rtl.h (MEM_READONLY_P): Replace RTX_UNCHANGING_P.
[gcc.git] / gcc / regmove.c
1 /* Move registers around to reduce number of move instructions needed.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This module looks for cases where matching constraints would force
24 an instruction to need a reload, and this reload would be a register
25 to register move. It then attempts to change the registers used by the
26 instruction to avoid the move instruction. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
33 #include "tm_p.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "output.h"
37 #include "regs.h"
38 #include "hard-reg-set.h"
39 #include "flags.h"
40 #include "function.h"
41 #include "expr.h"
42 #include "basic-block.h"
43 #include "except.h"
44 #include "toplev.h"
45 #include "reload.h"
46
47
48 /* Turn STACK_GROWS_DOWNWARD into a boolean. */
49 #ifdef STACK_GROWS_DOWNWARD
50 #undef STACK_GROWS_DOWNWARD
51 #define STACK_GROWS_DOWNWARD 1
52 #else
53 #define STACK_GROWS_DOWNWARD 0
54 #endif
55
56 static int perhaps_ends_bb_p (rtx);
57 static int optimize_reg_copy_1 (rtx, rtx, rtx);
58 static void optimize_reg_copy_2 (rtx, rtx, rtx);
59 static void optimize_reg_copy_3 (rtx, rtx, rtx);
60 static void copy_src_to_dest (rtx, rtx, rtx, int);
61 static int *regmove_bb_head;
62
63 struct match {
64 int with[MAX_RECOG_OPERANDS];
65 enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
66 int commutative[MAX_RECOG_OPERANDS];
67 int early_clobber[MAX_RECOG_OPERANDS];
68 };
69
70 static rtx discover_flags_reg (void);
71 static void mark_flags_life_zones (rtx);
72 static void flags_set_1 (rtx, rtx, void *);
73
74 static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
75 static int find_matches (rtx, struct match *);
76 static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
77 static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int, FILE *);
78 static int reg_is_remote_constant_p (rtx, rtx, rtx);
79 static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
80 static int regclass_compatible_p (int, int);
81 static int replacement_quality (rtx);
82 static int fixup_match_2 (rtx, rtx, rtx, rtx, FILE *);
83
84 /* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
85 causing too much register allocation problems. */
86 static int
87 regclass_compatible_p (int class0, int class1)
88 {
89 return (class0 == class1
90 || (reg_class_subset_p (class0, class1)
91 && ! CLASS_LIKELY_SPILLED_P (class0))
92 || (reg_class_subset_p (class1, class0)
93 && ! CLASS_LIKELY_SPILLED_P (class1)));
94 }
95
96 /* INC_INSN is an instruction that adds INCREMENT to REG.
97 Try to fold INC_INSN as a post/pre in/decrement into INSN.
98 Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
99 Return nonzero for success. */
100 static int
101 try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
102 HOST_WIDE_INT increment, int pre)
103 {
104 enum rtx_code inc_code;
105
106 rtx pset = single_set (insn);
107 if (pset)
108 {
109 /* Can't use the size of SET_SRC, we might have something like
110 (sign_extend:SI (mem:QI ... */
111 rtx use = find_use_as_address (pset, reg, 0);
112 if (use != 0 && use != (rtx) (size_t) 1)
113 {
114 int size = GET_MODE_SIZE (GET_MODE (use));
115 if (0
116 || (HAVE_POST_INCREMENT
117 && pre == 0 && (inc_code = POST_INC, increment == size))
118 || (HAVE_PRE_INCREMENT
119 && pre == 1 && (inc_code = PRE_INC, increment == size))
120 || (HAVE_POST_DECREMENT
121 && pre == 0 && (inc_code = POST_DEC, increment == -size))
122 || (HAVE_PRE_DECREMENT
123 && pre == 1 && (inc_code = PRE_DEC, increment == -size))
124 )
125 {
126 if (inc_insn_set)
127 validate_change
128 (inc_insn,
129 &SET_SRC (inc_insn_set),
130 XEXP (SET_SRC (inc_insn_set), 0), 1);
131 validate_change (insn, &XEXP (use, 0),
132 gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
133 if (apply_change_group ())
134 {
135 /* If there is a REG_DEAD note on this insn, we must
136 change this not to REG_UNUSED meaning that the register
137 is set, but the value is dead. Failure to do so will
138 result in a sched1 abort -- when it recomputes lifetime
139 information, the number of REG_DEAD notes will have
140 changed. */
141 rtx note = find_reg_note (insn, REG_DEAD, reg);
142 if (note)
143 PUT_MODE (note, REG_UNUSED);
144
145 REG_NOTES (insn)
146 = gen_rtx_EXPR_LIST (REG_INC,
147 reg, REG_NOTES (insn));
148 if (! inc_insn_set)
149 delete_insn (inc_insn);
150 return 1;
151 }
152 }
153 }
154 }
155 return 0;
156 }
157 \f
158 /* Determine if the pattern generated by add_optab has a clobber,
159 such as might be issued for a flags hard register. To make the
160 code elsewhere simpler, we handle cc0 in this same framework.
161
162 Return the register if one was discovered. Return NULL_RTX if
163 if no flags were found. Return pc_rtx if we got confused. */
164
165 static rtx
166 discover_flags_reg (void)
167 {
168 rtx tmp;
169 tmp = gen_rtx_REG (word_mode, 10000);
170 tmp = gen_add3_insn (tmp, tmp, const2_rtx);
171
172 /* If we get something that isn't a simple set, or a
173 [(set ..) (clobber ..)], this whole function will go wrong. */
174 if (GET_CODE (tmp) == SET)
175 return NULL_RTX;
176 else if (GET_CODE (tmp) == PARALLEL)
177 {
178 int found;
179
180 if (XVECLEN (tmp, 0) != 2)
181 return pc_rtx;
182 tmp = XVECEXP (tmp, 0, 1);
183 if (GET_CODE (tmp) != CLOBBER)
184 return pc_rtx;
185 tmp = XEXP (tmp, 0);
186
187 /* Don't do anything foolish if the md wanted to clobber a
188 scratch or something. We only care about hard regs.
189 Moreover we don't like the notion of subregs of hard regs. */
190 if (GET_CODE (tmp) == SUBREG
191 && REG_P (SUBREG_REG (tmp))
192 && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
193 return pc_rtx;
194 found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
195
196 return (found ? tmp : NULL_RTX);
197 }
198
199 return pc_rtx;
200 }
201
202 /* It is a tedious task identifying when the flags register is live and
203 when it is safe to optimize. Since we process the instruction stream
204 multiple times, locate and record these live zones by marking the
205 mode of the instructions --
206
207 QImode is used on the instruction at which the flags becomes live.
208
209 HImode is used within the range (exclusive) that the flags are
210 live. Thus the user of the flags is not marked.
211
212 All other instructions are cleared to VOIDmode. */
213
214 /* Used to communicate with flags_set_1. */
215 static rtx flags_set_1_rtx;
216 static int flags_set_1_set;
217
218 static void
219 mark_flags_life_zones (rtx flags)
220 {
221 int flags_regno;
222 int flags_nregs;
223 basic_block block;
224
225 #ifdef HAVE_cc0
226 /* If we found a flags register on a cc0 host, bail. */
227 if (flags == NULL_RTX)
228 flags = cc0_rtx;
229 else if (flags != cc0_rtx)
230 flags = pc_rtx;
231 #endif
232
233 /* Simple cases first: if no flags, clear all modes. If confusing,
234 mark the entire function as being in a flags shadow. */
235 if (flags == NULL_RTX || flags == pc_rtx)
236 {
237 enum machine_mode mode = (flags ? HImode : VOIDmode);
238 rtx insn;
239 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
240 PUT_MODE (insn, mode);
241 return;
242 }
243
244 #ifdef HAVE_cc0
245 flags_regno = -1;
246 flags_nregs = 1;
247 #else
248 flags_regno = REGNO (flags);
249 flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
250 #endif
251 flags_set_1_rtx = flags;
252
253 /* Process each basic block. */
254 FOR_EACH_BB_REVERSE (block)
255 {
256 rtx insn, end;
257 int live;
258
259 insn = BB_HEAD (block);
260 end = BB_END (block);
261
262 /* Look out for the (unlikely) case of flags being live across
263 basic block boundaries. */
264 live = 0;
265 #ifndef HAVE_cc0
266 {
267 int i;
268 for (i = 0; i < flags_nregs; ++i)
269 live |= REGNO_REG_SET_P (block->global_live_at_start,
270 flags_regno + i);
271 }
272 #endif
273
274 while (1)
275 {
276 /* Process liveness in reverse order of importance --
277 alive, death, birth. This lets more important info
278 overwrite the mode of lesser info. */
279
280 if (INSN_P (insn))
281 {
282 #ifdef HAVE_cc0
283 /* In the cc0 case, death is not marked in reg notes,
284 but is instead the mere use of cc0 when it is alive. */
285 if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
286 live = 0;
287 #else
288 /* In the hard reg case, we watch death notes. */
289 if (live && find_regno_note (insn, REG_DEAD, flags_regno))
290 live = 0;
291 #endif
292 PUT_MODE (insn, (live ? HImode : VOIDmode));
293
294 /* In either case, birth is denoted simply by its presence
295 as the destination of a set. */
296 flags_set_1_set = 0;
297 note_stores (PATTERN (insn), flags_set_1, NULL);
298 if (flags_set_1_set)
299 {
300 live = 1;
301 PUT_MODE (insn, QImode);
302 }
303 }
304 else
305 PUT_MODE (insn, (live ? HImode : VOIDmode));
306
307 if (insn == end)
308 break;
309 insn = NEXT_INSN (insn);
310 }
311 }
312 }
313
314 /* A subroutine of mark_flags_life_zones, called through note_stores. */
315
316 static void
317 flags_set_1 (rtx x, rtx pat, void *data ATTRIBUTE_UNUSED)
318 {
319 if (GET_CODE (pat) == SET
320 && reg_overlap_mentioned_p (x, flags_set_1_rtx))
321 flags_set_1_set = 1;
322 }
323 \f
324 static int *regno_src_regno;
325
326 /* Indicate how good a choice REG (which appears as a source) is to replace
327 a destination register with. The higher the returned value, the better
328 the choice. The main objective is to avoid using a register that is
329 a candidate for tying to a hard register, since the output might in
330 turn be a candidate to be tied to a different hard register. */
331 static int
332 replacement_quality (rtx reg)
333 {
334 int src_regno;
335
336 /* Bad if this isn't a register at all. */
337 if (!REG_P (reg))
338 return 0;
339
340 /* If this register is not meant to get a hard register,
341 it is a poor choice. */
342 if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
343 return 0;
344
345 src_regno = regno_src_regno[REGNO (reg)];
346
347 /* If it was not copied from another register, it is fine. */
348 if (src_regno < 0)
349 return 3;
350
351 /* Copied from a hard register? */
352 if (src_regno < FIRST_PSEUDO_REGISTER)
353 return 1;
354
355 /* Copied from a pseudo register - not as bad as from a hard register,
356 yet still cumbersome, since the register live length will be lengthened
357 when the registers get tied. */
358 return 2;
359 }
360 \f
361 /* Return 1 if INSN might end a basic block. */
362
363 static int perhaps_ends_bb_p (rtx insn)
364 {
365 switch (GET_CODE (insn))
366 {
367 case CODE_LABEL:
368 case JUMP_INSN:
369 /* These always end a basic block. */
370 return 1;
371
372 case CALL_INSN:
373 /* A CALL_INSN might be the last insn of a basic block, if it is inside
374 an EH region or if there are nonlocal gotos. Note that this test is
375 very conservative. */
376 if (nonlocal_goto_handler_labels)
377 return 1;
378 /* Fall through. */
379 default:
380 return can_throw_internal (insn);
381 }
382 }
383 \f
384 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
385 in INSN.
