re PR rtl-optimization/37769 (internal compiler error: in reg_overlap_mentioned_for_r...
[gcc.git] / gcc / regmove.c
1 /* Move registers around to reduce number of move instructions needed.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This module looks for cases where matching constraints would force
24 an instruction to need a reload, and this reload would be a register
25 to register move. It then attempts to change the registers used by the
26 instruction to avoid the move instruction. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
33 #include "tm_p.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "output.h"
37 #include "regs.h"
38 #include "hard-reg-set.h"
39 #include "flags.h"
40 #include "function.h"
41 #include "expr.h"
42 #include "basic-block.h"
43 #include "except.h"
44 #include "toplev.h"
45 #include "reload.h"
46 #include "timevar.h"
47 #include "tree-pass.h"
48 #include "df.h"
49
50 static int perhaps_ends_bb_p (rtx);
51 static int optimize_reg_copy_1 (rtx, rtx, rtx);
52 static void optimize_reg_copy_2 (rtx, rtx, rtx);
53 static void optimize_reg_copy_3 (rtx, rtx, rtx);
54 static void copy_src_to_dest (rtx, rtx, rtx);
55
56 struct match {
57 int with[MAX_RECOG_OPERANDS];
58 enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
59 int commutative[MAX_RECOG_OPERANDS];
60 int early_clobber[MAX_RECOG_OPERANDS];
61 };
62
63 static rtx discover_flags_reg (void);
64 static void mark_flags_life_zones (rtx);
65 static void flags_set_1 (rtx, const_rtx, void *);
66
67 static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
68 static int find_matches (rtx, struct match *);
69 static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
70 static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int);
71 static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
72 static int regclass_compatible_p (int, int);
73 static int replacement_quality (rtx);
74 static int fixup_match_2 (rtx, rtx, rtx, rtx);
75
76 /* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
77 causing too much register allocation problems. */
78 static int
79 regclass_compatible_p (int class0, int class1)
80 {
81 return (class0 == class1
82 || (reg_class_subset_p (class0, class1)
83 && ! CLASS_LIKELY_SPILLED_P (class0))
84 || (reg_class_subset_p (class1, class0)
85 && ! CLASS_LIKELY_SPILLED_P (class1)));
86 }
87
88 /* Find the place in the rtx X where REG is used as a memory address.
89 Return the MEM rtx that so uses it.
90 If PLUSCONST is nonzero, search instead for a memory address equivalent to
91 (plus REG (const_int PLUSCONST)).
92
93 If such an address does not appear, return 0.
94 If REG appears more than once, or is used other than in such an address,
95 return (rtx) 1. */
96
97 static rtx
98 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
99 {
100 enum rtx_code code = GET_CODE (x);
101 const char * const fmt = GET_RTX_FORMAT (code);
102 int i;
103 rtx value = 0;
104 rtx tem;
105
106 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
107 return x;
108
109 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
110 && XEXP (XEXP (x, 0), 0) == reg
111 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
112 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
113 return x;
114
115 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
116 {
117 /* If REG occurs inside a MEM used in a bit-field reference,
118 that is unacceptable. */
119 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
120 return (rtx) (size_t) 1;
121 }
122
123 if (x == reg)
124 return (rtx) (size_t) 1;
125
126 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
127 {
128 if (fmt[i] == 'e')
129 {
130 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
131 if (value == 0)
132 value = tem;
133 else if (tem != 0)
134 return (rtx) (size_t) 1;
135 }
136 else if (fmt[i] == 'E')
137 {
138 int j;
139 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
140 {
141 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
142 if (value == 0)
143 value = tem;
144 else if (tem != 0)
145 return (rtx) (size_t) 1;
146 }
147 }
148 }
149
150 return value;
151 }
152
153
154 /* INC_INSN is an instruction that adds INCREMENT to REG.
155 Try to fold INC_INSN as a post/pre in/decrement into INSN.
156 Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
157 Return nonzero for success. */
158 static int
159 try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
160 HOST_WIDE_INT increment, int pre)
161 {
162 enum rtx_code inc_code;
163
164 rtx pset = single_set (insn);
165 if (pset)
166 {
167 /* Can't use the size of SET_SRC, we might have something like
168 (sign_extend:SI (mem:QI ... */
169 rtx use = find_use_as_address (pset, reg, 0);
170 if (use != 0 && use != (rtx) (size_t) 1)
171 {
172 int size = GET_MODE_SIZE (GET_MODE (use));
173 if (0
174 || (HAVE_POST_INCREMENT
175 && pre == 0 && (inc_code = POST_INC, increment == size))
176 || (HAVE_PRE_INCREMENT
177 && pre == 1 && (inc_code = PRE_INC, increment == size))
178 || (HAVE_POST_DECREMENT
179 && pre == 0 && (inc_code = POST_DEC, increment == -size))
180 || (HAVE_PRE_DECREMENT
181 && pre == 1 && (inc_code = PRE_DEC, increment == -size))
182 )
183 {
184 if (inc_insn_set)
185 validate_change
186 (inc_insn,
187 &SET_SRC (inc_insn_set),
188 XEXP (SET_SRC (inc_insn_set), 0), 1);
189 validate_change (insn, &XEXP (use, 0),
190 gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
191 if (apply_change_group ())
192 {
193 /* If there is a REG_DEAD note on this insn, we must
194 change this not to REG_UNUSED meaning that the register
195 is set, but the value is dead. Failure to do so will
196 result in sched1 dying -- when it recomputes lifetime
197 information, the number of REG_DEAD notes will have
198 changed. */
199 rtx note = find_reg_note (insn, REG_DEAD, reg);
200 if (note)
201 PUT_MODE (note, REG_UNUSED);
202
203 add_reg_note (insn, REG_INC, reg);
204
205 if (! inc_insn_set)
206 delete_insn (inc_insn);
207 return 1;
208 }
209 }
210 }
211 }
212 return 0;
213 }
214 \f
215 /* Determine if the pattern generated by add_optab has a clobber,
216 such as might be issued for a flags hard register. To make the
217 code elsewhere simpler, we handle cc0 in this same framework.
218
219 Return the register if one was discovered. Return NULL_RTX if
220 if no flags were found. Return pc_rtx if we got confused. */
221
222 static rtx
223 discover_flags_reg (void)
224 {
225 rtx tmp;
226 tmp = gen_rtx_REG (word_mode, 10000);
227 tmp = gen_add3_insn (tmp, tmp, const2_rtx);
228
229 /* If we get something that isn't a simple set, or a
230 [(set ..) (clobber ..)], this whole function will go wrong. */
231 if (GET_CODE (tmp) == SET)
232 return NULL_RTX;
233 else if (GET_CODE (tmp) == PARALLEL)
234 {
235 int found;
236
237 if (XVECLEN (tmp, 0) != 2)
238 return pc_rtx;
239 tmp = XVECEXP (tmp, 0, 1);
240 if (GET_CODE (tmp) != CLOBBER)
241 return pc_rtx;
242 tmp = XEXP (tmp, 0);
243
244 /* Don't do anything foolish if the md wanted to clobber a
245 scratch or something. We only care about hard regs.
246 Moreover we don't like the notion of subregs of hard regs. */
247 if (GET_CODE (tmp) == SUBREG
248 && REG_P (SUBREG_REG (tmp))
249 && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
250 return pc_rtx;
251 found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
252
253 return (found ? tmp : NULL_RTX);
254 }
255
256 return pc_rtx;
257 }
258
259 /* It is a tedious task identifying when the flags register is live and
260 when it is safe to optimize. Since we process the instruction stream
261 multiple times, locate and record these live zones by marking the
262 mode of the instructions --
263
264 QImode is used on the instruction at which the flags becomes live.
265
266 HImode is used within the range (exclusive) that the flags are
267 live. Thus the user of the flags is not marked.
