Change copyright header to refer to version 3 of the GNU General Public License and...
[gcc.git] / gcc / regmove.c
1 /* Move registers around to reduce number of move instructions needed.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This module looks for cases where matching constraints would force
24 an instruction to need a reload, and this reload would be a register
25 to register move. It then attempts to change the registers used by the
26 instruction to avoid the move instruction. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
33 #include "tm_p.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "output.h"
37 #include "regs.h"
38 #include "hard-reg-set.h"
39 #include "flags.h"
40 #include "function.h"
41 #include "expr.h"
42 #include "basic-block.h"
43 #include "except.h"
44 #include "toplev.h"
45 #include "reload.h"
46 #include "timevar.h"
47 #include "tree-pass.h"
48 #include "df.h"
49
50 static int perhaps_ends_bb_p (rtx);
51 static int optimize_reg_copy_1 (rtx, rtx, rtx);
52 static void optimize_reg_copy_2 (rtx, rtx, rtx);
53 static void optimize_reg_copy_3 (rtx, rtx, rtx);
54 static void copy_src_to_dest (rtx, rtx, rtx);
55
56 struct match {
57 int with[MAX_RECOG_OPERANDS];
58 enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
59 int commutative[MAX_RECOG_OPERANDS];
60 int early_clobber[MAX_RECOG_OPERANDS];
61 };
62
63 static rtx discover_flags_reg (void);
64 static void mark_flags_life_zones (rtx);
65 static void flags_set_1 (rtx, rtx, void *);
66
67 static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
68 static int find_matches (rtx, struct match *);
69 static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
70 static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int);
71 static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
72 static int regclass_compatible_p (int, int);
73 static int replacement_quality (rtx);
74 static int fixup_match_2 (rtx, rtx, rtx, rtx);
75
76 /* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
77 causing too much register allocation problems. */
78 static int
79 regclass_compatible_p (int class0, int class1)
80 {
81 return (class0 == class1
82 || (reg_class_subset_p (class0, class1)
83 && ! CLASS_LIKELY_SPILLED_P (class0))
84 || (reg_class_subset_p (class1, class0)
85 && ! CLASS_LIKELY_SPILLED_P (class1)));
86 }
87
88 /* Find the place in the rtx X where REG is used as a memory address.
89 Return the MEM rtx that so uses it.
90 If PLUSCONST is nonzero, search instead for a memory address equivalent to
91 (plus REG (const_int PLUSCONST)).
92
93 If such an address does not appear, return 0.
94 If REG appears more than once, or is used other than in such an address,
95 return (rtx) 1. */
96
97 static rtx
98 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
99 {
100 enum rtx_code code = GET_CODE (x);
101 const char * const fmt = GET_RTX_FORMAT (code);
102 int i;
103 rtx value = 0;
104 rtx tem;
105
106 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
107 return x;
108
109 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
110 && XEXP (XEXP (x, 0), 0) == reg
111 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
112 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
113 return x;
114
115 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
116 {
117 /* If REG occurs inside a MEM used in a bit-field reference,
118 that is unacceptable. */
119 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
120 return (rtx) (size_t) 1;
121 }
122
123 if (x == reg)
124 return (rtx) (size_t) 1;
125
126 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
127 {
128 if (fmt[i] == 'e')
129 {
130 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
131 if (value == 0)
132 value = tem;
133 else if (tem != 0)
134 return (rtx) (size_t) 1;
135 }
136 else if (fmt[i] == 'E')
137 {
138 int j;
139 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
140 {
141 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
142 if (value == 0)
143 value = tem;
144 else if (tem != 0)
145 return (rtx) (size_t) 1;
146 }
147 }
148 }
149
150 return value;
151 }
152
153
154 /* INC_INSN is an instruction that adds INCREMENT to REG.
155 Try to fold INC_INSN as a post/pre in/decrement into INSN.
156 Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
157 Return nonzero for success. */
158 static int
159 try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
160 HOST_WIDE_INT increment, int pre)
161 {
162 enum rtx_code inc_code;
163
164 rtx pset = single_set (insn);
165 if (pset)
166 {
167 /* Can't use the size of SET_SRC, we might have something like
168 (sign_extend:SI (mem:QI ... */
169 rtx use = find_use_as_address (pset, reg, 0);
170 if (use != 0 && use != (rtx) (size_t) 1)
171 {
172 int size = GET_MODE_SIZE (GET_MODE (use));
173 if (0
174 || (HAVE_POST_INCREMENT
175 && pre == 0 && (inc_code = POST_INC, increment == size))
176 || (HAVE_PRE_INCREMENT
177 && pre == 1 && (inc_code = PRE_INC, increment == size))
178 || (HAVE_POST_DECREMENT
179 && pre == 0 && (inc_code = POST_DEC, increment == -size))
180 || (HAVE_PRE_DECREMENT
181 && pre == 1 && (inc_code = PRE_DEC, increment == -size))
182 )
183 {
184 if (inc_insn_set)
185 validate_change
186 (inc_insn,
187 &SET_SRC (inc_insn_set),
188 XEXP (SET_SRC (inc_insn_set), 0), 1);
189 validate_change (insn, &XEXP (use, 0),
190 gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
191 if (apply_change_group ())
192 {
193 /* If there is a REG_DEAD note on this insn, we must
194 change this not to REG_UNUSED meaning that the register
195 is set, but the value is dead. Failure to do so will
196 result in a sched1 dieing -- when it recomputes lifetime
197 information, the number of REG_DEAD notes will have
198 changed. */
199 rtx note = find_reg_note (insn, REG_DEAD, reg);
200 if (note)
201 PUT_MODE (note, REG_UNUSED);
202
203 REG_NOTES (insn)
204 = gen_rtx_EXPR_LIST (REG_INC,
205 reg, REG_NOTES (insn));
206 if (! inc_insn_set)
207 delete_insn (inc_insn);
208 return 1;
209 }
210 }
211 }
212 }
213 return 0;
214 }
215 \f
216 /* Determine if the pattern generated by add_optab has a clobber,
217 such as might be issued for a flags hard register. To make the
218 code elsewhere simpler, we handle cc0 in this same framework.
219
220 Return the register if one was discovered. Return NULL_RTX if
221 if no flags were found. Return pc_rtx if we got confused. */
222
223 static rtx
224 discover_flags_reg (void)
225 {
226 rtx tmp;
227 tmp = gen_rtx_REG (word_mode, 10000);
228 tmp = gen_add3_insn (tmp, tmp, const2_rtx);
229
230 /* If we get something that isn't a simple set, or a
231 [(set ..) (clobber ..)], this whole function will go wrong. */
232 if (GET_CODE (tmp) == SET)
233 return NULL_RTX;
234 else if (GET_CODE (tmp) == PARALLEL)
235 {
236 int found;
237
238 if (XVECLEN (tmp, 0) != 2)
239 return pc_rtx;
240 tmp = XVECEXP (tmp, 0, 1);
241 if (GET_CODE (tmp) != CLOBBER)
242 return pc_rtx;
243 tmp = XEXP (tmp, 0);
244
245 /* Don't do anything foolish if the md wanted to clobber a
246 scratch or something. We only care about hard regs.
247 Moreover we don't like the notion of subregs of hard regs. */
248 if (GET_CODE (tmp) == SUBREG
249 && REG_P (SUBREG_REG (tmp))
250 && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
251 return pc_rtx;
252 found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
253
254 return (found ? tmp : NULL_RTX);
255 }
256
257 return pc_rtx;
258 }
259
260 /* It is a tedious task identifying when the flags register is live and
261 when it is safe to optimize. Since we process the instruction stream
262 multiple times, locate and record these live zones by marking the
263 mode of the instructions --
264
265 QImode is used on the instruction at which the flags becomes live.
266
267 HImode is used within the range (exclusive) that the flags are
268 live. Thus the user of the flags is not marked.
