regs.h (struct reg_info_def): Remove the last_node_uid and changes_mode fields.
[gcc.git] / gcc / regmove.c
1 /* Move registers around to reduce number of move instructions needed.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This module looks for cases where matching constraints would force
24 an instruction to need a reload, and this reload would be a register
25 to register move. It then attempts to change the registers used by the
26 instruction to avoid the move instruction. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
33 #include "tm_p.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "output.h"
37 #include "regs.h"
38 #include "hard-reg-set.h"
39 #include "flags.h"
40 #include "function.h"
41 #include "expr.h"
42 #include "basic-block.h"
43 #include "except.h"
44 #include "toplev.h"
45 #include "reload.h"
46
47
48 /* Turn STACK_GROWS_DOWNWARD into a boolean. */
49 #ifdef STACK_GROWS_DOWNWARD
50 #undef STACK_GROWS_DOWNWARD
51 #define STACK_GROWS_DOWNWARD 1
52 #else
53 #define STACK_GROWS_DOWNWARD 0
54 #endif
55
56 static int perhaps_ends_bb_p (rtx);
57 static int optimize_reg_copy_1 (rtx, rtx, rtx);
58 static void optimize_reg_copy_2 (rtx, rtx, rtx);
59 static void optimize_reg_copy_3 (rtx, rtx, rtx);
60 static void copy_src_to_dest (rtx, rtx, rtx, int);
61 static int *regmove_bb_head;
62
63 struct match {
64 int with[MAX_RECOG_OPERANDS];
65 enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
66 int commutative[MAX_RECOG_OPERANDS];
67 int early_clobber[MAX_RECOG_OPERANDS];
68 };
69
70 static rtx discover_flags_reg (void);
71 static void mark_flags_life_zones (rtx);
72 static void flags_set_1 (rtx, rtx, void *);
73
74 static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
75 static int find_matches (rtx, struct match *);
76 static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
77 static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int, FILE *);
78 static int reg_is_remote_constant_p (rtx, rtx, rtx);
79 static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
80 static int regclass_compatible_p (int, int);
81 static int replacement_quality (rtx);
82 static int fixup_match_2 (rtx, rtx, rtx, rtx, FILE *);
83
84 /* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
85 causing too much register allocation problems. */
86 static int
87 regclass_compatible_p (int class0, int class1)
88 {
89 return (class0 == class1
90 || (reg_class_subset_p (class0, class1)
91 && ! CLASS_LIKELY_SPILLED_P (class0))
92 || (reg_class_subset_p (class1, class0)
93 && ! CLASS_LIKELY_SPILLED_P (class1)));
94 }
95
96 /* INC_INSN is an instruction that adds INCREMENT to REG.
97 Try to fold INC_INSN as a post/pre in/decrement into INSN.
98 Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
99 Return nonzero for success. */
100 static int
101 try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
102 HOST_WIDE_INT increment, int pre)
103 {
104 enum rtx_code inc_code;
105
106 rtx pset = single_set (insn);
107 if (pset)
108 {
109 /* Can't use the size of SET_SRC, we might have something like
110 (sign_extend:SI (mem:QI ... */
111 rtx use = find_use_as_address (pset, reg, 0);
112 if (use != 0 && use != (rtx) (size_t) 1)
113 {
114 int size = GET_MODE_SIZE (GET_MODE (use));
115 if (0
116 || (HAVE_POST_INCREMENT
117 && pre == 0 && (inc_code = POST_INC, increment == size))
118 || (HAVE_PRE_INCREMENT
119 && pre == 1 && (inc_code = PRE_INC, increment == size))
120 || (HAVE_POST_DECREMENT
121 && pre == 0 && (inc_code = POST_DEC, increment == -size))
122 || (HAVE_PRE_DECREMENT
123 && pre == 1 && (inc_code = PRE_DEC, increment == -size))
124 )
125 {
126 if (inc_insn_set)
127 validate_change
128 (inc_insn,
129 &SET_SRC (inc_insn_set),
130 XEXP (SET_SRC (inc_insn_set), 0), 1);
131 validate_change (insn, &XEXP (use, 0),
132 gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
133 if (apply_change_group ())
134 {
135 /* If there is a REG_DEAD note on this insn, we must
136 change this not to REG_UNUSED meaning that the register
137 is set, but the value is dead. Failure to do so will
138 result in a sched1 abort -- when it recomputes lifetime
139 information, the number of REG_DEAD notes will have
140 changed. */
141 rtx note = find_reg_note (insn, REG_DEAD, reg);
142 if (note)
143 PUT_MODE (note, REG_UNUSED);
144
145 REG_NOTES (insn)
146 = gen_rtx_EXPR_LIST (REG_INC,
147 reg, REG_NOTES (insn));
148 if (! inc_insn_set)
149 delete_insn (inc_insn);
150 return 1;
151 }
152 }
153 }
154 }
155 return 0;
156 }
157 \f
158 /* Determine if the pattern generated by add_optab has a clobber,
159 such as might be issued for a flags hard register. To make the
160 code elsewhere simpler, we handle cc0 in this same framework.
161
162 Return the register if one was discovered. Return NULL_RTX if
163 if no flags were found. Return pc_rtx if we got confused. */
164
165 static rtx
166 discover_flags_reg (void)
167 {
168 rtx tmp;
169 tmp = gen_rtx_REG (word_mode, 10000);
170 tmp = gen_add3_insn (tmp, tmp, const2_rtx);
171
172 /* If we get something that isn't a simple set, or a
173 [(set ..) (clobber ..)], this whole function will go wrong. */
174 if (GET_CODE (tmp) == SET)
175 return NULL_RTX;
176 else if (GET_CODE (tmp) == PARALLEL)
177 {
178 int found;
179
180 if (XVECLEN (tmp, 0) != 2)
181 return pc_rtx;
182 tmp = XVECEXP (tmp, 0, 1);
183 if (GET_CODE (tmp) != CLOBBER)
184 return pc_rtx;
185 tmp = XEXP (tmp, 0);
186
187 /* Don't do anything foolish if the md wanted to clobber a
188 scratch or something. We only care about hard regs.
189 Moreover we don't like the notion of subregs of hard regs. */
190 if (GET_CODE (tmp) == SUBREG
191 && REG_P (SUBREG_REG (tmp))
192 && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
193 return pc_rtx;
194 found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
195
196 return (found ? tmp : NULL_RTX);
197 }
198
199 return pc_rtx;
200 }
201
202 /* It is a tedious task identifying when the flags register is live and
203 when it is safe to optimize. Since we process the instruction stream
204 multiple times, locate and record these live zones by marking the
205 mode of the instructions --
206
207 QImode is used on the instruction at which the flags becomes live.
208
209 HImode is used within the range (exclusive) that the flags are
210 live. Thus the user of the flags is not marked.
211
212 All other instructions are cleared to VOIDmode. */
213
214 /* Used to communicate with flags_set_1. */
215 static rtx flags_set_1_rtx;
216 static int flags_set_1_set;
217
218 static void
219 mark_flags_life_zones (rtx flags)
220 {
221 int flags_regno;
222 int flags_nregs;
223 basic_block block;
224
225 #ifdef HAVE_cc0
226 /* If we found a flags register on a cc0 host, bail. */
227 if (flags == NULL_RTX)
228 flags = cc0_rtx;
229 else if (flags != cc0_rtx)
230 flags = pc_rtx;
231 #endif
232
233 /* Simple cases first: if no flags, clear all modes. If confusing,
234 mark the entire function as being in a flags shadow. */
235 if (flags == NULL_RTX || flags == pc_rtx)
236 {
237 enum machine_mode mode = (flags ? HImode : VOIDmode);
238 rtx insn;
239 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
240 PUT_MODE (insn, mode);
241 return;
242 }
243
244 #ifdef HAVE_cc0
245 flags_regno = -1;
246 flags_nregs = 1;
247 #else
248 flags_regno = REGNO (flags);
249 flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
250 #endif
251 flags_set_1_rtx = flags;
252
253 /* Process each basic block. */
254 FOR_EACH_BB_REVERSE (block)
255 {
256 rtx insn, end;
257 int live;
258
259 insn = BB_HEAD (block);
260 end = BB_END (block);
261
262 /* Look out for the (unlikely) case of flags being live across
263 basic block boundaries. */
264 live = 0;
265 #ifndef HAVE_cc0
266 {
267 int i;
268 for (i = 0; i < flags_nregs; ++i)
269 live |= REGNO_REG_SET_P (block->global_live_at_start,
270 flags_regno + i);
271 }
272 #endif
273
274 while (1)
275 {
276 /* Process liveness in reverse order of importance --
277 alive, death, birth. This lets more important info
278 overwrite the mode of lesser info. */
279
280 if (INSN_P (insn))
281 {
282 #ifdef HAVE_cc0
283 /* In the cc0 case, death is not marked in reg notes,
284 but is instead the mere use of cc0 when it is alive. */
285 if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
286 live = 0;
287 #else
288 /* In the hard reg case, we watch death notes. */
289 if (live && find_regno_note (insn, REG_DEAD, flags_regno))
290 live = 0;
291 #endif
292 PUT_MODE (insn, (live ? HImode : VOIDmode));
293
294 /* In either case, birth is denoted simply by its presence
295 as the destination of a set. */
296 flags_set_1_set = 0;
297 note_stores (PATTERN (insn), flags_set_1, NULL);
298 if (flags_set_1_set)
299 {
300 live = 1;
301 PUT_MODE (insn, QImode);
302 }
303 }
304 else
305 PUT_MODE (insn, (live ? HImode : VOIDmode));
306
307 if (insn == end)
308 break;
309 insn = NEXT_INSN (insn);
310 }
311 }
312 }
313
314 /* A subroutine of mark_flags_life_zones, called through note_stores. */
315
316 static void
317 flags_set_1 (rtx x, rtx pat, void *data ATTRIBUTE_UNUSED)
318 {
319 if (GET_CODE (pat) == SET
320 && reg_overlap_mentioned_p (x, flags_set_1_rtx))
321 flags_set_1_set = 1;
322 }
323 \f
324 static int *regno_src_regno;
325
326 /* Indicate how good a choice REG (which appears as a source) is to replace
327 a destination register with. The higher the returned value, the better
328 the choice. The main objective is to avoid using a register that is
329 a candidate for tying to a hard register, since the output might in
330 turn be a candidate to be tied to a different hard register. */
331 static int
332 replacement_quality (rtx reg)
333 {
334 int src_regno;
335
336 /* Bad if this isn't a register at all. */
337 if (!REG_P (reg))
338 return 0;
339
340 /* If this register is not meant to get a hard register,
341 it is a poor choice. */
342 if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
343 return 0;
344
345 src_regno = regno_src_regno[REGNO (reg)];
346
347 /* If it was not copied from another register, it is fine. */
348 if (src_regno < 0)
349 return 3;
350
351 /* Copied from a hard register? */
352 if (src_regno < FIRST_PSEUDO_REGISTER)
353 return 1;
354
355 /* Copied from a pseudo register - not as bad as from a hard register,
356 yet still cumbersome, since the register live length will be lengthened
357 when the registers get tied. */
358 return 2;
359 }
360 \f
361 /* Return 1 if INSN might end a basic block. */
362
363 static int perhaps_ends_bb_p (rtx insn)
364 {
365 switch (GET_CODE (insn))
366 {
367 case CODE_LABEL:
368 case JUMP_INSN:
369 /* These always end a basic block. */
370 return 1;
371
372 case CALL_INSN:
373 /* A CALL_INSN might be the last insn of a basic block, if it is inside
374 an EH region or if there are nonlocal gotos. Note that this test is
375 very conservative. */
376 if (nonlocal_goto_handler_labels)
377 return 1;
378 /* Fall through. */
379 default:
380 return can_throw_internal (insn);
381 }
382 }
383 \f
384 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
385 in INSN.
