* regcprop.c (copyprop_hardreg_forward_1): Don't call df_insn_rescan.
[gcc.git] / gcc / regcprop.c
1 /* Copy propagation on hard registers for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "regs.h"
29 #include "addresses.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "reload.h"
33 #include "output.h"
34 #include "function.h"
35 #include "recog.h"
36 #include "flags.h"
37 #include "toplev.h"
38 #include "obstack.h"
39 #include "timevar.h"
40 #include "tree-pass.h"
41 #include "df.h"
42
43 /* The following code does forward propagation of hard register copies.
44 The object is to eliminate as many dependencies as possible, so that
45 we have the most scheduling freedom. As a side effect, we also clean
46 up some silly register allocation decisions made by reload. This
47 code may be obsoleted by a new register allocator. */
48
49 /* For each register, we have a list of registers that contain the same
50 value. The OLDEST_REGNO field points to the head of the list, and
51 the NEXT_REGNO field runs through the list. The MODE field indicates
52 what mode the data is known to be in; this field is VOIDmode when the
53 register is not known to contain valid data. */
54
55 struct value_data_entry
56 {
57 enum machine_mode mode;
58 unsigned int oldest_regno;
59 unsigned int next_regno;
60 };
61
62 struct value_data
63 {
64 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
65 unsigned int max_value_regs;
66 };
67
68 static void kill_value_one_regno (unsigned, struct value_data *);
69 static void kill_value_regno (unsigned, unsigned, struct value_data *);
70 static void kill_value (rtx, struct value_data *);
71 static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
72 static void init_value_data (struct value_data *);
73 static void kill_clobbered_value (rtx, const_rtx, void *);
74 static void kill_set_value (rtx, const_rtx, void *);
75 static int kill_autoinc_value (rtx *, void *);
76 static void copy_value (rtx, rtx, struct value_data *);
77 static bool mode_change_ok (enum machine_mode, enum machine_mode,
78 unsigned int);
79 static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
80 enum machine_mode, unsigned int, unsigned int);
81 static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
82 static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
83 struct value_data *);
84 static bool replace_oldest_value_addr (rtx *, enum reg_class,
85 enum machine_mode, rtx,
86 struct value_data *);
87 static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
88 static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
89 extern void debug_value_data (struct value_data *);
90 #ifdef ENABLE_CHECKING
91 static void validate_value_data (struct value_data *);
92 #endif
93
94 /* Kill register REGNO. This involves removing it from any value
95 lists, and resetting the value mode to VOIDmode. This is only a
96 helper function; it does not handle any hard registers overlapping
97 with REGNO. */
98
99 static void
100 kill_value_one_regno (unsigned int regno, struct value_data *vd)
101 {
102 unsigned int i, next;
103
104 if (vd->e[regno].oldest_regno != regno)
105 {
106 for (i = vd->e[regno].oldest_regno;
107 vd->e[i].next_regno != regno;
108 i = vd->e[i].next_regno)
109 continue;
110 vd->e[i].next_regno = vd->e[regno].next_regno;
111 }
112 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
113 {
114 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
115 vd->e[i].oldest_regno = next;
116 }
117
118 vd->e[regno].mode = VOIDmode;
119 vd->e[regno].oldest_regno = regno;
120 vd->e[regno].next_regno = INVALID_REGNUM;
121
122 #ifdef ENABLE_CHECKING
123 validate_value_data (vd);
124 #endif
125 }
126
127 /* Kill the value in register REGNO for NREGS, and any other registers
128 whose values overlap. */
129
130 static void
131 kill_value_regno (unsigned int regno, unsigned int nregs,
132 struct value_data *vd)
133 {
134 unsigned int j;
135
136 /* Kill the value we're told to kill. */
137 for (j = 0; j < nregs; ++j)
138 kill_value_one_regno (regno + j, vd);
139
140 /* Kill everything that overlapped what we're told to kill. */
141 if (regno < vd->max_value_regs)
142 j = 0;
143 else
144 j = regno - vd->max_value_regs;
145 for (; j < regno; ++j)
146 {
147 unsigned int i, n;
148 if (vd->e[j].mode == VOIDmode)
149 continue;
150 n = hard_regno_nregs[j][vd->e[j].mode];
151 if (j + n > regno)
