calls.c (try_to_integrate): Use "(size_t)" intermediate cast and when casting an...
[gcc.git] / gcc / regmove.c
1 /* Move registers around to reduce number of move instructions needed.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This module looks for cases where matching constraints would force
24 an instruction to need a reload, and this reload would be a register
25 to register move. It then attempts to change the registers used by the
26 instruction to avoid the move instruction. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "output.h"
35 #include "regs.h"
36 #include "hard-reg-set.h"
37 #include "flags.h"
38 #include "function.h"
39 #include "expr.h"
40 #include "basic-block.h"
41 #include "except.h"
42 #include "toplev.h"
43 #include "reload.h"
44
45
46 /* Turn STACK_GROWS_DOWNWARD into a boolean. */
47 #ifdef STACK_GROWS_DOWNWARD
48 #undef STACK_GROWS_DOWNWARD
49 #define STACK_GROWS_DOWNWARD 1
50 #else
51 #define STACK_GROWS_DOWNWARD 0
52 #endif
53
54 static int perhaps_ends_bb_p PARAMS ((rtx));
55 static int optimize_reg_copy_1 PARAMS ((rtx, rtx, rtx));
56 static void optimize_reg_copy_2 PARAMS ((rtx, rtx, rtx));
57 static void optimize_reg_copy_3 PARAMS ((rtx, rtx, rtx));
58 static void copy_src_to_dest PARAMS ((rtx, rtx, rtx, int));
59 static int *regmove_bb_head;
60
61 struct match {
62 int with[MAX_RECOG_OPERANDS];
63 enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
64 int commutative[MAX_RECOG_OPERANDS];
65 int early_clobber[MAX_RECOG_OPERANDS];
66 };
67
68 static rtx discover_flags_reg PARAMS ((void));
69 static void mark_flags_life_zones PARAMS ((rtx));
70 static void flags_set_1 PARAMS ((rtx, rtx, void *));
71
72 static int try_auto_increment PARAMS ((rtx, rtx, rtx, rtx, HOST_WIDE_INT, int));
73 static int find_matches PARAMS ((rtx, struct match *));
74 static void replace_in_call_usage PARAMS ((rtx *, unsigned int, rtx, rtx));
75 static int fixup_match_1 PARAMS ((rtx, rtx, rtx, rtx, rtx, int, int, int, FILE *))
76 ;
77 static int reg_is_remote_constant_p PARAMS ((rtx, rtx, rtx));
78 static int stable_and_no_regs_but_for_p PARAMS ((rtx, rtx, rtx));
79 static int regclass_compatible_p PARAMS ((int, int));
80 static int replacement_quality PARAMS ((rtx));
81 static int fixup_match_2 PARAMS ((rtx, rtx, rtx, rtx, FILE *));
82
83 /* Return non-zero if registers with CLASS1 and CLASS2 can be merged without
84 causing too much register allocation problems. */
85 static int
86 regclass_compatible_p (class0, class1)
87 int class0, class1;
88 {
89 return (class0 == class1
90 || (reg_class_subset_p (class0, class1)
91 && ! CLASS_LIKELY_SPILLED_P (class0))
92 || (reg_class_subset_p (class1, class0)
93 && ! CLASS_LIKELY_SPILLED_P (class1)));
94 }
95
96 /* INC_INSN is an instruction that adds INCREMENT to REG.
97 Try to fold INC_INSN as a post/pre in/decrement into INSN.
98 Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
99 Return nonzero for success. */
100 static int
101 try_auto_increment (insn, inc_insn, inc_insn_set, reg, increment, pre)
102 rtx reg, insn, inc_insn ,inc_insn_set;
103 HOST_WIDE_INT increment;
104 int pre;
105 {
106 enum rtx_code inc_code;
107
108 rtx pset = single_set (insn);
109 if (pset)
110 {
111 /* Can't use the size of SET_SRC, we might have something like
112 (sign_extend:SI (mem:QI ... */
113 rtx use = find_use_as_address (pset, reg, 0);
114 if (use != 0 && use != (rtx) (size_t) 1)
115 {
116 int size = GET_MODE_SIZE (GET_MODE (use));
117 if (0
118 || (HAVE_POST_INCREMENT
119 && pre == 0 && (inc_code = POST_INC, increment == size))
120 || (HAVE_PRE_INCREMENT
121 && pre == 1 && (inc_code = PRE_INC, increment == size))
122 || (HAVE_POST_DECREMENT
123 && pre == 0 && (inc_code = POST_DEC, increment == -size))
124 || (HAVE_PRE_DECREMENT
125 && pre == 1 && (inc_code = PRE_DEC, increment == -size))
126 )
127 {
128 if (inc_insn_set)
129 validate_change
130 (inc_insn,
131 &SET_SRC (inc_insn_set),
132 XEXP (SET_SRC (inc_insn_set), 0), 1);
133 validate_change (insn, &XEXP (use, 0),
134 gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
135 if (apply_change_group ())
136 {
137 /* If there is a REG_DEAD note on this insn, we must
138 change this not to REG_UNUSED meaning that the register
139 is set, but the value is dead. Failure to do so will
140 result in a sched1 abort -- when it recomputes lifetime
141 information, the number of REG_DEAD notes will have
142 changed. */
143 rtx note = find_reg_note (insn, REG_DEAD, reg);
144 if (note)
145 PUT_MODE (note, REG_UNUSED);
146
147 REG_NOTES (insn)
148 = gen_rtx_EXPR_LIST (REG_INC,
149 reg, REG_NOTES (insn));
150 if (! inc_insn_set)
151 delete_insn (inc_insn);
152 return 1;
153 }
154 }
155 }
156 }
157 return 0;
158 }
159 \f
160 /* Determine if the pattern generated by add_optab has a clobber,
161 such as might be issued for a flags hard register. To make the
162 code elsewhere simpler, we handle cc0 in this same framework.
163
164 Return the register if one was discovered. Return NULL_RTX if
165 if no flags were found. Return pc_rtx if we got confused. */
166
167 static rtx
168 discover_flags_reg ()
169 {
170 rtx tmp;
171 tmp = gen_rtx_REG (word_mode, 10000);
172 tmp = gen_add3_insn (tmp, tmp, GEN_INT (2));
173
174 /* If we get something that isn't a simple set, or a
175 [(set ..) (clobber ..)], this whole function will go wrong. */
176 if (GET_CODE (tmp) == SET)
177 return NULL_RTX;
178 else if (GET_CODE (tmp) == PARALLEL)
179 {
180 int found;
181
182 if (XVECLEN (tmp, 0) != 2)
183 return pc_rtx;
184 tmp = XVECEXP (tmp, 0, 1);
185 if (GET_CODE (tmp) != CLOBBER)
186 return pc_rtx;
187 tmp = XEXP (tmp, 0);
188
189 /* Don't do anything foolish if the md wanted to clobber a
190 scratch or something. We only care about hard regs.
191 Moreover we don't like the notion of subregs of hard regs. */
192 if (GET_CODE (tmp) == SUBREG
193 && GET_CODE (SUBREG_REG (tmp)) == REG
194 && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
195 return pc_rtx;
196 found = (GET_CODE (tmp) == REG && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
197
198 return (found ? tmp : NULL_RTX);
199 }
200
201 return pc_rtx;
202 }
203
204 /* It is a tedious task identifying when the flags register is live and
205 when it is safe to optimize. Since we process the instruction stream
206 multiple times, locate and record these live zones by marking the
207 mode of the instructions --
208
209 QImode is used on the instruction at which the flags becomes live.
210
211 HImode is used within the range (exclusive) that the flags are
212 live. Thus the user of the flags is not marked.
