regmove.c (optimize_reg_copy_1): Don't perform DEST->SRC repair action if SRC->DEST...
[gcc.git] / gcc / regmove.c
1 /* Move registers around to reduce number of move instructions needed.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 /* This module looks for cases where matching constraints would force
24 an instruction to need a reload, and this reload would be a register
25 to register move. It then attempts to change the registers used by the
26 instruction to avoid the move instruction. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
33 #include "tm_p.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "output.h"
37 #include "regs.h"
38 #include "hard-reg-set.h"
39 #include "flags.h"
40 #include "function.h"
41 #include "expr.h"
42 #include "basic-block.h"
43 #include "except.h"
44 #include "toplev.h"
45 #include "reload.h"
46 #include "timevar.h"
47 #include "tree-pass.h"
48
49
50 /* Turn STACK_GROWS_DOWNWARD into a boolean. */
51 #ifdef STACK_GROWS_DOWNWARD
52 #undef STACK_GROWS_DOWNWARD
53 #define STACK_GROWS_DOWNWARD 1
54 #else
55 #define STACK_GROWS_DOWNWARD 0
56 #endif
57
58 static int perhaps_ends_bb_p (rtx);
59 static int optimize_reg_copy_1 (rtx, rtx, rtx);
60 static void optimize_reg_copy_2 (rtx, rtx, rtx);
61 static void optimize_reg_copy_3 (rtx, rtx, rtx);
62 static void copy_src_to_dest (rtx, rtx, rtx, int);
63 static int *regmove_bb_head;
64
65 struct match {
66 int with[MAX_RECOG_OPERANDS];
67 enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
68 int commutative[MAX_RECOG_OPERANDS];
69 int early_clobber[MAX_RECOG_OPERANDS];
70 };
71
72 static rtx discover_flags_reg (void);
73 static void mark_flags_life_zones (rtx);
74 static void flags_set_1 (rtx, rtx, void *);
75
76 static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
77 static int find_matches (rtx, struct match *);
78 static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
79 static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int);
80 static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
81 static int regclass_compatible_p (int, int);
82 static int replacement_quality (rtx);
83 static int fixup_match_2 (rtx, rtx, rtx, rtx);
84
85 /* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
86 causing too much register allocation problems. */
87 static int
88 regclass_compatible_p (int class0, int class1)
89 {
90 return (class0 == class1
91 || (reg_class_subset_p (class0, class1)
92 && ! CLASS_LIKELY_SPILLED_P (class0))
93 || (reg_class_subset_p (class1, class0)
94 && ! CLASS_LIKELY_SPILLED_P (class1)));
95 }
96
97 /* INC_INSN is an instruction that adds INCREMENT to REG.
98 Try to fold INC_INSN as a post/pre in/decrement into INSN.
99 Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
100 Return nonzero for success. */
101 static int
102 try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
103 HOST_WIDE_INT increment, int pre)
104 {
105 enum rtx_code inc_code;
106
107 rtx pset = single_set (insn);
108 if (pset)
109 {
110 /* Can't use the size of SET_SRC, we might have something like
111 (sign_extend:SI (mem:QI ... */
112 rtx use = find_use_as_address (pset, reg, 0);
113 if (use != 0 && use != (rtx) (size_t) 1)
114 {
115 int size = GET_MODE_SIZE (GET_MODE (use));
116 if (0
117 || (HAVE_POST_INCREMENT
118 && pre == 0 && (inc_code = POST_INC, increment == size))
119 || (HAVE_PRE_INCREMENT
120 && pre == 1 && (inc_code = PRE_INC, increment == size))
121 || (HAVE_POST_DECREMENT
122 && pre == 0 && (inc_code = POST_DEC, increment == -size))
123 || (HAVE_PRE_DECREMENT
124 && pre == 1 && (inc_code = PRE_DEC, increment == -size))
125 )
126 {
127 if (inc_insn_set)
128 validate_change
129 (inc_insn,
130 &SET_SRC (inc_insn_set),
131 XEXP (SET_SRC (inc_insn_set), 0), 1);
132 validate_change (insn, &XEXP (use, 0),
133 gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
134 if (apply_change_group ())
135 {
136 /* If there is a REG_DEAD note on this insn, we must
137 change this not to REG_UNUSED meaning that the register
138 is set, but the value is dead. Failure to do so will
139 result in a sched1 dieing -- when it recomputes lifetime
140 information, the number of REG_DEAD notes will have
141 changed. */
142 rtx note = find_reg_note (insn, REG_DEAD, reg);
143 if (note)
144 PUT_MODE (note, REG_UNUSED);
145
146 REG_NOTES (insn)
147 = gen_rtx_EXPR_LIST (REG_INC,
148 reg, REG_NOTES (insn));
149 if (! inc_insn_set)
150 delete_insn (inc_insn);
151 return 1;
152 }
153 }
154 }
155 }
156 return 0;
157 }
158 \f
159 /* Determine if the pattern generated by add_optab has a clobber,
160 such as might be issued for a flags hard register. To make the
161 code elsewhere simpler, we handle cc0 in this same framework.
162
163 Return the register if one was discovered. Return NULL_RTX if
164 if no flags were found. Return pc_rtx if we got confused. */
165
166 static rtx
167 discover_flags_reg (void)
168 {
169 rtx tmp;
170 tmp = gen_rtx_REG (word_mode, 10000);
171 tmp = gen_add3_insn (tmp, tmp, const2_rtx);
172
173 /* If we get something that isn't a simple set, or a
174 [(set ..) (clobber ..)], this whole function will go wrong. */
175 if (GET_CODE (tmp) == SET)
176 return NULL_RTX;
177 else if (GET_CODE (tmp) == PARALLEL)
178 {
179 int found;
180
181 if (XVECLEN (tmp, 0) != 2)
182 return pc_rtx;
183 tmp = XVECEXP (tmp, 0, 1);
184 if (GET_CODE (tmp) != CLOBBER)
185 return pc_rtx;
186 tmp = XEXP (tmp, 0);
187
188 /* Don't do anything foolish if the md wanted to clobber a
189 scratch or something. We only care about hard regs.
190 Moreover we don't like the notion of subregs of hard regs. */
191 if (GET_CODE (tmp) == SUBREG
192 && REG_P (SUBREG_REG (tmp))
193 && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
194 return pc_rtx;
195 found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
196
197 return (found ? tmp : NULL_RTX);
198 }
199
200 return pc_rtx;
201 }
202
203 /* It is a tedious task identifying when the flags register is live and
204 when it is safe to optimize. Since we process the instruction stream
205 multiple times, locate and record these live zones by marking the
206 mode of the instructions --
207
208 QImode is used on the instruction at which the flags becomes live.
209
210 HImode is used within the range (exclusive) that the flags are
211 live. Thus the user of the flags is not marked.
212
213 All other instructions are cleared to VOIDmode. */
214
215 /* Used to communicate with flags_set_1. */
216 static rtx flags_set_1_rtx;
217 static int flags_set_1_set;
218
219 static void
220 mark_flags_life_zones (rtx flags)
221 {
222 int flags_regno;
223 int flags_nregs;
224 basic_block block;
225
226 #ifdef HAVE_cc0
227 /* If we found a flags register on a cc0 host, bail. */
228 if (flags == NULL_RTX)
229 flags = cc0_rtx;
230 else if (flags != cc0_rtx)
231 flags = pc_rtx;
232 #endif
233
234 /* Simple cases first: if no flags, clear all modes. If confusing,
235 mark the entire function as being in a flags shadow. */
236 if (flags == NULL_RTX || flags == pc_rtx)
237 {
238 enum machine_mode mode = (flags ? HImode : VOIDmode);
239 rtx insn;
240 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
241 PUT_MODE (insn, mode);
242 return;
243 }
244
245 #ifdef HAVE_cc0
246 flags_regno = -1;
247 flags_nregs = 1;
248 #else
249 flags_regno = REGNO (flags);
250 flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
251 #endif
252 flags_set_1_rtx = flags;
253
254 /* Process each basic block. */
255 FOR_EACH_BB_REVERSE (block)
256 {
257 rtx insn, end;
258 int live;
259
260 insn = BB_HEAD (block);
261 end = BB_END (block);
262
263 /* Look out for the (unlikely) case of flags being live across
264 basic block boundaries. */
265 live = 0;
266 #ifndef HAVE_cc0
267 {
268 int i;
269 for (i = 0; i < flags_nregs; ++i)
270 live |= REGNO_REG_SET_P (block->il.rtl->global_live_at_start,
271 flags_regno + i);
272 }
273 #endif
274
275 while (1)
276 {
277 /* Process liveness in reverse order of importance --
278 alive, death, birth. This lets more important info
279 overwrite the mode of lesser info. */
280
281 if (INSN_P (insn))
282 {
283 #ifdef HAVE_cc0
284 /* In the cc0 case, death is not marked in reg notes,
285 but is instead the mere use of cc0 when it is alive. */
286 if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
287 live = 0;
288 #else
289 /* In the hard reg case, we watch death notes. */
290 if (live && find_regno_note (insn, REG_DEAD, flags_regno))
291 live = 0;
292 #endif
293 PUT_MODE (insn, (live ? HImode : VOIDmode));
294
295 /* In either case, birth is denoted simply by its presence
296 as the destination of a set. */
297 flags_set_1_set = 0;
298 note_stores (PATTERN (insn), flags_set_1, NULL);
299 if (flags_set_1_set)
300 {
301 live = 1;
302 PUT_MODE (insn, QImode);
303 }
304 }
305 else
306 PUT_MODE (insn, (live ? HImode : VOIDmode));
307
308 if (insn == end)
309 break;
310 insn = NEXT_INSN (insn);
311 }
312 }
313 }
314
315 /* A subroutine of mark_flags_life_zones, called through note_stores. */
316
317 static void
318 flags_set_1 (rtx x, rtx pat, void *data ATTRIBUTE_UNUSED)
319 {
320 if (GET_CODE (pat) == SET
321 && reg_overlap_mentioned_p (x, flags_set_1_rtx))
322 flags_set_1_set = 1;
323 }
324 \f
325 static int *regno_src_regno;
326
327 /* Indicate how good a choice REG (which appears as a source) is to replace
328 a destination register with. The higher the returned value, the better
329 the choice. The main objective is to avoid using a register that is
330 a candidate for tying to a hard register, since the output might in
331 turn be a candidate to be tied to a different hard register. */
332 static int
333 replacement_quality (rtx reg)
334 {
335 int src_regno;
336
337 /* Bad if this isn't a register at all. */
338 if (!REG_P (reg))
339 return 0;
340
341 /* If this register is not meant to get a hard register,
342 it is a poor choice. */
343 if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
344 return 0;
345
346 src_regno = regno_src_regno[REGNO (reg)];
347
348 /* If it was not copied from another register, it is fine. */
349 if (src_regno < 0)
350 return 3;
351
352 /* Copied from a hard register? */
353 if (src_regno < FIRST_PSEUDO_REGISTER)
354 return 1;
355
356 /* Copied from a pseudo register - not as bad as from a hard register,
357 yet still cumbersome, since the register live length will be lengthened
358 when the registers get tied. */
359 return 2;
360 }
361 \f
362 /* Return 1 if INSN might end a basic block. */
363
364 static int perhaps_ends_bb_p (rtx insn)
365 {
366 switch (GET_CODE (insn))
367 {
368 case CODE_LABEL:
369 case JUMP_INSN:
370 /* These always end a basic block. */
371 return 1;
372
373 case CALL_INSN:
374 /* A CALL_INSN might be the last insn of a basic block, if it is inside
375 an EH region or if there are nonlocal gotos. Note that this test is
376 very conservative. */
377 if (nonlocal_goto_handler_labels)
378 return 1;
379 /* Fall through. */
380 default:
381 return can_throw_internal (insn);
382 }
383 }
384 \f
385 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
386 in INSN.