152 for (i = 0; i < n; ++i)
153 kill_value_one_regno (j + i, vd);
154 }
155 }
156
157 /* Kill X. This is a convenience function wrapping kill_value_regno
158 so that we mind the mode the register is in. */
159
160 static void
161 kill_value (rtx x, struct value_data *vd)
162 {
163 rtx orig_rtx = x;
164
165 if (GET_CODE (x) == SUBREG)
166 {
167 x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
168 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
169 if (x == NULL_RTX)
170 x = SUBREG_REG (orig_rtx);
171 }
172 if (REG_P (x))
173 {
174 unsigned int regno = REGNO (x);
175 unsigned int n = hard_regno_nregs[regno][GET_MODE (x)];
176
177 kill_value_regno (regno, n, vd);
178 }
179 }
180
181 /* Remember that REGNO is valid in MODE. */
182
183 static void
184 set_value_regno (unsigned int regno, enum machine_mode mode,
185 struct value_data *vd)
186 {
187 unsigned int nregs;
188
189 vd->e[regno].mode = mode;
190
191 nregs = hard_regno_nregs[regno][mode];
192 if (nregs > vd->max_value_regs)
193 vd->max_value_regs = nregs;
194 }
195
196 /* Initialize VD such that there are no known relationships between regs. */
197
198 static void
199 init_value_data (struct value_data *vd)
200 {
201 int i;
202 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
203 {
204 vd->e[i].mode = VOIDmode;
205 vd->e[i].oldest_regno = i;
206 vd->e[i].next_regno = INVALID_REGNUM;
207 }
208 vd->max_value_regs = 0;
209 }
210
211 /* Called through note_stores. If X is clobbered, kill its value. */
212
213 static void
214 kill_clobbered_value (rtx x, const_rtx set, void *data)
215 {
216 struct value_data *const vd = (struct value_data *) data;
217 if (GET_CODE (set) == CLOBBER)
218 kill_value (x, vd);
219 }
220
221 /* Called through note_stores. If X is set, not clobbered, kill its
222 current value and install it as the root of its own value list. */
223
224 static void
225 kill_set_value (rtx x, const_rtx set, void *data)
226 {
227 struct value_data *const vd = (struct value_data *) data;
228 if (GET_CODE (set) != CLOBBER)
229 {
230 kill_value (x, vd);
231 if (REG_P (x))
232 set_value_regno (REGNO (x), GET_MODE (x), vd);
233 }
234 }
235
236 /* Called through for_each_rtx. Kill any register used as the base of an
237 auto-increment expression, and install that register as the root of its
238 own value list. */
239
240 static int
241 kill_autoinc_value (rtx *px, void *data)
242 {
243 rtx x = *px;
244 struct value_data *const vd = (struct value_data *) data;
245
246 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
247 {
248 x = XEXP (x, 0);
249 kill_value (x, vd);
250 set_value_regno (REGNO (x), GET_MODE (x), vd);
251 return -1;
252 }
253
254 return 0;
255 }
256
257 /* Assert that SRC has been copied to DEST. Adjust the data structures
258 to reflect that SRC contains an older copy of the shared value. */
259
260 static void
261 copy_value (rtx dest, rtx src, struct value_data *vd)
262 {
263 unsigned int dr = REGNO (dest);
264 unsigned int sr = REGNO (src);
265 unsigned int dn, sn;
266 unsigned int i;
267
268 /* ??? At present, it's possible to see noop sets. It'd be nice if
269 this were cleaned up beforehand... */
270 if (sr == dr)
271 return;
272
273 /* Do not propagate copies to the stack pointer, as that can leave
274 memory accesses with no scheduling dependency on the stack update. */
275 if (dr == STACK_POINTER_REGNUM)
276 return;
277
278 /* Likewise with the frame pointer, if we're using one. */
279 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
280 return;
281
282 /* Do not propagate copies to fixed or global registers, patterns
283 can be relying to see particular fixed register or users can
284 expect the chosen global register in asm. */
285 if (fixed_regs[dr] || global_regs[dr])
286 return;
287
288 /* If SRC and DEST overlap, don't record anything. */
289 dn = hard_regno_nregs[dr][GET_MODE (dest)];
290 sn = hard_regno_nregs[sr][GET_MODE (dest)];
291 if ((dr > sr && dr < sr + sn)
292 || (sr > dr && sr < dr + dn))
293 return;
294
295 /* If SRC had no assigned mode (i.e. we didn't know it was live)
296 assign it now and assume the value came from an input argument
297 or somesuch. */
298 if (vd->e[sr].mode == VOIDmode)
299 set_value_regno (sr, vd->e[dr].mode, vd);
300
301 /* If we are narrowing the input to a smaller number of hard regs,
302 and it is in big endian, we are really extracting a high part.
