Fortran] Use proper type for hidden is-present argument
[gcc.git] / gcc / regrename.c
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "memmodel.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "recog.h"
33 #include "addresses.h"
34 #include "cfganal.h"
35 #include "tree-pass.h"
36 #include "function-abi.h"
37 #include "regrename.h"
38
39 /* This file implements the RTL register renaming pass of the compiler. It is
40 a semi-local pass whose goal is to maximize the usage of the register file
41 of the processor by substituting registers for others in the solution given
42 by the register allocator. The algorithm is as follows:
43
44 1. Local def/use chains are built: within each basic block, chains are
45 opened and closed; if a chain isn't closed at the end of the block,
46 it is dropped. We pre-open chains if we have already examined a
47 predecessor block and found chains live at the end which match
48 live registers at the start of the new block.
49
50 2. We try to combine the local chains across basic block boundaries by
51 comparing chains that were open at the start or end of a block to
52 those in successor/predecessor blocks.
53
54 3. For each chain, the set of possible renaming registers is computed.
55 This takes into account the renaming of previously processed chains.
56 Optionally, a preferred class is computed for the renaming register.
57
58 4. The best renaming register is computed for the chain in the above set,
59 using a round-robin allocation. If a preferred class exists, then the
60 round-robin allocation is done within the class first, if possible.
61 The round-robin allocation of renaming registers itself is global.
62
63 5. If a renaming register has been found, it is substituted in the chain.
64
65 Targets can parameterize the pass by specifying a preferred class for the
66 renaming register for a given (super)class of registers to be renamed.
67
68 DEBUG_INSNs are treated specially, in particular registers occurring inside
69 them are treated as requiring ALL_REGS as a class. */
70
71 #if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS
72 #error "Use a different bitmap implementation for untracked_operands."
73 #endif
74
75 enum scan_actions
76 {
77 terminate_write,
78 terminate_dead,
79 mark_all_read,
80 mark_read,
81 mark_write,
82 /* mark_access is for marking the destination regs in
83 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
84 note is updated properly. */
85 mark_access
86 };
87
88 static const char * const scan_actions_name[] =
89 {
90 "terminate_write",
91 "terminate_dead",
92 "mark_all_read",
93 "mark_read",
94 "mark_write",
95 "mark_access"
96 };
97
98 /* TICK and THIS_TICK are used to record the last time we saw each
99 register. */
100 static int tick[FIRST_PSEUDO_REGISTER];
101 static int this_tick = 0;
102
103 static struct obstack rename_obstack;
104
105 /* If nonnull, the code calling into the register renamer requested
106 information about insn operands, and we store it here. */
107 vec<insn_rr_info> insn_rr;
108
109 static void scan_rtx (rtx_insn *, rtx *, enum reg_class, enum scan_actions,
110 enum op_type);
111 static bool build_def_use (basic_block);
112
113 /* The id to be given to the next opened chain. */
114 static unsigned current_id;
115
116 /* A mapping of unique id numbers to chains. */
117 static vec<du_head_p> id_to_chain;
118
119 /* List of currently open chains. */
120 static class du_head *open_chains;
121
122 /* Bitmap of open chains. The bits set always match the list found in
123 open_chains. */
124 static bitmap_head open_chains_set;
125
126 /* Record the registers being tracked in open_chains. */
127 static HARD_REG_SET live_in_chains;
128
129 /* Record the registers that are live but not tracked. The intersection
130 between this and live_in_chains is empty. */
131 static HARD_REG_SET live_hard_regs;
132
133 /* Set while scanning RTL if INSN_RR is nonnull, i.e. if the current analysis
134 is for a caller that requires operand data. Used in
135 record_operand_use. */
136 static operand_rr_info *cur_operand;
137
138 /* Set while scanning RTL if a register dies. Used to tie chains. */
139 static class du_head *terminated_this_insn;
140
141 /* Return the chain corresponding to id number ID. Take into account that
142 chains may have been merged. */
143 du_head_p
144 regrename_chain_from_id (unsigned int id)
145 {
146 du_head_p first_chain = id_to_chain[id];
147 du_head_p chain = first_chain;
148 while (chain->id != id)
149 {
150 id = chain->id;
151 chain = id_to_chain[id];
152 }
153 first_chain->id = id;
154 return chain;
155 }
156
157 /* Dump all def/use chains, starting at id FROM. */
158
159 static void
160 dump_def_use_chain (int from)
161 {
162 du_head_p head;
163 int i;
164 FOR_EACH_VEC_ELT_FROM (id_to_chain, i, head, from)
165 {
166 struct du_chain *this_du = head->first;
167
168 fprintf (dump_file, "Register %s (%d):",
169 reg_names[head->regno], head->nregs);
170 while (this_du)
171 {
172 fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn),
173 reg_class_names[this_du->cl]);
174 this_du = this_du->next_use;
175 }
176 fprintf (dump_file, "\n");
177 head = head->next_chain;
178 }
179 }
180
181 static void
182 free_chain_data (void)
183 {
184 int i;
185 du_head_p ptr;
186 for (i = 0; id_to_chain.iterate (i, &ptr); i++)
187 bitmap_clear (&ptr->conflicts);
188
189 id_to_chain.release ();
190 }
191
192 /* Walk all chains starting with CHAINS and record that they conflict with
193 another chain whose id is ID. */
194
195 static void
196 mark_conflict (class du_head *chains, unsigned id)
197 {
198 while (chains)
199 {
200 bitmap_set_bit (&chains->conflicts, id);
201 chains = chains->next_chain;
202 }
203 }
204
205 /* Examine cur_operand, and if it is nonnull, record information about the
206 use THIS_DU which is part of the chain HEAD. */
207
208 static void
209 record_operand_use (class du_head *head, struct du_chain *this_du)
210 {
211 if (cur_operand == NULL || cur_operand->failed)
212 return;
213 if (head->cannot_rename)
214 {
215 cur_operand->failed = true;
216 return;
217 }
218 gcc_assert (cur_operand->n_chains < MAX_REGS_PER_ADDRESS);
219 cur_operand->heads[cur_operand->n_chains] = head;
220 cur_operand->chains[cur_operand->n_chains++] = this_du;
221 }
222
223 /* Create a new chain for THIS_NREGS registers starting at THIS_REGNO,
224 and record its occurrence in *LOC, which is being written to in INSN.