269
270 All other instructions are cleared to VOIDmode. */
271
272 /* Used to communicate with flags_set_1. */
273 static rtx flags_set_1_rtx;
274 static int flags_set_1_set;
275
276 static void
277 mark_flags_life_zones (rtx flags)
278 {
279 int flags_regno;
280 int flags_nregs;
281 basic_block block;
282
283 #ifdef HAVE_cc0
284 /* If we found a flags register on a cc0 host, bail. */
285 if (flags == NULL_RTX)
286 flags = cc0_rtx;
287 else if (flags != cc0_rtx)
288 flags = pc_rtx;
289 #endif
290
291 /* Simple cases first: if no flags, clear all modes. If confusing,
292 mark the entire function as being in a flags shadow. */
293 if (flags == NULL_RTX || flags == pc_rtx)
294 {
295 enum machine_mode mode = (flags ? HImode : VOIDmode);
296 rtx insn;
297 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
298 PUT_MODE (insn, mode);
299 return;
300 }
301
302 #ifdef HAVE_cc0
303 flags_regno = -1;
304 flags_nregs = 1;
305 #else
306 flags_regno = REGNO (flags);
307 flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
308 #endif
309 flags_set_1_rtx = flags;
310
311 /* Process each basic block. */
312 FOR_EACH_BB_REVERSE (block)
313 {
314 rtx insn, end;
315 int live;
316
317 insn = BB_HEAD (block);
318 end = BB_END (block);
319
320 /* Look out for the (unlikely) case of flags being live across
321 basic block boundaries. */
322 live = 0;
323 #ifndef HAVE_cc0
324 {
325 int i;
326 for (i = 0; i < flags_nregs; ++i)
327 live |= REGNO_REG_SET_P (df_get_live_in (block), flags_regno + i);
328 }
329 #endif
330
331 while (1)
332 {
333 /* Process liveness in reverse order of importance --
334 alive, death, birth. This lets more important info
335 overwrite the mode of lesser info. */
336
337 if (INSN_P (insn))
338 {
339 #ifdef HAVE_cc0
340 /* In the cc0 case, death is not marked in reg notes,
341 but is instead the mere use of cc0 when it is alive. */
342 if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
343 live = 0;
344 #else
345 /* In the hard reg case, we watch death notes. */
346 if (live && find_regno_note (insn, REG_DEAD, flags_regno))
347 live = 0;
348 #endif
349 PUT_MODE (insn, (live ? HImode : VOIDmode));
350
351 /* In either case, birth is denoted simply by its presence
352 as the destination of a set. */
353 flags_set_1_set = 0;
354 note_stores (PATTERN (insn), flags_set_1, NULL);
355 if (flags_set_1_set)
356 {
357 live = 1;
358 PUT_MODE (insn, QImode);
359 }
360 }
361 else
362 PUT_MODE (insn, (live ? HImode : VOIDmode));
363
364 if (insn == end)
365 break;
366 insn = NEXT_INSN (insn);
367 }
368 }
369 }
370
371 /* A subroutine of mark_flags_life_zones, called through note_stores. */
372
373 static void
374 flags_set_1 (rtx x, rtx pat, void *data ATTRIBUTE_UNUSED)
375 {
376 if (GET_CODE (pat) == SET
377 && reg_overlap_mentioned_p (x, flags_set_1_rtx))
378 flags_set_1_set = 1;
379 }
380 \f
381 static int *regno_src_regno;
382
383 /* Indicate how good a choice REG (which appears as a source) is to replace
384 a destination register with. The higher the returned value, the better
385 the choice. The main objective is to avoid using a register that is
386 a candidate for tying to a hard register, since the output might in
387 turn be a candidate to be tied to a different hard register. */
388 static int
389 replacement_quality (rtx reg)
390 {
391 int src_regno;
392
393 /* Bad if this isn't a register at all. */
394 if (!REG_P (reg))
395 return 0;
396
397 /* If this register is not meant to get a hard register,
398 it is a poor choice. */
399 if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
400 return 0;
401
402 src_regno = regno_src_regno[REGNO (reg)];
403
404 /* If it was not copied from another register, it is fine. */
405 if (src_regno < 0)
406 return 3;
407
408 /* Copied from a hard register? */
409 if (src_regno < FIRST_PSEUDO_REGISTER)
410 return 1;
411
412 /* Copied from a pseudo register - not as bad as from a hard register,
413 yet still cumbersome, since the register live length will be lengthened
414 when the registers get tied. */
415 return 2;
416 }
417 \f
418 /* Return 1 if INSN might end a basic block. */
419
420 static int perhaps_ends_bb_p (rtx insn)
421 {
422 switch (GET_CODE (insn))
423 {
424 case CODE_LABEL:
425 case JUMP_INSN:
426 /* These always end a basic block. */
427 return 1;
428
429 case CALL_INSN:
430 /* A CALL_INSN might be the last insn of a basic block, if it is inside
431 an EH region or if there are nonlocal gotos. Note that this test is
432 very conservative. */
433 if (nonlocal_goto_handler_labels)
434 return 1;
435 /* Fall through. */
436 default:
437 return can_throw_internal (insn);
438 }
439 }
440 \f
441 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
442 in INSN.
443
444 Search forward to see if SRC dies before either it or DEST is modified,
445 but don't scan past the end of a basic block. If so, we can replace SRC
446 with DEST and let SRC die in INSN.
447
448 This will reduce the number of registers live in that range and may enable
449 DEST to be tied to SRC, thus often saving one register in addition to a
450 register-register copy. */
451
452 static int
453 optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
454 {
455 rtx p, q;
456 rtx note;
457 rtx dest_death = 0;
458 int sregno = REGNO (src);
459 int dregno = REGNO (dest);
460
461 /* We don't want to mess with hard regs if register classes are small. */
462 if (sregno == dregno
463 || (SMALL_REGISTER_CLASSES
464 && (sregno < FIRST_PSEUDO_REGISTER
465 || dregno < FIRST_PSEUDO_REGISTER))
466 /* We don't see all updates to SP if they are in an auto-inc memory
467 reference, so we must disallow this optimization on them. */
468 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
469 return 0;
470
471 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
472 {
473 /* ??? We can't scan past the end of a basic block without updating
474 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
475 if (perhaps_ends_bb_p (p))
476 break;
477 else if (! INSN_P (p))
478 continue;
479
480 if (reg_set_p (src, p) || reg_set_p (dest, p)
481 /* If SRC is an asm-declared register, it must not be replaced
482 in any asm. Unfortunately, the REG_EXPR tree for the asm
483 variable may be absent in the SRC rtx, so we can't check the
484 actual register declaration easily (the asm operand will have
485 it, though). To avoid complicating the test for a rare case,
486 we just don't perform register replacement for a hard reg
487 mentioned in an asm. */
488 || (sregno < FIRST_PSEUDO_REGISTER
489 && asm_noperands (PATTERN (p)) >= 0
490 && reg_overlap_mentioned_p (src, PATTERN (p)))
491 /* Don't change hard registers used by a call. */
492 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
493 && find_reg_fusage (p, USE, src))
494 /* Don't change a USE of a register. */
495 || (GET_CODE (PATTERN (p)) == USE
496 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
497 break;
498
499 /* See if all of SRC dies in P. This test is slightly more
500 conservative than it needs to be. */
501 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
502 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
503 {
504 int failed = 0;
505 int d_length = 0;
506 int s_length = 0;
507 int d_n_calls = 0;
508 int s_n_calls = 0;
509
510 /* We can do the optimization. Scan forward from INSN again,
511 replacing regs as we go. Set FAILED if a replacement can't
512 be done. In that case, we can't move the death note for SRC.
513 This should be rare. */
514
515 /* Set to stop at next insn. */
516 for (q = next_real_insn (insn);
517 q != next_real_insn (p);
518 q = next_real_insn (q))
519 {
520 if (reg_overlap_mentioned_p (src, PATTERN (q)))
521 {
522 /* If SRC is a hard register, we might miss some
523 overlapping registers with validate_replace_rtx,
524 so we would have to undo it. We can't if DEST is
525 present in the insn, so fail in that combination
526 of cases. */
527 if (sregno < FIRST_PSEUDO_REGISTER
528 && reg_mentioned_p (dest, PATTERN (q)))
529 failed = 1;
530
531 /* Attempt to replace all uses. */
532 else if (!validate_replace_rtx (src, dest, q))
533 failed = 1;
534
535 /* If this succeeded, but some part of the register
536 is still present, undo the replacement. */
537 else if (sregno < FIRST_PSEUDO_REGISTER
538 && reg_overlap_mentioned_p (src, PATTERN (q)))
539 {
540 validate_replace_rtx (dest, src, q);
541 failed = 1;
542 }
543 }
544
545 /* For SREGNO, count the total number of insns scanned.
