usage.adb: Change "pragma inline" to "pragma Inline" in information and error messages
[gcc.git] / gcc / regmove.c
1 /* Move registers around to reduce number of move instructions needed.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This module looks for cases where matching constraints would force
24 an instruction to need a reload, and this reload would be a register
25 to register move. It then attempts to change the registers used by the
26 instruction to avoid the move instruction. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
33 #include "tm_p.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "output.h"
37 #include "regs.h"
38 #include "hard-reg-set.h"
39 #include "flags.h"
40 #include "function.h"
41 #include "expr.h"
42 #include "basic-block.h"
43 #include "except.h"
44 #include "toplev.h"
45 #include "reload.h"
46
47
48 /* Turn STACK_GROWS_DOWNWARD into a boolean. */
49 #ifdef STACK_GROWS_DOWNWARD
50 #undef STACK_GROWS_DOWNWARD
51 #define STACK_GROWS_DOWNWARD 1
52 #else
53 #define STACK_GROWS_DOWNWARD 0
54 #endif
55
56 static int perhaps_ends_bb_p (rtx);
57 static int optimize_reg_copy_1 (rtx, rtx, rtx);
58 static void optimize_reg_copy_2 (rtx, rtx, rtx);
59 static void optimize_reg_copy_3 (rtx, rtx, rtx);
60 static void copy_src_to_dest (rtx, rtx, rtx, int);
61 static int *regmove_bb_head;
62
63 struct match {
64 int with[MAX_RECOG_OPERANDS];
65 enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
66 int commutative[MAX_RECOG_OPERANDS];
67 int early_clobber[MAX_RECOG_OPERANDS];
68 };
69
70 static rtx discover_flags_reg (void);
71 static void mark_flags_life_zones (rtx);
72 static void flags_set_1 (rtx, rtx, void *);
73
74 static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
75 static int find_matches (rtx, struct match *);
76 static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
77 static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int, FILE *);
78 static int reg_is_remote_constant_p (rtx, rtx, rtx);
79 static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
80 static int regclass_compatible_p (int, int);
81 static int replacement_quality (rtx);
82 static int fixup_match_2 (rtx, rtx, rtx, rtx, FILE *);
83
84 /* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
85 causing too much register allocation problems. */
86 static int
87 regclass_compatible_p (int class0, int class1)
88 {
89 return (class0 == class1
90 || (reg_class_subset_p (class0, class1)
91 && ! CLASS_LIKELY_SPILLED_P (class0))
92 || (reg_class_subset_p (class1, class0)
93 && ! CLASS_LIKELY_SPILLED_P (class1)));
94 }
95
96 /* INC_INSN is an instruction that adds INCREMENT to REG.
97 Try to fold INC_INSN as a post/pre in/decrement into INSN.
98 Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
99 Return nonzero for success. */
100 static int
101 try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
102 HOST_WIDE_INT increment, int pre)
103 {
104 enum rtx_code inc_code;
105
106 rtx pset = single_set (insn);
107 if (pset)
108 {
109 /* Can't use the size of SET_SRC, we might have something like
110 (sign_extend:SI (mem:QI ... */
111 rtx use = find_use_as_address (pset, reg, 0);
112 if (use != 0 && use != (rtx) (size_t) 1)
113 {
114 int size = GET_MODE_SIZE (GET_MODE (use));
115 if (0
116 || (HAVE_POST_INCREMENT
117 && pre == 0 && (inc_code = POST_INC, increment == size))
118 || (HAVE_PRE_INCREMENT
119 && pre == 1 && (inc_code = PRE_INC, increment == size))
120 || (HAVE_POST_DECREMENT
121 && pre == 0 && (inc_code = POST_DEC, increment == -size))
122 || (HAVE_PRE_DECREMENT
123 && pre == 1 && (inc_code = PRE_DEC, increment == -size))
124 )
125 {
126 if (inc_insn_set)
127 validate_change
128 (inc_insn,
129 &SET_SRC (inc_insn_set),
130 XEXP (SET_SRC (inc_insn_set), 0), 1);
131 validate_change (insn, &XEXP (use, 0),
132 gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
133 if (apply_change_group ())
134 {
135 /* If there is a REG_DEAD note on this insn, we must
136 change this not to REG_UNUSED meaning that the register
137 is set, but the value is dead. Failure to do so will
138 result in a sched1 abort -- when it recomputes lifetime
139 information, the number of REG_DEAD notes will have
140 changed. */
141 rtx note = find_reg_note (insn, REG_DEAD, reg);
142 if (note)
143 PUT_MODE (note, REG_UNUSED);
144
145 REG_NOTES (insn)
146 = gen_rtx_EXPR_LIST (REG_INC,
147 reg, REG_NOTES (insn));
148 if (! inc_insn_set)
149 delete_insn (inc_insn);
150 return 1;
151 }
152 }
153 }
154 }
155 return 0;
156 }
157 \f
158 /* Determine if the pattern generated by add_optab has a clobber,
159 such as might be issued for a flags hard register. To make the
160 code elsewhere simpler, we handle cc0 in this same framework.
161
162 Return the register if one was discovered. Return NULL_RTX if
163 if no flags were found. Return pc_rtx if we got confused. */
164
165 static rtx
166 discover_flags_reg (void)
167 {
168 rtx tmp;
169 tmp = gen_rtx_REG (word_mode, 10000);
170 tmp = gen_add3_insn (tmp, tmp, const2_rtx);
171
172 /* If we get something that isn't a simple set, or a
173 [(set ..) (clobber ..)], this whole function will go wrong. */
174 if (GET_CODE (tmp) == SET)
175 return NULL_RTX;
176 else if (GET_CODE (tmp) == PARALLEL)
177 {
178 int found;
179
180 if (XVECLEN (tmp, 0) != 2)
181 return pc_rtx;
182 tmp = XVECEXP (tmp, 0, 1);
183 if (GET_CODE (tmp) != CLOBBER)
184 return pc_rtx;
185 tmp = XEXP (tmp, 0);
186
187 /* Don't do anything foolish if the md wanted to clobber a
188 scratch or something. We only care about hard regs.
189 Moreover we don't like the notion of subregs of hard regs. */
190 if (GET_CODE (tmp) == SUBREG
191 && REG_P (SUBREG_REG (tmp))
192 && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
193 return pc_rtx;
194 found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
195
196 return (found ? tmp : NULL_RTX);
197 }
198
199 return pc_rtx;
200 }
201
202 /* It is a tedious task identifying when the flags register is live and
203 when it is safe to optimize. Since we process the instruction stream
204 multiple times, locate and record these live zones by marking the
205 mode of the instructions --
206
207 QImode is used on the instruction at which the flags becomes live.
208
209 HImode is used within the range (exclusive) that the flags are
210 live. Thus the user of the flags is not marked.
211
212 All other instructions are cleared to VOIDmode. */
213
214 /* Used to communicate with flags_set_1. */
215 static rtx flags_set_1_rtx;
216 static int flags_set_1_set;
217
218 static void
219 mark_flags_life_zones (rtx flags)
220 {
221 int flags_regno;
222 int flags_nregs;
223 basic_block block;
224
225 #ifdef HAVE_cc0
226 /* If we found a flags register on a cc0 host, bail. */
227 if (flags == NULL_RTX)
228 flags = cc0_rtx;
229 else if (flags != cc0_rtx)
230 flags = pc_rtx;
231 #endif
232
233 /* Simple cases first: if no flags, clear all modes. If confusing,
234 mark the entire function as being in a flags shadow. */
235 if (flags == NULL_RTX || flags == pc_rtx)
236 {
237 enum machine_mode mode = (flags ? HImode : VOIDmode);
238 rtx insn;
239 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
240 PUT_MODE (insn, mode);
241 return;
242 }
243
244 #ifdef HAVE_cc0
245 flags_regno = -1;
246 flags_nregs = 1;
247 #else
248 flags_regno = REGNO (flags);
249 flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
250 #endif
251 flags_set_1_rtx = flags;
252
253 /* Process each basic block. */
254 FOR_EACH_BB_REVERSE (block)
255 {
256 rtx insn, end;
257 int live;
258
259 insn = BB_HEAD (block);
260 end = BB_END (block);
261
262 /* Look out for the (unlikely) case of flags being live across
263 basic block boundaries. */
264 live = 0;
265 #ifndef HAVE_cc0
266 {
267 int i;
268 for (i = 0; i < flags_nregs; ++i)
269 live |= REGNO_REG_SET_P (block->global_live_at_start,
270 flags_regno + i);
271 }
272 #endif
273
274 while (1)
275 {
276 /* Process liveness in reverse order of importance --
277 alive, death, birth. This lets more important info
278 overwrite the mode of lesser info. */
279
280 if (INSN_P (insn))
281 {
282 #ifdef HAVE_cc0
283 /* In the cc0 case, death is not marked in reg notes,
284 but is instead the mere use of cc0 when it is alive. */
285 if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
286 live = 0;
287 #else
288 /* In the hard reg case, we watch death notes. */
289 if (live && find_regno_note (insn, REG_DEAD, flags_regno))
290 live = 0;
291 #endif
292 PUT_MODE (insn, (live ? HImode : VOIDmode));
293
294 /* In either case, birth is denoted simply by its presence
295 as the destination of a set. */
296 flags_set_1_set = 0;
297 note_stores (PATTERN (insn), flags_set_1, NULL);
298 if (flags_set_1_set)
299 {
300 live = 1;
301 PUT_MODE (insn, QImode);
302 }
303 }
304 else
305 PUT_MODE (insn, (live ? HImode : VOIDmode));
306
307 if (insn == end)
308 break;
309 insn = NEXT_INSN (insn);
310 }
311 }
312 }
313
314 /* A subroutine of mark_flags_life_zones, called through note_stores. */
315
316 static void
317 flags_set_1 (rtx x, rtx pat, void *data ATTRIBUTE_UNUSED)
318 {
319 if (GET_CODE (pat) == SET
320 && reg_overlap_mentioned_p (x, flags_set_1_rtx))
321 flags_set_1_set = 1;
322 }
323 \f
324 static int *regno_src_regno;
325
326 /* Indicate how good a choice REG (which appears as a source) is to replace
327 a destination register with. The higher the returned value, the better
328 the choice. The main objective is to avoid using a register that is
329 a candidate for tying to a hard register, since the output might in
330 turn be a candidate to be tied to a different hard register. */
331 static int
332 replacement_quality (rtx reg)
333 {
334 int src_regno;
335
336 /* Bad if this isn't a register at all. */
337 if (!REG_P (reg))
338 return 0;
339
340 /* If this register is not meant to get a hard register,
341 it is a poor choice. */
342 if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
343 return 0;
344
345 src_regno = regno_src_regno[REGNO (reg)];
346
347 /* If it was not copied from another register, it is fine. */
348 if (src_regno < 0)
349 return 3;
350
351 /* Copied from a hard register? */
352 if (src_regno < FIRST_PSEUDO_REGISTER)
353 return 1;
354
355 /* Copied from a pseudo register - not as bad as from a hard register,
356 yet still cumbersome, since the register live length will be lengthened
357 when the registers get tied. */
358 return 2;
359 }
360 \f
361 /* Return 1 if INSN might end a basic block. */
362
363 static int perhaps_ends_bb_p (rtx insn)
364 {
365 switch (GET_CODE (insn))
366 {
367 case CODE_LABEL:
368 case JUMP_INSN:
369 /* These always end a basic block. */
370 return 1;
371
372 case CALL_INSN:
373 /* A CALL_INSN might be the last insn of a basic block, if it is inside
374 an EH region or if there are nonlocal gotos. Note that this test is
375 very conservative. */
376 if (nonlocal_goto_handler_labels)
377 return 1;
378 /* Fall through. */
379 default:
380 return can_throw_internal (insn);
381 }
382 }
383 \f
384 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
385 in INSN.