268
269 All other instructions are cleared to VOIDmode. */
270
271 /* Used to communicate with flags_set_1. */
272 static rtx flags_set_1_rtx;
273 static int flags_set_1_set;
274
275 static void
276 mark_flags_life_zones (rtx flags)
277 {
278 int flags_regno;
279 int flags_nregs;
280 basic_block block;
281
282 #ifdef HAVE_cc0
283 /* If we found a flags register on a cc0 host, bail. */
284 if (flags == NULL_RTX)
285 flags = cc0_rtx;
286 else if (flags != cc0_rtx)
287 flags = pc_rtx;
288 #endif
289
290 /* Simple cases first: if no flags, clear all modes. If confusing,
291 mark the entire function as being in a flags shadow. */
292 if (flags == NULL_RTX || flags == pc_rtx)
293 {
294 enum machine_mode mode = (flags ? HImode : VOIDmode);
295 rtx insn;
296 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
297 PUT_MODE (insn, mode);
298 return;
299 }
300
301 #ifdef HAVE_cc0
302 flags_regno = -1;
303 flags_nregs = 1;
304 #else
305 flags_regno = REGNO (flags);
306 flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
307 #endif
308 flags_set_1_rtx = flags;
309
310 /* Process each basic block. */
311 FOR_EACH_BB_REVERSE (block)
312 {
313 rtx insn, end;
314 int live;
315
316 insn = BB_HEAD (block);
317 end = BB_END (block);
318
319 /* Look out for the (unlikely) case of flags being live across
320 basic block boundaries. */
321 live = 0;
322 #ifndef HAVE_cc0
323 {
324 int i;
325 for (i = 0; i < flags_nregs; ++i)
326 live |= REGNO_REG_SET_P (df_get_live_in (block), flags_regno + i);
327 }
328 #endif
329
330 while (1)
331 {
332 /* Process liveness in reverse order of importance --
333 alive, death, birth. This lets more important info
334 overwrite the mode of lesser info. */
335
336 if (INSN_P (insn))
337 {
338 #ifdef HAVE_cc0
339 /* In the cc0 case, death is not marked in reg notes,
340 but is instead the mere use of cc0 when it is alive. */
341 if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
342 live = 0;
343 #else
344 /* In the hard reg case, we watch death notes. */
345 if (live && find_regno_note (insn, REG_DEAD, flags_regno))
346 live = 0;
347 #endif
348 PUT_MODE (insn, (live ? HImode : VOIDmode));
349
350 /* In either case, birth is denoted simply by its presence
351 as the destination of a set. */
352 flags_set_1_set = 0;
353 note_stores (PATTERN (insn), flags_set_1, NULL);
354 if (flags_set_1_set)
355 {
356 live = 1;
357 PUT_MODE (insn, QImode);
358 }
359 }
360 else
361 PUT_MODE (insn, (live ? HImode : VOIDmode));
362
363 if (insn == end)
364 break;
365 insn = NEXT_INSN (insn);
366 }
367 }
368 }
369
370 /* A subroutine of mark_flags_life_zones, called through note_stores. */
371
372 static void
373 flags_set_1 (rtx x, const_rtx pat, void *data ATTRIBUTE_UNUSED)
374 {
375 if (GET_CODE (pat) == SET
376 && reg_overlap_mentioned_p (x, flags_set_1_rtx))
377 flags_set_1_set = 1;
378 }
379 \f
380 static int *regno_src_regno;
381
382 /* Indicate how good a choice REG (which appears as a source) is to replace
383 a destination register with. The higher the returned value, the better
384 the choice. The main objective is to avoid using a register that is
385 a candidate for tying to a hard register, since the output might in
386 turn be a candidate to be tied to a different hard register. */
387 static int
388 replacement_quality (rtx reg)
389 {
390 int src_regno;
391
392 /* Bad if this isn't a register at all. */
393 if (!REG_P (reg))
394 return 0;
395
396 /* If this register is not meant to get a hard register,
397 it is a poor choice. */
398 if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
399 return 0;
400
401 src_regno = regno_src_regno[REGNO (reg)];
402
403 /* If it was not copied from another register, it is fine. */
404 if (src_regno < 0)
405 return 3;
406
407 /* Copied from a hard register? */
408 if (src_regno < FIRST_PSEUDO_REGISTER)
409 return 1;
410
411 /* Copied from a pseudo register - not as bad as from a hard register,
412 yet still cumbersome, since the register live length will be lengthened
413 when the registers get tied. */
414 return 2;
415 }
416 \f
417 /* Return 1 if INSN might end a basic block. */
418
419 static int perhaps_ends_bb_p (rtx insn)
420 {
421 switch (GET_CODE (insn))
422 {
423 case CODE_LABEL:
424 case JUMP_INSN:
425 /* These always end a basic block. */
426 return 1;
427
428 case CALL_INSN:
429 /* A CALL_INSN might be the last insn of a basic block, if it is inside
430 an EH region or if there are nonlocal gotos. Note that this test is
431 very conservative. */
432 if (nonlocal_goto_handler_labels)
433 return 1;
434 /* Fall through. */
435 default:
436 return can_throw_internal (insn);
437 }
438 }
439 \f
440 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
441 in INSN.
442
443 Search forward to see if SRC dies before either it or DEST is modified,
444 but don't scan past the end of a basic block. If so, we can replace SRC
445 with DEST and let SRC die in INSN.
446
447 This will reduce the number of registers live in that range and may enable
448 DEST to be tied to SRC, thus often saving one register in addition to a
449 register-register copy. */
450
451 static int
452 optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
453 {
454 rtx p, q;
455 rtx note;
456 rtx dest_death = 0;
457 int sregno = REGNO (src);
458 int dregno = REGNO (dest);
459
460 /* We don't want to mess with hard regs if register classes are small. */
461 if (sregno == dregno
462 || (SMALL_REGISTER_CLASSES
463 && (sregno < FIRST_PSEUDO_REGISTER
464 || dregno < FIRST_PSEUDO_REGISTER))
465 /* We don't see all updates to SP if they are in an auto-inc memory
466 reference, so we must disallow this optimization on them. */
467 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
468 return 0;
469
470 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
471 {
472 /* ??? We can't scan past the end of a basic block without updating
473 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
474 if (perhaps_ends_bb_p (p))
475 break;
476 else if (! INSN_P (p))
477 continue;
478
479 if (reg_set_p (src, p) || reg_set_p (dest, p)
480 /* If SRC is an asm-declared register, it must not be replaced
481 in any asm. Unfortunately, the REG_EXPR tree for the asm
482 variable may be absent in the SRC rtx, so we can't check the
483 actual register declaration easily (the asm operand will have
484 it, though). To avoid complicating the test for a rare case,
485 we just don't perform register replacement for a hard reg
486 mentioned in an asm. */
487 || (sregno < FIRST_PSEUDO_REGISTER
488 && asm_noperands (PATTERN (p)) >= 0
489 && reg_overlap_mentioned_p (src, PATTERN (p)))
490 /* Don't change hard registers used by a call. */
491 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
492 && find_reg_fusage (p, USE, src))
493 /* Don't change a USE of a register. */
494 || (GET_CODE (PATTERN (p)) == USE
495 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
496 break;
497
498 /* See if all of SRC dies in P. This test is slightly more
499 conservative than it needs to be. */
500 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
501 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
502 {
503 int failed = 0;
504 int d_length = 0;
505 int s_length = 0;
506 int d_n_calls = 0;
507 int s_n_calls = 0;
508 int s_freq_calls = 0;
509 int d_freq_calls = 0;
510
511 /* We can do the optimization. Scan forward from INSN again,
512 replacing regs as we go. Set FAILED if a replacement can't
513 be done. In that case, we can't move the death note for SRC.
514 This should be rare. */
515
516 /* Set to stop at next insn. */
517 for (q = next_real_insn (insn);
518 q != next_real_insn (p);
519 q = next_real_insn (q))
520 {
521 if (reg_overlap_mentioned_p (src, PATTERN (q)))
522 {
523 /* If SRC is a hard register, we might miss some
524 overlapping registers with validate_replace_rtx,
525 so we would have to undo it. We can't if DEST is
526 present in the insn, so fail in that combination
527 of cases. */
528 if (sregno < FIRST_PSEUDO_REGISTER
529 && reg_mentioned_p (dest, PATTERN (q)))
530 failed = 1;
531
532 /* Attempt to replace all uses. */
533 else if (!validate_replace_rtx (src, dest, q))
534 failed = 1;
535
536 /* If this succeeded, but some part of the register
537 is still present, undo the replacement. */
538 else if (sregno < FIRST_PSEUDO_REGISTER
539 && reg_overlap_mentioned_p (src, PATTERN (q)))
540 {
541 validate_replace_rtx (dest, src, q);
542 failed = 1;
543 }
544 }
545
546 /* For SREGNO, count the total number of insns scanned.