213
214 All other instructions are cleared to VOIDmode. */
215
216 /* Used to communicate with flags_set_1. */
217 static rtx flags_set_1_rtx;
218 static int flags_set_1_set;
219
220 static void
221 mark_flags_life_zones (flags)
222 rtx flags;
223 {
224 int flags_regno;
225 int flags_nregs;
226 int block;
227
228 #ifdef HAVE_cc0
229 /* If we found a flags register on a cc0 host, bail. */
230 if (flags == NULL_RTX)
231 flags = cc0_rtx;
232 else if (flags != cc0_rtx)
233 flags = pc_rtx;
234 #endif
235
236 /* Simple cases first: if no flags, clear all modes. If confusing,
237 mark the entire function as being in a flags shadow. */
238 if (flags == NULL_RTX || flags == pc_rtx)
239 {
240 enum machine_mode mode = (flags ? HImode : VOIDmode);
241 rtx insn;
242 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
243 PUT_MODE (insn, mode);
244 return;
245 }
246
247 #ifdef HAVE_cc0
248 flags_regno = -1;
249 flags_nregs = 1;
250 #else
251 flags_regno = REGNO (flags);
252 flags_nregs = HARD_REGNO_NREGS (flags_regno, GET_MODE (flags));
253 #endif
254 flags_set_1_rtx = flags;
255
256 /* Process each basic block. */
257 for (block = n_basic_blocks - 1; block >= 0; block--)
258 {
259 rtx insn, end;
260 int live;
261
262 insn = BLOCK_HEAD (block);
263 end = BLOCK_END (block);
264
265 /* Look out for the (unlikely) case of flags being live across
266 basic block boundaries. */
267 live = 0;
268 #ifndef HAVE_cc0
269 {
270 int i;
271 for (i = 0; i < flags_nregs; ++i)
272 live |= REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start,
273 flags_regno + i);
274 }
275 #endif
276
277 while (1)
278 {
279 /* Process liveness in reverse order of importance --
280 alive, death, birth. This lets more important info
281 overwrite the mode of lesser info. */
282
283 if (INSN_P (insn))
284 {
285 #ifdef HAVE_cc0
286 /* In the cc0 case, death is not marked in reg notes,
287 but is instead the mere use of cc0 when it is alive. */
288 if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
289 live = 0;
290 #else
291 /* In the hard reg case, we watch death notes. */
292 if (live && find_regno_note (insn, REG_DEAD, flags_regno))
293 live = 0;
294 #endif
295 PUT_MODE (insn, (live ? HImode : VOIDmode));
296
297 /* In either case, birth is denoted simply by it's presence
298 as the destination of a set. */
299 flags_set_1_set = 0;
300 note_stores (PATTERN (insn), flags_set_1, NULL);
301 if (flags_set_1_set)
302 {
303 live = 1;
304 PUT_MODE (insn, QImode);
305 }
306 }
307 else
308 PUT_MODE (insn, (live ? HImode : VOIDmode));
309
310 if (insn == end)
311 break;
312 insn = NEXT_INSN (insn);
313 }
314 }
315 }
316
317 /* A subroutine of mark_flags_life_zones, called through note_stores. */
318
319 static void
320 flags_set_1 (x, pat, data)
321 rtx x, pat;
322 void *data ATTRIBUTE_UNUSED;
323 {
324 if (GET_CODE (pat) == SET
325 && reg_overlap_mentioned_p (x, flags_set_1_rtx))
326 flags_set_1_set = 1;
327 }
328 \f
329 static int *regno_src_regno;
330
331 /* Indicate how good a choice REG (which appears as a source) is to replace
332 a destination register with. The higher the returned value, the better
333 the choice. The main objective is to avoid using a register that is
334 a candidate for tying to a hard register, since the output might in
335 turn be a candidate to be tied to a different hard register. */
336 static int
337 replacement_quality (reg)
338 rtx reg;
339 {
340 int src_regno;
341
342 /* Bad if this isn't a register at all. */
343 if (GET_CODE (reg) != REG)
344 return 0;
345
346 /* If this register is not meant to get a hard register,
347 it is a poor choice. */
348 if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
349 return 0;
350
351 src_regno = regno_src_regno[REGNO (reg)];
352
353 /* If it was not copied from another register, it is fine. */
354 if (src_regno < 0)
355 return 3;
356
357 /* Copied from a hard register? */
358 if (src_regno < FIRST_PSEUDO_REGISTER)
359 return 1;
360
361 /* Copied from a pseudo register - not as bad as from a hard register,
362 yet still cumbersome, since the register live length will be lengthened
363 when the registers get tied. */
364 return 2;
365 }
366 \f
367 /* Return 1 if INSN might end a basic block. */
368
369 static int perhaps_ends_bb_p (insn)
370 rtx insn;
371 {
372 switch (GET_CODE (insn))
373 {
374 case CODE_LABEL:
375 case JUMP_INSN:
376 /* These always end a basic block. */
377 return 1;
378
379 case CALL_INSN:
380 /* A CALL_INSN might be the last insn of a basic block, if it is inside
381 an EH region or if there are nonlocal gotos. Note that this test is
382 very conservative. */
383 if (nonlocal_goto_handler_labels)
384 return 1;
385 /* FALLTHRU */
386 default:
387 return can_throw_internal (insn);
388 }
389 }
390 \f
391 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
392 in INSN.
393
394 Search forward to see if SRC dies before either it or DEST is modified,
395 but don't scan past the end of a basic block. If so, we can replace SRC
396 with DEST and let SRC die in INSN.
397
398 This will reduce the number of registers live in that range and may enable
399 DEST to be tied to SRC, thus often saving one register in addition to a
400 register-register copy. */
401
402 static int
403 optimize_reg_copy_1 (insn, dest, src)
404 rtx insn;
405 rtx dest;
406 rtx src;
407 {
408 rtx p, q;
409 rtx note;
410 rtx dest_death = 0;
411 int sregno = REGNO (src);
412 int dregno = REGNO (dest);
413
414 /* We don't want to mess with hard regs if register classes are small. */
415 if (sregno == dregno
416 || (SMALL_REGISTER_CLASSES
417 && (sregno < FIRST_PSEUDO_REGISTER
418 || dregno < FIRST_PSEUDO_REGISTER))
419 /* We don't see all updates to SP if they are in an auto-inc memory
420 reference, so we must disallow this optimization on them. */
421 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
422 return 0;
423
424 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
425 {
426 /* ??? We can't scan past the end of a basic block without updating
427 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
428 if (perhaps_ends_bb_p (p))
429 break;
430 else if (! INSN_P (p))
431 continue;
432
433 if (reg_set_p (src, p) || reg_set_p (dest, p)
434 /* Don't change a USE of a register. */
435 || (GET_CODE (PATTERN (p)) == USE
436 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
437 break;
438
439 /* See if all of SRC dies in P. This test is slightly more
440 conservative than it needs to be. */
441 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
442 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
443 {
444 int failed = 0;
445 int d_length = 0;
446 int s_length = 0;
447 int d_n_calls = 0;
448 int s_n_calls = 0;
449
450 /* We can do the optimization. Scan forward from INSN again,
451 replacing regs as we go. Set FAILED if a replacement can't
452 be done. In that case, we can't move the death note for SRC.
453 This should be rare. */
454
455 /* Set to stop at next insn. */
456 for (q = next_real_insn (insn);
457 q != next_real_insn (p);
458 q = next_real_insn (q))
459 {
460 if (reg_overlap_mentioned_p (src, PATTERN (q)))
461 {
462 /* If SRC is a hard register, we might miss some
463 overlapping registers with validate_replace_rtx,
464 so we would have to undo it. We can't if DEST is
465 present in the insn, so fail in that combination
466 of cases. */
467 if (sregno < FIRST_PSEUDO_REGISTER
468 && reg_mentioned_p (dest, PATTERN (q)))
469 failed = 1;
470
471 /* Replace all uses and make sure that the register
472 isn't still present. */
473 else if (validate_replace_rtx (src, dest, q)
474 && (sregno >= FIRST_PSEUDO_REGISTER
475 || ! reg_overlap_mentioned_p (src,
476 PATTERN (q))))
477 ;
478 else
479 {
480 validate_replace_rtx (dest, src, q);
481 failed = 1;
482 }
483 }
484
485 /* For SREGNO, count the total number of insns scanned.
486 For DREGNO, count the total number of insns scanned after
487 passing the death note for DREGNO. */
488 s_length++;
489 if (dest_death)
490 d_length++;
491
492 /* If the insn in which SRC dies is a CALL_INSN, don't count it
493 as a call that has been crossed. Otherwise, count it. */
494 if (q != p && GET_CODE (q) == CALL_INSN)
495 {
496 /* Similarly, total calls for SREGNO, total calls beyond
497 the death note for DREGNO. */
498 s_n_calls++;
499 if (dest_death)
500 d_n_calls++;
501 }
502
503 /* If DEST dies here, remove the death note and save it for
504 later. Make sure ALL of DEST dies here; again, this is
505 overly conservative. */
506 if (dest_death == 0
507 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
508 {
509 if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
510 failed = 1, dest_death = 0;
511 else
512 remove_note (q, dest_death);
513 }
514 }
515
516 if (! failed)
517 {
518 /* These counters need to be updated if and only if we are
519 going to move the REG_DEAD note. */
520 if (sregno >= FIRST_PSEUDO_REGISTER)
521 {
522 if (REG_LIVE_LENGTH (sregno) >= 0)
523 {
524 REG_LIVE_LENGTH (sregno) -= s_length;
525 /* REG_LIVE_LENGTH is only an approximation after
526 combine if sched is not run, so make sure that we
527 still have a reasonable value. */
528 if (REG_LIVE_LENGTH (sregno) < 2)
529 REG_LIVE_LENGTH (sregno) = 2;
530 }
531
532 REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
533 }
534
535 /* Move death note of SRC from P to INSN. */
536 remove_note (p, note);
537 XEXP (note, 1) = REG_NOTES (insn);
538 REG_NOTES (insn) = note;
539 }
540
541 /* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
542 if (! dest_death
543 && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
544 {
545 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
546 remove_note (insn, dest_death);
547 }
548
549 /* Put death note of DEST on P if we saw it die. */
550 if (dest_death)
551 {
552 XEXP (dest_death, 1) = REG_NOTES (p);
553 REG_NOTES (p) = dest_death;
554
555 if (dregno >= FIRST_PSEUDO_REGISTER)
556 {
557 /* If and only if we are moving the death note for DREGNO,
558 then we need to update its counters. */
559 if (REG_LIVE_LENGTH (dregno) >= 0)
560 REG_LIVE_LENGTH (dregno) += d_length;
561 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
562 }
563 }
564
565 return ! failed;
566 }
567
568 /* If SRC is a hard register which is set or killed in some other
569 way, we can't do this optimization. */
570 else if (sregno < FIRST_PSEUDO_REGISTER
571 && dead_or_set_p (p, src))
572 break;
573 }
574 return 0;
575 }
576 \f
577 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
578 a sequence of insns that modify DEST followed by an insn that sets
579 SRC to DEST in which DEST dies, with no prior modification of DEST.
580 (There is no need to check if the insns in between actually modify
581 DEST. We should not have cases where DEST is not modified, but
582 the optimization is safe if no such modification is detected.)
583 In that case, we can replace all uses of DEST, starting with INSN and
584 ending with the set of SRC to DEST, with SRC. We do not do this
585 optimization if a CALL_INSN is crossed unless SRC already crosses a
586 call or if DEST dies before the copy back to SRC.