303 Since we generally associate a low part of a value with the value itself,
304 we must not do the same for the high part.
305 Note we can still get low parts for the same mode combination through
306 a two-step copy involving differently sized hard regs.
307 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
308 (set (reg:DI r0) (reg:DI fr0))
309 (set (reg:SI fr2) (reg:SI r0))
310 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
311 (set (reg:SI fr2) (reg:SI fr0))
312 loads the high part of (reg:DI fr0) into fr2.
313
314 We can't properly represent the latter case in our tables, so don't
315 record anything then. */
316 else if (sn < (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode]
317 && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
318 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
319 return;
320
321 /* If SRC had been assigned a mode narrower than the copy, we can't
322 link DEST into the chain, because not all of the pieces of the
323 copy came from oldest_regno. */
324 else if (sn > (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode])
325 return;
326
327 /* Link DR at the end of the value chain used by SR. */
328
329 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
330
331 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
332 continue;
333 vd->e[i].next_regno = dr;
334
335 #ifdef ENABLE_CHECKING
336 validate_value_data (vd);
337 #endif
338 }
339
340 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
341
342 static bool
343 mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
344 unsigned int regno ATTRIBUTE_UNUSED)
345 {
346 if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
347 return false;
348
349 #ifdef CANNOT_CHANGE_MODE_CLASS
350 return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
351 #endif
352
353 return true;
354 }
355
356 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
357 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
358 in NEW_MODE.
359 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
360
361 static rtx
362 maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
363 enum machine_mode new_mode, unsigned int regno,
364 unsigned int copy_regno ATTRIBUTE_UNUSED)
365 {
366 if (GET_MODE_SIZE (copy_mode) < GET_MODE_SIZE (orig_mode)
367 && GET_MODE_SIZE (copy_mode) < GET_MODE_SIZE (new_mode))
368 return NULL_RTX;
369
370 if (orig_mode == new_mode)
371 return gen_rtx_raw_REG (new_mode, regno);
372 else if (mode_change_ok (orig_mode, new_mode, regno))
373 {
374 int copy_nregs = hard_regno_nregs[copy_regno][copy_mode];
375 int use_nregs = hard_regno_nregs[copy_regno][new_mode];
376 int copy_offset
377 = GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
378 int offset
379 = GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
380 int byteoffset = offset % UNITS_PER_WORD;
381 int wordoffset = offset - byteoffset;
382
383 offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
384 + (BYTES_BIG_ENDIAN ? byteoffset : 0));
385 return gen_rtx_raw_REG (new_mode,
386 regno + subreg_regno_offset (regno, orig_mode,
387 offset,
388 new_mode));
389 }
390 return NULL_RTX;
391 }
392
393 /* Find the oldest copy of the value contained in REGNO that is in
394 register class CL and has mode MODE. If found, return an rtx
395 of that oldest register, otherwise return NULL. */
396
397 static rtx
398 find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
399 {
400 unsigned int regno = REGNO (reg);
401 enum machine_mode mode = GET_MODE (reg);
402 unsigned int i;
403
404 /* If we are accessing REG in some mode other that what we set it in,
405 make sure that the replacement is valid. In particular, consider
406 (set (reg:DI r11) (...))