547 For DREGNO, count the total number of insns scanned after
548 passing the death note for DREGNO. */
549 s_length++;
550 if (dest_death)
551 d_length++;
552
553 /* If the insn in which SRC dies is a CALL_INSN, don't count it
554 as a call that has been crossed. Otherwise, count it. */
555 if (q != p && CALL_P (q))
556 {
557 /* Similarly, total calls for SREGNO, total calls beyond
558 the death note for DREGNO. */
559 s_n_calls++;
560 s_freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (q));
561 if (dest_death)
562 {
563 d_n_calls++;
564 d_freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (q));
565 }
566 }
567
568 /* If DEST dies here, remove the death note and save it for
569 later. Make sure ALL of DEST dies here; again, this is
570 overly conservative. */
571 if (dest_death == 0
572 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
573 {
574 if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
575 failed = 1, dest_death = 0;
576 else
577 remove_note (q, dest_death);
578 }
579 }
580
581 if (! failed)
582 {
583 /* These counters need to be updated if and only if we are
584 going to move the REG_DEAD note. */
585 if (sregno >= FIRST_PSEUDO_REGISTER)
586 {
587 if (REG_LIVE_LENGTH (sregno) >= 0)
588 {
589 REG_LIVE_LENGTH (sregno) -= s_length;
590 /* REG_LIVE_LENGTH is only an approximation after
591 combine if sched is not run, so make sure that we
592 still have a reasonable value. */
593 if (REG_LIVE_LENGTH (sregno) < 2)
594 REG_LIVE_LENGTH (sregno) = 2;
595 }
596
597 REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
598 REG_FREQ_CALLS_CROSSED (sregno) -= s_freq_calls;
599 }
600
601 /* Move death note of SRC from P to INSN. */
602 remove_note (p, note);
603 XEXP (note, 1) = REG_NOTES (insn);
604 REG_NOTES (insn) = note;
605 }
606
607 /* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
608 if (! dest_death
609 && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
610 {
611 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
612 remove_note (insn, dest_death);
613 }
614
615 /* Put death note of DEST on P if we saw it die. */
616 if (dest_death)
617 {
618 XEXP (dest_death, 1) = REG_NOTES (p);
619 REG_NOTES (p) = dest_death;
620
621 if (dregno >= FIRST_PSEUDO_REGISTER)
622 {
623 /* If and only if we are moving the death note for DREGNO,
624 then we need to update its counters. */
625 if (REG_LIVE_LENGTH (dregno) >= 0)
626 REG_LIVE_LENGTH (dregno) += d_length;
627 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
628 REG_FREQ_CALLS_CROSSED (dregno) += d_freq_calls;
629 }
630 }
631
632 return ! failed;
633 }
634
635 /* If SRC is a hard register which is set or killed in some other
636 way, we can't do this optimization. */
637 else if (sregno < FIRST_PSEUDO_REGISTER
638 && dead_or_set_p (p, src))
639 break;
640 }
641 return 0;
642 }
643 \f
644 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
645 a sequence of insns that modify DEST followed by an insn that sets
646 SRC to DEST in which DEST dies, with no prior modification of DEST.
647 (There is no need to check if the insns in between actually modify
648 DEST. We should not have cases where DEST is not modified, but
649 the optimization is safe if no such modification is detected.)
650 In that case, we can replace all uses of DEST, starting with INSN and
651 ending with the set of SRC to DEST, with SRC. We do not do this
652 optimization if a CALL_INSN is crossed unless SRC already crosses a
653 call or if DEST dies before the copy back to SRC.
654
655 It is assumed that DEST and SRC are pseudos; it is too complicated to do
656 this for hard registers since the substitutions we may make might fail. */
657
658 static void
659 optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
660 {
661 rtx p, q;
662 rtx set;
663 int sregno = REGNO (src);
664 int dregno = REGNO (dest);
665
666 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
667 {
668 /* ??? We can't scan past the end of a basic block without updating
669 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
670 if (perhaps_ends_bb_p (p))
671 break;
672 else if (! INSN_P (p))
673 continue;
674
675 set = single_set (p);
676 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
677 && find_reg_note (p, REG_DEAD, dest))
678 {
679 /* We can do the optimization. Scan forward from INSN again,
680 replacing regs as we go. */
681
682 /* Set to stop at next insn. */
683 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
684 if (INSN_P (q))
685 {
686 if (reg_mentioned_p (dest, PATTERN (q)))
687 {
688 rtx note;
689
690 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
691 note = FIND_REG_INC_NOTE (q, dest);
692 if (note)
693 {
694 remove_note (q, note);
695 add_reg_note (q, REG_INC, src);
696 }
697 df_insn_rescan (q);
698 }
699
700 if (CALL_P (q))
701 {
702 int freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (q));
703 REG_N_CALLS_CROSSED (dregno)--;
704 REG_N_CALLS_CROSSED (sregno)++;
705 REG_FREQ_CALLS_CROSSED (dregno) -= freq;
706 REG_FREQ_CALLS_CROSSED (sregno) += freq;
707 }
708 }
709
710 remove_note (p, find_reg_note (p, REG_DEAD, dest));
711 REG_N_DEATHS (dregno)--;
712 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
713 REG_N_DEATHS (sregno)--;
714 return;
715 }
716
717 if (reg_set_p (src, p)
718 || find_reg_note (p, REG_DEAD, dest)
719 || (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
720 break;
721 }
722 }
723
724 /* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
725 Look if SRC dies there, and if it is only set once, by loading
726 it from memory. If so, try to incorporate the zero/sign extension
727 into the memory read, change SRC to the mode of DEST, and alter
728 the remaining accesses to use the appropriate SUBREG. This allows
729 SRC and DEST to be tied later. */
730 static void
731 optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
732 {
733 rtx src_reg = XEXP (src, 0);
734 int src_no = REGNO (src_reg);
735 int dst_no = REGNO (dest);
736 rtx p, set;
737 enum machine_mode old_mode;
738
739 if (src_no < FIRST_PSEUDO_REGISTER
740 || dst_no < FIRST_PSEUDO_REGISTER
741 || ! find_reg_note (insn, REG_DEAD, src_reg)
742 || REG_N_DEATHS (src_no) != 1
743 || REG_N_SETS (src_no) != 1)
744 return;
745 for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
746 /* ??? We can't scan past the end of a basic block without updating
747 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
748 if (perhaps_ends_bb_p (p))
749 break;
750
751 if (! p)
752 return;
753
754 if (! (set = single_set (p))
755 || !MEM_P (SET_SRC (set))
756 /* If there's a REG_EQUIV note, this must be an insn that loads an
757 argument. Prefer keeping the note over doing this optimization. */
758 || find_reg_note (p, REG_EQUIV, NULL_RTX)
759 || SET_DEST (set) != src_reg)
760 return;
761
762 /* Be conservative: although this optimization is also valid for
763 volatile memory references, that could cause trouble in later passes. */
764 if (MEM_VOLATILE_P (SET_SRC (set)))
765 return;
766
767 /* Do not use a SUBREG to truncate from one mode to another if truncation
768 is not a nop. */
769 if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
770 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
771 GET_MODE_BITSIZE (GET_MODE (src_reg))))
772 return;
773
774 old_mode = GET_MODE (src_reg);
775 PUT_MODE (src_reg, GET_MODE (src));
776 XEXP (src, 0) = SET_SRC (set);
777
778 /* Include this change in the group so that it's easily undone if
779 one of the changes in the group is invalid. */
780 validate_change (p, &SET_SRC (set), src, 1);
781
782 /* Now walk forward making additional replacements. We want to be able
783 to undo all the changes if a later substitution fails. */
784 while (p = NEXT_INSN (p), p != insn)
785 {
786 if (! INSN_P (p))
787 continue;
788
789 /* Make a tentative change. */
790 validate_replace_rtx_group (src_reg,
791 gen_lowpart_SUBREG (old_mode, src_reg),
792 p);
793 }
794
795 validate_replace_rtx_group (src, src_reg, insn);
796
797 /* Now see if all the changes are valid. */
798 if (! apply_change_group ())
799 {
800 /* One or more changes were no good. Back out everything. */
801 PUT_MODE (src_reg, old_mode);
802 XEXP (src, 0) = src_reg;
803 }
804 else
805 {
806 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
807 if (note)
808 remove_note (p, note);
809 }
810 }
811
812 \f
813 /* If we were not able to update the users of src to use dest directly, try
814 instead moving the value to dest directly before the operation. */
815
816 static void
817 copy_src_to_dest (rtx insn, rtx src, rtx dest)
818 {
819 rtx seq;
820 rtx link;
821 rtx next;
822 rtx set;
823 rtx move_insn;
824 rtx *p_insn_notes;
825 rtx *p_move_notes;
826 int src_regno;
827 int dest_regno;
828 int insn_uid;
829 int move_uid;
830
831 /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
832 or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
833 parameter when there is no frame pointer that is not allocated a register.