386
387 Search forward to see if SRC dies before either it or DEST is modified,
388 but don't scan past the end of a basic block. If so, we can replace SRC
389 with DEST and let SRC die in INSN.
390
391 This will reduce the number of registers live in that range and may enable
392 DEST to be tied to SRC, thus often saving one register in addition to a
393 register-register copy. */
394
395 static int
396 optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
397 {
398 rtx p, q;
399 rtx note;
400 rtx dest_death = 0;
401 int sregno = REGNO (src);
402 int dregno = REGNO (dest);
403
404 /* We don't want to mess with hard regs if register classes are small. */
405 if (sregno == dregno
406 || (SMALL_REGISTER_CLASSES
407 && (sregno < FIRST_PSEUDO_REGISTER
408 || dregno < FIRST_PSEUDO_REGISTER))
409 /* We don't see all updates to SP if they are in an auto-inc memory
410 reference, so we must disallow this optimization on them. */
411 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
412 return 0;
413
414 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
415 {
416 /* ??? We can't scan past the end of a basic block without updating
417 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
418 if (perhaps_ends_bb_p (p))
419 break;
420 else if (! INSN_P (p))
421 continue;
422
423 if (reg_set_p (src, p) || reg_set_p (dest, p)
424 /* If SRC is an asm-declared register, it must not be replaced
425 in any asm. Unfortunately, the REG_EXPR tree for the asm
426 variable may be absent in the SRC rtx, so we can't check the
427 actual register declaration easily (the asm operand will have
428 it, though). To avoid complicating the test for a rare case,
429 we just don't perform register replacement for a hard reg
430 mentioned in an asm. */
431 || (sregno < FIRST_PSEUDO_REGISTER
432 && asm_noperands (PATTERN (p)) >= 0
433 && reg_overlap_mentioned_p (src, PATTERN (p)))
434 /* Don't change hard registers used by a call. */
435 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
436 && find_reg_fusage (p, USE, src))
437 /* Don't change a USE of a register. */
438 || (GET_CODE (PATTERN (p)) == USE
439 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
440 break;
441
442 /* See if all of SRC dies in P. This test is slightly more
443 conservative than it needs to be. */
444 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
445 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
446 {
447 int failed = 0;
448 int d_length = 0;
449 int s_length = 0;
450 int d_n_calls = 0;
451 int s_n_calls = 0;
452
453 /* We can do the optimization. Scan forward from INSN again,
454 replacing regs as we go. Set FAILED if a replacement can't
455 be done. In that case, we can't move the death note for SRC.
456 This should be rare. */
457
458 /* Set to stop at next insn. */
459 for (q = next_real_insn (insn);
460 q != next_real_insn (p);
461 q = next_real_insn (q))
462 {
463 if (reg_overlap_mentioned_p (src, PATTERN (q)))
464 {
465 /* If SRC is a hard register, we might miss some
466 overlapping registers with validate_replace_rtx,
467 so we would have to undo it. We can't if DEST is
468 present in the insn, so fail in that combination
469 of cases. */
470 if (sregno < FIRST_PSEUDO_REGISTER
471 && reg_mentioned_p (dest, PATTERN (q)))
472 failed = 1;
473
474 /* Replace all uses and make sure that the register
475 isn't still present. */
476 else if (validate_replace_rtx (src, dest, q)
477 && (sregno >= FIRST_PSEUDO_REGISTER
478 || ! reg_overlap_mentioned_p (src,
479 PATTERN (q))))
480 ;
481 else
482 {
483 validate_replace_rtx (dest, src, q);
484 failed = 1;
485 }
486 }
487
488 /* For SREGNO, count the total number of insns scanned.
489 For DREGNO, count the total number of insns scanned after
490 passing the death note for DREGNO. */
491 s_length++;
492 if (dest_death)
493 d_length++;
494
495 /* If the insn in which SRC dies is a CALL_INSN, don't count it
496 as a call that has been crossed. Otherwise, count it. */
497 if (q != p && CALL_P (q))
498 {
499 /* Similarly, total calls for SREGNO, total calls beyond
500 the death note for DREGNO. */
501 s_n_calls++;
502 if (dest_death)
503 d_n_calls++;
504 }
505
506 /* If DEST dies here, remove the death note and save it for
507 later. Make sure ALL of DEST dies here; again, this is
508 overly conservative. */
509 if (dest_death == 0
510 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
511 {
512 if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
513 failed = 1, dest_death = 0;
514 else
515 remove_note (q, dest_death);
516 }
517 }
518
519 if (! failed)
520 {
521 /* These counters need to be updated if and only if we are
522 going to move the REG_DEAD note. */
523 if (sregno >= FIRST_PSEUDO_REGISTER)
524 {
525 if (REG_LIVE_LENGTH (sregno) >= 0)
526 {
527 REG_LIVE_LENGTH (sregno) -= s_length;
528 /* REG_LIVE_LENGTH is only an approximation after
529 combine if sched is not run, so make sure that we
530 still have a reasonable value. */
531 if (REG_LIVE_LENGTH (sregno) < 2)
532 REG_LIVE_LENGTH (sregno) = 2;
533 }
534
535 REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
536 }
537
538 /* Move death note of SRC from P to INSN. */
539 remove_note (p, note);
540 XEXP (note, 1) = REG_NOTES (insn);
541 REG_NOTES (insn) = note;
542 }
543
544 /* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
545 if (! dest_death
546 && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
547 {
548 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
549 remove_note (insn, dest_death);
550 }
551
552 /* Put death note of DEST on P if we saw it die. */
553 if (dest_death)
554 {
555 XEXP (dest_death, 1) = REG_NOTES (p);
556 REG_NOTES (p) = dest_death;
557
558 if (dregno >= FIRST_PSEUDO_REGISTER)
559 {
560 /* If and only if we are moving the death note for DREGNO,
561 then we need to update its counters. */
562 if (REG_LIVE_LENGTH (dregno) >= 0)
563 REG_LIVE_LENGTH (dregno) += d_length;
564 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
565 }
566 }
567
568 return ! failed;
569 }
570
571 /* If SRC is a hard register which is set or killed in some other
572 way, we can't do this optimization. */
573 else if (sregno < FIRST_PSEUDO_REGISTER
574 && dead_or_set_p (p, src))
575 break;
576 }
577 return 0;
578 }
579 \f
580 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
581 a sequence of insns that modify DEST followed by an insn that sets
582 SRC to DEST in which DEST dies, with no prior modification of DEST.
583 (There is no need to check if the insns in between actually modify
584 DEST. We should not have cases where DEST is not modified, but
585 the optimization is safe if no such modification is detected.)
586 In that case, we can replace all uses of DEST, starting with INSN and
587 ending with the set of SRC to DEST, with SRC. We do not do this
588 optimization if a CALL_INSN is crossed unless SRC already crosses a
589 call or if DEST dies before the copy back to SRC.
