rtlanal.c (subreg_get_info): Exit early for simple and common cases.
[gcc.git] / gcc / reginfo.c
1 /* Compute different info about registers.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains regscan pass of the compiler and passes for
22 dealing with info about modes of pseudo-registers inside
23 subregisters. It also defines some tables of information about the
24 hardware registers, function init_reg_sets to initialize the
25 tables, and other auxiliary functions to deal with info about
26 registers and their classes. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "hash-set.h"
34 #include "machmode.h"
35 #include "vec.h"
36 #include "double-int.h"
37 #include "input.h"
38 #include "alias.h"
39 #include "symtab.h"
40 #include "wide-int.h"
41 #include "inchash.h"
42 #include "tree.h"
43 #include "rtl.h"
44 #include "hashtab.h"
45 #include "function.h"
46 #include "flags.h"
47 #include "statistics.h"
48 #include "real.h"
49 #include "fixed-value.h"
50 #include "insn-config.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "varasm.h"
57 #include "stmt.h"
58 #include "expr.h"
59 #include "tm_p.h"
60 #include "predict.h"
61 #include "dominance.h"
62 #include "cfg.h"
63 #include "basic-block.h"
64 #include "regs.h"
65 #include "addresses.h"
66 #include "recog.h"
67 #include "reload.h"
68 #include "diagnostic-core.h"
69 #include "output.h"
70 #include "target.h"
71 #include "tree-pass.h"
72 #include "df.h"
73 #include "ira.h"
74
75 /* Maximum register number used in this function, plus one. */
76
77 int max_regno;
78
79 /* Used to cache the results of simplifiable_subregs. SHAPE is the input
80 parameter and SIMPLIFIABLE_REGS is the result. */
81 struct simplifiable_subreg
82 {
83 simplifiable_subreg (const subreg_shape &);
84
85 subreg_shape shape;
86 HARD_REG_SET simplifiable_regs;
87 };
88
89 struct simplifiable_subregs_hasher : typed_noop_remove <simplifiable_subreg>
90 {
91 typedef simplifiable_subreg value_type;
92 typedef subreg_shape compare_type;
93
94 static inline hashval_t hash (const value_type *);
95 static inline bool equal (const value_type *, const compare_type *);
96 };
97 \f
98 struct target_hard_regs default_target_hard_regs;
99 struct target_regs default_target_regs;
100 #if SWITCHABLE_TARGET
101 struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs;
102 struct target_regs *this_target_regs = &default_target_regs;
103 #endif
104
105 /* Data for initializing fixed_regs. */
106 static const char initial_fixed_regs[] = FIXED_REGISTERS;
107
108 /* Data for initializing call_used_regs. */
109 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
110
111 #ifdef CALL_REALLY_USED_REGISTERS
112 /* Data for initializing call_really_used_regs. */
113 static const char initial_call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
114 #endif
115
116 #ifdef CALL_REALLY_USED_REGISTERS
117 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
118 #else
119 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
120 #endif
121
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
126 char global_regs[FIRST_PSEUDO_REGISTER];
127
128 /* Declaration for the global register. */
129 tree global_regs_decl[FIRST_PSEUDO_REGISTER];
130
131 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
132 in dataflow more conveniently. */
133 regset regs_invalidated_by_call_regset;
134
135 /* Same information as FIXED_REG_SET but in regset form. */
136 regset fixed_reg_set_regset;
137
138 /* The bitmap_obstack is used to hold some static variables that
139 should not be reset after each function is compiled. */
140 static bitmap_obstack persistent_obstack;
141
142 /* Used to initialize reg_alloc_order. */
143 #ifdef REG_ALLOC_ORDER
144 static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
145 #endif
146
147 /* The same information, but as an array of unsigned ints. We copy from
148 these unsigned ints to the table above. We do this so the tm.h files
149 do not have to be aware of the wordsize for machines with <= 64 regs.