834 For now, we just reject them, rather than incrementing the live length. */
835
836 if (REG_P (src)
837 && REG_LIVE_LENGTH (REGNO (src)) > 0
838 && REG_P (dest)
839 && REG_LIVE_LENGTH (REGNO (dest)) > 0
840 && (set = single_set (insn)) != NULL_RTX
841 && !reg_mentioned_p (dest, SET_SRC (set))
842 && GET_MODE (src) == GET_MODE (dest))
843 {
844 int old_num_regs = reg_rtx_no;
845
846 /* Generate the src->dest move. */
847 start_sequence ();
848 emit_move_insn (dest, src);
849 seq = get_insns ();
850 end_sequence ();
851 /* If this sequence uses new registers, we may not use it. */
852 if (old_num_regs != reg_rtx_no
853 || ! validate_replace_rtx (src, dest, insn))
854 {
855 /* We have to restore reg_rtx_no to its old value, lest
856 recompute_reg_usage will try to compute the usage of the
857 new regs, yet reg_n_info is not valid for them. */
858 reg_rtx_no = old_num_regs;
859 return;
860 }
861 emit_insn_before (seq, insn);
862 move_insn = PREV_INSN (insn);
863 p_move_notes = &REG_NOTES (move_insn);
864 p_insn_notes = &REG_NOTES (insn);
865
866 /* Move any notes mentioning src to the move instruction. */
867 for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
868 {
869 next = XEXP (link, 1);
870 if (XEXP (link, 0) == src)
871 {
872 *p_move_notes = link;
873 p_move_notes = &XEXP (link, 1);
874 }
875 else
876 {
877 *p_insn_notes = link;
878 p_insn_notes = &XEXP (link, 1);
879 }
880 }
881
882 *p_move_notes = NULL_RTX;
883 *p_insn_notes = NULL_RTX;
884
885 insn_uid = INSN_UID (insn);
886 move_uid = INSN_UID (move_insn);
887
888 /* Update the various register tables. */
889 dest_regno = REGNO (dest);
890 INC_REG_N_SETS (dest_regno, 1);
891 REG_LIVE_LENGTH (dest_regno)++;
892 src_regno = REGNO (src);
893 if (! find_reg_note (move_insn, REG_DEAD, src))
894 REG_LIVE_LENGTH (src_regno)++;
895 }
896 }
897
898 /* reg_set_in_bb[REGNO] points to basic block iff the register is set
899 only once in the given block and has REG_EQUAL note. */
900
901 basic_block *reg_set_in_bb;
902
903 /* Size of reg_set_in_bb array. */
904 static unsigned int max_reg_computed;
905
906 \f
907 /* Return whether REG is set in only one location, and is set to a
908 constant, but is set in a different basic block from INSN (an
909 instructions which uses REG). In this case REG is equivalent to a
910 constant, and we don't want to break that equivalence, because that
911 may increase register pressure and make reload harder. If REG is
912 set in the same basic block as INSN, we don't worry about it,
913 because we'll probably need a register anyhow (??? but what if REG
914 is used in a different basic block as well as this one?). */
915
916 static bool
917 reg_is_remote_constant_p (rtx reg, rtx insn)
918 {
919 basic_block bb;
920 rtx p;
921 int max;
922
923 if (!reg_set_in_bb)
924 {
925 max_reg_computed = max = max_reg_num ();
926 reg_set_in_bb = XCNEWVEC (basic_block, max);
927
928 FOR_EACH_BB (bb)
929 FOR_BB_INSNS (bb, p)
930 {
931 rtx s;
932
933 if (!INSN_P (p))
934 continue;
935 s = single_set (p);
936 /* This is the instruction which sets REG. If there is a
937 REG_EQUAL note, then REG is equivalent to a constant. */
938 if (s != 0
939 && REG_P (SET_DEST (s))
940 && REG_N_SETS (REGNO (SET_DEST (s))) == 1
941 && find_reg_note (p, REG_EQUAL, NULL_RTX))
942 reg_set_in_bb[REGNO (SET_DEST (s))] = bb;
943 }
944 }
945
946 gcc_assert (REGNO (reg) < max_reg_computed);
947 if (reg_set_in_bb[REGNO (reg)] == NULL)
948 return false;
949 return (reg_set_in_bb[REGNO (reg)] != BLOCK_FOR_INSN (insn));
950 }
951
952 /* INSN is adding a CONST_INT to a REG. We search backwards looking for
953 another add immediate instruction with the same source and dest registers,
954 and if we find one, we change INSN to an increment, and return 1. If
955 no changes are made, we return 0.
956
957 This changes
958 (set (reg100) (plus reg1 offset1))
959 ...
960 (set (reg100) (plus reg1 offset2))
961 to
962 (set (reg100) (plus reg1 offset1))
963 ...
964 (set (reg100) (plus reg100 offset2-offset1)) */
965
966 /* ??? What does this comment mean? */
967 /* cse disrupts preincrement / postdecrement sequences when it finds a
968 hard register as ultimate source, like the frame pointer. */
969
970 static int
971 fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset)
972 {
973 rtx p, dst_death = 0;
974 int length, num_calls = 0, freq_calls = 0;
975
976 /* If SRC dies in INSN, we'd have to move the death note. This is
977 considered to be very unlikely, so we just skip the optimization
978 in this case. */
979 if (find_regno_note (insn, REG_DEAD, REGNO (src)))
980 return 0;
981
982 /* Scan backward to find the first instruction that sets DST. */
983
984 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
985 {
986 rtx pset;
987
988 /* ??? We can't scan past the end of a basic block without updating
989 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
990 if (perhaps_ends_bb_p (p))
991 break;
992 else if (! INSN_P (p))
993 continue;
994
995 if (find_regno_note (p, REG_DEAD, REGNO (dst)))
996 dst_death = p;
997 if (! dst_death)
998 length++;
999
1000 pset = single_set (p);
1001 if (pset && SET_DEST (pset) == dst
1002 && GET_CODE (SET_SRC (pset)) == PLUS
1003 && XEXP (SET_SRC (pset), 0) == src
1004 && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
1005 {
1006 HOST_WIDE_INT newconst
1007 = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
1008 rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
1009
1010 if (add && validate_change (insn, &PATTERN (insn), add, 0))
1011 {
1012 /* Remove the death note for DST from DST_DEATH. */
1013 if (dst_death)
1014 {
1015 remove_death (REGNO (dst), dst_death);
1016 REG_LIVE_LENGTH (REGNO (dst)) += length;
1017 REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
1018 REG_FREQ_CALLS_CROSSED (REGNO (dst)) += freq_calls;
1019 }
1020
1021 if (dump_file)
1022 fprintf (dump_file,
1023 "Fixed operand of insn %d.\n",
1024 INSN_UID (insn));
1025
1026 #ifdef AUTO_INC_DEC
1027 for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
1028 {
1029 if (LABEL_P (p)
1030 || JUMP_P (p))
1031 break;
1032 if (! INSN_P (p))
1033 continue;
1034 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1035 {
1036 if (try_auto_increment (p, insn, 0, dst, newconst, 0))
1037 return 1;
1038 break;
1039 }
1040 }
1041 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1042 {
1043 if (LABEL_P (p)
1044 || JUMP_P (p))
1045 break;
1046 if (! INSN_P (p))
1047 continue;
1048 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1049 {
1050 try_auto_increment (p, insn, 0, dst, newconst, 1);
1051 break;
1052 }
1053 }
1054 #endif
1055 return 1;
1056 }
1057 }
1058
1059 if (reg_set_p (dst, PATTERN (p)))
1060 break;
1061
1062 /* If we have passed a call instruction, and the
1063 pseudo-reg SRC is not already live across a call,
1064 then don't perform the optimization. */
1065 /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
1066 hard regs are clobbered. Thus, we only use it for src for
1067 non-call insns. */
1068 if (CALL_P (p))
1069 {
1070 if (! dst_death)
1071 {
1072 num_calls++;
1073 freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1074 }
1075
1076 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1077 break;
1078
1079 if (call_used_regs [REGNO (dst)]
1080 || find_reg_fusage (p, CLOBBER, dst))
1081 break;
1082 }
1083 else if (reg_set_p (src, PATTERN (p)))
1084 break;
1085 }
1086
1087 return 0;
1088 }
1089
1090 /* Main entry for the register move optimization.