387
388 Search forward to see if SRC dies before either it or DEST is modified,
389 but don't scan past the end of a basic block. If so, we can replace SRC
390 with DEST and let SRC die in INSN.
391
392 This will reduce the number of registers live in that range and may enable
393 DEST to be tied to SRC, thus often saving one register in addition to a
394 register-register copy. */
395
396 static int
397 optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
398 {
399 rtx p, q;
400 rtx note;
401 rtx dest_death = 0;
402 int sregno = REGNO (src);
403 int dregno = REGNO (dest);
404
405 /* We don't want to mess with hard regs if register classes are small. */
406 if (sregno == dregno
407 || (SMALL_REGISTER_CLASSES
408 && (sregno < FIRST_PSEUDO_REGISTER
409 || dregno < FIRST_PSEUDO_REGISTER))
410 /* We don't see all updates to SP if they are in an auto-inc memory
411 reference, so we must disallow this optimization on them. */
412 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
413 return 0;
414
415 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
416 {
417 /* ??? We can't scan past the end of a basic block without updating
418 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
419 if (perhaps_ends_bb_p (p))
420 break;
421 else if (! INSN_P (p))
422 continue;
423
424 if (reg_set_p (src, p) || reg_set_p (dest, p)
425 /* If SRC is an asm-declared register, it must not be replaced
426 in any asm. Unfortunately, the REG_EXPR tree for the asm
427 variable may be absent in the SRC rtx, so we can't check the
428 actual register declaration easily (the asm operand will have
429 it, though). To avoid complicating the test for a rare case,
430 we just don't perform register replacement for a hard reg
431 mentioned in an asm. */
432 || (sregno < FIRST_PSEUDO_REGISTER
433 && asm_noperands (PATTERN (p)) >= 0
434 && reg_overlap_mentioned_p (src, PATTERN (p)))
435 /* Don't change hard registers used by a call. */
436 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
437 && find_reg_fusage (p, USE, src))
438 /* Don't change a USE of a register. */
439 || (GET_CODE (PATTERN (p)) == USE
440 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
441 break;
442
443 /* See if all of SRC dies in P. This test is slightly more
444 conservative than it needs to be. */
445 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
446 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
447 {
448 int failed = 0;
449 int d_length = 0;
450 int s_length = 0;
451 int d_n_calls = 0;
452 int s_n_calls = 0;
453
454 /* We can do the optimization. Scan forward from INSN again,
455 replacing regs as we go. Set FAILED if a replacement can't
456 be done. In that case, we can't move the death note for SRC.
457 This should be rare. */
458
459 /* Set to stop at next insn. */
460 for (q = next_real_insn (insn);
461 q != next_real_insn (p);
462 q = next_real_insn (q))
463 {
464 if (reg_overlap_mentioned_p (src, PATTERN (q)))
465 {
466 /* If SRC is a hard register, we might miss some
467 overlapping registers with validate_replace_rtx,
468 so we would have to undo it. We can't if DEST is
469 present in the insn, so fail in that combination
470 of cases. */
471 if (sregno < FIRST_PSEUDO_REGISTER
472 && reg_mentioned_p (dest, PATTERN (q)))
473 failed = 1;
474
475 /* Attempt to replace all uses. */
476 else if (!validate_replace_rtx (src, dest, q))
477 failed = 1;
478
479 /* If this succeeded, but some part of the register
480 is still present, undo the replacement. */
481 else if (sregno < FIRST_PSEUDO_REGISTER
482 && reg_overlap_mentioned_p (src, PATTERN (q)))
483 {
484 validate_replace_rtx (dest, src, q);
485 failed = 1;
486 }
487 }
488
489 /* For SREGNO, count the total number of insns scanned.
490 For DREGNO, count the total number of insns scanned after
491 passing the death note for DREGNO. */
492 s_length++;
493 if (dest_death)
494 d_length++;
495
496 /* If the insn in which SRC dies is a CALL_INSN, don't count it
497 as a call that has been crossed. Otherwise, count it. */
498 if (q != p && CALL_P (q))
499 {
500 /* Similarly, total calls for SREGNO, total calls beyond
501 the death note for DREGNO. */
502 s_n_calls++;
503 if (dest_death)
504 d_n_calls++;
505 }
506
507 /* If DEST dies here, remove the death note and save it for
508 later. Make sure ALL of DEST dies here; again, this is
509 overly conservative. */
510 if (dest_death == 0
511 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
512 {
513 if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
514 failed = 1, dest_death = 0;
515 else
516 remove_note (q, dest_death);
517 }
518 }
519
520 if (! failed)
521 {
522 /* These counters need to be updated if and only if we are
523 going to move the REG_DEAD note. */
524 if (sregno >= FIRST_PSEUDO_REGISTER)
525 {
526 if (REG_LIVE_LENGTH (sregno) >= 0)
527 {
528 REG_LIVE_LENGTH (sregno) -= s_length;
529 /* REG_LIVE_LENGTH is only an approximation after
530 combine if sched is not run, so make sure that we
531 still have a reasonable value. */
532 if (REG_LIVE_LENGTH (sregno) < 2)
533 REG_LIVE_LENGTH (sregno) = 2;
534 }
535
536 REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
537 }
538
539 /* Move death note of SRC from P to INSN. */
540 remove_note (p, note);
541 XEXP (note, 1) = REG_NOTES (insn);
542 REG_NOTES (insn) = note;
543 }
544
545 /* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
546 if (! dest_death
547 && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
548 {
549 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
550 remove_note (insn, dest_death);
551 }
552
553 /* Put death note of DEST on P if we saw it die. */
554 if (dest_death)
555 {
556 XEXP (dest_death, 1) = REG_NOTES (p);
557 REG_NOTES (p) = dest_death;
558
559 if (dregno >= FIRST_PSEUDO_REGISTER)
560 {
561 /* If and only if we are moving the death note for DREGNO,
562 then we need to update its counters. */
563 if (REG_LIVE_LENGTH (dregno) >= 0)
564 REG_LIVE_LENGTH (dregno) += d_length;
565 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
566 }
567 }
568
569 return ! failed;
570 }
571
572 /* If SRC is a hard register which is set or killed in some other
573 way, we can't do this optimization. */
574 else if (sregno < FIRST_PSEUDO_REGISTER
575 && dead_or_set_p (p, src))
576 break;
577 }
578 return 0;
579 }
580 \f
581 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
582 a sequence of insns that modify DEST followed by an insn that sets
583 SRC to DEST in which DEST dies, with no prior modification of DEST.
584 (There is no need to check if the insns in between actually modify
585 DEST. We should not have cases where DEST is not modified, but
586 the optimization is safe if no such modification is detected.)
587 In that case, we can replace all uses of DEST, starting with INSN and
588 ending with the set of SRC to DEST, with SRC. We do not do this
589 optimization if a CALL_INSN is crossed unless SRC already crosses a
590 call or if DEST dies before the copy back to SRC.