150 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
151 #define N_REG_INTS \
152 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
153
154 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
155 = REG_CLASS_CONTENTS;
156
157 /* Array containing all of the register names. */
158 static const char *const initial_reg_names[] = REGISTER_NAMES;
159
160 /* Array containing all of the register class names. */
161 const char * reg_class_names[] = REG_CLASS_NAMES;
162
163 /* No more global register variables may be declared; true once
164 reginfo has been initialized. */
165 static int no_global_reg_vars = 0;
166
167 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
168 correspond to the hard registers, if any, set in that map. This
169 could be done far more efficiently by having all sorts of special-cases
170 with moving single words, but probably isn't worth the trouble. */
171 void
172 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
173 {
174 unsigned i;
175 bitmap_iterator bi;
176
177 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
178 {
179 if (i >= FIRST_PSEUDO_REGISTER)
180 return;
181 SET_HARD_REG_BIT (*to, i);
182 }
183 }
184
185 /* Function called only once per target_globals to initialize the
186 target_hard_regs structure. Once this is done, various switches
187 may override. */
188 void
189 init_reg_sets (void)
190 {
191 int i, j;
192
193 /* First copy the register information from the initial int form into
194 the regsets. */
195
196 for (i = 0; i < N_REG_CLASSES; i++)
197 {
198 CLEAR_HARD_REG_SET (reg_class_contents[i]);
199
200 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
201 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
202 if (int_reg_class_contents[i][j / 32]
203 & ((unsigned) 1 << (j % 32)))
204 SET_HARD_REG_BIT (reg_class_contents[i], j);
205 }
206
207 /* Sanity check: make sure the target macros FIXED_REGISTERS and
208 CALL_USED_REGISTERS had the right number of initializers. */
209 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
210 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
211 #ifdef CALL_REALLY_USED_REGISTERS
212 gcc_assert (sizeof call_really_used_regs
213 == sizeof initial_call_really_used_regs);
214 #endif
215 #ifdef REG_ALLOC_ORDER
216 gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order);
217 #endif
218 gcc_assert (sizeof reg_names == sizeof initial_reg_names);
219
220 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
221 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
222 #ifdef CALL_REALLY_USED_REGISTERS
223 memcpy (call_really_used_regs, initial_call_really_used_regs,
224 sizeof call_really_used_regs);
225 #endif
226 #ifdef REG_ALLOC_ORDER
227 memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order);
228 #endif
229 memcpy (reg_names, initial_reg_names, sizeof reg_names);
230
231 SET_HARD_REG_SET (accessible_reg_set);
232 SET_HARD_REG_SET (operand_reg_set);
233 }
234
235 /* We need to save copies of some of the register information which
236 can be munged by command-line switches so we can restore it during
237 subsequent back-end reinitialization. */
238 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
239 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
240 #ifdef CALL_REALLY_USED_REGISTERS
241 static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
242 #endif
243 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
244 static HARD_REG_SET saved_accessible_reg_set;
245 static HARD_REG_SET saved_operand_reg_set;
246
247 /* Save the register information. */
248 void
249 save_register_info (void)
250 {
251 /* Sanity check: make sure the target macros FIXED_REGISTERS and
252 CALL_USED_REGISTERS had the right number of initializers. */
253 gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
254 gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
255 memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
256 memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
257
258 /* Likewise for call_really_used_regs. */
259 #ifdef CALL_REALLY_USED_REGISTERS
260 gcc_assert (sizeof call_really_used_regs
261 == sizeof saved_call_really_used_regs);
262 memcpy (saved_call_really_used_regs, call_really_used_regs,
263 sizeof call_really_used_regs);
264 #endif
265
266 /* And similarly for reg_names. */
267 gcc_assert (sizeof reg_names == sizeof saved_reg_names);
268 memcpy (saved_reg_names, reg_names, sizeof reg_names);
269 COPY_HARD_REG_SET (saved_accessible_reg_set, accessible_reg_set);
270 COPY_HARD_REG_SET (saved_operand_reg_set, operand_reg_set);
271 }
272
273 /* Restore the register information. */
274 static void
275 restore_register_info (void)
276 {
277 memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
278 memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
279
280 #ifdef CALL_REALLY_USED_REGISTERS
281 memcpy (call_really_used_regs, saved_call_really_used_regs,
282 sizeof call_really_used_regs);
283 #endif
284
285 memcpy (reg_names, saved_reg_names, sizeof reg_names);
286 COPY_HARD_REG_SET (accessible_reg_set, saved_accessible_reg_set);
287 COPY_HARD_REG_SET (operand_reg_set, saved_operand_reg_set);
288 }
289
290 /* After switches have been processed, which perhaps alter
291 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
292 static void
293 init_reg_sets_1 (void)
294 {
295 unsigned int i, j;
296 unsigned int /* machine_mode */ m;
297
298 restore_register_info ();
299
300 #ifdef REG_ALLOC_ORDER
301 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
302 inv_reg_alloc_order[reg_alloc_order[i]] = i;
303 #endif
304
305 /* Let the target tweak things if necessary. */
306
307 targetm.conditional_register_usage ();
308
309 /* Compute number of hard regs in each class. */
310
311 memset (reg_class_size, 0, sizeof reg_class_size);
312 for (i = 0; i < N_REG_CLASSES; i++)
313 {
314 bool any_nonfixed = false;
315 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
316 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
317 {
318 reg_class_size[i]++;
319 if (!fixed_regs[j])
320 any_nonfixed = true;
321 }
322 class_only_fixed_regs[i] = !any_nonfixed;
323 }
324
325 /* Initialize the table of subunions.
326 reg_class_subunion[I][J] gets the largest-numbered reg-class
327 that is contained in the union of classes I and J. */
328
329 memset (reg_class_subunion, 0, sizeof reg_class_subunion);
330 for (i = 0; i < N_REG_CLASSES; i++)
331 {
332 for (j = 0; j < N_REG_CLASSES; j++)
333 {
334 HARD_REG_SET c;
335 int k;
336
337 COPY_HARD_REG_SET (c, reg_class_contents[i]);
338 IOR_HARD_REG_SET (c, reg_class_contents[j]);
339 for (k = 0; k < N_REG_CLASSES; k++)
340 if (hard_reg_set_subset_p (reg_class_contents[k], c)
341 && !hard_reg_set_subset_p (reg_class_contents[k],
342 reg_class_contents
343 [(int) reg_class_subunion[i][j]]))
344 reg_class_subunion[i][j] = (enum reg_class) k;
345 }
346 }
347
348 /* Initialize the table of superunions.
