUG_INSN subsequently reset.
47 So they are queued instead, and updated only when the register is
48 used in some subsequent real insn before it is set. */
49 struct queued_debug_insn_change
50 {
51 struct queued_debug_insn_change *next;
52 rtx_insn *insn;
53 rtx *loc;
54 rtx new_rtx;
55 };
56
57 /* For each register, we have a list of registers that contain the same
58 value. The OLDEST_REGNO field points to the head of the list, and
59 the NEXT_REGNO field runs through the list. The MODE field indicates
60 what mode the data is known to be in; this field is VOIDmode when the
61 register is not known to contain valid data. */
62
63 struct value_data_entry
64 {
65 machine_mode mode;
66 unsigned int oldest_regno;
67 unsigned int next_regno;
68 struct queued_debug_insn_change *debug_insn_changes;
69 };
70
71 struct value_data
72 {
73 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
74 unsigned int max_value_regs;
75 unsigned int n_debug_insn_changes;
76 };
77
78 static object_allocator<queued_debug_insn_change> queued_debug_insn_change_pool
79 ("debug insn changes pool");
80
81 static bool skip_debug_insn_p;
82
83 static void kill_value_one_regno (unsigned, struct value_data *);
84 static void kill_value_regno (unsigned, unsigned, struct value_data *);
85 static void kill_value (const_rtx, struct value_data *);
86 static void set_value_regno (unsigned, machine_mode, struct value_data *);
87 static void init_value_data (struct value_data *);
88 static void kill_clobbered_value (rtx, const_rtx, void *);
89 static void kill_set_value (rtx, const_rtx, void *);
90 static void copy_value (rtx, rtx, struct value_data *);
91 static bool mode_change_ok (machine_mode, machine_mode,
92 unsigned int);
93 static rtx maybe_mode_change (machine_mode, machine_mode,
94 machine_mode, unsigned int, unsigned int);
95 static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
96 static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx_insn *,
97 struct value_data *);
98 static bool replace_oldest_value_addr (rtx *, enum reg_class,
99 machine_mode, addr_space_t,
100 rtx_insn *, struct value_data *);
101 static bool replace_oldest_value_mem (rtx, rtx_insn *, struct value_data *);
102 static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
103 extern void debug_value_data (struct value_data *);
104 static void validate_value_data (struct value_data *);
105
106 /* Free all queued updates for DEBUG_INSNs that change some reg to
107 register REGNO. */
108
109 static void
110 free_debug_insn_changes (struct value_data *vd, unsigned int regno)
111 {
112 struct queued_debug_insn_change *cur, *next;
113 for (cur = vd->e[regno].debug_insn_changes; cur; cur = next)
114 {
115 next = cur->next;
116 --vd->n_debug_insn_changes;
117 queued_debug_insn_change_pool.remove (cur);
118 }
119 vd->e[regno].debug_insn_changes = NULL;
120 }
121
122 /* Kill register REGNO. This involves removing it from any value
123 lists, and resetting the value mode to VOIDmode. This is only a
124 helper function; it does not handle any hard registers overlapping
125 with REGNO. */
126
127 static void
128 kill_value_one_regno (unsigned int regno, struct value_data *vd)
129 {
130 unsigned int i, next;
131
132 if (vd->e[regno].oldest_regno != regno)
133 {
134 for (i = vd->e[regno].oldest_regno;
135 vd->e[i].next_regno != regno;
136 i = vd->e[i].next_regno)
137 continue;
138 vd->e[i].next_regno = vd->e[regno].next_regno;
139 }
140 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
141 {
142 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
143 vd->e[i].oldest_regno = next;
144 }
145
146 vd->e[regno].mode = VOIDmode;
147 vd->e[regno].oldest_regno = regno;
148 vd->e[regno].next_regno = INVALID_REGNUM;
149 if (vd->e[regno].debug_insn_changes)
150 free_debug_insn_changes (vd, regno);
151
152 if (flag_checking)
153 validate_value_data (vd);
154 }
155
156 /* Kill the value in register REGNO for NREGS, and any other registers
157 whose values overlap. */
158
159 static void
160 kill_value_regno (unsigned int regno, unsigned int nregs,
161 struct value_data *vd)
162 {
163 unsigned int j;
164
165 /* Kill the value we're told to kill. */
166 for (j = 0; j < nregs; ++j)
167 kill_value_one_regno (regno + j, vd);
168
169 /* Kill everything that overlapped what we're told to kill. */
170 if (regno < vd->max_value_regs)
171 j = 0;
172 else
173 j = regno - vd->max_value_regs;
174 for (; j < regno; ++j)
175 {
176 unsigned int i, n;
177 if (vd->e[j].mode == VOIDmode)
178 continue;
179 n = hard_regno_nregs (j, vd->e[j].mode);
180 if (j + n > regno)
181 for (i = 0; i < n; ++i)
182 kill_value_one_regno (j + i, vd);
183 }
184 }
185
186 /* Kill X. This is a convenience function wrapping kill_value_regno
187 so that we mind the mode the register is in. */
188
189 static void
190 kill_value (const_rtx x, struct value_data *vd)
191 {
192 if (GET_CODE (x) == SUBREG)
193 {
194 rtx tmp = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