546 For DREGNO, count the total number of insns scanned after
547 passing the death note for DREGNO. */
548 s_length++;
549 if (dest_death)
550 d_length++;
551
552 /* If the insn in which SRC dies is a CALL_INSN, don't count it
553 as a call that has been crossed. Otherwise, count it. */
554 if (q != p && CALL_P (q))
555 {
556 /* Similarly, total calls for SREGNO, total calls beyond
557 the death note for DREGNO. */
558 s_n_calls++;
559 if (dest_death)
560 d_n_calls++;
561 }
562
563 /* If DEST dies here, remove the death note and save it for
564 later. Make sure ALL of DEST dies here; again, this is
565 overly conservative. */
566 if (dest_death == 0
567 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
568 {
569 if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
570 failed = 1, dest_death = 0;
571 else
572 remove_note (q, dest_death);
573 }
574 }
575
576 if (! failed)
577 {
578 /* These counters need to be updated if and only if we are
579 going to move the REG_DEAD note. */
580 if (sregno >= FIRST_PSEUDO_REGISTER)
581 {
582 if (REG_LIVE_LENGTH (sregno) >= 0)
583 {
584 REG_LIVE_LENGTH (sregno) -= s_length;
585 /* REG_LIVE_LENGTH is only an approximation after
586 combine if sched is not run, so make sure that we
587 still have a reasonable value. */
588 if (REG_LIVE_LENGTH (sregno) < 2)
589 REG_LIVE_LENGTH (sregno) = 2;
590 }
591
592 REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
593 }
594
595 /* Move death note of SRC from P to INSN. */
596 remove_note (p, note);
597 XEXP (note, 1) = REG_NOTES (insn);
598 REG_NOTES (insn) = note;
599 }
600
601 /* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
602 if (! dest_death
603 && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
604 {
605 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
606 remove_note (insn, dest_death);
607 }
608
609 /* Put death note of DEST on P if we saw it die. */
610 if (dest_death)
611 {
612 XEXP (dest_death, 1) = REG_NOTES (p);
613 REG_NOTES (p) = dest_death;
614
615 if (dregno >= FIRST_PSEUDO_REGISTER)
616 {
617 /* If and only if we are moving the death note for DREGNO,
618 then we need to update its counters. */
619 if (REG_LIVE_LENGTH (dregno) >= 0)
620 REG_LIVE_LENGTH (dregno) += d_length;
621 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
622 }
623 }
624
625 return ! failed;
626 }
627
628 /* If SRC is a hard register which is set or killed in some other
629 way, we can't do this optimization. */
630 else if (sregno < FIRST_PSEUDO_REGISTER
631 && dead_or_set_p (p, src))
632 break;
633 }
634 return 0;
635 }
636 \f
637 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
638 a sequence of insns that modify DEST followed by an insn that sets
639 SRC to DEST in which DEST dies, with no prior modification of DEST.
640 (There is no need to check if the insns in between actually modify
641 DEST. We should not have cases where DEST is not modified, but
642 the optimization is safe if no such modification is detected.)
643 In that case, we can replace all uses of DEST, starting with INSN and
644 ending with the set of SRC to DEST, with SRC. We do not do this
645 optimization if a CALL_INSN is crossed unless SRC already crosses a
646 call or if DEST dies before the copy back to SRC.
647
648 It is assumed that DEST and SRC are pseudos; it is too complicated to do
649 this for hard registers since the substitutions we may make might fail. */
650
651 static void
652 optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
653 {
654 rtx p, q;
655 rtx set;
656 int sregno = REGNO (src);
657 int dregno = REGNO (dest);
658
659 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
660 {
661 /* ??? We can't scan past the end of a basic block without updating
662 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
663 if (perhaps_ends_bb_p (p))
664 break;
665 else if (! INSN_P (p))
666 continue;
667
668 set = single_set (p);
669 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
670 && find_reg_note (p, REG_DEAD, dest))
671 {
672 /* We can do the optimization. Scan forward from INSN again,
673 replacing regs as we go. */
674
675 /* Set to stop at next insn. */
676 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
677 if (INSN_P (q))
678 {
679 if (reg_mentioned_p (dest, PATTERN (q)))
680 {
681 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
682 df_insn_rescan (q);
683 }
684
685 if (CALL_P (q))
686 {
687 REG_N_CALLS_CROSSED (dregno)--;
688 REG_N_CALLS_CROSSED (sregno)++;
689 }
690 }
691
692 remove_note (p, find_reg_note (p, REG_DEAD, dest));
693 REG_N_DEATHS (dregno)--;
694 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
695 REG_N_DEATHS (sregno)--;
696 return;
697 }
698
699 if (reg_set_p (src, p)
700 || find_reg_note (p, REG_DEAD, dest)
701 || (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
702 break;
703 }
704 }
705
706 /* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
707 Look if SRC dies there, and if it is only set once, by loading
708 it from memory. If so, try to incorporate the zero/sign extension
709 into the memory read, change SRC to the mode of DEST, and alter
710 the remaining accesses to use the appropriate SUBREG. This allows
711 SRC and DEST to be tied later. */
712 static void
713 optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
714 {
715 rtx src_reg = XEXP (src, 0);
716 int src_no = REGNO (src_reg);
717 int dst_no = REGNO (dest);
718 rtx p, set;
719 enum machine_mode old_mode;
720
721 if (src_no < FIRST_PSEUDO_REGISTER
722 || dst_no < FIRST_PSEUDO_REGISTER
723 || ! find_reg_note (insn, REG_DEAD, src_reg)
724 || REG_N_DEATHS (src_no) != 1
725 || REG_N_SETS (src_no) != 1)
726 return;
727 for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
728 /* ??? We can't scan past the end of a basic block without updating
729 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
730 if (perhaps_ends_bb_p (p))
731 break;
732
733 if (! p)
734 return;
735
736 if (! (set = single_set (p))
737 || !MEM_P (SET_SRC (set))
738 /* If there's a REG_EQUIV note, this must be an insn that loads an
739 argument. Prefer keeping the note over doing this optimization. */
740 || find_reg_note (p, REG_EQUIV, NULL_RTX)
741 || SET_DEST (set) != src_reg)
742 return;
743
744 /* Be conservative: although this optimization is also valid for
745 volatile memory references, that could cause trouble in later passes. */
746 if (MEM_VOLATILE_P (SET_SRC (set)))
747 return;
748
749 /* Do not use a SUBREG to truncate from one mode to another if truncation
750 is not a nop. */
751 if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
752 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
753 GET_MODE_BITSIZE (GET_MODE (src_reg))))
754 return;
755
756 old_mode = GET_MODE (src_reg);
757 PUT_MODE (src_reg, GET_MODE (src));
758 XEXP (src, 0) = SET_SRC (set);
759
760 /* Include this change in the group so that it's easily undone if
761 one of the changes in the group is invalid. */
762 validate_change (p, &SET_SRC (set), src, 1);
763
764 /* Now walk forward making additional replacements. We want to be able
765 to undo all the changes if a later substitution fails. */
766 while (p = NEXT_INSN (p), p != insn)
767 {
768 if (! INSN_P (p))
769 continue;
770
771 /* Make a tentative change. */
772 validate_replace_rtx_group (src_reg,
773 gen_lowpart_SUBREG (old_mode, src_reg),
774 p);
775 }
776
777 validate_replace_rtx_group (src, src_reg, insn);
778
779 /* Now see if all the changes are valid. */
780 if (! apply_change_group ())
781 {
782 /* One or more changes were no good. Back out everything. */
783 PUT_MODE (src_reg, old_mode);
784 XEXP (src, 0) = src_reg;
785 }
786 else
787 {
788 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
789 if (note)
790 remove_note (p, note);
791 }
792 }
793
794 \f
795 /* If we were not able to update the users of src to use dest directly, try
796 instead moving the value to dest directly before the operation. */
797
798 static void
799 copy_src_to_dest (rtx insn, rtx src, rtx dest)
800 {
801 rtx seq;
802 rtx link;
803 rtx next;
804 rtx set;
805 rtx move_insn;
806 rtx *p_insn_notes;
807 rtx *p_move_notes;
808 int src_regno;
809 int dest_regno;
810 int insn_uid;
811 int move_uid;
812
813 /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
814 or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
815 parameter when there is no frame pointer that is not allocated a register.