349 reg_class_superunion[I][J] gets the smallest-numbered reg-class
350 containing the union of classes I and J. */
351
352 memset (reg_class_superunion, 0, sizeof reg_class_superunion);
353 for (i = 0; i < N_REG_CLASSES; i++)
354 {
355 for (j = 0; j < N_REG_CLASSES; j++)
356 {
357 HARD_REG_SET c;
358 int k;
359
360 COPY_HARD_REG_SET (c, reg_class_contents[i]);
361 IOR_HARD_REG_SET (c, reg_class_contents[j]);
362 for (k = 0; k < N_REG_CLASSES; k++)
363 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
364 break;
365
366 reg_class_superunion[i][j] = (enum reg_class) k;
367 }
368 }
369
370 /* Initialize the tables of subclasses and superclasses of each reg class.
371 First clear the whole table, then add the elements as they are found. */
372
373 for (i = 0; i < N_REG_CLASSES; i++)
374 {
375 for (j = 0; j < N_REG_CLASSES; j++)
376 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
377 }
378
379 for (i = 0; i < N_REG_CLASSES; i++)
380 {
381 if (i == (int) NO_REGS)
382 continue;
383
384 for (j = i + 1; j < N_REG_CLASSES; j++)
385 if (hard_reg_set_subset_p (reg_class_contents[i],
386 reg_class_contents[j]))
387 {
388 /* Reg class I is a subclass of J.
389 Add J to the table of superclasses of I. */
390 enum reg_class *p;
391
392 /* Add I to the table of superclasses of J. */
393 p = &reg_class_subclasses[j][0];
394 while (*p != LIM_REG_CLASSES) p++;
395 *p = (enum reg_class) i;
396 }
397 }
398
399 /* Initialize "constant" tables. */
400
401 CLEAR_HARD_REG_SET (fixed_reg_set);
402 CLEAR_HARD_REG_SET (call_used_reg_set);
403 CLEAR_HARD_REG_SET (call_fixed_reg_set);
404 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
405 if (!regs_invalidated_by_call_regset)
406 {
407 bitmap_obstack_initialize (&persistent_obstack);
408 regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
409 }
410 else
411 CLEAR_REG_SET (regs_invalidated_by_call_regset);
412 if (!fixed_reg_set_regset)
413 fixed_reg_set_regset = ALLOC_REG_SET (&persistent_obstack);
414 else
415 CLEAR_REG_SET (fixed_reg_set_regset);
416
417 AND_HARD_REG_SET (operand_reg_set, accessible_reg_set);
418 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
419 {
420 /* As a special exception, registers whose class is NO_REGS are
421 not accepted by `register_operand'. The reason for this change
422 is to allow the representation of special architecture artifacts
423 (such as a condition code register) without extending the rtl
424 definitions. Since registers of class NO_REGS cannot be used
425 as registers in any case where register classes are examined,
426 it is better to apply this exception in a target-independent way. */
427 if (REGNO_REG_CLASS (i) == NO_REGS)
428 CLEAR_HARD_REG_BIT (operand_reg_set, i);
429
430 /* If a register is too limited to be treated as a register operand,
431 then it should never be allocated to a pseudo. */
432 if (!TEST_HARD_REG_BIT (operand_reg_set, i))
433 {
434 fixed_regs[i] = 1;
435 call_used_regs[i] = 1;
436 }
437
438 /* call_used_regs must include fixed_regs. */
439 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
440 #ifdef CALL_REALLY_USED_REGISTERS
441 /* call_used_regs must include call_really_used_regs. */
442 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
443 #endif
444
445 if (fixed_regs[i])
446 {
447 SET_HARD_REG_BIT (fixed_reg_set, i);
448 SET_REGNO_REG_SET (fixed_reg_set_regset, i);
449 }
450
451 if (call_used_regs[i])
452 SET_HARD_REG_BIT (call_used_reg_set, i);
453
454 /* There are a couple of fixed registers that we know are safe to
455 exclude from being clobbered by calls:
456
457 The frame pointer is always preserved across calls. The arg
458 pointer is if it is fixed. The stack pointer usually is,
459 unless TARGET_RETURN_POPS_ARGS, in which case an explicit
460 CLOBBER will be present. If we are generating PIC code, the
461 PIC offset table register is preserved across calls, though the
462 target can override that. */
463
464 if (i == STACK_POINTER_REGNUM)
465 ;
466 else if (global_regs[i])
467 {
468 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
469 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
470 }
471 else if (i == FRAME_POINTER_REGNUM)
472 ;
473 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
474 else if (i == HARD_FRAME_POINTER_REGNUM)
475 ;
476 #endif
477 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
478 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
479 ;
480 #endif
481 else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
482 && i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
483 ;
484 else if (CALL_REALLY_USED_REGNO_P (i))
485 {
486 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
487 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
488 }
489 }
490
491 COPY_HARD_REG_SET (call_fixed_reg_set, fixed_reg_set);
492
493 /* Preserve global registers if called more than once. */
494 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
495 {
496 if (global_regs[i])
497 {
498 fixed_regs[i] = call_used_regs[i] = 1;
499 SET_HARD_REG_BIT (fixed_reg_set, i);
500 SET_HARD_REG_BIT (call_used_reg_set, i);
501 SET_HARD_REG_BIT (call_fixed_reg_set, i);
502 }
503 }
504
505 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
506 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
507 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
508 {
509 HARD_REG_SET ok_regs;
510 CLEAR_HARD_REG_SET (ok_regs);
511 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
512 if (!fixed_regs [j] && HARD_REGNO_MODE_OK (j, (machine_mode) m))
513 SET_HARD_REG_BIT (ok_regs, j);
514
515 for (i = 0; i < N_REG_CLASSES; i++)
516 if ((targetm.class_max_nregs ((reg_class_t) i, (machine_mode) m)
517 <= reg_class_size[i])
518 && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
519 {
520 contains_reg_of_mode [i][m] = 1;
521 have_regs_of_mode [m] = 1;
522 }
523 }
524 }
525
526 /* Compute the table of register modes.