195 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
196 x = tmp ? tmp : SUBREG_REG (x);
197 }
198 if (REG_P (x))
199 kill_value_regno (REGNO (x), REG_NREGS (x), vd);
200 }
201
202 /* Remember that REGNO is valid in MODE. */
203
204 static void
205 set_value_regno (unsigned int regno, machine_mode mode,
206 struct value_data *vd)
207 {
208 unsigned int nregs;
209
210 vd->e[regno].mode = mode;
211
212 nregs = hard_regno_nregs (regno, mode);
213 if (nregs > vd->max_value_regs)
214 vd->max_value_regs = nregs;
215 }
216
217 /* Initialize VD such that there are no known relationships between regs. */
218
219 static void
220 init_value_data (struct value_data *vd)
221 {
222 int i;
223 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
224 {
225 vd->e[i].mode = VOIDmode;
226 vd->e[i].oldest_regno = i;
227 vd->e[i].next_regno = INVALID_REGNUM;
228 vd->e[i].debug_insn_changes = NULL;
229 }
230 vd->max_value_regs = 0;
231 vd->n_debug_insn_changes = 0;
232 }
233
234 /* Called through note_stores. If X is clobbered, kill its value. */
235
236 static void
237 kill_clobbered_value (rtx x, const_rtx set, void *data)
238 {
239 struct value_data *const vd = (struct value_data *) data;
240 gcc_assert (GET_CODE (set) != CLOBBER_HIGH || REG_P (x));
241
242 if (GET_CODE (set) == CLOBBER
243 || (GET_CODE (set) == CLOBBER_HIGH
244 && reg_is_clobbered_by_clobber_high (x, XEXP (set, 0))))
245 kill_value (x, vd);
246 }
247
248 /* A structure passed as data to kill_set_value through note_stores. */
249 struct kill_set_value_data
250 {
251 struct value_data *vd;
252 rtx ignore_set_reg;
253 };
254
255 /* Called through note_stores. If X is set, not clobbered, kill its
256 current value and install it as the root of its own value list. */
257
258 static void
259 kill_set_value (rtx x, const_rtx set, void *data)
260 {
261 struct kill_set_value_data *ksvd = (struct kill_set_value_data *) data;
262 if (rtx_equal_p (x, ksvd->ignore_set_reg))
263 return;
264
265 gcc_assert (GET_CODE (set) != CLOBBER_HIGH || REG_P (x));
266 if (GET_CODE (set) != CLOBBER && GET_CODE (set) != CLOBBER_HIGH)
267 {
268 kill_value (x, ksvd->vd);
269 if (REG_P (x))
270 set_value_regno (REGNO (x), GET_MODE (x), ksvd->vd);
271 }
272 }
273
274 /* Kill any register used in X as the base of an auto-increment expression,
275 and install that register as the root of its own value list. */
276
277 static void
278 kill_autoinc_value (rtx_insn *insn, struct value_data *vd)
279 {
280 subrtx_iterator::array_type array;
281 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
282 {
283 const_rtx x = *iter;
284 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
285 {
286 x = XEXP (x, 0);
287 kill_value (x, vd);
288 set_value_regno (REGNO (x), GET_MODE (x), vd);
289 iter.skip_subrtxes ();
290 }
291 }
292 }
293
294 /* Assert that SRC has been copied to DEST. Adjust the data structures
295 to reflect that SRC contains an older copy of the shared value. */
296
297 static void
298 copy_value (rtx dest, rtx src, struct value_data *vd)
299 {
300 unsigned int dr = REGNO (dest);
301 unsigned int sr = REGNO (src);
302 unsigned int dn, sn;
303 unsigned int i;
304
305 /* ??? At present, it's possible to see noop sets. It'd be nice if
306 this were cleaned up beforehand... */
307 if (sr == dr)
308 return;
309
310 /* Do not propagate copies to the stack pointer, as that can leave
311 memory accesses with no scheduling dependency on the stack update. */
312 if (dr == STACK_POINTER_REGNUM)
313 return;
314
315 /* Likewise with the frame pointer, if we're using one. */
316 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
317 return;
318
319 /* Do not propagate copies to fixed or global registers, patterns
320 can be relying to see particular fixed register or users can
321 expect the chosen global register in asm. */
322 if (fixed_regs[dr] || global_regs[dr])
323 return;
324
325 /* If SRC and DEST overlap, don't record anything. */
326 dn = REG_NREGS (dest);
327 sn = REG_NREGS (src);
328 if ((dr > sr && dr < sr + sn)
329 || (sr > dr && sr < dr + dn))
330 return;
331
332 /* If SRC had no assigned mode (i.e. we didn't know it was live)
333 assign it now and assume the value came from an input argument
334 or somesuch. */
335 if (vd->e[sr].mode == VOIDmode)
336 set_value_regno (sr, vd->e[dr].mode, vd);
337
338 /* If we are narrowing the input to a smaller number of hard regs,
339 and it is in big endian, we are really extracting a high part.
340 Since we generally associate a low part of a value with the value itself,
341 we must not do the same for the high part.
342 Note we can still get low parts for the same mode combination through
343 a two-step copy involving differently sized hard regs.
344 Assume hard regs fr* are 32 bits each, while r* are 64 bits each:
345 (set (reg:DI r0) (reg:DI fr0))
346 (set (reg:SI fr2) (reg:SI r0))
347 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
348 (set (reg:SI fr2) (reg:SI fr0))
349 loads the high part of (reg:DI fr0) into fr2.