590
591 It is assumed that DEST and SRC are pseudos; it is too complicated to do
592 this for hard registers since the substitutions we may make might fail. */
593
594 static void
595 optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
596 {
597 rtx p, q;
598 rtx set;
599 int sregno = REGNO (src);
600 int dregno = REGNO (dest);
601
602 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
603 {
604 /* ??? We can't scan past the end of a basic block without updating
605 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
606 if (perhaps_ends_bb_p (p))
607 break;
608 else if (! INSN_P (p))
609 continue;
610
611 set = single_set (p);
612 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
613 && find_reg_note (p, REG_DEAD, dest))
614 {
615 /* We can do the optimization. Scan forward from INSN again,
616 replacing regs as we go. */
617
618 /* Set to stop at next insn. */
619 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
620 if (INSN_P (q))
621 {
622 if (reg_mentioned_p (dest, PATTERN (q)))
623 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
624
625
626 if (CALL_P (q))
627 {
628 REG_N_CALLS_CROSSED (dregno)--;
629 REG_N_CALLS_CROSSED (sregno)++;
630 }
631 }
632
633 remove_note (p, find_reg_note (p, REG_DEAD, dest));
634 REG_N_DEATHS (dregno)--;
635 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
636 REG_N_DEATHS (sregno)--;
637 return;
638 }
639
640 if (reg_set_p (src, p)
641 || find_reg_note (p, REG_DEAD, dest)
642 || (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
643 break;
644 }
645 }
646 /* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
647 Look if SRC dies there, and if it is only set once, by loading
648 it from memory. If so, try to incorporate the zero/sign extension
649 into the memory read, change SRC to the mode of DEST, and alter
650 the remaining accesses to use the appropriate SUBREG. This allows
651 SRC and DEST to be tied later. */
652 static void
653 optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
654 {
655 rtx src_reg = XEXP (src, 0);
656 int src_no = REGNO (src_reg);
657 int dst_no = REGNO (dest);
658 rtx p, set, subreg;
659 enum machine_mode old_mode;
660
661 if (src_no < FIRST_PSEUDO_REGISTER
662 || dst_no < FIRST_PSEUDO_REGISTER
663 || ! find_reg_note (insn, REG_DEAD, src_reg)
664 || REG_N_DEATHS (src_no) != 1
665 || REG_N_SETS (src_no) != 1)
666 return;
667 for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
668 /* ??? We can't scan past the end of a basic block without updating
669 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
670 if (perhaps_ends_bb_p (p))
671 break;
672
673 if (! p)
674 return;
675
676 if (! (set = single_set (p))
677 || !MEM_P (SET_SRC (set))
678 /* If there's a REG_EQUIV note, this must be an insn that loads an
679 argument. Prefer keeping the note over doing this optimization. */
680 || find_reg_note (p, REG_EQUIV, NULL_RTX)
681 || SET_DEST (set) != src_reg)
682 return;
683
684 /* Be conservative: although this optimization is also valid for
685 volatile memory references, that could cause trouble in later passes. */
686 if (MEM_VOLATILE_P (SET_SRC (set)))
687 return;
688
689 /* Do not use a SUBREG to truncate from one mode to another if truncation
690 is not a nop. */
691 if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
692 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
693 GET_MODE_BITSIZE (GET_MODE (src_reg))))
694 return;
695
696 old_mode = GET_MODE (src_reg);
697 PUT_MODE (src_reg, GET_MODE (src));
698 XEXP (src, 0) = SET_SRC (set);
699
700 /* Include this change in the group so that it's easily undone if
701 one of the changes in the group is invalid. */
702 validate_change (p, &SET_SRC (set), src, 1);
703
704 /* Now walk forward making additional replacements. We want to be able
705 to undo all the changes if a later substitution fails. */
706 subreg = gen_lowpart_SUBREG (old_mode, src_reg);
707 while (p = NEXT_INSN (p), p != insn)
708 {
709 if (! INSN_P (p))
710 continue;
711
712 /* Make a tentative change. */
713 validate_replace_rtx_group (src_reg, subreg, p);
714 }
715
716 validate_replace_rtx_group (src, src_reg, insn);
717
718 /* Now see if all the changes are valid. */
719 if (! apply_change_group ())
720 {
721 /* One or more changes were no good. Back out everything. */
722 PUT_MODE (src_reg, old_mode);
723 XEXP (src, 0) = src_reg;
724 }
725 else
726 {
727 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
728 if (note)
729 remove_note (p, note);
730 }
731 }
732
733 \f
734 /* If we were not able to update the users of src to use dest directly, try
735 instead moving the value to dest directly before the operation. */
736
737 static void
738 copy_src_to_dest (rtx insn, rtx src, rtx dest, int old_max_uid)
739 {
740 rtx seq;
741 rtx link;
742 rtx next;
743 rtx set;
744 rtx move_insn;
745 rtx *p_insn_notes;
746 rtx *p_move_notes;
747 int src_regno;
748 int dest_regno;
749 int bb;
750 int insn_uid;
751 int move_uid;
752
753 /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
754 or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
755 parameter when there is no frame pointer that is not allocated a register.
756 For now, we just reject them, rather than incrementing the live length. */
757
758 if (REG_P (src)
759 && REG_LIVE_LENGTH (REGNO (src)) > 0
760 && REG_P (dest)
761 && REG_LIVE_LENGTH (REGNO (dest)) > 0
762 && (set = single_set (insn)) != NULL_RTX
763 && !reg_mentioned_p (dest, SET_SRC (set))
764 && GET_MODE (src) == GET_MODE (dest))
765 {
766 int old_num_regs = reg_rtx_no;
767
768 /* Generate the src->dest move. */
769 start_sequence ();
770 emit_move_insn (dest, src);
771 seq = get_insns ();
772 end_sequence ();
773 /* If this sequence uses new registers, we may not use it. */
774 if (old_num_regs != reg_rtx_no
775 || ! validate_replace_rtx (src, dest, insn))
776 {
777 /* We have to restore reg_rtx_no to its old value, lest
778 recompute_reg_usage will try to compute the usage of the
779 new regs, yet reg_n_info is not valid for them. */
780 reg_rtx_no = old_num_regs;
781 return;
782 }
783 emit_insn_before (seq, insn);
784 move_insn = PREV_INSN (insn);
785 p_move_notes = &REG_NOTES (move_insn);
786 p_insn_notes = &REG_NOTES (insn);
787
788 /* Move any notes mentioning src to the move instruction. */
789 for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
790 {
791 next = XEXP (link, 1);
792 if (XEXP (link, 0) == src)
793 {
794 *p_move_notes = link;
795 p_move_notes = &XEXP (link, 1);
796 }
797 else
798 {
799 *p_insn_notes = link;
800 p_insn_notes = &XEXP (link, 1);
801 }
802 }
803
804 *p_move_notes = NULL_RTX;
805 *p_insn_notes = NULL_RTX;
806
807 /* Is the insn the head of a basic block? If so extend it. */
808 insn_uid = INSN_UID (insn);
809 move_uid = INSN_UID (move_insn);
810 if (insn_uid < old_max_uid)
811 {
812 bb = regmove_bb_head[insn_uid];
813 if (bb >= 0)
814 {
815 BB_HEAD (BASIC_BLOCK (bb)) = move_insn;
816 regmove_bb_head[insn_uid] = -1;
817 }
818 }
819
820 /* Update the various register tables. */
821 dest_regno = REGNO (dest);
822 REG_N_SETS (dest_regno) ++;
823 REG_LIVE_LENGTH (dest_regno)++;
824 if (REGNO_FIRST_UID (dest_regno) == insn_uid)
825 REGNO_FIRST_UID (dest_regno) = move_uid;
826
827 src_regno = REGNO (src);
828 if (! find_reg_note (move_insn, REG_DEAD, src))
829 REG_LIVE_LENGTH (src_regno)++;
830
831 if (REGNO_FIRST_UID (src_regno) == insn_uid)
832 REGNO_FIRST_UID (src_regno) = move_uid;
833
834 if (REGNO_LAST_UID (src_regno) == insn_uid)
835 REGNO_LAST_UID (src_regno) = move_uid;
836
837 if (REGNO_LAST_NOTE_UID (src_regno) == insn_uid)
838 REGNO_LAST_NOTE_UID (src_regno) = move_uid;
839 }
840 }
841
842 \f
843 /* Return whether REG is set in only one location, and is set to a
844 constant, but is set in a different basic block from INSN (an
845 instructions which uses REG). In this case REG is equivalent to a
846 constant, and we don't want to break that equivalence, because that
847 may increase register pressure and make reload harder. If REG is
848 set in the same basic block as INSN, we don't worry about it,
849 because we'll probably need a register anyhow (??? but what if REG
850 is used in a different basic block as well as this one?). FIRST is
851 the first insn in the function. */
852
853 static int
854 reg_is_remote_constant_p (rtx reg, rtx insn, rtx first)
855 {
856 rtx p;
857
858 if (REG_N_SETS (REGNO (reg)) != 1)
859 return 0;
860
861 /* Look for the set. */
862 for (p = LOG_LINKS (insn); p; p = XEXP (p, 1))
863 {
864 rtx s;
865
866 if (REG_NOTE_KIND (p) != 0)
867 continue;
868 s = single_set (XEXP (p, 0));
869 if (s != 0
870 && REG_P (SET_DEST (s))
871 && REGNO (SET_DEST (s)) == REGNO (reg))
872 {
873 /* The register is set in the same basic block. */
874 return 0;
875 }
876 }
877
878 for (p = first; p && p != insn; p = NEXT_INSN (p))
879 {
880 rtx s;
881
882 if (! INSN_P (p))
883 continue;
884 s = single_set (p);
885 if (s != 0
886 && REG_P (SET_DEST (s))
887 && REGNO (SET_DEST (s)) == REGNO (reg))
888 {
889 /* This is the instruction which sets REG. If there is a
890 REG_EQUAL note, then REG is equivalent to a constant. */
891 if (find_reg_note (p, REG_EQUAL, NULL_RTX))
892 return 1;
893 return 0;
894 }
895 }
896
897 return 0;
898 }
899
900 /* INSN is adding a CONST_INT to a REG. We search backwards looking for
901 another add immediate instruction with the same source and dest registers,
902 and if we find one, we change INSN to an increment, and return 1. If
903 no changes are made, we return 0.
904
905 This changes
906 (set (reg100) (plus reg1 offset1))
907 ...
908 (set (reg100) (plus reg1 offset2))
909 to
910 (set (reg100) (plus reg1 offset1))
911 ...