386
387 Search forward to see if SRC dies before either it or DEST is modified,
388 but don't scan past the end of a basic block. If so, we can replace SRC
389 with DEST and let SRC die in INSN.
390
391 This will reduce the number of registers live in that range and may enable
392 DEST to be tied to SRC, thus often saving one register in addition to a
393 register-register copy. */
394
395 static int
396 optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
397 {
398 rtx p, q;
399 rtx note;
400 rtx dest_death = 0;
401 int sregno = REGNO (src);
402 int dregno = REGNO (dest);
403
404 /* We don't want to mess with hard regs if register classes are small. */
405 if (sregno == dregno
406 || (SMALL_REGISTER_CLASSES
407 && (sregno < FIRST_PSEUDO_REGISTER
408 || dregno < FIRST_PSEUDO_REGISTER))
409 /* We don't see all updates to SP if they are in an auto-inc memory
410 reference, so we must disallow this optimization on them. */
411 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
412 return 0;
413
414 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
415 {
416 /* ??? We can't scan past the end of a basic block without updating
417 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
418 if (perhaps_ends_bb_p (p))
419 break;
420 else if (! INSN_P (p))
421 continue;
422
423 if (reg_set_p (src, p) || reg_set_p (dest, p)
424 /* If SRC is an asm-declared register, it must not be replaced
425 in any asm. Unfortunately, the REG_EXPR tree for the asm
426 variable may be absent in the SRC rtx, so we can't check the
427 actual register declaration easily (the asm operand will have
428 it, though). To avoid complicating the test for a rare case,
429 we just don't perform register replacement for a hard reg
430 mentioned in an asm. */
431 || (sregno < FIRST_PSEUDO_REGISTER
432 && asm_noperands (PATTERN (p)) >= 0
433 && reg_overlap_mentioned_p (src, PATTERN (p)))
434 /* Don't change hard registers used by a call. */
435 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
436 && find_reg_fusage (p, USE, src))
437 /* Don't change a USE of a register. */
438 || (GET_CODE (PATTERN (p)) == USE
439 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
440 break;
441
442 /* See if all of SRC dies in P. This test is slightly more
443 conservative than it needs to be. */
444 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
445 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
446 {
447 int failed = 0;
448 int d_length = 0;
449 int s_length = 0;
450 int d_n_calls = 0;
451 int s_n_calls = 0;
452
453 /* We can do the optimization. Scan forward from INSN again,
454 replacing regs as we go. Set FAILED if a replacement can't
455 be done. In that case, we can't move the death note for SRC.
456 This should be rare. */
457
458 /* Set to stop at next insn. */
459 for (q = next_real_insn (insn);
460 q != next_real_insn (p);
461 q = next_real_insn (q))
462 {
463 if (reg_overlap_mentioned_p (src, PATTERN (q)))
464 {
465 /* If SRC is a hard register, we might miss some
466 overlapping registers with validate_replace_rtx,
467 so we would have to undo it. We can't if DEST is
468 present in the insn, so fail in that combination
469 of cases. */
470 if (sregno < FIRST_PSEUDO_REGISTER
471 && reg_mentioned_p (dest, PATTERN (q)))
472 failed = 1;
473
474 /* Replace all uses and make sure that the register
475 isn't still present. */
476 else if (validate_replace_rtx (src, dest, q)
477 && (sregno >= FIRST_PSEUDO_REGISTER
478 || ! reg_overlap_mentioned_p (src,
479 PATTERN (q))))
480 ;
481 else
482 {
483 validate_replace_rtx (dest, src, q);
484 failed = 1;
485 }
486 }
487
488 /* For SREGNO, count the total number of insns scanned.
489 For DREGNO, count the total number of insns scanned after
490 passing the death note for DREGNO. */
491 s_length++;
492 if (dest_death)
493 d_length++;
494
495 /* If the insn in which SRC dies is a CALL_INSN, don't count it
496 as a call that has been crossed. Otherwise, count it. */
497 if (q != p && CALL_P (q))
498 {
499 /* Similarly, total calls for SREGNO, total calls beyond
500 the death note for DREGNO. */
501 s_n_calls++;
502 if (dest_death)
503 d_n_calls++;
504 }
505
506 /* If DEST dies here, remove the death note and save it for
507 later. Make sure ALL of DEST dies here; again, this is
508 overly conservative. */
509 if (dest_death == 0
510 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
511 {
512 if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
513 failed = 1, dest_death = 0;
514 else
515 remove_note (q, dest_death);
516 }
517 }
518
519 if (! failed)
520 {
521 /* These counters need to be updated if and only if we are
522 going to move the REG_DEAD note. */
523 if (sregno >= FIRST_PSEUDO_REGISTER)
524 {
525 if (REG_LIVE_LENGTH (sregno) >= 0)
526 {
527 REG_LIVE_LENGTH (sregno) -= s_length;
528 /* REG_LIVE_LENGTH is only an approximation after
529 combine if sched is not run, so make sure that we
530 still have a reasonable value. */
531 if (REG_LIVE_LENGTH (sregno) < 2)
532 REG_LIVE_LENGTH (sregno) = 2;
533 }
534
535 REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
536 }
537
538 /* Move death note of SRC from P to INSN. */
539 remove_note (p, note);
540 XEXP (note, 1) = REG_NOTES (insn);
541 REG_NOTES (insn) = note;
542 }
543
544 /* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
545 if (! dest_death
546 && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
547 {
548 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
549 remove_note (insn, dest_death);
550 }
551
552 /* Put death note of DEST on P if we saw it die. */
553 if (dest_death)
554 {
555 XEXP (dest_death, 1) = REG_NOTES (p);
556 REG_NOTES (p) = dest_death;
557
558 if (dregno >= FIRST_PSEUDO_REGISTER)
559 {
560 /* If and only if we are moving the death note for DREGNO,
561 then we need to update its counters. */
562 if (REG_LIVE_LENGTH (dregno) >= 0)
563 REG_LIVE_LENGTH (dregno) += d_length;
564 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
565 }
566 }
567
568 return ! failed;
569 }
570
571 /* If SRC is a hard register which is set or killed in some other
572 way, we can't do this optimization. */
573 else if (sregno < FIRST_PSEUDO_REGISTER
574 && dead_or_set_p (p, src))
575 break;
576 }
577 return 0;
578 }
579 \f
580 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
581 a sequence of insns that modify DEST followed by an insn that sets
582 SRC to DEST in which DEST dies, with no prior modification of DEST.
583 (There is no need to check if the insns in between actually modify
584 DEST. We should not have cases where DEST is not modified, but
585 the optimization is safe if no such modification is detected.)
586 In that case, we can replace all uses of DEST, starting with INSN and
587 ending with the set of SRC to DEST, with SRC. We do not do this
588 optimization if a CALL_INSN is crossed unless SRC already crosses a
589 call or if DEST dies before the copy back to SRC.