350
351 We can't properly represent the latter case in our tables, so don't
352 record anything then. */
353 else if (sn < hard_regno_nregs (sr, vd->e[sr].mode)
354 && maybe_ne (subreg_lowpart_offset (GET_MODE (dest),
355 vd->e[sr].mode), 0U))
356 return;
357
358 /* If SRC had been assigned a mode narrower than the copy, we can't
359 link DEST into the chain, because not all of the pieces of the
360 copy came from oldest_regno. */
361 else if (sn > hard_regno_nregs (sr, vd->e[sr].mode))
362 return;
363
364 /* Link DR at the end of the value chain used by SR. */
365
366 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
367
368 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
369 continue;
370 vd->e[i].next_regno = dr;
371
372 if (flag_checking)
373 validate_value_data (vd);
374 }
375
376 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
377
378 static bool
379 mode_change_ok (machine_mode orig_mode, machine_mode new_mode,
380 unsigned int regno ATTRIBUTE_UNUSED)
381 {
382 if (partial_subreg_p (orig_mode, new_mode))
383 return false;
384
385 return REG_CAN_CHANGE_MODE_P (regno, orig_mode, new_mode);
386 }
387
388 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
389 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
390 in NEW_MODE.
391 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
392
393 static rtx
394 maybe_mode_change (machine_mode orig_mode, machine_mode copy_mode,
395 machine_mode new_mode, unsigned int regno,
396 unsigned int copy_regno ATTRIBUTE_UNUSED)
397 {
398 if (partial_subreg_p (copy_mode, orig_mode)
399 && partial_subreg_p (copy_mode, new_mode))
400 return NULL_RTX;
401
402 /* Avoid creating multiple copies of the stack pointer. Some ports
403 assume there is one and only one stack pointer.
404
405 It's unclear if we need to do the same for other special registers. */
406 if (regno == STACK_POINTER_REGNUM)
407 return NULL_RTX;
408
409 if (orig_mode == new_mode)
410 return gen_raw_REG (new_mode, regno);
411 else if (mode_change_ok (orig_mode, new_mode, regno))
412 {
413 int copy_nregs = hard_regno_nregs (copy_regno, copy_mode);
414 int use_nregs = hard_regno_nregs (copy_regno, new_mode);
415 poly_uint64 bytes_per_reg;
416 if (!can_div_trunc_p (GET_MODE_SIZE (copy_mode),
417 copy_nregs, &bytes_per_reg))
418 return NULL_RTX;
419 poly_uint64 copy_offset = bytes_per_reg * (copy_nregs - use_nregs);
420 poly_uint64 offset
421 = subreg_size_lowpart_offset (GET_MODE_SIZE (new_mode) + copy_offset,
422 GET_MODE_SIZE (orig_mode));
423 regno += subreg_regno_offset (regno, orig_mode, offset, new_mode);
424 if (targetm.hard_regno_mode_ok (regno, new_mode))
425 return gen_raw_REG (new_mode, regno);
426 }
427 return NULL_RTX;
428 }
429
430 /* Find the oldest copy of the value contained in REGNO that is in
431 register class CL and has mode MODE. If found, return an rtx
432 of that oldest register, otherwise return NULL. */
433
434 static rtx
435 find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
436 {
437 unsigned int regno = REGNO (reg);
438 machine_mode mode = GET_MODE (reg);
439 unsigned int i;
440
441 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
442
443 /* If we are accessing REG in some mode other that what we set it in,
444 make sure that the replacement is valid. In particular, consider
445 (set (reg:DI r11) (...))
446 (set (reg:SI r9) (reg:SI r11))
447 (set (reg:SI r10) (...))
448 (set (...) (reg:DI r9))
449 Replacing r9 with r11 is invalid. */
450 if (mode != vd->e[regno].mode
451 && REG_NREGS (reg) > hard_regno_nregs (regno, vd->e[regno].mode))
452 return NULL_RTX;
453
454 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
455 {
456 machine_mode oldmode = vd->e[i].mode;
457 rtx new_rtx;
458
459 if (!in_hard_reg_set_p (reg_class_contents[cl], mode, i))
460 continue;
461
462 new_rtx = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
463 if (new_rtx)
464 {
465 ORIGINAL_REGNO (new_rtx) = ORIGINAL_REGNO (reg);
466 REG_ATTRS (new_rtx) = REG_ATTRS (reg);
467 REG_POINTER (new_rtx) = REG_POINTER (reg);
468 return new_rtx;
469 }
470 }
471
472 return NULL_RTX;
473 }
474
475 /* If possible, replace the register at *LOC with the oldest register
476 in register class CL. Return true if successfully replaced. */
477
478 static bool
479 replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx_insn *insn,
480 struct value_data *vd)
481 {
482 rtx new_rtx = find_oldest_value_reg (cl, *loc, vd);
483 if (new_rtx && (!DEBUG_INSN_P (insn) || !skip_debug_insn_p))
484 {
485 if (DEBUG_INSN_P (insn))
486 {
487 struct queued_debug_insn_change *change;
488
489 if (dump_file)
490 fprintf (dump_file, "debug_insn %u: queued replacing reg %u with %u\n",