527 These values are used to record death information for individual registers
528 (as opposed to a multi-register mode).
529 This function might be invoked more than once, if the target has support
530 for changing register usage conventions on a per-function basis.
531 */
532 void
533 init_reg_modes_target (void)
534 {
535 int i, j;
536
537 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
538 for (j = 0; j < MAX_MACHINE_MODE; j++)
539 hard_regno_nregs[i][j] = HARD_REGNO_NREGS (i, (machine_mode)j);
540
541 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
542 {
543 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
544
545 /* If we couldn't find a valid mode, just use the previous mode
546 if it is suitable, otherwise fall back on word_mode. */
547 if (reg_raw_mode[i] == VOIDmode)
548 {
549 if (i > 0 && hard_regno_nregs[i][reg_raw_mode[i - 1]] == 1)
550 reg_raw_mode[i] = reg_raw_mode[i - 1];
551 else
552 reg_raw_mode[i] = word_mode;
553 }
554 }
555 }
556
557 /* Finish initializing the register sets and initialize the register modes.
558 This function might be invoked more than once, if the target has support
559 for changing register usage conventions on a per-function basis.
560 */
561 void
562 init_regs (void)
563 {
564 /* This finishes what was started by init_reg_sets, but couldn't be done
565 until after register usage was specified. */
566 init_reg_sets_1 ();
567 }
568
569 /* The same as previous function plus initializing IRA. */
570 void
571 reinit_regs (void)
572 {
573 init_regs ();
574 /* caller_save needs to be re-initialized. */
575 caller_save_initialized_p = false;
576 if (this_target_rtl->target_specific_initialized)
577 {
578 ira_init ();
579 recog_init ();
580 }
581 }
582
583 /* Initialize some fake stack-frame MEM references for use in
584 memory_move_secondary_cost. */
585 void
586 init_fake_stack_mems (void)
587 {
588 int i;
589
590 for (i = 0; i < MAX_MACHINE_MODE; i++)
591 top_of_stack[i] = gen_rtx_MEM ((machine_mode) i, stack_pointer_rtx);
592 }
593
594
595 /* Compute cost of moving data from a register of class FROM to one of
596 TO, using MODE. */
597
598 int
599 register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to)
600 {
601 return targetm.register_move_cost (mode, from, to);
602 }
603
604 /* Compute cost of moving registers to/from memory. */
605
606 int
607 memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
608 {
609 return targetm.memory_move_cost (mode, rclass, in);
610 }
611
612 /* Compute extra cost of moving registers to/from memory due to reloads.
613 Only needed if secondary reloads are required for memory moves. */
614 int
615 memory_move_secondary_cost (machine_mode mode, reg_class_t rclass,
616 bool in)
617 {
618 reg_class_t altclass;
619 int partial_cost = 0;
620 /* We need a memory reference to feed to SECONDARY... macros. */
621 /* mem may be unused even if the SECONDARY_ macros are defined. */
622 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
623
624 altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
625
626 if (altclass == NO_REGS)
627 return 0;
628
629 if (in)
630 partial_cost = register_move_cost (mode, altclass, rclass);
631 else
632 partial_cost = register_move_cost (mode, rclass, altclass);
633
634 if (rclass == altclass)
635 /* This isn't simply a copy-to-temporary situation. Can't guess
636 what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
637 calling here in that case.
638
639 I'm tempted to put in an assert here, but returning this will
640 probably only give poor estimates, which is what we would've
641 had before this code anyways. */
642 return partial_cost;
643
644 /* Check if the secondary reload register will also need a
645 secondary reload. */
646 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
647 }
648
649 /* Return a machine mode that is legitimate for hard reg REGNO and large
650 enough to save nregs. If we can't find one, return VOIDmode.
651 If CALL_SAVED is true, only consider modes that are call saved. */
652 machine_mode
653 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
654 unsigned int nregs, bool call_saved)
655 {
656 unsigned int /* machine_mode */ m;
657 machine_mode found_mode = VOIDmode, mode;
658
659 /* We first look for the largest integer mode that can be validly
660 held in REGNO. If none, we look for the largest floating-point mode.
661 If we still didn't find a valid mode, try CCmode. */
662
663 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
664 mode != VOIDmode;
665 mode = GET_MODE_WIDER_MODE (mode))
666 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
667 && HARD_REGNO_MODE_OK (regno, mode)
668 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
669 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
670 found_mode = mode;
671
672 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
673 mode != VOIDmode;
674 mode = GET_MODE_WIDER_MODE (mode))
675 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
676 && HARD_REGNO_MODE_OK (regno, mode)
677 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
678 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
679 found_mode = mode;
680
681 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
682 mode != VOIDmode;
683 mode = GET_MODE_WIDER_MODE (mode))
684 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
685 && HARD_REGNO_MODE_OK (regno, mode)
686 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
687 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
688 found_mode = mode;
689
690 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
691 mode != VOIDmode;
692 mode = GET_MODE_WIDER_MODE (mode))
693 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
694 && HARD_REGNO_MODE_OK (regno, mode)
695 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
696 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
697 found_mode = mode;
698
699 if (found_mode != VOIDmode)
700 return found_mode;
701
702 /* Iterate over all of the CCmodes. */
703 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
704 {
705 mode = (machine_mode) m;
706 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
707 && HARD_REGNO_MODE_OK (regno, mode)
708 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
709 return mode;
710 }
711
712 /* We can't find a mode valid for this register. */
713 return VOIDmode;
714 }
715
716 /* Specify the usage characteristics of the register named NAME.
