ra.h (add_neighbor): Fix -Wc++-compat and/or -Wcast-qual warnings.
[gcc.git] / gcc / regrename.c
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "regs.h"
29 #include "addresses.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "reload.h"
33 #include "output.h"
34 #include "function.h"
35 #include "recog.h"
36 #include "flags.h"
37 #include "toplev.h"
38 #include "obstack.h"
39 #include "timevar.h"
40 #include "tree-pass.h"
41 #include "df.h"
42
43 struct du_chain
44 {
45 struct du_chain *next_chain;
46 struct du_chain *next_use;
47
48 rtx insn;
49 rtx *loc;
50 ENUM_BITFIELD(reg_class) cl : 16;
51 unsigned int need_caller_save_reg:1;
52 unsigned int earlyclobber:1;
53 };
54
55 enum scan_actions
56 {
57 terminate_all_read,
58 terminate_overlapping_read,
59 terminate_write,
60 terminate_dead,
61 mark_read,
62 mark_write,
63 /* mark_access is for marking the destination regs in
64 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
65 note is updated properly. */
66 mark_access
67 };
68
69 static const char * const scan_actions_name[] =
70 {
71 "terminate_all_read",
72 "terminate_overlapping_read",
73 "terminate_write",
74 "terminate_dead",
75 "mark_read",
76 "mark_write",
77 "mark_access"
78 };
79
80 static struct obstack rename_obstack;
81
82 static void do_replace (struct du_chain *, int);
83 static void scan_rtx_reg (rtx, rtx *, enum reg_class,
84 enum scan_actions, enum op_type, int);
85 static void scan_rtx_address (rtx, rtx *, enum reg_class,
86 enum scan_actions, enum machine_mode);
87 static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
88 enum op_type, int);
89 static struct du_chain *build_def_use (basic_block);
90 static void dump_def_use_chain (struct du_chain *);
91 static void note_sets (rtx, const_rtx, void *);
92 static void clear_dead_regs (HARD_REG_SET *, enum machine_mode, rtx);
93 static void merge_overlapping_regs (basic_block, HARD_REG_SET *,
94 struct du_chain *);
95
96 /* Called through note_stores. Find sets of registers, and
97 record them in *DATA (which is actually a HARD_REG_SET *). */
98
99 static void
100 note_sets (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
101 {
102 HARD_REG_SET *pset = (HARD_REG_SET *) data;
103
104 if (GET_CODE (x) == SUBREG)
105 x = SUBREG_REG (x);
106 if (!REG_P (x))
107 return;
108 /* There must not be pseudos at this point. */
109 gcc_assert (HARD_REGISTER_P (x));
110 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
111 }
112
113 /* Clear all registers from *PSET for which a note of kind KIND can be found
114 in the list NOTES. */
115
116 static void
117 clear_dead_regs (HARD_REG_SET *pset, enum machine_mode kind, rtx notes)
118 {
119 rtx note;
120 for (note = notes; note; note = XEXP (note, 1))
121 if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
122 {
123 rtx reg = XEXP (note, 0);
124 /* There must not be pseudos at this point. */
125 gcc_assert (HARD_REGISTER_P (reg));
126 remove_from_hard_reg_set (pset, GET_MODE (reg), REGNO (reg));
127 }
128 }
129
130 /* For a def-use chain CHAIN in basic block B, find which registers overlap
131 its lifetime and set the corresponding bits in *PSET. */
132
133 static void
134 merge_overlapping_regs (basic_block b, HARD_REG_SET *pset,
135 struct du_chain *chain)
136 {
137 struct du_chain *t = chain;
138 rtx insn;
139 HARD_REG_SET live;
140
141 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (b));
142 insn = BB_HEAD (b);
143 while (t)
144 {
145 /* Search forward until the next reference to the register to be
146 renamed. */
147 while (insn != t->insn)
148 {
149 if (INSN_P (insn))
150 {
151 clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
152 note_stores (PATTERN (insn), note_sets, (void *) &live);
153 /* Only record currently live regs if we are inside the
154 reg's live range. */
155 if (t != chain)
156 IOR_HARD_REG_SET (*pset, live);
157 clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
158 }
159 insn = NEXT_INSN (insn);
160 }
161
162 IOR_HARD_REG_SET (*pset, live);
163
164 /* For the last reference, also merge in all registers set in the
165 same insn.