491 INSN_UID (insn), REGNO (*loc), REGNO (new_rtx));
492
493 change = queued_debug_insn_change_pool.allocate ();
494 change->next = vd->e[REGNO (new_rtx)].debug_insn_changes;
495 change->insn = insn;
496 change->loc = loc;
497 change->new_rtx = new_rtx;
498 vd->e[REGNO (new_rtx)].debug_insn_changes = change;
499 ++vd->n_debug_insn_changes;
500 return true;
501 }
502 if (dump_file)
503 fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
504 INSN_UID (insn), REGNO (*loc), REGNO (new_rtx));
505
506 validate_change (insn, loc, new_rtx, 1);
507 return true;
508 }
509 return false;
510 }
511
512 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
513 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
514 BASE_REG_CLASS depending on how the register is being considered. */
515
516 static bool
517 replace_oldest_value_addr (rtx *loc, enum reg_class cl,
518 machine_mode mode, addr_space_t as,
519 rtx_insn *insn, struct value_data *vd)
520 {
521 rtx x = *loc;
522 RTX_CODE code = GET_CODE (x);
523 const char *fmt;
524 int i, j;
525 bool changed = false;
526
527 switch (code)
528 {
529 case PLUS:
530 if (DEBUG_INSN_P (insn))
531 break;
532
533 {
534 rtx orig_op0 = XEXP (x, 0);
535 rtx orig_op1 = XEXP (x, 1);
536 RTX_CODE code0 = GET_CODE (orig_op0);
537 RTX_CODE code1 = GET_CODE (orig_op1);
538 rtx op0 = orig_op0;
539 rtx op1 = orig_op1;
540 rtx *locI = NULL;
541 rtx *locB = NULL;
542 enum rtx_code index_code = SCRATCH;
543
544 if (GET_CODE (op0) == SUBREG)
545 {
546 op0 = SUBREG_REG (op0);
547 code0 = GET_CODE (op0);
548 }
549
550 if (GET_CODE (op1) == SUBREG)
551 {
552 op1 = SUBREG_REG (op1);
553 code1 = GET_CODE (op1);
554 }
555
556 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
557 || code0 == ZERO_EXTEND || code1 == MEM)
558 {
559 locI = &XEXP (x, 0);
560 locB = &XEXP (x, 1);
561 index_code = GET_CODE (*locI);
562 }
563 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
564 || code1 == ZERO_EXTEND || code0 == MEM)
565 {
566 locI = &XEXP (x, 1);
567 locB = &XEXP (x, 0);
568 index_code = GET_CODE (*locI);
569 }
570 else if (code0 == CONST_INT || code0 == CONST
571 || code0 == SYMBOL_REF || code0 == LABEL_REF)
572 {
573 locB = &XEXP (x, 1);
574 index_code = GET_CODE (XEXP (x, 0));
575 }
576 else if (code1 == CONST_INT || code1 == CONST
577 || code1 == SYMBOL_REF || code1 == LABEL_REF)
578 {
579 locB = &XEXP (x, 0);
580 index_code = GET_CODE (XEXP (x, 1));
581 }
582 else if (code0 == REG && code1 == REG)
583 {
584 int index_op;
585 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
586
587 if (REGNO_OK_FOR_INDEX_P (regno1)
588 && regno_ok_for_base_p (regno0, mode, as, PLUS, REG))
589 index_op = 1;
590 else if (REGNO_OK_FOR_INDEX_P (regno0)
591 && regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
592 index_op = 0;
593 else if (regno_ok_for_base_p (regno0, mode, as, PLUS, REG)
594 || REGNO_OK_FOR_INDEX_P (regno1))
595 index_op = 1;
596 else if (regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
597 index_op = 0;
598 else
599 index_op = 1;
600
601 locI = &XEXP (x, index_op);
602 locB = &XEXP (x, !index_op);
603 index_code = GET_CODE (*locI);
604 }
605 else if (code0 == REG)
606 {
607 locI = &XEXP (x, 0);
608 locB = &XEXP (x, 1);
609 index_code = GET_CODE (*locI);
610 }
611 else if (code1 == REG)
612 {
613 locI = &XEXP (x, 1);
614 locB = &XEXP (x, 0);
615 index_code = GET_CODE (*locI);
616 }
617
618 if (locI)
619 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS,
620 mode, as, insn, vd);
621 if (locB)
622 changed |= replace_oldest_value_addr (locB,
623 base_reg_class (mode, as, PLUS,
624 index_code),
625 mode, as, insn, vd);
626 return changed;
627 }
628
629 case POST_INC:
630 case POST_DEC:
631 case POST_MODIFY:
632 case PRE_INC:
633 case PRE_DEC:
634 case PRE_MODIFY:
635 return false;
636
637 case MEM:
638 return replace_oldest_value_mem (x, insn, vd);
639
640 case REG:
641 return replace_oldest_value_reg (loc, cl, insn, vd);
642
643 default:
644 break;
645 }
646
647 fmt = GET_RTX_FORMAT (code);
648 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
649 {
650 if (fmt[i] == 'e')
651 changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode, as,
652 insn, vd);
653 else if (fmt[i] == 'E')
654 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
655 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
656 mode, as, insn, vd);
657 }
658
659 return changed;
660 }
661
662 /* Similar to replace_oldest_value_reg, but X contains a memory. */
663
664 static bool
665 replace_oldest_value_mem (rtx x, rtx_insn *insn, struct value_data *vd)
666 {
667 enum reg_class cl;
668
669 if (DEBUG_INSN_P (insn))
670 cl = ALL_REGS;
671 else
672 cl = base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x), MEM, SCRATCH);