591
592 It is assumed that DEST and SRC are pseudos; it is too complicated to do
593 this for hard registers since the substitutions we may make might fail. */
594
595 static void
596 optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
597 {
598 rtx p, q;
599 rtx set;
600 int sregno = REGNO (src);
601 int dregno = REGNO (dest);
602
603 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
604 {
605 /* ??? We can't scan past the end of a basic block without updating
606 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
607 if (perhaps_ends_bb_p (p))
608 break;
609 else if (! INSN_P (p))
610 continue;
611
612 set = single_set (p);
613 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
614 && find_reg_note (p, REG_DEAD, dest))
615 {
616 /* We can do the optimization. Scan forward from INSN again,
617 replacing regs as we go. */
618
619 /* Set to stop at next insn. */
620 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
621 if (INSN_P (q))
622 {
623 if (reg_mentioned_p (dest, PATTERN (q)))
624 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
625
626
627 if (CALL_P (q))
628 {
629 REG_N_CALLS_CROSSED (dregno)--;
630 REG_N_CALLS_CROSSED (sregno)++;
631 }
632 }
633
634 remove_note (p, find_reg_note (p, REG_DEAD, dest));
635 REG_N_DEATHS (dregno)--;
636 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
637 REG_N_DEATHS (sregno)--;
638 return;
639 }
640
641 if (reg_set_p (src, p)
642 || find_reg_note (p, REG_DEAD, dest)
643 || (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
644 break;
645 }
646 }
647 /* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
648 Look if SRC dies there, and if it is only set once, by loading
649 it from memory. If so, try to incorporate the zero/sign extension
650 into the memory read, change SRC to the mode of DEST, and alter
651 the remaining accesses to use the appropriate SUBREG. This allows
652 SRC and DEST to be tied later. */
653 static void
654 optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
655 {
656 rtx src_reg = XEXP (src, 0);
657 int src_no = REGNO (src_reg);
658 int dst_no = REGNO (dest);
659 rtx p, set;
660 enum machine_mode old_mode;
661
662 if (src_no < FIRST_PSEUDO_REGISTER
663 || dst_no < FIRST_PSEUDO_REGISTER
664 || ! find_reg_note (insn, REG_DEAD, src_reg)
665 || REG_N_DEATHS (src_no) != 1
666 || REG_N_SETS (src_no) != 1)
667 return;
668 for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
669 /* ??? We can't scan past the end of a basic block without updating
670 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
671 if (perhaps_ends_bb_p (p))
672 break;
673
674 if (! p)
675 return;
676
677 if (! (set = single_set (p))
678 || !MEM_P (SET_SRC (set))
679 /* If there's a REG_EQUIV note, this must be an insn that loads an
680 argument. Prefer keeping the note over doing this optimization. */
681 || find_reg_note (p, REG_EQUIV, NULL_RTX)
682 || SET_DEST (set) != src_reg)
683 return;
684
685 /* Be conservative: although this optimization is also valid for
686 volatile memory references, that could cause trouble in later passes. */
687 if (MEM_VOLATILE_P (SET_SRC (set)))
688 return;
689
690 /* Do not use a SUBREG to truncate from one mode to another if truncation
691 is not a nop. */
692 if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
693 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
694 GET_MODE_BITSIZE (GET_MODE (src_reg))))
695 return;
696
697 old_mode = GET_MODE (src_reg);
698 PUT_MODE (src_reg, GET_MODE (src));
699 XEXP (src, 0) = SET_SRC (set);
700
701 /* Include this change in the group so that it's easily undone if
702 one of the changes in the group is invalid. */
703 validate_change (p, &SET_SRC (set), src, 1);
704
705 /* Now walk forward making additional replacements. We want to be able
706 to undo all the changes if a later substitution fails. */
707 while (p = NEXT_INSN (p), p != insn)
708 {
709 if (! INSN_P (p))
710 continue;
711
712 /* Make a tentative change. */
713 validate_replace_rtx_group (src_reg,
714 gen_lowpart_SUBREG (old_mode, src_reg),
715 p);
716 }
717
718 validate_replace_rtx_group (src, src_reg, insn);
719
720 /* Now see if all the changes are valid. */
721 if (! apply_change_group ())
722 {
723 /* One or more changes were no good. Back out everything. */
724 PUT_MODE (src_reg, old_mode);
725 XEXP (src, 0) = src_reg;
726 }
727 else
728 {
729 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
730 if (note)
731 remove_note (p, note);
732 }
733 }
734
735 \f
736 /* If we were not able to update the users of src to use dest directly, try
737 instead moving the value to dest directly before the operation. */
738
739 static void
740 copy_src_to_dest (rtx insn, rtx src, rtx dest, int old_max_uid)
741 {
742 rtx seq;
743 rtx link;
744 rtx next;
745 rtx set;
746 rtx move_insn;
747 rtx *p_insn_notes;
748 rtx *p_move_notes;
749 int src_regno;
750 int dest_regno;
751 int bb;
752 int insn_uid;
753 int move_uid;
754
755 /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
756 or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
757 parameter when there is no frame pointer that is not allocated a register.
758 For now, we just reject them, rather than incrementing the live length. */
759
760 if (REG_P (src)
761 && REG_LIVE_LENGTH (REGNO (src)) > 0
762 && REG_P (dest)
763 && REG_LIVE_LENGTH (REGNO (dest)) > 0
764 && (set = single_set (insn)) != NULL_RTX
765 && !reg_mentioned_p (dest, SET_SRC (set))
766 && GET_MODE (src) == GET_MODE (dest))
767 {
768 int old_num_regs = reg_rtx_no;
769
770 /* Generate the src->dest move. */
771 start_sequence ();
772 emit_move_insn (dest, src);
773 seq = get_insns ();
774 end_sequence ();
775 /* If this sequence uses new registers, we may not use it. */
776 if (old_num_regs != reg_rtx_no
777 || ! validate_replace_rtx (src, dest, insn))
778 {
779 /* We have to restore reg_rtx_no to its old value, lest
780 recompute_reg_usage will try to compute the usage of the
781 new regs, yet reg_n_info is not valid for them. */
782 reg_rtx_no = old_num_regs;
783 return;
784 }
785 emit_insn_before (seq, insn);
786 move_insn = PREV_INSN (insn);
787 p_move_notes = &REG_NOTES (move_insn);
788 p_insn_notes = &REG_NOTES (insn);
789
790 /* Move any notes mentioning src to the move instruction. */
791 for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
792 {
793 next = XEXP (link, 1);
794 if (XEXP (link, 0) == src)
795 {
796 *p_move_notes = link;
797 p_move_notes = &XEXP (link, 1);
798 }
799 else
800 {
801 *p_insn_notes = link;
802 p_insn_notes = &XEXP (link, 1);
803 }
804 }
805
806 *p_move_notes = NULL_RTX;
807 *p_insn_notes = NULL_RTX;
808
809 /* Is the insn the head of a basic block? If so extend it. */
810 insn_uid = INSN_UID (insn);
811 move_uid = INSN_UID (move_insn);
812 if (insn_uid < old_max_uid)
813 {
814 bb = regmove_bb_head[insn_uid];
815 if (bb >= 0)
816 {
817 BB_HEAD (BASIC_BLOCK (bb)) = move_insn;
818 regmove_bb_head[insn_uid] = -1;
819 }
820 }
821
822 /* Update the various register tables. */
823 dest_regno = REGNO (dest);
824 REG_N_SETS (dest_regno) ++;
825 REG_LIVE_LENGTH (dest_regno)++;
826 if (REGNO_FIRST_UID (dest_regno) == insn_uid)
827 REGNO_FIRST_UID (dest_regno) = move_uid;
828
829 src_regno = REGNO (src);
830 if (! find_reg_note (move_insn, REG_DEAD, src))
831 REG_LIVE_LENGTH (src_regno)++;
832
833 if (REGNO_FIRST_UID (src_regno) == insn_uid)
834 REGNO_FIRST_UID (src_regno) = move_uid;
835
836 if (REGNO_LAST_UID (src_regno) == insn_uid)
837 REGNO_LAST_UID (src_regno) = move_uid;
838 }
839 }
840
841 /* reg_set_in_bb[REGNO] points to basic block iff the register is set
842 only once in the given block and has REG_EQUAL note. */
843
844 basic_block *reg_set_in_bb;
845
846 /* Size of reg_set_in_bb array. */
847 static unsigned int max_reg_computed;
848
849 \f
850 /* Return whether REG is set in only one location, and is set to a
851 constant, but is set in a different basic block from INSN (an
852 instructions which uses REG). In this case REG is equivalent to a
853 constant, and we don't want to break that equivalence, because that
854 may increase register pressure and make reload harder. If REG is
855 set in the same basic block as INSN, we don't worry about it,
856 because we'll probably need a register anyhow (??? but what if REG
857 is used in a different basic block as well as this one?). FIRST is
858 the first insn in the function. */
859
860 static bool
861 reg_is_remote_constant_p (rtx reg, rtx insn)
862 {
863 basic_block bb;
864 rtx p;
865 int max;
866
867 if (!reg_set_in_bb)
868 {
869 max_reg_computed = max = max_reg_num ();
870 reg_set_in_bb = xcalloc (max, sizeof (*reg_set_in_bb));
871
872 FOR_EACH_BB (bb)
873 for (p = BB_HEAD (bb); p != NEXT_INSN (BB_END (bb));
874 p = NEXT_INSN (p))
875 {
876 rtx s;
877
878 if (!INSN_P (p))
879 continue;
880 s = single_set (p);
881 /* This is the instruction which sets REG. If there is a
882 REG_EQUAL note, then REG is equivalent to a constant. */
883 if (s != 0
884 && REG_P (SET_DEST (s))
885 && REG_N_SETS (REGNO (SET_DEST (s))) == 1
886 && find_reg_note (p, REG_EQUAL, NULL_RTX))
887 reg_set_in_bb[REGNO (SET_DEST (s))] = bb;
888 }
889 }
890 gcc_assert (REGNO (reg) < max_reg_computed);
891 if (reg_set_in_bb[REGNO (reg)] == NULL)
892 return false;
893 if (reg_set_in_bb[REGNO (reg)] != BLOCK_FOR_INSN (insn))
894 return true;
895 /* Look for the set. */
896 for (p = BB_HEAD (BLOCK_FOR_INSN (insn)); p != insn; p = NEXT_INSN (p))
897 {
898 rtx s;
899
900 if (!INSN_P (p))
901 continue;
902 s = single_set (p);
903 if (s != 0
904 && REG_P (SET_DEST (s)) && REGNO (SET_DEST (s)) == REGNO (reg))
905 {
906 /* The register is set in the same basic block. */
907 return false;
908 }
909 }
910 return true;
911 }
912
913 /* INSN is adding a CONST_INT to a REG. We search backwards looking for
914 another add immediate instruction with the same source and dest registers,
915 and if we find one, we change INSN to an increment, and return 1. If
916 no changes are made, we return 0.
917
918 This changes
919 (set (reg100) (plus reg1 offset1))
920 ...
921 (set (reg100) (plus reg1 offset2))
922 to
923 (set (reg100) (plus reg1 offset1))
924 ...