912 (set (reg100) (plus reg100 offset2-offset1)) */
913
914 /* ??? What does this comment mean? */
915 /* cse disrupts preincrement / postdecrement sequences when it finds a
916 hard register as ultimate source, like the frame pointer. */
917
918 static int
919 fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset, FILE *regmove_dump_file)
920 {
921 rtx p, dst_death = 0;
922 int length, num_calls = 0;
923
924 /* If SRC dies in INSN, we'd have to move the death note. This is
925 considered to be very unlikely, so we just skip the optimization
926 in this case. */
927 if (find_regno_note (insn, REG_DEAD, REGNO (src)))
928 return 0;
929
930 /* Scan backward to find the first instruction that sets DST. */
931
932 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
933 {
934 rtx pset;
935
936 /* ??? We can't scan past the end of a basic block without updating
937 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
938 if (perhaps_ends_bb_p (p))
939 break;
940 else if (! INSN_P (p))
941 continue;
942
943 if (find_regno_note (p, REG_DEAD, REGNO (dst)))
944 dst_death = p;
945 if (! dst_death)
946 length++;
947
948 pset = single_set (p);
949 if (pset && SET_DEST (pset) == dst
950 && GET_CODE (SET_SRC (pset)) == PLUS
951 && XEXP (SET_SRC (pset), 0) == src
952 && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
953 {
954 HOST_WIDE_INT newconst
955 = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
956 rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
957
958 if (add && validate_change (insn, &PATTERN (insn), add, 0))
959 {
960 /* Remove the death note for DST from DST_DEATH. */
961 if (dst_death)
962 {
963 remove_death (REGNO (dst), dst_death);
964 REG_LIVE_LENGTH (REGNO (dst)) += length;
965 REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
966 }
967
968 if (regmove_dump_file)
969 fprintf (regmove_dump_file,
970 "Fixed operand of insn %d.\n",
971 INSN_UID (insn));
972
973 #ifdef AUTO_INC_DEC
974 for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
975 {
976 if (LABEL_P (p)
977 || JUMP_P (p))
978 break;
979 if (! INSN_P (p))
980 continue;
981 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
982 {
983 if (try_auto_increment (p, insn, 0, dst, newconst, 0))
984 return 1;
985 break;
986 }
987 }
988 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
989 {
990 if (LABEL_P (p)
991 || JUMP_P (p))
992 break;
993 if (! INSN_P (p))
994 continue;
995 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
996 {
997 try_auto_increment (p, insn, 0, dst, newconst, 1);
998 break;
999 }
1000 }
1001 #endif
1002 return 1;
1003 }
1004 }
1005
1006 if (reg_set_p (dst, PATTERN (p)))
1007 break;
1008
1009 /* If we have passed a call instruction, and the
1010 pseudo-reg SRC is not already live across a call,
1011 then don't perform the optimization. */
1012 /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
1013 hard regs are clobbered. Thus, we only use it for src for
1014 non-call insns. */
1015 if (CALL_P (p))
1016 {
1017 if (! dst_death)
1018 num_calls++;
1019
1020 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1021 break;
1022
1023 if (call_used_regs [REGNO (dst)]
1024 || find_reg_fusage (p, CLOBBER, dst))
1025 break;
1026 }
1027 else if (reg_set_p (src, PATTERN (p)))
1028 break;
1029 }
1030
1031 return 0;
1032 }
1033
1034 /* Main entry for the register move optimization.
1035 F is the first instruction.
1036 NREGS is one plus the highest pseudo-reg number used in the instruction.
1037 REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
1038 (or 0 if none should be output). */
1039
1040 void
1041 regmove_optimize (rtx f, int nregs, FILE *regmove_dump_file)
1042 {
1043 int old_max_uid = get_max_uid ();
1044 rtx insn;
1045 struct match match;
1046 int pass;
1047 int i;
1048 rtx copy_src, copy_dst;
1049 basic_block bb;
1050
1051 /* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
1052 confused by non-call exceptions ending blocks. */
1053 if (flag_non_call_exceptions)
1054 return;
1055
1056 /* Find out where a potential flags register is live, and so that we
1057 can suppress some optimizations in those zones. */
1058 mark_flags_life_zones (discover_flags_reg ());
1059
1060 regno_src_regno = xmalloc (sizeof *regno_src_regno * nregs);
1061 for (i = nregs; --i >= 0; ) regno_src_regno[i] = -1;
1062
1063 regmove_bb_head = xmalloc (sizeof (int) * (old_max_uid + 1));
1064 for (i = old_max_uid; i >= 0; i--) regmove_bb_head[i] = -1;
1065 FOR_EACH_BB (bb)
1066 regmove_bb_head[INSN_UID (BB_HEAD (bb))] = bb->index;
1067
1068 /* A forward/backward pass. Replace output operands with input operands. */
1069
1070 for (pass = 0; pass <= 2; pass++)
1071 {
1072 if (! flag_regmove && pass >= flag_expensive_optimizations)
1073 goto done;
1074
1075 if (regmove_dump_file)
1076 fprintf (regmove_dump_file, "Starting %s pass...\n",
1077 pass ? "backward" : "forward");
1078
1079 for (insn = pass ? get_last_insn () : f; insn;
1080 insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
1081 {
1082 rtx set;
1083 int op_no, match_no;
1084
1085 set = single_set (insn);
1086 if (! set)
1087 continue;
1088
1089 if (flag_expensive_optimizations && ! pass
1090 && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
1091 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
1092 && REG_P (XEXP (SET_SRC (set), 0))
1093 && REG_P (SET_DEST (set)))
1094 optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
1095
1096 if (flag_expensive_optimizations && ! pass
1097 && REG_P (SET_SRC (set))
1098 && REG_P (SET_DEST (set)))
1099 {
1100 /* If this is a register-register copy where SRC is not dead,
1101 see if we can optimize it. If this optimization succeeds,
1102 it will become a copy where SRC is dead. */
1103 if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
1104 || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
1105 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
1106 {
1107 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1108 if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1109 optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
1110 if (regno_src_regno[REGNO (SET_DEST (set))] < 0
1111 && SET_SRC (set) != SET_DEST (set))
1112 {
1113 int srcregno = REGNO (SET_SRC (set));
1114 if (regno_src_regno[srcregno] >= 0)
1115 srcregno = regno_src_regno[srcregno];
1116 regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
1117 }
1118 }
1119 }
1120 if (! flag_regmove)
1121 continue;
1122
1123 if (! find_matches (insn, &match))
1124 continue;
1125
1126 /* Now scan through the operands looking for a source operand
1127 which is supposed to match the destination operand.
1128 Then scan forward for an instruction which uses the dest
1129 operand.
1130 If it dies there, then replace the dest in both operands with
1131 the source operand. */
1132
1133 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1134 {
1135 rtx src, dst, src_subreg;
1136 enum reg_class src_class, dst_class;
1137
1138 match_no = match.with[op_no];
1139
1140 /* Nothing to do if the two operands aren't supposed to match. */
1141 if (match_no < 0)
1142 continue;
1143
1144 src = recog_data.operand[op_no];
1145 dst = recog_data.operand[match_no];
1146
1147 if (!REG_P (src))
1148 continue;
1149
1150 src_subreg = src;
1151 if (GET_CODE (dst) == SUBREG
1152 && GET_MODE_SIZE (GET_MODE (dst))
1153 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
1154 {
1155 src_subreg
1156 = gen_rtx_SUBREG (GET_MODE (SUBREG_REG (dst)),
1157 src, SUBREG_BYTE (dst));
1158 dst = SUBREG_REG (dst);
1159 }
1160 if (!REG_P (dst)
1161 || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1162 continue;
1163
1164 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1165 {
1166 if (match.commutative[op_no] < op_no)
1167 regno_src_regno[REGNO (dst)] = REGNO (src);
1168 continue;
1169 }
1170
1171 if (REG_LIVE_LENGTH (REGNO (src)) < 0)
1172 continue;
1173
1174 /* op_no/src must be a read-only operand, and
1175 match_operand/dst must be a write-only operand. */
1176 if (match.use[op_no] != READ
1177 || match.use[match_no] != WRITE)
1178 continue;
1179
1180 if (match.early_clobber[match_no]
1181 && count_occurrences (PATTERN (insn), src, 0) > 1)
1182 continue;
1183
1184 /* Make sure match_operand is the destination. */
1185 if (recog_data.operand[match_no] != SET_DEST (set))
1186 continue;
1187
1188 /* If the operands already match, then there is nothing to do. */
1189 if (operands_match_p (src, dst))
1190 continue;
1191
1192 /* But in the commutative case, we might find a better match. */
1193 if (match.commutative[op_no] >= 0)
1194 {
1195 rtx comm = recog_data.operand[match.commutative[op_no]];
1196 if (operands_match_p (comm, dst)
1197 && (replacement_quality (comm)
1198 >= replacement_quality (src)))
1199 continue;
1200 }
1201
1202 src_class = reg_preferred_class (REGNO (src));
1203 dst_class = reg_preferred_class (REGNO (dst));
1204 if (! regclass_compatible_p (src_class, dst_class))
1205 continue;
1206
1207 if (GET_MODE (src) != GET_MODE (dst))
1208 continue;
1209
1210 if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
1211 op_no, match_no,
1212 regmove_dump_file))
1213 break;
1214 }
1215 }
1216 }
1217
1218 /* A backward pass. Replace input operands with output operands. */
1219
1220 if (regmove_dump_file)
1221 fprintf (regmove_dump_file, "Starting backward pass...\n");
1222
1223 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1224 {
1225 if (INSN_P (insn))
1226 {
1227 int op_no, match_no;
1228 int success = 0;
1229
1230 if (! find_matches (insn, &match))
1231 continue;
1232
1233 /* Now scan through the operands looking for a destination operand
1234 which is supposed to match a source operand.