717 It should be a fixed register if FIXED and a
718 call-used register if CALL_USED. */
719 void
720 fix_register (const char *name, int fixed, int call_used)
721 {
722 int i;
723 int reg, nregs;
724
725 /* Decode the name and update the primary form of
726 the register info. */
727
728 if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0)
729 {
730 gcc_assert (nregs >= 1);
731 for (i = reg; i < reg + nregs; i++)
732 {
733 if ((i == STACK_POINTER_REGNUM
734 #ifdef HARD_FRAME_POINTER_REGNUM
735 || i == HARD_FRAME_POINTER_REGNUM
736 #else
737 || i == FRAME_POINTER_REGNUM
738 #endif
739 )
740 && (fixed == 0 || call_used == 0))
741 {
742 switch (fixed)
743 {
744 case 0:
745 switch (call_used)
746 {
747 case 0:
748 error ("can%'t use %qs as a call-saved register", name);
749 break;
750
751 case 1:
752 error ("can%'t use %qs as a call-used register", name);
753 break;
754
755 default:
756 gcc_unreachable ();
757 }
758 break;
759
760 case 1:
761 switch (call_used)
762 {
763 case 1:
764 error ("can%'t use %qs as a fixed register", name);
765 break;
766
767 case 0:
768 default:
769 gcc_unreachable ();
770 }
771 break;
772
773 default:
774 gcc_unreachable ();
775 }
776 }
777 else
778 {
779 fixed_regs[i] = fixed;
780 call_used_regs[i] = call_used;
781 #ifdef CALL_REALLY_USED_REGISTERS
782 if (fixed == 0)
783 call_really_used_regs[i] = call_used;
784 #endif
785 }
786 }
787 }
788 else
789 {
790 warning (0, "unknown register name: %s", name);
791 }
792 }
793
794 /* Mark register number I as global. */
795 void
796 globalize_reg (tree decl, int i)
797 {
798 location_t loc = DECL_SOURCE_LOCATION (decl);
799
800 #ifdef STACK_REGS
801 if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
802 {
803 error ("stack register used for global register variable");
804 return;
805 }
806 #endif
807
808 if (fixed_regs[i] == 0 && no_global_reg_vars)
809 error_at (loc, "global register variable follows a function definition");
810
811 if (global_regs[i])
812 {
813 warning_at (loc, 0,
814 "register of %qD used for multiple global register variables",
815 decl);
816 inform (DECL_SOURCE_LOCATION (global_regs_decl[i]),
817 "conflicts with %qD", global_regs_decl[i]);
818 return;
819 }
820
821 if (call_used_regs[i] && ! fixed_regs[i])
822 warning_at (loc, 0, "call-clobbered register used for global register variable");
823
824 global_regs[i] = 1;
825 global_regs_decl[i] = decl;
826
827 /* If we're globalizing the frame pointer, we need to set the
828 appropriate regs_invalidated_by_call bit, even if it's already
829 set in fixed_regs. */
830 if (i != STACK_POINTER_REGNUM)
831 {
832 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
833 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
834 }
835
836 /* If already fixed, nothing else to do. */
837 if (fixed_regs[i])
838 return;
839
840 fixed_regs[i] = call_used_regs[i] = 1;
841 #ifdef CALL_REALLY_USED_REGISTERS
842 call_really_used_regs[i] = 1;
843 #endif
844
845 SET_HARD_REG_BIT (fixed_reg_set, i);
846 SET_HARD_REG_BIT (call_used_reg_set, i);
847 SET_HARD_REG_BIT (call_fixed_reg_set, i);
848
849 reinit_regs ();
850 }
851 \f
852
853 /* Structure used to record preferences of given pseudo. */
854 struct reg_pref
855 {
856 /* (enum reg_class) prefclass is the preferred class. May be
857 NO_REGS if no class is better than memory. */
858 char prefclass;
859
860 /* altclass is a register class that we should use for allocating
861 pseudo if no register in the preferred class is available.
862 If no register in this class is available, memory is preferred.
863
864 It might appear to be more general to have a bitmask of classes here,
865 but since it is recommended that there be a class corresponding to the
866 union of most major pair of classes, that generality is not required. */
867 char altclass;
868
869 /* allocnoclass is a register class that IRA uses for allocating
870 the pseudo. */
871 char allocnoclass;
872 };
873
874 /* Record preferences of each pseudo. This is available after RA is
875 run. */
876 static struct reg_pref *reg_pref;
877
878 /* Current size of reg_info. */
879 static int reg_info_size;
880 /* Max_reg_num still last resize_reg_info call. */
881 static int max_regno_since_last_resize;