166 @@@ We only have take earlyclobbered sets into account. */
167 if (! t->next_use)
168 note_stores (PATTERN (insn), note_sets, (void *) pset);
169
170 t = t->next_use;
171 }
172 }
173
174 /* Perform register renaming on the current function. */
175
176 static void
177 regrename_optimize (void)
178 {
179 int tick[FIRST_PSEUDO_REGISTER];
180 int this_tick = 0;
181 basic_block bb;
182 char *first_obj;
183
184 df_set_flags (DF_LR_RUN_DCE);
185 df_note_add_problem ();
186 df_analyze ();
187 df_set_flags (DF_DEFER_INSN_RESCAN);
188
189 memset (tick, 0, sizeof tick);
190
191 gcc_obstack_init (&rename_obstack);
192 first_obj = XOBNEWVAR (&rename_obstack, char, 0);
193
194 FOR_EACH_BB (bb)
195 {
196 struct du_chain *all_chains = 0;
197 HARD_REG_SET unavailable;
198 HARD_REG_SET regs_seen;
199
200 CLEAR_HARD_REG_SET (unavailable);
201
202 if (dump_file)
203 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
204
205 all_chains = build_def_use (bb);
206
207 if (dump_file)
208 dump_def_use_chain (all_chains);
209
210 CLEAR_HARD_REG_SET (unavailable);
211 /* Don't clobber traceback for noreturn functions. */
212 if (frame_pointer_needed)
213 {
214 add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM);
215 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
216 add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM);
217 #endif
218 }
219
220 CLEAR_HARD_REG_SET (regs_seen);
221 while (all_chains)
222 {
223 int new_reg, best_new_reg;
224 int n_uses;
225 struct du_chain *this = all_chains;
226 struct du_chain *tmp, *last;
227 HARD_REG_SET this_unavailable;
228 int reg = REGNO (*this->loc);
229 int i;
230
231 all_chains = this->next_chain;
232
233 best_new_reg = reg;
234
235 #if 0 /* This just disables optimization opportunities. */
236 /* Only rename once we've seen the reg more than once. */
237 if (! TEST_HARD_REG_BIT (regs_seen, reg))
238 {
239 SET_HARD_REG_BIT (regs_seen, reg);
240 continue;
241 }
242 #endif
243
244 if (fixed_regs[reg] || global_regs[reg]
245 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
246 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
247 #else
248 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
249 #endif
250 )
251 continue;
252
253 COPY_HARD_REG_SET (this_unavailable, unavailable);
254
255 /* Find last entry on chain (which has the need_caller_save bit),
256 count number of uses, and narrow the set of registers we can
257 use for renaming. */
258 n_uses = 0;
259 for (last = this; last->next_use; last = last->next_use)
260 {
261 n_uses++;
262 IOR_COMPL_HARD_REG_SET (this_unavailable,
263 reg_class_contents[last->cl]);
264 }
265 if (n_uses < 1)
266 continue;
267
268 IOR_COMPL_HARD_REG_SET (this_unavailable,
269 reg_class_contents[last->cl]);
270
271 if (this->need_caller_save_reg)
272 IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
273
274 merge_overlapping_regs (bb, &this_unavailable, this);
275
276 /* Now potential_regs is a reasonable approximation, let's
277 have a closer look at each register still in there. */
278 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
279 {
280 int nregs = hard_regno_nregs[new_reg][GET_MODE (*this->loc)];
281
282 for (i = nregs - 1; i >= 0; --i)
283 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
284 || fixed_regs[new_reg + i]