590
591 It is assumed that DEST and SRC are pseudos; it is too complicated to do
592 this for hard registers since the substitutions we may make might fail. */
593
594 static void
595 optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
596 {
597 rtx p, q;
598 rtx set;
599 int sregno = REGNO (src);
600 int dregno = REGNO (dest);
601
602 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
603 {
604 /* ??? We can't scan past the end of a basic block without updating
605 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
606 if (perhaps_ends_bb_p (p))
607 break;
608 else if (! INSN_P (p))
609 continue;
610
611 set = single_set (p);
612 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
613 && find_reg_note (p, REG_DEAD, dest))
614 {
615 /* We can do the optimization. Scan forward from INSN again,
616 replacing regs as we go. */
617
618 /* Set to stop at next insn. */
619 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
620 if (INSN_P (q))
621 {
622 if (reg_mentioned_p (dest, PATTERN (q)))
623 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
624
625
626 if (CALL_P (q))
627 {
628 REG_N_CALLS_CROSSED (dregno)--;
629 REG_N_CALLS_CROSSED (sregno)++;
630 }
631 }
632
633 remove_note (p, find_reg_note (p, REG_DEAD, dest));
634 REG_N_DEATHS (dregno)--;
635 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
636 REG_N_DEATHS (sregno)--;
637 return;
638 }
639
640 if (reg_set_p (src, p)
641 || find_reg_note (p, REG_DEAD, dest)
642 || (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
643 break;
644 }
645 }
646 /* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
647 Look if SRC dies there, and if it is only set once, by loading
648 it from memory. If so, try to incorporate the zero/sign extension
649 into the memory read, change SRC to the mode of DEST, and alter
650 the remaining accesses to use the appropriate SUBREG. This allows
651 SRC and DEST to be tied later. */
652 static void
653 optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
654 {
655 rtx src_reg = XEXP (src, 0);
656 int src_no = REGNO (src_reg);
657 int dst_no = REGNO (dest);
658 rtx p, set;
659 enum machine_mode old_mode;
660
661 if (src_no < FIRST_PSEUDO_REGISTER
662 || dst_no < FIRST_PSEUDO_REGISTER
663 || ! find_reg_note (insn, REG_DEAD, src_reg)
664 || REG_N_DEATHS (src_no) != 1
665 || REG_N_SETS (src_no) != 1)
666 return;
667 for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
668 /* ??? We can't scan past the end of a basic block without updating
669 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
670 if (perhaps_ends_bb_p (p))
671 break;
672
673 if (! p)
674 return;
675
676 if (! (set = single_set (p))
677 || !MEM_P (SET_SRC (set))
678 /* If there's a REG_EQUIV note, this must be an insn that loads an
679 argument. Prefer keeping the note over doing this optimization. */
680 || find_reg_note (p, REG_EQUIV, NULL_RTX)
681 || SET_DEST (set) != src_reg)
682 return;
683
684 /* Be conservative: although this optimization is also valid for
685 volatile memory references, that could cause trouble in later passes. */
686 if (MEM_VOLATILE_P (SET_SRC (set)))
687 return;
688
689 /* Do not use a SUBREG to truncate from one mode to another if truncation
690 is not a nop. */
691 if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
692 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
693 GET_MODE_BITSIZE (GET_MODE (src_reg))))
694 return;
695
696 old_mode = GET_MODE (src_reg);
697 PUT_MODE (src_reg, GET_MODE (src));
698 XEXP (src, 0) = SET_SRC (set);
699
700 /* Include this change in the group so that it's easily undone if
701 one of the changes in the group is invalid. */
702 validate_change (p, &SET_SRC (set), src, 1);
703
704 /* Now walk forward making additional replacements. We want to be able
705 to undo all the changes if a later substitution fails. */
706 while (p = NEXT_INSN (p), p != insn)
707 {
708 if (! INSN_P (p))
709 continue;
710
711 /* Make a tentative change. */
712 validate_replace_rtx_group (src_reg,
713 gen_lowpart_SUBREG (old_mode, src_reg),
714 p);
715 }
716
717 validate_replace_rtx_group (src, src_reg, insn);
718
719 /* Now see if all the changes are valid. */
720 if (! apply_change_group ())
721 {
722 /* One or more changes were no good. Back out everything. */
723 PUT_MODE (src_reg, old_mode);
724 XEXP (src, 0) = src_reg;
725 }
726 else
727 {
728 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
729 if (note)
730 remove_note (p, note);
731 }
732 }
733
734 \f
735 /* If we were not able to update the users of src to use dest directly, try
736 instead moving the value to dest directly before the operation. */
737
738 static void
739 copy_src_to_dest (rtx insn, rtx src, rtx dest, int old_max_uid)
740 {
741 rtx seq;
742 rtx link;
743 rtx next;
744 rtx set;
745 rtx move_insn;
746 rtx *p_insn_notes;
747 rtx *p_move_notes;
748 int src_regno;
749 int dest_regno;
750 int bb;
751 int insn_uid;
752 int move_uid;
753
754 /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
755 or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
756 parameter when there is no frame pointer that is not allocated a register.
757 For now, we just reject them, rather than incrementing the live length. */
758
759 if (REG_P (src)
760 && REG_LIVE_LENGTH (REGNO (src)) > 0
761 && REG_P (dest)
762 && REG_LIVE_LENGTH (REGNO (dest)) > 0
763 && (set = single_set (insn)) != NULL_RTX
764 && !reg_mentioned_p (dest, SET_SRC (set))
765 && GET_MODE (src) == GET_MODE (dest))
766 {
767 int old_num_regs = reg_rtx_no;
768
769 /* Generate the src->dest move. */
770 start_sequence ();
771 emit_move_insn (dest, src);
772 seq = get_insns ();
773 end_sequence ();
774 /* If this sequence uses new registers, we may not use it. */
775 if (old_num_regs != reg_rtx_no
776 || ! validate_replace_rtx (src, dest, insn))
777 {
778 /* We have to restore reg_rtx_no to its old value, lest
779 recompute_reg_usage will try to compute the usage of the
780 new regs, yet reg_n_info is not valid for them. */
781 reg_rtx_no = old_num_regs;
782 return;
783 }
784 emit_insn_before (seq, insn);
785 move_insn = PREV_INSN (insn);
786 p_move_notes = &REG_NOTES (move_insn);
787 p_insn_notes = &REG_NOTES (insn);
788
789 /* Move any notes mentioning src to the move instruction. */
790 for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
791 {
792 next = XEXP (link, 1);
793 if (XEXP (link, 0) == src)
794 {
795 *p_move_notes = link;
796 p_move_notes = &XEXP (link, 1);
797 }
798 else
799 {
800 *p_insn_notes = link;
801 p_insn_notes = &XEXP (link, 1);
802 }
803 }
804
805 *p_move_notes = NULL_RTX;
806 *p_insn_notes = NULL_RTX;
807
808 /* Is the insn the head of a basic block? If so extend it. */
809 insn_uid = INSN_UID (insn);
810 move_uid = INSN_UID (move_insn);
811 if (insn_uid < old_max_uid)
812 {
813 bb = regmove_bb_head[insn_uid];
814 if (bb >= 0)
815 {
816 BB_HEAD (BASIC_BLOCK (bb)) = move_insn;
817 regmove_bb_head[insn_uid] = -1;
818 }
819 }
820
821 /* Update the various register tables. */
822 dest_regno = REGNO (dest);
823 REG_N_SETS (dest_regno) ++;
824 REG_LIVE_LENGTH (dest_regno)++;
825 if (REGNO_FIRST_UID (dest_regno) == insn_uid)
826 REGNO_FIRST_UID (dest_regno) = move_uid;
827
828 src_regno = REGNO (src);
829 if (! find_reg_note (move_insn, REG_DEAD, src))
830 REG_LIVE_LENGTH (src_regno)++;
831
832 if (REGNO_FIRST_UID (src_regno) == insn_uid)
833 REGNO_FIRST_UID (src_regno) = move_uid;
834
835 if (REGNO_LAST_UID (src_regno) == insn_uid)
836 REGNO_LAST_UID (src_regno) = move_uid;
837
838 if (REGNO_LAST_NOTE_UID (src_regno) == insn_uid)
839 REGNO_LAST_NOTE_UID (src_regno) = move_uid;
840 }
841 }
842
843 \f
844 /* Return whether REG is set in only one location, and is set to a
845 constant, but is set in a different basic block from INSN (an
846 instructions which uses REG). In this case REG is equivalent to a
847 constant, and we don't want to break that equivalence, because that
848 may increase register pressure and make reload harder. If REG is
849 set in the same basic block as INSN, we don't worry about it,
850 because we'll probably need a register anyhow (??? but what if REG
851 is used in a different basic block as well as this one?). FIRST is
852 the first insn in the function. */
853
854 static int
855 reg_is_remote_constant_p (rtx reg, rtx insn, rtx first)
856 {
857 rtx p;
858
859 if (REG_N_SETS (REGNO (reg)) != 1)
860 return 0;
861
862 /* Look for the set. */
863 for (p = LOG_LINKS (insn); p; p = XEXP (p, 1))
864 {
865 rtx s;
866
867 if (REG_NOTE_KIND (p) != 0)
868 continue;
869 s = single_set (XEXP (p, 0));
870 if (s != 0
871 && REG_P (SET_DEST (s))
872 && REGNO (SET_DEST (s)) == REGNO (reg))
873 {
874 /* The register is set in the same basic block. */
875 return 0;
876 }
877 }
878
879 for (p = first; p && p != insn; p = NEXT_INSN (p))
880 {
881 rtx s;
882
883 if (! INSN_P (p))
884 continue;
885 s = single_set (p);
886 if (s != 0
887 && REG_P (SET_DEST (s))
888 && REGNO (SET_DEST (s)) == REGNO (reg))
889 {
890 /* This is the instruction which sets REG. If there is a
891 REG_EQUAL note, then REG is equivalent to a constant. */
892 if (find_reg_note (p, REG_EQUAL, NULL_RTX))
893 return 1;
894 return 0;
895 }
896 }
897
898 return 0;
899 }
900
901 /* INSN is adding a CONST_INT to a REG. We search backwards looking for
902 another add immediate instruction with the same source and dest registers,
903 and if we find one, we change INSN to an increment, and return 1. If
904 no changes are made, we return 0.
905
906 This changes
907 (set (reg100) (plus reg1 offset1))
908 ...
909 (set (reg100) (plus reg1 offset2))
910 to
911 (set (reg100) (plus reg1 offset1))
912 ...