225 This access requires a register of class CL. */
226
227 static du_head_p
228 create_new_chain (unsigned this_regno, unsigned this_nregs, rtx *loc,
229 rtx_insn *insn, enum reg_class cl)
230 {
231 class du_head *head = XOBNEW (&rename_obstack, class du_head);
232 struct du_chain *this_du;
233 int nregs;
234
235 memset ((void *)head, 0, sizeof *head);
236 head->next_chain = open_chains;
237 head->regno = this_regno;
238 head->nregs = this_nregs;
239
240 id_to_chain.safe_push (head);
241 head->id = current_id++;
242
243 bitmap_initialize (&head->conflicts, &bitmap_default_obstack);
244 bitmap_copy (&head->conflicts, &open_chains_set);
245 mark_conflict (open_chains, head->id);
246
247 /* Since we're tracking this as a chain now, remove it from the
248 list of conflicting live hard registers and track it in
249 live_in_chains instead. */
250 nregs = head->nregs;
251 while (nregs-- > 0)
252 {
253 SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
254 CLEAR_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
255 }
256
257 head->hard_conflicts = live_hard_regs;
258 bitmap_set_bit (&open_chains_set, head->id);
259
260 open_chains = head;
261
262 if (dump_file)
263 {
264 fprintf (dump_file, "Creating chain %s (%d)",
265 reg_names[head->regno], head->id);
266 if (insn != NULL_RTX)
267 fprintf (dump_file, " at insn %d", INSN_UID (insn));
268 fprintf (dump_file, "\n");
269 }
270
271 if (insn == NULL_RTX)
272 {
273 head->first = head->last = NULL;
274 return head;
275 }
276
277 this_du = XOBNEW (&rename_obstack, struct du_chain);
278 head->first = head->last = this_du;
279
280 this_du->next_use = 0;
281 this_du->loc = loc;
282 this_du->insn = insn;
283 this_du->cl = cl;
284 record_operand_use (head, this_du);
285 return head;
286 }
287
288 /* For a def-use chain HEAD, find which registers overlap its lifetime and
289 set the corresponding bits in *PSET. */
290
291 static void
292 merge_overlapping_regs (HARD_REG_SET *pset, class du_head *head)
293 {
294 bitmap_iterator bi;
295 unsigned i;
296 *pset |= head->hard_conflicts;
297 EXECUTE_IF_SET_IN_BITMAP (&head->conflicts, 0, i, bi)
298 {
299 du_head_p other = regrename_chain_from_id (i);
300 unsigned j = other->nregs;
301 gcc_assert (other != head);
302 while (j-- > 0)
303 SET_HARD_REG_BIT (*pset, other->regno + j);
304 }
305 }
306
307 /* Return true if (reg:MODE REGNO) would be clobbered by a call covered
308 by THIS_HEAD. */
309
310 static bool
311 call_clobbered_in_chain_p (du_head *this_head, machine_mode mode,
312 unsigned int regno)
313 {
314 return call_clobbered_in_region_p (this_head->call_abis,
315 this_head->call_clobber_mask,
316 mode, regno);
317 }
318
319 /* Check if NEW_REG can be the candidate register to rename for
320 REG in THIS_HEAD chain. THIS_UNAVAILABLE is a set of unavailable hard
321 registers. */
322
323 static bool
324 check_new_reg_p (int reg ATTRIBUTE_UNUSED, int new_reg,
325 class du_head *this_head, HARD_REG_SET this_unavailable)
326 {
327 machine_mode mode = GET_MODE (*this_head->first->loc);
328 int nregs = hard_regno_nregs (new_reg, mode);
329 int i;
330 struct du_chain *tmp;
331
332 for (i = nregs - 1; i >= 0; --i)
333 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
334 || fixed_regs[new_reg + i]
335 || global_regs[new_reg + i]
336 /* Can't use regs which aren't saved by the prologue. */
337 || (! df_regs_ever_live_p (new_reg + i)
338 && ! crtl->abi->clobbers_full_reg_p (new_reg + i))
339 #ifdef LEAF_REGISTERS
340 /* We can't use a non-leaf register if we're in a
341 leaf function. */
342 || (crtl->is_leaf
343 && !LEAF_REGISTERS[new_reg + i])
344 #endif
345 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i))
346 return false;
347
348 /* See whether it accepts all modes that occur in
349 definition and uses. */
350 for (tmp = this_head->first; tmp; tmp = tmp->next_use)
351 if ((!targetm.hard_regno_mode_ok (new_reg, GET_MODE (*tmp->loc))
352 && ! DEBUG_INSN_P (tmp->insn))
353 || call_clobbered_in_chain_p (this_head, GET_MODE (*tmp->loc),
354 new_reg))
355 return false;
356
357 return true;
358 }
359
360 /* For the chain THIS_HEAD, compute and return the best register to
361 rename to. SUPER_CLASS is the superunion of register classes in
362 the chain. UNAVAILABLE is a set of registers that cannot be used.
363 OLD_REG is the register currently used for the chain. BEST_RENAME
364 controls whether the register chosen must be better than the
365 current one or just respect the given constraint. */
366
367 int
368 find_rename_reg (du_head_p this_head, enum reg_class super_class,
369 HARD_REG_SET *unavailable, int old_reg, bool best_rename)
370 {
371 bool has_preferred_class;
372 enum reg_class preferred_class;
373 int pass;
374 int best_new_reg = old_reg;
375
376 /* Mark registers that overlap this chain's lifetime as unavailable. */
377 merge_overlapping_regs (unavailable, this_head);
378
379 /* Compute preferred rename class of super union of all the classes
380 in the chain. */
381 preferred_class
382 = (enum reg_class) targetm.preferred_rename_class (super_class);
383
384 /* Pick and check the register from the tied chain iff the tied chain
385 is not renamed. */
386 if (this_head->tied_chain && !this_head->tied_chain->renamed
387 && check_new_reg_p (old_reg, this_head->tied_chain->regno,
388 this_head, *unavailable))
389 return this_head->tied_chain->regno;
390
391 /* If PREFERRED_CLASS is not NO_REGS, we iterate in the first pass
392 over registers that belong to PREFERRED_CLASS and try to find the
393 best register within the class. If that failed, we iterate in
394 the second pass over registers that don't belong to the class.
395 If PREFERRED_CLASS is NO_REGS, we iterate over all registers in
396 ascending order without any preference. */
397 has_preferred_class = (preferred_class != NO_REGS);
398 for (pass = (has_preferred_class ? 0 : 1); pass < 2; pass++)
399 {
400 int new_reg;
401 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
402 {
403 if (has_preferred_class
404 && (pass == 0)
405 != TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
406 new_reg))
407 continue;
408
409 if (!check_new_reg_p (old_reg, new_reg, this_head, *unavailable))
410 continue;
411
412 if (!best_rename)
413 return new_reg;
414
415 /* In the first pass, we force the renaming of registers that
416 don't belong to PREFERRED_CLASS to registers that do, even
417 though the latters were used not very long ago. */
418 if ((pass == 0
419 && !TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
420 best_new_reg))
421 || tick[best_new_reg] > tick[new_reg])
422 best_new_reg = new_reg;
423 }
424 if (pass == 0 && best_new_reg != old_reg)
425 break;
426 }
427 return best_new_reg;
428 }
429
430 /* Iterate over elements in the chain HEAD in order to:
431 1. Count number of uses, storing it in *PN_USES.
432 2. Narrow the set of registers we can use for renaming, adding
433 unavailable registers to *PUNAVAILABLE, which must be
434 initialized by the caller.
435 3. Compute the superunion of register classes in this chain
436 and return it. */
437 reg_class
438 regrename_find_superclass (du_head_p head, int *pn_uses,
439 HARD_REG_SET *punavailable)
440 {
441 int n_uses = 0;
442 reg_class super_class = NO_REGS;
443 for (du_chain *tmp = head->first; tmp; tmp = tmp->next_use)
444 {
445 if (DEBUG_INSN_P (tmp->insn))
446 continue;
447 n_uses++;
448 *punavailable |= ~reg_class_contents[tmp->cl];
449 super_class
450 = reg_class_superunion[(int) super_class][(int) tmp->cl];
451 }
452 *pn_uses = n_uses;
453 return super_class;
454 }
455
456 /* Perform register renaming on the current function. */
457 static void
458 rename_chains (void)
459 {
460 HARD_REG_SET unavailable;
461 du_head_p this_head;
462 int i;
463
464 memset (tick, 0, sizeof tick);
465
466 CLEAR_HARD_REG_SET (unavailable);
467 /* Don't clobber traceback for noreturn functions. */
468 if (frame_pointer_needed)
469 {
470 add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM);
471 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
472 add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM);
473 }
474
475 FOR_EACH_VEC_ELT (id_to_chain, i, this_head)
476 {
477 int best_new_reg;
478 int n_uses;
479 HARD_REG_SET this_unavailable;
480 int reg = this_head->regno;
481
482 if (this_head->cannot_rename)
483 continue;
484
485 if (fixed_regs[reg] || global_regs[reg]
486 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
487 && reg == HARD_FRAME_POINTER_REGNUM)
488 || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
489 && reg == FRAME_POINTER_REGNUM))
490 continue;
491
492 this_unavailable = unavailable;
493
494 reg_class super_class = regrename_find_superclass (this_head, &n_uses,
495 &this_unavailable);
496 if (n_uses < 2)
497 continue;
498
499 best_new_reg = find_rename_reg (this_head, super_class,
500 &this_unavailable, reg, true);
501
502 if (dump_file)
503 {
504 fprintf (dump_file, "Register %s in insn %d",
505 reg_names[reg], INSN_UID (this_head->first->insn));
506 if (this_head->call_abis)
507 fprintf (dump_file, " crosses a call");
508 }
509
510 if (best_new_reg == reg)
511 {
512 tick[reg] = ++this_tick;
513 if (dump_file)
514 fprintf (dump_file, "; no available better choice\n");
515 continue;
516 }
517
518 if (regrename_do_replace (this_head, best_new_reg))
519 {
520 if (dump_file)
521 fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
522 tick[best_new_reg] = ++this_tick;
523 df_set_regs_ever_live (best_new_reg, true);
524 }
525 else
526 {
527 if (dump_file)
528 fprintf (dump_file, ", renaming as %s failed\n",
529 reg_names[best_new_reg]);
530 tick[reg] = ++this_tick;
531 }
532 }
533 }
534
535 /* A structure to record information for each hard register at the start of
536 a basic block. */
537 struct incoming_reg_info {
538 /* Holds the number of registers used in the chain that gave us information
539 about this register. Zero means no information known yet, while a
540 negative value is used for something that is part of, but not the first
541 register in a multi-register value. */
542 int nregs;
543 /* Set to true if we have accesses that conflict in the number of registers
544 used. */
545 bool unusable;
546 };
547
548 /* A structure recording information about each basic block. It is saved
549 and restored around basic block boundaries.