285 || global_regs[new_reg + i]
286 /* Can't use regs which aren't saved by the prologue. */
287 || (! df_regs_ever_live_p (new_reg + i)
288 && ! call_used_regs[new_reg + i])
289 #ifdef LEAF_REGISTERS
290 /* We can't use a non-leaf register if we're in a
291 leaf function. */
292 || (current_function_is_leaf
293 && !LEAF_REGISTERS[new_reg + i])
294 #endif
295 #ifdef HARD_REGNO_RENAME_OK
296 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
297 #endif
298 )
299 break;
300 if (i >= 0)
301 continue;
302
303 /* See whether it accepts all modes that occur in
304 definition and uses. */
305 for (tmp = this; tmp; tmp = tmp->next_use)
306 if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
307 || (tmp->need_caller_save_reg
308 && ! (HARD_REGNO_CALL_PART_CLOBBERED
309 (reg, GET_MODE (*tmp->loc)))
310 && (HARD_REGNO_CALL_PART_CLOBBERED
311 (new_reg, GET_MODE (*tmp->loc)))))
312 break;
313 if (! tmp)
314 {
315 if (tick[best_new_reg] > tick[new_reg])
316 best_new_reg = new_reg;
317 }
318 }
319
320 if (dump_file)
321 {
322 fprintf (dump_file, "Register %s in insn %d",
323 reg_names[reg], INSN_UID (last->insn));
324 if (last->need_caller_save_reg)
325 fprintf (dump_file, " crosses a call");
326 }
327
328 if (best_new_reg == reg)
329 {
330 tick[reg] = ++this_tick;
331 if (dump_file)
332 fprintf (dump_file, "; no available better choice\n");
333 continue;
334 }
335
336 do_replace (this, best_new_reg);
337 tick[best_new_reg] = ++this_tick;
338 df_set_regs_ever_live (best_new_reg, true);
339
340 if (dump_file)
341 fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
342 }
343
344 obstack_free (&rename_obstack, first_obj);
345 }
346
347 obstack_free (&rename_obstack, NULL);
348
349 if (dump_file)
350 fputc ('\n', dump_file);
351 }
352
353 static void
354 do_replace (struct du_chain *chain, int reg)
355 {
356 while (chain)
357 {
358 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
359 struct reg_attrs * attr = REG_ATTRS (*chain->loc);
360
361 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
362 if (regno >= FIRST_PSEUDO_REGISTER)
363 ORIGINAL_REGNO (*chain->loc) = regno;
364 REG_ATTRS (*chain->loc) = attr;
365 df_insn_rescan (chain->insn);
366 chain = chain->next_use;
367 }
368 }
369
370
371 static struct du_chain *open_chains;
372 static struct du_chain *closed_chains;
373
374 static void
375 scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl,
376 enum scan_actions action, enum op_type type, int earlyclobber)
377 {
378 struct du_chain **p;
379 rtx x = *loc;
380 enum machine_mode mode = GET_MODE (x);
381 int this_regno = REGNO (x);
382 int this_nregs = hard_regno_nregs[this_regno][mode];
383
384 if (action == mark_write)
385 {
386 if (type == OP_OUT)
387 {
388 struct du_chain *this = XOBNEW (&rename_obstack, struct du_chain);
389 this->next_use = 0;
390 this->next_chain = open_chains;
391 this->loc = loc;
392 this->insn = insn;
393 this->cl = cl;
394 this->need_caller_save_reg = 0;
395 this->earlyclobber = earlyclobber;
396 open_chains = this;
397 }
398 return;
399 }
400
401 if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
402 return;
403
404 for (p = &open_chains; *p;)
405 {
406 struct du_chain *this = *p;
407
408 /* Check if the chain has been terminated if it has then skip to
409 the next chain.