1235 Then scan backward for an instruction which sets the source
1236 operand. If safe, then replace the source operand with the
1237 dest operand in both instructions. */
1238
1239 copy_src = NULL_RTX;
1240 copy_dst = NULL_RTX;
1241 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1242 {
1243 rtx set, p, src, dst;
1244 rtx src_note, dst_note;
1245 int num_calls = 0;
1246 enum reg_class src_class, dst_class;
1247 int length;
1248
1249 match_no = match.with[op_no];
1250
1251 /* Nothing to do if the two operands aren't supposed to match. */
1252 if (match_no < 0)
1253 continue;
1254
1255 dst = recog_data.operand[match_no];
1256 src = recog_data.operand[op_no];
1257
1258 if (!REG_P (src))
1259 continue;
1260
1261 if (!REG_P (dst)
1262 || REGNO (dst) < FIRST_PSEUDO_REGISTER
1263 || REG_LIVE_LENGTH (REGNO (dst)) < 0
1264 || GET_MODE (src) != GET_MODE (dst))
1265 continue;
1266
1267 /* If the operands already match, then there is nothing to do. */
1268 if (operands_match_p (src, dst))
1269 continue;
1270
1271 if (match.commutative[op_no] >= 0)
1272 {
1273 rtx comm = recog_data.operand[match.commutative[op_no]];
1274 if (operands_match_p (comm, dst))
1275 continue;
1276 }
1277
1278 set = single_set (insn);
1279 if (! set)
1280 continue;
1281
1282 /* Note that single_set ignores parts of a parallel set for
1283 which one of the destinations is REG_UNUSED. We can't
1284 handle that here, since we can wind up rewriting things
1285 such that a single register is set twice within a single
1286 parallel. */
1287 if (reg_set_p (src, insn))
1288 continue;
1289
1290 /* match_no/dst must be a write-only operand, and
1291 operand_operand/src must be a read-only operand. */
1292 if (match.use[op_no] != READ
1293 || match.use[match_no] != WRITE)
1294 continue;
1295
1296 if (match.early_clobber[match_no]
1297 && count_occurrences (PATTERN (insn), src, 0) > 1)
1298 continue;
1299
1300 /* Make sure match_no is the destination. */
1301 if (recog_data.operand[match_no] != SET_DEST (set))
1302 continue;
1303
1304 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1305 {
1306 if (GET_CODE (SET_SRC (set)) == PLUS
1307 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
1308 && XEXP (SET_SRC (set), 0) == src
1309 && fixup_match_2 (insn, dst, src,
1310 XEXP (SET_SRC (set), 1),
1311 regmove_dump_file))
1312 break;
1313 continue;
1314 }
1315 src_class = reg_preferred_class (REGNO (src));
1316 dst_class = reg_preferred_class (REGNO (dst));
1317
1318 if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
1319 {
1320 /* We used to force the copy here like in other cases, but
1321 it produces worse code, as it eliminates no copy
1322 instructions and the copy emitted will be produced by
1323 reload anyway. On patterns with multiple alternatives,
1324 there may be better solution available.
1325
1326 In particular this change produced slower code for numeric
1327 i387 programs. */
1328
1329 continue;
1330 }
1331
1332 if (! regclass_compatible_p (src_class, dst_class))
1333 {
1334 if (!copy_src)
1335 {
1336 copy_src = src;
1337 copy_dst = dst;
1338 }
1339 continue;
1340 }
1341
1342 /* Can not modify an earlier insn to set dst if this insn
1343 uses an old value in the source. */
1344 if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
1345 {
1346 if (!copy_src)
1347 {
1348 copy_src = src;
1349 copy_dst = dst;
1350 }
1351 continue;
1352 }
1353
1354 /* If src is set once in a different basic block,
1355 and is set equal to a constant, then do not use
1356 it for this optimization, as this would make it
1357 no longer equivalent to a constant. */
1358
1359 if (reg_is_remote_constant_p (src, insn, f))
1360 {
1361 if (!copy_src)
1362 {
1363 copy_src = src;
1364 copy_dst = dst;
1365 }
1366 continue;
1367 }
1368
1369
1370 if (regmove_dump_file)
1371 fprintf (regmove_dump_file,
1372 "Could fix operand %d of insn %d matching operand %d.\n",
1373 op_no, INSN_UID (insn), match_no);
1374
1375 /* Scan backward to find the first instruction that uses
1376 the input operand. If the operand is set here, then
1377 replace it in both instructions with match_no. */
1378
1379 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
1380 {
1381 rtx pset;
1382
1383 /* ??? We can't scan past the end of a basic block without
1384 updating the register lifetime info
1385 (REG_DEAD/basic_block_live_at_start). */
1386 if (perhaps_ends_bb_p (p))
1387 break;
1388 else if (! INSN_P (p))
1389 continue;
1390
1391 length++;
1392
1393 /* ??? See if all of SRC is set in P. This test is much
1394 more conservative than it needs to be. */
1395 pset = single_set (p);
1396 if (pset && SET_DEST (pset) == src)
1397 {
1398 /* We use validate_replace_rtx, in case there
1399 are multiple identical source operands. All of
1400 them have to be changed at the same time. */
1401 if (validate_replace_rtx (src, dst, insn))
1402 {
1403 if (validate_change (p, &SET_DEST (pset),
1404 dst, 0))
1405 success = 1;
1406 else
1407 {
1408 /* Change all source operands back.
1409 This modifies the dst as a side-effect. */
1410 validate_replace_rtx (dst, src, insn);
1411 /* Now make sure the dst is right. */
1412 validate_change (insn,
1413 recog_data.operand_loc[match_no],
1414 dst, 0);
1415 }
1416 }
1417 break;
1418 }
1419
1420 if (reg_overlap_mentioned_p (src, PATTERN (p))
1421 || reg_overlap_mentioned_p (dst, PATTERN (p)))
1422 break;
1423
1424 /* If we have passed a call instruction, and the
1425 pseudo-reg DST is not already live across a call,
1426 then don't perform the optimization. */
1427 if (CALL_P (p))
1428 {
1429 num_calls++;
1430
1431 if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
1432 break;
1433 }
1434 }
1435
1436 if (success)
1437 {
1438 int dstno, srcno;
1439
1440 /* Remove the death note for SRC from INSN. */
1441 remove_note (insn, src_note);
1442 /* Move the death note for SRC to P if it is used
1443 there. */
1444 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1445 {
1446 XEXP (src_note, 1) = REG_NOTES (p);
1447 REG_NOTES (p) = src_note;
1448 }
1449 /* If there is a REG_DEAD note for DST on P, then remove
1450 it, because DST is now set there. */
1451 if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
1452 remove_note (p, dst_note);
1453
1454 dstno = REGNO (dst);
1455 srcno = REGNO (src);
1456
1457 REG_N_SETS (dstno)++;
1458 REG_N_SETS (srcno)--;
1459
1460 REG_N_CALLS_CROSSED (dstno) += num_calls;
1461 REG_N_CALLS_CROSSED (srcno) -= num_calls;
1462
1463 REG_LIVE_LENGTH (dstno) += length;
1464 if (REG_LIVE_LENGTH (srcno) >= 0)
1465 {
1466 REG_LIVE_LENGTH (srcno) -= length;
1467 /* REG_LIVE_LENGTH is only an approximation after
1468 combine if sched is not run, so make sure that we
1469 still have a reasonable value. */
1470 if (REG_LIVE_LENGTH (srcno) < 2)
1471 REG_LIVE_LENGTH (srcno) = 2;
1472 }
1473
1474 if (regmove_dump_file)
1475 fprintf (regmove_dump_file,
1476 "Fixed operand %d of insn %d matching operand %d.\n",
1477 op_no, INSN_UID (insn), match_no);
1478
1479 break;
1480 }
1481 }
1482
1483 /* If we weren't able to replace any of the alternatives, try an
1484 alternative approach of copying the source to the destination. */
1485 if (!success && copy_src != NULL_RTX)
1486 copy_src_to_dest (insn, copy_src, copy_dst, old_max_uid);
1487
1488 }
1489 }
1490
1491 /* In fixup_match_1, some insns may have been inserted after basic block
1492 ends. Fix that here. */
1493 FOR_EACH_BB (bb)
1494 {
1495 rtx end = BB_END (bb);
1496 rtx new = end;
1497 rtx next = NEXT_INSN (new);
1498 while (next != 0 && INSN_UID (next) >= old_max_uid
1499 && (bb->next_bb == EXIT_BLOCK_PTR || BB_HEAD (bb->next_bb) != next))
1500 new = next, next = NEXT_INSN (new);
1501 BB_END (bb) = new;
1502 }
1503
1504 done:
1505 /* Clean up. */
1506 free (regno_src_regno);
1507 free (regmove_bb_head);
1508 }
1509
1510 /* Returns nonzero if INSN's pattern has matching constraints for any operand.
1511 Returns 0 if INSN can't be recognized, or if the alternative can't be
1512 determined.