550 A pointer to such a structure is stored in each basic block's aux field
551 during regrename_analyze, except for blocks we know can't be optimized
552 (such as entry and exit blocks). */
553 class bb_rename_info
554 {
555 public:
556 /* The basic block corresponding to this structure. */
557 basic_block bb;
558 /* Copies of the global information. */
559 bitmap_head open_chains_set;
560 bitmap_head incoming_open_chains_set;
561 struct incoming_reg_info incoming[FIRST_PSEUDO_REGISTER];
562 };
563
564 /* Initialize a rename_info structure P for basic block BB, which starts a new
565 scan. */
566 static void
567 init_rename_info (class bb_rename_info *p, basic_block bb)
568 {
569 int i;
570 df_ref def;
571 HARD_REG_SET start_chains_set;
572
573 p->bb = bb;
574 bitmap_initialize (&p->open_chains_set, &bitmap_default_obstack);
575 bitmap_initialize (&p->incoming_open_chains_set, &bitmap_default_obstack);
576
577 open_chains = NULL;
578 bitmap_clear (&open_chains_set);
579
580 CLEAR_HARD_REG_SET (live_in_chains);
581 REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_in (bb));
582 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
583 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
584 SET_HARD_REG_BIT (live_hard_regs, DF_REF_REGNO (def));
585
586 /* Open chains based on information from (at least one) predecessor
587 block. This gives us a chance later on to combine chains across
588 basic block boundaries. Inconsistencies (in access sizes) will
589 be caught normally and dealt with conservatively by disabling the
590 chain for renaming, and there is no risk of losing optimization
591 opportunities by opening chains either: if we did not open the
592 chains, we'd have to track the live register as a hard reg, and
593 we'd be unable to rename it in any case. */
594 CLEAR_HARD_REG_SET (start_chains_set);
595 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
596 {
597 struct incoming_reg_info *iri = p->incoming + i;
598 if (iri->nregs > 0 && !iri->unusable
599 && range_in_hard_reg_set_p (live_hard_regs, i, iri->nregs))
600 {
601 SET_HARD_REG_BIT (start_chains_set, i);
602 remove_range_from_hard_reg_set (&live_hard_regs, i, iri->nregs);
603 }
604 }
605 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
606 {
607 struct incoming_reg_info *iri = p->incoming + i;
608 if (TEST_HARD_REG_BIT (start_chains_set, i))
609 {
610 du_head_p chain;
611 if (dump_file)
612 fprintf (dump_file, "opening incoming chain\n");
613 chain = create_new_chain (i, iri->nregs, NULL, NULL, NO_REGS);
614 bitmap_set_bit (&p->incoming_open_chains_set, chain->id);
615 }
616 }
617 }
618
619 /* Record in RI that the block corresponding to it has an incoming
620 live value, described by CHAIN. */
621 static void
622 set_incoming_from_chain (class bb_rename_info *ri, du_head_p chain)
623 {
624 int i;
625 int incoming_nregs = ri->incoming[chain->regno].nregs;
626 int nregs;
627
628 /* If we've recorded the same information before, everything is fine. */
629 if (incoming_nregs == chain->nregs)
630 {
631 if (dump_file)
632 fprintf (dump_file, "reg %d/%d already recorded\n",
633 chain->regno, chain->nregs);
634 return;
635 }
636
637 /* If we have no information for any of the involved registers, update
638 the incoming array. */
639 nregs = chain->nregs;
640 while (nregs-- > 0)
641 if (ri->incoming[chain->regno + nregs].nregs != 0
642 || ri->incoming[chain->regno + nregs].unusable)
643 break;
644 if (nregs < 0)
645 {
646 nregs = chain->nregs;
647 ri->incoming[chain->regno].nregs = nregs;
648 while (nregs-- > 1)
649 ri->incoming[chain->regno + nregs].nregs = -nregs;
650 if (dump_file)
651 fprintf (dump_file, "recorded reg %d/%d\n",
652 chain->regno, chain->nregs);
653 return;
654 }
655
656 /* There must be some kind of conflict. Prevent both the old and
657 new ranges from being used. */
658 if (incoming_nregs < 0)
659 ri->incoming[chain->regno + incoming_nregs].unusable = true;
660 for (i = 0; i < chain->nregs; i++)
661 ri->incoming[chain->regno + i].unusable = true;
662 }
663
664 /* Merge the two chains C1 and C2 so that all conflict information is
665 recorded and C1, and the id of C2 is changed to that of C1. */
666 static void
667 merge_chains (du_head_p c1, du_head_p c2)
668 {
669 if (c1 == c2)
670 return;
671
672 if (c2->first != NULL)
673 {
674 if (c1->first == NULL)
675 c1->first = c2->first;
676 else
677 c1->last->next_use = c2->first;
678 c1->last = c2->last;
679 }
680
681 c2->first = c2->last = NULL;
682 c2->id = c1->id;
683
684 c1->hard_conflicts |= c2->hard_conflicts;
685 bitmap_ior_into (&c1->conflicts, &c2->conflicts);
686
687 c1->call_clobber_mask |= c2->call_clobber_mask;
688 c1->call_abis |= c2->call_abis;
689 c1->cannot_rename |= c2->cannot_rename;
690 }
691
692 /* Analyze the current function and build chains for renaming. */
693
694 void
695 regrename_analyze (bitmap bb_mask)
696 {
697 class bb_rename_info *rename_info;
698 int i;
699 basic_block bb;
700 int n_bbs;
701 int *inverse_postorder;
702
703 inverse_postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
704 n_bbs = pre_and_rev_post_order_compute (NULL, inverse_postorder, false);
705
706 /* Gather some information about the blocks in this function. */
707 rename_info = XCNEWVEC (class bb_rename_info, n_basic_blocks_for_fn (cfun));
708 i = 0;
709 FOR_EACH_BB_FN (bb, cfun)
710 {
711 class bb_rename_info *ri = rename_info + i;
712 ri->bb = bb;
713 if (bb_mask != NULL && !bitmap_bit_p (bb_mask, bb->index))
714 bb->aux = NULL;
715 else
716 bb->aux = ri;
717 i++;
718 }
719
720 current_id = 0;
721 id_to_chain.create (0);
722 bitmap_initialize (&open_chains_set, &bitmap_default_obstack);
723
724 /* The order in which we visit blocks ensures that whenever
725 possible, we only process a block after at least one of its
726 predecessors, which provides a "seeding" effect to make the logic
727 in set_incoming_from_chain and init_rename_info useful. */
728
729 for (i = 0; i < n_bbs; i++)
730 {
731 basic_block bb1 = BASIC_BLOCK_FOR_FN (cfun, inverse_postorder[i]);
732 class bb_rename_info *this_info;
733 bool success;
734 edge e;
735 edge_iterator ei;
736 int old_length = id_to_chain.length ();
737
738 this_info = (class bb_rename_info *) bb1->aux;
739 if (this_info == NULL)
740 continue;
741
742 if (dump_file)
743 fprintf (dump_file, "\nprocessing block %d:\n", bb1->index);
744
745 init_rename_info (this_info, bb1);
746
747 success = build_def_use (bb1);
748 if (!success)
749 {
750 if (dump_file)
751 fprintf (dump_file, "failed\n");
752 bb1->aux = NULL;
753 id_to_chain.truncate (old_length);
754 current_id = old_length;
755 bitmap_clear (&this_info->incoming_open_chains_set);
756 open_chains = NULL;
757 if (insn_rr.exists ())
758 {
759 rtx_insn *insn;
760 FOR_BB_INSNS (bb1, insn)
761 {
762 insn_rr_info *p = &insn_rr[INSN_UID (insn)];
763 p->op_info = NULL;
764 }
765 }
766 continue;
767 }
768
769 if (dump_file)
770 dump_def_use_chain (old_length);
771 bitmap_copy (&this_info->open_chains_set, &open_chains_set);
772
773 /* Add successor blocks to the worklist if necessary, and record
774 data about our own open chains at the end of this block, which
775 will be used to pre-open chains when processing the successors. */
776 FOR_EACH_EDGE (e, ei, bb1->succs)
777 {
778 class bb_rename_info *dest_ri;
779 class du_head *chain;
780
781 if (dump_file)
782 fprintf (dump_file, "successor block %d\n", e->dest->index);
783
784 if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
785 continue;
786 dest_ri = (class bb_rename_info *)e->dest->aux;
787 if (dest_ri == NULL)
788 continue;
789 for (chain = open_chains; chain; chain = chain->next_chain)
790 set_incoming_from_chain (dest_ri, chain);
791 }
792 }
793
794 free (inverse_postorder);
795
796 /* Now, combine the chains data we have gathered across basic block
797 boundaries.