925 (set (reg100) (plus reg100 offset2-offset1)) */
926
927 /* ??? What does this comment mean? */
928 /* cse disrupts preincrement / postdecrement sequences when it finds a
929 hard register as ultimate source, like the frame pointer. */
930
931 static int
932 fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset)
933 {
934 rtx p, dst_death = 0;
935 int length, num_calls = 0;
936
937 /* If SRC dies in INSN, we'd have to move the death note. This is
938 considered to be very unlikely, so we just skip the optimization
939 in this case. */
940 if (find_regno_note (insn, REG_DEAD, REGNO (src)))
941 return 0;
942
943 /* Scan backward to find the first instruction that sets DST. */
944
945 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
946 {
947 rtx pset;
948
949 /* ??? We can't scan past the end of a basic block without updating
950 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
951 if (perhaps_ends_bb_p (p))
952 break;
953 else if (! INSN_P (p))
954 continue;
955
956 if (find_regno_note (p, REG_DEAD, REGNO (dst)))
957 dst_death = p;
958 if (! dst_death)
959 length++;
960
961 pset = single_set (p);
962 if (pset && SET_DEST (pset) == dst
963 && GET_CODE (SET_SRC (pset)) == PLUS
964 && XEXP (SET_SRC (pset), 0) == src
965 && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
966 {
967 HOST_WIDE_INT newconst
968 = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
969 rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
970
971 if (add && validate_change (insn, &PATTERN (insn), add, 0))
972 {
973 /* Remove the death note for DST from DST_DEATH. */
974 if (dst_death)
975 {
976 remove_death (REGNO (dst), dst_death);
977 REG_LIVE_LENGTH (REGNO (dst)) += length;
978 REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
979 }
980
981 if (dump_file)
982 fprintf (dump_file,
983 "Fixed operand of insn %d.\n",
984 INSN_UID (insn));
985
986 #ifdef AUTO_INC_DEC
987 for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
988 {
989 if (LABEL_P (p)
990 || JUMP_P (p))
991 break;
992 if (! INSN_P (p))
993 continue;
994 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
995 {
996 if (try_auto_increment (p, insn, 0, dst, newconst, 0))
997 return 1;
998 break;
999 }
1000 }
1001 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1002 {
1003 if (LABEL_P (p)
1004 || JUMP_P (p))
1005 break;
1006 if (! INSN_P (p))
1007 continue;
1008 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1009 {
1010 try_auto_increment (p, insn, 0, dst, newconst, 1);
1011 break;
1012 }
1013 }
1014 #endif
1015 return 1;
1016 }
1017 }
1018
1019 if (reg_set_p (dst, PATTERN (p)))
1020 break;
1021
1022 /* If we have passed a call instruction, and the
1023 pseudo-reg SRC is not already live across a call,
1024 then don't perform the optimization. */
1025 /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
1026 hard regs are clobbered. Thus, we only use it for src for
1027 non-call insns. */
1028 if (CALL_P (p))
1029 {
1030 if (! dst_death)
1031 num_calls++;
1032
1033 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1034 break;
1035
1036 if (call_used_regs [REGNO (dst)]
1037 || find_reg_fusage (p, CLOBBER, dst))
1038 break;
1039 }
1040 else if (reg_set_p (src, PATTERN (p)))
1041 break;
1042 }
1043
1044 return 0;
1045 }
1046
1047 /* Main entry for the register move optimization.
1048 F is the first instruction.
1049 NREGS is one plus the highest pseudo-reg number used in the instruction.
1050 REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
1051 (or 0 if none should be output). */
1052
1053 static void
1054 regmove_optimize (rtx f, int nregs)
1055 {
1056 int old_max_uid = get_max_uid ();
1057 rtx insn;
1058 struct match match;
1059 int pass;
1060 int i;
1061 rtx copy_src, copy_dst;
1062 basic_block bb;
1063
1064 /* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
1065 confused by non-call exceptions ending blocks. */
1066 if (flag_non_call_exceptions)
1067 return;
1068
1069 /* Find out where a potential flags register is live, and so that we
1070 can suppress some optimizations in those zones. */
1071 mark_flags_life_zones (discover_flags_reg ());
1072
1073 regno_src_regno = XNEWVEC (int, nregs);
1074 for (i = nregs; --i >= 0; ) regno_src_regno[i] = -1;
1075
1076 regmove_bb_head = XNEWVEC (int, old_max_uid + 1);
1077 for (i = old_max_uid; i >= 0; i--) regmove_bb_head[i] = -1;
1078 FOR_EACH_BB (bb)
1079 regmove_bb_head[INSN_UID (BB_HEAD (bb))] = bb->index;
1080
1081 /* A forward/backward pass. Replace output operands with input operands. */
1082
1083 for (pass = 0; pass <= 2; pass++)
1084 {
1085 if (! flag_regmove && pass >= flag_expensive_optimizations)
1086 goto done;
1087
1088 if (dump_file)
1089 fprintf (dump_file, "Starting %s pass...\n",
1090 pass ? "backward" : "forward");
1091
1092 for (insn = pass ? get_last_insn () : f; insn;
1093 insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
1094 {
1095 rtx set;
1096 int op_no, match_no;
1097
1098 set = single_set (insn);
1099 if (! set)
1100 continue;
1101
1102 if (flag_expensive_optimizations && ! pass
1103 && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
1104 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
1105 && REG_P (XEXP (SET_SRC (set), 0))
1106 && REG_P (SET_DEST (set)))
1107 optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
1108
1109 if (flag_expensive_optimizations && ! pass
1110 && REG_P (SET_SRC (set))
1111 && REG_P (SET_DEST (set)))
1112 {
1113 /* If this is a register-register copy where SRC is not dead,
1114 see if we can optimize it. If this optimization succeeds,
1115 it will become a copy where SRC is dead. */
1116 if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
1117 || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
1118 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
1119 {
1120 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1121 if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1122 optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
1123 if (regno_src_regno[REGNO (SET_DEST (set))] < 0
1124 && SET_SRC (set) != SET_DEST (set))
1125 {
1126 int srcregno = REGNO (SET_SRC (set));
1127 if (regno_src_regno[srcregno] >= 0)
1128 srcregno = regno_src_regno[srcregno];
1129 regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
1130 }
1131 }
1132 }
1133 if (! flag_regmove)
1134 continue;
1135
1136 if (! find_matches (insn, &match))
1137 continue;
1138
1139 /* Now scan through the operands looking for a source operand
1140 which is supposed to match the destination operand.
1141 Then scan forward for an instruction which uses the dest
1142 operand.
1143 If it dies there, then replace the dest in both operands with
1144 the source operand. */
1145
1146 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1147 {
1148 rtx src, dst, src_subreg;
1149 enum reg_class src_class, dst_class;
1150
1151 match_no = match.with[op_no];
1152
1153 /* Nothing to do if the two operands aren't supposed to match. */
1154 if (match_no < 0)
1155 continue;
1156
1157 src = recog_data.operand[op_no];
1158 dst = recog_data.operand[match_no];
1159
1160 if (!REG_P (src))
1161 continue;
1162
1163 src_subreg = src;
1164 if (GET_CODE (dst) == SUBREG
1165 && GET_MODE_SIZE (GET_MODE (dst))
1166 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
1167 {
1168 dst = SUBREG_REG (dst);
1169 src_subreg = lowpart_subreg (GET_MODE (dst),
1170 src, GET_MODE (src));
1171 if (!src_subreg)
1172 continue;
1173 }
1174 if (!REG_P (dst)
1175 || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1176 continue;
1177
1178 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1179 {
1180 if (match.commutative[op_no] < op_no)
1181 regno_src_regno[REGNO (dst)] = REGNO (src);
1182 continue;
1183 }
1184
1185 if (REG_LIVE_LENGTH (REGNO (src)) < 0)
1186 continue;
1187
1188 /* op_no/src must be a read-only operand, and
1189 match_operand/dst must be a write-only operand. */
1190 if (match.use[op_no] != READ
1191 || match.use[match_no] != WRITE)
1192 continue;
1193
1194 if (match.early_clobber[match_no]
1195 && count_occurrences (PATTERN (insn), src, 0) > 1)
1196 continue;
1197
1198 /* Make sure match_operand is the destination. */
1199 if (recog_data.operand[match_no] != SET_DEST (set))
1200 continue;
1201
1202 /* If the operands already match, then there is nothing to do. */
1203 if (operands_match_p (src, dst))
1204 continue;
1205
1206 /* But in the commutative case, we might find a better match. */
1207 if (match.commutative[op_no] >= 0)
1208 {
1209 rtx comm = recog_data.operand[match.commutative[op_no]];
1210 if (operands_match_p (comm, dst)
1211 && (replacement_quality (comm)
1212 >= replacement_quality (src)))
1213 continue;
1214 }
1215
1216 src_class = reg_preferred_class (REGNO (src));
1217 dst_class = reg_preferred_class (REGNO (dst));
1218 if (! regclass_compatible_p (src_class, dst_class))
1219 continue;
1220
1221 if (GET_MODE (src) != GET_MODE (dst))
1222 continue;
1223
1224 if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
1225 op_no, match_no))
1226 break;
1227 }
1228 }
1229 }
1230
1231 /* A backward pass. Replace input operands with output operands. */
1232
1233 if (dump_file)
1234 fprintf (dump_file, "Starting backward pass...\n");
1235
1236 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1237 {
1238 if (INSN_P (insn))
1239 {
1240 int op_no, match_no;
1241 int success = 0;
1242
1243 if (! find_matches (insn, &match))
1244 continue;
1245
1246 /* Now scan through the operands looking for a destination operand
1247 which is supposed to match a source operand.
1248 Then scan backward for an instruction which sets the source
1249 operand. If safe, then replace the source operand with the
1250 dest operand in both instructions. */
1251
1252 copy_src = NULL_RTX;
1253 copy_dst = NULL_RTX;
1254 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1255 {
1256 rtx set, p, src, dst;
1257 rtx src_note, dst_note;
1258 int num_calls = 0;
1259 enum reg_class src_class, dst_class;
1260 int length;
1261
1262 match_no = match.with[op_no];
1263
1264 /* Nothing to do if the two operands aren't supposed to match. */
1265 if (match_no < 0)
1266 continue;
1267
1268 dst = recog_data.operand[match_no];
1269 src = recog_data.operand[op_no];
1270
1271 if (!REG_P (src))
1272 continue;
1273
1274 if (!REG_P (dst)
1275 || REGNO (dst) < FIRST_PSEUDO_REGISTER
1276 || REG_LIVE_LENGTH (REGNO (dst)) < 0
1277 || GET_MODE (src) != GET_MODE (dst))
1278 continue;
1279
1280 /* If the operands already match, then there is nothing to do. */
1281 if (operands_match_p (src, dst))
1282 continue;
1283
1284 if (match.commutative[op_no] >= 0)
1285 {
1286 rtx comm = recog_data.operand[match.commutative[op_no]];
1287 if (operands_match_p (comm, dst))
1288 continue;
1289 }
1290
1291 set = single_set (insn);
1292 if (! set)
1293 continue;
1294
1295 /* Note that single_set ignores parts of a parallel set for
1296 which one of the destinations is REG_UNUSED. We can't
1297 handle that here, since we can wind up rewriting things
1298 such that a single register is set twice within a single
1299 parallel. */
1300 if (reg_set_p (src, insn))
1301 continue;
1302
1303 /* match_no/dst must be a write-only operand, and
1304 operand_operand/src must be a read-only operand. */
1305 if (match.use[op_no] != READ
1306 || match.use[match_no] != WRITE)
1307 continue;
1308
1309 if (match.early_clobber[match_no]
1310 && count_occurrences (PATTERN (insn), src, 0) > 1)
1311 continue;
1312
1313 /* Make sure match_no is the destination. */
1314 if (recog_data.operand[match_no] != SET_DEST (set))
1315 continue;
1316
1317 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1318 {
1319 if (GET_CODE (SET_SRC (set)) == PLUS
1320 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
1321 && XEXP (SET_SRC (set), 0) == src
1322 && fixup_match_2 (insn, dst, src,
1323 XEXP (SET_SRC (set), 1)))
1324 break;
1325 continue;
1326 }
1327 src_class = reg_preferred_class (REGNO (src));
1328 dst_class = reg_preferred_class (REGNO (dst));
1329
1330 if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
1331 {
1332 /* We used to force the copy here like in other cases, but
1333 it produces worse code, as it eliminates no copy
1334 instructions and the copy emitted will be produced by
1335 reload anyway. On patterns with multiple alternatives,
1336 there may be better solution available.