1091 F is the first instruction.
1092 NREGS is one plus the highest pseudo-reg number used in the instruction.
1093 REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
1094 (or 0 if none should be output). */
1095
1096 static void
1097 regmove_optimize (rtx f, int nregs)
1098 {
1099 rtx insn;
1100 struct match match;
1101 int pass;
1102 int i;
1103 rtx copy_src, copy_dst;
1104
1105 /* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
1106 confused by non-call exceptions ending blocks. */
1107 if (flag_non_call_exceptions)
1108 return;
1109
1110 df_note_add_problem ();
1111 df_analyze ();
1112
1113 regstat_init_n_sets_and_refs ();
1114 regstat_compute_ri ();
1115
1116 /* Find out where a potential flags register is live, and so that we
1117 can suppress some optimizations in those zones. */
1118 mark_flags_life_zones (discover_flags_reg ());
1119
1120 regno_src_regno = XNEWVEC (int, nregs);
1121 for (i = nregs; --i >= 0; )
1122 regno_src_regno[i] = -1;
1123
1124 /* A forward/backward pass. Replace output operands with input operands. */
1125
1126 for (pass = 0; pass <= 2; pass++)
1127 {
1128 /* We need fewer optimizations for IRA. */
1129 if ((! flag_regmove || flag_ira) && pass >= flag_expensive_optimizations)
1130 goto done;
1131
1132 if (dump_file)
1133 fprintf (dump_file, "Starting %s pass...\n",
1134 pass ? "backward" : "forward");
1135
1136 for (insn = pass ? get_last_insn () : f; insn;
1137 insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
1138 {
1139 rtx set;
1140 int op_no, match_no;
1141
1142 set = single_set (insn);
1143 if (! set)
1144 continue;
1145
1146 if (flag_expensive_optimizations && ! pass
1147 && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
1148 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
1149 && REG_P (XEXP (SET_SRC (set), 0))
1150 && REG_P (SET_DEST (set)))
1151 optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
1152
1153 if (flag_expensive_optimizations && ! pass
1154 && REG_P (SET_SRC (set))
1155 && REG_P (SET_DEST (set)))
1156 {
1157 /* If this is a register-register copy where SRC is not dead,
1158 see if we can optimize it. If this optimization succeeds,
1159 it will become a copy where SRC is dead. */
1160 if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
1161 || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
1162 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
1163 {
1164 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1165 if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1166 optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
1167 if (regno_src_regno[REGNO (SET_DEST (set))] < 0
1168 && SET_SRC (set) != SET_DEST (set))
1169 {
1170 int srcregno = REGNO (SET_SRC (set));
1171 if (regno_src_regno[srcregno] >= 0)
1172 srcregno = regno_src_regno[srcregno];
1173 regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
1174 }
1175 }
1176 }
1177
1178 /* All optimizations important for IRA have been done. */
1179 if (! flag_regmove || flag_ira)
1180 continue;
1181
1182 if (! find_matches (insn, &match))
1183 continue;
1184
1185 /* Now scan through the operands looking for a source operand
1186 which is supposed to match the destination operand.
1187 Then scan forward for an instruction which uses the dest
1188 operand.
1189 If it dies there, then replace the dest in both operands with
1190 the source operand. */
1191
1192 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1193 {
1194 rtx src, dst, src_subreg;
1195 enum reg_class src_class, dst_class;
1196
1197 match_no = match.with[op_no];
1198
1199 /* Nothing to do if the two operands aren't supposed to match. */
1200 if (match_no < 0)
1201 continue;
1202
1203 src = recog_data.operand[op_no];
1204 dst = recog_data.operand[match_no];
1205
1206 if (!REG_P (src))
1207 continue;
1208
1209 src_subreg = src;
1210 if (GET_CODE (dst) == SUBREG
1211 && GET_MODE_SIZE (GET_MODE (dst))
1212 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
1213 {
1214 dst = SUBREG_REG (dst);
1215 src_subreg = lowpart_subreg (GET_MODE (dst),
1216 src, GET_MODE (src));
1217 if (!src_subreg)
1218 continue;
1219 }
1220 if (!REG_P (dst)
1221 || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1222 continue;
1223
1224 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1225 {
1226 if (match.commutative[op_no] < op_no)
1227 regno_src_regno[REGNO (dst)] = REGNO (src);
1228 continue;
1229 }
1230
1231 if (REG_LIVE_LENGTH (REGNO (src)) < 0)
1232 continue;
1233
1234 /* op_no/src must be a read-only operand, and
1235 match_operand/dst must be a write-only operand. */
1236 if (match.use[op_no] != READ
1237 || match.use[match_no] != WRITE)
1238 continue;
1239
1240 if (match.early_clobber[match_no]
1241 && count_occurrences (PATTERN (insn), src, 0) > 1)
1242 continue;
1243
1244 /* Make sure match_operand is the destination. */
1245 if (recog_data.operand[match_no] != SET_DEST (set))
1246 continue;
1247
1248 /* If the operands already match, then there is nothing to do. */
1249 if (operands_match_p (src, dst))
1250 continue;
1251
1252 /* But in the commutative case, we might find a better match. */
1253 if (match.commutative[op_no] >= 0)
1254 {
1255 rtx comm = recog_data.operand[match.commutative[op_no]];
1256 if (operands_match_p (comm, dst)
1257 && (replacement_quality (comm)
1258 >= replacement_quality (src)))
1259 continue;
1260 }
1261
1262 src_class = reg_preferred_class (REGNO (src));
1263 dst_class = reg_preferred_class (REGNO (dst));
1264 if (! regclass_compatible_p (src_class, dst_class))
1265 continue;
1266
1267 if (GET_MODE (src) != GET_MODE (dst))
1268 continue;
1269
1270 if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
1271 op_no, match_no))
1272 break;
1273 }
1274 }
1275 }
1276
1277 /* A backward pass. Replace input operands with output operands. */
1278
1279 if (dump_file)
1280 fprintf (dump_file, "Starting backward pass...\n");
1281
1282 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1283 {
1284 if (INSN_P (insn))
1285 {
1286 int op_no, match_no;
1287 int success = 0;
1288
1289 if (! find_matches (insn, &match))
1290 continue;
1291
1292 /* Now scan through the operands looking for a destination operand
1293 which is supposed to match a source operand.
1294 Then scan backward for an instruction which sets the source
1295 operand. If safe, then replace the source operand with the
1296 dest operand in both instructions. */
1297
1298 copy_src = NULL_RTX;
1299 copy_dst = NULL_RTX;
1300 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1301 {
1302 rtx set, p, src, dst;
1303 rtx src_note, dst_note;
1304 int num_calls = 0, freq_calls = 0;
1305 enum reg_class src_class, dst_class;
1306 int length;
1307
1308 match_no = match.with[op_no];
1309
1310 /* Nothing to do if the two operands aren't supposed to match. */
1311 if (match_no < 0)
1312 continue;
1313
1314 dst = recog_data.operand[match_no];
1315 src = recog_data.operand[op_no];
1316
1317 if (!REG_P (src))
1318 continue;
1319
1320 if (!REG_P (dst)
1321 || REGNO (dst) < FIRST_PSEUDO_REGISTER
1322 || REG_LIVE_LENGTH (REGNO (dst)) < 0
1323 || GET_MODE (src) != GET_MODE (dst))
1324 continue;
1325
1326 /* If the operands already match, then there is nothing to do. */
1327 if (operands_match_p (src, dst))
1328 continue;
1329
1330 if (match.commutative[op_no] >= 0)
1331 {
1332 rtx comm = recog_data.operand[match.commutative[op_no]];
1333 if (operands_match_p (comm, dst))
1334 continue;
1335 }
1336
1337 set = single_set (insn);
1338 if (! set)
1339 continue;
1340
1341 /* Note that single_set ignores parts of a parallel set for
1342 which one of the destinations is REG_UNUSED. We can't
1343 handle that here, since we can wind up rewriting things
1344 such that a single register is set twice within a single
1345 parallel. */
1346 if (reg_set_p (src, insn))
1347 continue;
1348
1349 /* match_no/dst must be a write-only operand, and
1350 operand_operand/src must be a read-only operand. */
1351 if (match.use[op_no] != READ
1352 || match.use[match_no] != WRITE)
1353 continue;
1354
1355 if (match.early_clobber[match_no]
1356 && count_occurrences (PATTERN (insn), src, 0) > 1)
1357 continue;
1358
1359 /* Make sure match_no is the destination. */
1360 if (recog_data.operand[match_no] != SET_DEST (set))
1361 continue;
1362
1363 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1364 {
1365 if (GET_CODE (SET_SRC (set)) == PLUS
1366 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
1367 && XEXP (SET_SRC (set), 0) == src
1368 && fixup_match_2 (insn, dst, src,
1369 XEXP (SET_SRC (set), 1)))
1370 break;
1371 continue;
1372 }
1373 src_class = reg_preferred_class (REGNO (src));
1374 dst_class = reg_preferred_class (REGNO (dst));
1375
1376 if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
1377 {
1378 /* We used to force the copy here like in other cases, but
1379 it produces worse code, as it eliminates no copy
1380 instructions and the copy emitted will be produced by
1381 reload anyway. On patterns with multiple alternatives,
1382 there may be better solution available.