816 For now, we just reject them, rather than incrementing the live length. */
817
818 if (REG_P (src)
819 && REG_LIVE_LENGTH (REGNO (src)) > 0
820 && REG_P (dest)
821 && REG_LIVE_LENGTH (REGNO (dest)) > 0
822 && (set = single_set (insn)) != NULL_RTX
823 && !reg_mentioned_p (dest, SET_SRC (set))
824 && GET_MODE (src) == GET_MODE (dest))
825 {
826 int old_num_regs = reg_rtx_no;
827
828 /* Generate the src->dest move. */
829 start_sequence ();
830 emit_move_insn (dest, src);
831 seq = get_insns ();
832 end_sequence ();
833 /* If this sequence uses new registers, we may not use it. */
834 if (old_num_regs != reg_rtx_no
835 || ! validate_replace_rtx (src, dest, insn))
836 {
837 /* We have to restore reg_rtx_no to its old value, lest
838 recompute_reg_usage will try to compute the usage of the
839 new regs, yet reg_n_info is not valid for them. */
840 reg_rtx_no = old_num_regs;
841 return;
842 }
843 emit_insn_before (seq, insn);
844 move_insn = PREV_INSN (insn);
845 p_move_notes = &REG_NOTES (move_insn);
846 p_insn_notes = &REG_NOTES (insn);
847
848 /* Move any notes mentioning src to the move instruction. */
849 for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
850 {
851 next = XEXP (link, 1);
852 if (XEXP (link, 0) == src)
853 {
854 *p_move_notes = link;
855 p_move_notes = &XEXP (link, 1);
856 }
857 else
858 {
859 *p_insn_notes = link;
860 p_insn_notes = &XEXP (link, 1);
861 }
862 }
863
864 *p_move_notes = NULL_RTX;
865 *p_insn_notes = NULL_RTX;
866
867 insn_uid = INSN_UID (insn);
868 move_uid = INSN_UID (move_insn);
869
870 /* Update the various register tables. */
871 dest_regno = REGNO (dest);
872 INC_REG_N_SETS (dest_regno, 1);
873 REG_LIVE_LENGTH (dest_regno)++;
874 src_regno = REGNO (src);
875 if (! find_reg_note (move_insn, REG_DEAD, src))
876 REG_LIVE_LENGTH (src_regno)++;
877 }
878 }
879
880 /* reg_set_in_bb[REGNO] points to basic block iff the register is set
881 only once in the given block and has REG_EQUAL note. */
882
883 basic_block *reg_set_in_bb;
884
885 /* Size of reg_set_in_bb array. */
886 static unsigned int max_reg_computed;
887
888 \f
889 /* Return whether REG is set in only one location, and is set to a
890 constant, but is set in a different basic block from INSN (an
891 instructions which uses REG). In this case REG is equivalent to a
892 constant, and we don't want to break that equivalence, because that
893 may increase register pressure and make reload harder. If REG is
894 set in the same basic block as INSN, we don't worry about it,
895 because we'll probably need a register anyhow (??? but what if REG
896 is used in a different basic block as well as this one?). */
897
898 static bool
899 reg_is_remote_constant_p (rtx reg, rtx insn)
900 {
901 basic_block bb;
902 rtx p;
903 int max;
904
905 if (!reg_set_in_bb)
906 {
907 max_reg_computed = max = max_reg_num ();
908 reg_set_in_bb = xcalloc (max, sizeof (*reg_set_in_bb));
909
910 FOR_EACH_BB (bb)
911 FOR_BB_INSNS (bb, p)
912 {
913 rtx s;
914
915 if (!INSN_P (p))
916 continue;
917 s = single_set (p);
918 /* This is the instruction which sets REG. If there is a
919 REG_EQUAL note, then REG is equivalent to a constant. */
920 if (s != 0
921 && REG_P (SET_DEST (s))
922 && REG_N_SETS (REGNO (SET_DEST (s))) == 1
923 && find_reg_note (p, REG_EQUAL, NULL_RTX))
924 reg_set_in_bb[REGNO (SET_DEST (s))] = bb;
925 }
926 }
927
928 gcc_assert (REGNO (reg) < max_reg_computed);
929 if (reg_set_in_bb[REGNO (reg)] == NULL)
930 return false;
931 return (reg_set_in_bb[REGNO (reg)] != BLOCK_FOR_INSN (insn));
932 }
933
934 /* INSN is adding a CONST_INT to a REG. We search backwards looking for
935 another add immediate instruction with the same source and dest registers,
936 and if we find one, we change INSN to an increment, and return 1. If
937 no changes are made, we return 0.
938
939 This changes
940 (set (reg100) (plus reg1 offset1))
941 ...
942 (set (reg100) (plus reg1 offset2))
943 to
944 (set (reg100) (plus reg1 offset1))
945 ...
946 (set (reg100) (plus reg100 offset2-offset1)) */
947
948 /* ??? What does this comment mean? */
949 /* cse disrupts preincrement / postdecrement sequences when it finds a
950 hard register as ultimate source, like the frame pointer. */
951
952 static int
953 fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset)
954 {
955 rtx p, dst_death = 0;
956 int length, num_calls = 0;
957
958 /* If SRC dies in INSN, we'd have to move the death note. This is
959 considered to be very unlikely, so we just skip the optimization
960 in this case. */
961 if (find_regno_note (insn, REG_DEAD, REGNO (src)))
962 return 0;
963
964 /* Scan backward to find the first instruction that sets DST. */
965
966 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
967 {
968 rtx pset;
969
970 /* ??? We can't scan past the end of a basic block without updating
971 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
972 if (perhaps_ends_bb_p (p))
973 break;
974 else if (! INSN_P (p))
975 continue;
976
977 if (find_regno_note (p, REG_DEAD, REGNO (dst)))
978 dst_death = p;
979 if (! dst_death)
980 length++;
981
982 pset = single_set (p);
983 if (pset && SET_DEST (pset) == dst
984 && GET_CODE (SET_SRC (pset)) == PLUS
985 && XEXP (SET_SRC (pset), 0) == src
986 && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
987 {
988 HOST_WIDE_INT newconst
989 = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
990 rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
991
992 if (add && validate_change (insn, &PATTERN (insn), add, 0))
993 {
994 /* Remove the death note for DST from DST_DEATH. */
995 if (dst_death)
996 {
997 remove_death (REGNO (dst), dst_death);
998 REG_LIVE_LENGTH (REGNO (dst)) += length;
999 REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
1000 }
1001
1002 if (dump_file)
1003 fprintf (dump_file,
1004 "Fixed operand of insn %d.\n",
1005 INSN_UID (insn));
1006
1007 #ifdef AUTO_INC_DEC
1008 for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
1009 {
1010 if (LABEL_P (p)
1011 || JUMP_P (p))
1012 break;
1013 if (! INSN_P (p))
1014 continue;
1015 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1016 {
1017 if (try_auto_increment (p, insn, 0, dst, newconst, 0))
1018 return 1;
1019 break;
1020 }
1021 }
1022 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1023 {
1024 if (LABEL_P (p)
1025 || JUMP_P (p))
1026 break;
1027 if (! INSN_P (p))
1028 continue;
1029 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1030 {
1031 try_auto_increment (p, insn, 0, dst, newconst, 1);
1032 break;
1033 }
1034 }
1035 #endif
1036 return 1;
1037 }
1038 }
1039
1040 if (reg_set_p (dst, PATTERN (p)))
1041 break;
1042
1043 /* If we have passed a call instruction, and the
1044 pseudo-reg SRC is not already live across a call,
1045 then don't perform the optimization. */
1046 /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
1047 hard regs are clobbered. Thus, we only use it for src for
1048 non-call insns. */
1049 if (CALL_P (p))
1050 {
1051 if (! dst_death)
1052 num_calls++;
1053
1054 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1055 break;
1056
1057 if (call_used_regs [REGNO (dst)]
1058 || find_reg_fusage (p, CLOBBER, dst))
1059 break;
1060 }
1061 else if (reg_set_p (src, PATTERN (p)))
1062 break;
1063 }
1064
1065 return 0;
1066 }
1067
1068 /* Main entry for the register move optimization.