1337
1338 In particular this change produced slower code for numeric
1339 i387 programs. */
1340
1341 continue;
1342 }
1343
1344 if (! regclass_compatible_p (src_class, dst_class))
1345 {
1346 if (!copy_src)
1347 {
1348 copy_src = src;
1349 copy_dst = dst;
1350 }
1351 continue;
1352 }
1353
1354 /* Can not modify an earlier insn to set dst if this insn
1355 uses an old value in the source. */
1356 if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
1357 {
1358 if (!copy_src)
1359 {
1360 copy_src = src;
1361 copy_dst = dst;
1362 }
1363 continue;
1364 }
1365
1366 /* If src is set once in a different basic block,
1367 and is set equal to a constant, then do not use
1368 it for this optimization, as this would make it
1369 no longer equivalent to a constant. */
1370
1371 if (reg_is_remote_constant_p (src, insn))
1372 {
1373 if (!copy_src)
1374 {
1375 copy_src = src;
1376 copy_dst = dst;
1377 }
1378 continue;
1379 }
1380
1381
1382 if (dump_file)
1383 fprintf (dump_file,
1384 "Could fix operand %d of insn %d matching operand %d.\n",
1385 op_no, INSN_UID (insn), match_no);
1386
1387 /* Scan backward to find the first instruction that uses
1388 the input operand. If the operand is set here, then
1389 replace it in both instructions with match_no. */
1390
1391 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
1392 {
1393 rtx pset;
1394
1395 /* ??? We can't scan past the end of a basic block without
1396 updating the register lifetime info
1397 (REG_DEAD/basic_block_live_at_start). */
1398 if (perhaps_ends_bb_p (p))
1399 break;
1400 else if (! INSN_P (p))
1401 continue;
1402
1403 length++;
1404
1405 /* ??? See if all of SRC is set in P. This test is much
1406 more conservative than it needs to be. */
1407 pset = single_set (p);
1408 if (pset && SET_DEST (pset) == src)
1409 {
1410 /* We use validate_replace_rtx, in case there
1411 are multiple identical source operands. All of
1412 them have to be changed at the same time. */
1413 if (validate_replace_rtx (src, dst, insn))
1414 {
1415 if (validate_change (p, &SET_DEST (pset),
1416 dst, 0))
1417 success = 1;
1418 else
1419 {
1420 /* Change all source operands back.
1421 This modifies the dst as a side-effect. */
1422 validate_replace_rtx (dst, src, insn);
1423 /* Now make sure the dst is right. */
1424 validate_change (insn,
1425 recog_data.operand_loc[match_no],
1426 dst, 0);
1427 }
1428 }
1429 break;
1430 }
1431
1432 /* We can't make this change if SRC is read or
1433 partially written in P, since we are going to
1434 eliminate SRC. We can't make this change
1435 if DST is mentioned at all in P,
1436 since we are going to change its value. */
1437 if (reg_overlap_mentioned_p (src, PATTERN (p))
1438 || reg_mentioned_p (dst, PATTERN (p)))
1439 break;
1440
1441 /* If we have passed a call instruction, and the
1442 pseudo-reg DST is not already live across a call,
1443 then don't perform the optimization. */
1444 if (CALL_P (p))
1445 {
1446 num_calls++;
1447
1448 if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
1449 break;
1450 }
1451 }
1452
1453 if (success)
1454 {
1455 int dstno, srcno;
1456
1457 /* Remove the death note for SRC from INSN. */
1458 remove_note (insn, src_note);
1459 /* Move the death note for SRC to P if it is used
1460 there. */
1461 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1462 {
1463 XEXP (src_note, 1) = REG_NOTES (p);
1464 REG_NOTES (p) = src_note;
1465 }
1466 /* If there is a REG_DEAD note for DST on P, then remove
1467 it, because DST is now set there. */
1468 if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
1469 remove_note (p, dst_note);
1470
1471 dstno = REGNO (dst);
1472 srcno = REGNO (src);
1473
1474 REG_N_SETS (dstno)++;
1475 REG_N_SETS (srcno)--;
1476
1477 REG_N_CALLS_CROSSED (dstno) += num_calls;
1478 REG_N_CALLS_CROSSED (srcno) -= num_calls;
1479
1480 REG_LIVE_LENGTH (dstno) += length;
1481 if (REG_LIVE_LENGTH (srcno) >= 0)
1482 {
1483 REG_LIVE_LENGTH (srcno) -= length;
1484 /* REG_LIVE_LENGTH is only an approximation after
1485 combine if sched is not run, so make sure that we
1486 still have a reasonable value. */
1487 if (REG_LIVE_LENGTH (srcno) < 2)
1488 REG_LIVE_LENGTH (srcno) = 2;
1489 }
1490
1491 if (dump_file)
1492 fprintf (dump_file,
1493 "Fixed operand %d of insn %d matching operand %d.\n",
1494 op_no, INSN_UID (insn), match_no);
1495
1496 break;
1497 }
1498 }
1499
1500 /* If we weren't able to replace any of the alternatives, try an
1501 alternative approach of copying the source to the destination. */
1502 if (!success && copy_src != NULL_RTX)
1503 copy_src_to_dest (insn, copy_src, copy_dst, old_max_uid);
1504
1505 }
1506 }
1507
1508 /* In fixup_match_1, some insns may have been inserted after basic block
1509 ends. Fix that here. */
1510 FOR_EACH_BB (bb)
1511 {
1512 rtx end = BB_END (bb);
1513 rtx new = end;
1514 rtx next = NEXT_INSN (new);
1515 while (next != 0 && INSN_UID (next) >= old_max_uid
1516 && (bb->next_bb == EXIT_BLOCK_PTR || BB_HEAD (bb->next_bb) != next))
1517 new = next, next = NEXT_INSN (new);
1518 BB_END (bb) = new;
1519 }
1520
1521 done:
1522 /* Clean up. */
1523 free (regno_src_regno);
1524 free (regmove_bb_head);
1525 if (reg_set_in_bb)
1526 {
1527 free (reg_set_in_bb);
1528 reg_set_in_bb = NULL;
1529 }
1530 }
1531
1532 /* Returns nonzero if INSN's pattern has matching constraints for any operand.
1533 Returns 0 if INSN can't be recognized, or if the alternative can't be
1534 determined.
1535
1536 Initialize the info in MATCHP based on the constraints. */
1537
1538 static int
1539 find_matches (rtx insn, struct match *matchp)
1540 {
1541 int likely_spilled[MAX_RECOG_OPERANDS];
1542 int op_no;
1543 int any_matches = 0;
1544
1545 extract_insn (insn);
1546 if (! constrain_operands (0))
1547 return 0;
1548
1549 /* Must initialize this before main loop, because the code for
1550 the commutative case may set matches for operands other than
1551 the current one. */
1552 for (op_no = recog_data.n_operands; --op_no >= 0; )
1553 matchp->with[op_no] = matchp->commutative[op_no] = -1;
1554
1555 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1556 {
1557 const char *p;
1558 char c;
1559 int i = 0;
1560
1561 p = recog_data.constraints[op_no];
1562
1563 likely_spilled[op_no] = 0;
1564 matchp->use[op_no] = READ;
1565 matchp->early_clobber[op_no] = 0;
1566 if (*p == '=')
1567 matchp->use[op_no] = WRITE;
1568 else if (*p == '+')
1569 matchp->use[op_no] = READWRITE;
1570
1571 for (;*p && i < which_alternative; p++)
1572 if (*p == ',')
1573 i++;
1574
1575 while ((c = *p) != '\0' && c != ',')
1576 {
1577 switch (c)
1578 {
1579 case '=':
1580 break;
1581 case '+':
1582 break;
1583 case '&':
1584 matchp->early_clobber[op_no] = 1;
1585 break;
1586 case '%':
1587 matchp->commutative[op_no] = op_no + 1;
1588 matchp->commutative[op_no + 1] = op_no;
1589 break;
1590
1591 case '0': case '1': case '2': case '3': case '4':
1592 case '5': case '6': case '7': case '8': case '9':
1593 {
1594 char *end;
1595 unsigned long match_ul = strtoul (p, &end, 10);
1596 int match = match_ul;
1597
1598 p = end;
1599
1600 if (match < op_no && likely_spilled[match])
1601 continue;
1602 matchp->with[op_no] = match;
1603 any_matches = 1;
1604 if (matchp->commutative[op_no] >= 0)
1605 matchp->with[matchp->commutative[op_no]] = match;
1606 }
1607 continue;
1608
1609 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
1610 case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
1611 case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
1612 case 'C': case 'D': case 'W': case 'Y': case 'Z':
1613 if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
1614 likely_spilled[op_no] = 1;
1615 break;
1616 }
1617 p += CONSTRAINT_LEN (c, p);
1618 }
1619 }
1620 return any_matches;
1621 }
1622
1623 /* Try to replace all occurrences of DST_REG with SRC in LOC, that is
1624 assumed to be in INSN. */
1625
1626 static void
1627 replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
1628 {
1629 rtx x = *loc;
1630 enum rtx_code code;
1631 const char *fmt;
1632 int i, j;
1633
1634 if (! x)
1635 return;
1636
1637 code = GET_CODE (x);
1638 if (code == REG)
1639 {
1640 if (REGNO (x) != dst_reg)
1641 return;
1642
1643 validate_change (insn, loc, src, 1);
1644
1645 return;
1646 }
1647
1648 /* Process each of our operands recursively. */
1649 fmt = GET_RTX_FORMAT (code);
1650 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1651 if (*fmt == 'e')
1652 replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
1653 else if (*fmt == 'E')
1654 for (j = 0; j < XVECLEN (x, i); j++)
1655 replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
1656 }
1657
1658 /* Try to replace output operand DST in SET, with input operand SRC. SET is
1659 the only set in INSN. INSN has just been recognized and constrained.