673
674 return replace_oldest_value_addr (&XEXP (x, 0), cl,
675 GET_MODE (x), MEM_ADDR_SPACE (x),
676 insn, vd);
677 }
678
679 /* Apply all queued updates for DEBUG_INSNs that change some reg to
680 register REGNO. */
681
682 static void
683 apply_debug_insn_changes (struct value_data *vd, unsigned int regno)
684 {
685 struct queued_debug_insn_change *change;
686 rtx_insn *last_insn = vd->e[regno].debug_insn_changes->insn;
687
688 for (change = vd->e[regno].debug_insn_changes;
689 change;
690 change = change->next)
691 {
692 if (last_insn != change->insn)
693 {
694 apply_change_group ();
695 last_insn = change->insn;
696 }
697 validate_change (change->insn, change->loc, change->new_rtx, 1);
698 }
699 apply_change_group ();
700 }
701
702 /* Called via note_uses, for all used registers in a real insn
703 apply DEBUG_INSN changes that change registers to the used
704 registers. */
705
706 static void
707 cprop_find_used_regs (rtx *loc, void *data)
708 {
709 struct value_data *const vd = (struct value_data *) data;
710 subrtx_iterator::array_type array;
711 FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
712 {
713 const_rtx x = *iter;
714 if (REG_P (x))
715 {
716 unsigned int regno = REGNO (x);
717 if (vd->e[regno].debug_insn_changes)
718 {
719 apply_debug_insn_changes (vd, regno);
720 free_debug_insn_changes (vd, regno);
721 }
722 }
723 }
724 }
725
726 /* Apply clobbers of INSN in PATTERN and C_I_F_U to value_data VD. */
727
728 static void
729 kill_clobbered_values (rtx_insn *insn, struct value_data *vd)
730 {
731 note_stores (PATTERN (insn), kill_clobbered_value, vd);
732
733 if (CALL_P (insn))
734 {
735 rtx exp;
736
737 for (exp = CALL_INSN_FUNCTION_USAGE (insn); exp; exp = XEXP (exp, 1))
738 {
739 rtx x = XEXP (exp, 0);
740 if (GET_CODE (x) == CLOBBER)
741 kill_value (SET_DEST (x), vd);
742 }
743 }
744 }
745
746 /* Perform the forward copy propagation on basic block BB. */
747
748 static bool
749 copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
750 {
751 bool anything_changed = false;
752 rtx_insn *insn, *next;
753
754 for (insn = BB_HEAD (bb); ; insn = next)
755 {
756 int n_ops, i, predicated;
757 bool is_asm, any_replacements;
758 rtx set;
759 rtx link;
760 bool changed = false;
761 struct kill_set_value_data ksvd;
762
763 next = NEXT_INSN (insn);
764 if (!NONDEBUG_INSN_P (insn))
765 {
766 if (DEBUG_BIND_INSN_P (insn))
767 {
768 rtx loc = INSN_VAR_LOCATION_LOC (insn);
769 if (!VAR_LOC_UNKNOWN_P (loc))
770 replace_oldest_value_addr (&INSN_VAR_LOCATION_LOC (insn),
771 ALL_REGS, GET_MODE (loc),
772 ADDR_SPACE_GENERIC, insn, vd);
773 }
774
775 if (insn == BB_END (bb))
776 break;
777 else
778 continue;
779 }
780
781 set = single_set (insn);
782
783 /* Detect noop sets and remove them before processing side effects. */
784 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
785 {
786 unsigned int regno = REGNO (SET_SRC (set));
787 rtx r1 = find_oldest_value_reg (REGNO_REG_CLASS (regno),
788 SET_DEST (set), vd);
789 rtx r2 = find_oldest_value_reg (REGNO_REG_CLASS (regno),
790 SET_SRC (set), vd);
791 if (rtx_equal_p (r1 ? r1 : SET_DEST (set), r2 ? r2 : SET_SRC (set)))
792 {
793 bool last = insn == BB_END (bb);
794 delete_insn (insn);
795 if (last)
796 break;
797 continue;
798 }
799 }
800
801 /* Detect obviously dead sets (via REG_UNUSED notes) and remove them. */
802 if (set
803 && INSN_P (insn)
804 && !may_trap_p (insn)
805 && find_reg_note (insn, REG_UNUSED, SET_DEST (set))
806 && !side_effects_p (SET_SRC (set))
807 && !side_effects_p (SET_DEST (set)))
808 {
809 bool last = insn == BB_END (bb);
810 delete_insn (insn);
811 if (last)
812 break;
813 continue;
814 }
815
816
817 extract_constrain_insn (insn);
818 preprocess_constraints (insn);
819 const operand_alternative *op_alt = which_op_alt ();
820 n_ops = recog_data.n_operands;
821 is_asm = asm_noperands (PATTERN (insn)) >= 0;
822
823 /* Simplify the code below by promoting OP_OUT to OP_INOUT
824 in predicated instructions. */
825
826 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
827 for (i = 0; i < n_ops; ++i)
828 {
829 int matches = op_alt[i].matches;
830 if (matches >= 0 || op_alt[i].matched >= 0
831 || (predicated && recog_data.operand_type[i] == OP_OUT))
832 recog_data.operand_type[i] = OP_INOUT;
833 }
834
835 /* Apply changes to earlier DEBUG_INSNs if possible. */
836 if (vd->n_debug_insn_changes)
837 note_uses (&PATTERN (insn), cprop_find_used_regs, vd);
838
839 /* For each earlyclobber operand, zap the value data. */
840 for (i = 0; i < n_ops; i++)
841 if (op_alt[i].earlyclobber)
842 kill_value (recog_data.operand[i], vd);
843
844 /* Within asms, a clobber cannot overlap inputs or outputs.