882
883 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
884 This function is sometimes called before the info has been computed.
885 When that happens, just return GENERAL_REGS, which is innocuous. */
886 enum reg_class
887 reg_preferred_class (int regno)
888 {
889 if (reg_pref == 0)
890 return GENERAL_REGS;
891
892 gcc_assert (regno < reg_info_size);
893 return (enum reg_class) reg_pref[regno].prefclass;
894 }
895
896 enum reg_class
897 reg_alternate_class (int regno)
898 {
899 if (reg_pref == 0)
900 return ALL_REGS;
901
902 gcc_assert (regno < reg_info_size);
903 return (enum reg_class) reg_pref[regno].altclass;
904 }
905
906 /* Return the reg_class which is used by IRA for its allocation. */
907 enum reg_class
908 reg_allocno_class (int regno)
909 {
910 if (reg_pref == 0)
911 return NO_REGS;
912
913 gcc_assert (regno < reg_info_size);
914 return (enum reg_class) reg_pref[regno].allocnoclass;
915 }
916
917 \f
918
919 /* Allocate space for reg info and initilize it. */
920 static void
921 allocate_reg_info (void)
922 {
923 int i;
924
925 max_regno_since_last_resize = max_reg_num ();
926 reg_info_size = max_regno_since_last_resize * 3 / 2 + 1;
927 gcc_assert (! reg_pref && ! reg_renumber);
928 reg_renumber = XNEWVEC (short, reg_info_size);
929 reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
930 memset (reg_renumber, -1, reg_info_size * sizeof (short));
931 for (i = 0; i < reg_info_size; i++)
932 {
933 reg_pref[i].prefclass = GENERAL_REGS;
934 reg_pref[i].altclass = ALL_REGS;
935 reg_pref[i].allocnoclass = GENERAL_REGS;
936 }
937 }
938
939
940 /* Resize reg info. The new elements will be initialized. Return TRUE
941 if new pseudos were added since the last call. */
942 bool
943 resize_reg_info (void)
944 {
945 int old, i;
946 bool change_p;
947
948 if (reg_pref == NULL)
949 {
950 allocate_reg_info ();
951 return true;
952 }
953 change_p = max_regno_since_last_resize != max_reg_num ();
954 max_regno_since_last_resize = max_reg_num ();
955 if (reg_info_size >= max_reg_num ())
956 return change_p;
957 old = reg_info_size;
958 reg_info_size = max_reg_num () * 3 / 2 + 1;
959 gcc_assert (reg_pref && reg_renumber);
960 reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
961 reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
962 memset (reg_pref + old, -1,
963 (reg_info_size - old) * sizeof (struct reg_pref));
964 memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
965 for (i = old; i < reg_info_size; i++)
966 {
967 reg_pref[i].prefclass = GENERAL_REGS;
968 reg_pref[i].altclass = ALL_REGS;
969 reg_pref[i].allocnoclass = GENERAL_REGS;
970 }
971 return true;
972 }
973
974
975 /* Free up the space allocated by allocate_reg_info. */
976 void
977 free_reg_info (void)
978 {
979 if (reg_pref)
980 {
981 free (reg_pref);
982 reg_pref = NULL;
983 }
984
985 if (reg_renumber)
986 {
987 free (reg_renumber);
988 reg_renumber = NULL;
989 }
990 }
991
992 /* Initialize some global data for this pass. */
993 static unsigned int
994 reginfo_init (void)
995 {
996 if (df)
997 df_compute_regs_ever_live (true);
998
999 /* This prevents dump_reg_info from losing if called
1000 before reginfo is run. */
1001 reg_pref = NULL;
1002 reg_info_size = max_regno_since_last_resize = 0;
1003 /* No more global register variables may be declared. */
1004 no_global_reg_vars = 1;
1005 return 1;
1006 }
1007
1008 namespace {
1009
1010 const pass_data pass_data_reginfo_init =
1011 {
1012 RTL_PASS, /* type */
1013 "reginfo", /* name */
1014 OPTGROUP_NONE, /* optinfo_flags */
1015 TV_NONE, /* tv_id */
1016 0, /* properties_required */
1017 0, /* properties_provided */
1018 0, /* properties_destroyed */
1019 0, /* todo_flags_start */
1020 0, /* todo_flags_finish */
1021 };
1022
1023 class pass_reginfo_init : public rtl_opt_pass
1024 {
1025 public:
1026 pass_reginfo_init (gcc::context *ctxt)
1027 : rtl_opt_pass (pass_data_reginfo_init, ctxt)
1028 {}
1029
1030 /* opt_pass methods: */
1031 virtual unsigned int execute (function *) { return reginfo_init (); }
1032
1033 }; // class pass_reginfo_init
1034
1035 } // anon namespace
1036
1037 rtl_opt_pass *
1038 make_pass_reginfo_init (gcc::context *ctxt)
1039 {
1040 return new pass_reginfo_init (ctxt);
1041 }
1042
1043 \f
1044
1045 /* Set up preferred, alternate, and allocno classes for REGNO as
1046 PREFCLASS, ALTCLASS, and ALLOCNOCLASS. */
1047 void
1048 setup_reg_classes (int regno,
1049 enum reg_class prefclass, enum reg_class altclass,
1050 enum reg_class allocnoclass)
1051 {
1052 if (reg_pref == NULL)
1053 return;
1054 gcc_assert (reg_info_size >= max_reg_num ());
1055 reg_pref[regno].prefclass = prefclass;
1056 reg_pref[regno].altclass = altclass;
1057 reg_pref[regno].allocnoclass = allocnoclass;
1058 }
1059
1060 \f
1061 /* This is the `regscan' pass of the compiler, run just before cse and
1062 again just before loop. It finds the first and last use of each
1063 pseudo-register. */
1064
1065 static void reg_scan_mark_refs (rtx, rtx_insn *);
1066
1067 void
1068 reg_scan (rtx_insn *f, unsigned int nregs ATTRIBUTE_UNUSED)
1069 {
1070 rtx_insn *insn;
1071
1072 timevar_push (TV_REG_SCAN);
1073
1074 for (insn = f; insn; insn = NEXT_INSN (insn))
1075 if (INSN_P (insn))
1076 {
1077 reg_scan_mark_refs (PATTERN (insn), insn);
1078 if (REG_NOTES (insn))
1079 reg_scan_mark_refs (REG_NOTES (insn), insn);
1080 }
1081
1082 timevar_pop (TV_REG_SCAN);
1083 }
1084
1085
1086 /* X is the expression to scan. INSN is the insn it appears in.