1513
1514 Initialize the info in MATCHP based on the constraints. */
1515
1516 static int
1517 find_matches (rtx insn, struct match *matchp)
1518 {
1519 int likely_spilled[MAX_RECOG_OPERANDS];
1520 int op_no;
1521 int any_matches = 0;
1522
1523 extract_insn (insn);
1524 if (! constrain_operands (0))
1525 return 0;
1526
1527 /* Must initialize this before main loop, because the code for
1528 the commutative case may set matches for operands other than
1529 the current one. */
1530 for (op_no = recog_data.n_operands; --op_no >= 0; )
1531 matchp->with[op_no] = matchp->commutative[op_no] = -1;
1532
1533 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1534 {
1535 const char *p;
1536 char c;
1537 int i = 0;
1538
1539 p = recog_data.constraints[op_no];
1540
1541 likely_spilled[op_no] = 0;
1542 matchp->use[op_no] = READ;
1543 matchp->early_clobber[op_no] = 0;
1544 if (*p == '=')
1545 matchp->use[op_no] = WRITE;
1546 else if (*p == '+')
1547 matchp->use[op_no] = READWRITE;
1548
1549 for (;*p && i < which_alternative; p++)
1550 if (*p == ',')
1551 i++;
1552
1553 while ((c = *p) != '\0' && c != ',')
1554 {
1555 switch (c)
1556 {
1557 case '=':
1558 break;
1559 case '+':
1560 break;
1561 case '&':
1562 matchp->early_clobber[op_no] = 1;
1563 break;
1564 case '%':
1565 matchp->commutative[op_no] = op_no + 1;
1566 matchp->commutative[op_no + 1] = op_no;
1567 break;
1568
1569 case '0': case '1': case '2': case '3': case '4':
1570 case '5': case '6': case '7': case '8': case '9':
1571 {
1572 char *end;
1573 unsigned long match_ul = strtoul (p, &end, 10);
1574 int match = match_ul;
1575
1576 p = end;
1577
1578 if (match < op_no && likely_spilled[match])
1579 continue;
1580 matchp->with[op_no] = match;
1581 any_matches = 1;
1582 if (matchp->commutative[op_no] >= 0)
1583 matchp->with[matchp->commutative[op_no]] = match;
1584 }
1585 continue;
1586
1587 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
1588 case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
1589 case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
1590 case 'C': case 'D': case 'W': case 'Y': case 'Z':
1591 if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
1592 likely_spilled[op_no] = 1;
1593 break;
1594 }
1595 p += CONSTRAINT_LEN (c, p);
1596 }
1597 }
1598 return any_matches;
1599 }
1600
1601 /* Try to replace all occurrences of DST_REG with SRC in LOC, that is
1602 assumed to be in INSN. */
1603
1604 static void
1605 replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
1606 {
1607 rtx x = *loc;
1608 enum rtx_code code;
1609 const char *fmt;
1610 int i, j;
1611
1612 if (! x)
1613 return;
1614
1615 code = GET_CODE (x);
1616 if (code == REG)
1617 {
1618 if (REGNO (x) != dst_reg)
1619 return;
1620
1621 validate_change (insn, loc, src, 1);
1622
1623 return;
1624 }
1625
1626 /* Process each of our operands recursively. */
1627 fmt = GET_RTX_FORMAT (code);
1628 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1629 if (*fmt == 'e')
1630 replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
1631 else if (*fmt == 'E')
1632 for (j = 0; j < XVECLEN (x, i); j++)
1633 replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
1634 }
1635
1636 /* Try to replace output operand DST in SET, with input operand SRC. SET is
1637 the only set in INSN. INSN has just been recognized and constrained.
1638 SRC is operand number OPERAND_NUMBER in INSN.
1639 DST is operand number MATCH_NUMBER in INSN.
1640 If BACKWARD is nonzero, we have been called in a backward pass.
1641 Return nonzero for success. */
1642
1643 static int
1644 fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
1645 int backward, int operand_number, int match_number,
1646 FILE *regmove_dump_file)
1647 {
1648 rtx p;
1649 rtx post_inc = 0, post_inc_set = 0, search_end = 0;
1650 int success = 0;
1651 int num_calls = 0, s_num_calls = 0;
1652 enum rtx_code code = NOTE;
1653 HOST_WIDE_INT insn_const = 0, newconst = 0;
1654 rtx overlap = 0; /* need to move insn ? */
1655 rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
1656 int length, s_length;
1657
1658 if (! src_note)
1659 {
1660 /* Look for (set (regX) (op regA constX))
1661 (set (regY) (op regA constY))
1662 and change that to
1663 (set (regA) (op regA constX)).
1664 (set (regY) (op regA constY-constX)).
1665 This works for add and shift operations, if
1666 regA is dead after or set by the second insn. */
1667
1668 code = GET_CODE (SET_SRC (set));
1669 if ((code == PLUS || code == LSHIFTRT
1670 || code == ASHIFT || code == ASHIFTRT)
1671 && XEXP (SET_SRC (set), 0) == src
1672 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1673 insn_const = INTVAL (XEXP (SET_SRC (set), 1));
1674 else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
1675 return 0;
1676 else
1677 /* We might find a src_note while scanning. */
1678 code = NOTE;
1679 }
1680
1681 if (regmove_dump_file)
1682 fprintf (regmove_dump_file,
1683 "Could fix operand %d of insn %d matching operand %d.\n",
1684 operand_number, INSN_UID (insn), match_number);
1685
1686 /* If SRC is equivalent to a constant set in a different basic block,
1687 then do not use it for this optimization. We want the equivalence
1688 so that if we have to reload this register, we can reload the
1689 constant, rather than extending the lifespan of the register. */
1690 if (reg_is_remote_constant_p (src, insn, get_insns ()))
1691 return 0;
1692
1693 /* Scan forward to find the next instruction that
1694 uses the output operand. If the operand dies here,
1695 then replace it in both instructions with
1696 operand_number. */
1697
1698 for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1699 {
1700 if (CALL_P (p))
1701 replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
1702 REGNO (dst), src, p);
1703
1704 /* ??? We can't scan past the end of a basic block without updating
1705 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
1706 if (perhaps_ends_bb_p (p))
1707 break;
1708 else if (! INSN_P (p))
1709 continue;
1710
1711 length++;
1712 if (src_note)
1713 s_length++;
1714
1715 if (reg_set_p (src, p) || reg_set_p (dst, p)
1716 || (GET_CODE (PATTERN (p)) == USE
1717 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
1718 break;
1719
1720 /* See if all of DST dies in P. This test is
1721 slightly more conservative than it needs to be. */
1722 if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
1723 && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
1724 {
1725 /* If we would be moving INSN, check that we won't move it
1726 into the shadow of a live a live flags register. */
1727 /* ??? We only try to move it in front of P, although
1728 we could move it anywhere between OVERLAP and P. */
1729 if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
1730 break;
1731
1732 if (! src_note)
1733 {
1734 rtx q;
1735 rtx set2 = NULL_RTX;
1736
1737 /* If an optimization is done, the value of SRC while P
1738 is executed will be changed. Check that this is OK. */
1739 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1740 break;
1741 for (q = p; q; q = NEXT_INSN (q))
1742 {
1743 /* ??? We can't scan past the end of a basic block without
1744 updating the register lifetime info
1745 (REG_DEAD/basic_block_live_at_start). */
1746 if (perhaps_ends_bb_p (q))
1747 {
1748 q = 0;
1749 break;
1750 }
1751 else if (! INSN_P (q))
1752 continue;
1753 else if (reg_overlap_mentioned_p (src, PATTERN (q))
1754 || reg_set_p (src, q))
1755 break;
1756 }
1757 if (q)
1758 set2 = single_set (q);
1759 if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
1760 || XEXP (SET_SRC (set2), 0) != src
1761 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
1762 || (SET_DEST (set2) != src
1763 && ! find_reg_note (q, REG_DEAD, src)))
1764 {
1765 /* If this is a PLUS, we can still save a register by doing
1766 src += insn_const;
1767 P;
1768 src -= insn_const; .
1769 This also gives opportunities for subsequent
1770 optimizations in the backward pass, so do it there. */
1771 if (code == PLUS && backward
1772 /* Don't do this if we can likely tie DST to SET_DEST
1773 of P later; we can't do this tying here if we got a
1774 hard register. */
1775 && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
1776 && single_set (p)
1777 && REG_P (SET_DEST (single_set (p)))
1778 && (REGNO (SET_DEST (single_set (p)))
1779 < FIRST_PSEUDO_REGISTER))
1780 /* We may only emit an insn directly after P if we
1781 are not in the shadow of a live flags register. */
1782 && GET_MODE (p) == VOIDmode)
1783 {
1784 search_end = q;
1785 q = insn;
1786 set2 = set;
1787 newconst = -insn_const;
1788 code = MINUS;
1789 }
1790 else
1791 break;
1792 }
1793 else
1794 {
1795 newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
1796 /* Reject out of range shifts. */
1797 if (code != PLUS
1798 && (newconst < 0
1799 || ((unsigned HOST_WIDE_INT) newconst
1800 >= (GET_MODE_BITSIZE (GET_MODE
1801 (SET_SRC (set2)))))))
1802 break;
1803 if (code == PLUS)
1804 {
1805 post_inc = q;
1806 if (SET_DEST (set2) != src)
1807 post_inc_set = set2;
1808 }
1809 }
1810 /* We use 1 as last argument to validate_change so that all
1811 changes are accepted or rejected together by apply_change_group
1812 when it is called by validate_replace_rtx . */
1813 validate_change (q, &XEXP (SET_SRC (set2), 1),
1814 GEN_INT (newconst), 1);
1815 }
1816 validate_change (insn, recog_data.operand_loc[match_number], src, 1);
1817 if (validate_replace_rtx (dst, src_subreg, p))
1818 success = 1;
1819 break;
1820 }
1821
1822 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1823 break;
1824 if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
1825 {
1826 /* INSN was already checked to be movable wrt. the registers that it
1827 sets / uses when we found no REG_DEAD note for src on it, but it
1828 still might clobber the flags register. We'll have to check that
1829 we won't insert it into the shadow of a live flags register when
1830 we finally know where we are to move it. */
1831 overlap = p;
1832 src_note = find_reg_note (p, REG_DEAD, src);
1833 }
1834
1835 /* If we have passed a call instruction, and the pseudo-reg SRC is not
1836 already live across a call, then don't perform the optimization. */
1837 if (CALL_P (p))
1838 {
1839 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1840 break;
1841
1842 num_calls++;
1843
1844 if (src_note)
1845 s_num_calls++;
1846
1847 }
1848 }
1849
1850 if (! success)
1851 return 0;
1852
1853 /* Remove the death note for DST from P. */
1854 remove_note (p, dst_note);
1855 if (code == MINUS)
1856 {
1857 post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
1858 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1859 && search_end
1860 && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
1861 post_inc = 0;
1862 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
1863 REG_N_SETS (REGNO (src))++;
1864 REG_LIVE_LENGTH (REGNO (src))++;
1865 }
1866 if (overlap)
1867 {
1868 /* The lifetime of src and dest overlap,
1869 but we can change this by moving insn. */
1870 rtx pat = PATTERN (insn);
1871 if (src_note)
1872 remove_note (overlap, src_note);
1873 if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1874 && code == PLUS
1875 && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
1876 insn = overlap;
1877 else
1878 {
1879 rtx notes = REG_NOTES (insn);
1880
1881 emit_insn_after_with_line_notes (pat, PREV_INSN (p), insn);
1882 delete_insn (insn);
1883 /* emit_insn_after_with_line_notes has no
1884 return value, so search for the new insn. */
1885 insn = p;
1886 while (! INSN_P (insn) || PATTERN (insn) != pat)
1887 insn = PREV_INSN (insn);
1888
1889 REG_NOTES (insn) = notes;
1890 }
1891 }
1892 /* Sometimes we'd generate src = const; src += n;
1893 if so, replace the instruction that set src
1894 in the first place. */
1895
1896 if (! overlap && (code == PLUS || code == MINUS))
1897 {
1898 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1899 rtx q, set2 = NULL_RTX;
1900 int num_calls2 = 0, s_length2 = 0;
1901
1902 if (note && CONSTANT_P (XEXP (note, 0)))
1903 {
1904 for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
1905 {
1906 /* ??? We can't scan past the end of a basic block without
1907 updating the register lifetime info
1908 (REG_DEAD/basic_block_live_at_start). */
1909 if (perhaps_ends_bb_p (q))
1910 {
1911 q = 0;
1912 break;
1913 }
1914 else if (! INSN_P (q))
1915 continue;
1916
1917 s_length2++;
1918 if (reg_set_p (src, q))
1919 {
1920 set2 = single_set (q);
1921 break;
1922 }
1923 if (reg_overlap_mentioned_p (src, PATTERN (q)))
1924 {
1925 q = 0;
1926 break;
1927 }
1928 if (CALL_P (p))
1929 num_calls2++;
1930 }
1931 if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
1932 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
1933 {
1934 delete_insn (q);
1935 REG_N_SETS (REGNO (src))--;
1936 REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
1937 REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
1938 insn_const = 0;
1939 }
1940 }
1941 }
1942
1943 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1944 && (code == PLUS || code == MINUS) && insn_const
1945 && try_auto_increment (p, insn, 0, src, insn_const, 1))
1946 insn = p;
1947 else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1948 && post_inc
1949 && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
1950 post_inc = 0;
1951 /* If post_inc still prevails, try to find an
1952 insn where it can be used as a pre-in/decrement.
