f31866602eb551554a9ff400bd059adbbec32113
[gcc.git] / gcc / reginfo.c
1 /* Compute different info about registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This file contains regscan pass of the compiler and passes for
24 dealing with info about modes of pseudo-registers inside
25 subregisters. It also defines some tables of information about the
26 hardware registers, function init_reg_sets to initialize the
27 tables, and other auxiliary functions to deal with info about
28 registers and their classes. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "hard-reg-set.h"
35 #include "rtl.h"
36 #include "expr.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "basic-block.h"
40 #include "regs.h"
41 #include "addresses.h"
42 #include "function.h"
43 #include "insn-config.h"
44 #include "recog.h"
45 #include "reload.h"
46 #include "real.h"
47 #include "toplev.h"
48 #include "output.h"
49 #include "ggc.h"
50 #include "timevar.h"
51 #include "hashtab.h"
52 #include "target.h"
53 #include "tree-pass.h"
54 #include "df.h"
55 #include "ira.h"
56
57 /* Maximum register number used in this function, plus one. */
58
59 int max_regno;
60
61 \f
62 /* Register tables used by many passes. */
63
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
68 char fixed_regs[FIRST_PSEUDO_REGISTER];
69
70 /* Same info as a HARD_REG_SET. */
71 HARD_REG_SET fixed_reg_set;
72
73 /* Data for initializing the above. */
74 static const char initial_fixed_regs[] = FIXED_REGISTERS;
75
76 /* Indexed by hard register number, contains 1 for registers
77 that are fixed use or are clobbered by function calls.
78 These are the registers that cannot be used to allocate
79 a pseudo reg whose life crosses calls unless we are able
80 to save/restore them across the calls. */
81 char call_used_regs[FIRST_PSEUDO_REGISTER];
82
83 /* Same info as a HARD_REG_SET. */
84 HARD_REG_SET call_used_reg_set;
85
86 /* Data for initializing the above. */
87 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
88
89 /* This is much like call_used_regs, except it doesn't have to
90 be a superset of FIXED_REGISTERS. This vector indicates
91 what is really call clobbered, and is used when defining
92 regs_invalidated_by_call. */
93 #ifdef CALL_REALLY_USED_REGISTERS
94 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
95 #endif
96
97 #ifdef CALL_REALLY_USED_REGISTERS
98 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
99 #else
100 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
101 #endif
102
103
104 /* Indexed by hard register number, contains 1 for registers that are
105 fixed use or call used registers that cannot hold quantities across
106 calls even if we are willing to save and restore them. call fixed
107 registers are a subset of call used registers. */
108 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
109
110 /* The same info as a HARD_REG_SET. */
111 HARD_REG_SET call_fixed_reg_set;
112
113 /* Indexed by hard register number, contains 1 for registers
114 that are being used for global register decls.
115 These must be exempt from ordinary flow analysis
116 and are also considered fixed. */
117 char global_regs[FIRST_PSEUDO_REGISTER];
118
119 /* Contains 1 for registers that are set or clobbered by calls. */
120 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
121 for someone's bright idea to have call_used_regs strictly include
122 fixed_regs. Which leaves us guessing as to the set of fixed_regs
123 that are actually preserved. We know for sure that those associated
124 with the local stack frame are safe, but scant others. */
125 HARD_REG_SET regs_invalidated_by_call;
126
127 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
128 in dataflow more conveniently. */
129 regset regs_invalidated_by_call_regset;
130
131 /* The bitmap_obstack is used to hold some static variables that
132 should not be reset after each function is compiled. */
133 static bitmap_obstack persistent_obstack;
134
135 /* Table of register numbers in the order in which to try to use them. */
136 #ifdef REG_ALLOC_ORDER
137 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
138
139 /* The inverse of reg_alloc_order. */
140 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
141 #endif
142
143 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
144 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
145
146 /* The same information, but as an array of unsigned ints. We copy from
147 these unsigned ints to the table above. We do this so the tm.h files
148 do not have to be aware of the wordsize for machines with <= 64 regs.
149 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
150 #define N_REG_INTS \
151 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
152
153 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
154 = REG_CLASS_CONTENTS;
155
156 /* For each reg class, number of regs it contains. */
157 unsigned int reg_class_size[N_REG_CLASSES];
158
159 /* For each reg class, table listing all the classes contained in it. */
160 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
161
162 /* For each pair of reg classes,
163 a largest reg class contained in their union. */
164 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
165
166 /* For each pair of reg classes,
167 the smallest reg class containing their union. */
168 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
169
170 /* Array containing all of the register names. */
171 const char * reg_names[] = REGISTER_NAMES;
172
173 /* Array containing all of the register class names. */
174 const char * reg_class_names[] = REG_CLASS_NAMES;
175
176 /* For each hard register, the widest mode object that it can contain.