587
588 It is assumed that DEST and SRC are pseudos; it is too complicated to do
589 this for hard registers since the substitutions we may make might fail. */
590
591 static void
592 optimize_reg_copy_2 (insn, dest, src)
593 rtx insn;
594 rtx dest;
595 rtx src;
596 {
597 rtx p, q;
598 rtx set;
599 int sregno = REGNO (src);
600 int dregno = REGNO (dest);
601
602 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
603 {
604 /* ??? We can't scan past the end of a basic block without updating
605 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
606 if (perhaps_ends_bb_p (p))
607 break;
608 else if (! INSN_P (p))
609 continue;
610
611 set = single_set (p);
612 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
613 && find_reg_note (p, REG_DEAD, dest))
614 {
615 /* We can do the optimization. Scan forward from INSN again,
616 replacing regs as we go. */
617
618 /* Set to stop at next insn. */
619 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
620 if (INSN_P (q))
621 {
622 if (reg_mentioned_p (dest, PATTERN (q)))
623 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
624
625
626 if (GET_CODE (q) == CALL_INSN)
627 {
628 REG_N_CALLS_CROSSED (dregno)--;
629 REG_N_CALLS_CROSSED (sregno)++;
630 }
631 }
632
633 remove_note (p, find_reg_note (p, REG_DEAD, dest));
634 REG_N_DEATHS (dregno)--;
635 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
636 REG_N_DEATHS (sregno)--;
637 return;
638 }
639
640 if (reg_set_p (src, p)
641 || find_reg_note (p, REG_DEAD, dest)
642 || (GET_CODE (p) == CALL_INSN && REG_N_CALLS_CROSSED (sregno) == 0))
643 break;
644 }
645 }
646 /* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
647 Look if SRC dies there, and if it is only set once, by loading
648 it from memory. If so, try to encorporate the zero/sign extension
649 into the memory read, change SRC to the mode of DEST, and alter
650 the remaining accesses to use the appropriate SUBREG. This allows
651 SRC and DEST to be tied later. */
652 static void
653 optimize_reg_copy_3 (insn, dest, src)
654 rtx insn;
655 rtx dest;
656 rtx src;
657 {
658 rtx src_reg = XEXP (src, 0);
659 int src_no = REGNO (src_reg);
660 int dst_no = REGNO (dest);
661 rtx p, set, subreg;
662 enum machine_mode old_mode;
663
664 if (src_no < FIRST_PSEUDO_REGISTER
665 || dst_no < FIRST_PSEUDO_REGISTER
666 || ! find_reg_note (insn, REG_DEAD, src_reg)
667 || REG_N_SETS (src_no) != 1)
668 return;
669 for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
670 /* ??? We can't scan past the end of a basic block without updating
671 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
672 if (perhaps_ends_bb_p (p))
673 break;
674
675 if (! p)
676 return;
677
678 if (! (set = single_set (p))
679 || GET_CODE (SET_SRC (set)) != MEM
680 /* If there's a REG_EQUIV note, this must be an insn that loads an
681 argument. Prefer keeping the note over doing this optimization. */
682 || find_reg_note (p, REG_EQUIV, NULL_RTX)
683 || SET_DEST (set) != src_reg)
684 return;
685
686 /* Be conserative: although this optimization is also valid for
687 volatile memory references, that could cause trouble in later passes. */
688 if (MEM_VOLATILE_P (SET_SRC (set)))
689 return;
690
691 /* Do not use a SUBREG to truncate from one mode to another if truncation
692 is not a nop. */
693 if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
694 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
695 GET_MODE_BITSIZE (GET_MODE (src_reg))))
696 return;
697
698 old_mode = GET_MODE (src_reg);
699 PUT_MODE (src_reg, GET_MODE (src));
700 XEXP (src, 0) = SET_SRC (set);
701
702 /* Include this change in the group so that it's easily undone if
703 one of the changes in the group is invalid. */
704 validate_change (p, &SET_SRC (set), src, 1);
705
706 /* Now walk forward making additional replacements. We want to be able
707 to undo all the changes if a later substitution fails. */
708 subreg = gen_lowpart_SUBREG (old_mode, src_reg);
709 while (p = NEXT_INSN (p), p != insn)
710 {
711 if (! INSN_P (p))
712 continue;
713
714 /* Make a tenative change. */
715 validate_replace_rtx_group (src_reg, subreg, p);
716 }
717
718 validate_replace_rtx_group (src, src_reg, insn);
719
720 /* Now see if all the changes are valid. */
721 if (! apply_change_group ())
722 {
723 /* One or more changes were no good. Back out everything. */
724 PUT_MODE (src_reg, old_mode);
725 XEXP (src, 0) = src_reg;
726 }
727 else
728 {
729 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
730 if (note)
731 remove_note (p, note);
732 }
733 }
734
735 \f
736 /* If we were not able to update the users of src to use dest directly, try
737 instead moving the value to dest directly before the operation. */
738
739 static void
740 copy_src_to_dest (insn, src, dest, old_max_uid)
741 rtx insn;
742 rtx src;
743 rtx dest;
744 int old_max_uid;
745 {
746 rtx seq;
747 rtx link;
748 rtx next;
749 rtx set;
750 rtx move_insn;
751 rtx *p_insn_notes;
752 rtx *p_move_notes;
753 int src_regno;
754 int dest_regno;
755 int bb;
756 int insn_uid;
757 int move_uid;
758
759 /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
760 or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
761 parameter when there is no frame pointer that is not allocated a register.
762 For now, we just reject them, rather than incrementing the live length. */
763
764 if (GET_CODE (src) == REG
765 && REG_LIVE_LENGTH (REGNO (src)) > 0
766 && GET_CODE (dest) == REG
767 && !RTX_UNCHANGING_P (dest)
768 && REG_LIVE_LENGTH (REGNO (dest)) > 0
769 && (set = single_set (insn)) != NULL_RTX
770 && !reg_mentioned_p (dest, SET_SRC (set))
771 && GET_MODE (src) == GET_MODE (dest))
772 {
773 int old_num_regs = reg_rtx_no;
774
775 /* Generate the src->dest move. */
776 start_sequence ();
777 emit_move_insn (dest, src);
778 seq = gen_sequence ();
779 end_sequence ();
780 /* If this sequence uses new registers, we may not use it. */
781 if (old_num_regs != reg_rtx_no
782 || ! validate_replace_rtx (src, dest, insn))
783 {
784 /* We have to restore reg_rtx_no to its old value, lest
785 recompute_reg_usage will try to compute the usage of the
786 new regs, yet reg_n_info is not valid for them. */
787 reg_rtx_no = old_num_regs;
788 return;
789 }
790 emit_insn_before (seq, insn);
791 move_insn = PREV_INSN (insn);
792 p_move_notes = &REG_NOTES (move_insn);
793 p_insn_notes = &REG_NOTES (insn);
794
795 /* Move any notes mentioning src to the move instruction */
796 for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
797 {
798 next = XEXP (link, 1);
799 if (XEXP (link, 0) == src)
800 {
801 *p_move_notes = link;
802 p_move_notes = &XEXP (link, 1);
803 }
804 else
805 {
806 *p_insn_notes = link;
807 p_insn_notes = &XEXP (link, 1);
808 }
809 }
810
811 *p_move_notes = NULL_RTX;
812 *p_insn_notes = NULL_RTX;
813
814 /* Is the insn the head of a basic block? If so extend it */
815 insn_uid = INSN_UID (insn);
816 move_uid = INSN_UID (move_insn);
817 if (insn_uid < old_max_uid)
818 {
819 bb = regmove_bb_head[insn_uid];
820 if (bb >= 0)
821 {
822 BLOCK_HEAD (bb) = move_insn;
823 regmove_bb_head[insn_uid] = -1;
824 }
825 }
826
827 /* Update the various register tables. */
828 dest_regno = REGNO (dest);
829 REG_N_SETS (dest_regno) ++;
830 REG_LIVE_LENGTH (dest_regno)++;
831 if (REGNO_FIRST_UID (dest_regno) == insn_uid)
832 REGNO_FIRST_UID (dest_regno) = move_uid;
833
834 src_regno = REGNO (src);
835 if (! find_reg_note (move_insn, REG_DEAD, src))
836 REG_LIVE_LENGTH (src_regno)++;
837
838 if (REGNO_FIRST_UID (src_regno) == insn_uid)
839 REGNO_FIRST_UID (src_regno) = move_uid;
840
841 if (REGNO_LAST_UID (src_regno) == insn_uid)
842 REGNO_LAST_UID (src_regno) = move_uid;
843
844 if (REGNO_LAST_NOTE_UID (src_regno) == insn_uid)
845 REGNO_LAST_NOTE_UID (src_regno) = move_uid;
846 }
847 }
848
849 \f
850 /* Return whether REG is set in only one location, and is set to a
851 constant, but is set in a different basic block from INSN (an
852 instructions which uses REG). In this case REG is equivalent to a
853 constant, and we don't want to break that equivalence, because that
854 may increase register pressure and make reload harder. If REG is
855 set in the same basic block as INSN, we don't worry about it,
856 because we'll probably need a register anyhow (??? but what if REG
857 is used in a different basic block as well as this one?). FIRST is
858 the first insn in the function. */
859
860 static int
861 reg_is_remote_constant_p (reg, insn, first)
862 rtx reg;
863 rtx insn;
864 rtx first;
865 {
866 rtx p;
867
868 if (REG_N_SETS (REGNO (reg)) != 1)
869 return 0;
870
871 /* Look for the set. */
872 for (p = LOG_LINKS (insn); p; p = XEXP (p, 1))
873 {
874 rtx s;
875
876 if (REG_NOTE_KIND (p) != 0)
877 continue;
878 s = single_set (XEXP (p, 0));
879 if (s != 0
880 && GET_CODE (SET_DEST (s)) == REG
881 && REGNO (SET_DEST (s)) == REGNO (reg))
882 {
883 /* The register is set in the same basic block. */
884 return 0;
885 }
886 }
887
888 for (p = first; p && p != insn; p = NEXT_INSN (p))
889 {
890 rtx s;
891
892 if (! INSN_P (p))
893 continue;
894 s = single_set (p);
895 if (s != 0
896 && GET_CODE (SET_DEST (s)) == REG
897 && REGNO (SET_DEST (s)) == REGNO (reg))
898 {
899 /* This is the instruction which sets REG. If there is a
900 REG_EQUAL note, then REG is equivalent to a constant. */
901 if (find_reg_note (p, REG_EQUAL, NULL_RTX))
902 return 1;
903 return 0;
904 }
905 }
906
907 return 0;
908 }
909
910 /* INSN is adding a CONST_INT to a REG. We search backwards looking for
911 another add immediate instruction with the same source and dest registers,
912 and if we find one, we change INSN to an increment, and return 1. If
913 no changes are made, we return 0.
914
915 This changes
916 (set (reg100) (plus reg1 offset1))
917 ...
918 (set (reg100) (plus reg1 offset2))
919 to
920 (set (reg100) (plus reg1 offset1))
921 ...