798
799 For every basic block, there may be chains open at the start, or at the
800 end. Rather than exclude them from renaming, we look for open chains
801 with matching registers at the other side of the CFG edge.
802
803 For a given chain using register R, open at the start of block B, we
804 must find an open chain using R on the other side of every edge leading
805 to B, if the register is live across this edge. In the code below,
806 N_PREDS_USED counts the number of edges where the register is live, and
807 N_PREDS_JOINED counts those where we found an appropriate chain for
808 joining.
809
810 We perform the analysis for both incoming and outgoing edges, but we
811 only need to merge once (in the second part, after verifying outgoing
812 edges). */
813 FOR_EACH_BB_FN (bb, cfun)
814 {
815 class bb_rename_info *bb_ri = (class bb_rename_info *) bb->aux;
816 unsigned j;
817 bitmap_iterator bi;
818
819 if (bb_ri == NULL)
820 continue;
821
822 if (dump_file)
823 fprintf (dump_file, "processing bb %d in edges\n", bb->index);
824
825 EXECUTE_IF_SET_IN_BITMAP (&bb_ri->incoming_open_chains_set, 0, j, bi)
826 {
827 edge e;
828 edge_iterator ei;
829 class du_head *chain = regrename_chain_from_id (j);
830 int n_preds_used = 0, n_preds_joined = 0;
831
832 FOR_EACH_EDGE (e, ei, bb->preds)
833 {
834 class bb_rename_info *src_ri;
835 unsigned k;
836 bitmap_iterator bi2;
837 HARD_REG_SET live;
838 bool success = false;
839
840 REG_SET_TO_HARD_REG_SET (live, df_get_live_out (e->src));
841 if (!range_overlaps_hard_reg_set_p (live, chain->regno,
842 chain->nregs))
843 continue;
844 n_preds_used++;
845
846 if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
847 continue;
848
849 src_ri = (class bb_rename_info *)e->src->aux;
850 if (src_ri == NULL)
851 continue;
852
853 EXECUTE_IF_SET_IN_BITMAP (&src_ri->open_chains_set,
854 0, k, bi2)
855 {
856 class du_head *outgoing_chain = regrename_chain_from_id (k);
857
858 if (outgoing_chain->regno == chain->regno
859 && outgoing_chain->nregs == chain->nregs)
860 {
861 n_preds_joined++;
862 success = true;
863 break;
864 }
865 }
866 if (!success && dump_file)
867 fprintf (dump_file, "failure to match with pred block %d\n",
868 e->src->index);
869 }
870 if (n_preds_joined < n_preds_used)
871 {
872 if (dump_file)
873 fprintf (dump_file, "cannot rename chain %d\n", j);
874 chain->cannot_rename = 1;
875 }
876 }
877 }
878 FOR_EACH_BB_FN (bb, cfun)
879 {
880 class bb_rename_info *bb_ri = (class bb_rename_info *) bb->aux;
881 unsigned j;
882 bitmap_iterator bi;
883
884 if (bb_ri == NULL)
885 continue;
886
887 if (dump_file)
888 fprintf (dump_file, "processing bb %d out edges\n", bb->index);
889
890 EXECUTE_IF_SET_IN_BITMAP (&bb_ri->open_chains_set, 0, j, bi)
891 {
892 edge e;
893 edge_iterator ei;
894 class du_head *chain = regrename_chain_from_id (j);
895 int n_succs_used = 0, n_succs_joined = 0;
896
897 FOR_EACH_EDGE (e, ei, bb->succs)
898 {
899 bool printed = false;
900 class bb_rename_info *dest_ri;
901 unsigned k;
902 bitmap_iterator bi2;
903 HARD_REG_SET live;
904
905 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (e->dest));
906 if (!range_overlaps_hard_reg_set_p (live, chain->regno,
907 chain->nregs))
908 continue;
909
910 n_succs_used++;
911
912 dest_ri = (class bb_rename_info *)e->dest->aux;
913 if (dest_ri == NULL)
914 continue;
915
916 EXECUTE_IF_SET_IN_BITMAP (&dest_ri->incoming_open_chains_set,
917 0, k, bi2)
918 {
919 class du_head *incoming_chain = regrename_chain_from_id (k);
920
921 if (incoming_chain->regno == chain->regno
922 && incoming_chain->nregs == chain->nregs)
923 {
924 if (dump_file)
925 {
926 if (!printed)
927 fprintf (dump_file,
928 "merging blocks for edge %d -> %d\n",
929 e->src->index, e->dest->index);
930 printed = true;
931 fprintf (dump_file,
932 " merging chains %d (->%d) and %d (->%d) [%s]\n",
933 k, incoming_chain->id, j, chain->id,
934 reg_names[incoming_chain->regno]);
935 }
936
937 merge_chains (chain, incoming_chain);
938 n_succs_joined++;
939 break;
940 }
941 }
942 }
943 if (n_succs_joined < n_succs_used)
944 {
945 if (dump_file)
946 fprintf (dump_file, "cannot rename chain %d\n",
947 j);
948 chain->cannot_rename = 1;
949 }
950 }
951 }
952
953 free (rename_info);
954
955 FOR_EACH_BB_FN (bb, cfun)
956 bb->aux = NULL;
957 }
958
959 /* Attempt to replace all uses of the register in the chain beginning with
960 HEAD with REG. Returns true on success and false if the replacement is
961 rejected because the insns would not validate. The latter can happen
962 e.g. if a match_parallel predicate enforces restrictions on register
963 numbering in its subpatterns. */
964
965 bool
966 regrename_do_replace (class du_head *head, int reg)
967 {
968 struct du_chain *chain;
969 unsigned int base_regno = head->regno;
970 machine_mode mode;
971 rtx last_reg = NULL_RTX, last_repl = NULL_RTX;
972
973 for (chain = head->first; chain; chain = chain->next_use)
974 {
975 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
976 class reg_attrs *attr = REG_ATTRS (*chain->loc);
977 int reg_ptr = REG_POINTER (*chain->loc);
978
979 if (DEBUG_INSN_P (chain->insn) && REGNO (*chain->loc) != base_regno)
980 validate_change (chain->insn, &(INSN_VAR_LOCATION_LOC (chain->insn)),
981 gen_rtx_UNKNOWN_VAR_LOC (), true);
982 else
983 {
984 if (*chain->loc != last_reg)
985 {
986 last_repl = gen_raw_REG (GET_MODE (*chain->loc), reg);
987 if (regno >= FIRST_PSEUDO_REGISTER)
988 ORIGINAL_REGNO (last_repl) = regno;
989 REG_ATTRS (last_repl) = attr;
990 REG_POINTER (last_repl) = reg_ptr;
991 last_reg = *chain->loc;
992 }
993 validate_change (chain->insn, chain->loc, last_repl, true);
994 }
995 }
996
997 if (!apply_change_group ())
998 return false;
999
1000 mode = GET_MODE (*head->first->loc);
1001 head->renamed = 1;
1002 head->regno = reg;
1003 head->nregs = hard_regno_nregs (reg, mode);
1004 return true;
1005 }
1006
1007
1008 /* True if we found a register with a size mismatch, which means that we
1009 can't track its lifetime accurately. If so, we abort the current block
1010 without renaming. */
1011 static bool fail_current_block;
1012
1013 /* Return true if OP is a reg for which all bits are set in PSET, false
1014 if all bits are clear.
1015 In other cases, set fail_current_block and return false. */
1016
1017 static bool
1018 verify_reg_in_set (rtx op, HARD_REG_SET *pset)
1019 {
1020 unsigned regno, nregs;
1021 bool all_live, all_dead;
1022 if (!REG_P (op))
1023 return false;
1024
1025 regno = REGNO (op);
1026 nregs = REG_NREGS (op);
1027 all_live = all_dead = true;
1028 while (nregs-- > 0)
1029 if (TEST_HARD_REG_BIT (*pset, regno + nregs))
1030 all_dead = false;
1031 else
1032 all_live = false;
1033 if (!all_dead && !all_live)
1034 {
1035 fail_current_block = true;
1036 return false;
1037 }
1038 return all_live;
1039 }
1040
1041 /* Return true if OP is a reg that is being tracked already in some form.