177 This will be a MODE_INT mode if the register can hold integers. Otherwise
178 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
179 register. */
180 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
181
182 /* 1 if there is a register of given mode. */
183 bool have_regs_of_mode [MAX_MACHINE_MODE];
184
185 /* 1 if class does contain register of given mode. */
186 char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
187
188 /* Maximum cost of moving from a register in one class to a register in
189 another class. Based on REGISTER_MOVE_COST. */
190 move_table *move_cost[MAX_MACHINE_MODE];
191
192 /* Similar, but here we don't have to move if the first index is a subset
193 of the second so in that case the cost is zero. */
194 move_table *may_move_in_cost[MAX_MACHINE_MODE];
195
196 /* Similar, but here we don't have to move if the first index is a superset
197 of the second so in that case the cost is zero. */
198 move_table *may_move_out_cost[MAX_MACHINE_MODE];
199
200 /* Keep track of the last mode we initialized move costs for. */
201 static int last_mode_for_init_move_cost;
202
203 /* Sample MEM values for use by memory_move_secondary_cost. */
204 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
205
206 /* No more global register variables may be declared; true once
207 reginfo has been initialized. */
208 static int no_global_reg_vars = 0;
209
210 /* Specify number of hard registers given machine mode occupy. */
211 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
212
213 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
214 correspond to the hard registers, if any, set in that map. This
215 could be done far more efficiently by having all sorts of special-cases
216 with moving single words, but probably isn't worth the trouble. */
217 void
218 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
219 {
220 unsigned i;
221 bitmap_iterator bi;
222
223 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
224 {
225 if (i >= FIRST_PSEUDO_REGISTER)
226 return;
227 SET_HARD_REG_BIT (*to, i);
228 }
229 }
230
231 /* Function called only once to initialize the above data on reg usage.
232 Once this is done, various switches may override. */
233 void
234 init_reg_sets (void)
235 {
236 int i, j;
237
238 /* First copy the register information from the initial int form into
239 the regsets. */
240
241 for (i = 0; i < N_REG_CLASSES; i++)
242 {
243 CLEAR_HARD_REG_SET (reg_class_contents[i]);
244
245 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
246 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
247 if (int_reg_class_contents[i][j / 32]
248 & ((unsigned) 1 << (j % 32)))
249 SET_HARD_REG_BIT (reg_class_contents[i], j);
250 }
251
252 /* Sanity check: make sure the target macros FIXED_REGISTERS and
253 CALL_USED_REGISTERS had the right number of initializers. */
254 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
255 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
256
257 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
258 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
259 memset (global_regs, 0, sizeof global_regs);
260 }
261
262 /* Initialize may_move_cost and friends for mode M. */
263 void
264 init_move_cost (enum machine_mode m)
265 {
266 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
267 bool all_match = true;
268 unsigned int i, j;
269
270 gcc_assert (have_regs_of_mode[m]);
271 for (i = 0; i < N_REG_CLASSES; i++)
272 if (contains_reg_of_mode[i][m])
273 for (j = 0; j < N_REG_CLASSES; j++)
274 {
275 int cost;
276 if (!contains_reg_of_mode[j][m])
277 cost = 65535;
278 else
279 {
280 cost = REGISTER_MOVE_COST (m, i, j);
281 gcc_assert (cost < 65535);
282 }
283 all_match &= (last_move_cost[i][j] == cost);
284 last_move_cost[i][j] = cost;
285 }
286 if (all_match && last_mode_for_init_move_cost != -1)
287 {
288 move_cost[m] = move_cost[last_mode_for_init_move_cost];
289 may_move_in_cost[m] = may_move_in_cost[last_mode_for_init_move_cost];
290 may_move_out_cost[m] = may_move_out_cost[last_mode_for_init_move_cost];
291 return;
292 }
293 last_mode_for_init_move_cost = m;
294 move_cost[m] = (move_table *)xmalloc (sizeof (move_table)
295 * N_REG_CLASSES);
296 may_move_in_cost[m] = (move_table *)xmalloc (sizeof (move_table)
297 * N_REG_CLASSES);
298 may_move_out_cost[m] = (move_table *)xmalloc (sizeof (move_table)
299 * N_REG_CLASSES);
300 for (i = 0; i < N_REG_CLASSES; i++)
301 if (contains_reg_of_mode[i][m])
302 for (j = 0; j < N_REG_CLASSES; j++)
303 {
304 int cost;
305 enum reg_class *p1, *p2;
306
307 if (last_move_cost[i][j] == 65535)
308 {
309 move_cost[m][i][j] = 65535;
310 may_move_in_cost[m][i][j] = 65535;
311 may_move_out_cost[m][i][j] = 65535;
312 }
313 else
314 {
315 cost = last_move_cost[i][j];
316
317 for (p2 = &reg_class_subclasses[j][0];
318 *p2 != LIM_REG_CLASSES; p2++)
319 if (*p2 != i && contains_reg_of_mode[*p2][m])
320 cost = MAX (cost, move_cost[m][i][*p2]);
321
322 for (p1 = &reg_class_subclasses[i][0];
323 *p1 != LIM_REG_CLASSES; p1++)
324 if (*p1 != j && contains_reg_of_mode[*p1][m])
325 cost = MAX (cost, move_cost[m][*p1][j]);
326
327 gcc_assert (cost <= 65535);
328 move_cost[m][i][j] = cost;