1383
1384 In particular this change produced slower code for numeric
1385 i387 programs. */
1386
1387 continue;
1388 }
1389
1390 if (! regclass_compatible_p (src_class, dst_class))
1391 {
1392 if (!copy_src)
1393 {
1394 copy_src = src;
1395 copy_dst = dst;
1396 }
1397 continue;
1398 }
1399
1400 /* Can not modify an earlier insn to set dst if this insn
1401 uses an old value in the source. */
1402 if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
1403 {
1404 if (!copy_src)
1405 {
1406 copy_src = src;
1407 copy_dst = dst;
1408 }
1409 continue;
1410 }
1411
1412 /* If src is set once in a different basic block,
1413 and is set equal to a constant, then do not use
1414 it for this optimization, as this would make it
1415 no longer equivalent to a constant. */
1416
1417 if (reg_is_remote_constant_p (src, insn))
1418 {
1419 if (!copy_src)
1420 {
1421 copy_src = src;
1422 copy_dst = dst;
1423 }
1424 continue;
1425 }
1426
1427
1428 if (dump_file)
1429 fprintf (dump_file,
1430 "Could fix operand %d of insn %d matching operand %d.\n",
1431 op_no, INSN_UID (insn), match_no);
1432
1433 /* Scan backward to find the first instruction that uses
1434 the input operand. If the operand is set here, then
1435 replace it in both instructions with match_no. */
1436
1437 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
1438 {
1439 rtx pset;
1440
1441 /* ??? We can't scan past the end of a basic block without
1442 updating the register lifetime info
1443 (REG_DEAD/basic_block_live_at_start). */
1444 if (perhaps_ends_bb_p (p))
1445 break;
1446 else if (! INSN_P (p))
1447 continue;
1448
1449 length++;
1450
1451 /* ??? See if all of SRC is set in P. This test is much
1452 more conservative than it needs to be. */
1453 pset = single_set (p);
1454 if (pset && SET_DEST (pset) == src)
1455 {
1456 /* We use validate_replace_rtx, in case there
1457 are multiple identical source operands. All of
1458 them have to be changed at the same time. */
1459 if (validate_replace_rtx (src, dst, insn))
1460 {
1461 if (validate_change (p, &SET_DEST (pset),
1462 dst, 0))
1463 success = 1;
1464 else
1465 {
1466 /* Change all source operands back.
1467 This modifies the dst as a side-effect. */
1468 validate_replace_rtx (dst, src, insn);
1469 /* Now make sure the dst is right. */
1470 validate_change (insn,
1471 recog_data.operand_loc[match_no],
1472 dst, 0);
1473 }
1474 }
1475 break;
1476 }
1477
1478 /* We can't make this change if SRC is read or
1479 partially written in P, since we are going to
1480 eliminate SRC. We can't make this change
1481 if DST is mentioned at all in P,
1482 since we are going to change its value. */
1483 if (reg_overlap_mentioned_p (src, PATTERN (p))
1484 || reg_mentioned_p (dst, PATTERN (p)))
1485 break;
1486
1487 /* If we have passed a call instruction, and the
1488 pseudo-reg DST is not already live across a call,
1489 then don't perform the optimization. */
1490 if (CALL_P (p))
1491 {
1492 num_calls++;
1493 freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1494
1495 if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
1496 break;
1497 }
1498 }
1499
1500 if (success)
1501 {
1502 int dstno, srcno;
1503
1504 /* Remove the death note for SRC from INSN. */
1505 remove_note (insn, src_note);
1506 /* Move the death note for SRC to P if it is used
1507 there. */
1508 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1509 {
1510 XEXP (src_note, 1) = REG_NOTES (p);
1511 REG_NOTES (p) = src_note;
1512 }
1513 /* If there is a REG_DEAD note for DST on P, then remove
1514 it, because DST is now set there. */
1515 if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
1516 remove_note (p, dst_note);
1517
1518 dstno = REGNO (dst);
1519 srcno = REGNO (src);
1520
1521 INC_REG_N_SETS (dstno, 1);
1522 INC_REG_N_SETS (srcno, -1);
1523
1524 REG_N_CALLS_CROSSED (dstno) += num_calls;
1525 REG_N_CALLS_CROSSED (srcno) -= num_calls;
1526 REG_FREQ_CALLS_CROSSED (dstno) += freq_calls;
1527 REG_FREQ_CALLS_CROSSED (srcno) -= freq_calls;
1528
1529 REG_LIVE_LENGTH (dstno) += length;
1530 if (REG_LIVE_LENGTH (srcno) >= 0)
1531 {
1532 REG_LIVE_LENGTH (srcno) -= length;
1533 /* REG_LIVE_LENGTH is only an approximation after
1534 combine if sched is not run, so make sure that we
1535 still have a reasonable value. */
1536 if (REG_LIVE_LENGTH (srcno) < 2)
1537 REG_LIVE_LENGTH (srcno) = 2;
1538 }
1539
1540 if (dump_file)
1541 fprintf (dump_file,
1542 "Fixed operand %d of insn %d matching operand %d.\n",
1543 op_no, INSN_UID (insn), match_no);
1544
1545 break;
1546 }
1547 }
1548
1549 /* If we weren't able to replace any of the alternatives, try an
1550 alternative approach of copying the source to the destination. */
1551 if (!success && copy_src != NULL_RTX)
1552 copy_src_to_dest (insn, copy_src, copy_dst);
1553 }
1554 }
1555
1556 done:
1557 /* Clean up. */
1558 free (regno_src_regno);
1559 if (reg_set_in_bb)
1560 {
1561 free (reg_set_in_bb);
1562 reg_set_in_bb = NULL;
1563 }
1564 regstat_free_n_sets_and_refs ();
1565 regstat_free_ri ();
1566 }
1567
1568 /* Returns nonzero if INSN's pattern has matching constraints for any operand.
1569 Returns 0 if INSN can't be recognized, or if the alternative can't be
1570 determined.
1571
1572 Initialize the info in MATCHP based on the constraints. */
1573
1574 static int
1575 find_matches (rtx insn, struct match *matchp)
1576 {
1577 int likely_spilled[MAX_RECOG_OPERANDS];
1578 int op_no;
1579 int any_matches = 0;
1580
1581 extract_insn (insn);
1582 if (! constrain_operands (0))
1583 return 0;
1584
1585 /* Must initialize this before main loop, because the code for
1586 the commutative case may set matches for operands other than
1587 the current one. */
1588 for (op_no = recog_data.n_operands; --op_no >= 0; )
1589 matchp->with[op_no] = matchp->commutative[op_no] = -1;
1590
1591 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1592 {
1593 const char *p;
1594 char c;
1595 int i = 0;
1596
1597 p = recog_data.constraints[op_no];
1598
1599 likely_spilled[op_no] = 0;
1600 matchp->use[op_no] = READ;
1601 matchp->early_clobber[op_no] = 0;
1602 if (*p == '=')
1603 matchp->use[op_no] = WRITE;
1604 else if (*p == '+')
1605 matchp->use[op_no] = READWRITE;
1606
1607 for (;*p && i < which_alternative; p++)
1608 if (*p == ',')
1609 i++;
1610
1611 while ((c = *p) != '\0' && c != ',')
1612 {
1613 switch (c)
1614 {
1615 case '=':
1616 break;
1617 case '+':
1618 break;
1619 case '&':
1620 matchp->early_clobber[op_no] = 1;
1621 break;
1622 case '%':
1623 matchp->commutative[op_no] = op_no + 1;
1624 matchp->commutative[op_no + 1] = op_no;
1625 break;
1626
1627 case '0': case '1': case '2': case '3': case '4':
1628 case '5': case '6': case '7': case '8': case '9':
1629 {
1630 char *end;
1631 unsigned long match_ul = strtoul (p, &end, 10);
1632 int match = match_ul;
1633
1634 p = end;
1635
1636 if (match < op_no && likely_spilled[match])
1637 continue;
1638 matchp->with[op_no] = match;
1639 any_matches = 1;
1640 if (matchp->commutative[op_no] >= 0)
1641 matchp->with[matchp->commutative[op_no]] = match;
1642 }
1643 continue;
1644
1645 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
1646 case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
1647 case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
1648 case 'C': case 'D': case 'W': case 'Y': case 'Z':
1649 if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
1650 likely_spilled[op_no] = 1;
1651 break;
1652 }
1653 p += CONSTRAINT_LEN (c, p);
1654 }
1655 }
1656 return any_matches;
1657 }
1658
1659 /* Try to replace all occurrences of DST_REG with SRC in LOC, that is
1660 assumed to be in INSN. */
1661
1662 static void
1663 replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
1664 {
1665 rtx x = *loc;
1666 enum rtx_code code;
1667 const char *fmt;
1668 int i, j;
1669
1670 if (! x)
1671 return;
1672
1673 code = GET_CODE (x);
1674 if (code == REG)
1675 {
1676 if (REGNO (x) != dst_reg)
1677 return;
1678
1679 validate_change (insn, loc, src, 1);
1680
1681 return;
1682 }
1683
1684 /* Process each of our operands recursively. */
1685 fmt = GET_RTX_FORMAT (code);
1686 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1687 if (*fmt == 'e')
1688 replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
1689 else if (*fmt == 'E')
1690 for (j = 0; j < XVECLEN (x, i); j++)
1691 replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
1692 }
1693
1694 /* Try to replace output operand DST in SET, with input operand SRC. SET is
1695 the only set in INSN. INSN has just been recognized and constrained.