1042 May set fail_current_block if it sees an unhandled case of overlap. */
1043
1044 static bool
1045 verify_reg_tracked (rtx op)
1046 {
1047 return (verify_reg_in_set (op, &live_hard_regs)
1048 || verify_reg_in_set (op, &live_in_chains));
1049 }
1050
1051 /* Called through note_stores. DATA points to a rtx_code, either SET or
1052 CLOBBER, which tells us which kind of rtx to look at. If we have a
1053 match, record the set register in live_hard_regs and in the hard_conflicts
1054 bitmap of open chains. */
1055
1056 static void
1057 note_sets_clobbers (rtx x, const_rtx set, void *data)
1058 {
1059 enum rtx_code code = *(enum rtx_code *)data;
1060 class du_head *chain;
1061
1062 if (GET_CODE (x) == SUBREG)
1063 x = SUBREG_REG (x);
1064 if (!REG_P (x) || GET_CODE (set) != code)
1065 return;
1066 /* There must not be pseudos at this point. */
1067 gcc_assert (HARD_REGISTER_P (x));
1068 add_to_hard_reg_set (&live_hard_regs, GET_MODE (x), REGNO (x));
1069 for (chain = open_chains; chain; chain = chain->next_chain)
1070 add_to_hard_reg_set (&chain->hard_conflicts, GET_MODE (x), REGNO (x));
1071 }
1072
1073 static void
1074 scan_rtx_reg (rtx_insn *insn, rtx *loc, enum reg_class cl, enum scan_actions action,
1075 enum op_type type)
1076 {
1077 class du_head **p;
1078 rtx x = *loc;
1079 unsigned this_regno = REGNO (x);
1080 int this_nregs = REG_NREGS (x);
1081
1082 if (action == mark_write)
1083 {
1084 if (type == OP_OUT)
1085 {
1086 du_head_p c;
1087 rtx pat = PATTERN (insn);
1088
1089 c = create_new_chain (this_regno, this_nregs, loc, insn, cl);
1090
1091 /* We try to tie chains in a move instruction for
1092 a single output. */
1093 if (recog_data.n_operands == 2
1094 && GET_CODE (pat) == SET
1095 && GET_CODE (SET_DEST (pat)) == REG
1096 && GET_CODE (SET_SRC (pat)) == REG
1097 && terminated_this_insn
1098 && terminated_this_insn->nregs
1099 == REG_NREGS (recog_data.operand[1]))
1100 {
1101 gcc_assert (terminated_this_insn->regno
1102 == REGNO (recog_data.operand[1]));
1103
1104 c->tied_chain = terminated_this_insn;
1105 terminated_this_insn->tied_chain = c;
1106
1107 if (dump_file)
1108 fprintf (dump_file, "Tying chain %s (%d) with %s (%d)\n",
1109 reg_names[c->regno], c->id,
1110 reg_names[terminated_this_insn->regno],
1111 terminated_this_insn->id);
1112 }
1113 }
1114
1115 return;
1116 }
1117
1118 if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
1119 return;
1120
1121 for (p = &open_chains; *p;)
1122 {
1123 class du_head *head = *p;
1124 class du_head *next = head->next_chain;
1125 int exact_match = (head->regno == this_regno
1126 && head->nregs == this_nregs);
1127 int superset = (this_regno <= head->regno
1128 && this_regno + this_nregs >= head->regno + head->nregs);
1129 int subset = (this_regno >= head->regno
1130 && this_regno + this_nregs <= head->regno + head->nregs);
1131
1132 if (!bitmap_bit_p (&open_chains_set, head->id)
1133 || head->regno + head->nregs <= this_regno
1134 || this_regno + this_nregs <= head->regno)
1135 {
1136 p = &head->next_chain;
1137 continue;
1138 }
1139
1140 if (action == mark_read || action == mark_access)
1141 {
1142 /* ??? Class NO_REGS can happen if the md file makes use of
1143 EXTRA_CONSTRAINTS to match registers. Which is arguably
1144 wrong, but there we are. */
1145
1146 if (cl == NO_REGS || (!exact_match && !DEBUG_INSN_P (insn)))
1147 {
1148 if (dump_file)
1149 fprintf (dump_file,
1150 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1151 reg_names[head->regno], head->id, INSN_UID (insn),
1152 scan_actions_name[(int) action]);
1153 head->cannot_rename = 1;
1154 if (superset)
1155 {
1156 unsigned nregs = this_nregs;
1157 head->regno = this_regno;
1158 head->nregs = this_nregs;
1159 while (nregs-- > 0)
1160 SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
1161 if (dump_file)
1162 fprintf (dump_file,
1163 "Widening register in chain %s (%d) at insn %d\n",
1164 reg_names[head->regno], head->id, INSN_UID (insn));
1165 }
1166 else if (!subset)
1167 {
1168 fail_current_block = true;
1169 if (dump_file)
1170 fprintf (dump_file,
1171 "Failing basic block due to unhandled overlap\n");
1172 }
1173 }
1174 else
1175 {
1176 struct du_chain *this_du;
1177 this_du = XOBNEW (&rename_obstack, struct du_chain);
1178 this_du->next_use = 0;
1179 this_du->loc = loc;
1180 this_du->insn = insn;
1181 this_du->cl = cl;
1182 if (head->first == NULL)
1183 head->first = this_du;
1184 else
1185 head->last->next_use = this_du;
1186 record_operand_use (head, this_du);
1187 head->last = this_du;
1188 }
1189 /* Avoid adding the same location in a DEBUG_INSN multiple times,
1190 which could happen with non-exact overlap. */
1191 if (DEBUG_INSN_P (insn))
1192 return;
1193 /* Otherwise, find any other chains that do not match exactly;
1194 ensure they all get marked unrenamable. */
1195 p = &head->next_chain;
1196 continue;
1197 }
1198
1199 /* Whether the terminated chain can be used for renaming
1200 depends on the action and this being an exact match.
1201 In either case, we remove this element from open_chains. */
1202
1203 if ((action == terminate_dead || action == terminate_write)
1204 && (superset || subset))
1205 {
1206 unsigned nregs;
1207
1208 if (subset && !superset)
1209 head->cannot_rename = 1;
1210 bitmap_clear_bit (&open_chains_set, head->id);
1211
1212 nregs = head->nregs;
1213 while (nregs-- > 0)
1214 {
1215 CLEAR_HARD_REG_BIT (live_in_chains, head->regno + nregs);
1216 if (subset && !superset
1217 && (head->regno + nregs < this_regno
1218 || head->regno + nregs >= this_regno + this_nregs))
1219 SET_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
1220 }
1221
1222 if (action == terminate_dead)
1223 terminated_this_insn = *p;
1224 *p = next;
1225 if (dump_file)
1226 fprintf (dump_file,
1227 "Closing chain %s (%d) at insn %d (%s%s)\n",
1228 reg_names[head->regno], head->id, INSN_UID (insn),
1229 scan_actions_name[(int) action],
1230 superset ? ", superset" : subset ? ", subset" : "");
1231 }
1232 else if (action == terminate_dead || action == terminate_write)
1233 {
1234 /* In this case, tracking liveness gets too hard. Fail the
1235 entire basic block. */
1236 if (dump_file)
1237 fprintf (dump_file,
1238 "Failing basic block due to unhandled overlap\n");
1239 fail_current_block = true;
1240 return;
1241 }
1242 else
1243 {
1244 head->cannot_rename = 1;
1245 if (dump_file)
1246 fprintf (dump_file,
1247 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1248 reg_names[head->regno], head->id, INSN_UID (insn),
1249 scan_actions_name[(int) action]);
1250 p = &head->next_chain;
1251 }
1252 }
1253 }
1254
1255 /* A wrapper around base_reg_class which returns ALL_REGS if INSN is a
1256 DEBUG_INSN. The arguments MODE, AS, CODE and INDEX_CODE are as for
1257 base_reg_class. */
1258
1259 static reg_class
1260 base_reg_class_for_rename (rtx_insn *insn, machine_mode mode, addr_space_t as,
1261 rtx_code code, rtx_code index_code)
1262 {