1953 If code is MINUS, this was already tried. */
1954 if (post_inc && code == PLUS
1955 /* Check that newconst is likely to be usable
1956 in a pre-in/decrement before starting the search. */
1957 && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
1958 || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
1959 && exact_log2 (newconst))
1960 {
1961 rtx q, inc_dest;
1962
1963 inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
1964 for (q = post_inc; (q = NEXT_INSN (q)); )
1965 {
1966 /* ??? We can't scan past the end of a basic block without updating
1967 the register lifetime info
1968 (REG_DEAD/basic_block_live_at_start). */
1969 if (perhaps_ends_bb_p (q))
1970 break;
1971 else if (! INSN_P (q))
1972 continue;
1973 else if (src != inc_dest
1974 && (reg_overlap_mentioned_p (src, PATTERN (q))
1975 || reg_set_p (src, q)))
1976 break;
1977 else if (reg_set_p (inc_dest, q))
1978 break;
1979 else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
1980 {
1981 try_auto_increment (q, post_inc,
1982 post_inc_set, inc_dest, newconst, 1);
1983 break;
1984 }
1985 }
1986 }
1987
1988 /* Move the death note for DST to INSN if it is used
1989 there. */
1990 if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
1991 {
1992 XEXP (dst_note, 1) = REG_NOTES (insn);
1993 REG_NOTES (insn) = dst_note;
1994 }
1995
1996 if (src_note)
1997 {
1998 /* Move the death note for SRC from INSN to P. */
1999 if (! overlap)
2000 remove_note (insn, src_note);
2001 XEXP (src_note, 1) = REG_NOTES (p);
2002 REG_NOTES (p) = src_note;
2003
2004 REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
2005 }
2006
2007 REG_N_SETS (REGNO (src))++;
2008 REG_N_SETS (REGNO (dst))--;
2009
2010 REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
2011
2012 REG_LIVE_LENGTH (REGNO (src)) += s_length;
2013 if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
2014 {
2015 REG_LIVE_LENGTH (REGNO (dst)) -= length;
2016 /* REG_LIVE_LENGTH is only an approximation after
2017 combine if sched is not run, so make sure that we
2018 still have a reasonable value. */
2019 if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
2020 REG_LIVE_LENGTH (REGNO (dst)) = 2;
2021 }
2022 if (regmove_dump_file)
2023 fprintf (regmove_dump_file,
2024 "Fixed operand %d of insn %d matching operand %d.\n",
2025 operand_number, INSN_UID (insn), match_number);
2026 return 1;
2027 }
2028
2029
2030 /* Return nonzero if X is stable and mentions no registers but for
2031 mentioning SRC or mentioning / changing DST . If in doubt, presume
2032 it is unstable.
2033 The rationale is that we want to check if we can move an insn easily
2034 while just paying attention to SRC and DST. */
2035 static int
2036 stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
2037 {
2038 RTX_CODE code = GET_CODE (x);
2039 switch (GET_RTX_CLASS (code))
2040 {
2041 case RTX_UNARY:
2042 case RTX_BIN_ARITH:
2043 case RTX_COMM_ARITH:
2044 case RTX_COMPARE:
2045 case RTX_COMM_COMPARE:
2046 case RTX_TERNARY:
2047 case RTX_BITFIELD_OPS:
2048 {
2049 int i;
2050 const char *fmt = GET_RTX_FORMAT (code);
2051 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2052 if (fmt[i] == 'e'
2053 && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
2054 return 0;
2055 return 1;
2056 }
2057 case RTX_OBJ:
2058 if (code == REG)
2059 return x == src || x == dst;
2060 /* If this is a MEM, look inside - there might be a register hidden in
2061 the address of an unchanging MEM. */
2062 if (code == MEM
2063 && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
2064 return 0;
2065 /* Fall through. */
2066 default:
2067 return ! rtx_unstable_p (x);
2068 }
2069 }
2070 \f
2071 /* Track stack adjustments and stack memory references. Attempt to
2072 reduce the number of stack adjustments by back-propagating across
2073 the memory references.
2074
2075 This is intended primarily for use with targets that do not define
2076 ACCUMULATE_OUTGOING_ARGS. It is of significantly more value to
2077 targets that define PREFERRED_STACK_BOUNDARY more aligned than
2078 STACK_BOUNDARY (e.g. x86), or if not all registers can be pushed
2079 (e.g. x86 fp regs) which would ordinarily have to be implemented
2080 as a sub/mov pair due to restrictions in calls.c.
2081
2082 Propagation stops when any of the insns that need adjusting are
2083 (a) no longer valid because we've exceeded their range, (b) a
2084 non-trivial push instruction, or (c) a call instruction.
2085
2086 Restriction B is based on the assumption that push instructions
2087 are smaller or faster. If a port really wants to remove all
2088 pushes, it should have defined ACCUMULATE_OUTGOING_ARGS. The
2089 one exception that is made is for an add immediately followed
2090 by a push. */
2091
2092 /* This structure records stack memory references between stack adjusting
2093 instructions. */
2094
2095 struct csa_memlist
2096 {
2097 HOST_WIDE_INT sp_offset;
2098 rtx insn, *mem;
2099 struct csa_memlist *next;
2100 };
2101
2102 static int stack_memref_p (rtx);
2103 static rtx single_set_for_csa (rtx);
2104 static void free_csa_memlist (struct csa_memlist *);
2105 static struct csa_memlist *record_one_stack_memref (rtx, rtx *,
2106 struct csa_memlist *);
2107 static int try_apply_stack_adjustment (rtx, struct csa_memlist *,
2108 HOST_WIDE_INT, HOST_WIDE_INT);
2109 static void combine_stack_adjustments_for_block (basic_block);
2110 static int record_stack_memrefs (rtx *, void *);
2111
2112
2113 /* Main entry point for stack adjustment combination. */
2114
2115 void
2116 combine_stack_adjustments (void)
2117 {
2118 basic_block bb;
2119
2120 FOR_EACH_BB (bb)
2121 combine_stack_adjustments_for_block (bb);
2122 }
2123
2124 /* Recognize a MEM of the form (sp) or (plus sp const). */
2125
2126 static int
2127 stack_memref_p (rtx x)
2128 {
2129 if (!MEM_P (x))
2130 return 0;
2131 x = XEXP (x, 0);
2132
2133 if (x == stack_pointer_rtx)
2134 return 1;
2135 if (GET_CODE (x) == PLUS
2136 && XEXP (x, 0) == stack_pointer_rtx
2137 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2138 return 1;
2139
2140 return 0;
2141 }
2142
2143 /* Recognize either normal single_set or the hack in i386.md for
2144 tying fp and sp adjustments. */
2145
2146 static rtx
2147 single_set_for_csa (rtx insn)
2148 {
2149 int i;
2150 rtx tmp = single_set (insn);
2151 if (tmp)
2152 return tmp;
2153
2154 if (!NONJUMP_INSN_P (insn)
2155 || GET_CODE (PATTERN (insn)) != PARALLEL)
2156 return NULL_RTX;
2157
2158 tmp = PATTERN (insn);
2159 if (GET_CODE (XVECEXP (tmp, 0, 0)) != SET)
2160 return NULL_RTX;
2161
2162 for (i = 1; i < XVECLEN (tmp, 0); ++i)
2163 {
2164 rtx this = XVECEXP (tmp, 0, i);
2165
2166 /* The special case is allowing a no-op set. */
2167 if (GET_CODE (this) == SET
2168 && SET_SRC (this) == SET_DEST (this))
2169 ;
2170 else if (GET_CODE (this) != CLOBBER
2171 && GET_CODE (this) != USE)
2172 return NULL_RTX;
2173 }
2174
2175 return XVECEXP (tmp, 0, 0);
2176 }
2177
2178 /* Free the list of csa_memlist nodes. */
2179
2180 static void
2181 free_csa_memlist (struct csa_memlist *memlist)
2182 {
2183 struct csa_memlist *next;
2184 for (; memlist ; memlist = next)
2185 {
2186 next = memlist->next;
2187 free (memlist);
2188 }
2189 }
2190
2191 /* Create a new csa_memlist node from the given memory reference.