1087 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
1088 We should only record information for REGs with numbers
1089 greater than or equal to MIN_REGNO. */
1090 static void
1091 reg_scan_mark_refs (rtx x, rtx_insn *insn)
1092 {
1093 enum rtx_code code;
1094 rtx dest;
1095 rtx note;
1096
1097 if (!x)
1098 return;
1099 code = GET_CODE (x);
1100 switch (code)
1101 {
1102 case CONST:
1103 CASE_CONST_ANY:
1104 case CC0:
1105 case PC:
1106 case SYMBOL_REF:
1107 case LABEL_REF:
1108 case ADDR_VEC:
1109 case ADDR_DIFF_VEC:
1110 case REG:
1111 return;
1112
1113 case EXPR_LIST:
1114 if (XEXP (x, 0))
1115 reg_scan_mark_refs (XEXP (x, 0), insn);
1116 if (XEXP (x, 1))
1117 reg_scan_mark_refs (XEXP (x, 1), insn);
1118 break;
1119
1120 case INSN_LIST:
1121 case INT_LIST:
1122 if (XEXP (x, 1))
1123 reg_scan_mark_refs (XEXP (x, 1), insn);
1124 break;
1125
1126 case CLOBBER:
1127 if (MEM_P (XEXP (x, 0)))
1128 reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1129 break;
1130
1131 case SET:
1132 /* Count a set of the destination if it is a register. */
1133 for (dest = SET_DEST (x);
1134 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1135 || GET_CODE (dest) == ZERO_EXTRACT;
1136 dest = XEXP (dest, 0))
1137 ;
1138
1139 /* If this is setting a pseudo from another pseudo or the sum of a
1140 pseudo and a constant integer and the other pseudo is known to be
1141 a pointer, set the destination to be a pointer as well.
1142
1143 Likewise if it is setting the destination from an address or from a
1144 value equivalent to an address or to the sum of an address and
1145 something else.
1146
1147 But don't do any of this if the pseudo corresponds to a user
1148 variable since it should have already been set as a pointer based
1149 on the type. */
1150
1151 if (REG_P (SET_DEST (x))
1152 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1153 /* If the destination pseudo is set more than once, then other
1154 sets might not be to a pointer value (consider access to a
1155 union in two threads of control in the presence of global
1156 optimizations). So only set REG_POINTER on the destination
1157 pseudo if this is the only set of that pseudo. */
1158 && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1159 && ! REG_USERVAR_P (SET_DEST (x))
1160 && ! REG_POINTER (SET_DEST (x))
1161 && ((REG_P (SET_SRC (x))
1162 && REG_POINTER (SET_SRC (x)))
1163 || ((GET_CODE (SET_SRC (x)) == PLUS
1164 || GET_CODE (SET_SRC (x)) == LO_SUM)
1165 && CONST_INT_P (XEXP (SET_SRC (x), 1))
1166 && REG_P (XEXP (SET_SRC (x), 0))
1167 && REG_POINTER (XEXP (SET_SRC (x), 0)))
1168 || GET_CODE (SET_SRC (x)) == CONST
1169 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1170 || GET_CODE (SET_SRC (x)) == LABEL_REF
1171 || (GET_CODE (SET_SRC (x)) == HIGH
1172 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1173 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1174 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1175 || ((GET_CODE (SET_SRC (x)) == PLUS
1176 || GET_CODE (SET_SRC (x)) == LO_SUM)
1177 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1178 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1179 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1180 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1181 && (GET_CODE (XEXP (note, 0)) == CONST
1182 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1183 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1184 REG_POINTER (SET_DEST (x)) = 1;
1185
1186 /* If this is setting a register from a register or from a simple
1187 conversion of a register, propagate REG_EXPR. */
1188 if (REG_P (dest) && !REG_ATTRS (dest))
1189 set_reg_attrs_from_value (dest, SET_SRC (x));
1190
1191 /* ... fall through ... */
1192
1193 default:
1194 {
1195 const char *fmt = GET_RTX_FORMAT (code);
1196 int i;
1197 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1198 {
1199 if (fmt[i] == 'e')
1200 reg_scan_mark_refs (XEXP (x, i), insn);
1201 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1202 {
1203 int j;
1204 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1205 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1206 }
1207 }
1208 }
1209 }
1210 }
1211 \f
1212
1213 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1214 is also in C2. */
1215 int
1216 reg_class_subset_p (reg_class_t c1, reg_class_t c2)