1263 if (DEBUG_INSN_P (insn))
1264 return ALL_REGS;
1265 return base_reg_class (mode, as, code, index_code);
1266 }
1267
1268 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1269 BASE_REG_CLASS depending on how the register is being considered. */
1270
1271 static void
1272 scan_rtx_address (rtx_insn *insn, rtx *loc, enum reg_class cl,
1273 enum scan_actions action, machine_mode mode,
1274 addr_space_t as)
1275 {
1276 rtx x = *loc;
1277 RTX_CODE code = GET_CODE (x);
1278 const char *fmt;
1279 int i, j;
1280
1281 if (action == mark_write || action == mark_access)
1282 return;
1283
1284 switch (code)
1285 {
1286 case PLUS:
1287 {
1288 rtx orig_op0 = XEXP (x, 0);
1289 rtx orig_op1 = XEXP (x, 1);
1290 RTX_CODE code0 = GET_CODE (orig_op0);
1291 RTX_CODE code1 = GET_CODE (orig_op1);
1292 rtx op0 = orig_op0;
1293 rtx op1 = orig_op1;
1294 rtx *locI = NULL;
1295 rtx *locB = NULL;
1296 enum rtx_code index_code = SCRATCH;
1297
1298 if (GET_CODE (op0) == SUBREG)
1299 {
1300 op0 = SUBREG_REG (op0);
1301 code0 = GET_CODE (op0);
1302 }
1303
1304 if (GET_CODE (op1) == SUBREG)
1305 {
1306 op1 = SUBREG_REG (op1);
1307 code1 = GET_CODE (op1);
1308 }
1309
1310 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1311 || code0 == ZERO_EXTEND || code1 == MEM)
1312 {
1313 locI = &XEXP (x, 0);
1314 locB = &XEXP (x, 1);
1315 index_code = GET_CODE (*locI);
1316 }
1317 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1318 || code1 == ZERO_EXTEND || code0 == MEM)
1319 {
1320 locI = &XEXP (x, 1);
1321 locB = &XEXP (x, 0);
1322 index_code = GET_CODE (*locI);
1323 }
1324 else if (code0 == CONST_INT || code0 == CONST
1325 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1326 {
1327 locB = &XEXP (x, 1);
1328 index_code = GET_CODE (XEXP (x, 0));
1329 }
1330 else if (code1 == CONST_INT || code1 == CONST
1331 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1332 {
1333 locB = &XEXP (x, 0);
1334 index_code = GET_CODE (XEXP (x, 1));
1335 }
1336 else if (code0 == REG && code1 == REG)
1337 {
1338 int index_op;
1339 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
1340
1341 if (REGNO_OK_FOR_INDEX_P (regno1)
1342 && regno_ok_for_base_p (regno0, mode, as, PLUS, REG))
1343 index_op = 1;
1344 else if (REGNO_OK_FOR_INDEX_P (regno0)
1345 && regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
1346 index_op = 0;
1347 else if (regno_ok_for_base_p (regno0, mode, as, PLUS, REG)
1348 || REGNO_OK_FOR_INDEX_P (regno1))
1349 index_op = 1;
1350 else if (regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
1351 index_op = 0;
1352 else
1353 index_op = 1;
1354
1355 locI = &XEXP (x, index_op);
1356 locB = &XEXP (x, !index_op);
1357 index_code = GET_CODE (*locI);
1358 }
1359 else if (code0 == REG)
1360 {
1361 locI = &XEXP (x, 0);
1362 locB = &XEXP (x, 1);
1363 index_code = GET_CODE (*locI);
1364 }
1365 else if (code1 == REG)
1366 {
1367 locI = &XEXP (x, 1);
1368 locB = &XEXP (x, 0);
1369 index_code = GET_CODE (*locI);
1370 }
1371
1372 if (locI)
1373 {
1374 reg_class iclass = DEBUG_INSN_P (insn) ? ALL_REGS : INDEX_REG_CLASS;
1375 scan_rtx_address (insn, locI, iclass, action, mode, as);
1376 }
1377 if (locB)
1378 {
1379 reg_class bclass = base_reg_class_for_rename (insn, mode, as, PLUS,
1380 index_code);
1381 scan_rtx_address (insn, locB, bclass, action, mode, as);
1382 }
1383 return;
1384 }
1385
1386 case POST_INC:
1387 case POST_DEC:
1388 case POST_MODIFY:
1389 case PRE_INC:
1390 case PRE_DEC:
1391 case PRE_MODIFY:
1392 /* If the target doesn't claim to handle autoinc, this must be
1393 something special, like a stack push. Kill this chain. */
1394 if (!AUTO_INC_DEC)
1395 action = mark_all_read;
1396
1397 break;
1398
1399 case MEM:
1400 {
1401 reg_class bclass = base_reg_class_for_rename (insn, GET_MODE (x),
1402 MEM_ADDR_SPACE (x),
1403 MEM, SCRATCH);
1404 scan_rtx_address (insn, &XEXP (x, 0), bclass, action, GET_MODE (x),
1405 MEM_ADDR_SPACE (x));
1406 }
1407 return;
1408
1409 case REG:
1410 scan_rtx_reg (insn, loc, cl, action, OP_IN);
1411 return;
1412
1413 default:
1414 break;
1415 }
1416
1417 fmt = GET_RTX_FORMAT (code);
1418 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1419 {
1420 if (fmt[i] == 'e')
1421 scan_rtx_address (insn, &XEXP (x, i), cl, action, mode, as);
1422 else if (fmt[i] == 'E')
1423 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1424 scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode, as);
1425 }
1426 }
1427
1428 static void
1429 scan_rtx (rtx_insn *insn, rtx *loc, enum reg_class cl, enum scan_actions action,
1430 enum op_type type)
1431 {
1432 const char *fmt;
1433 rtx x = *loc;
1434 int i, j;
1435
1436 enum rtx_code code = GET_CODE (x);
1437 switch (code)
1438 {
1439 case CONST:
1440 CASE_CONST_ANY:
1441 case SYMBOL_REF:
1442 case LABEL_REF:
1443 case CC0:
1444 case PC:
1445 return;
1446
1447 case REG:
1448 scan_rtx_reg (insn, loc, cl, action, type);
1449 return;
1450
1451 case MEM:
1452 {
1453 reg_class bclass = base_reg_class_for_rename (insn, GET_MODE (x),
1454 MEM_ADDR_SPACE (x),
1455 MEM, SCRATCH);
1456
1457 scan_rtx_address (insn, &XEXP (x, 0), bclass, action, GET_MODE (x),
1458 MEM_ADDR_SPACE (x));
1459 }
1460 return;
1461
1462 case SET:
1463 scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN);
1464 scan_rtx (insn, &SET_DEST (x), cl, action,
1465 (GET_CODE (PATTERN (insn)) == COND_EXEC
1466 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
1467 return;
1468
1469 case STRICT_LOW_PART:
1470 scan_rtx (insn, &XEXP (x, 0), cl, action,
1471 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT);
1472 return;
1473
1474 case ZERO_EXTRACT:
1475 case SIGN_EXTRACT:
1476 scan_rtx (insn, &XEXP (x, 0), cl, action,
1477 (type == OP_IN ? OP_IN :
1478 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT));
1479 scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN);
1480 scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN);
1481 return;
1482
1483 case POST_INC:
1484 case PRE_INC:
1485 case POST_DEC:
1486 case PRE_DEC:
1487 case POST_MODIFY:
1488 case PRE_MODIFY:
1489 /* Should only happen inside MEM. */
1490 gcc_unreachable ();
1491
1492 case CLOBBER:
1493 scan_rtx (insn, &SET_DEST (x), cl, action,
1494 (GET_CODE (PATTERN (insn)) == COND_EXEC
1495 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
1496 return;
1497
1498 case EXPR_LIST:
1499 scan_rtx (insn, &XEXP (x, 0), cl, action, type);
1500 if (XEXP (x, 1))
1501 scan_rtx (insn, &XEXP (x, 1), cl, action, type);
1502 return;
1503
1504 default:
1505 break;
1506 }
1507
1508 fmt = GET_RTX_FORMAT (code);
1509 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1510 {
1511 if (fmt[i] == 'e')
1512 scan_rtx (insn, &XEXP (x, i), cl, action, type);
1513 else if (fmt[i] == 'E')
1514 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1515 scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type);
1516 }
1517 }
1518
1519 /* Hide operands of the current insn (of which there are N_OPS) by
1520 substituting pc for them.