329
330 if (reg_class_subset_p (i, j))
331 may_move_in_cost[m][i][j] = 0;
332 else
333 may_move_in_cost[m][i][j] = cost;
334
335 if (reg_class_subset_p (j, i))
336 may_move_out_cost[m][i][j] = 0;
337 else
338 may_move_out_cost[m][i][j] = cost;
339 }
340 }
341 else
342 for (j = 0; j < N_REG_CLASSES; j++)
343 {
344 move_cost[m][i][j] = 65535;
345 may_move_in_cost[m][i][j] = 65535;
346 may_move_out_cost[m][i][j] = 65535;
347 }
348 }
349
350 /* We need to save copies of some of the register information which
351 can be munged by command-line switches so we can restore it during
352 subsequent back-end reinitialization. */
353 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
354 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
355 #ifdef CALL_REALLY_USED_REGISTERS
356 static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
357 #endif
358 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
359
360 /* Save the register information. */
361 void
362 save_register_info (void)
363 {
364 /* Sanity check: make sure the target macros FIXED_REGISTERS and
365 CALL_USED_REGISTERS had the right number of initializers. */
366 gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
367 gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
368 memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
369 memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
370
371 /* Likewise for call_really_used_regs. */
372 #ifdef CALL_REALLY_USED_REGISTERS
373 gcc_assert (sizeof call_really_used_regs
374 == sizeof saved_call_really_used_regs);
375 memcpy (saved_call_really_used_regs, call_really_used_regs,
376 sizeof call_really_used_regs);
377 #endif
378
379 /* And similarly for reg_names. */
380 gcc_assert (sizeof reg_names == sizeof saved_reg_names);
381 memcpy (saved_reg_names, reg_names, sizeof reg_names);
382 }
383
384 /* Restore the register information. */
385 static void
386 restore_register_info (void)
387 {
388 memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
389 memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
390
391 #ifdef CALL_REALLY_USED_REGISTERS
392 memcpy (call_really_used_regs, saved_call_really_used_regs,
393 sizeof call_really_used_regs);
394 #endif
395
396 memcpy (reg_names, saved_reg_names, sizeof reg_names);
397 }
398
399 /* After switches have been processed, which perhaps alter
400 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
401 static void
402 init_reg_sets_1 (void)
403 {
404 unsigned int i, j;
405 unsigned int /* enum machine_mode */ m;
406
407 restore_register_info ();
408
409 #ifdef REG_ALLOC_ORDER
410 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
411 inv_reg_alloc_order[reg_alloc_order[i]] = i;
412 #endif
413
414 /* This macro allows the fixed or call-used registers
415 and the register classes to depend on target flags. */
416
417 #ifdef CONDITIONAL_REGISTER_USAGE
418 CONDITIONAL_REGISTER_USAGE;
419 #endif
420
421 /* Compute number of hard regs in each class. */
422
423 memset (reg_class_size, 0, sizeof reg_class_size);
424 for (i = 0; i < N_REG_CLASSES; i++)
425 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
426 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
427 reg_class_size[i]++;
428
429 /* Initialize the table of subunions.
430 reg_class_subunion[I][J] gets the largest-numbered reg-class
431 that is contained in the union of classes I and J. */
432
433 memset (reg_class_subunion, 0, sizeof reg_class_subunion);
434 for (i = 0; i < N_REG_CLASSES; i++)
435 {
436 for (j = 0; j < N_REG_CLASSES; j++)
437 {
438 HARD_REG_SET c;
439 int k;
440
441 COPY_HARD_REG_SET (c, reg_class_contents[i]);
442 IOR_HARD_REG_SET (c, reg_class_contents[j]);
443 for (k = 0; k < N_REG_CLASSES; k++)
444 if (hard_reg_set_subset_p (reg_class_contents[k], c)
445 && !hard_reg_set_subset_p (reg_class_contents[k],
446 reg_class_contents
447 [(int) reg_class_subunion[i][j]]))
448 reg_class_subunion[i][j] = (enum reg_class) k;
449 }
450 }
451
452 /* Initialize the table of superunions.
453 reg_class_superunion[I][J] gets the smallest-numbered reg-class
454 containing the union of classes I and J. */
455
456 memset (reg_class_superunion, 0, sizeof reg_class_superunion);
457 for (i = 0; i < N_REG_CLASSES; i++)
458 {
459 for (j = 0; j < N_REG_CLASSES; j++)
460 {
461 HARD_REG_SET c;
462 int k;
463
464 COPY_HARD_REG_SET (c, reg_class_contents[i]);
465 IOR_HARD_REG_SET (c, reg_class_contents[j]);
466 for (k = 0; k < N_REG_CLASSES; k++)
467 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
468 break;
469
470 reg_class_superunion[i][j] = (enum reg_class) k;
471 }
472 }
473
474 /* Initialize the tables of subclasses and superclasses of each reg class.
475 First clear the whole table, then add the elements as they are found. */
476
477 for (i = 0; i < N_REG_CLASSES; i++)
478 {
479 for (j = 0; j < N_REG_CLASSES; j++)
480 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
481 }
482
483 for (i = 0; i < N_REG_CLASSES; i++)
484 {
485 if (i == (int) NO_REGS)
486 continue;
487
488 for (j = i + 1; j < N_REG_CLASSES; j++)
489 if (hard_reg_set_subset_p (reg_class_contents[i],
490 reg_class_contents[j]))
491 {
492 /* Reg class I is a subclass of J.