922 (set (reg100) (plus reg100 offset2-offset1)) */
923
924 /* ??? What does this comment mean? */
925 /* cse disrupts preincrement / postdecrement squences when it finds a
926 hard register as ultimate source, like the frame pointer. */
927
928 static int
929 fixup_match_2 (insn, dst, src, offset, regmove_dump_file)
930 rtx insn, dst, src, offset;
931 FILE *regmove_dump_file;
932 {
933 rtx p, dst_death = 0;
934 int length, num_calls = 0;
935
936 /* If SRC dies in INSN, we'd have to move the death note. This is
937 considered to be very unlikely, so we just skip the optimization
938 in this case. */
939 if (find_regno_note (insn, REG_DEAD, REGNO (src)))
940 return 0;
941
942 /* Scan backward to find the first instruction that sets DST. */
943
944 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
945 {
946 rtx pset;
947
948 /* ??? We can't scan past the end of a basic block without updating
949 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
950 if (perhaps_ends_bb_p (p))
951 break;
952 else if (! INSN_P (p))
953 continue;
954
955 if (find_regno_note (p, REG_DEAD, REGNO (dst)))
956 dst_death = p;
957 if (! dst_death)
958 length++;
959
960 pset = single_set (p);
961 if (pset && SET_DEST (pset) == dst
962 && GET_CODE (SET_SRC (pset)) == PLUS
963 && XEXP (SET_SRC (pset), 0) == src
964 && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
965 {
966 HOST_WIDE_INT newconst
967 = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
968 rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
969
970 if (add && validate_change (insn, &PATTERN (insn), add, 0))
971 {
972 /* Remove the death note for DST from DST_DEATH. */
973 if (dst_death)
974 {
975 remove_death (REGNO (dst), dst_death);
976 REG_LIVE_LENGTH (REGNO (dst)) += length;
977 REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
978 }
979
980 if (regmove_dump_file)
981 fprintf (regmove_dump_file,
982 "Fixed operand of insn %d.\n",
983 INSN_UID (insn));
984
985 #ifdef AUTO_INC_DEC
986 for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
987 {
988 if (GET_CODE (p) == CODE_LABEL
989 || GET_CODE (p) == JUMP_INSN)
990 break;
991 if (! INSN_P (p))
992 continue;
993 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
994 {
995 if (try_auto_increment (p, insn, 0, dst, newconst, 0))
996 return 1;
997 break;
998 }
999 }
1000 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1001 {
1002 if (GET_CODE (p) == CODE_LABEL
1003 || GET_CODE (p) == JUMP_INSN)
1004 break;
1005 if (! INSN_P (p))
1006 continue;
1007 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1008 {
1009 try_auto_increment (p, insn, 0, dst, newconst, 1);
1010 break;
1011 }
1012 }
1013 #endif
1014 return 1;
1015 }
1016 }
1017
1018 if (reg_set_p (dst, PATTERN (p)))
1019 break;
1020
1021 /* If we have passed a call instruction, and the
1022 pseudo-reg SRC is not already live across a call,
1023 then don't perform the optimization. */
1024 /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
1025 hard regs are clobbered. Thus, we only use it for src for
1026 non-call insns. */
1027 if (GET_CODE (p) == CALL_INSN)
1028 {
1029 if (! dst_death)
1030 num_calls++;
1031
1032 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1033 break;
1034
1035 if (call_used_regs [REGNO (dst)]
1036 || find_reg_fusage (p, CLOBBER, dst))
1037 break;
1038 }
1039 else if (reg_set_p (src, PATTERN (p)))
1040 break;
1041 }
1042
1043 return 0;
1044 }
1045
1046 /* Main entry for the register move optimization.
1047 F is the first instruction.
1048 NREGS is one plus the highest pseudo-reg number used in the instruction.
1049 REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
1050 (or 0 if none should be output). */
1051
1052 void
1053 regmove_optimize (f, nregs, regmove_dump_file)
1054 rtx f;
1055 int nregs;
1056 FILE *regmove_dump_file;
1057 {
1058 int old_max_uid = get_max_uid ();
1059 rtx insn;
1060 struct match match;
1061 int pass;
1062 int i;
1063 rtx copy_src, copy_dst;
1064
1065 /* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
1066 confused by non-call exceptions ending blocks. */
1067 if (flag_non_call_exceptions)
1068 return;
1069
1070 /* Find out where a potential flags register is live, and so that we
1071 can supress some optimizations in those zones. */
1072 mark_flags_life_zones (discover_flags_reg ());
1073
1074 regno_src_regno = (int *) xmalloc (sizeof *regno_src_regno * nregs);
1075 for (i = nregs; --i >= 0; ) regno_src_regno[i] = -1;
1076
1077 regmove_bb_head = (int *) xmalloc (sizeof (int) * (old_max_uid + 1));
1078 for (i = old_max_uid; i >= 0; i--) regmove_bb_head[i] = -1;
1079 for (i = 0; i < n_basic_blocks; i++)
1080 regmove_bb_head[INSN_UID (BLOCK_HEAD (i))] = i;
1081
1082 /* A forward/backward pass. Replace output operands with input operands. */
1083
1084 for (pass = 0; pass <= 2; pass++)
1085 {
1086 if (! flag_regmove && pass >= flag_expensive_optimizations)
1087 goto done;
1088
1089 if (regmove_dump_file)
1090 fprintf (regmove_dump_file, "Starting %s pass...\n",
1091 pass ? "backward" : "forward");
1092
1093 for (insn = pass ? get_last_insn () : f; insn;
1094 insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
1095 {
1096 rtx set;
1097 int op_no, match_no;
1098
1099 set = single_set (insn);
1100 if (! set)
1101 continue;
1102
1103 if (flag_expensive_optimizations && ! pass
1104 && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
1105 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
1106 && GET_CODE (XEXP (SET_SRC (set), 0)) == REG
1107 && GET_CODE (SET_DEST (set)) == REG)
1108 optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
1109
1110 if (flag_expensive_optimizations && ! pass
1111 && GET_CODE (SET_SRC (set)) == REG
1112 && GET_CODE (SET_DEST (set)) == REG)
1113 {
1114 /* If this is a register-register copy where SRC is not dead,
1115 see if we can optimize it. If this optimization succeeds,
1116 it will become a copy where SRC is dead. */
1117 if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
1118 || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
1119 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
1120 {
1121 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1122 if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1123 optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
1124 if (regno_src_regno[REGNO (SET_DEST (set))] < 0
1125 && SET_SRC (set) != SET_DEST (set))
1126 {
1127 int srcregno = REGNO (SET_SRC (set));
1128 if (regno_src_regno[srcregno] >= 0)
1129 srcregno = regno_src_regno[srcregno];
1130 regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
1131 }
1132 }
1133 }
1134 if (! flag_regmove)
1135 continue;
1136
1137 if (! find_matches (insn, &match))
1138 continue;
1139
1140 /* Now scan through the operands looking for a source operand
1141 which is supposed to match the destination operand.
1142 Then scan forward for an instruction which uses the dest
1143 operand.
1144 If it dies there, then replace the dest in both operands with
1145 the source operand. */
1146
1147 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1148 {
1149 rtx src, dst, src_subreg;
1150 enum reg_class src_class, dst_class;
1151
1152 match_no = match.with[op_no];
1153
1154 /* Nothing to do if the two operands aren't supposed to match. */
1155 if (match_no < 0)
1156 continue;
1157
1158 src = recog_data.operand[op_no];
1159 dst = recog_data.operand[match_no];
1160
1161 if (GET_CODE (src) != REG)
1162 continue;
1163
1164 src_subreg = src;
1165 if (GET_CODE (dst) == SUBREG
1166 && GET_MODE_SIZE (GET_MODE (dst))
1167 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
1168 {
1169 src_subreg
1170 = gen_rtx_SUBREG (GET_MODE (SUBREG_REG (dst)),
1171 src, SUBREG_BYTE (dst));
1172 dst = SUBREG_REG (dst);
1173 }
1174 if (GET_CODE (dst) != REG
1175 || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1176 continue;
1177
1178 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1179 {
1180 if (match.commutative[op_no] < op_no)
1181 regno_src_regno[REGNO (dst)] = REGNO (src);
1182 continue;
1183 }
1184
1185 if (REG_LIVE_LENGTH (REGNO (src)) < 0)
1186 continue;
1187
1188 /* op_no/src must be a read-only operand, and
1189 match_operand/dst must be a write-only operand. */
1190 if (match.use[op_no] != READ
1191 || match.use[match_no] != WRITE)
1192 continue;
1193
1194 if (match.early_clobber[match_no]
1195 && count_occurrences (PATTERN (insn), src, 0) > 1)
1196 continue;
1197
1198 /* Make sure match_operand is the destination. */
1199 if (recog_data.operand[match_no] != SET_DEST (set))
1200 continue;
1201
1202 /* If the operands already match, then there is nothing to do. */
1203 if (operands_match_p (src, dst))
1204 continue;
1205
1206 /* But in the commutative case, we might find a better match. */
1207 if (match.commutative[op_no] >= 0)
1208 {
1209 rtx comm = recog_data.operand[match.commutative[op_no]];
1210 if (operands_match_p (comm, dst)
1211 && (replacement_quality (comm)
1212 >= replacement_quality (src)))
1213 continue;
1214 }
1215
1216 src_class = reg_preferred_class (REGNO (src));
1217 dst_class = reg_preferred_class (REGNO (dst));
1218 if (! regclass_compatible_p (src_class, dst_class))
1219 continue;
1220
1221 if (GET_MODE (src) != GET_MODE (dst))
1222 continue;
1223
1224 if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
1225 op_no, match_no,
1226 regmove_dump_file))
1227 break;
1228 }
1229 }
1230 }
1231
1232 /* A backward pass. Replace input operands with output operands. */
1233
1234 if (regmove_dump_file)
1235 fprintf (regmove_dump_file, "Starting backward pass...\n");
1236
1237 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1238 {
1239 if (INSN_P (insn))
1240 {
1241 int op_no, match_no;
1242 int success = 0;
1243
1244 if (! find_matches (insn, &match))
1245 continue;
1246
1247 /* Now scan through the operands looking for a destination operand
1248 which is supposed to match a source operand.