1521 Previous values are stored in the OLD_OPERANDS and OLD_DUPS.
1522 For every bit set in DO_NOT_HIDE, we leave the operand alone.
1523 If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands
1524 and earlyclobbers. */
1525
1526 static void
1527 hide_operands (int n_ops, rtx *old_operands, rtx *old_dups,
1528 unsigned HOST_WIDE_INT do_not_hide, bool inout_and_ec_only)
1529 {
1530 int i;
1531 const operand_alternative *op_alt = which_op_alt ();
1532 for (i = 0; i < n_ops; i++)
1533 {
1534 old_operands[i] = recog_data.operand[i];
1535 /* Don't squash match_operator or match_parallel here, since
1536 we don't know that all of the contained registers are
1537 reachable by proper operands. */
1538 if (recog_data.constraints[i][0] == '\0')
1539 continue;
1540 if (do_not_hide & (1 << i))
1541 continue;
1542 if (!inout_and_ec_only || recog_data.operand_type[i] == OP_INOUT
1543 || op_alt[i].earlyclobber)
1544 *recog_data.operand_loc[i] = pc_rtx;
1545 }
1546 for (i = 0; i < recog_data.n_dups; i++)
1547 {
1548 int opn = recog_data.dup_num[i];
1549 old_dups[i] = *recog_data.dup_loc[i];
1550 if (do_not_hide & (1 << opn))
1551 continue;
1552 if (!inout_and_ec_only || recog_data.operand_type[opn] == OP_INOUT
1553 || op_alt[opn].earlyclobber)
1554 *recog_data.dup_loc[i] = pc_rtx;
1555 }
1556 }
1557
1558 /* Undo the substitution performed by hide_operands. INSN is the insn we
1559 are processing; the arguments are the same as in hide_operands. */
1560
1561 static void
1562 restore_operands (rtx_insn *insn, int n_ops, rtx *old_operands, rtx *old_dups)
1563 {
1564 int i;
1565 for (i = 0; i < recog_data.n_dups; i++)
1566 *recog_data.dup_loc[i] = old_dups[i];
1567 for (i = 0; i < n_ops; i++)
1568 *recog_data.operand_loc[i] = old_operands[i];
1569 if (recog_data.n_dups)
1570 df_insn_rescan (insn);
1571 }
1572
1573 /* For each output operand of INSN, call scan_rtx to create a new
1574 open chain. Do this only for normal or earlyclobber outputs,
1575 depending on EARLYCLOBBER. If INSN_INFO is nonnull, use it to
1576 record information about the operands in the insn. */
1577
1578 static void
1579 record_out_operands (rtx_insn *insn, bool earlyclobber, insn_rr_info *insn_info)
1580 {
1581 int n_ops = recog_data.n_operands;
1582 const operand_alternative *op_alt = which_op_alt ();
1583
1584 int i;
1585
1586 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1587 {
1588 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1589 rtx *loc = (i < n_ops
1590 ? recog_data.operand_loc[opn]
1591 : recog_data.dup_loc[i - n_ops]);
1592 rtx op = *loc;
1593 enum reg_class cl = alternative_class (op_alt, opn);
1594
1595 class du_head *prev_open;
1596
1597 if (recog_data.operand_type[opn] != OP_OUT
1598 || op_alt[opn].earlyclobber != earlyclobber)
1599 continue;
1600
1601 if (insn_info)
1602 cur_operand = insn_info->op_info + i;
1603
1604 prev_open = open_chains;
1605 if (earlyclobber)
1606 scan_rtx (insn, loc, cl, terminate_write, OP_OUT);
1607 scan_rtx (insn, loc, cl, mark_write, OP_OUT);
1608
1609 /* ??? Many targets have output constraints on the SET_DEST
1610 of a call insn, which is stupid, since these are certainly
1611 ABI defined hard registers. For these, and for asm operands
1612 that originally referenced hard registers, we must record that
1613 the chain cannot be renamed. */
1614 if (CALL_P (insn)
1615 || (asm_noperands (PATTERN (insn)) > 0
1616 && REG_P (op)
1617 && REGNO (op) == ORIGINAL_REGNO (op)))
1618 {
1619 if (prev_open != open_chains)
1620 open_chains->cannot_rename = 1;
1621 }
1622 }
1623 cur_operand = NULL;
1624 }
1625
1626 /* Build def/use chain. */
1627
1628 static bool
1629 build_def_use (basic_block bb)
1630 {
1631 rtx_insn *insn;
1632 unsigned HOST_WIDE_INT untracked_operands;
1633
1634 fail_current_block = false;
1635
1636 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1637 {
1638 if (NONDEBUG_INSN_P (insn))
1639 {
1640 int n_ops;
1641 rtx note;
1642 rtx old_operands[MAX_RECOG_OPERANDS];
1643 rtx old_dups[MAX_DUP_OPERANDS];
1644 int i;
1645 int predicated;
1646 enum rtx_code set_code = SET;
1647 enum rtx_code clobber_code = CLOBBER;
1648 insn_rr_info *insn_info = NULL;
1649 terminated_this_insn = NULL;
1650
1651 /* Process the insn, determining its effect on the def-use
1652 chains and live hard registers. We perform the following
1653 steps with the register references in the insn, simulating
1654 its effect:
1655 (1) Deal with earlyclobber operands and CLOBBERs of non-operands
1656 by creating chains and marking hard regs live.
1657 (2) Any read outside an operand causes any chain it overlaps
1658 with to be marked unrenamable.
1659 (3) Any read inside an operand is added if there's already
1660 an open chain for it.
1661 (4) For any REG_DEAD note we find, close open chains that
1662 overlap it.
1663 (5) For any non-earlyclobber write we find, close open chains
1664 that overlap it.
1665 (6) For any non-earlyclobber write we find in an operand, make
1666 a new chain or mark the hard register as live.
1667 (7) For any REG_UNUSED, close any chains we just opened.
1668 (8) For any REG_CFA_RESTORE or REG_CFA_REGISTER, kill any chain
1669 containing its dest.
1670
1671 We cannot deal with situations where we track a reg in one mode
1672 and see a reference in another mode; these will cause the chain
1673 to be marked unrenamable or even cause us to abort the entire
1674 basic block. */
1675
1676 extract_constrain_insn (insn);
1677 preprocess_constraints (insn);
1678 const operand_alternative *op_alt = which_op_alt ();
1679 n_ops = recog_data.n_operands;
1680 untracked_operands = 0;
1681
1682 if (insn_rr.exists ())
1683 {
1684 insn_info = &insn_rr[INSN_UID (insn)];
1685 insn_info->op_info = XOBNEWVEC (&rename_obstack, operand_rr_info,
1686 recog_data.n_operands);
1687 memset (insn_info->op_info, 0,
1688 sizeof (operand_rr_info) * recog_data.n_operands);
1689 }
1690
1691 /* Simplify the code below by promoting OP_OUT to OP_INOUT in
1692 predicated instructions, but only for register operands
1693 that are already tracked, so that we can create a chain
1694 when the first SET makes a register live. */
1695
1696 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1697 for (i = 0; i < n_ops; ++i)
1698 {
1699 rtx op = recog_data.operand[i];
1700 int matches = op_alt[i].matches;
1701 if (matches >= 0 || op_alt[i].matched >= 0
1702 || (predicated && recog_data.operand_type[i] == OP_OUT))
1703 {
1704 recog_data.operand_type[i] = OP_INOUT;
1705 /* A special case to deal with instruction patterns that
1706 have matching operands with different modes. If we're
1707 not already tracking such a reg, we won't start here,
1708 and we must instead make sure to make the operand visible
1709 to the machinery that tracks hard registers. */
1710 machine_mode i_mode = recog_data.operand_mode[i];
1711 if (matches >= 0)
1712 {
1713 machine_mode matches_mode
1714 = recog_data.operand_mode[matches];
1715
1716 if (maybe_ne (GET_MODE_SIZE (i_mode),
1717 GET_MODE_SIZE (matches_mode))
1718 && !verify_reg_in_set (op, &live_in_chains))
1719 {
1720 untracked_operands |= 1 << i;
1721 untracked_operands |= 1 << matches;
1722 }
1723 }
1724 }
1725 #ifdef STACK_REGS
1726 if (regstack_completed
1727 && REG_P (op)
1728 && IN_RANGE (REGNO (op), FIRST_STACK_REG, LAST_STACK_REG))
1729 untracked_operands |= 1 << i;
1730 #endif
1731 /* If there's an in-out operand with a register that is not
1732 being tracked at all yet, open a chain. */
1733 if (recog_data.operand_type[i] == OP_INOUT
1734 && !(untracked_operands & (1 << i))
1735 && REG_P (op)
1736 && !verify_reg_tracked (op))
1737 create_new_chain (REGNO (op), REG_NREGS (op), NULL, NULL,
1738 NO_REGS);
1739 }
1740
1741 if (fail_current_block)
1742 break;
1743
1744 /* Step 1a: Mark hard registers that are clobbered in this insn,
1745 outside an operand, as live. */
1746 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1747 false);
1748 note_stores (insn, note_sets_clobbers, &clobber_code);
1749 restore_operands (insn, n_ops, old_operands, old_dups);
1750
1751 /* Step 1b: Begin new chains for earlyclobbered writes inside
1752 operands. */
1753 record_out_operands (insn, true, insn_info);
1754
1755 /* Step 2: Mark chains for which we have reads outside operands
1756 as unrenamable.