493 Add J to the table of superclasses of I. */
494 enum reg_class *p;
495
496 /* Add I to the table of superclasses of J. */
497 p = &reg_class_subclasses[j][0];
498 while (*p != LIM_REG_CLASSES) p++;
499 *p = (enum reg_class) i;
500 }
501 }
502
503 /* Initialize "constant" tables. */
504
505 CLEAR_HARD_REG_SET (fixed_reg_set);
506 CLEAR_HARD_REG_SET (call_used_reg_set);
507 CLEAR_HARD_REG_SET (call_fixed_reg_set);
508 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
509 if (!regs_invalidated_by_call_regset)
510 {
511 bitmap_obstack_initialize (&persistent_obstack);
512 regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
513 }
514 else
515 CLEAR_REG_SET (regs_invalidated_by_call_regset);
516
517 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
518
519 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
520 {
521 /* call_used_regs must include fixed_regs. */
522 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
523 #ifdef CALL_REALLY_USED_REGISTERS
524 /* call_used_regs must include call_really_used_regs. */
525 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
526 #endif
527
528 if (fixed_regs[i])
529 SET_HARD_REG_BIT (fixed_reg_set, i);
530
531 if (call_used_regs[i])
532 SET_HARD_REG_BIT (call_used_reg_set, i);
533 if (call_fixed_regs[i])
534 SET_HARD_REG_BIT (call_fixed_reg_set, i);
535
536 /* There are a couple of fixed registers that we know are safe to
537 exclude from being clobbered by calls:
538
539 The frame pointer is always preserved across calls. The arg pointer
540 is if it is fixed. The stack pointer usually is, unless
541 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
542 If we are generating PIC code, the PIC offset table register is
543 preserved across calls, though the target can override that. */
544
545 if (i == STACK_POINTER_REGNUM)
546 ;
547 else if (global_regs[i])
548 {
549 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
550 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
551 }
552 else if (i == FRAME_POINTER_REGNUM)
553 ;
554 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
555 else if (i == HARD_FRAME_POINTER_REGNUM)
556 ;
557 #endif
558 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
559 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
560 ;
561 #endif
562 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
563 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
564 ;
565 #endif
566 else if (CALL_REALLY_USED_REGNO_P (i))
567 {
568 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
569 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
570 }
571 }
572
573 /* Preserve global registers if called more than once. */
574 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
575 {
576 if (global_regs[i])
577 {
578 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
579 SET_HARD_REG_BIT (fixed_reg_set, i);
580 SET_HARD_REG_BIT (call_used_reg_set, i);
581 SET_HARD_REG_BIT (call_fixed_reg_set, i);
582 }
583 }
584
585 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
586 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
587 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
588 {
589 HARD_REG_SET ok_regs;
590 CLEAR_HARD_REG_SET (ok_regs);
591 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
592 if (!fixed_regs [j] && HARD_REGNO_MODE_OK (j, m))
593 SET_HARD_REG_BIT (ok_regs, j);
594
595 for (i = 0; i < N_REG_CLASSES; i++)
596 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i]
597 && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
598 {
599 contains_reg_of_mode [i][m] = 1;
600 have_regs_of_mode [m] = 1;
601 }
602 }
603
604 /* Reset move_cost and friends, making sure we only free shared
605 table entries once. */
606 for (i = 0; i < MAX_MACHINE_MODE; i++)
607 if (move_cost[i])
608 {
609 for (j = 0; j < i && move_cost[i] != move_cost[j]; j++)
610 ;
611 if (i == j)
612 {
613 free (move_cost[i]);
614 free (may_move_in_cost[i]);
615 free (may_move_out_cost[i]);
616 }
617 }
618 memset (move_cost, 0, sizeof move_cost);
619 memset (may_move_in_cost, 0, sizeof may_move_in_cost);
620 memset (may_move_out_cost, 0, sizeof may_move_out_cost);
621 last_mode_for_init_move_cost = -1;
622 }
623
624 /* Compute the table of register modes.
625 These values are used to record death information for individual registers
626 (as opposed to a multi-register mode).
627 This function might be invoked more than once, if the target has support
628 for changing register usage conventions on a per-function basis.
629 */
630 void
631 init_reg_modes_target (void)
632 {
633 int i, j;
634
635 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
636 for (j = 0; j < MAX_MACHINE_MODE; j++)
637 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
638
639 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
640 {
641 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
642
643 /* If we couldn't find a valid mode, just use the previous mode.
644 ??? One situation in which we need to do this is on the mips where
645 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
646 to use DF mode for the even registers and VOIDmode for the odd
647 (for the cpu models where the odd ones are inaccessible). */
648 if (reg_raw_mode[i] == VOIDmode)
649 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
650 }
651 }
652
653 /* Finish initializing the register sets and initialize the register modes.
654 This function might be invoked more than once, if the target has support
655 for changing register usage conventions on a per-function basis.
656 */
657 void
658 init_regs (void)
659 {
660 /* This finishes what was started by init_reg_sets, but couldn't be done
661 until after register usage was specified. */
662 init_reg_sets_1 ();
663 }
664
665 /* The same as previous function plus initializing IRA. */
666 void
667 reinit_regs (void)
668 {
669 init_regs ();
670 ira_init ();
671 }
672
673 /* Initialize some fake stack-frame MEM references for use in
674 memory_move_secondary_cost. */
675 void
676 init_fake_stack_mems (void)
677 {
678 int i;
679
680 for (i = 0; i < MAX_MACHINE_MODE; i++)
681 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
682 }
683
684
685 /* Compute extra cost of moving registers to/from memory due to reloads.