845 I wouldn't think this were true for regular insns, but
846 scan_rtx treats them like that... */
847 kill_clobbered_values (insn, vd);
848
849 /* Kill all auto-incremented values. */
850 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
851 kill_autoinc_value (insn, vd);
852
853 /* Kill all early-clobbered operands. */
854 for (i = 0; i < n_ops; i++)
855 if (op_alt[i].earlyclobber)
856 kill_value (recog_data.operand[i], vd);
857
858 /* If we have dead sets in the insn, then we need to note these as we
859 would clobbers. */
860 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
861 {
862 if (REG_NOTE_KIND (link) == REG_UNUSED)
863 {
864 kill_value (XEXP (link, 0), vd);
865 /* Furthermore, if the insn looked like a single-set,
866 but the dead store kills the source value of that
867 set, then we can no-longer use the plain move
868 special case below. */
869 if (set
870 && reg_overlap_mentioned_p (XEXP (link, 0), SET_SRC (set)))
871 set = NULL;
872 }
873
874 /* We need to keep CFI info correct, and the same on all paths,
875 so we cannot normally replace the registers REG_CFA_REGISTER
876 refers to. Bail. */
877 if (REG_NOTE_KIND (link) == REG_CFA_REGISTER)
878 goto did_replacement;
879 }
880
881 /* Special-case plain move instructions, since we may well
882 be able to do the move from a different register class. */
883 if (set && REG_P (SET_SRC (set)))
884 {
885 rtx src = SET_SRC (set);
886 unsigned int regno = REGNO (src);
887 machine_mode mode = GET_MODE (src);
888 unsigned int i;
889 rtx new_rtx;
890
891 /* If we are accessing SRC in some mode other that what we
892 set it in, make sure that the replacement is valid. */
893 if (mode != vd->e[regno].mode)
894 {
895 if (REG_NREGS (src)
896 > hard_regno_nregs (regno, vd->e[regno].mode))
897 goto no_move_special_case;
898
899 /* And likewise, if we are narrowing on big endian the transformation
900 is also invalid. */
901 if (REG_NREGS (src) < hard_regno_nregs (regno, vd->e[regno].mode)
902 && maybe_ne (subreg_lowpart_offset (mode,
903 vd->e[regno].mode), 0U))
904 goto no_move_special_case;
905 }
906
907 /* If the destination is also a register, try to find a source
908 register in the same class. */
909 if (REG_P (SET_DEST (set)))
910 {
911 new_rtx = find_oldest_value_reg (REGNO_REG_CLASS (regno),
912 src, vd);
913
914 if (new_rtx && validate_change (insn, &SET_SRC (set), new_rtx, 0))
915 {
916 if (dump_file)
917 fprintf (dump_file,
918 "insn %u: replaced reg %u with %u\n",
919 INSN_UID (insn), regno, REGNO (new_rtx));
920 changed = true;
921 goto did_replacement;
922 }
923 /* We need to re-extract as validate_change clobbers
924 recog_data. */
925 extract_constrain_insn (insn);
926 preprocess_constraints (insn);
927 }
928
929 /* Otherwise, try all valid registers and see if its valid. */
930 for (i = vd->e[regno].oldest_regno; i != regno;
931 i = vd->e[i].next_regno)
932 {
933 new_rtx = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
934 mode, i, regno);
935 if (new_rtx != NULL_RTX)
936 {
937 if (validate_change (insn, &SET_SRC (set), new_rtx, 0))
938 {
939 ORIGINAL_REGNO (new_rtx) = ORIGINAL_REGNO (src);
940 REG_ATTRS (new_rtx) = REG_ATTRS (src);
941 REG_POINTER (new_rtx) = REG_POINTER (src);
942 if (dump_file)
943 fprintf (dump_file,
944 "insn %u: replaced reg %u with %u\n",
945 INSN_UID (insn), regno, REGNO (new_rtx));
946 changed = true;
947 goto did_replacement;
948 }
949 /* We need to re-extract as validate_change clobbers
950 recog_data. */
951 extract_constrain_insn (insn);
952 preprocess_constraints (insn);
953 }
954 }
955 }
956 no_move_special_case:
957
958 any_replacements = false;
959
960 /* For each input operand, replace a hard register with the
961 eldest live copy that's in an appropriate register class. */
962 for (i = 0; i < n_ops; i++)
963 {
964 bool replaced = false;
965
966 /* Don't scan match_operand here, since we've no reg class
967 information to pass down. Any operands that we could
968 substitute in will be represented elsewhere. */
969 if (recog_data.constraints[i][0] == '\0')
970 continue;
971
972 /* Don't replace in asms intentionally referencing hard regs. */
973 if (is_asm && REG_P (recog_data.operand[i])
974 && (REGNO (recog_data.operand[i])
975 == ORIGINAL_REGNO (recog_data.operand[i])))
976 continue;
977
978 if (recog_data.operand_type[i] == OP_IN)
979 {
980 if (op_alt[i].is_address)
981 replaced
982 = replace_oldest_value_addr (recog_data.operand_loc[i],
983 alternative_class (op_alt, i),
984 VOIDmode, ADDR_SPACE_GENERIC,
985 insn, vd);
986 else if (REG_P (recog_data.operand[i]))
987 replaced
988 = replace_oldest_value_reg (recog_data.operand_loc[i],
989 alternative_class (op_alt, i),
990 insn, vd);
991 else if (MEM_P (recog_data.operand[i]))
992 replaced = replace_oldest_value_mem (recog_data.operand[i],
993 insn, vd);
994 }
995 else if (MEM_P (recog_data.operand[i]))
996 replaced = replace_oldest_value_mem (recog_data.operand[i],
997 insn, vd);
998
999 /* If we performed any replacement, update match_dups. */