913 (set (reg100) (plus reg100 offset2-offset1)) */
914
915 /* ??? What does this comment mean? */
916 /* cse disrupts preincrement / postdecrement sequences when it finds a
917 hard register as ultimate source, like the frame pointer. */
918
919 static int
920 fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset, FILE *regmove_dump_file)
921 {
922 rtx p, dst_death = 0;
923 int length, num_calls = 0;
924
925 /* If SRC dies in INSN, we'd have to move the death note. This is
926 considered to be very unlikely, so we just skip the optimization
927 in this case. */
928 if (find_regno_note (insn, REG_DEAD, REGNO (src)))
929 return 0;
930
931 /* Scan backward to find the first instruction that sets DST. */
932
933 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
934 {
935 rtx pset;
936
937 /* ??? We can't scan past the end of a basic block without updating
938 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
939 if (perhaps_ends_bb_p (p))
940 break;
941 else if (! INSN_P (p))
942 continue;
943
944 if (find_regno_note (p, REG_DEAD, REGNO (dst)))
945 dst_death = p;
946 if (! dst_death)
947 length++;
948
949 pset = single_set (p);
950 if (pset && SET_DEST (pset) == dst
951 && GET_CODE (SET_SRC (pset)) == PLUS
952 && XEXP (SET_SRC (pset), 0) == src
953 && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
954 {
955 HOST_WIDE_INT newconst
956 = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
957 rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
958
959 if (add && validate_change (insn, &PATTERN (insn), add, 0))
960 {
961 /* Remove the death note for DST from DST_DEATH. */
962 if (dst_death)
963 {
964 remove_death (REGNO (dst), dst_death);
965 REG_LIVE_LENGTH (REGNO (dst)) += length;
966 REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
967 }
968
969 if (regmove_dump_file)
970 fprintf (regmove_dump_file,
971 "Fixed operand of insn %d.\n",
972 INSN_UID (insn));
973
974 #ifdef AUTO_INC_DEC
975 for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
976 {
977 if (LABEL_P (p)
978 || JUMP_P (p))
979 break;
980 if (! INSN_P (p))
981 continue;
982 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
983 {
984 if (try_auto_increment (p, insn, 0, dst, newconst, 0))
985 return 1;
986 break;
987 }
988 }
989 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
990 {
991 if (LABEL_P (p)
992 || JUMP_P (p))
993 break;
994 if (! INSN_P (p))
995 continue;
996 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
997 {
998 try_auto_increment (p, insn, 0, dst, newconst, 1);
999 break;
1000 }
1001 }
1002 #endif
1003 return 1;
1004 }
1005 }
1006
1007 if (reg_set_p (dst, PATTERN (p)))
1008 break;
1009
1010 /* If we have passed a call instruction, and the
1011 pseudo-reg SRC is not already live across a call,
1012 then don't perform the optimization. */
1013 /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
1014 hard regs are clobbered. Thus, we only use it for src for
1015 non-call insns. */
1016 if (CALL_P (p))
1017 {
1018 if (! dst_death)
1019 num_calls++;
1020
1021 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1022 break;
1023
1024 if (call_used_regs [REGNO (dst)]
1025 || find_reg_fusage (p, CLOBBER, dst))
1026 break;
1027 }
1028 else if (reg_set_p (src, PATTERN (p)))
1029 break;
1030 }
1031
1032 return 0;
1033 }
1034
1035 /* Main entry for the register move optimization.
1036 F is the first instruction.
1037 NREGS is one plus the highest pseudo-reg number used in the instruction.
1038 REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
1039 (or 0 if none should be output). */
1040
1041 void
1042 regmove_optimize (rtx f, int nregs, FILE *regmove_dump_file)
1043 {
1044 int old_max_uid = get_max_uid ();
1045 rtx insn;
1046 struct match match;
1047 int pass;
1048 int i;
1049 rtx copy_src, copy_dst;
1050 basic_block bb;
1051
1052 /* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
1053 confused by non-call exceptions ending blocks. */
1054 if (flag_non_call_exceptions)
1055 return;
1056
1057 /* Find out where a potential flags register is live, and so that we
1058 can suppress some optimizations in those zones. */
1059 mark_flags_life_zones (discover_flags_reg ());
1060
1061 regno_src_regno = xmalloc (sizeof *regno_src_regno * nregs);
1062 for (i = nregs; --i >= 0; ) regno_src_regno[i] = -1;
1063
1064 regmove_bb_head = xmalloc (sizeof (int) * (old_max_uid + 1));
1065 for (i = old_max_uid; i >= 0; i--) regmove_bb_head[i] = -1;
1066 FOR_EACH_BB (bb)
1067 regmove_bb_head[INSN_UID (BB_HEAD (bb))] = bb->index;
1068
1069 /* A forward/backward pass. Replace output operands with input operands. */
1070
1071 for (pass = 0; pass <= 2; pass++)
1072 {
1073 if (! flag_regmove && pass >= flag_expensive_optimizations)
1074 goto done;
1075
1076 if (regmove_dump_file)
1077 fprintf (regmove_dump_file, "Starting %s pass...\n",
1078 pass ? "backward" : "forward");
1079
1080 for (insn = pass ? get_last_insn () : f; insn;
1081 insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
1082 {
1083 rtx set;
1084 int op_no, match_no;
1085
1086 set = single_set (insn);
1087 if (! set)
1088 continue;
1089
1090 if (flag_expensive_optimizations && ! pass
1091 && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
1092 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
1093 && REG_P (XEXP (SET_SRC (set), 0))
1094 && REG_P (SET_DEST (set)))
1095 optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
1096
1097 if (flag_expensive_optimizations && ! pass
1098 && REG_P (SET_SRC (set))
1099 && REG_P (SET_DEST (set)))
1100 {
1101 /* If this is a register-register copy where SRC is not dead,
1102 see if we can optimize it. If this optimization succeeds,
1103 it will become a copy where SRC is dead. */
1104 if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
1105 || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
1106 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
1107 {
1108 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1109 if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1110 optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
1111 if (regno_src_regno[REGNO (SET_DEST (set))] < 0
1112 && SET_SRC (set) != SET_DEST (set))
1113 {
1114 int srcregno = REGNO (SET_SRC (set));
1115 if (regno_src_regno[srcregno] >= 0)
1116 srcregno = regno_src_regno[srcregno];
1117 regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
1118 }
1119 }
1120 }
1121 if (! flag_regmove)
1122 continue;
1123
1124 if (! find_matches (insn, &match))
1125 continue;
1126
1127 /* Now scan through the operands looking for a source operand
1128 which is supposed to match the destination operand.
1129 Then scan forward for an instruction which uses the dest
1130 operand.
1131 If it dies there, then replace the dest in both operands with
1132 the source operand. */
1133
1134 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1135 {
1136 rtx src, dst, src_subreg;
1137 enum reg_class src_class, dst_class;
1138
1139 match_no = match.with[op_no];
1140
1141 /* Nothing to do if the two operands aren't supposed to match. */
1142 if (match_no < 0)
1143 continue;
1144
1145 src = recog_data.operand[op_no];
1146 dst = recog_data.operand[match_no];
1147
1148 if (!REG_P (src))
1149 continue;
1150
1151 src_subreg = src;
1152 if (GET_CODE (dst) == SUBREG
1153 && GET_MODE_SIZE (GET_MODE (dst))
1154 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
1155 {
1156 src_subreg
1157 = gen_rtx_SUBREG (GET_MODE (SUBREG_REG (dst)),
1158 src, SUBREG_BYTE (dst));
1159 dst = SUBREG_REG (dst);
1160 }
1161 if (!REG_P (dst)
1162 || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1163 continue;
1164
1165 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1166 {
1167 if (match.commutative[op_no] < op_no)
1168 regno_src_regno[REGNO (dst)] = REGNO (src);
1169 continue;
1170 }
1171
1172 if (REG_LIVE_LENGTH (REGNO (src)) < 0)
1173 continue;
1174
1175 /* op_no/src must be a read-only operand, and
1176 match_operand/dst must be a write-only operand. */
1177 if (match.use[op_no] != READ
1178 || match.use[match_no] != WRITE)
1179 continue;
1180
1181 if (match.early_clobber[match_no]
1182 && count_occurrences (PATTERN (insn), src, 0) > 1)
1183 continue;
1184
1185 /* Make sure match_operand is the destination. */
1186 if (recog_data.operand[match_no] != SET_DEST (set))
1187 continue;
1188
1189 /* If the operands already match, then there is nothing to do. */
1190 if (operands_match_p (src, dst))
1191 continue;
1192
1193 /* But in the commutative case, we might find a better match. */
1194 if (match.commutative[op_no] >= 0)
1195 {
1196 rtx comm = recog_data.operand[match.commutative[op_no]];
1197 if (operands_match_p (comm, dst)
1198 && (replacement_quality (comm)
1199 >= replacement_quality (src)))
1200 continue;
1201 }
1202
1203 src_class = reg_preferred_class (REGNO (src));
1204 dst_class = reg_preferred_class (REGNO (dst));
1205 if (! regclass_compatible_p (src_class, dst_class))
1206 continue;
1207
1208 if (GET_MODE (src) != GET_MODE (dst))
1209 continue;
1210
1211 if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
1212 op_no, match_no,
1213 regmove_dump_file))
1214 break;
1215 }
1216 }
1217 }
1218
1219 /* A backward pass. Replace input operands with output operands. */
1220
1221 if (regmove_dump_file)
1222 fprintf (regmove_dump_file, "Starting backward pass...\n");
1223
1224 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1225 {
1226 if (INSN_P (insn))
1227 {
1228 int op_no, match_no;
1229 int success = 0;
1230
1231 if (! find_matches (insn, &match))
1232 continue;
1233
1234 /* Now scan through the operands looking for a destination operand
1235 which is supposed to match a source operand.