1249 Then scan backward for an instruction which sets the source
1250 operand. If safe, then replace the source operand with the
1251 dest operand in both instructions. */
1252
1253 copy_src = NULL_RTX;
1254 copy_dst = NULL_RTX;
1255 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1256 {
1257 rtx set, p, src, dst;
1258 rtx src_note, dst_note;
1259 int num_calls = 0;
1260 enum reg_class src_class, dst_class;
1261 int length;
1262
1263 match_no = match.with[op_no];
1264
1265 /* Nothing to do if the two operands aren't supposed to match. */
1266 if (match_no < 0)
1267 continue;
1268
1269 dst = recog_data.operand[match_no];
1270 src = recog_data.operand[op_no];
1271
1272 if (GET_CODE (src) != REG)
1273 continue;
1274
1275 if (GET_CODE (dst) != REG
1276 || REGNO (dst) < FIRST_PSEUDO_REGISTER
1277 || REG_LIVE_LENGTH (REGNO (dst)) < 0
1278 || RTX_UNCHANGING_P (dst))
1279 continue;
1280
1281 /* If the operands already match, then there is nothing to do. */
1282 if (operands_match_p (src, dst))
1283 continue;
1284
1285 if (match.commutative[op_no] >= 0)
1286 {
1287 rtx comm = recog_data.operand[match.commutative[op_no]];
1288 if (operands_match_p (comm, dst))
1289 continue;
1290 }
1291
1292 set = single_set (insn);
1293 if (! set)
1294 continue;
1295
1296 /* Note that single_set ignores parts of a parallel set for
1297 which one of the destinations is REG_UNUSED. We can't
1298 handle that here, since we can wind up rewriting things
1299 such that a single register is set twice within a single
1300 parallel. */
1301 if (reg_set_p (src, insn))
1302 continue;
1303
1304 /* match_no/dst must be a write-only operand, and
1305 operand_operand/src must be a read-only operand. */
1306 if (match.use[op_no] != READ
1307 || match.use[match_no] != WRITE)
1308 continue;
1309
1310 if (match.early_clobber[match_no]
1311 && count_occurrences (PATTERN (insn), src, 0) > 1)
1312 continue;
1313
1314 /* Make sure match_no is the destination. */
1315 if (recog_data.operand[match_no] != SET_DEST (set))
1316 continue;
1317
1318 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1319 {
1320 if (GET_CODE (SET_SRC (set)) == PLUS
1321 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
1322 && XEXP (SET_SRC (set), 0) == src
1323 && fixup_match_2 (insn, dst, src,
1324 XEXP (SET_SRC (set), 1),
1325 regmove_dump_file))
1326 break;
1327 continue;
1328 }
1329 src_class = reg_preferred_class (REGNO (src));
1330 dst_class = reg_preferred_class (REGNO (dst));
1331 if (! regclass_compatible_p (src_class, dst_class))
1332 {
1333 if (!copy_src)
1334 {
1335 copy_src = src;
1336 copy_dst = dst;
1337 }
1338 continue;
1339 }
1340
1341 /* Can not modify an earlier insn to set dst if this insn
1342 uses an old value in the source. */
1343 if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
1344 {
1345 if (!copy_src)
1346 {
1347 copy_src = src;
1348 copy_dst = dst;
1349 }
1350 continue;
1351 }
1352
1353 if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
1354 {
1355 if (!copy_src)
1356 {
1357 copy_src = src;
1358 copy_dst = dst;
1359 }
1360 continue;
1361 }
1362
1363
1364 /* If src is set once in a different basic block,
1365 and is set equal to a constant, then do not use
1366 it for this optimization, as this would make it
1367 no longer equivalent to a constant. */
1368
1369 if (reg_is_remote_constant_p (src, insn, f))
1370 {
1371 if (!copy_src)
1372 {
1373 copy_src = src;
1374 copy_dst = dst;
1375 }
1376 continue;
1377 }
1378
1379
1380 if (regmove_dump_file)
1381 fprintf (regmove_dump_file,
1382 "Could fix operand %d of insn %d matching operand %d.\n",
1383 op_no, INSN_UID (insn), match_no);
1384
1385 /* Scan backward to find the first instruction that uses
1386 the input operand. If the operand is set here, then
1387 replace it in both instructions with match_no. */
1388
1389 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
1390 {
1391 rtx pset;
1392
1393 /* ??? We can't scan past the end of a basic block without
1394 updating the register lifetime info
1395 (REG_DEAD/basic_block_live_at_start). */
1396 if (perhaps_ends_bb_p (p))
1397 break;
1398 else if (! INSN_P (p))
1399 continue;
1400
1401 length++;
1402
1403 /* ??? See if all of SRC is set in P. This test is much
1404 more conservative than it needs to be. */
1405 pset = single_set (p);
1406 if (pset && SET_DEST (pset) == src)
1407 {
1408 /* We use validate_replace_rtx, in case there
1409 are multiple identical source operands. All of
1410 them have to be changed at the same time. */
1411 if (validate_replace_rtx (src, dst, insn))
1412 {
1413 if (validate_change (p, &SET_DEST (pset),
1414 dst, 0))
1415 success = 1;
1416 else
1417 {
1418 /* Change all source operands back.
1419 This modifies the dst as a side-effect. */
1420 validate_replace_rtx (dst, src, insn);
1421 /* Now make sure the dst is right. */
1422 validate_change (insn,
1423 recog_data.operand_loc[match_no],
1424 dst, 0);
1425 }
1426 }
1427 break;
1428 }
1429
1430 if (reg_overlap_mentioned_p (src, PATTERN (p))
1431 || reg_overlap_mentioned_p (dst, PATTERN (p)))
1432 break;
1433
1434 /* If we have passed a call instruction, and the
1435 pseudo-reg DST is not already live across a call,
1436 then don't perform the optimization. */
1437 if (GET_CODE (p) == CALL_INSN)
1438 {
1439 num_calls++;
1440
1441 if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
1442 break;
1443 }
1444 }
1445
1446 if (success)
1447 {
1448 int dstno, srcno;
1449
1450 /* Remove the death note for SRC from INSN. */
1451 remove_note (insn, src_note);
1452 /* Move the death note for SRC to P if it is used
1453 there. */
1454 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1455 {
1456 XEXP (src_note, 1) = REG_NOTES (p);
1457 REG_NOTES (p) = src_note;
1458 }
1459 /* If there is a REG_DEAD note for DST on P, then remove
1460 it, because DST is now set there. */
1461 if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
1462 remove_note (p, dst_note);
1463
1464 dstno = REGNO (dst);
1465 srcno = REGNO (src);
1466
1467 REG_N_SETS (dstno)++;
1468 REG_N_SETS (srcno)--;
1469
1470 REG_N_CALLS_CROSSED (dstno) += num_calls;
1471 REG_N_CALLS_CROSSED (srcno) -= num_calls;
1472
1473 REG_LIVE_LENGTH (dstno) += length;
1474 if (REG_LIVE_LENGTH (srcno) >= 0)
1475 {
1476 REG_LIVE_LENGTH (srcno) -= length;
1477 /* REG_LIVE_LENGTH is only an approximation after
1478 combine if sched is not run, so make sure that we
1479 still have a reasonable value. */
1480 if (REG_LIVE_LENGTH (srcno) < 2)
1481 REG_LIVE_LENGTH (srcno) = 2;
1482 }
1483
1484 if (regmove_dump_file)
1485 fprintf (regmove_dump_file,
1486 "Fixed operand %d of insn %d matching operand %d.\n",
1487 op_no, INSN_UID (insn), match_no);
1488
1489 break;
1490 }
1491 }
1492
1493 /* If we weren't able to replace any of the alternatives, try an
1494 alternative appoach of copying the source to the destination. */
1495 if (!success && copy_src != NULL_RTX)
1496 copy_src_to_dest (insn, copy_src, copy_dst, old_max_uid);
1497
1498 }
1499 }
1500
1501 /* In fixup_match_1, some insns may have been inserted after basic block
1502 ends. Fix that here. */
1503 for (i = 0; i < n_basic_blocks; i++)
1504 {
1505 rtx end = BLOCK_END (i);
1506 rtx new = end;
1507 rtx next = NEXT_INSN (new);
1508 while (next != 0 && INSN_UID (next) >= old_max_uid
1509 && (i == n_basic_blocks - 1 || BLOCK_HEAD (i + 1) != next))
1510 new = next, next = NEXT_INSN (new);
1511 BLOCK_END (i) = new;
1512 }
1513
1514 done:
1515 /* Clean up. */
1516 free (regno_src_regno);
1517 free (regmove_bb_head);
1518 }
1519
1520 /* Returns nonzero if INSN's pattern has matching constraints for any operand.
1521 Returns 0 if INSN can't be recognized, or if the alternative can't be
1522 determined.