386
387 Search forward to see if SRC dies before either it or DEST is modified,
388 but don't scan past the end of a basic block. If so, we can replace SRC
389 with DEST and let SRC die in INSN.
390
391 This will reduce the number of registers live in that range and may enable
392 DEST to be tied to SRC, thus often saving one register in addition to a
393 register-register copy. */
394
395 static int
396 optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
397 {
398 rtx p, q;
399 rtx note;
400 rtx dest_death = 0;
401 int sregno = REGNO (src);
402 int dregno = REGNO (dest);
403
404 /* We don't want to mess with hard regs if register classes are small. */
405 if (sregno == dregno
406 || (SMALL_REGISTER_CLASSES
407 && (sregno < FIRST_PSEUDO_REGISTER
408 || dregno < FIRST_PSEUDO_REGISTER))
409 /* We don't see all updates to SP if they are in an auto-inc memory
410 reference, so we must disallow this optimization on them. */
411 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
412 return 0;
413
414 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
415 {
416 /* ??? We can't scan past the end of a basic block without updating
417 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
418 if (perhaps_ends_bb_p (p))
419 break;
420 else if (! INSN_P (p))
421 continue;
422
423 if (reg_set_p (src, p) || reg_set_p (dest, p)
424 /* If SRC is an asm-declared register, it must not be replaced
425 in any asm. Unfortunately, the REG_EXPR tree for the asm
426 variable may be absent in the SRC rtx, so we can't check the
427 actual register declaration easily (the asm operand will have
428 it, though). To avoid complicating the test for a rare case,
429 we just don't perform register replacement for a hard reg
430 mentioned in an asm. */
431 || (sregno < FIRST_PSEUDO_REGISTER
432 && asm_noperands (PATTERN (p)) >= 0
433 && reg_overlap_mentioned_p (src, PATTERN (p)))
434 /* Don't change hard registers used by a call. */
435 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
436 && find_reg_fusage (p, USE, src))
437 /* Don't change a USE of a register. */
438 || (GET_CODE (PATTERN (p)) == USE
439 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
440 break;
441
442 /* See if all of SRC dies in P. This test is slightly more
443 conservative than it needs to be. */
444 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
445 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
446 {
447 int failed = 0;
448 int d_length = 0;
449 int s_length = 0;
450 int d_n_calls = 0;
451 int s_n_calls = 0;
452
453 /* We can do the optimization. Scan forward from INSN again,
454 replacing regs as we go. Set FAILED if a replacement can't
455 be done. In that case, we can't move the death note for SRC.
456 This should be rare. */
457
458 /* Set to stop at next insn. */
459 for (q = next_real_insn (insn);
460 q != next_real_insn (p);
461 q = next_real_insn (q))
462 {
463 if (reg_overlap_mentioned_p (src, PATTERN (q)))
464 {
465 /* If SRC is a hard register, we might miss some
466 overlapping registers with validate_replace_rtx,
467 so we would have to undo it. We can't if DEST is
468 present in the insn, so fail in that combination
469 of cases. */
470 if (sregno < FIRST_PSEUDO_REGISTER
471 && reg_mentioned_p (dest, PATTERN (q)))
472 failed = 1;
473
474 /* Replace all uses and make sure that the register
475 isn't still present. */
476 else if (validate_replace_rtx (src, dest, q)
477 && (sregno >= FIRST_PSEUDO_REGISTER
478 || ! reg_overlap_mentioned_p (src,
479 PATTERN (q))))
480 ;
481 else
482 {
483 validate_replace_rtx (dest, src, q);
484 failed = 1;
485 }
486 }
487
488 /* For SREGNO, count the total number of insns scanned.
489 For DREGNO, count the total number of insns scanned after
490 passing the death note for DREGNO. */
491 s_length++;
492 if (dest_death)
493 d_length++;
494
495 /* If the insn in which SRC dies is a CALL_INSN, don't count it
496 as a call that has been crossed. Otherwise, count it. */
497 if (q != p && CALL_P (q))
498 {
499 /* Similarly, total calls for SREGNO, total calls beyond
500 the death note for DREGNO. */
501 s_n_calls++;
502 if (dest_death)
503 d_n_calls++;
504 }
505
506 /* If DEST dies here, remove the death note and save it for
507 later. Make sure ALL of DEST dies here; again, this is
508 overly conservative. */
509 if (dest_death == 0
510 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
511 {
512 if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
513 failed = 1, dest_death = 0;
514 else
515 remove_note (q, dest_death);
516 }
517 }
518
519 if (! failed)
520 {
521 /* These counters need to be updated if and only if we are
522 going to move the REG_DEAD note. */
523 if (sregno >= FIRST_PSEUDO_REGISTER)
524 {
525 if (REG_LIVE_LENGTH (sregno) >= 0)
526 {
527 REG_LIVE_LENGTH (sregno) -= s_length;
528 /* REG_LIVE_LENGTH is only an approximation after
529 combine if sched is not run, so make sure that we
530 still have a reasonable value. */
531 if (REG_LIVE_LENGTH (sregno) < 2)
532 REG_LIVE_LENGTH (sregno) = 2;
533 }
534
535 REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
536 }
537
538 /* Move death note of SRC from P to INSN. */
539 remove_note (p, note);
540 XEXP (note, 1) = REG_NOTES (insn);
541 REG_NOTES (insn) = note;
542 }
543
544 /* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
545 if (! dest_death
546 && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
547 {
548 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
549 remove_note (insn, dest_death);
550 }
551
552 /* Put death note of DEST on P if we saw it die. */
553 if (dest_death)
554 {
555 XEXP (dest_death, 1) = REG_NOTES (p);
556 REG_NOTES (p) = dest_death;
557
558 if (dregno >= FIRST_PSEUDO_REGISTER)
559 {
560 /* If and only if we are moving the death note for DREGNO,
561 then we need to update its counters. */
562 if (REG_LIVE_LENGTH (dregno) >= 0)
563 REG_LIVE_LENGTH (dregno) += d_length;
564 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
565 }
566 }
567
568 return ! failed;
569 }
570
571 /* If SRC is a hard register which is set or killed in some other
572 way, we can't do this optimization. */
573 else if (sregno < FIRST_PSEUDO_REGISTER
574 && dead_or_set_p (p, src))
575 break;
576 }
577 return 0;
578 }
579 \f
580 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
581 a sequence of insns that modify DEST followed by an insn that sets
582 SRC to DEST in which DEST dies, with no prior modification of DEST.
583 (There is no need to check if the insns in between actually modify
584 DEST. We should not have cases where DEST is not modified, but
585 the optimization is safe if no such modification is detected.)
586 In that case, we can replace all uses of DEST, starting with INSN and
587 ending with the set of SRC to DEST, with SRC. We do not do this
588 optimization if a CALL_INSN is crossed unless SRC already crosses a
589 call or if DEST dies before the copy back to SRC.