1069 F is the first instruction.
1070 NREGS is one plus the highest pseudo-reg number used in the instruction.
1071 REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
1072 (or 0 if none should be output). */
1073
1074 static void
1075 regmove_optimize (rtx f, int nregs)
1076 {
1077 rtx insn;
1078 struct match match;
1079 int pass;
1080 int i;
1081 rtx copy_src, copy_dst;
1082
1083 /* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
1084 confused by non-call exceptions ending blocks. */
1085 if (flag_non_call_exceptions)
1086 return;
1087
1088 df_note_add_problem ();
1089 df_analyze ();
1090
1091 regstat_init_n_sets_and_refs ();
1092 regstat_compute_ri ();
1093
1094 /* Find out where a potential flags register is live, and so that we
1095 can suppress some optimizations in those zones. */
1096 mark_flags_life_zones (discover_flags_reg ());
1097
1098 regno_src_regno = XNEWVEC (int, nregs);
1099 for (i = nregs; --i >= 0; )
1100 regno_src_regno[i] = -1;
1101
1102 /* A forward/backward pass. Replace output operands with input operands. */
1103
1104 for (pass = 0; pass <= 2; pass++)
1105 {
1106 if (! flag_regmove && pass >= flag_expensive_optimizations)
1107 goto done;
1108
1109 if (dump_file)
1110 fprintf (dump_file, "Starting %s pass...\n",
1111 pass ? "backward" : "forward");
1112
1113 for (insn = pass ? get_last_insn () : f; insn;
1114 insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
1115 {
1116 rtx set;
1117 int op_no, match_no;
1118
1119 set = single_set (insn);
1120 if (! set)
1121 continue;
1122
1123 if (flag_expensive_optimizations && ! pass
1124 && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
1125 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
1126 && REG_P (XEXP (SET_SRC (set), 0))
1127 && REG_P (SET_DEST (set)))
1128 optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
1129
1130 if (flag_expensive_optimizations && ! pass
1131 && REG_P (SET_SRC (set))
1132 && REG_P (SET_DEST (set)))
1133 {
1134 /* If this is a register-register copy where SRC is not dead,
1135 see if we can optimize it. If this optimization succeeds,
1136 it will become a copy where SRC is dead. */
1137 if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
1138 || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
1139 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
1140 {
1141 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1142 if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1143 optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
1144 if (regno_src_regno[REGNO (SET_DEST (set))] < 0
1145 && SET_SRC (set) != SET_DEST (set))
1146 {
1147 int srcregno = REGNO (SET_SRC (set));
1148 if (regno_src_regno[srcregno] >= 0)
1149 srcregno = regno_src_regno[srcregno];
1150 regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
1151 }
1152 }
1153 }
1154 if (! flag_regmove)
1155 continue;
1156
1157 if (! find_matches (insn, &match))
1158 continue;
1159
1160 /* Now scan through the operands looking for a source operand
1161 which is supposed to match the destination operand.
1162 Then scan forward for an instruction which uses the dest
1163 operand.
1164 If it dies there, then replace the dest in both operands with
1165 the source operand. */
1166
1167 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1168 {
1169 rtx src, dst, src_subreg;
1170 enum reg_class src_class, dst_class;
1171
1172 match_no = match.with[op_no];
1173
1174 /* Nothing to do if the two operands aren't supposed to match. */
1175 if (match_no < 0)
1176 continue;
1177
1178 src = recog_data.operand[op_no];
1179 dst = recog_data.operand[match_no];
1180
1181 if (!REG_P (src))
1182 continue;
1183
1184 src_subreg = src;
1185 if (GET_CODE (dst) == SUBREG
1186 && GET_MODE_SIZE (GET_MODE (dst))
1187 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
1188 {
1189 dst = SUBREG_REG (dst);
1190 src_subreg = lowpart_subreg (GET_MODE (dst),
1191 src, GET_MODE (src));
1192 if (!src_subreg)
1193 continue;
1194 }
1195 if (!REG_P (dst)
1196 || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1197 continue;
1198
1199 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1200 {
1201 if (match.commutative[op_no] < op_no)
1202 regno_src_regno[REGNO (dst)] = REGNO (src);
1203 continue;
1204 }
1205
1206 if (REG_LIVE_LENGTH (REGNO (src)) < 0)
1207 continue;
1208
1209 /* op_no/src must be a read-only operand, and
1210 match_operand/dst must be a write-only operand. */
1211 if (match.use[op_no] != READ
1212 || match.use[match_no] != WRITE)
1213 continue;
1214
1215 if (match.early_clobber[match_no]
1216 && count_occurrences (PATTERN (insn), src, 0) > 1)
1217 continue;
1218
1219 /* Make sure match_operand is the destination. */
1220 if (recog_data.operand[match_no] != SET_DEST (set))
1221 continue;
1222
1223 /* If the operands already match, then there is nothing to do. */
1224 if (operands_match_p (src, dst))
1225 continue;
1226
1227 /* But in the commutative case, we might find a better match. */
1228 if (match.commutative[op_no] >= 0)
1229 {
1230 rtx comm = recog_data.operand[match.commutative[op_no]];
1231 if (operands_match_p (comm, dst)
1232 && (replacement_quality (comm)
1233 >= replacement_quality (src)))
1234 continue;
1235 }
1236
1237 src_class = reg_preferred_class (REGNO (src));
1238 dst_class = reg_preferred_class (REGNO (dst));
1239 if (! regclass_compatible_p (src_class, dst_class))
1240 continue;
1241
1242 if (GET_MODE (src) != GET_MODE (dst))
1243 continue;
1244
1245 if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
1246 op_no, match_no))
1247 break;
1248 }
1249 }
1250 }
1251
1252 /* A backward pass. Replace input operands with output operands. */
1253
1254 if (dump_file)
1255 fprintf (dump_file, "Starting backward pass...\n");
1256
1257 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1258 {
1259 if (INSN_P (insn))
1260 {
1261 int op_no, match_no;
1262 int success = 0;
1263
1264 if (! find_matches (insn, &match))
1265 continue;
1266
1267 /* Now scan through the operands looking for a destination operand
1268 which is supposed to match a source operand.
1269 Then scan backward for an instruction which sets the source
1270 operand. If safe, then replace the source operand with the
1271 dest operand in both instructions. */
1272
1273 copy_src = NULL_RTX;
1274 copy_dst = NULL_RTX;
1275 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1276 {
1277 rtx set, p, src, dst;
1278 rtx src_note, dst_note;
1279 int num_calls = 0;
1280 enum reg_class src_class, dst_class;
1281 int length;
1282
1283 match_no = match.with[op_no];
1284
1285 /* Nothing to do if the two operands aren't supposed to match. */
1286 if (match_no < 0)
1287 continue;
1288
1289 dst = recog_data.operand[match_no];
1290 src = recog_data.operand[op_no];
1291
1292 if (!REG_P (src))
1293 continue;
1294
1295 if (!REG_P (dst)
1296 || REGNO (dst) < FIRST_PSEUDO_REGISTER
1297 || REG_LIVE_LENGTH (REGNO (dst)) < 0
1298 || GET_MODE (src) != GET_MODE (dst))
1299 continue;
1300
1301 /* If the operands already match, then there is nothing to do. */
1302 if (operands_match_p (src, dst))
1303 continue;
1304
1305 if (match.commutative[op_no] >= 0)
1306 {
1307 rtx comm = recog_data.operand[match.commutative[op_no]];
1308 if (operands_match_p (comm, dst))
1309 continue;
1310 }
1311
1312 set = single_set (insn);
1313 if (! set)
1314 continue;
1315
1316 /* Note that single_set ignores parts of a parallel set for
1317 which one of the destinations is REG_UNUSED. We can't
1318 handle that here, since we can wind up rewriting things
1319 such that a single register is set twice within a single
1320 parallel. */
1321 if (reg_set_p (src, insn))
1322 continue;
1323
1324 /* match_no/dst must be a write-only operand, and
1325 operand_operand/src must be a read-only operand. */
1326 if (match.use[op_no] != READ
1327 || match.use[match_no] != WRITE)
1328 continue;
1329
1330 if (match.early_clobber[match_no]
1331 && count_occurrences (PATTERN (insn), src, 0) > 1)
1332 continue;
1333
1334 /* Make sure match_no is the destination. */
1335 if (recog_data.operand[match_no] != SET_DEST (set))
1336 continue;
1337
1338 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1339 {
1340 if (GET_CODE (SET_SRC (set)) == PLUS
1341 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
1342 && XEXP (SET_SRC (set), 0) == src
1343 && fixup_match_2 (insn, dst, src,
1344 XEXP (SET_SRC (set), 1)))
1345 break;
1346 continue;
1347 }
1348 src_class = reg_preferred_class (REGNO (src));
1349 dst_class = reg_preferred_class (REGNO (dst));
1350
1351 if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
1352 {
1353 /* We used to force the copy here like in other cases, but
1354 it produces worse code, as it eliminates no copy
1355 instructions and the copy emitted will be produced by
1356 reload anyway. On patterns with multiple alternatives,
1357 there may be better solution available.