1660 SRC is operand number OPERAND_NUMBER in INSN.
1661 DST is operand number MATCH_NUMBER in INSN.
1662 If BACKWARD is nonzero, we have been called in a backward pass.
1663 Return nonzero for success. */
1664
1665 static int
1666 fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
1667 int backward, int operand_number, int match_number)
1668 {
1669 rtx p;
1670 rtx post_inc = 0, post_inc_set = 0, search_end = 0;
1671 int success = 0;
1672 int num_calls = 0, s_num_calls = 0;
1673 enum rtx_code code = NOTE;
1674 HOST_WIDE_INT insn_const = 0, newconst = 0;
1675 rtx overlap = 0; /* need to move insn ? */
1676 rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
1677 int length, s_length;
1678
1679 if (! src_note)
1680 {
1681 /* Look for (set (regX) (op regA constX))
1682 (set (regY) (op regA constY))
1683 and change that to
1684 (set (regA) (op regA constX)).
1685 (set (regY) (op regA constY-constX)).
1686 This works for add and shift operations, if
1687 regA is dead after or set by the second insn. */
1688
1689 code = GET_CODE (SET_SRC (set));
1690 if ((code == PLUS || code == LSHIFTRT
1691 || code == ASHIFT || code == ASHIFTRT)
1692 && XEXP (SET_SRC (set), 0) == src
1693 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1694 insn_const = INTVAL (XEXP (SET_SRC (set), 1));
1695 else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
1696 return 0;
1697 else
1698 /* We might find a src_note while scanning. */
1699 code = NOTE;
1700 }
1701
1702 if (dump_file)
1703 fprintf (dump_file,
1704 "Could fix operand %d of insn %d matching operand %d.\n",
1705 operand_number, INSN_UID (insn), match_number);
1706
1707 /* If SRC is equivalent to a constant set in a different basic block,
1708 then do not use it for this optimization. We want the equivalence
1709 so that if we have to reload this register, we can reload the
1710 constant, rather than extending the lifespan of the register. */
1711 if (reg_is_remote_constant_p (src, insn))
1712 return 0;
1713
1714 /* Scan forward to find the next instruction that
1715 uses the output operand. If the operand dies here,
1716 then replace it in both instructions with
1717 operand_number. */
1718
1719 for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1720 {
1721 if (CALL_P (p))
1722 replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
1723 REGNO (dst), src, p);
1724
1725 /* ??? We can't scan past the end of a basic block without updating
1726 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
1727 if (perhaps_ends_bb_p (p))
1728 break;
1729 else if (! INSN_P (p))
1730 continue;
1731
1732 length++;
1733 if (src_note)
1734 s_length++;
1735
1736 if (reg_set_p (src, p) || reg_set_p (dst, p)
1737 || (GET_CODE (PATTERN (p)) == USE
1738 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
1739 break;
1740
1741 /* See if all of DST dies in P. This test is
1742 slightly more conservative than it needs to be. */
1743 if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
1744 && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
1745 {
1746 /* If we would be moving INSN, check that we won't move it
1747 into the shadow of a live a live flags register. */
1748 /* ??? We only try to move it in front of P, although
1749 we could move it anywhere between OVERLAP and P. */
1750 if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
1751 break;
1752
1753 if (! src_note)
1754 {
1755 rtx q;
1756 rtx set2 = NULL_RTX;
1757
1758 /* If an optimization is done, the value of SRC while P
1759 is executed will be changed. Check that this is OK. */
1760 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1761 break;
1762 for (q = p; q; q = NEXT_INSN (q))
1763 {
1764 /* ??? We can't scan past the end of a basic block without
1765 updating the register lifetime info
1766 (REG_DEAD/basic_block_live_at_start). */
1767 if (perhaps_ends_bb_p (q))
1768 {
1769 q = 0;
1770 break;
1771 }
1772 else if (! INSN_P (q))
1773 continue;
1774 else if (reg_overlap_mentioned_p (src, PATTERN (q))
1775 || reg_set_p (src, q))
1776 break;
1777 }
1778 if (q)
1779 set2 = single_set (q);
1780 if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
1781 || XEXP (SET_SRC (set2), 0) != src
1782 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
1783 || (SET_DEST (set2) != src
1784 && ! find_reg_note (q, REG_DEAD, src)))
1785 {
1786 /* If this is a PLUS, we can still save a register by doing
1787 src += insn_const;
1788 P;
1789 src -= insn_const; .
1790 This also gives opportunities for subsequent
1791 optimizations in the backward pass, so do it there. */
1792 if (code == PLUS && backward
1793 /* Don't do this if we can likely tie DST to SET_DEST
1794 of P later; we can't do this tying here if we got a
1795 hard register. */
1796 && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
1797 && single_set (p)
1798 && REG_P (SET_DEST (single_set (p)))
1799 && (REGNO (SET_DEST (single_set (p)))
1800 < FIRST_PSEUDO_REGISTER))
1801 /* We may only emit an insn directly after P if we
1802 are not in the shadow of a live flags register. */
1803 && GET_MODE (p) == VOIDmode)
1804 {
1805 search_end = q;
1806 q = insn;
1807 set2 = set;
1808 newconst = -insn_const;
1809 code = MINUS;
1810 }
1811 else
1812 break;
1813 }
1814 else
1815 {
1816 newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
1817 /* Reject out of range shifts. */
1818 if (code != PLUS
1819 && (newconst < 0
1820 || ((unsigned HOST_WIDE_INT) newconst
1821 >= (GET_MODE_BITSIZE (GET_MODE
1822 (SET_SRC (set2)))))))
1823 break;
1824 if (code == PLUS)
1825 {
1826 post_inc = q;
1827 if (SET_DEST (set2) != src)
1828 post_inc_set = set2;
1829 }
1830 }
1831 /* We use 1 as last argument to validate_change so that all
1832 changes are accepted or rejected together by apply_change_group
1833 when it is called by validate_replace_rtx . */
1834 validate_change (q, &XEXP (SET_SRC (set2), 1),
1835 GEN_INT (newconst), 1);
1836 }
1837 validate_change (insn, recog_data.operand_loc[match_number], src, 1);
1838 if (validate_replace_rtx (dst, src_subreg, p))
1839 success = 1;
1840 break;
1841 }
1842
1843 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1844 break;
1845 if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
1846 {
1847 /* INSN was already checked to be movable wrt. the registers that it
1848 sets / uses when we found no REG_DEAD note for src on it, but it
1849 still might clobber the flags register. We'll have to check that
1850 we won't insert it into the shadow of a live flags register when
1851 we finally know where we are to move it. */
1852 overlap = p;
1853 src_note = find_reg_note (p, REG_DEAD, src);
1854 }
1855
1856 /* If we have passed a call instruction, and the pseudo-reg SRC is not
1857 already live across a call, then don't perform the optimization. */
1858 if (CALL_P (p))
1859 {
1860 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1861 break;
1862
1863 num_calls++;
1864
1865 if (src_note)
1866 s_num_calls++;
1867
1868 }
1869 }
1870
1871 if (! success)
1872 return 0;
1873
1874 /* Remove the death note for DST from P. */
1875 remove_note (p, dst_note);
1876 if (code == MINUS)
1877 {
1878 post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
1879 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1880 && search_end
1881 && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
1882 post_inc = 0;
1883 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
1884 REG_N_SETS (REGNO (src))++;
1885 REG_LIVE_LENGTH (REGNO (src))++;
1886 }
1887 if (overlap)
1888 {
1889 /* The lifetime of src and dest overlap,
1890 but we can change this by moving insn. */
1891 rtx pat = PATTERN (insn);
1892 if (src_note)
1893 remove_note (overlap, src_note);
1894 if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1895 && code == PLUS
1896 && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
1897 insn = overlap;
1898 else
1899 {
1900 rtx notes = REG_NOTES (insn);
1901
1902 p = emit_insn_after_setloc (pat, PREV_INSN (p), INSN_LOCATOR (insn));
1903 delete_insn (insn);
1904 REG_NOTES (p) = notes;
1905 }
1906 }
1907 /* Sometimes we'd generate src = const; src += n;
1908 if so, replace the instruction that set src
1909 in the first place. */
1910
1911 if (! overlap && (code == PLUS || code == MINUS))
1912 {
1913 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1914 rtx q, set2 = NULL_RTX;
1915 int num_calls2 = 0, s_length2 = 0;
1916
1917 if (note && CONSTANT_P (XEXP (note, 0)))
1918 {
1919 for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
1920 {
1921 /* ??? We can't scan past the end of a basic block without
1922 updating the register lifetime info
1923 (REG_DEAD/basic_block_live_at_start). */
1924 if (perhaps_ends_bb_p (q))
1925 {
1926 q = 0;
1927 break;
1928 }
1929 else if (! INSN_P (q))
1930 continue;
1931
1932 s_length2++;
1933 if (reg_set_p (src, q))
1934 {
1935 set2 = single_set (q);
1936 break;
1937 }
1938 if (reg_overlap_mentioned_p (src, PATTERN (q)))
1939 {
1940 q = 0;
1941 break;
1942 }
1943 if (CALL_P (p))
1944 num_calls2++;
1945 }
1946 if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
1947 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
1948 {
1949 delete_insn (q);
1950 REG_N_SETS (REGNO (src))--;
1951 REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
1952 REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
1953 insn_const = 0;
1954 }
1955 }
1956 }
1957
1958 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1959 && (code == PLUS || code == MINUS) && insn_const
1960 && try_auto_increment (p, insn, 0, src, insn_const, 1))
1961 insn = p;
1962 else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1963 && post_inc
1964 && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
1965 post_inc = 0;
1966 /* If post_inc still prevails, try to find an
1967 insn where it can be used as a pre-in/decrement.