1523
1524 Initialize the info in MATCHP based on the constraints. */
1525
1526 static int
1527 find_matches (insn, matchp)
1528 rtx insn;
1529 struct match *matchp;
1530 {
1531 int likely_spilled[MAX_RECOG_OPERANDS];
1532 int op_no;
1533 int any_matches = 0;
1534
1535 extract_insn (insn);
1536 if (! constrain_operands (0))
1537 return 0;
1538
1539 /* Must initialize this before main loop, because the code for
1540 the commutative case may set matches for operands other than
1541 the current one. */
1542 for (op_no = recog_data.n_operands; --op_no >= 0; )
1543 matchp->with[op_no] = matchp->commutative[op_no] = -1;
1544
1545 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1546 {
1547 const char *p;
1548 char c;
1549 int i = 0;
1550
1551 p = recog_data.constraints[op_no];
1552
1553 likely_spilled[op_no] = 0;
1554 matchp->use[op_no] = READ;
1555 matchp->early_clobber[op_no] = 0;
1556 if (*p == '=')
1557 matchp->use[op_no] = WRITE;
1558 else if (*p == '+')
1559 matchp->use[op_no] = READWRITE;
1560
1561 for (;*p && i < which_alternative; p++)
1562 if (*p == ',')
1563 i++;
1564
1565 while ((c = *p++) != '\0' && c != ',')
1566 switch (c)
1567 {
1568 case '=':
1569 break;
1570 case '+':
1571 break;
1572 case '&':
1573 matchp->early_clobber[op_no] = 1;
1574 break;
1575 case '%':
1576 matchp->commutative[op_no] = op_no + 1;
1577 matchp->commutative[op_no + 1] = op_no;
1578 break;
1579
1580 case '0': case '1': case '2': case '3': case '4':
1581 case '5': case '6': case '7': case '8': case '9':
1582 {
1583 char *end;
1584 unsigned long match_ul = strtoul (p - 1, &end, 10);
1585 int match = match_ul;
1586
1587 p = end;
1588
1589 if (match < op_no && likely_spilled[match])
1590 break;
1591 matchp->with[op_no] = match;
1592 any_matches = 1;
1593 if (matchp->commutative[op_no] >= 0)
1594 matchp->with[matchp->commutative[op_no]] = match;
1595 }
1596 break;
1597
1598 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
1599 case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
1600 case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
1601 case 'C': case 'D': case 'W': case 'Y': case 'Z':
1602 if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_LETTER ((unsigned char) c)))
1603 likely_spilled[op_no] = 1;
1604 break;
1605 }
1606 }
1607 return any_matches;
1608 }
1609
1610 /* Try to replace all occurrences of DST_REG with SRC in LOC, that is
1611 assumed to be in INSN. */
1612
1613 static void
1614 replace_in_call_usage (loc, dst_reg, src, insn)
1615 rtx *loc;
1616 unsigned int dst_reg;
1617 rtx src;
1618 rtx insn;
1619 {
1620 rtx x = *loc;
1621 enum rtx_code code;
1622 const char *fmt;
1623 int i, j;
1624
1625 if (! x)
1626 return;
1627
1628 code = GET_CODE (x);
1629 if (code == REG)
1630 {
1631 if (REGNO (x) != dst_reg)
1632 return;
1633
1634 validate_change (insn, loc, src, 1);
1635
1636 return;
1637 }
1638
1639 /* Process each of our operands recursively. */
1640 fmt = GET_RTX_FORMAT (code);
1641 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1642 if (*fmt == 'e')
1643 replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
1644 else if (*fmt == 'E')
1645 for (j = 0; j < XVECLEN (x, i); j++)
1646 replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
1647 }
1648
1649 /* Try to replace output operand DST in SET, with input operand SRC. SET is
1650 the only set in INSN. INSN has just been recognized and constrained.
1651 SRC is operand number OPERAND_NUMBER in INSN.
1652 DST is operand number MATCH_NUMBER in INSN.
1653 If BACKWARD is nonzero, we have been called in a backward pass.
1654 Return nonzero for success. */
1655
1656 static int
1657 fixup_match_1 (insn, set, src, src_subreg, dst, backward, operand_number,
1658 match_number, regmove_dump_file)
1659 rtx insn, set, src, src_subreg, dst;
1660 int backward, operand_number, match_number;
1661 FILE *regmove_dump_file;
1662 {
1663 rtx p;
1664 rtx post_inc = 0, post_inc_set = 0, search_end = 0;
1665 int success = 0;
1666 int num_calls = 0, s_num_calls = 0;
1667 enum rtx_code code = NOTE;
1668 HOST_WIDE_INT insn_const = 0, newconst;
1669 rtx overlap = 0; /* need to move insn ? */
1670 rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
1671 int length, s_length;
1672
1673 /* If SRC is marked as unchanging, we may not change it.
1674 ??? Maybe we could get better code by removing the unchanging bit
1675 instead, and changing it back if we don't succeed? */
1676 if (RTX_UNCHANGING_P (src))
1677 return 0;
1678
1679 if (! src_note)
1680 {
1681 /* Look for (set (regX) (op regA constX))
1682 (set (regY) (op regA constY))
1683 and change that to
1684 (set (regA) (op regA constX)).
1685 (set (regY) (op regA constY-constX)).
1686 This works for add and shift operations, if
1687 regA is dead after or set by the second insn. */
1688
1689 code = GET_CODE (SET_SRC (set));
1690 if ((code == PLUS || code == LSHIFTRT
1691 || code == ASHIFT || code == ASHIFTRT)
1692 && XEXP (SET_SRC (set), 0) == src
1693 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1694 insn_const = INTVAL (XEXP (SET_SRC (set), 1));
1695 else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
1696 return 0;
1697 else
1698 /* We might find a src_note while scanning. */
1699 code = NOTE;
1700 }
1701
1702 if (regmove_dump_file)
1703 fprintf (regmove_dump_file,
1704 "Could fix operand %d of insn %d matching operand %d.\n",
1705 operand_number, INSN_UID (insn), match_number);
1706
1707 /* If SRC is equivalent to a constant set in a different basic block,
1708 then do not use it for this optimization. We want the equivalence
1709 so that if we have to reload this register, we can reload the
1710 constant, rather than extending the lifespan of the register. */
1711 if (reg_is_remote_constant_p (src, insn, get_insns ()))
1712 return 0;
1713
1714 /* Scan forward to find the next instruction that
1715 uses the output operand. If the operand dies here,
1716 then replace it in both instructions with
1717 operand_number. */
1718
1719 for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1720 {
1721 if (GET_CODE (p) == CALL_INSN)
1722 replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
1723 REGNO (dst), src, p);
1724
1725 /* ??? We can't scan past the end of a basic block without updating
1726 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
1727 if (perhaps_ends_bb_p (p))
1728 break;
1729 else if (! INSN_P (p))
1730 continue;
1731
1732 length++;
1733 if (src_note)
1734 s_length++;
1735
1736 if (reg_set_p (src, p) || reg_set_p (dst, p)
1737 || (GET_CODE (PATTERN (p)) == USE
1738 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
1739 break;
1740
1741 /* See if all of DST dies in P. This test is
1742 slightly more conservative than it needs to be. */
1743 if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
1744 && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
1745 {
1746 /* If we would be moving INSN, check that we won't move it
1747 into the shadow of a live a live flags register. */
1748 /* ??? We only try to move it in front of P, although
1749 we could move it anywhere between OVERLAP and P. */
1750 if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
1751 break;
1752
1753 if (! src_note)
1754 {
1755 rtx q;
1756 rtx set2 = NULL_RTX;
1757
1758 /* If an optimization is done, the value of SRC while P
1759 is executed will be changed. Check that this is OK. */
1760 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1761 break;
1762 for (q = p; q; q = NEXT_INSN (q))
1763 {
1764 /* ??? We can't scan past the end of a basic block without
1765 updating the register lifetime info
1766 (REG_DEAD/basic_block_live_at_start). */
1767 if (perhaps_ends_bb_p (q))
1768 {
1769 q = 0;
1770 break;
1771 }
1772 else if (! INSN_P (q))
1773 continue;
1774 else if (reg_overlap_mentioned_p (src, PATTERN (q))
1775 || reg_set_p (src, q))
1776 break;
1777 }
1778 if (q)
1779 set2 = single_set (q);
1780 if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
1781 || XEXP (SET_SRC (set2), 0) != src
1782 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
1783 || (SET_DEST (set2) != src
1784 && ! find_reg_note (q, REG_DEAD, src)))
1785 {
1786 /* If this is a PLUS, we can still save a register by doing
1787 src += insn_const;
1788 P;
1789 src -= insn_const; .
1790 This also gives opportunities for subsequent
1791 optimizations in the backward pass, so do it there. */
1792 if (code == PLUS && backward
1793 /* Don't do this if we can likely tie DST to SET_DEST
1794 of P later; we can't do this tying here if we got a
1795 hard register. */
1796 && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
1797 && single_set (p)
1798 && GET_CODE (SET_DEST (single_set (p))) == REG
1799 && (REGNO (SET_DEST (single_set (p)))
1800 < FIRST_PSEUDO_REGISTER))
1801 /* We may only emit an insn directly after P if we
1802 are not in the shadow of a live flags register. */
1803 && GET_MODE (p) == VOIDmode)
1804 {
1805 search_end = q;
1806 q = insn;
1807 set2 = set;
1808 newconst = -insn_const;
1809 code = MINUS;
1810 }
1811 else
1812 break;
1813 }
1814 else
1815 {
1816 newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
1817 /* Reject out of range shifts. */
1818 if (code != PLUS
1819 && (newconst < 0
1820 || ((unsigned HOST_WIDE_INT) newconst
1821 >= (GET_MODE_BITSIZE (GET_MODE
1822 (SET_SRC (set2)))))))
1823 break;
1824 if (code == PLUS)
1825 {
1826 post_inc = q;
1827 if (SET_DEST (set2) != src)
1828 post_inc_set = set2;
1829 }
1830 }
1831 /* We use 1 as last argument to validate_change so that all
1832 changes are accepted or rejected together by apply_change_group
1833 when it is called by validate_replace_rtx . */
1834 validate_change (q, &XEXP (SET_SRC (set2), 1),
1835 GEN_INT (newconst), 1);
1836 }
1837 validate_change (insn, recog_data.operand_loc[match_number], src, 1);
1838 if (validate_replace_rtx (dst, src_subreg, p))
1839 success = 1;
1840 break;
1841 }
1842
1843 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1844 break;
1845 if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
1846 {
1847 /* INSN was already checked to be movable wrt. the registers that it
1848 sets / uses when we found no REG_DEAD note for src on it, but it
1849 still might clobber the flags register. We'll have to check that
1850 we won't insert it into the shadow of a live flags register when
1851 we finally know where we are to move it. */
1852 overlap = p;
1853 src_note = find_reg_note (p, REG_DEAD, src);
1854 }
1855
1856 /* If we have passed a call instruction, and the pseudo-reg SRC is not
1857 already live across a call, then don't perform the optimization. */
1858 if (GET_CODE (p) == CALL_INSN)
1859 {
1860 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1861 break;
1862
1863 num_calls++;
1864
1865 if (src_note)
1866 s_num_calls++;
1867
1868 }
1869 }
1870
1871 if (! success)
1872 return 0;
1873
1874 /* Remove the death note for DST from P. */
1875 remove_note (p, dst_note);
1876 if (code == MINUS)
1877 {
1878 post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
1879 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1880 && search_end
1881 && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
1882 post_inc = 0;
1883 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
1884 REG_N_SETS (REGNO (src))++;
1885 REG_LIVE_LENGTH (REGNO (src))++;
1886 }
1887 if (overlap)
1888 {
1889 /* The lifetime of src and dest overlap,
1890 but we can change this by moving insn. */
1891 rtx pat = PATTERN (insn);
1892 if (src_note)
1893 remove_note (overlap, src_note);
1894 if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1895 && code == PLUS
1896 && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
1897 insn = overlap;
1898 else
1899 {
1900 rtx notes = REG_NOTES (insn);
1901
1902 emit_insn_after_with_line_notes (pat, PREV_INSN (p), insn);
1903 delete_insn (insn);
1904 /* emit_insn_after_with_line_notes has no
1905 return value, so search for the new insn. */
1906 insn = p;
1907 while (! INSN_P (insn) || PATTERN (insn) != pat)
1908 insn = PREV_INSN (insn);
1909
1910 REG_NOTES (insn) = notes;
1911 }
1912 }
1913 /* Sometimes we'd generate src = const; src += n;
1914 if so, replace the instruction that set src
1915 in the first place. */
1916
1917 if (! overlap && (code == PLUS || code == MINUS))
1918 {
1919 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1920 rtx q, set2 = NULL_RTX;
1921 int num_calls2 = 0, s_length2 = 0;
1922
1923 if (note && CONSTANT_P (XEXP (note, 0)))
1924 {
1925 for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
1926 {
1927 /* ??? We can't scan past the end of a basic block without
1928 updating the register lifetime info
1929 (REG_DEAD/basic_block_live_at_start). */
1930 if (perhaps_ends_bb_p (q))
1931 {
1932 q = 0;
1933 break;
1934 }
1935 else if (! INSN_P (q))
1936 continue;
1937
1938 s_length2++;
1939 if (reg_set_p (src, q))
1940 {
1941 set2 = single_set (q);
1942 break;
1943 }
1944 if (reg_overlap_mentioned_p (src, PATTERN (q)))
1945 {
1946 q = 0;
1947 break;
1948 }
1949 if (GET_CODE (p) == CALL_INSN)
1950 num_calls2++;
1951 }
1952 if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
1953 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
1954 {
1955 delete_insn (q);
1956 REG_N_SETS (REGNO (src))--;
1957 REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
1958 REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
1959 insn_const = 0;
1960 }
1961 }
1962 }
1963
1964 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1965 && (code == PLUS || code == MINUS) && insn_const
1966 && try_auto_increment (p, insn, 0, src, insn_const, 1))
1967 insn = p;
1968 else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1969 && post_inc
1970 && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
1971 post_inc = 0;
1972 /* If post_inc still prevails, try to find an
1973 insn where it can be used as a pre-in/decrement.