1358
1359 In particular this change produced slower code for numeric
1360 i387 programs. */
1361
1362 continue;
1363 }
1364
1365 if (! regclass_compatible_p (src_class, dst_class))
1366 {
1367 if (!copy_src)
1368 {
1369 copy_src = src;
1370 copy_dst = dst;
1371 }
1372 continue;
1373 }
1374
1375 /* Can not modify an earlier insn to set dst if this insn
1376 uses an old value in the source. */
1377 if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
1378 {
1379 if (!copy_src)
1380 {
1381 copy_src = src;
1382 copy_dst = dst;
1383 }
1384 continue;
1385 }
1386
1387 /* If src is set once in a different basic block,
1388 and is set equal to a constant, then do not use
1389 it for this optimization, as this would make it
1390 no longer equivalent to a constant. */
1391
1392 if (reg_is_remote_constant_p (src, insn))
1393 {
1394 if (!copy_src)
1395 {
1396 copy_src = src;
1397 copy_dst = dst;
1398 }
1399 continue;
1400 }
1401
1402
1403 if (dump_file)
1404 fprintf (dump_file,
1405 "Could fix operand %d of insn %d matching operand %d.\n",
1406 op_no, INSN_UID (insn), match_no);
1407
1408 /* Scan backward to find the first instruction that uses
1409 the input operand. If the operand is set here, then
1410 replace it in both instructions with match_no. */
1411
1412 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
1413 {
1414 rtx pset;
1415
1416 /* ??? We can't scan past the end of a basic block without
1417 updating the register lifetime info
1418 (REG_DEAD/basic_block_live_at_start). */
1419 if (perhaps_ends_bb_p (p))
1420 break;
1421 else if (! INSN_P (p))
1422 continue;
1423
1424 length++;
1425
1426 /* ??? See if all of SRC is set in P. This test is much
1427 more conservative than it needs to be. */
1428 pset = single_set (p);
1429 if (pset && SET_DEST (pset) == src)
1430 {
1431 /* We use validate_replace_rtx, in case there
1432 are multiple identical source operands. All of
1433 them have to be changed at the same time. */
1434 if (validate_replace_rtx (src, dst, insn))
1435 {
1436 if (validate_change (p, &SET_DEST (pset),
1437 dst, 0))
1438 success = 1;
1439 else
1440 {
1441 /* Change all source operands back.
1442 This modifies the dst as a side-effect. */
1443 validate_replace_rtx (dst, src, insn);
1444 /* Now make sure the dst is right. */
1445 validate_change (insn,
1446 recog_data.operand_loc[match_no],
1447 dst, 0);
1448 }
1449 }
1450 break;
1451 }
1452
1453 /* We can't make this change if SRC is read or
1454 partially written in P, since we are going to
1455 eliminate SRC. We can't make this change
1456 if DST is mentioned at all in P,
1457 since we are going to change its value. */
1458 if (reg_overlap_mentioned_p (src, PATTERN (p))
1459 || reg_mentioned_p (dst, PATTERN (p)))
1460 break;
1461
1462 /* If we have passed a call instruction, and the
1463 pseudo-reg DST is not already live across a call,
1464 then don't perform the optimization. */
1465 if (CALL_P (p))
1466 {
1467 num_calls++;
1468
1469 if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
1470 break;
1471 }
1472 }
1473
1474 if (success)
1475 {
1476 int dstno, srcno;
1477
1478 /* Remove the death note for SRC from INSN. */
1479 remove_note (insn, src_note);
1480 /* Move the death note for SRC to P if it is used
1481 there. */
1482 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1483 {
1484 XEXP (src_note, 1) = REG_NOTES (p);
1485 REG_NOTES (p) = src_note;
1486 }
1487 /* If there is a REG_DEAD note for DST on P, then remove
1488 it, because DST is now set there. */
1489 if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
1490 remove_note (p, dst_note);
1491
1492 dstno = REGNO (dst);
1493 srcno = REGNO (src);
1494
1495 INC_REG_N_SETS (dstno, 1);
1496 INC_REG_N_SETS (srcno, -1);
1497
1498 REG_N_CALLS_CROSSED (dstno) += num_calls;
1499 REG_N_CALLS_CROSSED (srcno) -= num_calls;
1500
1501 REG_LIVE_LENGTH (dstno) += length;
1502 if (REG_LIVE_LENGTH (srcno) >= 0)
1503 {
1504 REG_LIVE_LENGTH (srcno) -= length;
1505 /* REG_LIVE_LENGTH is only an approximation after
1506 combine if sched is not run, so make sure that we
1507 still have a reasonable value. */
1508 if (REG_LIVE_LENGTH (srcno) < 2)
1509 REG_LIVE_LENGTH (srcno) = 2;
1510 }
1511
1512 if (dump_file)
1513 fprintf (dump_file,
1514 "Fixed operand %d of insn %d matching operand %d.\n",
1515 op_no, INSN_UID (insn), match_no);
1516
1517 break;
1518 }
1519 }
1520
1521 /* If we weren't able to replace any of the alternatives, try an
1522 alternative approach of copying the source to the destination. */
1523 if (!success && copy_src != NULL_RTX)
1524 copy_src_to_dest (insn, copy_src, copy_dst);
1525 }
1526 }
1527
1528 done:
1529 /* Clean up. */
1530 free (regno_src_regno);
1531 if (reg_set_in_bb)
1532 {
1533 free (reg_set_in_bb);
1534 reg_set_in_bb = NULL;
1535 }
1536 regstat_free_n_sets_and_refs ();
1537 regstat_free_ri ();
1538 }
1539
1540 /* Returns nonzero if INSN's pattern has matching constraints for any operand.
1541 Returns 0 if INSN can't be recognized, or if the alternative can't be
1542 determined.
1543
1544 Initialize the info in MATCHP based on the constraints. */
1545
1546 static int
1547 find_matches (rtx insn, struct match *matchp)
1548 {
1549 int likely_spilled[MAX_RECOG_OPERANDS];
1550 int op_no;
1551 int any_matches = 0;
1552
1553 extract_insn (insn);
1554 if (! constrain_operands (0))
1555 return 0;
1556
1557 /* Must initialize this before main loop, because the code for
1558 the commutative case may set matches for operands other than
1559 the current one. */
1560 for (op_no = recog_data.n_operands; --op_no >= 0; )
1561 matchp->with[op_no] = matchp->commutative[op_no] = -1;
1562
1563 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1564 {
1565 const char *p;
1566 char c;
1567 int i = 0;
1568
1569 p = recog_data.constraints[op_no];
1570
1571 likely_spilled[op_no] = 0;
1572 matchp->use[op_no] = READ;
1573 matchp->early_clobber[op_no] = 0;
1574 if (*p == '=')
1575 matchp->use[op_no] = WRITE;
1576 else if (*p == '+')
1577 matchp->use[op_no] = READWRITE;
1578
1579 for (;*p && i < which_alternative; p++)
1580 if (*p == ',')
1581 i++;
1582
1583 while ((c = *p) != '\0' && c != ',')
1584 {
1585 switch (c)
1586 {
1587 case '=':
1588 break;
1589 case '+':
1590 break;
1591 case '&':
1592 matchp->early_clobber[op_no] = 1;
1593 break;
1594 case '%':
1595 matchp->commutative[op_no] = op_no + 1;
1596 matchp->commutative[op_no + 1] = op_no;
1597 break;
1598
1599 case '0': case '1': case '2': case '3': case '4':
1600 case '5': case '6': case '7': case '8': case '9':
1601 {
1602 char *end;
1603 unsigned long match_ul = strtoul (p, &end, 10);
1604 int match = match_ul;
1605
1606 p = end;
1607
1608 if (match < op_no && likely_spilled[match])
1609 continue;
1610 matchp->with[op_no] = match;
1611 any_matches = 1;
1612 if (matchp->commutative[op_no] >= 0)
1613 matchp->with[matchp->commutative[op_no]] = match;
1614 }
1615 continue;
1616
1617 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
1618 case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
1619 case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
1620 case 'C': case 'D': case 'W': case 'Y': case 'Z':
1621 if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
1622 likely_spilled[op_no] = 1;
1623 break;
1624 }
1625 p += CONSTRAINT_LEN (c, p);
1626 }
1627 }
1628 return any_matches;
1629 }
1630
1631 /* Try to replace all occurrences of DST_REG with SRC in LOC, that is
1632 assumed to be in INSN. */
1633
1634 static void
1635 replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
1636 {
1637 rtx x = *loc;
1638 enum rtx_code code;
1639 const char *fmt;
1640 int i, j;
1641
1642 if (! x)
1643 return;
1644
1645 code = GET_CODE (x);
1646 if (code == REG)
1647 {
1648 if (REGNO (x) != dst_reg)
1649 return;
1650
1651 validate_change (insn, loc, src, 1);
1652
1653 return;
1654 }
1655
1656 /* Process each of our operands recursively. */
1657 fmt = GET_RTX_FORMAT (code);
1658 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1659 if (*fmt == 'e')
1660 replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
1661 else if (*fmt == 'E')
1662 for (j = 0; j < XVECLEN (x, i); j++)
1663 replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
1664 }
1665
1666 /* Try to replace output operand DST in SET, with input operand SRC. SET is
1667 the only set in INSN. INSN has just been recognized and constrained.