590
591 It is assumed that DEST and SRC are pseudos; it is too complicated to do
592 this for hard registers since the substitutions we may make might fail. */
593
594 static void
595 optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
596 {
597 rtx p, q;
598 rtx set;
599 int sregno = REGNO (src);
600 int dregno = REGNO (dest);
601
602 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
603 {
604 /* ??? We can't scan past the end of a basic block without updating
605 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
606 if (perhaps_ends_bb_p (p))
607 break;
608 else if (! INSN_P (p))
609 continue;
610
611 set = single_set (p);
612 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
613 && find_reg_note (p, REG_DEAD, dest))
614 {
615 /* We can do the optimization. Scan forward from INSN again,
616 replacing regs as we go. */
617
618 /* Set to stop at next insn. */
619 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
620 if (INSN_P (q))
621 {
622 if (reg_mentioned_p (dest, PATTERN (q)))
623 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
624
625
626 if (CALL_P (q))
627 {
628 REG_N_CALLS_CROSSED (dregno)--;
629 REG_N_CALLS_CROSSED (sregno)++;
630 }
631 }
632
633 remove_note (p, find_reg_note (p, REG_DEAD, dest));
634 REG_N_DEATHS (dregno)--;
635 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
636 REG_N_DEATHS (sregno)--;
637 return;
638 }
639
640 if (reg_set_p (src, p)
641 || find_reg_note (p, REG_DEAD, dest)
642 || (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
643 break;
644 }
645 }
646 /* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
647 Look if SRC dies there, and if it is only set once, by loading
648 it from memory. If so, try to incorporate the zero/sign extension
649 into the memory read, change SRC to the mode of DEST, and alter
650 the remaining accesses to use the appropriate SUBREG. This allows
651 SRC and DEST to be tied later. */
652 static void
653 optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
654 {
655 rtx src_reg = XEXP (src, 0);
656 int src_no = REGNO (src_reg);
657 int dst_no = REGNO (dest);
658 rtx p, set;
659 enum machine_mode old_mode;
660
661 if (src_no < FIRST_PSEUDO_REGISTER
662 || dst_no < FIRST_PSEUDO_REGISTER
663 || ! find_reg_note (insn, REG_DEAD, src_reg)
664 || REG_N_DEATHS (src_no) != 1
665 || REG_N_SETS (src_no) != 1)
666 return;
667 for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
668 /* ??? We can't scan past the end of a basic block without updating
669 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
670 if (perhaps_ends_bb_p (p))
671 break;
672
673 if (! p)
674 return;
675
676 if (! (set = single_set (p))
677 || !MEM_P (SET_SRC (set))
678 /* If there's a REG_EQUIV note, this must be an insn that loads an
679 argument. Prefer keeping the note over doing this optimization. */
680 || find_reg_note (p, REG_EQUIV, NULL_RTX)
681 || SET_DEST (set) != src_reg)
682 return;
683
684 /* Be conservative: although this optimization is also valid for
685 volatile memory references, that could cause trouble in later passes. */
686 if (MEM_VOLATILE_P (SET_SRC (set)))
687 return;
688
689 /* Do not use a SUBREG to truncate from one mode to another if truncation
690 is not a nop. */
691 if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
692 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
693 GET_MODE_BITSIZE (GET_MODE (src_reg))))
694 return;
695
696 old_mode = GET_MODE (src_reg);
697 PUT_MODE (src_reg, GET_MODE (src));
698 XEXP (src, 0) = SET_SRC (set);
699
700 /* Include this change in the group so that it's easily undone if
701 one of the changes in the group is invalid. */
702 validate_change (p, &SET_SRC (set), src, 1);
703
704 /* Now walk forward making additional replacements. We want to be able
705 to undo all the changes if a later substitution fails. */
706 while (p = NEXT_INSN (p), p != insn)
707 {
708 if (! INSN_P (p))
709 continue;
710
711 /* Make a tentative change. */
712 validate_replace_rtx_group (src_reg,
713 gen_lowpart_SUBREG (old_mode, src_reg),
714 p);
715 }
716
717 validate_replace_rtx_group (src, src_reg, insn);
718
719 /* Now see if all the changes are valid. */
720 if (! apply_change_group ())
721 {
722 /* One or more changes were no good. Back out everything. */
723 PUT_MODE (src_reg, old_mode);
724 XEXP (src, 0) = src_reg;
725 }
726 else
727 {
728 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
729 if (note)
730 remove_note (p, note);
731 }
732 }
733
734 \f
735 /* If we were not able to update the users of src to use dest directly, try
736 instead moving the value to dest directly before the operation. */
737
738 static void
739 copy_src_to_dest (rtx insn, rtx src, rtx dest, int old_max_uid)
740 {
741 rtx seq;
742 rtx link;
743 rtx next;
744 rtx set;
745 rtx move_insn;
746 rtx *p_insn_notes;
747 rtx *p_move_notes;
748 int src_regno;
749 int dest_regno;
750 int bb;
751 int insn_uid;
752 int move_uid;
753
754 /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
755 or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
756 parameter when there is no frame pointer that is not allocated a register.
757 For now, we just reject them, rather than incrementing the live length. */
758
759 if (REG_P (src)
760 && REG_LIVE_LENGTH (REGNO (src)) > 0
761 && REG_P (dest)
762 && REG_LIVE_LENGTH (REGNO (dest)) > 0
763 && (set = single_set (insn)) != NULL_RTX
764 && !reg_mentioned_p (dest, SET_SRC (set))
765 && GET_MODE (src) == GET_MODE (dest))
766 {
767 int old_num_regs = reg_rtx_no;
768
769 /* Generate the src->dest move. */
770 start_sequence ();
771 emit_move_insn (dest, src);
772 seq = get_insns ();
773 end_sequence ();
774 /* If this sequence uses new registers, we may not use it. */
775 if (old_num_regs != reg_rtx_no
776 || ! validate_replace_rtx (src, dest, insn))
777 {
778 /* We have to restore reg_rtx_no to its old value, lest
779 recompute_reg_usage will try to compute the usage of the
780 new regs, yet reg_n_info is not valid for them. */
781 reg_rtx_no = old_num_regs;
782 return;
783 }
784 emit_insn_before (seq, insn);
785 move_insn = PREV_INSN (insn);
786 p_move_notes = &REG_NOTES (move_insn);
787 p_insn_notes = &REG_NOTES (insn);
788
789 /* Move any notes mentioning src to the move instruction. */
790 for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
791 {
792 next = XEXP (link, 1);
793 if (XEXP (link, 0) == src)
794 {
795 *p_move_notes = link;
796 p_move_notes = &XEXP (link, 1);
797 }
798 else
799 {
800 *p_insn_notes = link;
801 p_insn_notes = &XEXP (link, 1);
802 }
803 }
804
805 *p_move_notes = NULL_RTX;
806 *p_insn_notes = NULL_RTX;
807
808 /* Is the insn the head of a basic block? If so extend it. */
809 insn_uid = INSN_UID (insn);
810 move_uid = INSN_UID (move_insn);
811 if (insn_uid < old_max_uid)
812 {
813 bb = regmove_bb_head[insn_uid];
814 if (bb >= 0)
815 {
816 BB_HEAD (BASIC_BLOCK (bb)) = move_insn;
817 regmove_bb_head[insn_uid] = -1;
818 }
819 }
820
821 /* Update the various register tables. */
822 dest_regno = REGNO (dest);
823 REG_N_SETS (dest_regno) ++;
824 REG_LIVE_LENGTH (dest_regno)++;
825 if (REGNO_FIRST_UID (dest_regno) == insn_uid)
826 REGNO_FIRST_UID (dest_regno) = move_uid;
827
828 src_regno = REGNO (src);
829 if (! find_reg_note (move_insn, REG_DEAD, src))
830 REG_LIVE_LENGTH (src_regno)++;
831
832 if (REGNO_FIRST_UID (src_regno) == insn_uid)
833 REGNO_FIRST_UID (src_regno) = move_uid;
834
835 if (REGNO_LAST_UID (src_regno) == insn_uid)
836 REGNO_LAST_UID (src_regno) = move_uid;
837 }
838 }
839
840 \f
841 /* Return whether REG is set in only one location, and is set to a
842 constant, but is set in a different basic block from INSN (an
843 instructions which uses REG). In this case REG is equivalent to a
844 constant, and we don't want to break that equivalence, because that
845 may increase register pressure and make reload harder. If REG is
846 set in the same basic block as INSN, we don't worry about it,
847 because we'll probably need a register anyhow (??? but what if REG
848 is used in a different basic block as well as this one?). FIRST is
849 the first insn in the function. */
850
851 static int
852 reg_is_remote_constant_p (rtx reg, rtx insn, rtx first)
853 {
854 rtx p;
855
856 if (REG_N_SETS (REGNO (reg)) != 1)
857 return 0;
858
859 /* Look for the set. */
860 for (p = LOG_LINKS (insn); p; p = XEXP (p, 1))
861 {
862 rtx s;
863
864 if (REG_NOTE_KIND (p) != 0)
865 continue;
866 s = single_set (XEXP (p, 0));
867 if (s != 0
868 && REG_P (SET_DEST (s))
869 && REGNO (SET_DEST (s)) == REGNO (reg))
870 {
871 /* The register is set in the same basic block. */
872 return 0;
873 }
874 }
875
876 for (p = first; p && p != insn; p = NEXT_INSN (p))
877 {
878 rtx s;
879
880 if (! INSN_P (p))
881 continue;
882 s = single_set (p);
883 if (s != 0
884 && REG_P (SET_DEST (s))
885 && REGNO (SET_DEST (s)) == REGNO (reg))
886 {
887 /* This is the instruction which sets REG. If there is a
888 REG_EQUAL note, then REG is equivalent to a constant. */
889 if (find_reg_note (p, REG_EQUAL, NULL_RTX))
890 return 1;
891 return 0;
892 }
893 }
894
895 return 0;
896 }
897
898 /* INSN is adding a CONST_INT to a REG. We search backwards looking for
899 another add immediate instruction with the same source and dest registers,
900 and if we find one, we change INSN to an increment, and return 1. If
901 no changes are made, we return 0.
902
903 This changes
904 (set (reg100) (plus reg1 offset1))
905 ...
906 (set (reg100) (plus reg1 offset2))
907 to
908 (set (reg100) (plus reg1 offset1))
909 ...