1968 If code is MINUS, this was already tried. */
1969 if (post_inc && code == PLUS
1970 /* Check that newconst is likely to be usable
1971 in a pre-in/decrement before starting the search. */
1972 && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
1973 || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
1974 && exact_log2 (newconst))
1975 {
1976 rtx q, inc_dest;
1977
1978 inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
1979 for (q = post_inc; (q = NEXT_INSN (q)); )
1980 {
1981 /* ??? We can't scan past the end of a basic block without updating
1982 the register lifetime info
1983 (REG_DEAD/basic_block_live_at_start). */
1984 if (perhaps_ends_bb_p (q))
1985 break;
1986 else if (! INSN_P (q))
1987 continue;
1988 else if (src != inc_dest
1989 && (reg_overlap_mentioned_p (src, PATTERN (q))
1990 || reg_set_p (src, q)))
1991 break;
1992 else if (reg_set_p (inc_dest, q))
1993 break;
1994 else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
1995 {
1996 try_auto_increment (q, post_inc,
1997 post_inc_set, inc_dest, newconst, 1);
1998 break;
1999 }
2000 }
2001 }
2002
2003 /* Move the death note for DST to INSN if it is used
2004 there. */
2005 if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
2006 {
2007 XEXP (dst_note, 1) = REG_NOTES (insn);
2008 REG_NOTES (insn) = dst_note;
2009 }
2010
2011 if (src_note)
2012 {
2013 /* Move the death note for SRC from INSN to P. */
2014 if (! overlap)
2015 remove_note (insn, src_note);
2016 XEXP (src_note, 1) = REG_NOTES (p);
2017 REG_NOTES (p) = src_note;
2018
2019 REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
2020 }
2021
2022 REG_N_SETS (REGNO (src))++;
2023 REG_N_SETS (REGNO (dst))--;
2024
2025 REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
2026
2027 REG_LIVE_LENGTH (REGNO (src)) += s_length;
2028 if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
2029 {
2030 REG_LIVE_LENGTH (REGNO (dst)) -= length;
2031 /* REG_LIVE_LENGTH is only an approximation after
2032 combine if sched is not run, so make sure that we
2033 still have a reasonable value. */
2034 if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
2035 REG_LIVE_LENGTH (REGNO (dst)) = 2;
2036 }
2037 if (dump_file)
2038 fprintf (dump_file,
2039 "Fixed operand %d of insn %d matching operand %d.\n",
2040 operand_number, INSN_UID (insn), match_number);
2041 return 1;
2042 }
2043
2044
2045 /* Return nonzero if X is stable and mentions no registers but for
2046 mentioning SRC or mentioning / changing DST . If in doubt, presume
2047 it is unstable.
2048 The rationale is that we want to check if we can move an insn easily
2049 while just paying attention to SRC and DST. */
2050 static int
2051 stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
2052 {
2053 RTX_CODE code = GET_CODE (x);
2054 switch (GET_RTX_CLASS (code))
2055 {
2056 case RTX_UNARY:
2057 case RTX_BIN_ARITH:
2058 case RTX_COMM_ARITH:
2059 case RTX_COMPARE:
2060 case RTX_COMM_COMPARE:
2061 case RTX_TERNARY:
2062 case RTX_BITFIELD_OPS:
2063 {
2064 int i;
2065 const char *fmt = GET_RTX_FORMAT (code);
2066 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2067 if (fmt[i] == 'e'
2068 && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
2069 return 0;
2070 return 1;
2071 }
2072 case RTX_OBJ:
2073 if (code == REG)
2074 return x == src || x == dst;
2075 /* If this is a MEM, look inside - there might be a register hidden in
2076 the address of an unchanging MEM. */
2077 if (code == MEM
2078 && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
2079 return 0;
2080 /* Fall through. */
2081 default:
2082 return ! rtx_unstable_p (x);
2083 }
2084 }
2085 \f
2086 /* Track stack adjustments and stack memory references. Attempt to
2087 reduce the number of stack adjustments by back-propagating across
2088 the memory references.
2089
2090 This is intended primarily for use with targets that do not define
2091 ACCUMULATE_OUTGOING_ARGS. It is of significantly more value to
2092 targets that define PREFERRED_STACK_BOUNDARY more aligned than
2093 STACK_BOUNDARY (e.g. x86), or if not all registers can be pushed
2094 (e.g. x86 fp regs) which would ordinarily have to be implemented
2095 as a sub/mov pair due to restrictions in calls.c.
2096
2097 Propagation stops when any of the insns that need adjusting are
2098 (a) no longer valid because we've exceeded their range, (b) a
2099 non-trivial push instruction, or (c) a call instruction.
2100
2101 Restriction B is based on the assumption that push instructions
2102 are smaller or faster. If a port really wants to remove all
2103 pushes, it should have defined ACCUMULATE_OUTGOING_ARGS. The
2104 one exception that is made is for an add immediately followed
2105 by a push. */
2106
2107 /* This structure records stack memory references between stack adjusting
2108 instructions. */
2109
2110 struct csa_memlist
2111 {
2112 HOST_WIDE_INT sp_offset;
2113 rtx insn, *mem;
2114 struct csa_memlist *next;
2115 };
2116
2117 static int stack_memref_p (rtx);
2118 static rtx single_set_for_csa (rtx);
2119 static void free_csa_memlist (struct csa_memlist *);
2120 static struct csa_memlist *record_one_stack_memref (rtx, rtx *,
2121 struct csa_memlist *);
2122 static int try_apply_stack_adjustment (rtx, struct csa_memlist *,
2123 HOST_WIDE_INT, HOST_WIDE_INT);
2124 static void combine_stack_adjustments_for_block (basic_block);
2125 static int record_stack_memrefs (rtx *, void *);
2126
2127
2128 /* Main entry point for stack adjustment combination. */
2129
2130 static void
2131 combine_stack_adjustments (void)
2132 {
2133 basic_block bb;
2134
2135 FOR_EACH_BB (bb)
2136 combine_stack_adjustments_for_block (bb);
2137 }
2138
2139 /* Recognize a MEM of the form (sp) or (plus sp const). */
2140
2141 static int
2142 stack_memref_p (rtx x)
2143 {
2144 if (!MEM_P (x))
2145 return 0;
2146 x = XEXP (x, 0);
2147
2148 if (x == stack_pointer_rtx)
2149 return 1;
2150 if (GET_CODE (x) == PLUS
2151 && XEXP (x, 0) == stack_pointer_rtx
2152 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2153 return 1;
2154
2155 return 0;
2156 }
2157
2158 /* Recognize either normal single_set or the hack in i386.md for
2159 tying fp and sp adjustments. */
2160
2161 static rtx
2162 single_set_for_csa (rtx insn)
2163 {
2164 int i;
2165 rtx tmp = single_set (insn);
2166 if (tmp)
2167 return tmp;
2168
2169 if (!NONJUMP_INSN_P (insn)
2170 || GET_CODE (PATTERN (insn)) != PARALLEL)
2171 return NULL_RTX;
2172
2173 tmp = PATTERN (insn);
2174 if (GET_CODE (XVECEXP (tmp, 0, 0)) != SET)
2175 return NULL_RTX;
2176
2177 for (i = 1; i < XVECLEN (tmp, 0); ++i)
2178 {
2179 rtx this = XVECEXP (tmp, 0, i);
2180
2181 /* The special case is allowing a no-op set. */
2182 if (GET_CODE (this) == SET
2183 && SET_SRC (this) == SET_DEST (this))
2184 ;
2185 else if (GET_CODE (this) != CLOBBER
2186 && GET_CODE (this) != USE)
2187 return NULL_RTX;
2188 }
2189
2190 return XVECEXP (tmp, 0, 0);
2191 }
2192
2193 /* Free the list of csa_memlist nodes. */
2194
2195 static void
2196 free_csa_memlist (struct csa_memlist *memlist)
2197 {
2198 struct csa_memlist *next;
2199 for (; memlist ; memlist = next)
2200 {
2201 next = memlist->next;
2202 free (memlist);
2203 }
2204 }
2205
2206 /* Create a new csa_memlist node from the given memory reference.
2207 It is already known that the memory is stack_memref_p. */
2208
2209 static struct csa_memlist *
2210 record_one_stack_memref (rtx insn, rtx *mem, struct csa_memlist *next_memlist)
2211 {
2212 struct csa_memlist *ml;
2213
2214 ml = XNEW (struct csa_memlist);
2215
2216 if (XEXP (*mem, 0) == stack_pointer_rtx)
2217 ml->sp_offset = 0;
2218 else
2219 ml->sp_offset = INTVAL (XEXP (XEXP (*mem, 0), 1));
2220
2221 ml->insn = insn;
2222 ml->mem = mem;
2223 ml->next = next_memlist;
2224
2225 return ml;
2226 }
2227
2228 /* Attempt to apply ADJUST to the stack adjusting insn INSN, as well
2229 as each of the memories in MEMLIST. Return true on success. */
2230
2231 static int
2232 try_apply_stack_adjustment (rtx insn, struct csa_memlist *memlist, HOST_WIDE_INT new_adjust,
2233 HOST_WIDE_INT delta)
2234 {
2235 struct csa_memlist *ml;
2236 rtx set;
2237
2238 set = single_set_for_csa (insn);
2239 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);
2240
2241 for (ml = memlist; ml ; ml = ml->next)
2242 validate_change
2243 (ml->insn, ml->mem,
2244 replace_equiv_address_nv (*ml->mem,
2245 plus_constant (stack_pointer_rtx,
2246 ml->sp_offset - delta)), 1);
2247
2248 if (apply_change_group ())
2249 {
2250 /* Succeeded. Update our knowledge of the memory references. */
2251 for (ml = memlist; ml ; ml = ml->next)
2252 ml->sp_offset -= delta;
2253
2254 return 1;
2255 }
2256 else
2257 return 0;
2258 }
2259
2260 /* Called via for_each_rtx and used to record all stack memory references in
2261 the insn and discard all other stack pointer references. */
2262 struct record_stack_memrefs_data
2263 {
2264 rtx insn;
2265 struct csa_memlist *memlist;
2266 };
2267
2268 static int
2269 record_stack_memrefs (rtx *xp, void *data)
2270 {
2271 rtx x = *xp;
2272 struct record_stack_memrefs_data *d =
2273 (struct record_stack_memrefs_data *) data;
2274 if (!x)
2275 return 0;
2276 switch (GET_CODE (x))
2277 {
2278 case MEM:
2279 if (!reg_mentioned_p (stack_pointer_rtx, x))
2280 return -1;
2281 /* We are not able to handle correctly all possible memrefs containing
2282 stack pointer, so this check is necessary. */
2283 if (stack_memref_p (x))
2284 {
2285 d->memlist = record_one_stack_memref (d->insn, xp, d->memlist);
2286 return -1;
2287 }
2288 return 1;
2289 case REG:
2290 /* ??? We want be able to handle non-memory stack pointer
2291 references later. For now just discard all insns referring to
2292 stack pointer outside mem expressions. We would probably
2293 want to teach validate_replace to simplify expressions first.