407 (set (reg:SI r9) (reg:SI r11))
408 (set (reg:SI r10) (...))
409 (set (...) (reg:DI r9))
410 Replacing r9 with r11 is invalid. */
411 if (mode != vd->e[regno].mode)
412 {
413 if (hard_regno_nregs[regno][mode]
414 > hard_regno_nregs[regno][vd->e[regno].mode])
415 return NULL_RTX;
416 }
417
418 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
419 {
420 enum machine_mode oldmode = vd->e[i].mode;
421 rtx new_rtx;
422
423 if (!in_hard_reg_set_p (reg_class_contents[cl], mode, i))
424 return NULL_RTX;
425
426 new_rtx = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
427 if (new_rtx)
428 {
429 ORIGINAL_REGNO (new_rtx) = ORIGINAL_REGNO (reg);
430 REG_ATTRS (new_rtx) = REG_ATTRS (reg);
431 REG_POINTER (new_rtx) = REG_POINTER (reg);
432 return new_rtx;
433 }
434 }
435
436 return NULL_RTX;
437 }
438
439 /* If possible, replace the register at *LOC with the oldest register
440 in register class CL. Return true if successfully replaced. */
441
442 static bool
443 replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx insn,
444 struct value_data *vd)
445 {
446 rtx new_rtx = find_oldest_value_reg (cl, *loc, vd);
447 if (new_rtx)
448 {
449 if (dump_file)
450 fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
451 INSN_UID (insn), REGNO (*loc), REGNO (new_rtx));
452
453 validate_change (insn, loc, new_rtx, 1);
454 return true;
455 }
456 return false;
457 }
458
459 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
460 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
461 BASE_REG_CLASS depending on how the register is being considered. */
462
463 static bool
464 replace_oldest_value_addr (rtx *loc, enum reg_class cl,
465 enum machine_mode mode, rtx insn,
466 struct value_data *vd)
467 {
468 rtx x = *loc;
469 RTX_CODE code = GET_CODE (x);
470 const char *fmt;
471 int i, j;
472 bool changed = false;
473
474 switch (code)
475 {
476 case PLUS:
477 if (DEBUG_INSN_P (insn))
478 break;
479
480 {
481 rtx orig_op0 = XEXP (x, 0);
482 rtx orig_op1 = XEXP (x, 1);
483 RTX_CODE code0 = GET_CODE (orig_op0);
484 RTX_CODE code1 = GET_CODE (orig_op1);
485 rtx op0 = orig_op0;
486 rtx op1 = orig_op1;
487 rtx *locI = NULL;
488 rtx *locB = NULL;
489 enum rtx_code index_code = SCRATCH;
490
491 if (GET_CODE (op0) == SUBREG)
492 {
493 op0 = SUBREG_REG (op0);
494 code0 = GET_CODE (op0);
495 }
496
497 if (GET_CODE (op1) == SUBREG)
498 {
499 op1 = SUBREG_REG (op1);
500 code1 = GET_CODE (op1);
501 }
502
503 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
504 || code0 == ZERO_EXTEND || code1 == MEM)
505 {
506 locI = &XEXP (x, 0);
507 locB = &XEXP (x, 1);
508 index_code = GET_CODE (*locI);
509 }
510 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
511 || code1 == ZERO_EXTEND || code0 == MEM)
512 {
513 locI = &XEXP (x, 1);
514 locB = &XEXP (x, 0);
515 index_code = GET_CODE (*locI);
516 }
517 else if (code0 == CONST_INT || code0 == CONST
518 || code0 == SYMBOL_REF || code0 == LABEL_REF)
519 {
520 locB = &XEXP (x, 1);
521 index_code = GET_CODE (XEXP (x, 0));
522 }
523 else if (code1 == CONST_INT || code1 == CONST
524 || code1 == SYMBOL_REF || code1 == LABEL_REF)
525 {
526 locB = &XEXP (x, 0);
527 index_code = GET_CODE (XEXP (x, 1));
528 }
529 else if (code0 == REG && code1 == REG)
530 {
531 int index_op;
532 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
533
534 if (REGNO_OK_FOR_INDEX_P (regno1)