686 Only needed if secondary reloads are required for memory moves. */
687 int
688 memory_move_secondary_cost (enum machine_mode mode, enum reg_class rclass,
689 int in)
690 {
691 enum reg_class altclass;
692 int partial_cost = 0;
693 /* We need a memory reference to feed to SECONDARY... macros. */
694 /* mem may be unused even if the SECONDARY_ macros are defined. */
695 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
696
697 altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
698
699 if (altclass == NO_REGS)
700 return 0;
701
702 if (in)
703 partial_cost = REGISTER_MOVE_COST (mode, altclass, rclass);
704 else
705 partial_cost = REGISTER_MOVE_COST (mode, rclass, altclass);
706
707 if (rclass == altclass)
708 /* This isn't simply a copy-to-temporary situation. Can't guess
709 what it is, so MEMORY_MOVE_COST really ought not to be calling
710 here in that case.
711
712 I'm tempted to put in an assert here, but returning this will
713 probably only give poor estimates, which is what we would've
714 had before this code anyways. */
715 return partial_cost;
716
717 /* Check if the secondary reload register will also need a
718 secondary reload. */
719 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
720 }
721
722 /* Return a machine mode that is legitimate for hard reg REGNO and large
723 enough to save nregs. If we can't find one, return VOIDmode.
724 If CALL_SAVED is true, only consider modes that are call saved. */
725 enum machine_mode
726 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
727 unsigned int nregs, bool call_saved)
728 {
729 unsigned int /* enum machine_mode */ m;
730 enum machine_mode found_mode = VOIDmode, mode;
731
732 /* We first look for the largest integer mode that can be validly
733 held in REGNO. If none, we look for the largest floating-point mode.
734 If we still didn't find a valid mode, try CCmode. */
735
736 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
737 mode != VOIDmode;
738 mode = GET_MODE_WIDER_MODE (mode))
739 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
740 && HARD_REGNO_MODE_OK (regno, mode)
741 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
742 found_mode = mode;
743
744 if (found_mode != VOIDmode)
745 return found_mode;
746
747 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
748 mode != VOIDmode;
749 mode = GET_MODE_WIDER_MODE (mode))
750 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
751 && HARD_REGNO_MODE_OK (regno, mode)
752 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
753 found_mode = mode;
754
755 if (found_mode != VOIDmode)
756 return found_mode;
757
758 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
759 mode != VOIDmode;
760 mode = GET_MODE_WIDER_MODE (mode))
761 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
762 && HARD_REGNO_MODE_OK (regno, mode)
763 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
764 found_mode = mode;
765
766 if (found_mode != VOIDmode)
767 return found_mode;
768
769 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
770 mode != VOIDmode;
771 mode = GET_MODE_WIDER_MODE (mode))
772 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
773 && HARD_REGNO_MODE_OK (regno, mode)
774 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
775 found_mode = mode;
776
777 if (found_mode != VOIDmode)
778 return found_mode;
779
780 /* Iterate over all of the CCmodes. */
781 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
782 {
783 mode = (enum machine_mode) m;
784 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
785 && HARD_REGNO_MODE_OK (regno, mode)
786 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
787 return mode;
788 }
789
790 /* We can't find a mode valid for this register. */
791 return VOIDmode;
792 }
793
794 /* Specify the usage characteristics of the register named NAME.
795 It should be a fixed register if FIXED and a
796 call-used register if CALL_USED. */
797 void
798 fix_register (const char *name, int fixed, int call_used)
799 {
800 int i;
801
802 /* Decode the name and update the primary form of
803 the register info. */
804
805 if ((i = decode_reg_name (name)) >= 0)
806 {
807 if ((i == STACK_POINTER_REGNUM
808 #ifdef HARD_FRAME_POINTER_REGNUM
809 || i == HARD_FRAME_POINTER_REGNUM
810 #else
811 || i == FRAME_POINTER_REGNUM
812 #endif
813 )
814 && (fixed == 0 || call_used == 0))
815 {
816 static const char * const what_option[2][2] = {
817 { "call-saved", "call-used" },
818 { "no-such-option", "fixed" }};
819
820 error ("can't use '%s' as a %s register", name,
821 what_option[fixed][call_used]);
822 }
823 else
824 {
825 fixed_regs[i] = fixed;
826 call_used_regs[i] = call_used;
827 #ifdef CALL_REALLY_USED_REGISTERS
828 if (fixed == 0)
829 call_really_used_regs[i] = call_used;
830 #endif
831 }
832 }
833 else
834 {
835 warning (0, "unknown register name: %s", name);
836 }
837 }
838
839 /* Mark register number I as global. */
840 void
841 globalize_reg (int i)
842 {
843 if (fixed_regs[i] == 0 && no_global_reg_vars)
844 error ("global register variable follows a function definition");
845
846 if (global_regs[i])
847 {
848 warning (0, "register used for two global register variables");
849 return;
850 }
851
852 if (call_used_regs[i] && ! fixed_regs[i])
853 warning (0, "call-clobbered register used for global register variable");
854
855 global_regs[i] = 1;
856
857 /* If we're globalizing the frame pointer, we need to set the
858 appropriate regs_invalidated_by_call bit, even if it's already
859 set in fixed_regs. */
860 if (i != STACK_POINTER_REGNUM)
861 {
862 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
863 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
864 }
865
866 /* If already fixed, nothing else to do. */
867 if (fixed_regs[i])
868 return;
869
870 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
871 #ifdef CALL_REALLY_USED_REGISTERS
872 call_really_used_regs[i] = 1;
873 #endif
874
875 SET_HARD_REG_BIT (fixed_reg_set, i);
876 SET_HARD_REG_BIT (call_used_reg_set, i);
877 SET_HARD_REG_BIT (call_fixed_reg_set, i);
878
879 reinit_regs ();
880 }
881 \f
882
883 /* Structure used to record preferences of given pseudo. */
884 struct reg_pref
885 {
886 /* (enum reg_class) prefclass is the preferred class. May be
887 NO_REGS if no class is better than memory. */
888 char prefclass;
889
890 /* altclass is a register class that we should use for allocating
891 pseudo if no register in the preferred class is available.