1974 If code is MINUS, this was already tried. */
1975 if (post_inc && code == PLUS
1976 /* Check that newconst is likely to be usable
1977 in a pre-in/decrement before starting the search. */
1978 && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
1979 || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
1980 && exact_log2 (newconst))
1981 {
1982 rtx q, inc_dest;
1983
1984 inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
1985 for (q = post_inc; (q = NEXT_INSN (q)); )
1986 {
1987 /* ??? We can't scan past the end of a basic block without updating
1988 the register lifetime info
1989 (REG_DEAD/basic_block_live_at_start). */
1990 if (perhaps_ends_bb_p (q))
1991 break;
1992 else if (! INSN_P (q))
1993 continue;
1994 else if (src != inc_dest
1995 && (reg_overlap_mentioned_p (src, PATTERN (q))
1996 || reg_set_p (src, q)))
1997 break;
1998 else if (reg_set_p (inc_dest, q))
1999 break;
2000 else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
2001 {
2002 try_auto_increment (q, post_inc,
2003 post_inc_set, inc_dest, newconst, 1);
2004 break;
2005 }
2006 }
2007 }
2008
2009 /* Move the death note for DST to INSN if it is used
2010 there. */
2011 if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
2012 {
2013 XEXP (dst_note, 1) = REG_NOTES (insn);
2014 REG_NOTES (insn) = dst_note;
2015 }
2016
2017 if (src_note)
2018 {
2019 /* Move the death note for SRC from INSN to P. */
2020 if (! overlap)
2021 remove_note (insn, src_note);
2022 XEXP (src_note, 1) = REG_NOTES (p);
2023 REG_NOTES (p) = src_note;
2024
2025 REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
2026 }
2027
2028 REG_N_SETS (REGNO (src))++;
2029 REG_N_SETS (REGNO (dst))--;
2030
2031 REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
2032
2033 REG_LIVE_LENGTH (REGNO (src)) += s_length;
2034 if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
2035 {
2036 REG_LIVE_LENGTH (REGNO (dst)) -= length;
2037 /* REG_LIVE_LENGTH is only an approximation after
2038 combine if sched is not run, so make sure that we
2039 still have a reasonable value. */
2040 if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
2041 REG_LIVE_LENGTH (REGNO (dst)) = 2;
2042 }
2043 if (regmove_dump_file)
2044 fprintf (regmove_dump_file,
2045 "Fixed operand %d of insn %d matching operand %d.\n",
2046 operand_number, INSN_UID (insn), match_number);
2047 return 1;
2048 }
2049
2050
2051 /* return nonzero if X is stable and mentions no regsiters but for
2052 mentioning SRC or mentioning / changing DST . If in doubt, presume
2053 it is unstable.
2054 The rationale is that we want to check if we can move an insn easily
2055 while just paying attention to SRC and DST. A register is considered
2056 stable if it has the RTX_UNCHANGING_P bit set, but that would still
2057 leave the burden to update REG_DEAD / REG_UNUSED notes, so we don't
2058 want any registers but SRC and DST. */
2059 static int
2060 stable_and_no_regs_but_for_p (x, src, dst)
2061 rtx x, src, dst;
2062 {
2063 RTX_CODE code = GET_CODE (x);
2064 switch (GET_RTX_CLASS (code))
2065 {
2066 case '<': case '1': case 'c': case '2': case 'b': case '3':
2067 {
2068 int i;
2069 const char *fmt = GET_RTX_FORMAT (code);
2070 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2071 if (fmt[i] == 'e'
2072 && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
2073 return 0;
2074 return 1;
2075 }
2076 case 'o':
2077 if (code == REG)
2078 return x == src || x == dst;
2079 /* If this is a MEM, look inside - there might be a register hidden in
2080 the address of an unchanging MEM. */
2081 if (code == MEM
2082 && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
2083 return 0;
2084 /* fall through */
2085 default:
2086 return ! rtx_unstable_p (x);
2087 }
2088 }
2089 \f
2090 /* Track stack adjustments and stack memory references. Attempt to
2091 reduce the number of stack adjustments by back-propagating across
2092 the memory references.
2093
2094 This is intended primarily for use with targets that do not define
2095 ACCUMULATE_OUTGOING_ARGS. It is of significantly more value to
2096 targets that define PREFERRED_STACK_BOUNDARY more aligned than
2097 STACK_BOUNDARY (e.g. x86), or if not all registers can be pushed
2098 (e.g. x86 fp regs) which would ordinarily have to be implemented
2099 as a sub/mov pair due to restrictions in calls.c.
2100
2101 Propagation stops when any of the insns that need adjusting are
2102 (a) no longer valid because we've exceeded their range, (b) a
2103 non-trivial push instruction, or (c) a call instruction.
2104
2105 Restriction B is based on the assumption that push instructions
2106 are smaller or faster. If a port really wants to remove all
2107 pushes, it should have defined ACCUMULATE_OUTGOING_ARGS. The
2108 one exception that is made is for an add immediately followed
2109 by a push. */
2110
2111 /* This structure records stack memory references between stack adjusting
2112 instructions. */
2113
2114 struct csa_memlist
2115 {
2116 HOST_WIDE_INT sp_offset;
2117 rtx insn, *mem;
2118 struct csa_memlist *next;
2119 };
2120
2121 static int stack_memref_p PARAMS ((rtx));
2122 static rtx single_set_for_csa PARAMS ((rtx));
2123 static void free_csa_memlist PARAMS ((struct csa_memlist *));
2124 static struct csa_memlist *record_one_stack_memref
2125 PARAMS ((rtx, rtx *, struct csa_memlist *));
2126 static int try_apply_stack_adjustment
2127 PARAMS ((rtx, struct csa_memlist *, HOST_WIDE_INT, HOST_WIDE_INT));
2128 static void combine_stack_adjustments_for_block PARAMS ((basic_block));
2129 static int record_stack_memrefs PARAMS ((rtx *, void *));
2130
2131
2132 /* Main entry point for stack adjustment combination. */
2133
2134 void
2135 combine_stack_adjustments ()
2136 {
2137 int i;
2138
2139 for (i = 0; i < n_basic_blocks; ++i)
2140 combine_stack_adjustments_for_block (BASIC_BLOCK (i));
2141 }
2142
2143 /* Recognize a MEM of the form (sp) or (plus sp const). */
2144
2145 static int
2146 stack_memref_p (x)
2147 rtx x;
2148 {
2149 if (GET_CODE (x) != MEM)
2150 return 0;
2151 x = XEXP (x, 0);
2152
2153 if (x == stack_pointer_rtx)
2154 return 1;
2155 if (GET_CODE (x) == PLUS
2156 && XEXP (x, 0) == stack_pointer_rtx
2157 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2158 return 1;
2159
2160 return 0;
2161 }
2162
2163 /* Recognize either normal single_set or the hack in i386.md for
2164 tying fp and sp adjustments. */
2165
2166 static rtx
2167 single_set_for_csa (insn)
2168 rtx insn;
2169 {
2170 int i;
2171 rtx tmp = single_set (insn);
2172 if (tmp)
2173 return tmp;
2174
2175 if (GET_CODE (insn) != INSN
2176 || GET_CODE (PATTERN (insn)) != PARALLEL)
2177 return NULL_RTX;
2178
2179 tmp = PATTERN (insn);
2180 if (GET_CODE (XVECEXP (tmp, 0, 0)) != SET)
2181 return NULL_RTX;
2182
2183 for (i = 1; i < XVECLEN (tmp, 0); ++i)
2184 {
2185 rtx this = XVECEXP (tmp, 0, i);
2186
2187 /* The special case is allowing a no-op set. */
2188 if (GET_CODE (this) == SET
2189 && SET_SRC (this) == SET_DEST (this))
2190 ;
2191 else if (GET_CODE (this) != CLOBBER
2192 && GET_CODE (this) != USE)
2193 return NULL_RTX;
2194 }
2195
2196 return XVECEXP (tmp, 0, 0);
2197 }
2198
2199 /* Free the list of csa_memlist nodes. */
2200
2201 static void
2202 free_csa_memlist (memlist)
2203 struct csa_memlist *memlist;
2204 {
2205 struct csa_memlist *next;
2206 for (; memlist ; memlist = next)
2207 {
2208 next = memlist->next;
2209 free (memlist);
2210 }
2211 }
2212
2213 /* Create a new csa_memlist node from the given memory reference.