410
411 This can happen when we've already appended the location to
412 the chain in Step 3, but are trying to hide in-out operands
413 from terminate_write in Step 5. */
414
415 if (*this->loc == cc0_rtx)
416 p = &this->next_chain;
417 else
418 {
419 int regno = REGNO (*this->loc);
420 int nregs = hard_regno_nregs[regno][GET_MODE (*this->loc)];
421 int exact_match = (regno == this_regno && nregs == this_nregs);
422
423 if (regno + nregs <= this_regno
424 || this_regno + this_nregs <= regno)
425 {
426 p = &this->next_chain;
427 continue;
428 }
429
430 if (action == mark_read || action == mark_access)
431 {
432 gcc_assert (exact_match);
433
434 /* ??? Class NO_REGS can happen if the md file makes use of
435 EXTRA_CONSTRAINTS to match registers. Which is arguably
436 wrong, but there we are. Since we know not what this may
437 be replaced with, terminate the chain. */
438 if (cl != NO_REGS)
439 {
440 this = XOBNEW (&rename_obstack, struct du_chain);
441 this->next_use = 0;
442 this->next_chain = (*p)->next_chain;
443 this->loc = loc;
444 this->insn = insn;
445 this->cl = cl;
446 this->need_caller_save_reg = 0;
447 while (*p)
448 p = &(*p)->next_use;
449 *p = this;
450 return;
451 }
452 }
453
454 if (action != terminate_overlapping_read || ! exact_match)
455 {
456 struct du_chain *next = this->next_chain;
457
458 /* Whether the terminated chain can be used for renaming
459 depends on the action and this being an exact match.
460 In either case, we remove this element from open_chains. */
461
462 if ((action == terminate_dead || action == terminate_write)
463 && exact_match)
464 {
465 this->next_chain = closed_chains;
466 closed_chains = this;
467 if (dump_file)
468 fprintf (dump_file,
469 "Closing chain %s at insn %d (%s)\n",
470 reg_names[REGNO (*this->loc)], INSN_UID (insn),
471 scan_actions_name[(int) action]);
472 }
473 else
474 {
475 if (dump_file)
476 fprintf (dump_file,
477 "Discarding chain %s at insn %d (%s)\n",
478 reg_names[REGNO (*this->loc)], INSN_UID (insn),
479 scan_actions_name[(int) action]);
480 }
481 *p = next;
482 }
483 else
484 p = &this->next_chain;
485 }
486 }
487 }
488
489 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
490 BASE_REG_CLASS depending on how the register is being considered. */
491
492 static void
493 scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
494 enum scan_actions action, enum machine_mode mode)
495 {
496 rtx x = *loc;
497 RTX_CODE code = GET_CODE (x);
498 const char *fmt;
499 int i, j;
500
501 if (action == mark_write || action == mark_access)
502 return;
503
504 switch (code)
505 {
506 case PLUS:
507 {
508 rtx orig_op0 = XEXP (x, 0);
509 rtx orig_op1 = XEXP (x, 1);
510 RTX_CODE code0 = GET_CODE (orig_op0);
511 RTX_CODE code1 = GET_CODE (orig_op1);
512 rtx op0 = orig_op0;
513 rtx op1 = orig_op1;
514 rtx *locI = NULL;
515 rtx *locB = NULL;
516 enum rtx_code index_code = SCRATCH;
517
518 if (GET_CODE (op0) == SUBREG)
519 {
520 op0 = SUBREG_REG (op0);
521 code0 = GET_CODE (op0);
522 }
523
524 if (GET_CODE (op1) == SUBREG)
525 {
526 op1 = SUBREG_REG (op1);
527 code1 = GET_CODE (op1);
528 }
529
530 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
531 || code0 == ZERO_EXTEND || code1 == MEM)
532 {
533 locI = &XEXP (x, 0);
534 locB = &XEXP (x, 1);
535 index_code = GET_CODE (*locI);
536 }
537 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
538 || code1 == ZERO_EXTEND || code0 == MEM)
539 {
540 locI = &XEXP (x, 1);
541 locB = &XEXP (x, 0);
542 index_code = GET_CODE (*locI);
543 }
544 else if (code0 == CONST_INT || code0 == CONST
545 || code0 == SYMBOL_REF || code0 == LABEL_REF)
546 {
547 locB = &XEXP (x, 1);
548 index_code = GET_CODE (XEXP (x, 0));
549 }
550 else if (code1 == CONST_INT || code1 == CONST
551 || code1 == SYMBOL_REF || code1 == LABEL_REF)
552 {
553 locB = &XEXP (x, 0);
554 index_code = GET_CODE (XEXP (x, 1));
555 }
556 else if (code0 == REG && code1 == REG)
557 {
558 int index_op;
559 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
560
561 if (REGNO_OK_FOR_INDEX_P (regno1)
562 && regno_ok_for_base_p (regno0, mode, PLUS, REG))
563 index_op = 1;
564 else if (REGNO_OK_FOR_INDEX_P (regno0)
565 && regno_ok_for_base_p (regno1, mode, PLUS, REG))
566 index_op = 0;
567 else if (regno_ok_for_base_p (regno0, mode, PLUS, REG)
568 || REGNO_OK_FOR_INDEX_P (regno1))
569 index_op = 1;
570 else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
571 index_op = 0;
572 else
573 index_op = 1;
574