1217 {
1218 return (c1 == c2
1219 || c2 == ALL_REGS
1220 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1221 reg_class_contents[(int) c2]));
1222 }
1223
1224 /* Return nonzero if there is a register that is in both C1 and C2. */
1225 int
1226 reg_classes_intersect_p (reg_class_t c1, reg_class_t c2)
1227 {
1228 return (c1 == c2
1229 || c1 == ALL_REGS
1230 || c2 == ALL_REGS
1231 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1232 reg_class_contents[(int) c2]));
1233 }
1234
1235 \f
1236 inline hashval_t
1237 simplifiable_subregs_hasher::hash (const value_type *value)
1238 {
1239 return value->shape.unique_id ();
1240 }
1241
1242 inline bool
1243 simplifiable_subregs_hasher::equal (const value_type *value,
1244 const compare_type *compare)
1245 {
1246 return value->shape == *compare;
1247 }
1248
1249 inline simplifiable_subreg::simplifiable_subreg (const subreg_shape &shape_in)
1250 : shape (shape_in)
1251 {
1252 CLEAR_HARD_REG_SET (simplifiable_regs);
1253 }
1254
1255 /* Return the set of hard registers that are able to form the subreg
1256 described by SHAPE. */
1257
1258 const HARD_REG_SET &
1259 simplifiable_subregs (const subreg_shape &shape)
1260 {
1261 if (!this_target_hard_regs->x_simplifiable_subregs)
1262 this_target_hard_regs->x_simplifiable_subregs
1263 = new hash_table <simplifiable_subregs_hasher> (30);
1264 simplifiable_subreg **slot
1265 = (this_target_hard_regs->x_simplifiable_subregs
1266 ->find_slot_with_hash (&shape, shape.unique_id (), INSERT));
1267
1268 if (!*slot)
1269 {
1270 simplifiable_subreg *info = new simplifiable_subreg (shape);
1271 for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1272 if (HARD_REGNO_MODE_OK (i, shape.inner_mode)
1273 && simplify_subreg_regno (i, shape.inner_mode, shape.offset,
1274 shape.outer_mode) >= 0)
1275 SET_HARD_REG_BIT (info->simplifiable_regs, i);
1276 *slot = info;
1277 }
1278 return (*slot)->simplifiable_regs;
1279 }
1280
1281 /* Passes for keeping and updating info about modes of registers
1282 inside subregisters. */
1283
1284 static HARD_REG_SET **valid_mode_changes;
1285 static obstack valid_mode_changes_obstack;
1286
1287 static void
1288 record_subregs_of_mode (rtx subreg)
1289 {
1290 unsigned int regno;
1291
1292 if (!REG_P (SUBREG_REG (subreg)))
1293 return;
1294
1295 regno = REGNO (SUBREG_REG (subreg));
1296 if (regno < FIRST_PSEUDO_REGISTER)
1297 return;
1298
1299 if (valid_mode_changes[regno])
1300 AND_HARD_REG_SET (*valid_mode_changes[regno],
1301 simplifiable_subregs (shape_of_subreg (subreg)));
1302 else
1303 {
1304 valid_mode_changes[regno]
1305 = XOBNEW (&valid_mode_changes_obstack, HARD_REG_SET);
1306 COPY_HARD_REG_SET (*valid_mode_changes[regno],
1307 simplifiable_subregs (shape_of_subreg (subreg)));
1308 }
1309 }
1310
1311 /* Call record_subregs_of_mode for all the subregs in X. */
1312 static void
1313 find_subregs_of_mode (rtx x)
1314 {
1315 enum rtx_code code = GET_CODE (x);
1316 const char * const fmt = GET_RTX_FORMAT (code);
1317 int i;
1318
1319 if (code == SUBREG)
1320 record_subregs_of_mode (x);
1321
1322 /* Time for some deep diving. */
1323 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1324 {
1325 if (fmt[i] == 'e')
1326 find_subregs_of_mode (XEXP (x, i));
1327 else if (fmt[i] == 'E')
1328 {
1329 int j;
1330 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1331 find_subregs_of_mode (XVECEXP (x, i, j));
1332 }
1333 }
1334 }
1335
1336 void
1337 init_subregs_of_mode (void)
1338 {
1339 basic_block bb;
1340 rtx_insn *insn;
1341
1342 gcc_obstack_init (&valid_mode_changes_obstack);
1343 valid_mode_changes = XCNEWVEC (HARD_REG_SET *, max_reg_num ());
1344
1345 FOR_EACH_BB_FN (bb, cfun)
1346 FOR_BB_INSNS (bb, insn)
1347 if (NONDEBUG_INSN_P (insn))
1348 find_subregs_of_mode (PATTERN (insn));
1349 }
1350
1351 const HARD_REG_SET *
1352 valid_mode_changes_for_regno (unsigned int regno)
1353 {
1354 return valid_mode_changes[regno];
1355 }
1356
1357 void
1358 finish_subregs_of_mode (void)
1359 {
1360 XDELETEVEC (valid_mode_changes);
1361 obstack_free (&valid_mode_changes_obstack, NULL);
1362 }
1363
1364 /* Free all data attached to the structure. This isn't a destructor because
1365 we don't want to run on exit. */
1366
1367 void
1368 target_hard_regs::finalize ()
1369 {
1370 delete x_simplifiable_subregs;
1371 }