2214 It is already known that the memory is stack_memref_p. */
2215
2216 static struct csa_memlist *
2217 record_one_stack_memref (insn, mem, next_memlist)
2218 rtx insn, *mem;
2219 struct csa_memlist *next_memlist;
2220 {
2221 struct csa_memlist *ml;
2222
2223 ml = (struct csa_memlist *) xmalloc (sizeof (*ml));
2224
2225 if (XEXP (*mem, 0) == stack_pointer_rtx)
2226 ml->sp_offset = 0;
2227 else
2228 ml->sp_offset = INTVAL (XEXP (XEXP (*mem, 0), 1));
2229
2230 ml->insn = insn;
2231 ml->mem = mem;
2232 ml->next = next_memlist;
2233
2234 return ml;
2235 }
2236
2237 /* Attempt to apply ADJUST to the stack adjusting insn INSN, as well
2238 as each of the memories in MEMLIST. Return true on success. */
2239
2240 static int
2241 try_apply_stack_adjustment (insn, memlist, new_adjust, delta)
2242 rtx insn;
2243 struct csa_memlist *memlist;
2244 HOST_WIDE_INT new_adjust, delta;
2245 {
2246 struct csa_memlist *ml;
2247 rtx set;
2248
2249 set = single_set_for_csa (insn);
2250 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);
2251
2252 for (ml = memlist; ml ; ml = ml->next)
2253 validate_change
2254 (ml->insn, ml->mem,
2255 replace_equiv_address_nv (*ml->mem,
2256 plus_constant (stack_pointer_rtx,
2257 ml->sp_offset - delta)), 1);
2258
2259 if (apply_change_group ())
2260 {
2261 /* Succeeded. Update our knowledge of the memory references. */
2262 for (ml = memlist; ml ; ml = ml->next)
2263 ml->sp_offset -= delta;
2264
2265 return 1;
2266 }
2267 else
2268 return 0;
2269 }
2270
2271 /* Called via for_each_rtx and used to record all stack memory references in
2272 the insn and discard all other stack pointer references. */
2273 struct record_stack_memrefs_data
2274 {
2275 rtx insn;
2276 struct csa_memlist *memlist;
2277 };
2278
2279 static int
2280 record_stack_memrefs (xp, data)
2281 rtx *xp;
2282 void *data;
2283 {
2284 rtx x = *xp;
2285 struct record_stack_memrefs_data *d =
2286 (struct record_stack_memrefs_data *) data;
2287 if (!x)
2288 return 0;
2289 switch (GET_CODE (x))
2290 {
2291 case MEM:
2292 if (!reg_mentioned_p (stack_pointer_rtx, x))
2293 return -1;
2294 /* We are not able to handle correctly all possible memrefs containing
2295 stack pointer, so this check is necessary. */
2296 if (stack_memref_p (x))
2297 {
2298 d->memlist = record_one_stack_memref (d->insn, xp, d->memlist);
2299 return -1;
2300 }
2301 return 1;
2302 case REG:
2303 /* ??? We want be able to handle non-memory stack pointer
2304 references later. For now just discard all insns refering to
2305 stack pointer outside mem expressions. We would probably
2306 want to teach validate_replace to simplify expressions first.
2307
2308 We can't just compare with STACK_POINTER_RTX because the
2309 reference to the stack pointer might be in some other mode.
2310 In particular, an explict clobber in an asm statement will
2311 result in a QImode clober. */
2312 if (REGNO (x) == STACK_POINTER_REGNUM)
2313 return 1;
2314 break;
2315 default:
2316 break;
2317 }
2318 return 0;
2319 }
2320
2321 /* Subroutine of combine_stack_adjustments, called for each basic block. */
2322
2323 static void
2324 combine_stack_adjustments_for_block (bb)
2325 basic_block bb;
2326 {
2327 HOST_WIDE_INT last_sp_adjust = 0;
2328 rtx last_sp_set = NULL_RTX;
2329 struct csa_memlist *memlist = NULL;
2330 rtx pending_delete;
2331 rtx insn, next;
2332 struct record_stack_memrefs_data data;
2333
2334 for (insn = bb->head; ; insn = next)
2335 {
2336 rtx set;
2337
2338 pending_delete = NULL_RTX;
2339 next = NEXT_INSN (insn);
2340
2341 if (! INSN_P (insn))
2342 goto processed;
2343
2344 set = single_set_for_csa (insn);
2345 if (set)
2346 {
2347 rtx dest = SET_DEST (set);
2348 rtx src = SET_SRC (set);
2349
2350 /* Find constant additions to the stack pointer. */
2351 if (dest == stack_pointer_rtx
2352 && GET_CODE (src) == PLUS
2353 && XEXP (src, 0) == stack_pointer_rtx
2354 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2355 {
2356 HOST_WIDE_INT this_adjust = INTVAL (XEXP (src, 1));
2357
2358 /* If we've not seen an adjustment previously, record
2359 it now and continue. */
2360 if (! last_sp_set)
2361 {
2362 last_sp_set = insn;
2363 last_sp_adjust = this_adjust;
2364 goto processed;
2365 }
2366
2367 /* If not all recorded memrefs can be adjusted, or the
2368 adjustment is now too large for a constant addition,
2369 we cannot merge the two stack adjustments.
2370
2371 Also we need to be carefull to not move stack pointer
2372 such that we create stack accesses outside the allocated
2373 area. We can combine an allocation into the first insn,
2374 or a deallocation into the second insn. We can not
2375 combine an allocation followed by a deallocation.
2376
2377 The only somewhat frequent occurrence of the later is when
2378 a function allocates a stack frame but does not use it.
2379 For this case, we would need to analyze rtl stream to be
2380 sure that allocated area is really unused. This means not
2381 only checking the memory references, but also all registers
2382 or global memory references possibly containing a stack
2383 frame address.
2384
2385 Perhaps the best way to address this problem is to teach
2386 gcc not to allocate stack for objects never used. */
2387
2388 /* Combine an allocation into the first instruction. */
2389 if (STACK_GROWS_DOWNWARD ? this_adjust <= 0 : this_adjust >= 0)
2390 {
2391 if (try_apply_stack_adjustment (last_sp_set, memlist,
2392 last_sp_adjust + this_adjust,
2393 this_adjust))
2394 {
2395 /* It worked! */
2396 pending_delete = insn;
2397 last_sp_adjust += this_adjust;
2398 goto processed;
2399 }
2400 }
2401
2402 /* Otherwise we have a deallocation. Do not combine with
2403 a previous allocation. Combine into the second insn. */
2404 else if (STACK_GROWS_DOWNWARD
2405 ? last_sp_adjust >= 0 : last_sp_adjust <= 0)
2406 {
2407 if (try_apply_stack_adjustment (insn, memlist,
2408 last_sp_adjust + this_adjust,
2409 -last_sp_adjust))
2410 {
2411 /* It worked! */
2412 delete_insn (last_sp_set);
2413 last_sp_set = insn;
2414 last_sp_adjust += this_adjust;
2415 free_csa_memlist (memlist);
2416 memlist = NULL;
2417 goto processed;
2418 }
2419 }
2420
2421 /* Combination failed. Restart processing from here. */
2422 free_csa_memlist (memlist);
2423 memlist = NULL;
2424 last_sp_set = insn;
2425 last_sp_adjust = this_adjust;
2426 goto processed;
2427 }
2428
2429 /* Find a predecrement of exactly the previous adjustment and
2430 turn it into a direct store. Obviously we can't do this if
2431 there were any intervening uses of the stack pointer. */
2432 if (memlist == NULL
2433 && GET_CODE (dest) == MEM
2434 && ((GET_CODE (XEXP (dest, 0)) == PRE_DEC
2435 && (last_sp_adjust
2436 == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (dest))))
2437 || (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY
2438 && GET_CODE (XEXP (XEXP (dest, 0), 1)) == PLUS
2439 && XEXP (XEXP (XEXP (dest, 0), 1), 0) == stack_pointer_rtx
2440 && (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2441 == CONST_INT)
2442 && (INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2443 == -last_sp_adjust)))
2444 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx
2445 && ! reg_mentioned_p (stack_pointer_rtx, src)
2446 && memory_address_p (GET_MODE (dest), stack_pointer_rtx)
2447 && validate_change (insn, &SET_DEST (set),
2448 replace_equiv_address (dest,
2449 stack_pointer_rtx),
2450 0))
2451 {
2452 if (last_sp_set == bb->head)
2453 bb->head = NEXT_INSN (last_sp_set);
2454 delete_insn (last_sp_set);
2455
2456 free_csa_memlist (memlist);
2457 memlist = NULL;
2458 last_sp_set = NULL_RTX;
2459 last_sp_adjust = 0;
2460 goto processed;
2461 }
2462 }
2463
2464 data.insn = insn;
2465 data.memlist = memlist;
2466 if (GET_CODE (insn) != CALL_INSN && last_sp_set
2467 && !for_each_rtx (&PATTERN (insn), record_stack_memrefs, &data))
2468 {
2469 memlist = data.memlist;
2470 goto processed;
2471 }
2472 memlist = data.memlist;
2473
2474 /* Otherwise, we were not able to process the instruction.
2475 Do not continue collecting data across such a one. */
2476 if (last_sp_set
2477 && (GET_CODE (insn) == CALL_INSN
2478 || reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))))
2479 {
2480 free_csa_memlist (memlist);
2481 memlist = NULL;
2482 last_sp_set = NULL_RTX;
2483 last_sp_adjust = 0;
2484 }
2485
2486 processed:
2487 if (insn == bb->end)
2488 break;
2489
2490 if (pending_delete)
2491 delete_insn (pending_delete);
2492 }
2493
2494 if (pending_delete)
2495 delete_insn (pending_delete);
2496 }