1000 if (replaced)
1001 {
1002 int j;
1003 rtx new_rtx;
1004
1005 new_rtx = *recog_data.operand_loc[i];
1006 recog_data.operand[i] = new_rtx;
1007 for (j = 0; j < recog_data.n_dups; j++)
1008 if (recog_data.dup_num[j] == i)
1009 validate_unshare_change (insn, recog_data.dup_loc[j], new_rtx, 1);
1010
1011 any_replacements = true;
1012 }
1013 }
1014
1015 if (any_replacements)
1016 {
1017 if (! apply_change_group ())
1018 {
1019 if (dump_file)
1020 fprintf (dump_file,
1021 "insn %u: reg replacements not verified\n",
1022 INSN_UID (insn));
1023 }
1024 else
1025 changed = true;
1026 }
1027
1028 did_replacement:
1029 if (changed)
1030 {
1031 anything_changed = true;
1032
1033 /* If something changed, perhaps further changes to earlier
1034 DEBUG_INSNs can be applied. */
1035 if (vd->n_debug_insn_changes)
1036 note_uses (&PATTERN (insn), cprop_find_used_regs, vd);
1037 }
1038
1039 ksvd.vd = vd;
1040 ksvd.ignore_set_reg = NULL_RTX;
1041
1042 /* Clobber call-clobbered registers. */
1043 if (CALL_P (insn))
1044 {
1045 unsigned int set_regno = INVALID_REGNUM;
1046 unsigned int set_nregs = 0;
1047 unsigned int regno;
1048 rtx exp;
1049 HARD_REG_SET regs_invalidated_by_this_call;
1050
1051 for (exp = CALL_INSN_FUNCTION_USAGE (insn); exp; exp = XEXP (exp, 1))
1052 {
1053 rtx x = XEXP (exp, 0);
1054 if (GET_CODE (x) == SET)
1055 {
1056 rtx dest = SET_DEST (x);
1057 kill_value (dest, vd);
1058 set_value_regno (REGNO (dest), GET_MODE (dest), vd);
1059 copy_value (dest, SET_SRC (x), vd);
1060 ksvd.ignore_set_reg = dest;
1061 set_regno = REGNO (dest);
1062 set_nregs = REG_NREGS (dest);
1063 break;
1064 }
1065 }
1066
1067 get_call_reg_set_usage (insn,
1068 &regs_invalidated_by_this_call,
1069 regs_invalidated_by_call);
1070 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1071 if ((TEST_HARD_REG_BIT (regs_invalidated_by_this_call, regno)
1072 || (targetm.hard_regno_call_part_clobbered
1073 (insn, regno, vd->e[regno].mode)))
1074 && (regno < set_regno || regno >= set_regno + set_nregs))
1075 kill_value_regno (regno, 1, vd);
1076
1077 /* If SET was seen in CALL_INSN_FUNCTION_USAGE, and SET_SRC
1078 of the SET isn't in regs_invalidated_by_call hard reg set,
1079 but instead among CLOBBERs on the CALL_INSN, we could wrongly
1080 assume the value in it is still live. */
1081 if (ksvd.ignore_set_reg)
1082 kill_clobbered_values (insn, vd);
1083 }
1084
1085 bool copy_p = (set
1086 && REG_P (SET_DEST (set))
1087 && REG_P (SET_SRC (set)));
1088 bool noop_p = (copy_p
1089 && rtx_equal_p (SET_DEST (set), SET_SRC (set)));
1090
1091 /* If a noop move is using narrower mode than we have recorded,
1092 we need to either remove the noop move, or kill_set_value. */
1093 if (noop_p
1094 && partial_subreg_p (GET_MODE (SET_DEST (set)),
1095 vd->e[REGNO (SET_DEST (set))].mode))
1096 {
1097 if (noop_move_p (insn))
1098 {
1099 bool last = insn == BB_END (bb);
1100 delete_insn (insn);
1101 if (last)
1102 break;
1103 }
1104 else
1105 noop_p = false;
1106 }
1107
1108 if (!noop_p)
1109 {
1110 /* Notice stores. */
1111 note_stores (PATTERN (insn), kill_set_value, &ksvd);
1112
1113 /* Notice copies. */
1114 if (copy_p)
1115 copy_value (SET_DEST (set), SET_SRC (set), vd);
1116 }
1117
1118 if (insn == BB_END (bb))
1119 break;
1120 }
1121
1122 return anything_changed;
1123 }
1124
1125 /* Dump the value chain data to stderr. */
1126
1127 DEBUG_FUNCTION void
1128 debug_value_data (struct value_data *vd)
1129 {
1130 HARD_REG_SET set;
1131 unsigned int i, j;
1132
1133 CLEAR_HARD_REG_SET (set);
1134
1135 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1136 if (vd->e[i].oldest_regno == i)
1137 {
1138 if (vd->e[i].mode == VOIDmode)
1139 {
1140 if (vd->e[i].next_regno != INVALID_REGNUM)
1141 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1142 i, vd->e[i].next_regno);
1143 continue;
1144 }
1145
1146 SET_HARD_REG_BIT (set, i);
1147 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1148
1149 for (j = vd->e[i].next_regno;
1150 j != INVALID_REGNUM;
1151 j = vd->e[j].next_regno)
1152 {
1153 if (TEST_HARD_REG_BIT (set, j))
1154 {
1155 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1156 return;
1157 }
1158
1159 if (vd->e[j].oldest_regno != i)
1160 {
1161 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1162 j, vd->e[j].oldest_regno);
1163 return;
1164 }
1165 SET_HARD_REG_BIT (set, j);
1166 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1167 }
1168 fputc ('\n', stderr);
1169 }
1170
1171 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1172 if (! TEST_HARD_REG_BIT (set, i)
1173 && (vd->e[i].mode != VOIDmode
1174 || vd->e[i].oldest_regno != i
1175 || vd->e[i].next_regno != INVALID_REGNUM))
1176 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1177 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1178 vd->e[i].next_regno);
1179 }
1180
1181 /* Do copyprop_hardreg_forward_1 for a single basic block BB.
1182 DEBUG_INSN is skipped since we do not want to involve DF related
1183 staff as how it is handled in function pass_cprop_hardreg::execute.