910 (set (reg100) (plus reg100 offset2-offset1)) */
911
912 /* ??? What does this comment mean? */
913 /* cse disrupts preincrement / postdecrement sequences when it finds a
914 hard register as ultimate source, like the frame pointer. */
915
916 static int
917 fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset, FILE *regmove_dump_file)
918 {
919 rtx p, dst_death = 0;
920 int length, num_calls = 0;
921
922 /* If SRC dies in INSN, we'd have to move the death note. This is
923 considered to be very unlikely, so we just skip the optimization
924 in this case. */
925 if (find_regno_note (insn, REG_DEAD, REGNO (src)))
926 return 0;
927
928 /* Scan backward to find the first instruction that sets DST. */
929
930 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
931 {
932 rtx pset;
933
934 /* ??? We can't scan past the end of a basic block without updating
935 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
936 if (perhaps_ends_bb_p (p))
937 break;
938 else if (! INSN_P (p))
939 continue;
940
941 if (find_regno_note (p, REG_DEAD, REGNO (dst)))
942 dst_death = p;
943 if (! dst_death)
944 length++;
945
946 pset = single_set (p);
947 if (pset && SET_DEST (pset) == dst
948 && GET_CODE (SET_SRC (pset)) == PLUS
949 && XEXP (SET_SRC (pset), 0) == src
950 && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
951 {
952 HOST_WIDE_INT newconst
953 = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
954 rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
955
956 if (add && validate_change (insn, &PATTERN (insn), add, 0))
957 {
958 /* Remove the death note for DST from DST_DEATH. */
959 if (dst_death)
960 {
961 remove_death (REGNO (dst), dst_death);
962 REG_LIVE_LENGTH (REGNO (dst)) += length;
963 REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
964 }
965
966 if (regmove_dump_file)
967 fprintf (regmove_dump_file,
968 "Fixed operand of insn %d.\n",
969 INSN_UID (insn));
970
971 #ifdef AUTO_INC_DEC
972 for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
973 {
974 if (LABEL_P (p)
975 || JUMP_P (p))
976 break;
977 if (! INSN_P (p))
978 continue;
979 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
980 {
981 if (try_auto_increment (p, insn, 0, dst, newconst, 0))
982 return 1;
983 break;
984 }
985 }
986 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
987 {
988 if (LABEL_P (p)
989 || JUMP_P (p))
990 break;
991 if (! INSN_P (p))
992 continue;
993 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
994 {
995 try_auto_increment (p, insn, 0, dst, newconst, 1);
996 break;
997 }
998 }
999 #endif
1000 return 1;
1001 }
1002 }
1003
1004 if (reg_set_p (dst, PATTERN (p)))
1005 break;
1006
1007 /* If we have passed a call instruction, and the
1008 pseudo-reg SRC is not already live across a call,
1009 then don't perform the optimization. */
1010 /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
1011 hard regs are clobbered. Thus, we only use it for src for
1012 non-call insns. */
1013 if (CALL_P (p))
1014 {
1015 if (! dst_death)
1016 num_calls++;
1017
1018 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1019 break;
1020
1021 if (call_used_regs [REGNO (dst)]
1022 || find_reg_fusage (p, CLOBBER, dst))
1023 break;
1024 }
1025 else if (reg_set_p (src, PATTERN (p)))
1026 break;
1027 }
1028
1029 return 0;
1030 }
1031
1032 /* Main entry for the register move optimization.
1033 F is the first instruction.
1034 NREGS is one plus the highest pseudo-reg number used in the instruction.
1035 REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
1036 (or 0 if none should be output). */
1037
1038 void
1039 regmove_optimize (rtx f, int nregs, FILE *regmove_dump_file)
1040 {
1041 int old_max_uid = get_max_uid ();
1042 rtx insn;
1043 struct match match;
1044 int pass;
1045 int i;
1046 rtx copy_src, copy_dst;
1047 basic_block bb;
1048
1049 /* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
1050 confused by non-call exceptions ending blocks. */
1051 if (flag_non_call_exceptions)
1052 return;
1053
1054 /* Find out where a potential flags register is live, and so that we
1055 can suppress some optimizations in those zones. */
1056 mark_flags_life_zones (discover_flags_reg ());
1057
1058 regno_src_regno = xmalloc (sizeof *regno_src_regno * nregs);
1059 for (i = nregs; --i >= 0; ) regno_src_regno[i] = -1;
1060
1061 regmove_bb_head = xmalloc (sizeof (int) * (old_max_uid + 1));
1062 for (i = old_max_uid; i >= 0; i--) regmove_bb_head[i] = -1;
1063 FOR_EACH_BB (bb)
1064 regmove_bb_head[INSN_UID (BB_HEAD (bb))] = bb->index;
1065
1066 /* A forward/backward pass. Replace output operands with input operands. */
1067
1068 for (pass = 0; pass <= 2; pass++)
1069 {
1070 if (! flag_regmove && pass >= flag_expensive_optimizations)
1071 goto done;
1072
1073 if (regmove_dump_file)
1074 fprintf (regmove_dump_file, "Starting %s pass...\n",
1075 pass ? "backward" : "forward");
1076
1077 for (insn = pass ? get_last_insn () : f; insn;
1078 insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
1079 {
1080 rtx set;
1081 int op_no, match_no;
1082
1083 set = single_set (insn);
1084 if (! set)
1085 continue;
1086
1087 if (flag_expensive_optimizations && ! pass
1088 && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
1089 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
1090 && REG_P (XEXP (SET_SRC (set), 0))
1091 && REG_P (SET_DEST (set)))
1092 optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
1093
1094 if (flag_expensive_optimizations && ! pass
1095 && REG_P (SET_SRC (set))
1096 && REG_P (SET_DEST (set)))
1097 {
1098 /* If this is a register-register copy where SRC is not dead,
1099 see if we can optimize it. If this optimization succeeds,
1100 it will become a copy where SRC is dead. */
1101 if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
1102 || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
1103 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
1104 {
1105 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1106 if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1107 optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
1108 if (regno_src_regno[REGNO (SET_DEST (set))] < 0
1109 && SET_SRC (set) != SET_DEST (set))
1110 {
1111 int srcregno = REGNO (SET_SRC (set));
1112 if (regno_src_regno[srcregno] >= 0)
1113 srcregno = regno_src_regno[srcregno];
1114 regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
1115 }
1116 }
1117 }
1118 if (! flag_regmove)
1119 continue;
1120
1121 if (! find_matches (insn, &match))
1122 continue;
1123
1124 /* Now scan through the operands looking for a source operand
1125 which is supposed to match the destination operand.
1126 Then scan forward for an instruction which uses the dest
1127 operand.
1128 If it dies there, then replace the dest in both operands with
1129 the source operand. */
1130
1131 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1132 {
1133 rtx src, dst, src_subreg;
1134 enum reg_class src_class, dst_class;
1135
1136 match_no = match.with[op_no];
1137
1138 /* Nothing to do if the two operands aren't supposed to match. */
1139 if (match_no < 0)
1140 continue;
1141
1142 src = recog_data.operand[op_no];
1143 dst = recog_data.operand[match_no];
1144
1145 if (!REG_P (src))
1146 continue;
1147
1148 src_subreg = src;
1149 if (GET_CODE (dst) == SUBREG
1150 && GET_MODE_SIZE (GET_MODE (dst))
1151 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
1152 {
1153 src_subreg
1154 = gen_rtx_SUBREG (GET_MODE (SUBREG_REG (dst)),
1155 src, SUBREG_BYTE (dst));
1156 dst = SUBREG_REG (dst);
1157 }
1158 if (!REG_P (dst)
1159 || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1160 continue;
1161
1162 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1163 {
1164 if (match.commutative[op_no] < op_no)
1165 regno_src_regno[REGNO (dst)] = REGNO (src);
1166 continue;
1167 }
1168
1169 if (REG_LIVE_LENGTH (REGNO (src)) < 0)
1170 continue;
1171
1172 /* op_no/src must be a read-only operand, and
1173 match_operand/dst must be a write-only operand. */
1174 if (match.use[op_no] != READ
1175 || match.use[match_no] != WRITE)
1176 continue;
1177
1178 if (match.early_clobber[match_no]
1179 && count_occurrences (PATTERN (insn), src, 0) > 1)
1180 continue;
1181
1182 /* Make sure match_operand is the destination. */
1183 if (recog_data.operand[match_no] != SET_DEST (set))
1184 continue;
1185
1186 /* If the operands already match, then there is nothing to do. */
1187 if (operands_match_p (src, dst))
1188 continue;
1189
1190 /* But in the commutative case, we might find a better match. */
1191 if (match.commutative[op_no] >= 0)
1192 {
1193 rtx comm = recog_data.operand[match.commutative[op_no]];
1194 if (operands_match_p (comm, dst)
1195 && (replacement_quality (comm)
1196 >= replacement_quality (src)))
1197 continue;
1198 }
1199
1200 src_class = reg_preferred_class (REGNO (src));
1201 dst_class = reg_preferred_class (REGNO (dst));
1202 if (! regclass_compatible_p (src_class, dst_class))
1203 continue;
1204
1205 if (GET_MODE (src) != GET_MODE (dst))
1206 continue;
1207
1208 if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
1209 op_no, match_no,
1210 regmove_dump_file))
1211 break;
1212 }
1213 }
1214 }
1215
1216 /* A backward pass. Replace input operands with output operands. */
1217
1218 if (regmove_dump_file)
1219 fprintf (regmove_dump_file, "Starting backward pass...\n");
1220
1221 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1222 {
1223 if (INSN_P (insn))
1224 {
1225 int op_no, match_no;
1226 int success = 0;
1227
1228 if (! find_matches (insn, &match))
1229 continue;
1230
1231 /* Now scan through the operands looking for a destination operand
1232 which is supposed to match a source operand.