1236 Then scan backward for an instruction which sets the source
1237 operand. If safe, then replace the source operand with the
1238 dest operand in both instructions. */
1239
1240 copy_src = NULL_RTX;
1241 copy_dst = NULL_RTX;
1242 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1243 {
1244 rtx set, p, src, dst;
1245 rtx src_note, dst_note;
1246 int num_calls = 0;
1247 enum reg_class src_class, dst_class;
1248 int length;
1249
1250 match_no = match.with[op_no];
1251
1252 /* Nothing to do if the two operands aren't supposed to match. */
1253 if (match_no < 0)
1254 continue;
1255
1256 dst = recog_data.operand[match_no];
1257 src = recog_data.operand[op_no];
1258
1259 if (!REG_P (src))
1260 continue;
1261
1262 if (!REG_P (dst)
1263 || REGNO (dst) < FIRST_PSEUDO_REGISTER
1264 || REG_LIVE_LENGTH (REGNO (dst)) < 0
1265 || GET_MODE (src) != GET_MODE (dst))
1266 continue;
1267
1268 /* If the operands already match, then there is nothing to do. */
1269 if (operands_match_p (src, dst))
1270 continue;
1271
1272 if (match.commutative[op_no] >= 0)
1273 {
1274 rtx comm = recog_data.operand[match.commutative[op_no]];
1275 if (operands_match_p (comm, dst))
1276 continue;
1277 }
1278
1279 set = single_set (insn);
1280 if (! set)
1281 continue;
1282
1283 /* Note that single_set ignores parts of a parallel set for
1284 which one of the destinations is REG_UNUSED. We can't
1285 handle that here, since we can wind up rewriting things
1286 such that a single register is set twice within a single
1287 parallel. */
1288 if (reg_set_p (src, insn))
1289 continue;
1290
1291 /* match_no/dst must be a write-only operand, and
1292 operand_operand/src must be a read-only operand. */
1293 if (match.use[op_no] != READ
1294 || match.use[match_no] != WRITE)
1295 continue;
1296
1297 if (match.early_clobber[match_no]
1298 && count_occurrences (PATTERN (insn), src, 0) > 1)
1299 continue;
1300
1301 /* Make sure match_no is the destination. */
1302 if (recog_data.operand[match_no] != SET_DEST (set))
1303 continue;
1304
1305 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1306 {
1307 if (GET_CODE (SET_SRC (set)) == PLUS
1308 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
1309 && XEXP (SET_SRC (set), 0) == src
1310 && fixup_match_2 (insn, dst, src,
1311 XEXP (SET_SRC (set), 1),
1312 regmove_dump_file))
1313 break;
1314 continue;
1315 }
1316 src_class = reg_preferred_class (REGNO (src));
1317 dst_class = reg_preferred_class (REGNO (dst));
1318
1319 if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
1320 {
1321 /* We used to force the copy here like in other cases, but
1322 it produces worse code, as it eliminates no copy
1323 instructions and the copy emitted will be produced by
1324 reload anyway. On patterns with multiple alternatives,
1325 there may be better solution available.
1326
1327 In particular this change produced slower code for numeric
1328 i387 programs. */
1329
1330 continue;
1331 }
1332
1333 if (! regclass_compatible_p (src_class, dst_class))
1334 {
1335 if (!copy_src)
1336 {
1337 copy_src = src;
1338 copy_dst = dst;
1339 }
1340 continue;
1341 }
1342
1343 /* Can not modify an earlier insn to set dst if this insn
1344 uses an old value in the source. */
1345 if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
1346 {
1347 if (!copy_src)
1348 {
1349 copy_src = src;
1350 copy_dst = dst;
1351 }
1352 continue;
1353 }
1354
1355 /* If src is set once in a different basic block,
1356 and is set equal to a constant, then do not use
1357 it for this optimization, as this would make it
1358 no longer equivalent to a constant. */
1359
1360 if (reg_is_remote_constant_p (src, insn, f))
1361 {
1362 if (!copy_src)
1363 {
1364 copy_src = src;
1365 copy_dst = dst;
1366 }
1367 continue;
1368 }
1369
1370
1371 if (regmove_dump_file)
1372 fprintf (regmove_dump_file,
1373 "Could fix operand %d of insn %d matching operand %d.\n",
1374 op_no, INSN_UID (insn), match_no);
1375
1376 /* Scan backward to find the first instruction that uses
1377 the input operand. If the operand is set here, then
1378 replace it in both instructions with match_no. */
1379
1380 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
1381 {
1382 rtx pset;
1383
1384 /* ??? We can't scan past the end of a basic block without
1385 updating the register lifetime info
1386 (REG_DEAD/basic_block_live_at_start). */
1387 if (perhaps_ends_bb_p (p))
1388 break;
1389 else if (! INSN_P (p))
1390 continue;
1391
1392 length++;
1393
1394 /* ??? See if all of SRC is set in P. This test is much
1395 more conservative than it needs to be. */
1396 pset = single_set (p);
1397 if (pset && SET_DEST (pset) == src)
1398 {
1399 /* We use validate_replace_rtx, in case there
1400 are multiple identical source operands. All of
1401 them have to be changed at the same time. */
1402 if (validate_replace_rtx (src, dst, insn))
1403 {
1404 if (validate_change (p, &SET_DEST (pset),
1405 dst, 0))
1406 success = 1;
1407 else
1408 {
1409 /* Change all source operands back.
1410 This modifies the dst as a side-effect. */
1411 validate_replace_rtx (dst, src, insn);
1412 /* Now make sure the dst is right. */
1413 validate_change (insn,
1414 recog_data.operand_loc[match_no],
1415 dst, 0);
1416 }
1417 }
1418 break;
1419 }
1420
1421 if (reg_overlap_mentioned_p (src, PATTERN (p))
1422 || reg_overlap_mentioned_p (dst, PATTERN (p)))
1423 break;
1424
1425 /* If we have passed a call instruction, and the
1426 pseudo-reg DST is not already live across a call,
1427 then don't perform the optimization. */
1428 if (CALL_P (p))
1429 {
1430 num_calls++;
1431
1432 if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
1433 break;
1434 }
1435 }
1436
1437 if (success)
1438 {
1439 int dstno, srcno;
1440
1441 /* Remove the death note for SRC from INSN. */
1442 remove_note (insn, src_note);
1443 /* Move the death note for SRC to P if it is used
1444 there. */
1445 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1446 {
1447 XEXP (src_note, 1) = REG_NOTES (p);
1448 REG_NOTES (p) = src_note;
1449 }
1450 /* If there is a REG_DEAD note for DST on P, then remove
1451 it, because DST is now set there. */
1452 if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
1453 remove_note (p, dst_note);
1454
1455 dstno = REGNO (dst);
1456 srcno = REGNO (src);
1457
1458 REG_N_SETS (dstno)++;
1459 REG_N_SETS (srcno)--;
1460
1461 REG_N_CALLS_CROSSED (dstno) += num_calls;
1462 REG_N_CALLS_CROSSED (srcno) -= num_calls;
1463
1464 REG_LIVE_LENGTH (dstno) += length;
1465 if (REG_LIVE_LENGTH (srcno) >= 0)
1466 {
1467 REG_LIVE_LENGTH (srcno) -= length;
1468 /* REG_LIVE_LENGTH is only an approximation after
1469 combine if sched is not run, so make sure that we
1470 still have a reasonable value. */
1471 if (REG_LIVE_LENGTH (srcno) < 2)
1472 REG_LIVE_LENGTH (srcno) = 2;
1473 }
1474
1475 if (regmove_dump_file)
1476 fprintf (regmove_dump_file,
1477 "Fixed operand %d of insn %d matching operand %d.\n",
1478 op_no, INSN_UID (insn), match_no);
1479
1480 break;
1481 }
1482 }
1483
1484 /* If we weren't able to replace any of the alternatives, try an
1485 alternative approach of copying the source to the destination. */
1486 if (!success && copy_src != NULL_RTX)
1487 copy_src_to_dest (insn, copy_src, copy_dst, old_max_uid);
1488
1489 }
1490 }
1491
1492 /* In fixup_match_1, some insns may have been inserted after basic block
1493 ends. Fix that here. */
1494 FOR_EACH_BB (bb)
1495 {
1496 rtx end = BB_END (bb);
1497 rtx new = end;
1498 rtx next = NEXT_INSN (new);
1499 while (next != 0 && INSN_UID (next) >= old_max_uid
1500 && (bb->next_bb == EXIT_BLOCK_PTR || BB_HEAD (bb->next_bb) != next))
1501 new = next, next = NEXT_INSN (new);
1502 BB_END (bb) = new;
1503 }
1504
1505 done:
1506 /* Clean up. */
1507 free (regno_src_regno);
1508 free (regmove_bb_head);
1509 }
1510
1511 /* Returns nonzero if INSN's pattern has matching constraints for any operand.
1512 Returns 0 if INSN can't be recognized, or if the alternative can't be
1513 determined.