1696 SRC is operand number OPERAND_NUMBER in INSN.
1697 DST is operand number MATCH_NUMBER in INSN.
1698 If BACKWARD is nonzero, we have been called in a backward pass.
1699 Return nonzero for success. */
1700
1701 static int
1702 fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
1703 int backward, int operand_number, int match_number)
1704 {
1705 rtx p;
1706 rtx post_inc = 0, post_inc_set = 0, search_end = 0;
1707 int success = 0;
1708 int num_calls = 0, freq_calls = 0, s_num_calls = 0, s_freq_calls = 0;
1709 enum rtx_code code = NOTE;
1710 HOST_WIDE_INT insn_const = 0, newconst = 0;
1711 rtx overlap = 0; /* need to move insn ? */
1712 rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
1713 int length, s_length;
1714
1715 if (! src_note)
1716 {
1717 /* Look for (set (regX) (op regA constX))
1718 (set (regY) (op regA constY))
1719 and change that to
1720 (set (regA) (op regA constX)).
1721 (set (regY) (op regA constY-constX)).
1722 This works for add and shift operations, if
1723 regA is dead after or set by the second insn. */
1724
1725 code = GET_CODE (SET_SRC (set));
1726 if ((code == PLUS || code == LSHIFTRT
1727 || code == ASHIFT || code == ASHIFTRT)
1728 && XEXP (SET_SRC (set), 0) == src
1729 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1730 insn_const = INTVAL (XEXP (SET_SRC (set), 1));
1731 else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
1732 return 0;
1733 else
1734 /* We might find a src_note while scanning. */
1735 code = NOTE;
1736 }
1737
1738 if (dump_file)
1739 fprintf (dump_file,
1740 "Could fix operand %d of insn %d matching operand %d.\n",
1741 operand_number, INSN_UID (insn), match_number);
1742
1743 /* If SRC is equivalent to a constant set in a different basic block,
1744 then do not use it for this optimization. We want the equivalence
1745 so that if we have to reload this register, we can reload the
1746 constant, rather than extending the lifespan of the register. */
1747 if (reg_is_remote_constant_p (src, insn))
1748 return 0;
1749
1750 /* Scan forward to find the next instruction that
1751 uses the output operand. If the operand dies here,
1752 then replace it in both instructions with
1753 operand_number. */
1754
1755 for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1756 {
1757 if (CALL_P (p))
1758 replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
1759 REGNO (dst), src, p);
1760
1761 /* ??? We can't scan past the end of a basic block without updating
1762 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
1763 if (perhaps_ends_bb_p (p))
1764 break;
1765 else if (! INSN_P (p))
1766 continue;
1767
1768 length++;
1769 if (src_note)
1770 s_length++;
1771
1772 if (reg_set_p (src, p) || reg_set_p (dst, p)
1773 || (GET_CODE (PATTERN (p)) == USE
1774 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
1775 break;
1776
1777 /* See if all of DST dies in P. This test is
1778 slightly more conservative than it needs to be. */
1779 if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
1780 && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
1781 {
1782 /* If we would be moving INSN, check that we won't move it
1783 into the shadow of a live a live flags register. */
1784 /* ??? We only try to move it in front of P, although
1785 we could move it anywhere between OVERLAP and P. */
1786 if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
1787 break;
1788
1789 if (! src_note)
1790 {
1791 rtx q;
1792 rtx set2 = NULL_RTX;
1793
1794 /* If an optimization is done, the value of SRC while P
1795 is executed will be changed. Check that this is OK. */
1796 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1797 break;
1798 for (q = p; q; q = NEXT_INSN (q))
1799 {
1800 /* ??? We can't scan past the end of a basic block without
1801 updating the register lifetime info
1802 (REG_DEAD/basic_block_live_at_start). */
1803 if (perhaps_ends_bb_p (q))
1804 {
1805 q = 0;
1806 break;
1807 }
1808 else if (! INSN_P (q))
1809 continue;
1810 else if (reg_overlap_mentioned_p (src, PATTERN (q))
1811 || reg_set_p (src, q))
1812 break;
1813 }
1814 if (q)
1815 set2 = single_set (q);
1816 if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
1817 || XEXP (SET_SRC (set2), 0) != src
1818 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
1819 || (SET_DEST (set2) != src
1820 && ! find_reg_note (q, REG_DEAD, src)))
1821 {
1822 /* If this is a PLUS, we can still save a register by doing
1823 src += insn_const;
1824 P;
1825 src -= insn_const; .