575 locI = &XEXP (x, index_op);
576 locB = &XEXP (x, !index_op);
577 index_code = GET_CODE (*locI);
578 }
579 else if (code0 == REG)
580 {
581 locI = &XEXP (x, 0);
582 locB = &XEXP (x, 1);
583 index_code = GET_CODE (*locI);
584 }
585 else if (code1 == REG)
586 {
587 locI = &XEXP (x, 1);
588 locB = &XEXP (x, 0);
589 index_code = GET_CODE (*locI);
590 }
591
592 if (locI)
593 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
594 if (locB)
595 scan_rtx_address (insn, locB, base_reg_class (mode, PLUS, index_code),
596 action, mode);
597
598 return;
599 }
600
601 case POST_INC:
602 case POST_DEC:
603 case POST_MODIFY:
604 case PRE_INC:
605 case PRE_DEC:
606 case PRE_MODIFY:
607 #ifndef AUTO_INC_DEC
608 /* If the target doesn't claim to handle autoinc, this must be
609 something special, like a stack push. Kill this chain. */
610 action = terminate_all_read;
611 #endif
612 break;
613
614 case MEM:
615 scan_rtx_address (insn, &XEXP (x, 0),
616 base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
617 GET_MODE (x));
618 return;
619
620 case REG:
621 scan_rtx_reg (insn, loc, cl, action, OP_IN, 0);
622 return;
623
624 default:
625 break;
626 }
627
628 fmt = GET_RTX_FORMAT (code);
629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
630 {
631 if (fmt[i] == 'e')
632 scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
633 else if (fmt[i] == 'E')
634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
635 scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
636 }
637 }
638
639 static void
640 scan_rtx (rtx insn, rtx *loc, enum reg_class cl,
641 enum scan_actions action, enum op_type type, int earlyclobber)
642 {
643 const char *fmt;
644 rtx x = *loc;
645 enum rtx_code code = GET_CODE (x);
646 int i, j;
647
648 code = GET_CODE (x);
649 switch (code)
650 {
651 case CONST:
652 case CONST_INT:
653 case CONST_DOUBLE:
654 case CONST_FIXED:
655 case CONST_VECTOR:
656 case SYMBOL_REF:
657 case LABEL_REF:
658 case CC0:
659 case PC:
660 return;
661
662 case REG:
663 scan_rtx_reg (insn, loc, cl, action, type, earlyclobber);
664 return;
665
666 case MEM:
667 scan_rtx_address (insn, &XEXP (x, 0),
668 base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
669 GET_MODE (x));
670 return;
671
672 case SET:
673 scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN, 0);
674 scan_rtx (insn, &SET_DEST (x), cl, action,
675 GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
676 return;
677
678 case STRICT_LOW_PART:
679 scan_rtx (insn, &XEXP (x, 0), cl, action, OP_INOUT, earlyclobber);
680 return;
681
682 case ZERO_EXTRACT:
683 case SIGN_EXTRACT:
684 scan_rtx (insn, &XEXP (x, 0), cl, action,
685 type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
686 scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN, 0);
687 scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN, 0);
688 return;
689
690 case POST_INC:
691 case PRE_INC:
692 case POST_DEC:
693 case PRE_DEC:
694 case POST_MODIFY:
695 case PRE_MODIFY:
696 /* Should only happen inside MEM. */
697 gcc_unreachable ();
698
699 case CLOBBER:
700 scan_rtx (insn, &SET_DEST (x), cl, action,
701 GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
702 return;
703
704 case EXPR_LIST:
705 scan_rtx (insn, &XEXP (x, 0), cl, action, type, 0);
706 if (XEXP (x, 1))
707 scan_rtx (insn, &XEXP (x, 1), cl, action, type, 0);
708 return;
709
710 default:
711 break;
712 }
713
714 fmt = GET_RTX_FORMAT (code);
715 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
716 {
717 if (fmt[i] == 'e')
718 scan_rtx (insn, &XEXP (x, i), cl, action, type, 0);
719 else if (fmt[i] == 'E')
720 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
721 scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type, 0);
722 }
723 }
724
725 /* Build def/use chain. */
726
727 static struct du_chain *
728 build_def_use (basic_block bb)
729 {
730 rtx insn;
731
732 open_chains = closed_chains = NULL;
733
734 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
735 {
736 if (INSN_P (insn))
737 {
738 int n_ops;
739 rtx note;
740 rtx old_operands[MAX_RECOG_OPERANDS];
741 rtx old_dups[MAX_DUP_OPERANDS];
742 int i, icode;
743 int alt;
744 int predicated;
745
746 /* Process the insn, determining its effect on the def-use
747 chains. We perform the following steps with the register
748 references in the insn:
749 (1) Any read that overlaps an open chain, but doesn't exactly
750 match, causes that chain to be closed. We can't deal
751 with overlaps yet.