1184
1185 NOTE: Currently it is only used for shrink-wrap. Maybe extend it
1186 to handle DEBUG_INSN for other uses. */
1187
1188 void
1189 copyprop_hardreg_forward_bb_without_debug_insn (basic_block bb)
1190 {
1191 struct value_data *vd;
1192 vd = XNEWVEC (struct value_data, 1);
1193 init_value_data (vd);
1194
1195 skip_debug_insn_p = true;
1196 copyprop_hardreg_forward_1 (bb, vd);
1197 free (vd);
1198 skip_debug_insn_p = false;
1199 }
1200
1201 static void
1202 validate_value_data (struct value_data *vd)
1203 {
1204 HARD_REG_SET set;
1205 unsigned int i, j;
1206
1207 CLEAR_HARD_REG_SET (set);
1208
1209 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1210 if (vd->e[i].oldest_regno == i)
1211 {
1212 if (vd->e[i].mode == VOIDmode)
1213 {
1214 if (vd->e[i].next_regno != INVALID_REGNUM)
1215 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1216 i, vd->e[i].next_regno);
1217 continue;
1218 }
1219
1220 SET_HARD_REG_BIT (set, i);
1221
1222 for (j = vd->e[i].next_regno;
1223 j != INVALID_REGNUM;
1224 j = vd->e[j].next_regno)
1225 {
1226 if (TEST_HARD_REG_BIT (set, j))
1227 internal_error ("validate_value_data: Loop in regno chain (%u)",
1228 j);
1229 if (vd->e[j].oldest_regno != i)
1230 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1231 j, vd->e[j].oldest_regno);
1232
1233 SET_HARD_REG_BIT (set, j);
1234 }
1235 }
1236
1237 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1238 if (! TEST_HARD_REG_BIT (set, i)
1239 && (vd->e[i].mode != VOIDmode
1240 || vd->e[i].oldest_regno != i
1241 || vd->e[i].next_regno != INVALID_REGNUM))
1242 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1243 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1244 vd->e[i].next_regno);
1245 }
1246
1247 \f
1248 namespace {
1249
1250 const pass_data pass_data_cprop_hardreg =
1251 {
1252 RTL_PASS, /* type */
1253 "cprop_hardreg", /* name */
1254 OPTGROUP_NONE, /* optinfo_flags */
1255 TV_CPROP_REGISTERS, /* tv_id */
1256 0, /* properties_required */
1257 0, /* properties_provided */
1258 0, /* properties_destroyed */
1259 0, /* todo_flags_start */
1260 TODO_df_finish, /* todo_flags_finish */
1261 };
1262
1263 class pass_cprop_hardreg : public rtl_opt_pass
1264 {
1265 public:
1266 pass_cprop_hardreg (gcc::context *ctxt)
1267 : rtl_opt_pass (pass_data_cprop_hardreg, ctxt)
1268 {}
1269
1270 /* opt_pass methods: */
1271 virtual bool gate (function *)
1272 {
1273 return (optimize > 0 && (flag_cprop_registers));
1274 }
1275
1276 virtual unsigned int execute (function *);
1277
1278 }; // class pass_cprop_hardreg
1279
1280 unsigned int
1281 pass_cprop_hardreg::execute (function *fun)
1282 {
1283 struct value_data *all_vd;
1284 basic_block bb;
1285 bool analyze_called = false;
1286
1287 all_vd = XNEWVEC (struct value_data, last_basic_block_for_fn (fun));
1288
1289 auto_sbitmap visited (last_basic_block_for_fn (fun));
1290 bitmap_clear (visited);
1291
1292 FOR_EACH_BB_FN (bb, fun)
1293 {
1294 bitmap_set_bit (visited, bb->index);
1295
1296 /* If a block has a single predecessor, that we've already
1297 processed, begin with the value data that was live at
1298 the end of the predecessor block. */
1299 /* ??? Ought to use more intelligent queuing of blocks. */
1300 if (single_pred_p (bb)
1301 && bitmap_bit_p (visited, single_pred (bb)->index)
1302 && ! (single_pred_edge (bb)->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
1303 {
1304 all_vd[bb->index] = all_vd[single_pred (bb)->index];
1305 if (all_vd[bb->index].n_debug_insn_changes)
1306 {
1307 unsigned int regno;
1308
1309 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1310 {
1311 if (all_vd[bb->index].e[regno].debug_insn_changes)
1312 {
1313 all_vd[bb->index].e[regno].debug_insn_changes = NULL;
1314 if (--all_vd[bb->index].n_debug_insn_changes == 0)
1315 break;
1316 }
1317 }
1318 }
1319 }
1320 else
1321 init_value_data (all_vd + bb->index);
1322
1323 copyprop_hardreg_forward_1 (bb, all_vd + bb->index);
1324 }
1325
1326 if (MAY_HAVE_DEBUG_BIND_INSNS)
1327 {
1328 FOR_EACH_BB_FN (bb, fun)
1329 if (bitmap_bit_p (visited, bb->index)
1330 && all_vd[bb->index].n_debug_insn_changes)
1331 {
1332 unsigned int regno;
1333 bitmap live;
1334
1335 if (!analyze_called)
1336 {
1337 df_analyze ();
1338 analyze_called = true;
1339 }
1340 live = df_get_live_out (bb);
1341 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1342 if (all_vd[bb->index].e[regno].debug_insn_changes)
1343 {
1344 if (REGNO_REG_SET_P (live, regno))
1345 apply_debug_insn_changes (all_vd + bb->index, regno);
1346 if (all_vd[bb->index].n_debug_insn_changes == 0)
1347 break;
1348 }
1349 }
1350
1351 queued_debug_insn_change_pool.release ();
1352 }
1353
1354 free (all_vd);
1355 return 0;
1356 }
1357
1358 } // anon namespace
1359
1360 rtl_opt_pass *
1361 make_pass_cprop_hardreg (gcc::context *ctxt)
1362 {
1363 return new pass_cprop_hardreg (ctxt);
1364 }