535 && regno_ok_for_base_p (regno0, mode, PLUS, REG))
536 index_op = 1;
537 else if (REGNO_OK_FOR_INDEX_P (regno0)
538 && regno_ok_for_base_p (regno1, mode, PLUS, REG))
539 index_op = 0;
540 else if (regno_ok_for_base_p (regno0, mode, PLUS, REG)
541 || REGNO_OK_FOR_INDEX_P (regno1))
542 index_op = 1;
543 else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
544 index_op = 0;
545 else
546 index_op = 1;
547
548 locI = &XEXP (x, index_op);
549 locB = &XEXP (x, !index_op);
550 index_code = GET_CODE (*locI);
551 }
552 else if (code0 == REG)
553 {
554 locI = &XEXP (x, 0);
555 locB = &XEXP (x, 1);
556 index_code = GET_CODE (*locI);
557 }
558 else if (code1 == REG)
559 {
560 locI = &XEXP (x, 1);
561 locB = &XEXP (x, 0);
562 index_code = GET_CODE (*locI);
563 }
564
565 if (locI)
566 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
567 insn, vd);
568 if (locB)
569 changed |= replace_oldest_value_addr (locB,
570 base_reg_class (mode, PLUS,
571 index_code),
572 mode, insn, vd);
573 return changed;
574 }
575
576 case POST_INC:
577 case POST_DEC:
578 case POST_MODIFY:
579 case PRE_INC:
580 case PRE_DEC:
581 case PRE_MODIFY:
582 return false;
583
584 case MEM:
585 return replace_oldest_value_mem (x, insn, vd);
586
587 case REG:
588 return replace_oldest_value_reg (loc, cl, insn, vd);
589
590 default:
591 break;
592 }
593
594 fmt = GET_RTX_FORMAT (code);
595 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
596 {
597 if (fmt[i] == 'e')
598 changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode,
599 insn, vd);
600 else if (fmt[i] == 'E')
601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
602 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
603 mode, insn, vd);
604 }
605
606 return changed;
607 }
608
609 /* Similar to replace_oldest_value_reg, but X contains a memory. */
610
611 static bool
612 replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
613 {
614 enum reg_class cl;
615
616 if (DEBUG_INSN_P (insn))
617 cl = ALL_REGS;
618 else
619 cl = base_reg_class (GET_MODE (x), MEM, SCRATCH);
620
621 return replace_oldest_value_addr (&XEXP (x, 0), cl,
622 GET_MODE (x), insn, vd);
623 }
624
625 /* Perform the forward copy propagation on basic block BB. */
626
627 static bool
628 copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
629 {
630 bool anything_changed = false;
631 rtx insn;
632
633 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
634 {
635 int n_ops, i, alt, predicated;
636 bool is_asm, any_replacements;
637 rtx set;
638 bool replaced[MAX_RECOG_OPERANDS];
639 bool changed = false;
640
641 if (!NONDEBUG_INSN_P (insn))
642 {
643 if (DEBUG_INSN_P (insn))
644 {
645 rtx loc = INSN_VAR_LOCATION_LOC (insn);
646 if (!VAR_LOC_UNKNOWN_P (loc)
647 && replace_oldest_value_addr (&INSN_VAR_LOCATION_LOC (insn),
648 ALL_REGS, GET_MODE (loc),
649 insn, vd))
650 {
651 changed = apply_change_group ();
652 gcc_assert (changed);
653 anything_changed = true;
654 }
655 }
656
657 if (insn == BB_END (bb))
658 break;
659 else
660 continue;
661 }
662
663 set = single_set (insn);
664 extract_insn (insn);
665 if (! constrain_operands (1))
666 fatal_insn_not_found (insn);
667 preprocess_constraints ();
668 alt = which_alternative;
669 n_ops = recog_data.n_operands;
670 is_asm = asm_noperands (PATTERN (insn)) >= 0;
671
672 /* Simplify the code below by rewriting things to reflect
673 matching constraints. Also promote OP_OUT to OP_INOUT