1233 Then scan backward for an instruction which sets the source
1234 operand. If safe, then replace the source operand with the
1235 dest operand in both instructions. */
1236
1237 copy_src = NULL_RTX;
1238 copy_dst = NULL_RTX;
1239 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1240 {
1241 rtx set, p, src, dst;
1242 rtx src_note, dst_note;
1243 int num_calls = 0;
1244 enum reg_class src_class, dst_class;
1245 int length;
1246
1247 match_no = match.with[op_no];
1248
1249 /* Nothing to do if the two operands aren't supposed to match. */
1250 if (match_no < 0)
1251 continue;
1252
1253 dst = recog_data.operand[match_no];
1254 src = recog_data.operand[op_no];
1255
1256 if (!REG_P (src))
1257 continue;
1258
1259 if (!REG_P (dst)
1260 || REGNO (dst) < FIRST_PSEUDO_REGISTER
1261 || REG_LIVE_LENGTH (REGNO (dst)) < 0
1262 || GET_MODE (src) != GET_MODE (dst))
1263 continue;
1264
1265 /* If the operands already match, then there is nothing to do. */
1266 if (operands_match_p (src, dst))
1267 continue;
1268
1269 if (match.commutative[op_no] >= 0)
1270 {
1271 rtx comm = recog_data.operand[match.commutative[op_no]];
1272 if (operands_match_p (comm, dst))
1273 continue;
1274 }
1275
1276 set = single_set (insn);
1277 if (! set)
1278 continue;
1279
1280 /* Note that single_set ignores parts of a parallel set for
1281 which one of the destinations is REG_UNUSED. We can't
1282 handle that here, since we can wind up rewriting things
1283 such that a single register is set twice within a single
1284 parallel. */
1285 if (reg_set_p (src, insn))
1286 continue;
1287
1288 /* match_no/dst must be a write-only operand, and
1289 operand_operand/src must be a read-only operand. */
1290 if (match.use[op_no] != READ
1291 || match.use[match_no] != WRITE)
1292 continue;
1293
1294 if (match.early_clobber[match_no]
1295 && count_occurrences (PATTERN (insn), src, 0) > 1)
1296 continue;
1297
1298 /* Make sure match_no is the destination. */
1299 if (recog_data.operand[match_no] != SET_DEST (set))
1300 continue;
1301
1302 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1303 {
1304 if (GET_CODE (SET_SRC (set)) == PLUS
1305 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
1306 && XEXP (SET_SRC (set), 0) == src
1307 && fixup_match_2 (insn, dst, src,
1308 XEXP (SET_SRC (set), 1),
1309 regmove_dump_file))
1310 break;
1311 continue;
1312 }
1313 src_class = reg_preferred_class (REGNO (src));
1314 dst_class = reg_preferred_class (REGNO (dst));
1315
1316 if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
1317 {
1318 /* We used to force the copy here like in other cases, but
1319 it produces worse code, as it eliminates no copy
1320 instructions and the copy emitted will be produced by
1321 reload anyway. On patterns with multiple alternatives,
1322 there may be better solution available.
1323
1324 In particular this change produced slower code for numeric
1325 i387 programs. */
1326
1327 continue;
1328 }
1329
1330 if (! regclass_compatible_p (src_class, dst_class))
1331 {
1332 if (!copy_src)
1333 {
1334 copy_src = src;
1335 copy_dst = dst;
1336 }
1337 continue;
1338 }
1339
1340 /* Can not modify an earlier insn to set dst if this insn
1341 uses an old value in the source. */
1342 if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
1343 {
1344 if (!copy_src)
1345 {
1346 copy_src = src;
1347 copy_dst = dst;
1348 }
1349 continue;
1350 }
1351
1352 /* If src is set once in a different basic block,
1353 and is set equal to a constant, then do not use
1354 it for this optimization, as this would make it
1355 no longer equivalent to a constant. */
1356
1357 if (reg_is_remote_constant_p (src, insn, f))
1358 {
1359 if (!copy_src)
1360 {
1361 copy_src = src;
1362 copy_dst = dst;
1363 }
1364 continue;
1365 }
1366
1367
1368 if (regmove_dump_file)
1369 fprintf (regmove_dump_file,
1370 "Could fix operand %d of insn %d matching operand %d.\n",
1371 op_no, INSN_UID (insn), match_no);
1372
1373 /* Scan backward to find the first instruction that uses
1374 the input operand. If the operand is set here, then
1375 replace it in both instructions with match_no. */
1376
1377 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
1378 {
1379 rtx pset;
1380
1381 /* ??? We can't scan past the end of a basic block without
1382 updating the register lifetime info
1383 (REG_DEAD/basic_block_live_at_start). */
1384 if (perhaps_ends_bb_p (p))
1385 break;
1386 else if (! INSN_P (p))
1387 continue;
1388
1389 length++;
1390
1391 /* ??? See if all of SRC is set in P. This test is much
1392 more conservative than it needs to be. */
1393 pset = single_set (p);
1394 if (pset && SET_DEST (pset) == src)
1395 {
1396 /* We use validate_replace_rtx, in case there
1397 are multiple identical source operands. All of
1398 them have to be changed at the same time. */
1399 if (validate_replace_rtx (src, dst, insn))
1400 {
1401 if (validate_change (p, &SET_DEST (pset),
1402 dst, 0))
1403 success = 1;
1404 else
1405 {
1406 /* Change all source operands back.
1407 This modifies the dst as a side-effect. */
1408 validate_replace_rtx (dst, src, insn);
1409 /* Now make sure the dst is right. */
1410 validate_change (insn,
1411 recog_data.operand_loc[match_no],
1412 dst, 0);
1413 }
1414 }
1415 break;
1416 }
1417
1418 if (reg_overlap_mentioned_p (src, PATTERN (p))
1419 || reg_overlap_mentioned_p (dst, PATTERN (p)))
1420 break;
1421
1422 /* If we have passed a call instruction, and the
1423 pseudo-reg DST is not already live across a call,
1424 then don't perform the optimization. */
1425 if (CALL_P (p))
1426 {
1427 num_calls++;
1428
1429 if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
1430 break;
1431 }
1432 }
1433
1434 if (success)
1435 {
1436 int dstno, srcno;
1437
1438 /* Remove the death note for SRC from INSN. */
1439 remove_note (insn, src_note);
1440 /* Move the death note for SRC to P if it is used
1441 there. */
1442 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1443 {
1444 XEXP (src_note, 1) = REG_NOTES (p);
1445 REG_NOTES (p) = src_note;
1446 }
1447 /* If there is a REG_DEAD note for DST on P, then remove
1448 it, because DST is now set there. */
1449 if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
1450 remove_note (p, dst_note);
1451
1452 dstno = REGNO (dst);
1453 srcno = REGNO (src);
1454
1455 REG_N_SETS (dstno)++;
1456 REG_N_SETS (srcno)--;
1457
1458 REG_N_CALLS_CROSSED (dstno) += num_calls;
1459 REG_N_CALLS_CROSSED (srcno) -= num_calls;
1460
1461 REG_LIVE_LENGTH (dstno) += length;
1462 if (REG_LIVE_LENGTH (srcno) >= 0)
1463 {
1464 REG_LIVE_LENGTH (srcno) -= length;
1465 /* REG_LIVE_LENGTH is only an approximation after
1466 combine if sched is not run, so make sure that we
1467 still have a reasonable value. */
1468 if (REG_LIVE_LENGTH (srcno) < 2)
1469 REG_LIVE_LENGTH (srcno) = 2;
1470 }
1471
1472 if (regmove_dump_file)
1473 fprintf (regmove_dump_file,
1474 "Fixed operand %d of insn %d matching operand %d.\n",
1475 op_no, INSN_UID (insn), match_no);
1476
1477 break;
1478 }
1479 }
1480
1481 /* If we weren't able to replace any of the alternatives, try an
1482 alternative approach of copying the source to the destination. */
1483 if (!success && copy_src != NULL_RTX)
1484 copy_src_to_dest (insn, copy_src, copy_dst, old_max_uid);
1485
1486 }
1487 }
1488
1489 /* In fixup_match_1, some insns may have been inserted after basic block
1490 ends. Fix that here. */
1491 FOR_EACH_BB (bb)
1492 {
1493 rtx end = BB_END (bb);
1494 rtx new = end;
1495 rtx next = NEXT_INSN (new);
1496 while (next != 0 && INSN_UID (next) >= old_max_uid
1497 && (bb->next_bb == EXIT_BLOCK_PTR || BB_HEAD (bb->next_bb) != next))
1498 new = next, next = NEXT_INSN (new);
1499 BB_END (bb) = new;
1500 }
1501
1502 done:
1503 /* Clean up. */
1504 free (regno_src_regno);
1505 free (regmove_bb_head);
1506 }
1507
1508 /* Returns nonzero if INSN's pattern has matching constraints for any operand.
1509 Returns 0 if INSN can't be recognized, or if the alternative can't be
1510 determined.