1514
1515 Initialize the info in MATCHP based on the constraints. */
1516
1517 static int
1518 find_matches (rtx insn, struct match *matchp)
1519 {
1520 int likely_spilled[MAX_RECOG_OPERANDS];
1521 int op_no;
1522 int any_matches = 0;
1523
1524 extract_insn (insn);
1525 if (! constrain_operands (0))
1526 return 0;
1527
1528 /* Must initialize this before main loop, because the code for
1529 the commutative case may set matches for operands other than
1530 the current one. */
1531 for (op_no = recog_data.n_operands; --op_no >= 0; )
1532 matchp->with[op_no] = matchp->commutative[op_no] = -1;
1533
1534 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1535 {
1536 const char *p;
1537 char c;
1538 int i = 0;
1539
1540 p = recog_data.constraints[op_no];
1541
1542 likely_spilled[op_no] = 0;
1543 matchp->use[op_no] = READ;
1544 matchp->early_clobber[op_no] = 0;
1545 if (*p == '=')
1546 matchp->use[op_no] = WRITE;
1547 else if (*p == '+')
1548 matchp->use[op_no] = READWRITE;
1549
1550 for (;*p && i < which_alternative; p++)
1551 if (*p == ',')
1552 i++;
1553
1554 while ((c = *p) != '\0' && c != ',')
1555 {
1556 switch (c)
1557 {
1558 case '=':
1559 break;
1560 case '+':
1561 break;
1562 case '&':
1563 matchp->early_clobber[op_no] = 1;
1564 break;
1565 case '%':
1566 matchp->commutative[op_no] = op_no + 1;
1567 matchp->commutative[op_no + 1] = op_no;
1568 break;
1569
1570 case '0': case '1': case '2': case '3': case '4':
1571 case '5': case '6': case '7': case '8': case '9':
1572 {
1573 char *end;
1574 unsigned long match_ul = strtoul (p, &end, 10);
1575 int match = match_ul;
1576
1577 p = end;
1578
1579 if (match < op_no && likely_spilled[match])
1580 continue;
1581 matchp->with[op_no] = match;
1582 any_matches = 1;
1583 if (matchp->commutative[op_no] >= 0)
1584 matchp->with[matchp->commutative[op_no]] = match;
1585 }
1586 continue;
1587
1588 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
1589 case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
1590 case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
1591 case 'C': case 'D': case 'W': case 'Y': case 'Z':
1592 if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
1593 likely_spilled[op_no] = 1;
1594 break;
1595 }
1596 p += CONSTRAINT_LEN (c, p);
1597 }
1598 }
1599 return any_matches;
1600 }
1601
1602 /* Try to replace all occurrences of DST_REG with SRC in LOC, that is
1603 assumed to be in INSN. */
1604
1605 static void
1606 replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
1607 {
1608 rtx x = *loc;
1609 enum rtx_code code;
1610 const char *fmt;
1611 int i, j;
1612
1613 if (! x)
1614 return;
1615
1616 code = GET_CODE (x);
1617 if (code == REG)
1618 {
1619 if (REGNO (x) != dst_reg)
1620 return;
1621
1622 validate_change (insn, loc, src, 1);
1623
1624 return;
1625 }
1626
1627 /* Process each of our operands recursively. */
1628 fmt = GET_RTX_FORMAT (code);
1629 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1630 if (*fmt == 'e')
1631 replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
1632 else if (*fmt == 'E')
1633 for (j = 0; j < XVECLEN (x, i); j++)
1634 replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
1635 }
1636
1637 /* Try to replace output operand DST in SET, with input operand SRC. SET is
1638 the only set in INSN. INSN has just been recognized and constrained.
1639 SRC is operand number OPERAND_NUMBER in INSN.
1640 DST is operand number MATCH_NUMBER in INSN.
1641 If BACKWARD is nonzero, we have been called in a backward pass.
1642 Return nonzero for success. */
1643
1644 static int
1645 fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
1646 int backward, int operand_number, int match_number,
1647 FILE *regmove_dump_file)
1648 {
1649 rtx p;
1650 rtx post_inc = 0, post_inc_set = 0, search_end = 0;
1651 int success = 0;
1652 int num_calls = 0, s_num_calls = 0;
1653 enum rtx_code code = NOTE;
1654 HOST_WIDE_INT insn_const = 0, newconst = 0;
1655 rtx overlap = 0; /* need to move insn ? */
1656 rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
1657 int length, s_length;
1658
1659 if (! src_note)
1660 {
1661 /* Look for (set (regX) (op regA constX))
1662 (set (regY) (op regA constY))
1663 and change that to
1664 (set (regA) (op regA constX)).
1665 (set (regY) (op regA constY-constX)).
1666 This works for add and shift operations, if
1667 regA is dead after or set by the second insn. */
1668
1669 code = GET_CODE (SET_SRC (set));
1670 if ((code == PLUS || code == LSHIFTRT
1671 || code == ASHIFT || code == ASHIFTRT)
1672 && XEXP (SET_SRC (set), 0) == src
1673 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1674 insn_const = INTVAL (XEXP (SET_SRC (set), 1));
1675 else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
1676 return 0;
1677 else
1678 /* We might find a src_note while scanning. */
1679 code = NOTE;
1680 }
1681
1682 if (regmove_dump_file)
1683 fprintf (regmove_dump_file,
1684 "Could fix operand %d of insn %d matching operand %d.\n",
1685 operand_number, INSN_UID (insn), match_number);
1686
1687 /* If SRC is equivalent to a constant set in a different basic block,
1688 then do not use it for this optimization. We want the equivalence
1689 so that if we have to reload this register, we can reload the
1690 constant, rather than extending the lifespan of the register. */
1691 if (reg_is_remote_constant_p (src, insn, get_insns ()))
1692 return 0;
1693
1694 /* Scan forward to find the next instruction that
1695 uses the output operand. If the operand dies here,
1696 then replace it in both instructions with
1697 operand_number. */
1698
1699 for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1700 {
1701 if (CALL_P (p))
1702 replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
1703 REGNO (dst), src, p);
1704
1705 /* ??? We can't scan past the end of a basic block without updating
1706 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
1707 if (perhaps_ends_bb_p (p))
1708 break;
1709 else if (! INSN_P (p))
1710 continue;
1711
1712 length++;
1713 if (src_note)
1714 s_length++;
1715
1716 if (reg_set_p (src, p) || reg_set_p (dst, p)
1717 || (GET_CODE (PATTERN (p)) == USE
1718 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
1719 break;
1720
1721 /* See if all of DST dies in P. This test is
1722 slightly more conservative than it needs to be. */
1723 if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
1724 && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
1725 {
1726 /* If we would be moving INSN, check that we won't move it
1727 into the shadow of a live a live flags register. */
1728 /* ??? We only try to move it in front of P, although
1729 we could move it anywhere between OVERLAP and P. */
1730 if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
1731 break;
1732
1733 if (! src_note)
1734 {
1735 rtx q;
1736 rtx set2 = NULL_RTX;
1737
1738 /* If an optimization is done, the value of SRC while P
1739 is executed will be changed. Check that this is OK. */
1740 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1741 break;
1742 for (q = p; q; q = NEXT_INSN (q))
1743 {
1744 /* ??? We can't scan past the end of a basic block without
1745 updating the register lifetime info
1746 (REG_DEAD/basic_block_live_at_start). */
1747 if (perhaps_ends_bb_p (q))
1748 {
1749 q = 0;
1750 break;
1751 }
1752 else if (! INSN_P (q))
1753 continue;
1754 else if (reg_overlap_mentioned_p (src, PATTERN (q))
1755 || reg_set_p (src, q))
1756 break;
1757 }
1758 if (q)
1759 set2 = single_set (q);
1760 if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
1761 || XEXP (SET_SRC (set2), 0) != src
1762 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
1763 || (SET_DEST (set2) != src
1764 && ! find_reg_note (q, REG_DEAD, src)))
1765 {
1766 /* If this is a PLUS, we can still save a register by doing
1767 src += insn_const;
1768 P;
1769 src -= insn_const; .
1770 This also gives opportunities for subsequent
1771 optimizations in the backward pass, so do it there. */
1772 if (code == PLUS && backward
1773 /* Don't do this if we can likely tie DST to SET_DEST
1774 of P later; we can't do this tying here if we got a
1775 hard register. */
1776 && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
1777 && single_set (p)
1778 && REG_P (SET_DEST (single_set (p)))
1779 && (REGNO (SET_DEST (single_set (p)))
1780 < FIRST_PSEUDO_REGISTER))
1781 /* We may only emit an insn directly after P if we
1782 are not in the shadow of a live flags register. */
1783 && GET_MODE (p) == VOIDmode)
1784 {
1785 search_end = q;
1786 q = insn;
1787 set2 = set;
1788 newconst = -insn_const;
1789 code = MINUS;
1790 }
1791 else
1792 break;
1793 }
1794 else
1795 {
1796 newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
1797 /* Reject out of range shifts. */
1798 if (code != PLUS
1799 && (newconst < 0
1800 || ((unsigned HOST_WIDE_INT) newconst
1801 >= (GET_MODE_BITSIZE (GET_MODE
1802 (SET_SRC (set2)))))))
1803 break;
1804 if (code == PLUS)
1805 {
1806 post_inc = q;
1807 if (SET_DEST (set2) != src)
1808 post_inc_set = set2;
1809 }
1810 }
1811 /* We use 1 as last argument to validate_change so that all
1812 changes are accepted or rejected together by apply_change_group
1813 when it is called by validate_replace_rtx . */
1814 validate_change (q, &XEXP (SET_SRC (set2), 1),
1815 GEN_INT (newconst), 1);
1816 }
1817 validate_change (insn, recog_data.operand_loc[match_number], src, 1);
1818 if (validate_replace_rtx (dst, src_subreg, p))
1819 success = 1;
1820 break;
1821 }
1822
1823 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1824 break;
1825 if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
1826 {
1827 /* INSN was already checked to be movable wrt. the registers that it
1828 sets / uses when we found no REG_DEAD note for src on it, but it
1829 still might clobber the flags register. We'll have to check that
1830 we won't insert it into the shadow of a live flags register when
1831 we finally know where we are to move it. */
1832 overlap = p;
1833 src_note = find_reg_note (p, REG_DEAD, src);
1834 }
1835
1836 /* If we have passed a call instruction, and the pseudo-reg SRC is not
1837 already live across a call, then don't perform the optimization. */
1838 if (CALL_P (p))
1839 {
1840 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1841 break;
1842
1843 num_calls++;
1844
1845 if (src_note)
1846 s_num_calls++;
1847
1848 }
1849 }
1850
1851 if (! success)
1852 return 0;
1853
1854 /* Remove the death note for DST from P. */
1855 remove_note (p, dst_note);
1856 if (code == MINUS)
1857 {
1858 post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
1859 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1860 && search_end
1861 && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
1862 post_inc = 0;
1863 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
1864 REG_N_SETS (REGNO (src))++;
1865 REG_LIVE_LENGTH (REGNO (src))++;
1866 }
1867 if (overlap)
1868 {
1869 /* The lifetime of src and dest overlap,
1870 but we can change this by moving insn. */
1871 rtx pat = PATTERN (insn);
1872 if (src_note)
1873 remove_note (overlap, src_note);
1874 if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1875 && code == PLUS
1876 && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
1877 insn = overlap;
1878 else
1879 {
1880 rtx notes = REG_NOTES (insn);
1881
1882 emit_insn_after_with_line_notes (pat, PREV_INSN (p), insn);
1883 delete_insn (insn);
1884 /* emit_insn_after_with_line_notes has no
1885 return value, so search for the new insn. */
1886 insn = p;
1887 while (! INSN_P (insn) || PATTERN (insn) != pat)
1888 insn = PREV_INSN (insn);
1889
1890 REG_NOTES (insn) = notes;
1891 }
1892 }
1893 /* Sometimes we'd generate src = const; src += n;
1894 if so, replace the instruction that set src
1895 in the first place. */
1896
1897 if (! overlap && (code == PLUS || code == MINUS))
1898 {
1899 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1900 rtx q, set2 = NULL_RTX;
1901 int num_calls2 = 0, s_length2 = 0;
1902
1903 if (note && CONSTANT_P (XEXP (note, 0)))
1904 {
1905 for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
1906 {
1907 /* ??? We can't scan past the end of a basic block without
1908 updating the register lifetime info
1909 (REG_DEAD/basic_block_live_at_start). */
1910 if (perhaps_ends_bb_p (q))
1911 {
1912 q = 0;
1913 break;
1914 }
1915 else if (! INSN_P (q))
1916 continue;
1917
1918 s_length2++;
1919 if (reg_set_p (src, q))
1920 {
1921 set2 = single_set (q);
1922 break;
1923 }
1924 if (reg_overlap_mentioned_p (src, PATTERN (q)))
1925 {
1926 q = 0;
1927 break;
1928 }
1929 if (CALL_P (p))
1930 num_calls2++;
1931 }
1932 if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
1933 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
1934 {
1935 delete_insn (q);
1936 REG_N_SETS (REGNO (src))--;
1937 REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
1938 REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
1939 insn_const = 0;
1940 }
1941 }
1942 }
1943
1944 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1945 && (code == PLUS || code == MINUS) && insn_const
1946 && try_auto_increment (p, insn, 0, src, insn_const, 1))
1947 insn = p;
1948 else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1949 && post_inc
1950 && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
1951 post_inc = 0;
1952 /* If post_inc still prevails, try to find an
1953 insn where it can be used as a pre-in/decrement.