2192 It is already known that the memory is stack_memref_p. */
2193
2194 static struct csa_memlist *
2195 record_one_stack_memref (rtx insn, rtx *mem, struct csa_memlist *next_memlist)
2196 {
2197 struct csa_memlist *ml;
2198
2199 ml = xmalloc (sizeof (*ml));
2200
2201 if (XEXP (*mem, 0) == stack_pointer_rtx)
2202 ml->sp_offset = 0;
2203 else
2204 ml->sp_offset = INTVAL (XEXP (XEXP (*mem, 0), 1));
2205
2206 ml->insn = insn;
2207 ml->mem = mem;
2208 ml->next = next_memlist;
2209
2210 return ml;
2211 }
2212
2213 /* Attempt to apply ADJUST to the stack adjusting insn INSN, as well
2214 as each of the memories in MEMLIST. Return true on success. */
2215
2216 static int
2217 try_apply_stack_adjustment (rtx insn, struct csa_memlist *memlist, HOST_WIDE_INT new_adjust,
2218 HOST_WIDE_INT delta)
2219 {
2220 struct csa_memlist *ml;
2221 rtx set;
2222
2223 set = single_set_for_csa (insn);
2224 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);
2225
2226 for (ml = memlist; ml ; ml = ml->next)
2227 validate_change
2228 (ml->insn, ml->mem,
2229 replace_equiv_address_nv (*ml->mem,
2230 plus_constant (stack_pointer_rtx,
2231 ml->sp_offset - delta)), 1);
2232
2233 if (apply_change_group ())
2234 {
2235 /* Succeeded. Update our knowledge of the memory references. */
2236 for (ml = memlist; ml ; ml = ml->next)
2237 ml->sp_offset -= delta;
2238
2239 return 1;
2240 }
2241 else
2242 return 0;
2243 }
2244
2245 /* Called via for_each_rtx and used to record all stack memory references in
2246 the insn and discard all other stack pointer references. */
2247 struct record_stack_memrefs_data
2248 {
2249 rtx insn;
2250 struct csa_memlist *memlist;
2251 };
2252
2253 static int
2254 record_stack_memrefs (rtx *xp, void *data)
2255 {
2256 rtx x = *xp;
2257 struct record_stack_memrefs_data *d =
2258 (struct record_stack_memrefs_data *) data;
2259 if (!x)
2260 return 0;
2261 switch (GET_CODE (x))
2262 {
2263 case MEM:
2264 if (!reg_mentioned_p (stack_pointer_rtx, x))
2265 return -1;
2266 /* We are not able to handle correctly all possible memrefs containing
2267 stack pointer, so this check is necessary. */
2268 if (stack_memref_p (x))
2269 {
2270 d->memlist = record_one_stack_memref (d->insn, xp, d->memlist);
2271 return -1;
2272 }
2273 return 1;
2274 case REG:
2275 /* ??? We want be able to handle non-memory stack pointer
2276 references later. For now just discard all insns referring to
2277 stack pointer outside mem expressions. We would probably
2278 want to teach validate_replace to simplify expressions first.
2279
2280 We can't just compare with STACK_POINTER_RTX because the
2281 reference to the stack pointer might be in some other mode.
2282 In particular, an explicit clobber in an asm statement will
2283 result in a QImode clobber. */
2284 if (REGNO (x) == STACK_POINTER_REGNUM)
2285 return 1;
2286 break;
2287 default:
2288 break;
2289 }
2290 return 0;
2291 }
2292
2293 /* Subroutine of combine_stack_adjustments, called for each basic block. */
2294
2295 static void
2296 combine_stack_adjustments_for_block (basic_block bb)
2297 {
2298 HOST_WIDE_INT last_sp_adjust = 0;
2299 rtx last_sp_set = NULL_RTX;
2300 struct csa_memlist *memlist = NULL;
2301 rtx insn, next, set;
2302 struct record_stack_memrefs_data data;
2303 bool end_of_block = false;
2304
2305 for (insn = BB_HEAD (bb); !end_of_block ; insn = next)
2306 {
2307 end_of_block = insn == BB_END (bb);
2308 next = NEXT_INSN (insn);
2309
2310 if (! INSN_P (insn))
2311 continue;
2312
2313 set = single_set_for_csa (insn);
2314 if (set)
2315 {
2316 rtx dest = SET_DEST (set);
2317 rtx src = SET_SRC (set);
2318
2319 /* Find constant additions to the stack pointer. */
2320 if (dest == stack_pointer_rtx
2321 && GET_CODE (src) == PLUS
2322 && XEXP (src, 0) == stack_pointer_rtx
2323 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2324 {
2325 HOST_WIDE_INT this_adjust = INTVAL (XEXP (src, 1));
2326
2327 /* If we've not seen an adjustment previously, record
2328 it now and continue. */
2329 if (! last_sp_set)
2330 {
2331 last_sp_set = insn;
2332 last_sp_adjust = this_adjust;
2333 continue;
2334 }
2335
2336 /* If not all recorded memrefs can be adjusted, or the
2337 adjustment is now too large for a constant addition,
2338 we cannot merge the two stack adjustments.
2339
2340 Also we need to be careful to not move stack pointer
2341 such that we create stack accesses outside the allocated
2342 area. We can combine an allocation into the first insn,
2343 or a deallocation into the second insn. We can not
2344 combine an allocation followed by a deallocation.
2345
2346 The only somewhat frequent occurrence of the later is when
2347 a function allocates a stack frame but does not use it.
2348 For this case, we would need to analyze rtl stream to be
2349 sure that allocated area is really unused. This means not
2350 only checking the memory references, but also all registers
2351 or global memory references possibly containing a stack
2352 frame address.
2353
2354 Perhaps the best way to address this problem is to teach
2355 gcc not to allocate stack for objects never used. */
2356
2357 /* Combine an allocation into the first instruction. */
2358 if (STACK_GROWS_DOWNWARD ? this_adjust <= 0 : this_adjust >= 0)
2359 {
2360 if (try_apply_stack_adjustment (last_sp_set, memlist,
2361 last_sp_adjust + this_adjust,
2362 this_adjust))
2363 {
2364 /* It worked! */
2365 delete_insn (insn);
2366 last_sp_adjust += this_adjust;
2367 continue;
2368 }
2369 }
2370
2371 /* Otherwise we have a deallocation. Do not combine with
2372 a previous allocation. Combine into the second insn. */
2373 else if (STACK_GROWS_DOWNWARD
2374 ? last_sp_adjust >= 0 : last_sp_adjust <= 0)
2375 {
2376 if (try_apply_stack_adjustment (insn, memlist,
2377 last_sp_adjust + this_adjust,
2378 -last_sp_adjust))
2379 {
2380 /* It worked! */
2381 delete_insn (last_sp_set);
2382 last_sp_set = insn;
2383 last_sp_adjust += this_adjust;
2384 free_csa_memlist (memlist);
2385 memlist = NULL;
2386 continue;
2387 }
2388 }
2389
2390 /* Combination failed. Restart processing from here. If
2391 deallocation+allocation conspired to cancel, we can
2392 delete the old deallocation insn. */
2393 if (last_sp_set && last_sp_adjust == 0)
2394 delete_insn (insn);
2395 free_csa_memlist (memlist);
2396 memlist = NULL;
2397 last_sp_set = insn;
2398 last_sp_adjust = this_adjust;
2399 continue;
2400 }
2401
2402 /* Find a predecrement of exactly the previous adjustment and
2403 turn it into a direct store. Obviously we can't do this if
2404 there were any intervening uses of the stack pointer. */
2405 if (memlist == NULL
2406 && MEM_P (dest)
2407 && ((GET_CODE (XEXP (dest, 0)) == PRE_DEC
2408 && (last_sp_adjust
2409 == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (dest))))
2410 || (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY
2411 && GET_CODE (XEXP (XEXP (dest, 0), 1)) == PLUS
2412 && XEXP (XEXP (XEXP (dest, 0), 1), 0) == stack_pointer_rtx
2413 && (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2414 == CONST_INT)
2415 && (INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2416 == -last_sp_adjust)))
2417 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx
2418 && ! reg_mentioned_p (stack_pointer_rtx, src)
2419 && memory_address_p (GET_MODE (dest), stack_pointer_rtx)
2420 && validate_change (insn, &SET_DEST (set),
2421 replace_equiv_address (dest,
2422 stack_pointer_rtx),
2423 0))
2424 {
2425 delete_insn (last_sp_set);
2426 free_csa_memlist (memlist);
2427 memlist = NULL;
2428 last_sp_set = NULL_RTX;
2429 last_sp_adjust = 0;
2430 continue;
2431 }
2432 }
2433
2434 data.insn = insn;
2435 data.memlist = memlist;
2436 if (!CALL_P (insn) && last_sp_set
2437 && !for_each_rtx (&PATTERN (insn), record_stack_memrefs, &data))
2438 {
2439 memlist = data.memlist;
2440 continue;
2441 }
2442 memlist = data.memlist;
2443
2444 /* Otherwise, we were not able to process the instruction.
2445 Do not continue collecting data across such a one. */
2446 if (last_sp_set
2447 && (CALL_P (insn)
2448 || reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))))
2449 {
2450 if (last_sp_set && last_sp_adjust == 0)
2451 delete_insn (last_sp_set);
2452 free_csa_memlist (memlist);
2453 memlist = NULL;
2454 last_sp_set = NULL_RTX;
2455 last_sp_adjust = 0;
2456 }
2457 }
2458
2459 if (last_sp_set && last_sp_adjust == 0)
2460 delete_insn (last_sp_set);
2461 }