1668 SRC is operand number OPERAND_NUMBER in INSN.
1669 DST is operand number MATCH_NUMBER in INSN.
1670 If BACKWARD is nonzero, we have been called in a backward pass.
1671 Return nonzero for success. */
1672
1673 static int
1674 fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
1675 int backward, int operand_number, int match_number)
1676 {
1677 rtx p;
1678 rtx post_inc = 0, post_inc_set = 0, search_end = 0;
1679 int success = 0;
1680 int num_calls = 0, s_num_calls = 0;
1681 enum rtx_code code = NOTE;
1682 HOST_WIDE_INT insn_const = 0, newconst = 0;
1683 rtx overlap = 0; /* need to move insn ? */
1684 rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
1685 int length, s_length;
1686
1687 if (! src_note)
1688 {
1689 /* Look for (set (regX) (op regA constX))
1690 (set (regY) (op regA constY))
1691 and change that to
1692 (set (regA) (op regA constX)).
1693 (set (regY) (op regA constY-constX)).
1694 This works for add and shift operations, if
1695 regA is dead after or set by the second insn. */
1696
1697 code = GET_CODE (SET_SRC (set));
1698 if ((code == PLUS || code == LSHIFTRT
1699 || code == ASHIFT || code == ASHIFTRT)
1700 && XEXP (SET_SRC (set), 0) == src
1701 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1702 insn_const = INTVAL (XEXP (SET_SRC (set), 1));
1703 else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
1704 return 0;
1705 else
1706 /* We might find a src_note while scanning. */
1707 code = NOTE;
1708 }
1709
1710 if (dump_file)
1711 fprintf (dump_file,
1712 "Could fix operand %d of insn %d matching operand %d.\n",
1713 operand_number, INSN_UID (insn), match_number);
1714
1715 /* If SRC is equivalent to a constant set in a different basic block,
1716 then do not use it for this optimization. We want the equivalence
1717 so that if we have to reload this register, we can reload the
1718 constant, rather than extending the lifespan of the register. */
1719 if (reg_is_remote_constant_p (src, insn))
1720 return 0;
1721
1722 /* Scan forward to find the next instruction that
1723 uses the output operand. If the operand dies here,
1724 then replace it in both instructions with
1725 operand_number. */
1726
1727 for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1728 {
1729 if (CALL_P (p))
1730 replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
1731 REGNO (dst), src, p);
1732
1733 /* ??? We can't scan past the end of a basic block without updating
1734 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
1735 if (perhaps_ends_bb_p (p))
1736 break;
1737 else if (! INSN_P (p))
1738 continue;
1739
1740 length++;
1741 if (src_note)
1742 s_length++;
1743
1744 if (reg_set_p (src, p) || reg_set_p (dst, p)
1745 || (GET_CODE (PATTERN (p)) == USE
1746 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
1747 break;
1748
1749 /* See if all of DST dies in P. This test is
1750 slightly more conservative than it needs to be. */
1751 if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
1752 && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
1753 {
1754 /* If we would be moving INSN, check that we won't move it
1755 into the shadow of a live a live flags register. */
1756 /* ??? We only try to move it in front of P, although
1757 we could move it anywhere between OVERLAP and P. */
1758 if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
1759 break;
1760
1761 if (! src_note)
1762 {
1763 rtx q;
1764 rtx set2 = NULL_RTX;
1765
1766 /* If an optimization is done, the value of SRC while P
1767 is executed will be changed. Check that this is OK. */
1768 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1769 break;
1770 for (q = p; q; q = NEXT_INSN (q))
1771 {
1772 /* ??? We can't scan past the end of a basic block without
1773 updating the register lifetime info
1774 (REG_DEAD/basic_block_live_at_start). */
1775 if (perhaps_ends_bb_p (q))
1776 {
1777 q = 0;
1778 break;
1779 }
1780 else if (! INSN_P (q))
1781 continue;
1782 else if (reg_overlap_mentioned_p (src, PATTERN (q))
1783 || reg_set_p (src, q))
1784 break;
1785 }
1786 if (q)
1787 set2 = single_set (q);
1788 if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
1789 || XEXP (SET_SRC (set2), 0) != src
1790 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
1791 || (SET_DEST (set2) != src
1792 && ! find_reg_note (q, REG_DEAD, src)))
1793 {
1794 /* If this is a PLUS, we can still save a register by doing
1795 src += insn_const;
1796 P;
1797 src -= insn_const; .