1954 If code is MINUS, this was already tried. */
1955 if (post_inc && code == PLUS
1956 /* Check that newconst is likely to be usable
1957 in a pre-in/decrement before starting the search. */
1958 && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
1959 || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
1960 && exact_log2 (newconst))
1961 {
1962 rtx q, inc_dest;
1963
1964 inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
1965 for (q = post_inc; (q = NEXT_INSN (q)); )
1966 {
1967 /* ??? We can't scan past the end of a basic block without updating
1968 the register lifetime info
1969 (REG_DEAD/basic_block_live_at_start). */
1970 if (perhaps_ends_bb_p (q))
1971 break;
1972 else if (! INSN_P (q))
1973 continue;
1974 else if (src != inc_dest
1975 && (reg_overlap_mentioned_p (src, PATTERN (q))
1976 || reg_set_p (src, q)))
1977 break;
1978 else if (reg_set_p (inc_dest, q))
1979 break;
1980 else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
1981 {
1982 try_auto_increment (q, post_inc,
1983 post_inc_set, inc_dest, newconst, 1);
1984 break;
1985 }
1986 }
1987 }
1988
1989 /* Move the death note for DST to INSN if it is used
1990 there. */
1991 if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
1992 {
1993 XEXP (dst_note, 1) = REG_NOTES (insn);
1994 REG_NOTES (insn) = dst_note;
1995 }
1996
1997 if (src_note)
1998 {
1999 /* Move the death note for SRC from INSN to P. */
2000 if (! overlap)
2001 remove_note (insn, src_note);
2002 XEXP (src_note, 1) = REG_NOTES (p);
2003 REG_NOTES (p) = src_note;
2004
2005 REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
2006 }
2007
2008 REG_N_SETS (REGNO (src))++;
2009 REG_N_SETS (REGNO (dst))--;
2010
2011 REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
2012
2013 REG_LIVE_LENGTH (REGNO (src)) += s_length;
2014 if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
2015 {
2016 REG_LIVE_LENGTH (REGNO (dst)) -= length;
2017 /* REG_LIVE_LENGTH is only an approximation after
2018 combine if sched is not run, so make sure that we
2019 still have a reasonable value. */
2020 if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
2021 REG_LIVE_LENGTH (REGNO (dst)) = 2;
2022 }
2023 if (regmove_dump_file)
2024 fprintf (regmove_dump_file,
2025 "Fixed operand %d of insn %d matching operand %d.\n",
2026 operand_number, INSN_UID (insn), match_number);
2027 return 1;
2028 }
2029
2030
2031 /* Return nonzero if X is stable and mentions no registers but for
2032 mentioning SRC or mentioning / changing DST . If in doubt, presume
2033 it is unstable.
2034 The rationale is that we want to check if we can move an insn easily
2035 while just paying attention to SRC and DST. */
2036 static int
2037 stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
2038 {
2039 RTX_CODE code = GET_CODE (x);
2040 switch (GET_RTX_CLASS (code))
2041 {
2042 case RTX_UNARY:
2043 case RTX_BIN_ARITH:
2044 case RTX_COMM_ARITH:
2045 case RTX_COMPARE:
2046 case RTX_COMM_COMPARE:
2047 case RTX_TERNARY:
2048 case RTX_BITFIELD_OPS:
2049 {
2050 int i;
2051 const char *fmt = GET_RTX_FORMAT (code);
2052 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2053 if (fmt[i] == 'e'
2054 && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
2055 return 0;
2056 return 1;
2057 }
2058 case RTX_OBJ:
2059 if (code == REG)
2060 return x == src || x == dst;
2061 /* If this is a MEM, look inside - there might be a register hidden in
2062 the address of an unchanging MEM. */
2063 if (code == MEM
2064 && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
2065 return 0;
2066 /* Fall through. */
2067 default:
2068 return ! rtx_unstable_p (x);
2069 }
2070 }
2071 \f
2072 /* Track stack adjustments and stack memory references. Attempt to
2073 reduce the number of stack adjustments by back-propagating across
2074 the memory references.
2075
2076 This is intended primarily for use with targets that do not define
2077 ACCUMULATE_OUTGOING_ARGS. It is of significantly more value to
2078 targets that define PREFERRED_STACK_BOUNDARY more aligned than
2079 STACK_BOUNDARY (e.g. x86), or if not all registers can be pushed
2080 (e.g. x86 fp regs) which would ordinarily have to be implemented
2081 as a sub/mov pair due to restrictions in calls.c.
2082
2083 Propagation stops when any of the insns that need adjusting are
2084 (a) no longer valid because we've exceeded their range, (b) a
2085 non-trivial push instruction, or (c) a call instruction.
2086
2087 Restriction B is based on the assumption that push instructions
2088 are smaller or faster. If a port really wants to remove all
2089 pushes, it should have defined ACCUMULATE_OUTGOING_ARGS. The
2090 one exception that is made is for an add immediately followed
2091 by a push. */
2092
2093 /* This structure records stack memory references between stack adjusting
2094 instructions. */
2095
2096 struct csa_memlist
2097 {
2098 HOST_WIDE_INT sp_offset;
2099 rtx insn, *mem;
2100 struct csa_memlist *next;
2101 };
2102
2103 static int stack_memref_p (rtx);
2104 static rtx single_set_for_csa (rtx);
2105 static void free_csa_memlist (struct csa_memlist *);
2106 static struct csa_memlist *record_one_stack_memref (rtx, rtx *,
2107 struct csa_memlist *);
2108 static int try_apply_stack_adjustment (rtx, struct csa_memlist *,
2109 HOST_WIDE_INT, HOST_WIDE_INT);
2110 static void combine_stack_adjustments_for_block (basic_block);
2111 static int record_stack_memrefs (rtx *, void *);
2112
2113
2114 /* Main entry point for stack adjustment combination. */
2115
2116 void
2117 combine_stack_adjustments (void)
2118 {
2119 basic_block bb;
2120
2121 FOR_EACH_BB (bb)
2122 combine_stack_adjustments_for_block (bb);
2123 }
2124
2125 /* Recognize a MEM of the form (sp) or (plus sp const). */
2126
2127 static int
2128 stack_memref_p (rtx x)
2129 {
2130 if (!MEM_P (x))
2131 return 0;
2132 x = XEXP (x, 0);
2133
2134 if (x == stack_pointer_rtx)
2135 return 1;
2136 if (GET_CODE (x) == PLUS
2137 && XEXP (x, 0) == stack_pointer_rtx
2138 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2139 return 1;
2140
2141 return 0;
2142 }
2143
2144 /* Recognize either normal single_set or the hack in i386.md for
2145 tying fp and sp adjustments. */
2146
2147 static rtx
2148 single_set_for_csa (rtx insn)
2149 {
2150 int i;
2151 rtx tmp = single_set (insn);
2152 if (tmp)
2153 return tmp;
2154
2155 if (!NONJUMP_INSN_P (insn)
2156 || GET_CODE (PATTERN (insn)) != PARALLEL)
2157 return NULL_RTX;
2158
2159 tmp = PATTERN (insn);
2160 if (GET_CODE (XVECEXP (tmp, 0, 0)) != SET)
2161 return NULL_RTX;
2162
2163 for (i = 1; i < XVECLEN (tmp, 0); ++i)
2164 {
2165 rtx this = XVECEXP (tmp, 0, i);
2166
2167 /* The special case is allowing a no-op set. */
2168 if (GET_CODE (this) == SET
2169 && SET_SRC (this) == SET_DEST (this))
2170 ;
2171 else if (GET_CODE (this) != CLOBBER
2172 && GET_CODE (this) != USE)
2173 return NULL_RTX;
2174 }
2175
2176 return XVECEXP (tmp, 0, 0);
2177 }
2178
2179 /* Free the list of csa_memlist nodes. */
2180
2181 static void
2182 free_csa_memlist (struct csa_memlist *memlist)
2183 {
2184 struct csa_memlist *next;
2185 for (; memlist ; memlist = next)
2186 {
2187 next = memlist->next;
2188 free (memlist);
2189 }
2190 }
2191
2192 /* Create a new csa_memlist node from the given memory reference.