1511
1512 Initialize the info in MATCHP based on the constraints. */
1513
1514 static int
1515 find_matches (rtx insn, struct match *matchp)
1516 {
1517 int likely_spilled[MAX_RECOG_OPERANDS];
1518 int op_no;
1519 int any_matches = 0;
1520
1521 extract_insn (insn);
1522 if (! constrain_operands (0))
1523 return 0;
1524
1525 /* Must initialize this before main loop, because the code for
1526 the commutative case may set matches for operands other than
1527 the current one. */
1528 for (op_no = recog_data.n_operands; --op_no >= 0; )
1529 matchp->with[op_no] = matchp->commutative[op_no] = -1;
1530
1531 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1532 {
1533 const char *p;
1534 char c;
1535 int i = 0;
1536
1537 p = recog_data.constraints[op_no];
1538
1539 likely_spilled[op_no] = 0;
1540 matchp->use[op_no] = READ;
1541 matchp->early_clobber[op_no] = 0;
1542 if (*p == '=')
1543 matchp->use[op_no] = WRITE;
1544 else if (*p == '+')
1545 matchp->use[op_no] = READWRITE;
1546
1547 for (;*p && i < which_alternative; p++)
1548 if (*p == ',')
1549 i++;
1550
1551 while ((c = *p) != '\0' && c != ',')
1552 {
1553 switch (c)
1554 {
1555 case '=':
1556 break;
1557 case '+':
1558 break;
1559 case '&':
1560 matchp->early_clobber[op_no] = 1;
1561 break;
1562 case '%':
1563 matchp->commutative[op_no] = op_no + 1;
1564 matchp->commutative[op_no + 1] = op_no;
1565 break;
1566
1567 case '0': case '1': case '2': case '3': case '4':
1568 case '5': case '6': case '7': case '8': case '9':
1569 {
1570 char *end;
1571 unsigned long match_ul = strtoul (p, &end, 10);
1572 int match = match_ul;
1573
1574 p = end;
1575
1576 if (match < op_no && likely_spilled[match])
1577 continue;
1578 matchp->with[op_no] = match;
1579 any_matches = 1;
1580 if (matchp->commutative[op_no] >= 0)
1581 matchp->with[matchp->commutative[op_no]] = match;
1582 }
1583 continue;
1584
1585 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
1586 case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
1587 case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
1588 case 'C': case 'D': case 'W': case 'Y': case 'Z':
1589 if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
1590 likely_spilled[op_no] = 1;
1591 break;
1592 }
1593 p += CONSTRAINT_LEN (c, p);
1594 }
1595 }
1596 return any_matches;
1597 }
1598
1599 /* Try to replace all occurrences of DST_REG with SRC in LOC, that is
1600 assumed to be in INSN. */
1601
1602 static void
1603 replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
1604 {
1605 rtx x = *loc;
1606 enum rtx_code code;
1607 const char *fmt;
1608 int i, j;
1609
1610 if (! x)
1611 return;
1612
1613 code = GET_CODE (x);
1614 if (code == REG)
1615 {
1616 if (REGNO (x) != dst_reg)
1617 return;
1618
1619 validate_change (insn, loc, src, 1);
1620
1621 return;
1622 }
1623
1624 /* Process each of our operands recursively. */
1625 fmt = GET_RTX_FORMAT (code);
1626 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1627 if (*fmt == 'e')
1628 replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
1629 else if (*fmt == 'E')
1630 for (j = 0; j < XVECLEN (x, i); j++)
1631 replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
1632 }
1633
1634 /* Try to replace output operand DST in SET, with input operand SRC. SET is
1635 the only set in INSN. INSN has just been recognized and constrained.
1636 SRC is operand number OPERAND_NUMBER in INSN.
1637 DST is operand number MATCH_NUMBER in INSN.
1638 If BACKWARD is nonzero, we have been called in a backward pass.
1639 Return nonzero for success. */
1640
1641 static int
1642 fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
1643 int backward, int operand_number, int match_number,
1644 FILE *regmove_dump_file)
1645 {
1646 rtx p;
1647 rtx post_inc = 0, post_inc_set = 0, search_end = 0;
1648 int success = 0;
1649 int num_calls = 0, s_num_calls = 0;
1650 enum rtx_code code = NOTE;
1651 HOST_WIDE_INT insn_const = 0, newconst = 0;
1652 rtx overlap = 0; /* need to move insn ? */
1653 rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
1654 int length, s_length;
1655
1656 if (! src_note)
1657 {
1658 /* Look for (set (regX) (op regA constX))
1659 (set (regY) (op regA constY))
1660 and change that to
1661 (set (regA) (op regA constX)).
1662 (set (regY) (op regA constY-constX)).
1663 This works for add and shift operations, if
1664 regA is dead after or set by the second insn. */
1665
1666 code = GET_CODE (SET_SRC (set));
1667 if ((code == PLUS || code == LSHIFTRT
1668 || code == ASHIFT || code == ASHIFTRT)
1669 && XEXP (SET_SRC (set), 0) == src
1670 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1671 insn_const = INTVAL (XEXP (SET_SRC (set), 1));
1672 else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
1673 return 0;
1674 else
1675 /* We might find a src_note while scanning. */
1676 code = NOTE;
1677 }
1678
1679 if (regmove_dump_file)
1680 fprintf (regmove_dump_file,
1681 "Could fix operand %d of insn %d matching operand %d.\n",
1682 operand_number, INSN_UID (insn), match_number);
1683
1684 /* If SRC is equivalent to a constant set in a different basic block,
1685 then do not use it for this optimization. We want the equivalence
1686 so that if we have to reload this register, we can reload the
1687 constant, rather than extending the lifespan of the register. */
1688 if (reg_is_remote_constant_p (src, insn, get_insns ()))
1689 return 0;
1690
1691 /* Scan forward to find the next instruction that
1692 uses the output operand. If the operand dies here,
1693 then replace it in both instructions with
1694 operand_number. */
1695
1696 for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1697 {
1698 if (CALL_P (p))
1699 replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
1700 REGNO (dst), src, p);
1701
1702 /* ??? We can't scan past the end of a basic block without updating
1703 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
1704 if (perhaps_ends_bb_p (p))
1705 break;
1706 else if (! INSN_P (p))
1707 continue;
1708
1709 length++;
1710 if (src_note)
1711 s_length++;
1712
1713 if (reg_set_p (src, p) || reg_set_p (dst, p)
1714 || (GET_CODE (PATTERN (p)) == USE
1715 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
1716 break;
1717
1718 /* See if all of DST dies in P. This test is
1719 slightly more conservative than it needs to be. */
1720 if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
1721 && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
1722 {
1723 /* If we would be moving INSN, check that we won't move it
1724 into the shadow of a live a live flags register. */
1725 /* ??? We only try to move it in front of P, although
1726 we could move it anywhere between OVERLAP and P. */
1727 if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
1728 break;
1729
1730 if (! src_note)
1731 {
1732 rtx q;
1733 rtx set2 = NULL_RTX;
1734
1735 /* If an optimization is done, the value of SRC while P
1736 is executed will be changed. Check that this is OK. */
1737 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1738 break;
1739 for (q = p; q; q = NEXT_INSN (q))
1740 {
1741 /* ??? We can't scan past the end of a basic block without
1742 updating the register lifetime info
1743 (REG_DEAD/basic_block_live_at_start). */
1744 if (perhaps_ends_bb_p (q))
1745 {
1746 q = 0;
1747 break;
1748 }
1749 else if (! INSN_P (q))
1750 continue;
1751 else if (reg_overlap_mentioned_p (src, PATTERN (q))
1752 || reg_set_p (src, q))
1753 break;
1754 }
1755 if (q)
1756 set2 = single_set (q);
1757 if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
1758 || XEXP (SET_SRC (set2), 0) != src
1759 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
1760 || (SET_DEST (set2) != src
1761 && ! find_reg_note (q, REG_DEAD, src)))
1762 {
1763 /* If this is a PLUS, we can still save a register by doing
1764 src += insn_const;
1765 P;
1766 src -= insn_const; .
1767 This also gives opportunities for subsequent
1768 optimizations in the backward pass, so do it there. */
1769 if (code == PLUS && backward
1770 /* Don't do this if we can likely tie DST to SET_DEST
1771 of P later; we can't do this tying here if we got a
1772 hard register. */
1773 && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
1774 && single_set (p)
1775 && REG_P (SET_DEST (single_set (p)))
1776 && (REGNO (SET_DEST (single_set (p)))
1777 < FIRST_PSEUDO_REGISTER))
1778 /* We may only emit an insn directly after P if we
1779 are not in the shadow of a live flags register. */
1780 && GET_MODE (p) == VOIDmode)
1781 {
1782 search_end = q;
1783 q = insn;
1784 set2 = set;
1785 newconst = -insn_const;
1786 code = MINUS;
1787 }
1788 else
1789 break;
1790 }
1791 else
1792 {
1793 newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
1794 /* Reject out of range shifts. */
1795 if (code != PLUS
1796 && (newconst < 0
1797 || ((unsigned HOST_WIDE_INT) newconst
1798 >= (GET_MODE_BITSIZE (GET_MODE
1799 (SET_SRC (set2)))))))
1800 break;
1801 if (code == PLUS)
1802 {
1803 post_inc = q;
1804 if (SET_DEST (set2) != src)
1805 post_inc_set = set2;
1806 }
1807 }
1808 /* We use 1 as last argument to validate_change so that all
1809 changes are accepted or rejected together by apply_change_group
1810 when it is called by validate_replace_rtx . */
1811 validate_change (q, &XEXP (SET_SRC (set2), 1),
1812 GEN_INT (newconst), 1);
1813 }
1814 validate_change (insn, recog_data.operand_loc[match_number], src, 1);
1815 if (validate_replace_rtx (dst, src_subreg, p))
1816 success = 1;
1817 break;
1818 }
1819
1820 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1821 break;
1822 if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
1823 {
1824 /* INSN was already checked to be movable wrt. the registers that it
1825 sets / uses when we found no REG_DEAD note for src on it, but it
1826 still might clobber the flags register. We'll have to check that
1827 we won't insert it into the shadow of a live flags register when
1828 we finally know where we are to move it. */
1829 overlap = p;
1830 src_note = find_reg_note (p, REG_DEAD, src);
1831 }
1832
1833 /* If we have passed a call instruction, and the pseudo-reg SRC is not
1834 already live across a call, then don't perform the optimization. */
1835 if (CALL_P (p))
1836 {
1837 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1838 break;
1839
1840 num_calls++;
1841
1842 if (src_note)
1843 s_num_calls++;
1844
1845 }
1846 }
1847
1848 if (! success)
1849 return 0;
1850
1851 /* Remove the death note for DST from P. */
1852 remove_note (p, dst_note);
1853 if (code == MINUS)
1854 {
1855 post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
1856 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1857 && search_end
1858 && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
1859 post_inc = 0;
1860 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
1861 REG_N_SETS (REGNO (src))++;
1862 REG_LIVE_LENGTH (REGNO (src))++;
1863 }
1864 if (overlap)
1865 {
1866 /* The lifetime of src and dest overlap,
1867 but we can change this by moving insn. */
1868 rtx pat = PATTERN (insn);
1869 if (src_note)
1870 remove_note (overlap, src_note);
1871 if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1872 && code == PLUS
1873 && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
1874 insn = overlap;
1875 else
1876 {
1877 rtx notes = REG_NOTES (insn);
1878
1879 emit_insn_after_with_line_notes (pat, PREV_INSN (p), insn);
1880 delete_insn (insn);
1881 /* emit_insn_after_with_line_notes has no
1882 return value, so search for the new insn. */
1883 insn = p;
1884 while (! INSN_P (insn) || PATTERN (insn) != pat)
1885 insn = PREV_INSN (insn);
1886
1887 REG_NOTES (insn) = notes;
1888 }
1889 }
1890 /* Sometimes we'd generate src = const; src += n;
1891 if so, replace the instruction that set src
1892 in the first place. */
1893
1894 if (! overlap && (code == PLUS || code == MINUS))
1895 {
1896 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1897 rtx q, set2 = NULL_RTX;
1898 int num_calls2 = 0, s_length2 = 0;
1899
1900 if (note && CONSTANT_P (XEXP (note, 0)))
1901 {
1902 for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
1903 {
1904 /* ??? We can't scan past the end of a basic block without
1905 updating the register lifetime info
1906 (REG_DEAD/basic_block_live_at_start). */
1907 if (perhaps_ends_bb_p (q))
1908 {
1909 q = 0;
1910 break;
1911 }
1912 else if (! INSN_P (q))
1913 continue;
1914
1915 s_length2++;
1916 if (reg_set_p (src, q))
1917 {
1918 set2 = single_set (q);
1919 break;
1920 }
1921 if (reg_overlap_mentioned_p (src, PATTERN (q)))
1922 {
1923 q = 0;
1924 break;
1925 }
1926 if (CALL_P (p))
1927 num_calls2++;
1928 }
1929 if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
1930 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
1931 {
1932 delete_insn (q);
1933 REG_N_SETS (REGNO (src))--;
1934 REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
1935 REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
1936 insn_const = 0;
1937 }
1938 }
1939 }
1940
1941 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1942 && (code == PLUS || code == MINUS) && insn_const
1943 && try_auto_increment (p, insn, 0, src, insn_const, 1))
1944 insn = p;
1945 else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1946 && post_inc
1947 && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
1948 post_inc = 0;
1949 /* If post_inc still prevails, try to find an
1950 insn where it can be used as a pre-in/decrement.