752 (2) Any read outside an operand causes any chain it overlaps
753 with to be closed, since we can't replace it.
754 (3) Any read inside an operand is added if there's already
755 an open chain for it.
756 (4) For any REG_DEAD note we find, close open chains that
757 overlap it.
758 (5) For any write we find, close open chains that overlap it.
759 (6) For any write we find in an operand, make a new chain.
760 (7) For any REG_UNUSED, close any chains we just opened. */
761
762 icode = recog_memoized (insn);
763 extract_insn (insn);
764 if (! constrain_operands (1))
765 fatal_insn_not_found (insn);
766 preprocess_constraints ();
767 alt = which_alternative;
768 n_ops = recog_data.n_operands;
769
770 /* Simplify the code below by rewriting things to reflect
771 matching constraints. Also promote OP_OUT to OP_INOUT
772 in predicated instructions. */
773
774 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
775 for (i = 0; i < n_ops; ++i)
776 {
777 int matches = recog_op_alt[i][alt].matches;
778 if (matches >= 0)
779 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
780 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
781 || (predicated && recog_data.operand_type[i] == OP_OUT))
782 recog_data.operand_type[i] = OP_INOUT;
783 }
784
785 /* Step 1: Close chains for which we have overlapping reads. */
786 for (i = 0; i < n_ops; i++)
787 scan_rtx (insn, recog_data.operand_loc[i],
788 NO_REGS, terminate_overlapping_read,
789 recog_data.operand_type[i], 0);
790
791 /* Step 2: Close chains for which we have reads outside operands.
792 We do this by munging all operands into CC0, and closing
793 everything remaining. */
794
795 for (i = 0; i < n_ops; i++)
796 {
797 old_operands[i] = recog_data.operand[i];
798 /* Don't squash match_operator or match_parallel here, since
799 we don't know that all of the contained registers are
800 reachable by proper operands. */
801 if (recog_data.constraints[i][0] == '\0')
802 continue;
803 *recog_data.operand_loc[i] = cc0_rtx;
804 }
805 for (i = 0; i < recog_data.n_dups; i++)
806 {
807 old_dups[i] = *recog_data.dup_loc[i];
808 *recog_data.dup_loc[i] = cc0_rtx;
809 }
810
811 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
812 OP_IN, 0);
813
814 for (i = 0; i < recog_data.n_dups; i++)
815 *recog_data.dup_loc[i] = copy_rtx (old_dups[i]);
816 for (i = 0; i < n_ops; i++)
817 *recog_data.operand_loc[i] = old_operands[i];
818 if (recog_data.n_dups)
819 df_insn_rescan (insn);
820
821 /* Step 2B: Can't rename function call argument registers. */
822 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
823 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
824 NO_REGS, terminate_all_read, OP_IN, 0);
825
826 /* Step 2C: Can't rename asm operands that were originally
827 hard registers. */
828 if (asm_noperands (PATTERN (insn)) > 0)
829 for (i = 0; i < n_ops; i++)
830 {
831 rtx *loc = recog_data.operand_loc[i];
832 rtx op = *loc;
833
834 if (REG_P (op)
835 && REGNO (op) == ORIGINAL_REGNO (op)
836 && (recog_data.operand_type[i] == OP_IN
837 || recog_data.operand_type[i] == OP_INOUT))
838 scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
839 }
840
841 /* Step 3: Append to chains for reads inside operands. */
842 for (i = 0; i < n_ops + recog_data.n_dups; i++)
843 {