1798 This also gives opportunities for subsequent
1799 optimizations in the backward pass, so do it there. */
1800 if (code == PLUS && backward
1801 /* Don't do this if we can likely tie DST to SET_DEST
1802 of P later; we can't do this tying here if we got a
1803 hard register. */
1804 && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
1805 && single_set (p)
1806 && REG_P (SET_DEST (single_set (p)))
1807 && (REGNO (SET_DEST (single_set (p)))
1808 < FIRST_PSEUDO_REGISTER))
1809 /* We may only emit an insn directly after P if we
1810 are not in the shadow of a live flags register. */
1811 && GET_MODE (p) == VOIDmode)
1812 {
1813 search_end = q;
1814 q = insn;
1815 set2 = set;
1816 newconst = -insn_const;
1817 code = MINUS;
1818 }
1819 else
1820 break;
1821 }
1822 else
1823 {
1824 newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
1825 /* Reject out of range shifts. */
1826 if (code != PLUS
1827 && (newconst < 0
1828 || ((unsigned HOST_WIDE_INT) newconst
1829 >= (GET_MODE_BITSIZE (GET_MODE
1830 (SET_SRC (set2)))))))
1831 break;
1832 if (code == PLUS)
1833 {
1834 post_inc = q;
1835 if (SET_DEST (set2) != src)
1836 post_inc_set = set2;
1837 }
1838 }
1839 /* We use 1 as last argument to validate_change so that all
1840 changes are accepted or rejected together by apply_change_group
1841 when it is called by validate_replace_rtx . */
1842 validate_change (q, &XEXP (SET_SRC (set2), 1),
1843 GEN_INT (newconst), 1);
1844 }
1845 validate_change (insn, recog_data.operand_loc[match_number], src, 1);
1846 if (validate_replace_rtx (dst, src_subreg, p))
1847 success = 1;
1848 break;
1849 }
1850
1851 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1852 break;
1853 if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
1854 {
1855 /* INSN was already checked to be movable wrt. the registers that it
1856 sets / uses when we found no REG_DEAD note for src on it, but it
1857 still might clobber the flags register. We'll have to check that
1858 we won't insert it into the shadow of a live flags register when
1859 we finally know where we are to move it. */
1860 overlap = p;
1861 src_note = find_reg_note (p, REG_DEAD, src);
1862 }
1863
1864 /* If we have passed a call instruction, and the pseudo-reg SRC is not
1865 already live across a call, then don't perform the optimization. */
1866 if (CALL_P (p))
1867 {
1868 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1869 break;
1870
1871 num_calls++;
1872
1873 if (src_note)
1874 s_num_calls++;
1875
1876 }
1877 }
1878
1879 if (! success)
1880 return 0;
1881
1882 /* Remove the death note for DST from P. */
1883 remove_note (p, dst_note);
1884 if (code == MINUS)
1885 {
1886 post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
1887 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1888 && search_end
1889 && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
1890 post_inc = 0;
1891 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
1892 INC_REG_N_SETS (REGNO (src), 1);
1893 REG_LIVE_LENGTH (REGNO (src))++;
1894 }
1895 if (overlap)
1896 {
1897 /* The lifetime of src and dest overlap,
1898 but we can change this by moving insn. */
1899 rtx pat = PATTERN (insn);
1900 if (src_note)
1901 remove_note (overlap, src_note);
1902 if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1903 && code == PLUS
1904 && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
1905 insn = overlap;
1906 else
1907 {
1908 rtx notes = REG_NOTES (insn);
1909
1910 p = emit_insn_after_setloc (pat, PREV_INSN (p), INSN_LOCATOR (insn));
1911 delete_insn (insn);
1912 REG_NOTES (p) = notes;
1913 df_notes_rescan (p);
1914 }
1915 }
1916 /* Sometimes we'd generate src = const; src += n;
1917 if so, replace the instruction that set src
1918 in the first place. */
1919
1920 if (! overlap && (code == PLUS || code == MINUS))
1921 {
1922 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1923 rtx q, set2 = NULL_RTX;
1924 int num_calls2 = 0, s_length2 = 0;
1925
1926 if (note && CONSTANT_P (XEXP (note, 0)))
1927 {
1928 for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
1929 {
1930 /* ??? We can't scan past the end of a basic block without
1931 updating the register lifetime info
1932 (REG_DEAD/basic_block_live_at_start). */
1933 if (perhaps_ends_bb_p (q))
1934 {
1935 q = 0;
1936 break;
1937 }
1938 else if (! INSN_P (q))
1939 continue;
1940
1941 s_length2++;
1942 if (reg_set_p (src, q))
1943 {
1944 set2 = single_set (q);
1945 break;
1946 }
1947 if (reg_overlap_mentioned_p (src, PATTERN (q)))
1948 {
1949 q = 0;
1950 break;
1951 }
1952 if (CALL_P (p))
1953 num_calls2++;
1954 }
1955 if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
1956 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
1957 {
1958 delete_insn (q);
1959 INC_REG_N_SETS (REGNO (src), -1);
1960 REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
1961 REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
1962 insn_const = 0;
1963 }
1964 }
1965 }
1966
1967 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1968 && (code == PLUS || code == MINUS) && insn_const
1969 && try_auto_increment (p, insn, 0, src, insn_const, 1))
1970 insn = p;
1971 else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1972 && post_inc
1973 && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
1974 post_inc = 0;
1975 /* If post_inc still prevails, try to find an
1976 insn where it can be used as a pre-in/decrement.
1977 If code is MINUS, this was already tried. */
1978 if (post_inc && code == PLUS
1979 /* Check that newconst is likely to be usable
1980 in a pre-in/decrement before starting the search. */
1981 && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
1982 || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
1983 && exact_log2 (newconst))
1984 {
1985 rtx q, inc_dest;
1986
1987 inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
1988 for (q = post_inc; (q = NEXT_INSN (q)); )
1989 {
1990 /* ??? We can't scan past the end of a basic block without updating
1991 the register lifetime info
1992 (REG_DEAD/basic_block_live_at_start). */
1993 if (perhaps_ends_bb_p (q))
1994 break;
1995 else if (! INSN_P (q))
1996 continue;
1997 else if (src != inc_dest
1998 && (reg_overlap_mentioned_p (src, PATTERN (q))
1999 || reg_set_p (src, q)))
2000 break;
2001 else if (reg_set_p (inc_dest, q))
2002 break;
2003 else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
2004 {
2005 try_auto_increment (q, post_inc,
2006 post_inc_set, inc_dest, newconst, 1);
2007 break;
2008 }
2009 }
2010 }
2011
2012 /* Move the death note for DST to INSN if it is used
2013 there. */
2014 if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
2015 {
2016 XEXP (dst_note, 1) = REG_NOTES (insn);
2017 REG_NOTES (insn) = dst_note;
2018 }
2019
2020 if (src_note)
2021 {
2022 /* Move the death note for SRC from INSN to P. */
2023 if (! overlap)
2024 remove_note (insn, src_note);
2025 XEXP (src_note, 1) = REG_NOTES (p);
2026 REG_NOTES (p) = src_note;
2027
2028 REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
2029 }
2030
2031 INC_REG_N_SETS (REGNO (src), 1);
2032 INC_REG_N_SETS (REGNO (dst), -1);
2033
2034 REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
2035
2036 REG_LIVE_LENGTH (REGNO (src)) += s_length;
2037 if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
2038 {
2039 REG_LIVE_LENGTH (REGNO (dst)) -= length;
2040 /* REG_LIVE_LENGTH is only an approximation after
2041 combine if sched is not run, so make sure that we
2042 still have a reasonable value. */
2043 if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
2044 REG_LIVE_LENGTH (REGNO (dst)) = 2;
2045 }
2046 if (dump_file)
2047 fprintf (dump_file,
2048 "Fixed operand %d of insn %d matching operand %d.\n",
2049 operand_number, INSN_UID (insn), match_number);
2050 return 1;
2051 }
2052
2053
2054 /* Return nonzero if X is stable and mentions no registers but for
2055 mentioning SRC or mentioning / changing DST . If in doubt, presume
2056 it is unstable.
2057 The rationale is that we want to check if we can move an insn easily
2058 while just paying attention to SRC and DST. */
2059 static int
2060 stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
2061 {
2062 RTX_CODE code = GET_CODE (x);
2063 switch (GET_RTX_CLASS (code))
2064 {
2065 case RTX_UNARY:
2066 case RTX_BIN_ARITH:
2067 case RTX_COMM_ARITH:
2068 case RTX_COMPARE:
2069 case RTX_COMM_COMPARE:
2070 case RTX_TERNARY:
2071 case RTX_BITFIELD_OPS:
2072 {
2073 int i;
2074 const char *fmt = GET_RTX_FORMAT (code);
2075 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2076 if (fmt[i] == 'e'
2077 && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
2078 return 0;
2079 return 1;
2080 }
2081 case RTX_OBJ:
2082 if (code == REG)
2083 return x == src || x == dst;
2084 /* If this is a MEM, look inside - there might be a register hidden in
2085 the address of an unchanging MEM. */
2086 if (code == MEM
2087 && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
2088 return 0;
2089 /* Fall through. */
2090 default:
2091 return ! rtx_unstable_p (x);
2092 }
2093 }
2094 \f
2095
2096 static bool
2097 gate_handle_regmove (void)
2098 {
2099 return (optimize > 0 && flag_regmove);
2100 }
2101
2102 /* Register allocation pre-pass, to reduce number of moves necessary
2103 for two-address machines. */
2104 static unsigned int
2105 rest_of_handle_regmove (void)
2106 {
2107 regmove_optimize (get_insns (), max_reg_num ());
2108 return 0;
2109 }
2110
2111 struct tree_opt_pass pass_regmove =
2112 {
2113 "regmove", /* name */
2114 gate_handle_regmove, /* gate */
2115 rest_of_handle_regmove, /* execute */
2116 NULL, /* sub */
2117 NULL, /* next */
2118 0, /* static_pass_number */
2119 TV_REGMOVE, /* tv_id */
2120 0, /* properties_required */
2121 0, /* properties_provided */
2122 0, /* properties_destroyed */
2123 0, /* todo_flags_start */
2124 TODO_df_finish |
2125 TODO_dump_func |
2126 TODO_ggc_collect, /* todo_flags_finish */
2127 'N' /* letter */
2128 };
2129