892 If no register in this class is available, memory is preferred.
893
894 It might appear to be more general to have a bitmask of classes here,
895 but since it is recommended that there be a class corresponding to the
896 union of most major pair of classes, that generality is not required. */
897 char altclass;
898 };
899
900 /* Record preferences of each pseudo. This is available after RA is
901 run. */
902 static struct reg_pref *reg_pref;
903
904 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
905 This function is sometimes called before the info has been computed.
906 When that happens, just return GENERAL_REGS, which is innocuous. */
907 enum reg_class
908 reg_preferred_class (int regno)
909 {
910 if (reg_pref == 0)
911 return GENERAL_REGS;
912
913 return (enum reg_class) reg_pref[regno].prefclass;
914 }
915
916 enum reg_class
917 reg_alternate_class (int regno)
918 {
919 if (reg_pref == 0)
920 return ALL_REGS;
921
922 return (enum reg_class) reg_pref[regno].altclass;
923 }
924
925 /* Initialize some global data for this pass. */
926 static unsigned int
927 reginfo_init (void)
928 {
929 if (df)
930 df_compute_regs_ever_live (true);
931
932 /* This prevents dump_flow_info from losing if called
933 before reginfo is run. */
934 reg_pref = NULL;
935
936 /* No more global register variables may be declared. */
937 no_global_reg_vars = 1;
938 return 1;
939 }
940
941 struct rtl_opt_pass pass_reginfo_init =
942 {
943 {
944 RTL_PASS,
945 "reginfo", /* name */
946 NULL, /* gate */
947 reginfo_init, /* execute */
948 NULL, /* sub */
949 NULL, /* next */
950 0, /* static_pass_number */
951 TV_NONE, /* tv_id */
952 0, /* properties_required */
953 0, /* properties_provided */
954 0, /* properties_destroyed */
955 0, /* todo_flags_start */
956 0 /* todo_flags_finish */
957 }
958 };
959
960 \f
961
962 /* Allocate space for reg info. */
963 void
964 allocate_reg_info (void)
965 {
966 int size = max_reg_num ();
967
968 gcc_assert (! reg_pref && ! reg_renumber);
969 reg_renumber = XNEWVEC (short, size);
970 reg_pref = XCNEWVEC (struct reg_pref, size);
971 memset (reg_renumber, -1, size * sizeof (short));
972 }
973
974
975 /* Resize reg info. The new elements will be uninitialized. */
976 void
977 resize_reg_info (void)
978 {
979 int size = max_reg_num ();
980
981 gcc_assert (reg_pref && reg_renumber);
982 reg_renumber = XRESIZEVEC (short, reg_renumber, size);
983 reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, size);
984 }
985
986
987 /* Free up the space allocated by allocate_reg_info. */
988 void
989 free_reg_info (void)
990 {
991 if (reg_pref)
992 {
993 free (reg_pref);
994 reg_pref = NULL;
995 }
996
997 if (reg_renumber)
998 {
999 free (reg_renumber);
1000 reg_renumber = NULL;
1001 }
1002 }
1003
1004
1005 \f
1006
1007 /* Set up preferred and alternate classes for REGNO as PREFCLASS and
1008 ALTCLASS. */
1009 void
1010 setup_reg_classes (int regno,
1011 enum reg_class prefclass, enum reg_class altclass)
1012 {
1013 if (reg_pref == NULL)
1014 return;
1015 reg_pref[regno].prefclass = prefclass;
1016 reg_pref[regno].altclass = altclass;
1017 }
1018
1019 \f
1020 /* This is the `regscan' pass of the compiler, run just before cse and
1021 again just before loop. It finds the first and last use of each
1022 pseudo-register. */
1023
1024 static void reg_scan_mark_refs (rtx, rtx);
1025
1026 void
1027 reg_scan (rtx f, unsigned int nregs ATTRIBUTE_UNUSED)
1028 {
1029 rtx insn;
1030
1031 timevar_push (TV_REG_SCAN);
1032
1033 for (insn = f; insn; insn = NEXT_INSN (insn))
1034 if (INSN_P (insn))
1035 {
1036 reg_scan_mark_refs (PATTERN (insn), insn);
1037 if (REG_NOTES (insn))
1038 reg_scan_mark_refs (REG_NOTES (insn), insn);
1039 }
1040
1041 timevar_pop (TV_REG_SCAN);
1042 }
1043
1044
1045 /* X is the expression to scan. INSN is the insn it appears in.