2193 It is already known that the memory is stack_memref_p. */
2194
2195 static struct csa_memlist *
2196 record_one_stack_memref (rtx insn, rtx *mem, struct csa_memlist *next_memlist)
2197 {
2198 struct csa_memlist *ml;
2199
2200 ml = xmalloc (sizeof (*ml));
2201
2202 if (XEXP (*mem, 0) == stack_pointer_rtx)
2203 ml->sp_offset = 0;
2204 else
2205 ml->sp_offset = INTVAL (XEXP (XEXP (*mem, 0), 1));
2206
2207 ml->insn = insn;
2208 ml->mem = mem;
2209 ml->next = next_memlist;
2210
2211 return ml;
2212 }
2213
2214 /* Attempt to apply ADJUST to the stack adjusting insn INSN, as well
2215 as each of the memories in MEMLIST. Return true on success. */
2216
2217 static int
2218 try_apply_stack_adjustment (rtx insn, struct csa_memlist *memlist, HOST_WIDE_INT new_adjust,
2219 HOST_WIDE_INT delta)
2220 {
2221 struct csa_memlist *ml;
2222 rtx set;
2223
2224 set = single_set_for_csa (insn);
2225 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);
2226
2227 for (ml = memlist; ml ; ml = ml->next)
2228 validate_change
2229 (ml->insn, ml->mem,
2230 replace_equiv_address_nv (*ml->mem,
2231 plus_constant (stack_pointer_rtx,
2232 ml->sp_offset - delta)), 1);
2233
2234 if (apply_change_group ())
2235 {
2236 /* Succeeded. Update our knowledge of the memory references. */
2237 for (ml = memlist; ml ; ml = ml->next)
2238 ml->sp_offset -= delta;
2239
2240 return 1;
2241 }
2242 else
2243 return 0;
2244 }
2245
2246 /* Called via for_each_rtx and used to record all stack memory references in
2247 the insn and discard all other stack pointer references. */
2248 struct record_stack_memrefs_data
2249 {
2250 rtx insn;
2251 struct csa_memlist *memlist;
2252 };
2253
2254 static int
2255 record_stack_memrefs (rtx *xp, void *data)
2256 {
2257 rtx x = *xp;
2258 struct record_stack_memrefs_data *d =
2259 (struct record_stack_memrefs_data *) data;
2260 if (!x)
2261 return 0;
2262 switch (GET_CODE (x))
2263 {
2264 case MEM:
2265 if (!reg_mentioned_p (stack_pointer_rtx, x))
2266 return -1;
2267 /* We are not able to handle correctly all possible memrefs containing
2268 stack pointer, so this check is necessary. */
2269 if (stack_memref_p (x))
2270 {
2271 d->memlist = record_one_stack_memref (d->insn, xp, d->memlist);
2272 return -1;
2273 }
2274 return 1;
2275 case REG:
2276 /* ??? We want be able to handle non-memory stack pointer
2277 references later. For now just discard all insns referring to
2278 stack pointer outside mem expressions. We would probably
2279 want to teach validate_replace to simplify expressions first.
2280
2281 We can't just compare with STACK_POINTER_RTX because the
2282 reference to the stack pointer might be in some other mode.
2283 In particular, an explicit clobber in an asm statement will
2284 result in a QImode clobber. */
2285 if (REGNO (x) == STACK_POINTER_REGNUM)
2286 return 1;
2287 break;
2288 default:
2289 break;
2290 }
2291 return 0;
2292 }
2293
2294 /* Subroutine of combine_stack_adjustments, called for each basic block. */
2295
2296 static void
2297 combine_stack_adjustments_for_block (basic_block bb)
2298 {
2299 HOST_WIDE_INT last_sp_adjust = 0;
2300 rtx last_sp_set = NULL_RTX;
2301 struct csa_memlist *memlist = NULL;
2302 rtx insn, next, set;
2303 struct record_stack_memrefs_data data;
2304 bool end_of_block = false;
2305
2306 for (insn = BB_HEAD (bb); !end_of_block ; insn = next)
2307 {
2308 end_of_block = insn == BB_END (bb);
2309 next = NEXT_INSN (insn);
2310
2311 if (! INSN_P (insn))
2312 continue;
2313
2314 set = single_set_for_csa (insn);
2315 if (set)
2316 {
2317 rtx dest = SET_DEST (set);
2318 rtx src = SET_SRC (set);
2319
2320 /* Find constant additions to the stack pointer. */
2321 if (dest == stack_pointer_rtx
2322 && GET_CODE (src) == PLUS
2323 && XEXP (src, 0) == stack_pointer_rtx
2324 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2325 {
2326 HOST_WIDE_INT this_adjust = INTVAL (XEXP (src, 1));
2327
2328 /* If we've not seen an adjustment previously, record
2329 it now and continue. */
2330 if (! last_sp_set)
2331 {
2332 last_sp_set = insn;
2333 last_sp_adjust = this_adjust;
2334 continue;
2335 }
2336
2337 /* If not all recorded memrefs can be adjusted, or the
2338 adjustment is now too large for a constant addition,
2339 we cannot merge the two stack adjustments.
2340
2341 Also we need to be careful to not move stack pointer
2342 such that we create stack accesses outside the allocated
2343 area. We can combine an allocation into the first insn,
2344 or a deallocation into the second insn. We can not
2345 combine an allocation followed by a deallocation.
2346
2347 The only somewhat frequent occurrence of the later is when
2348 a function allocates a stack frame but does not use it.
2349 For this case, we would need to analyze rtl stream to be
2350 sure that allocated area is really unused. This means not
2351 only checking the memory references, but also all registers
2352 or global memory references possibly containing a stack
2353 frame address.
2354
2355 Perhaps the best way to address this problem is to teach
2356 gcc not to allocate stack for objects never used. */
2357
2358 /* Combine an allocation into the first instruction. */
2359 if (STACK_GROWS_DOWNWARD ? this_adjust <= 0 : this_adjust >= 0)
2360 {
2361 if (try_apply_stack_adjustment (last_sp_set, memlist,
2362 last_sp_adjust + this_adjust,
2363 this_adjust))
2364 {
2365 /* It worked! */
2366 delete_insn (insn);
2367 last_sp_adjust += this_adjust;
2368 continue;
2369 }
2370 }
2371
2372 /* Otherwise we have a deallocation. Do not combine with
2373 a previous allocation. Combine into the second insn. */
2374 else if (STACK_GROWS_DOWNWARD
2375 ? last_sp_adjust >= 0 : last_sp_adjust <= 0)
2376 {
2377 if (try_apply_stack_adjustment (insn, memlist,
2378 last_sp_adjust + this_adjust,
2379 -last_sp_adjust))
2380 {
2381 /* It worked! */
2382 delete_insn (last_sp_set);
2383 last_sp_set = insn;
2384 last_sp_adjust += this_adjust;
2385 free_csa_memlist (memlist);
2386 memlist = NULL;
2387 continue;
2388 }
2389 }
2390
2391 /* Combination failed. Restart processing from here. If
2392 deallocation+allocation conspired to cancel, we can
2393 delete the old deallocation insn. */
2394 if (last_sp_set && last_sp_adjust == 0)
2395 delete_insn (insn);
2396 free_csa_memlist (memlist);
2397 memlist = NULL;
2398 last_sp_set = insn;
2399 last_sp_adjust = this_adjust;
2400 continue;
2401 }
2402
2403 /* Find a predecrement of exactly the previous adjustment and
2404 turn it into a direct store. Obviously we can't do this if
2405 there were any intervening uses of the stack pointer. */
2406 if (memlist == NULL
2407 && MEM_P (dest)
2408 && ((GET_CODE (XEXP (dest, 0)) == PRE_DEC
2409 && (last_sp_adjust
2410 == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (dest))))
2411 || (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY
2412 && GET_CODE (XEXP (XEXP (dest, 0), 1)) == PLUS
2413 && XEXP (XEXP (XEXP (dest, 0), 1), 0) == stack_pointer_rtx
2414 && (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2415 == CONST_INT)
2416 && (INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2417 == -last_sp_adjust)))
2418 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx
2419 && ! reg_mentioned_p (stack_pointer_rtx, src)
2420 && memory_address_p (GET_MODE (dest), stack_pointer_rtx)
2421 && validate_change (insn, &SET_DEST (set),
2422 replace_equiv_address (dest,
2423 stack_pointer_rtx),
2424 0))
2425 {
2426 delete_insn (last_sp_set);
2427 free_csa_memlist (memlist);
2428 memlist = NULL;
2429 last_sp_set = NULL_RTX;
2430 last_sp_adjust = 0;
2431 continue;
2432 }
2433 }
2434
2435 data.insn = insn;
2436 data.memlist = memlist;
2437 if (!CALL_P (insn) && last_sp_set
2438 && !for_each_rtx (&PATTERN (insn), record_stack_memrefs, &data))
2439 {
2440 memlist = data.memlist;
2441 continue;
2442 }
2443 memlist = data.memlist;
2444
2445 /* Otherwise, we were not able to process the instruction.
2446 Do not continue collecting data across such a one. */
2447 if (last_sp_set
2448 && (CALL_P (insn)
2449 || reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))))
2450 {
2451 if (last_sp_set && last_sp_adjust == 0)
2452 delete_insn (last_sp_set);
2453 free_csa_memlist (memlist);
2454 memlist = NULL;
2455 last_sp_set = NULL_RTX;
2456 last_sp_adjust = 0;
2457 }
2458 }
2459
2460 if (last_sp_set && last_sp_adjust == 0)
2461 delete_insn (last_sp_set);
2462 }