674 in predicated instructions. */
675
676 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
677 for (i = 0; i < n_ops; ++i)
678 {
679 int matches = recog_op_alt[i][alt].matches;
680 if (matches >= 0)
681 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
682 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
683 || (predicated && recog_data.operand_type[i] == OP_OUT))
684 recog_data.operand_type[i] = OP_INOUT;
685 }
686
687 /* For each earlyclobber operand, zap the value data. */
688 for (i = 0; i < n_ops; i++)
689 if (recog_op_alt[i][alt].earlyclobber)
690 kill_value (recog_data.operand[i], vd);
691
692 /* Within asms, a clobber cannot overlap inputs or outputs.
693 I wouldn't think this were true for regular insns, but
694 scan_rtx treats them like that... */
695 note_stores (PATTERN (insn), kill_clobbered_value, vd);
696
697 /* Kill all auto-incremented values. */
698 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
699 for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
700
701 /* Kill all early-clobbered operands. */
702 for (i = 0; i < n_ops; i++)
703 if (recog_op_alt[i][alt].earlyclobber)
704 kill_value (recog_data.operand[i], vd);
705
706 /* Special-case plain move instructions, since we may well
707 be able to do the move from a different register class. */
708 if (set && REG_P (SET_SRC (set)))
709 {
710 rtx src = SET_SRC (set);
711 unsigned int regno = REGNO (src);
712 enum machine_mode mode = GET_MODE (src);
713 unsigned int i;
714 rtx new_rtx;
715
716 /* If we are accessing SRC in some mode other that what we
717 set it in, make sure that the replacement is valid. */
718 if (mode != vd->e[regno].mode)
719 {
720 if (hard_regno_nregs[regno][mode]
721 > hard_regno_nregs[regno][vd->e[regno].mode])
722 goto no_move_special_case;
723 }
724
725 /* If the destination is also a register, try to find a source
726 register in the same class. */
727 if (REG_P (SET_DEST (set)))
728 {
729 new_rtx = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
730 if (new_rtx && validate_change (insn, &SET_SRC (set), new_rtx, 0))
731 {
732 if (dump_file)
733 fprintf (dump_file,
734 "insn %u: replaced reg %u with %u\n",
735 INSN_UID (insn), regno, REGNO (new_rtx));
736 changed = true;
737 goto did_replacement;
738 }
739 }
740
741 /* Otherwise, try all valid registers and see if its valid. */
742 for (i = vd->e[regno].oldest_regno; i != regno;
743 i = vd->e[i].next_regno)
744 {
745 new_rtx = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
746 mode, i, regno);
747 if (new_rtx != NULL_RTX)
748 {
749 if (validate_change (insn, &SET_SRC (set), new_rtx, 0))
750 {
751 ORIGINAL_REGNO (new_rtx) = ORIGINAL_REGNO (src);
752 REG_ATTRS (new_rtx) = REG_ATTRS (src);
753 REG_POINTER (new_rtx) = REG_POINTER (src);
754 if (dump_file)
755 fprintf (dump_file,
756 "insn %u: replaced reg %u with %u\n",
757 INSN_UID (insn), regno, REGNO (new_rtx));
758 changed = true;
759 goto did_replacement;
760 }
761 }
762 }
763 }
764 no_move_special_case:
765
766 any_replacements = false;
767
768 /* For each input operand, replace a hard register with the
769 eldest live copy that's in an appropriate register class. */
770 for (i = 0; i < n_ops; i++)
771 {
772 replaced[i] = false;
773
774 /* Don't scan match_operand here, since we've no reg class
775 information to pass down. Any operands that we could