2294
2295 We can't just compare with STACK_POINTER_RTX because the
2296 reference to the stack pointer might be in some other mode.
2297 In particular, an explicit clobber in an asm statement will
2298 result in a QImode clobber. */
2299 if (REGNO (x) == STACK_POINTER_REGNUM)
2300 return 1;
2301 break;
2302 default:
2303 break;
2304 }
2305 return 0;
2306 }
2307
2308 /* Subroutine of combine_stack_adjustments, called for each basic block. */
2309
2310 static void
2311 combine_stack_adjustments_for_block (basic_block bb)
2312 {
2313 HOST_WIDE_INT last_sp_adjust = 0;
2314 rtx last_sp_set = NULL_RTX;
2315 struct csa_memlist *memlist = NULL;
2316 rtx insn, next, set;
2317 struct record_stack_memrefs_data data;
2318 bool end_of_block = false;
2319
2320 for (insn = BB_HEAD (bb); !end_of_block ; insn = next)
2321 {
2322 end_of_block = insn == BB_END (bb);
2323 next = NEXT_INSN (insn);
2324
2325 if (! INSN_P (insn))
2326 continue;
2327
2328 set = single_set_for_csa (insn);
2329 if (set)
2330 {
2331 rtx dest = SET_DEST (set);
2332 rtx src = SET_SRC (set);
2333
2334 /* Find constant additions to the stack pointer. */
2335 if (dest == stack_pointer_rtx
2336 && GET_CODE (src) == PLUS
2337 && XEXP (src, 0) == stack_pointer_rtx
2338 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2339 {
2340 HOST_WIDE_INT this_adjust = INTVAL (XEXP (src, 1));
2341
2342 /* If we've not seen an adjustment previously, record
2343 it now and continue. */
2344 if (! last_sp_set)
2345 {
2346 last_sp_set = insn;
2347 last_sp_adjust = this_adjust;
2348 continue;
2349 }
2350
2351 /* If not all recorded memrefs can be adjusted, or the
2352 adjustment is now too large for a constant addition,
2353 we cannot merge the two stack adjustments.
2354
2355 Also we need to be careful to not move stack pointer
2356 such that we create stack accesses outside the allocated
2357 area. We can combine an allocation into the first insn,
2358 or a deallocation into the second insn. We can not
2359 combine an allocation followed by a deallocation.
2360
2361 The only somewhat frequent occurrence of the later is when
2362 a function allocates a stack frame but does not use it.
2363 For this case, we would need to analyze rtl stream to be
2364 sure that allocated area is really unused. This means not
2365 only checking the memory references, but also all registers
2366 or global memory references possibly containing a stack
2367 frame address.
2368
2369 Perhaps the best way to address this problem is to teach
2370 gcc not to allocate stack for objects never used. */
2371
2372 /* Combine an allocation into the first instruction. */
2373 if (STACK_GROWS_DOWNWARD ? this_adjust <= 0 : this_adjust >= 0)
2374 {
2375 if (try_apply_stack_adjustment (last_sp_set, memlist,
2376 last_sp_adjust + this_adjust,
2377 this_adjust))
2378 {
2379 /* It worked! */
2380 delete_insn (insn);
2381 last_sp_adjust += this_adjust;
2382 continue;
2383 }
2384 }
2385
2386 /* Otherwise we have a deallocation. Do not combine with
2387 a previous allocation. Combine into the second insn. */
2388 else if (STACK_GROWS_DOWNWARD
2389 ? last_sp_adjust >= 0 : last_sp_adjust <= 0)
2390 {
2391 if (try_apply_stack_adjustment (insn, memlist,
2392 last_sp_adjust + this_adjust,
2393 -last_sp_adjust))
2394 {
2395 /* It worked! */
2396 delete_insn (last_sp_set);
2397 last_sp_set = insn;
2398 last_sp_adjust += this_adjust;
2399 free_csa_memlist (memlist);
2400 memlist = NULL;
2401 continue;
2402 }
2403 }
2404
2405 /* Combination failed. Restart processing from here. If
2406 deallocation+allocation conspired to cancel, we can
2407 delete the old deallocation insn. */
2408 if (last_sp_set && last_sp_adjust == 0)
2409 delete_insn (insn);
2410 free_csa_memlist (memlist);
2411 memlist = NULL;
2412 last_sp_set = insn;
2413 last_sp_adjust = this_adjust;
2414 continue;
2415 }
2416
2417 /* Find a predecrement of exactly the previous adjustment and
2418 turn it into a direct store. Obviously we can't do this if
2419 there were any intervening uses of the stack pointer. */
2420 if (memlist == NULL
2421 && MEM_P (dest)
2422 && ((GET_CODE (XEXP (dest, 0)) == PRE_DEC
2423 && (last_sp_adjust
2424 == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (dest))))
2425 || (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY
2426 && GET_CODE (XEXP (XEXP (dest, 0), 1)) == PLUS
2427 && XEXP (XEXP (XEXP (dest, 0), 1), 0) == stack_pointer_rtx
2428 && (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2429 == CONST_INT)
2430 && (INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2431 == -last_sp_adjust)))
2432 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx
2433 && ! reg_mentioned_p (stack_pointer_rtx, src)
2434 && memory_address_p (GET_MODE (dest), stack_pointer_rtx)
2435 && validate_change (insn, &SET_DEST (set),
2436 replace_equiv_address (dest,
2437 stack_pointer_rtx),
2438 0))
2439 {
2440 delete_insn (last_sp_set);
2441 free_csa_memlist (memlist);
2442 memlist = NULL;
2443 last_sp_set = NULL_RTX;
2444 last_sp_adjust = 0;
2445 continue;
2446 }
2447 }
2448
2449 data.insn = insn;
2450 data.memlist = memlist;
2451 if (!CALL_P (insn) && last_sp_set
2452 && !for_each_rtx (&PATTERN (insn), record_stack_memrefs, &data))
2453 {
2454 memlist = data.memlist;
2455 continue;
2456 }
2457 memlist = data.memlist;
2458
2459 /* Otherwise, we were not able to process the instruction.
2460 Do not continue collecting data across such a one. */
2461 if (last_sp_set
2462 && (CALL_P (insn)
2463 || reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))))
2464 {
2465 if (last_sp_set && last_sp_adjust == 0)
2466 delete_insn (last_sp_set);
2467 free_csa_memlist (memlist);
2468 memlist = NULL;
2469 last_sp_set = NULL_RTX;
2470 last_sp_adjust = 0;
2471 }
2472 }
2473
2474 if (last_sp_set && last_sp_adjust == 0)
2475 delete_insn (last_sp_set);
2476
2477 if (memlist)
2478 free_csa_memlist (memlist);
2479 }
2480 \f
2481 static bool
2482 gate_handle_regmove (void)
2483 {
2484 return (optimize > 0 && flag_regmove);
2485 }
2486
2487
2488 /* Register allocation pre-pass, to reduce number of moves necessary
2489 for two-address machines. */
2490 static unsigned int
2491 rest_of_handle_regmove (void)
2492 {
2493 regmove_optimize (get_insns (), max_reg_num ());
2494 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
2495 return 0;
2496 }
2497
2498 struct tree_opt_pass pass_regmove =
2499 {
2500 "regmove", /* name */
2501 gate_handle_regmove, /* gate */
2502 rest_of_handle_regmove, /* execute */
2503 NULL, /* sub */
2504 NULL, /* next */
2505 0, /* static_pass_number */
2506 TV_REGMOVE, /* tv_id */
2507 0, /* properties_required */
2508 0, /* properties_provided */
2509 0, /* properties_destroyed */
2510 0, /* todo_flags_start */
2511 TODO_dump_func |
2512 TODO_ggc_collect, /* todo_flags_finish */
2513 'N' /* letter */
2514 };
2515
2516
2517 static bool
2518 gate_handle_stack_adjustments (void)
2519 {
2520 return (optimize > 0);
2521 }
2522
2523 static unsigned int
2524 rest_of_handle_stack_adjustments (void)
2525 {
2526 life_analysis (PROP_POSTRELOAD);
2527 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE
2528 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
2529
2530 /* This is kind of a heuristic. We need to run combine_stack_adjustments
2531 even for machines with possibly nonzero RETURN_POPS_ARGS
2532 and ACCUMULATE_OUTGOING_ARGS. We expect that only ports having
2533 push instructions will have popping returns. */
2534 #ifndef PUSH_ROUNDING
2535 if (!ACCUMULATE_OUTGOING_ARGS)
2536 #endif
2537 combine_stack_adjustments ();
2538 return 0;
2539 }
2540
2541 struct tree_opt_pass pass_stack_adjustments =
2542 {
2543 "csa", /* name */
2544 gate_handle_stack_adjustments, /* gate */
2545 rest_of_handle_stack_adjustments, /* execute */
2546 NULL, /* sub */
2547 NULL, /* next */
2548 0, /* static_pass_number */
2549 0, /* tv_id */
2550 0, /* properties_required */
2551 0, /* properties_provided */
2552 0, /* properties_destroyed */
2553 0, /* todo_flags_start */
2554 TODO_dump_func |
2555 TODO_ggc_collect, /* todo_flags_finish */
2556 0 /* letter */
2557 };
2558