1757 We do this by munging all operands into PC, and closing
1758 everything remaining. */
1759
1760 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1761 false);
1762 scan_rtx (insn, &PATTERN (insn), NO_REGS, mark_all_read, OP_IN);
1763 restore_operands (insn, n_ops, old_operands, old_dups);
1764
1765 /* Step 2B: Can't rename function call argument registers. */
1766 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
1767 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
1768 NO_REGS, mark_all_read, OP_IN);
1769
1770 /* Step 2C: Can't rename asm operands that were originally
1771 hard registers. */
1772 if (asm_noperands (PATTERN (insn)) > 0)
1773 for (i = 0; i < n_ops; i++)
1774 {
1775 rtx *loc = recog_data.operand_loc[i];
1776 rtx op = *loc;
1777
1778 if (REG_P (op)
1779 && REGNO (op) == ORIGINAL_REGNO (op)
1780 && (recog_data.operand_type[i] == OP_IN
1781 || recog_data.operand_type[i] == OP_INOUT))
1782 scan_rtx (insn, loc, NO_REGS, mark_all_read, OP_IN);
1783 }
1784
1785 /* Step 3: Append to chains for reads inside operands. */
1786 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1787 {
1788 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1789 rtx *loc = (i < n_ops
1790 ? recog_data.operand_loc[opn]
1791 : recog_data.dup_loc[i - n_ops]);
1792 enum reg_class cl = alternative_class (op_alt, opn);
1793 enum op_type type = recog_data.operand_type[opn];
1794
1795 /* Don't scan match_operand here, since we've no reg class
1796 information to pass down. Any operands that we could
1797 substitute in will be represented elsewhere. */
1798 if (recog_data.constraints[opn][0] == '\0'
1799 || untracked_operands & (1 << opn))
1800 continue;
1801
1802 if (insn_info)
1803 cur_operand = i == opn ? insn_info->op_info + i : NULL;
1804 if (op_alt[opn].is_address)
1805 scan_rtx_address (insn, loc, cl, mark_read,
1806 VOIDmode, ADDR_SPACE_GENERIC);
1807 else
1808 scan_rtx (insn, loc, cl, mark_read, type);
1809 }
1810 cur_operand = NULL;
1811
1812 /* Step 3B: Record updates for regs in REG_INC notes, and
1813 source regs in REG_FRAME_RELATED_EXPR notes. */
1814 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1815 if (REG_NOTE_KIND (note) == REG_INC
1816 || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
1817 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
1818 OP_INOUT);
1819
1820 /* Step 4: Close chains for registers that die here, unless
1821 the register is mentioned in a REG_UNUSED note. In that
1822 case we keep the chain open until step #7 below to ensure
1823 it conflicts with other output operands of this insn.
1824 See PR 52573. Arguably the insn should not have both
1825 notes; it has proven difficult to fix that without
1826 other undesirable side effects. */
1827 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1828 if (REG_NOTE_KIND (note) == REG_DEAD
1829 && !find_regno_note (insn, REG_UNUSED, REGNO (XEXP (note, 0))))
1830 {
1831 remove_from_hard_reg_set (&live_hard_regs,
1832 GET_MODE (XEXP (note, 0)),
1833 REGNO (XEXP (note, 0)));
1834 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
1835 OP_IN);
1836 }
1837
1838 /* Step 4B: If this is a call, any chain live at this point
1839 requires a caller-saved reg. */
1840 if (CALL_P (insn))
1841 {
1842 function_abi callee_abi = insn_callee_abi (insn);
1843 class du_head *p;
1844 for (p = open_chains; p; p = p->next_chain)
1845 {
1846 p->call_abis |= (1 << callee_abi.id ());
1847 p->call_clobber_mask
1848 |= callee_abi.full_and_partial_reg_clobbers ();
1849 p->hard_conflicts |= callee_abi.full_reg_clobbers ();
1850 }
1851 }
1852
1853 /* Step 5: Close open chains that overlap writes. Similar to
1854 step 2, we hide in-out operands, since we do not want to
1855 close these chains. We also hide earlyclobber operands,
1856 since we've opened chains for them in step 1, and earlier
1857 chains they would overlap with must have been closed at
1858 the previous insn at the latest, as such operands cannot
1859 possibly overlap with any input operands. */
1860
1861 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1862 true);
1863 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN);
1864 restore_operands (insn, n_ops, old_operands, old_dups);
1865
1866 /* Step 6a: Mark hard registers that are set in this insn,
1867 outside an operand, as live. */
1868 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1869 false);
1870 note_stores (insn, note_sets_clobbers, &set_code);
1871 restore_operands (insn, n_ops, old_operands, old_dups);
1872
1873 /* Step 6b: Begin new chains for writes inside operands. */
1874 record_out_operands (insn, false, insn_info);
1875
1876 /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR
1877 notes for update. */
1878 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1879 if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
1880 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
1881 OP_INOUT);
1882
1883 /* Step 7: Close chains for registers that were never
1884 really used here. */
1885 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1886 if (REG_NOTE_KIND (note) == REG_UNUSED)
1887 {
1888 remove_from_hard_reg_set (&live_hard_regs,
1889 GET_MODE (XEXP (note, 0)),
1890 REGNO (XEXP (note, 0)));
1891 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
1892 OP_IN);
1893 }
1894
1895 /* Step 8: Kill the chains involving register restores. Those
1896 should restore _that_ register. Similar for REG_CFA_REGISTER. */
1897 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1898 if (REG_NOTE_KIND (note) == REG_CFA_RESTORE
1899 || REG_NOTE_KIND (note) == REG_CFA_REGISTER)
1900 {
1901 rtx *x = &XEXP (note, 0);
1902 if (!*x)
1903 x = &PATTERN (insn);
1904 if (GET_CODE (*x) == PARALLEL)
1905 x = &XVECEXP (*x, 0, 0);
1906 if (GET_CODE (*x) == SET)
1907 x = &SET_DEST (*x);
1908 scan_rtx (insn, x, NO_REGS, mark_all_read, OP_IN);
1909 }
1910 }
1911 else if (DEBUG_BIND_INSN_P (insn)
1912 && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn)))
1913 {
1914 scan_rtx (insn, &INSN_VAR_LOCATION_LOC (insn),
1915 ALL_REGS, mark_read, OP_IN);
1916 }
1917 if (insn == BB_END (bb))
1918 break;
1919 }
1920
1921 if (fail_current_block)
1922 return false;
1923
1924 return true;
1925 }
1926 \f
1927 /* Initialize the register renamer. If INSN_INFO is true, ensure that
1928 insn_rr is nonnull. */
1929 void
1930 regrename_init (bool insn_info)
1931 {
1932 gcc_obstack_init (&rename_obstack);
1933 insn_rr.create (0);
1934 if (insn_info)
1935 insn_rr.safe_grow_cleared (get_max_uid ());
1936 }
1937
1938 /* Free all global data used by the register renamer. */
1939 void
1940 regrename_finish (void)
1941 {
1942 insn_rr.release ();
1943 free_chain_data ();
1944 obstack_free (&rename_obstack, NULL);
1945 }
1946
1947 /* Perform register renaming on the current function. */
1948
1949 static unsigned int
1950 regrename_optimize (void)
1951 {
1952 df_set_flags (DF_LR_RUN_DCE);
1953 df_note_add_problem ();
1954 df_analyze ();
1955 df_set_flags (DF_DEFER_INSN_RESCAN);
1956
1957 regrename_init (false);
1958
1959 regrename_analyze (NULL);
1960
1961 rename_chains ();
1962
1963 regrename_finish ();
1964
1965 return 0;
1966 }
1967 \f
1968 namespace {
1969
1970 const pass_data pass_data_regrename =
1971 {
1972 RTL_PASS, /* type */
1973 "rnreg", /* name */
1974 OPTGROUP_NONE, /* optinfo_flags */
1975 TV_RENAME_REGISTERS, /* tv_id */
1976 0, /* properties_required */
1977 0, /* properties_provided */
1978 0, /* properties_destroyed */
1979 0, /* todo_flags_start */
1980 TODO_df_finish, /* todo_flags_finish */
1981 };
1982
1983 class pass_regrename : public rtl_opt_pass
1984 {
1985 public:
1986 pass_regrename (gcc::context *ctxt)
1987 : rtl_opt_pass (pass_data_regrename, ctxt)
1988 {}
1989
1990 /* opt_pass methods: */
1991 virtual bool gate (function *)
1992 {
1993 return (optimize > 0 && (flag_rename_registers));
1994 }
1995
1996 virtual unsigned int execute (function *) { return regrename_optimize (); }
1997
1998 }; // class pass_regrename
1999
2000 } // anon namespace
2001
2002 rtl_opt_pass *
2003 make_pass_regrename (gcc::context *ctxt)
2004 {
2005 return new pass_regrename (ctxt);
2006 }