776 substitute in will be represented elsewhere. */
777 if (recog_data.constraints[i][0] == '\0')
778 continue;
779
780 /* Don't replace in asms intentionally referencing hard regs. */
781 if (is_asm && REG_P (recog_data.operand[i])
782 && (REGNO (recog_data.operand[i])
783 == ORIGINAL_REGNO (recog_data.operand[i])))
784 continue;
785
786 if (recog_data.operand_type[i] == OP_IN)
787 {
788 if (recog_op_alt[i][alt].is_address)
789 replaced[i]
790 = replace_oldest_value_addr (recog_data.operand_loc[i],
791 recog_op_alt[i][alt].cl,
792 VOIDmode, insn, vd);
793 else if (REG_P (recog_data.operand[i]))
794 replaced[i]
795 = replace_oldest_value_reg (recog_data.operand_loc[i],
796 recog_op_alt[i][alt].cl,
797 insn, vd);
798 else if (MEM_P (recog_data.operand[i]))
799 replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
800 insn, vd);
801 }
802 else if (MEM_P (recog_data.operand[i]))
803 replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
804 insn, vd);
805
806 /* If we performed any replacement, update match_dups. */
807 if (replaced[i])
808 {
809 int j;
810 rtx new_rtx;
811
812 new_rtx = *recog_data.operand_loc[i];
813 recog_data.operand[i] = new_rtx;
814 for (j = 0; j < recog_data.n_dups; j++)
815 if (recog_data.dup_num[j] == i)
816 validate_unshare_change (insn, recog_data.dup_loc[j], new_rtx, 1);
817
818 any_replacements = true;
819 }
820 }
821
822 if (any_replacements)
823 {
824 if (! apply_change_group ())
825 {
826 for (i = 0; i < n_ops; i++)
827 if (replaced[i])
828 {
829 rtx old = *recog_data.operand_loc[i];
830 recog_data.operand[i] = old;
831 }
832
833 if (dump_file)
834 fprintf (dump_file,
835 "insn %u: reg replacements not verified\n",
836 INSN_UID (insn));
837 }
838 else
839 changed = true;
840 }
841
842 did_replacement:
843 if (changed)
844 anything_changed = true;
845
846 /* Clobber call-clobbered registers. */
847 if (CALL_P (insn))
848 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
849 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
850 kill_value_regno (i, 1, vd);
851
852 /* Notice stores. */
853 note_stores (PATTERN (insn), kill_set_value, vd);
854
855 /* Notice copies. */
856 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
857 copy_value (SET_DEST (set), SET_SRC (set), vd);
858
859 if (insn == BB_END (bb))
860 break;
861 }
862
863 return anything_changed;
864 }
865
866 /* Main entry point for the forward copy propagation optimization. */
867
868 static unsigned int
869 copyprop_hardreg_forward (void)
870 {
871 struct value_data *all_vd;
872 basic_block bb;
873 sbitmap visited;
874
875 all_vd = XNEWVEC (struct value_data, last_basic_block);
876
877 visited = sbitmap_alloc (last_basic_block);
878 sbitmap_zero (visited);
879
880 FOR_EACH_BB (bb)
881 {
882 SET_BIT (visited, bb->index);
883
884 /* If a block has a single predecessor, that we've already
885 processed, begin with the value data that was live at
886 the end of the predecessor block. */
887 /* ??? Ought to use more intelligent queuing of blocks. */
888 if (single_pred_p (bb)
889 && TEST_BIT (visited, single_pred (bb)->index)
890 && ! (single_pred_edge (bb)->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
891 all_vd[bb->index] = all_vd[single_pred (bb)->index];
892 else
893 init_value_data (all_vd + bb->index);
894
895 copyprop_hardreg_forward_1 (bb, all_vd + bb->index);
896 }
897
898 sbitmap_free (visited);
899 free (all_vd);