1826 This also gives opportunities for subsequent
1827 optimizations in the backward pass, so do it there. */
1828 if (code == PLUS && backward
1829 /* Don't do this if we can likely tie DST to SET_DEST
1830 of P later; we can't do this tying here if we got a
1831 hard register. */
1832 && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
1833 && single_set (p)
1834 && REG_P (SET_DEST (single_set (p)))
1835 && (REGNO (SET_DEST (single_set (p)))
1836 < FIRST_PSEUDO_REGISTER))
1837 /* We may only emit an insn directly after P if we
1838 are not in the shadow of a live flags register. */
1839 && GET_MODE (p) == VOIDmode)
1840 {
1841 search_end = q;
1842 q = insn;
1843 set2 = set;
1844 newconst = -insn_const;
1845 code = MINUS;
1846 }
1847 else
1848 break;
1849 }
1850 else
1851 {
1852 newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
1853 /* Reject out of range shifts. */
1854 if (code != PLUS
1855 && (newconst < 0
1856 || ((unsigned HOST_WIDE_INT) newconst
1857 >= (GET_MODE_BITSIZE (GET_MODE
1858 (SET_SRC (set2)))))))
1859 break;
1860 if (code == PLUS)
1861 {
1862 post_inc = q;
1863 if (SET_DEST (set2) != src)
1864 post_inc_set = set2;
1865 }
1866 }
1867 /* We use 1 as last argument to validate_change so that all
1868 changes are accepted or rejected together by apply_change_group
1869 when it is called by validate_replace_rtx . */
1870 validate_change (q, &XEXP (SET_SRC (set2), 1),
1871 GEN_INT (newconst), 1);
1872 }
1873 validate_change (insn, recog_data.operand_loc[match_number], src, 1);
1874 if (validate_replace_rtx (dst, src_subreg, p))
1875 success = 1;
1876 break;
1877 }
1878
1879 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1880 break;
1881 if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
1882 {
1883 /* INSN was already checked to be movable wrt. the registers that it
1884 sets / uses when we found no REG_DEAD note for src on it, but it
1885 still might clobber the flags register. We'll have to check that
1886 we won't insert it into the shadow of a live flags register when
1887 we finally know where we are to move it. */
1888 overlap = p;
1889 src_note = find_reg_note (p, REG_DEAD, src);
1890 }
1891
1892 /* If we have passed a call instruction, and the pseudo-reg SRC is not
1893 already live across a call, then don't perform the optimization. */
1894 if (CALL_P (p))
1895 {
1896 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1897 break;
1898
1899 num_calls++;
1900 freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1901
1902 if (src_note)
1903 {
1904 s_num_calls++;
1905 s_freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1906 }
1907 }
1908 }
1909
1910 if (! success)
1911 return 0;
1912
1913 /* Remove the death note for DST from P. */
1914 remove_note (p, dst_note);
1915 if (code == MINUS)
1916 {
1917 post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
1918 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1919 && search_end
1920 && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
1921 post_inc = 0;
1922 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
1923 INC_REG_N_SETS (REGNO (src), 1);
1924 REG_LIVE_LENGTH (REGNO (src))++;
1925 }
1926 if (overlap)
1927 {
1928 /* The lifetime of src and dest overlap,
1929 but we can change this by moving insn. */
1930 rtx pat = PATTERN (insn);
1931 if (src_note)
1932 remove_note (overlap, src_note);
1933 if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1934 && code == PLUS
1935 && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
1936 insn = overlap;
1937 else
1938 {
1939 rtx notes = REG_NOTES (insn);
1940
1941 p = emit_insn_after_setloc (pat, PREV_INSN (p), INSN_LOCATOR (insn));
1942 delete_insn (insn);
1943 REG_NOTES (p) = notes;
1944 df_notes_rescan (p);
1945 }
1946 }
1947 /* Sometimes we'd generate src = const; src += n;
1948 if so, replace the instruction that set src
1949 in the first place. */
1950
1951 if (! overlap && (code == PLUS || code == MINUS))
1952 {
1953 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1954 rtx q, set2 = NULL_RTX;
1955 int num_calls2 = 0, s_length2 = 0, freq_calls2 = 0;
1956
1957 if (note && CONSTANT_P (XEXP (note, 0)))
1958 {
1959 for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
1960 {
1961 /* ??? We can't scan past the end of a basic block without
1962 updating the register lifetime info
1963 (REG_DEAD/basic_block_live_at_start). */
1964 if (perhaps_ends_bb_p (q))
1965 {
1966 q = 0;
1967 break;
1968 }
1969 else if (! INSN_P (q))
1970 continue;
1971
1972 s_length2++;
1973 if (reg_set_p (src, q))
1974 {
1975 set2 = single_set (q);
1976 break;
1977 }
1978 if (reg_overlap_mentioned_p (src, PATTERN (q)))
1979 {
1980 q = 0;
1981 break;
1982 }
1983 if (CALL_P (p))
1984 {
1985 num_calls2++;
1986 freq_calls2 += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1987 }
1988 }
1989 if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
1990 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
1991 {
1992 delete_insn (q);
1993 INC_REG_N_SETS (REGNO (src), -1);
1994 REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
1995 REG_FREQ_CALLS_CROSSED (REGNO (src)) -= freq_calls2;
1996 REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
1997 insn_const = 0;
1998 }
1999 }
2000 }
2001
2002 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
2003 && (code == PLUS || code == MINUS) && insn_const
2004 && try_auto_increment (p, insn, 0, src, insn_const, 1))
2005 insn = p;
2006 else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
2007 && post_inc
2008 && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
2009 post_inc = 0;
2010 /* If post_inc still prevails, try to find an
2011 insn where it can be used as a pre-in/decrement.
2012 If code is MINUS, this was already tried. */
2013 if (post_inc && code == PLUS
2014 /* Check that newconst is likely to be usable
2015 in a pre-in/decrement before starting the search. */
2016 && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
2017 || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
2018 && exact_log2 (newconst))
2019 {
2020 rtx q, inc_dest;
2021
2022 inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
2023 for (q = post_inc; (q = NEXT_INSN (q)); )
2024 {
2025 /* ??? We can't scan past the end of a basic block without updating
2026 the register lifetime info
2027 (REG_DEAD/basic_block_live_at_start). */
2028 if (perhaps_ends_bb_p (q))
2029 break;
2030 else if (! INSN_P (q))
2031 continue;
2032 else if (src != inc_dest
2033 && (reg_overlap_mentioned_p (src, PATTERN (q))
2034 || reg_set_p (src, q)))
2035 break;
2036 else if (reg_set_p (inc_dest, q))
2037 break;
2038 else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
2039 {
2040 try_auto_increment (q, post_inc,
2041 post_inc_set, inc_dest, newconst, 1);
2042 break;
2043 }
2044 }
2045 }
2046
2047 /* Move the death note for DST to INSN if it is used
2048 there. */
2049 if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
2050 {
2051 XEXP (dst_note, 1) = REG_NOTES (insn);
2052 REG_NOTES (insn) = dst_note;
2053 }
2054
2055 if (src_note)
2056 {
2057 /* Move the death note for SRC from INSN to P. */
2058 if (! overlap)
2059 remove_note (insn, src_note);
2060 XEXP (src_note, 1) = REG_NOTES (p);
2061 REG_NOTES (p) = src_note;
2062
2063 REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
2064 REG_FREQ_CALLS_CROSSED (REGNO (src)) += s_freq_calls;
2065 }
2066
2067 INC_REG_N_SETS (REGNO (src), 1);
2068 INC_REG_N_SETS (REGNO (dst), -1);
2069
2070 REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
2071 REG_FREQ_CALLS_CROSSED (REGNO (dst)) -= freq_calls;
2072
2073 REG_LIVE_LENGTH (REGNO (src)) += s_length;
2074 if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
2075 {
2076 REG_LIVE_LENGTH (REGNO (dst)) -= length;
2077 /* REG_LIVE_LENGTH is only an approximation after
2078 combine if sched is not run, so make sure that we
2079 still have a reasonable value. */
2080 if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
2081 REG_LIVE_LENGTH (REGNO (dst)) = 2;
2082 }
2083 if (dump_file)
2084 fprintf (dump_file,
2085 "Fixed operand %d of insn %d matching operand %d.\n",
2086 operand_number, INSN_UID (insn), match_number);
2087 return 1;
2088 }
2089
2090
2091 /* Return nonzero if X is stable and mentions no registers but for
2092 mentioning SRC or mentioning / changing DST . If in doubt, presume
2093 it is unstable.
2094 The rationale is that we want to check if we can move an insn easily
2095 while just paying attention to SRC and DST. */
2096 static int
2097 stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
2098 {
2099 RTX_CODE code = GET_CODE (x);
2100 switch (GET_RTX_CLASS (code))
2101 {
2102 case RTX_UNARY:
2103 case RTX_BIN_ARITH:
2104 case RTX_COMM_ARITH:
2105 case RTX_COMPARE:
2106 case RTX_COMM_COMPARE:
2107 case RTX_TERNARY:
2108 case RTX_BITFIELD_OPS:
2109 {
2110 int i;
2111 const char *fmt = GET_RTX_FORMAT (code);
2112 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2113 if (fmt[i] == 'e'
2114 && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
2115 return 0;
2116 return 1;
2117 }
2118 case RTX_OBJ:
2119 if (code == REG)
2120 return x == src || x == dst;
2121 /* If this is a MEM, look inside - there might be a register hidden in
2122 the address of an unchanging MEM. */
2123 if (code == MEM
2124 && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
2125 return 0;
2126 /* Fall through. */
2127 default:
2128 return ! rtx_unstable_p (x);
2129 }
2130 }
2131 \f
2132
2133 static bool
2134 gate_handle_regmove (void)
2135 {
2136 return (optimize > 0 && flag_regmove);
2137 }
2138
2139 /* Register allocation pre-pass, to reduce number of moves necessary
2140 for two-address machines. */
2141 static unsigned int
2142 rest_of_handle_regmove (void)
2143 {
2144 regmove_optimize (get_insns (), max_reg_num ());
2145 return 0;
2146 }
2147
2148 struct rtl_opt_pass pass_regmove =
2149 {
2150 {
2151 RTL_PASS,
2152 "regmove", /* name */
2153 gate_handle_regmove, /* gate */
2154 rest_of_handle_regmove, /* execute */
2155 NULL, /* sub */
2156 NULL, /* next */
2157 0, /* static_pass_number */
2158 TV_REGMOVE, /* tv_id */
2159 0, /* properties_required */
2160 0, /* properties_provided */
2161 0, /* properties_destroyed */
2162 0, /* todo_flags_start */
2163 TODO_df_finish | TODO_verify_rtl_sharing |
2164 TODO_dump_func |
2165 TODO_ggc_collect /* todo_flags_finish */
2166 }
2167 };
2168