1951 If code is MINUS, this was already tried. */
1952 if (post_inc && code == PLUS
1953 /* Check that newconst is likely to be usable
1954 in a pre-in/decrement before starting the search. */
1955 && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
1956 || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
1957 && exact_log2 (newconst))
1958 {
1959 rtx q, inc_dest;
1960
1961 inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
1962 for (q = post_inc; (q = NEXT_INSN (q)); )
1963 {
1964 /* ??? We can't scan past the end of a basic block without updating
1965 the register lifetime info
1966 (REG_DEAD/basic_block_live_at_start). */
1967 if (perhaps_ends_bb_p (q))
1968 break;
1969 else if (! INSN_P (q))
1970 continue;
1971 else if (src != inc_dest
1972 && (reg_overlap_mentioned_p (src, PATTERN (q))
1973 || reg_set_p (src, q)))
1974 break;
1975 else if (reg_set_p (inc_dest, q))
1976 break;
1977 else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
1978 {
1979 try_auto_increment (q, post_inc,
1980 post_inc_set, inc_dest, newconst, 1);
1981 break;
1982 }
1983 }
1984 }
1985
1986 /* Move the death note for DST to INSN if it is used
1987 there. */
1988 if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
1989 {
1990 XEXP (dst_note, 1) = REG_NOTES (insn);
1991 REG_NOTES (insn) = dst_note;
1992 }
1993
1994 if (src_note)
1995 {
1996 /* Move the death note for SRC from INSN to P. */
1997 if (! overlap)
1998 remove_note (insn, src_note);
1999 XEXP (src_note, 1) = REG_NOTES (p);
2000 REG_NOTES (p) = src_note;
2001
2002 REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
2003 }
2004
2005 REG_N_SETS (REGNO (src))++;
2006 REG_N_SETS (REGNO (dst))--;
2007
2008 REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
2009
2010 REG_LIVE_LENGTH (REGNO (src)) += s_length;
2011 if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
2012 {
2013 REG_LIVE_LENGTH (REGNO (dst)) -= length;
2014 /* REG_LIVE_LENGTH is only an approximation after
2015 combine if sched is not run, so make sure that we
2016 still have a reasonable value. */
2017 if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
2018 REG_LIVE_LENGTH (REGNO (dst)) = 2;
2019 }
2020 if (regmove_dump_file)
2021 fprintf (regmove_dump_file,
2022 "Fixed operand %d of insn %d matching operand %d.\n",
2023 operand_number, INSN_UID (insn), match_number);
2024 return 1;
2025 }
2026
2027
2028 /* Return nonzero if X is stable and mentions no registers but for
2029 mentioning SRC or mentioning / changing DST . If in doubt, presume
2030 it is unstable.
2031 The rationale is that we want to check if we can move an insn easily
2032 while just paying attention to SRC and DST. */
2033 static int
2034 stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
2035 {
2036 RTX_CODE code = GET_CODE (x);
2037 switch (GET_RTX_CLASS (code))
2038 {
2039 case RTX_UNARY:
2040 case RTX_BIN_ARITH:
2041 case RTX_COMM_ARITH:
2042 case RTX_COMPARE:
2043 case RTX_COMM_COMPARE:
2044 case RTX_TERNARY:
2045 case RTX_BITFIELD_OPS:
2046 {
2047 int i;
2048 const char *fmt = GET_RTX_FORMAT (code);
2049 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2050 if (fmt[i] == 'e'
2051 && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
2052 return 0;
2053 return 1;
2054 }
2055 case RTX_OBJ:
2056 if (code == REG)
2057 return x == src || x == dst;
2058 /* If this is a MEM, look inside - there might be a register hidden in
2059 the address of an unchanging MEM. */
2060 if (code == MEM
2061 && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
2062 return 0;
2063 /* Fall through. */
2064 default:
2065 return ! rtx_unstable_p (x);
2066 }
2067 }
2068 \f
2069 /* Track stack adjustments and stack memory references. Attempt to
2070 reduce the number of stack adjustments by back-propagating across
2071 the memory references.
2072
2073 This is intended primarily for use with targets that do not define
2074 ACCUMULATE_OUTGOING_ARGS. It is of significantly more value to
2075 targets that define PREFERRED_STACK_BOUNDARY more aligned than
2076 STACK_BOUNDARY (e.g. x86), or if not all registers can be pushed
2077 (e.g. x86 fp regs) which would ordinarily have to be implemented
2078 as a sub/mov pair due to restrictions in calls.c.
2079
2080 Propagation stops when any of the insns that need adjusting are
2081 (a) no longer valid because we've exceeded their range, (b) a
2082 non-trivial push instruction, or (c) a call instruction.
2083
2084 Restriction B is based on the assumption that push instructions
2085 are smaller or faster. If a port really wants to remove all
2086 pushes, it should have defined ACCUMULATE_OUTGOING_ARGS. The
2087 one exception that is made is for an add immediately followed
2088 by a push. */
2089
2090 /* This structure records stack memory references between stack adjusting
2091 instructions. */
2092
2093 struct csa_memlist
2094 {
2095 HOST_WIDE_INT sp_offset;
2096 rtx insn, *mem;
2097 struct csa_memlist *next;
2098 };
2099
2100 static int stack_memref_p (rtx);
2101 static rtx single_set_for_csa (rtx);
2102 static void free_csa_memlist (struct csa_memlist *);
2103 static struct csa_memlist *record_one_stack_memref (rtx, rtx *,
2104 struct csa_memlist *);
2105 static int try_apply_stack_adjustment (rtx, struct csa_memlist *,
2106 HOST_WIDE_INT, HOST_WIDE_INT);
2107 static void combine_stack_adjustments_for_block (basic_block);
2108 static int record_stack_memrefs (rtx *, void *);
2109
2110
2111 /* Main entry point for stack adjustment combination. */
2112
2113 void
2114 combine_stack_adjustments (void)
2115 {
2116 basic_block bb;
2117
2118 FOR_EACH_BB (bb)
2119 combine_stack_adjustments_for_block (bb);
2120 }
2121
2122 /* Recognize a MEM of the form (sp) or (plus sp const). */
2123
2124 static int
2125 stack_memref_p (rtx x)
2126 {
2127 if (!MEM_P (x))
2128 return 0;
2129 x = XEXP (x, 0);
2130
2131 if (x == stack_pointer_rtx)
2132 return 1;
2133 if (GET_CODE (x) == PLUS
2134 && XEXP (x, 0) == stack_pointer_rtx
2135 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2136 return 1;
2137
2138 return 0;
2139 }
2140
2141 /* Recognize either normal single_set or the hack in i386.md for
2142 tying fp and sp adjustments. */
2143
2144 static rtx
2145 single_set_for_csa (rtx insn)
2146 {
2147 int i;
2148 rtx tmp = single_set (insn);
2149 if (tmp)
2150 return tmp;
2151
2152 if (!NONJUMP_INSN_P (insn)
2153 || GET_CODE (PATTERN (insn)) != PARALLEL)
2154 return NULL_RTX;
2155
2156 tmp = PATTERN (insn);
2157 if (GET_CODE (XVECEXP (tmp, 0, 0)) != SET)
2158 return NULL_RTX;
2159
2160 for (i = 1; i < XVECLEN (tmp, 0); ++i)
2161 {
2162 rtx this = XVECEXP (tmp, 0, i);
2163
2164 /* The special case is allowing a no-op set. */
2165 if (GET_CODE (this) == SET
2166 && SET_SRC (this) == SET_DEST (this))
2167 ;
2168 else if (GET_CODE (this) != CLOBBER
2169 && GET_CODE (this) != USE)
2170 return NULL_RTX;
2171 }
2172
2173 return XVECEXP (tmp, 0, 0);
2174 }
2175
2176 /* Free the list of csa_memlist nodes. */
2177
2178 static void
2179 free_csa_memlist (struct csa_memlist *memlist)
2180 {
2181 struct csa_memlist *next;
2182 for (; memlist ; memlist = next)
2183 {
2184 next = memlist->next;
2185 free (memlist);
2186 }
2187 }
2188
2189 /* Create a new csa_memlist node from the given memory reference.