900 return 0;
901 }
902
903 /* Dump the value chain data to stderr. */
904
905 void
906 debug_value_data (struct value_data *vd)
907 {
908 HARD_REG_SET set;
909 unsigned int i, j;
910
911 CLEAR_HARD_REG_SET (set);
912
913 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
914 if (vd->e[i].oldest_regno == i)
915 {
916 if (vd->e[i].mode == VOIDmode)
917 {
918 if (vd->e[i].next_regno != INVALID_REGNUM)
919 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
920 i, vd->e[i].next_regno);
921 continue;
922 }
923
924 SET_HARD_REG_BIT (set, i);
925 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
926
927 for (j = vd->e[i].next_regno;
928 j != INVALID_REGNUM;
929 j = vd->e[j].next_regno)
930 {
931 if (TEST_HARD_REG_BIT (set, j))
932 {
933 fprintf (stderr, "[%u] Loop in regno chain\n", j);
934 return;
935 }
936
937 if (vd->e[j].oldest_regno != i)
938 {
939 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
940 j, vd->e[j].oldest_regno);
941 return;
942 }
943 SET_HARD_REG_BIT (set, j);
944 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
945 }
946 fputc ('\n', stderr);
947 }
948
949 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
950 if (! TEST_HARD_REG_BIT (set, i)
951 && (vd->e[i].mode != VOIDmode
952 || vd->e[i].oldest_regno != i
953 || vd->e[i].next_regno != INVALID_REGNUM))
954 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
955 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
956 vd->e[i].next_regno);
957 }
958
959 #ifdef ENABLE_CHECKING
960 static void
961 validate_value_data (struct value_data *vd)
962 {
963 HARD_REG_SET set;
964 unsigned int i, j;
965
966 CLEAR_HARD_REG_SET (set);
967
968 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
969 if (vd->e[i].oldest_regno == i)
970 {
971 if (vd->e[i].mode == VOIDmode)
972 {
973 if (vd->e[i].next_regno != INVALID_REGNUM)
974 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
975 i, vd->e[i].next_regno);
976 continue;
977 }
978
979 SET_HARD_REG_BIT (set, i);
980
981 for (j = vd->e[i].next_regno;
982 j != INVALID_REGNUM;
983 j = vd->e[j].next_regno)
984 {
985 if (TEST_HARD_REG_BIT (set, j))
986 internal_error ("validate_value_data: Loop in regno chain (%u)",
987 j);
988 if (vd->e[j].oldest_regno != i)
989 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
990 j, vd->e[j].oldest_regno);
991
992 SET_HARD_REG_BIT (set, j);
993 }
994 }
995
996 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
997 if (! TEST_HARD_REG_BIT (set, i)
998 && (vd->e[i].mode != VOIDmode
999 || vd->e[i].oldest_regno != i
1000 || vd->e[i].next_regno != INVALID_REGNUM))
1001 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1002 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1003 vd->e[i].next_regno);
1004 }
1005 #endif
1006 \f
1007 static bool
1008 gate_handle_cprop (void)
1009 {
1010 return (optimize > 0 && (flag_cprop_registers));
1011 }
1012
1013
1014 struct rtl_opt_pass pass_cprop_hardreg =
1015 {
1016 {
1017 RTL_PASS,
1018 "cprop_hardreg", /* name */
1019 gate_handle_cprop, /* gate */
1020 copyprop_hardreg_forward, /* execute */
1021 NULL, /* sub */
1022 NULL, /* next */
1023 0, /* static_pass_number */
1024 TV_CPROP_REGISTERS, /* tv_id */
1025 0, /* properties_required */
1026 0, /* properties_provided */
1027 0, /* properties_destroyed */
1028 0, /* todo_flags_start */
1029 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
1030 }
1031 };