1046 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
1047 We should only record information for REGs with numbers
1048 greater than or equal to MIN_REGNO. */
1049 static void
1050 reg_scan_mark_refs (rtx x, rtx insn)
1051 {
1052 enum rtx_code code;
1053 rtx dest;
1054 rtx note;
1055
1056 if (!x)
1057 return;
1058 code = GET_CODE (x);
1059 switch (code)
1060 {
1061 case CONST:
1062 case CONST_INT:
1063 case CONST_DOUBLE:
1064 case CONST_FIXED:
1065 case CONST_VECTOR:
1066 case CC0:
1067 case PC:
1068 case SYMBOL_REF:
1069 case LABEL_REF:
1070 case ADDR_VEC:
1071 case ADDR_DIFF_VEC:
1072 case REG:
1073 return;
1074
1075 case EXPR_LIST:
1076 if (XEXP (x, 0))
1077 reg_scan_mark_refs (XEXP (x, 0), insn);
1078 if (XEXP (x, 1))
1079 reg_scan_mark_refs (XEXP (x, 1), insn);
1080 break;
1081
1082 case INSN_LIST:
1083 if (XEXP (x, 1))
1084 reg_scan_mark_refs (XEXP (x, 1), insn);
1085 break;
1086
1087 case CLOBBER:
1088 if (MEM_P (XEXP (x, 0)))
1089 reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1090 break;
1091
1092 case SET:
1093 /* Count a set of the destination if it is a register. */
1094 for (dest = SET_DEST (x);
1095 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1096 || GET_CODE (dest) == ZERO_EXTEND;
1097 dest = XEXP (dest, 0))
1098 ;
1099
1100 /* If this is setting a pseudo from another pseudo or the sum of a
1101 pseudo and a constant integer and the other pseudo is known to be
1102 a pointer, set the destination to be a pointer as well.
1103
1104 Likewise if it is setting the destination from an address or from a
1105 value equivalent to an address or to the sum of an address and
1106 something else.
1107
1108 But don't do any of this if the pseudo corresponds to a user
1109 variable since it should have already been set as a pointer based
1110 on the type. */
1111
1112 if (REG_P (SET_DEST (x))
1113 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1114 /* If the destination pseudo is set more than once, then other
1115 sets might not be to a pointer value (consider access to a
1116 union in two threads of control in the presence of global
1117 optimizations). So only set REG_POINTER on the destination
1118 pseudo if this is the only set of that pseudo. */
1119 && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1120 && ! REG_USERVAR_P (SET_DEST (x))
1121 && ! REG_POINTER (SET_DEST (x))
1122 && ((REG_P (SET_SRC (x))
1123 && REG_POINTER (SET_SRC (x)))
1124 || ((GET_CODE (SET_SRC (x)) == PLUS
1125 || GET_CODE (SET_SRC (x)) == LO_SUM)
1126 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1127 && REG_P (XEXP (SET_SRC (x), 0))
1128 && REG_POINTER (XEXP (SET_SRC (x), 0)))
1129 || GET_CODE (SET_SRC (x)) == CONST
1130 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1131 || GET_CODE (SET_SRC (x)) == LABEL_REF
1132 || (GET_CODE (SET_SRC (x)) == HIGH
1133 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1134 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1135 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1136 || ((GET_CODE (SET_SRC (x)) == PLUS
1137 || GET_CODE (SET_SRC (x)) == LO_SUM)
1138 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1139 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1140 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1141 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1142 && (GET_CODE (XEXP (note, 0)) == CONST
1143 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1144 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1145 REG_POINTER (SET_DEST (x)) = 1;
1146
1147 /* If this is setting a register from a register or from a simple
1148 conversion of a register, propagate REG_EXPR. */
1149 if (REG_P (dest) && !REG_ATTRS (dest))
1150 {
1151 rtx src = SET_SRC (x);
1152
1153 while (GET_CODE (src) == SIGN_EXTEND
1154 || GET_CODE (src) == ZERO_EXTEND
1155 || GET_CODE (src) == TRUNCATE
1156 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
1157 src = XEXP (src, 0);
1158
1159 set_reg_attrs_from_value (dest, src);
1160 }
1161
1162 /* ... fall through ... */
1163
1164 default:
1165 {
1166 const char *fmt = GET_RTX_FORMAT (code);
1167 int i;
1168 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1169 {
1170 if (fmt[i] == 'e')
1171 reg_scan_mark_refs (XEXP (x, i), insn);
1172 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1173 {
1174 int j;
1175 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1176 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1177 }
1178 }
1179 }
1180 }
1181 }
1182 \f
1183
1184 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1185 is also in C2. */
1186 int
1187 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
1188 {
1189 return (c1 == c2
1190 || c2 == ALL_REGS
1191 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1192 reg_class_contents[(int) c2]));
1193 }
1194
1195 /* Return nonzero if there is a register that is in both C1 and C2. */
1196 int
1197 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
1198 {
1199 return (c1 == c2
1200 || c1 == ALL_REGS
1201 || c2 == ALL_REGS