2190 It is already known that the memory is stack_memref_p. */
2191
2192 static struct csa_memlist *
2193 record_one_stack_memref (rtx insn, rtx *mem, struct csa_memlist *next_memlist)
2194 {
2195 struct csa_memlist *ml;
2196
2197 ml = xmalloc (sizeof (*ml));
2198
2199 if (XEXP (*mem, 0) == stack_pointer_rtx)
2200 ml->sp_offset = 0;
2201 else
2202 ml->sp_offset = INTVAL (XEXP (XEXP (*mem, 0), 1));
2203
2204 ml->insn = insn;
2205 ml->mem = mem;
2206 ml->next = next_memlist;
2207
2208 return ml;
2209 }
2210
2211 /* Attempt to apply ADJUST to the stack adjusting insn INSN, as well
2212 as each of the memories in MEMLIST. Return true on success. */
2213
2214 static int
2215 try_apply_stack_adjustment (rtx insn, struct csa_memlist *memlist, HOST_WIDE_INT new_adjust,
2216 HOST_WIDE_INT delta)
2217 {
2218 struct csa_memlist *ml;
2219 rtx set;
2220
2221 set = single_set_for_csa (insn);
2222 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);
2223
2224 for (ml = memlist; ml ; ml = ml->next)
2225 validate_change
2226 (ml->insn, ml->mem,
2227 replace_equiv_address_nv (*ml->mem,
2228 plus_constant (stack_pointer_rtx,
2229 ml->sp_offset - delta)), 1);
2230
2231 if (apply_change_group ())
2232 {
2233 /* Succeeded. Update our knowledge of the memory references. */
2234 for (ml = memlist; ml ; ml = ml->next)
2235 ml->sp_offset -= delta;
2236
2237 return 1;
2238 }
2239 else
2240 return 0;
2241 }
2242
2243 /* Called via for_each_rtx and used to record all stack memory references in
2244 the insn and discard all other stack pointer references. */
2245 struct record_stack_memrefs_data
2246 {
2247 rtx insn;
2248 struct csa_memlist *memlist;
2249 };
2250
2251 static int
2252 record_stack_memrefs (rtx *xp, void *data)
2253 {
2254 rtx x = *xp;
2255 struct record_stack_memrefs_data *d =
2256 (struct record_stack_memrefs_data *) data;
2257 if (!x)
2258 return 0;
2259 switch (GET_CODE (x))
2260 {
2261 case MEM:
2262 if (!reg_mentioned_p (stack_pointer_rtx, x))
2263 return -1;
2264 /* We are not able to handle correctly all possible memrefs containing
2265 stack pointer, so this check is necessary. */
2266 if (stack_memref_p (x))
2267 {
2268 d->memlist = record_one_stack_memref (d->insn, xp, d->memlist);
2269 return -1;
2270 }
2271 return 1;
2272 case REG:
2273 /* ??? We want be able to handle non-memory stack pointer
2274 references later. For now just discard all insns referring to
2275 stack pointer outside mem expressions. We would probably
2276 want to teach validate_replace to simplify expressions first.
2277
2278 We can't just compare with STACK_POINTER_RTX because the
2279 reference to the stack pointer might be in some other mode.
2280 In particular, an explicit clobber in an asm statement will
2281 result in a QImode clobber. */
2282 if (REGNO (x) == STACK_POINTER_REGNUM)
2283 return 1;
2284 break;
2285 default:
2286 break;
2287 }
2288 return 0;
2289 }
2290
2291 /* Subroutine of combine_stack_adjustments, called for each basic block. */
2292
2293 static void
2294 combine_stack_adjustments_for_block (basic_block bb)
2295 {
2296 HOST_WIDE_INT last_sp_adjust = 0;
2297 rtx last_sp_set = NULL_RTX;
2298 struct csa_memlist *memlist = NULL;
2299 rtx insn, next, set;
2300 struct record_stack_memrefs_data data;
2301 bool end_of_block = false;
2302
2303 for (insn = BB_HEAD (bb); !end_of_block ; insn = next)
2304 {
2305 end_of_block = insn == BB_END (bb);
2306 next = NEXT_INSN (insn);
2307
2308 if (! INSN_P (insn))
2309 continue;
2310
2311 set = single_set_for_csa (insn);
2312 if (set)
2313 {
2314 rtx dest = SET_DEST (set);
2315 rtx src = SET_SRC (set);
2316
2317 /* Find constant additions to the stack pointer. */
2318 if (dest == stack_pointer_rtx
2319 && GET_CODE (src) == PLUS
2320 && XEXP (src, 0) == stack_pointer_rtx
2321 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2322 {
2323 HOST_WIDE_INT this_adjust = INTVAL (XEXP (src, 1));
2324
2325 /* If we've not seen an adjustment previously, record
2326 it now and continue. */
2327 if (! last_sp_set)
2328 {
2329 last_sp_set = insn;
2330 last_sp_adjust = this_adjust;
2331 continue;
2332 }
2333
2334 /* If not all recorded memrefs can be adjusted, or the
2335 adjustment is now too large for a constant addition,
2336 we cannot merge the two stack adjustments.
2337
2338 Also we need to be careful to not move stack pointer
2339 such that we create stack accesses outside the allocated
2340 area. We can combine an allocation into the first insn,
2341 or a deallocation into the second insn. We can not
2342 combine an allocation followed by a deallocation.
2343
2344 The only somewhat frequent occurrence of the later is when
2345 a function allocates a stack frame but does not use it.
2346 For this case, we would need to analyze rtl stream to be
2347 sure that allocated area is really unused. This means not
2348 only checking the memory references, but also all registers
2349 or global memory references possibly containing a stack
2350 frame address.
2351
2352 Perhaps the best way to address this problem is to teach
2353 gcc not to allocate stack for objects never used. */
2354
2355 /* Combine an allocation into the first instruction. */
2356 if (STACK_GROWS_DOWNWARD ? this_adjust <= 0 : this_adjust >= 0)
2357 {
2358 if (try_apply_stack_adjustment (last_sp_set, memlist,
2359 last_sp_adjust + this_adjust,
2360 this_adjust))
2361 {
2362 /* It worked! */
2363 delete_insn (insn);
2364 last_sp_adjust += this_adjust;
2365 continue;
2366 }
2367 }
2368
2369 /* Otherwise we have a deallocation. Do not combine with
2370 a previous allocation. Combine into the second insn. */
2371 else if (STACK_GROWS_DOWNWARD
2372 ? last_sp_adjust >= 0 : last_sp_adjust <= 0)
2373 {
2374 if (try_apply_stack_adjustment (insn, memlist,
2375 last_sp_adjust + this_adjust,
2376 -last_sp_adjust))
2377 {
2378 /* It worked! */
2379 delete_insn (last_sp_set);
2380 last_sp_set = insn;
2381 last_sp_adjust += this_adjust;
2382 free_csa_memlist (memlist);
2383 memlist = NULL;
2384 continue;
2385 }
2386 }
2387
2388 /* Combination failed. Restart processing from here. If
2389 deallocation+allocation conspired to cancel, we can
2390 delete the old deallocation insn. */
2391 if (last_sp_set && last_sp_adjust == 0)
2392 delete_insn (insn);
2393 free_csa_memlist (memlist);
2394 memlist = NULL;
2395 last_sp_set = insn;
2396 last_sp_adjust = this_adjust;
2397 continue;
2398 }
2399
2400 /* Find a predecrement of exactly the previous adjustment and
2401 turn it into a direct store. Obviously we can't do this if
2402 there were any intervening uses of the stack pointer. */
2403 if (memlist == NULL
2404 && MEM_P (dest)
2405 && ((GET_CODE (XEXP (dest, 0)) == PRE_DEC
2406 && (last_sp_adjust
2407 == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (dest))))
2408 || (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY
2409 && GET_CODE (XEXP (XEXP (dest, 0), 1)) == PLUS
2410 && XEXP (XEXP (XEXP (dest, 0), 1), 0) == stack_pointer_rtx
2411 && (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2412 == CONST_INT)
2413 && (INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2414 == -last_sp_adjust)))
2415 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx
2416 && ! reg_mentioned_p (stack_pointer_rtx, src)
2417 && memory_address_p (GET_MODE (dest), stack_pointer_rtx)
2418 && validate_change (insn, &SET_DEST (set),
2419 replace_equiv_address (dest,
2420 stack_pointer_rtx),
2421 0))
2422 {
2423 delete_insn (last_sp_set);
2424 free_csa_memlist (memlist);
2425 memlist = NULL;
2426 last_sp_set = NULL_RTX;
2427 last_sp_adjust = 0;
2428 continue;
2429 }
2430 }
2431
2432 data.insn = insn;
2433 data.memlist = memlist;
2434 if (!CALL_P (insn) && last_sp_set
2435 && !for_each_rtx (&PATTERN (insn), record_stack_memrefs, &data))
2436 {
2437 memlist = data.memlist;
2438 continue;
2439 }
2440 memlist = data.memlist;
2441
2442 /* Otherwise, we were not able to process the instruction.
2443 Do not continue collecting data across such a one. */
2444 if (last_sp_set
2445 && (CALL_P (insn)
2446 || reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))))
2447 {
2448 if (last_sp_set && last_sp_adjust == 0)
2449 delete_insn (last_sp_set);
2450 free_csa_memlist (memlist);
2451 memlist = NULL;
2452 last_sp_set = NULL_RTX;
2453 last_sp_adjust = 0;
2454 }
2455 }
2456
2457 if (last_sp_set && last_sp_adjust == 0)
2458 delete_insn (last_sp_set);
2459 }