1202 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1203 reg_class_contents[(int) c2]));
1204 }
1205
1206 \f
1207
1208 /* Passes for keeping and updating info about modes of registers
1209 inside subregisters. */
1210
1211 #ifdef CANNOT_CHANGE_MODE_CLASS
1212
1213 struct subregs_of_mode_node
1214 {
1215 unsigned int block;
1216 unsigned char modes[MAX_MACHINE_MODE];
1217 };
1218
1219 static htab_t subregs_of_mode;
1220
1221 static hashval_t
1222 som_hash (const void *x)
1223 {
1224 const struct subregs_of_mode_node *const a =
1225 (const struct subregs_of_mode_node *) x;
1226 return a->block;
1227 }
1228
1229 static int
1230 som_eq (const void *x, const void *y)
1231 {
1232 const struct subregs_of_mode_node *const a =
1233 (const struct subregs_of_mode_node *) x;
1234 const struct subregs_of_mode_node *const b =
1235 (const struct subregs_of_mode_node *) y;
1236 return a->block == b->block;
1237 }
1238
1239 static void
1240 record_subregs_of_mode (rtx subreg)
1241 {
1242 struct subregs_of_mode_node dummy, *node;
1243 enum machine_mode mode;
1244 unsigned int regno;
1245 void **slot;
1246
1247 if (!REG_P (SUBREG_REG (subreg)))
1248 return;
1249
1250 regno = REGNO (SUBREG_REG (subreg));
1251 mode = GET_MODE (subreg);
1252
1253 if (regno < FIRST_PSEUDO_REGISTER)
1254 return;
1255
1256 dummy.block = regno & -8;
1257 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
1258 dummy.block, INSERT);
1259 node = (struct subregs_of_mode_node *) *slot;
1260 if (node == NULL)
1261 {
1262 node = XCNEW (struct subregs_of_mode_node);
1263 node->block = regno & -8;
1264 *slot = node;
1265 }
1266
1267 node->modes[mode] |= 1 << (regno & 7);
1268 }
1269
1270 /* Call record_subregs_of_mode for all the subregs in X. */
1271 static void
1272 find_subregs_of_mode (rtx x)
1273 {
1274 enum rtx_code code = GET_CODE (x);
1275 const char * const fmt = GET_RTX_FORMAT (code);
1276 int i;
1277
1278 if (code == SUBREG)
1279 record_subregs_of_mode (x);
1280
1281 /* Time for some deep diving. */
1282 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1283 {
1284 if (fmt[i] == 'e')
1285 find_subregs_of_mode (XEXP (x, i));
1286 else if (fmt[i] == 'E')
1287 {
1288 int j;
1289 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1290 find_subregs_of_mode (XVECEXP (x, i, j));
1291 }
1292 }
1293 }
1294
1295 static unsigned int
1296 init_subregs_of_mode (void)
1297 {
1298 basic_block bb;
1299 rtx insn;
1300
1301 if (subregs_of_mode)
1302 htab_empty (subregs_of_mode);
1303 else
1304 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
1305
1306 FOR_EACH_BB (bb)
1307 FOR_BB_INSNS (bb, insn)
1308 if (INSN_P (insn))
1309 find_subregs_of_mode (PATTERN (insn));
1310
1311 return 0;
1312 }
1313
1314 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
1315 mode. */
1316 bool
1317 invalid_mode_change_p (unsigned int regno,
1318 enum reg_class rclass ATTRIBUTE_UNUSED,
1319 enum machine_mode from)
1320 {
1321 struct subregs_of_mode_node dummy, *node;
1322 enum machine_mode to;
1323 unsigned char mask;
1324
1325 gcc_assert (subregs_of_mode);
1326 dummy.block = regno & -8;
1327 node = (struct subregs_of_mode_node *)
1328 htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
1329 if (node == NULL)
1330 return false;
1331
1332 mask = 1 << (regno & 7);
1333 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
1334 if (node->modes[to] & mask)
1335 if (CANNOT_CHANGE_MODE_CLASS (from, to, rclass))
1336 return true;
1337
1338 return false;
1339 }
1340
1341 static unsigned int
1342 finish_subregs_of_mode (void)
1343 {
1344 htab_delete (subregs_of_mode);
1345 subregs_of_mode = 0;
1346 return 0;
1347 }
1348 #else
1349 static unsigned int
1350 init_subregs_of_mode (void)
1351 {
1352 return 0;
1353 }
1354 static unsigned int
1355 finish_subregs_of_mode (void)
1356 {
1357 return 0;
1358 }
1359
1360 #endif /* CANNOT_CHANGE_MODE_CLASS */
1361
1362 static bool
1363 gate_subregs_of_mode_init (void)
1364 {
1365 #ifdef CANNOT_CHANGE_MODE_CLASS
1366 return true;
1367 #else
1368 return false;
1369 #endif
1370 }
1371
1372 struct rtl_opt_pass pass_subregs_of_mode_init =
1373 {
1374 {
1375 RTL_PASS,
1376 "subregs_of_mode_init", /* name */
1377 gate_subregs_of_mode_init, /* gate */
1378 init_subregs_of_mode, /* execute */
1379 NULL, /* sub */
1380 NULL, /* next */
1381 0, /* static_pass_number */
1382 TV_NONE, /* tv_id */
1383 0, /* properties_required */
1384 0, /* properties_provided */
1385 0, /* properties_destroyed */
1386 0, /* todo_flags_start */
1387 0 /* todo_flags_finish */
1388 }
1389 };
1390
1391 struct rtl_opt_pass pass_subregs_of_mode_finish =
1392 {
1393 {
1394 RTL_PASS,
1395 "subregs_of_mode_finish", /* name */
1396 gate_subregs_of_mode_init, /* gate */
1397 finish_subregs_of_mode, /* execute */
1398 NULL, /* sub */
1399 NULL, /* next */
1400 0, /* static_pass_number */
1401 TV_NONE, /* tv_id */
1402 0, /* properties_required */
1403 0, /* properties_provided */
1404 0, /* properties_destroyed */
1405 0, /* todo_flags_start */
1406 0 /* todo_flags_finish */
1407 }
1408 };
1409
1410
1411 #include "gt-reginfo.h"