844 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
845 rtx *loc = (i < n_ops
846 ? recog_data.operand_loc[opn]
847 : recog_data.dup_loc[i - n_ops]);
848 enum reg_class cl = recog_op_alt[opn][alt].cl;
849 enum op_type type = recog_data.operand_type[opn];
850
851 /* Don't scan match_operand here, since we've no reg class
852 information to pass down. Any operands that we could
853 substitute in will be represented elsewhere. */
854 if (recog_data.constraints[opn][0] == '\0')
855 continue;
856
857 if (recog_op_alt[opn][alt].is_address)
858 scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
859 else
860 scan_rtx (insn, loc, cl, mark_read, type, 0);
861 }
862
863 /* Step 3B: Record updates for regs in REG_INC notes, and
864 source regs in REG_FRAME_RELATED_EXPR notes. */
865 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
866 if (REG_NOTE_KIND (note) == REG_INC
867 || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
868 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
869 OP_INOUT, 0);
870
871 /* Step 4: Close chains for registers that die here. */
872 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
873 if (REG_NOTE_KIND (note) == REG_DEAD)
874 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
875 OP_IN, 0);
876
877 /* Step 4B: If this is a call, any chain live at this point
878 requires a caller-saved reg. */
879 if (CALL_P (insn))
880 {
881 struct du_chain *p;
882 for (p = open_chains; p; p = p->next_chain)
883 p->need_caller_save_reg = 1;
884 }
885
886 /* Step 5: Close open chains that overlap writes. Similar to
887 step 2, we hide in-out operands, since we do not want to
888 close these chains. */
889
890 for (i = 0; i < n_ops; i++)
891 {
892 old_operands[i] = recog_data.operand[i];
893 if (recog_data.operand_type[i] == OP_INOUT)
894 *recog_data.operand_loc[i] = cc0_rtx;
895 }
896 for (i = 0; i < recog_data.n_dups; i++)
897 {
898 int opn = recog_data.dup_num[i];
899 old_dups[i] = *recog_data.dup_loc[i];
900 if (recog_data.operand_type[opn] == OP_INOUT)
901 *recog_data.dup_loc[i] = cc0_rtx;
902 }
903
904 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
905
906 for (i = 0; i < recog_data.n_dups; i++)
907 *recog_data.dup_loc[i] = old_dups[i];
908 for (i = 0; i < n_ops; i++)
909 *recog_data.operand_loc[i] = old_operands[i];
910
911 /* Step 6: Begin new chains for writes inside operands. */
912 /* ??? Many targets have output constraints on the SET_DEST
913 of a call insn, which is stupid, since these are certainly
914 ABI defined hard registers. Don't change calls at all.
915 Similarly take special care for asm statement that originally
916 referenced hard registers. */
917 if (asm_noperands (PATTERN (insn)) > 0)
918 {
919 for (i = 0; i < n_ops; i++)
920 if (recog_data.operand_type[i] == OP_OUT)
921 {
922 rtx *loc = recog_data.operand_loc[i];
923 rtx op = *loc;
924 enum reg_class cl = recog_op_alt[i][alt].cl;
925
926 if (REG_P (op)
927 && REGNO (op) == ORIGINAL_REGNO (op))
928 continue;
929
930 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
931 recog_op_alt[i][alt].earlyclobber);
932 }
933 }
934 else if (!CALL_P (insn))
935 for (i = 0; i < n_ops + recog_data.n_dups; i++)
936 {
937 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
938 rtx *loc = (i < n_ops
939 ? recog_data.operand_loc[opn]
940 : recog_data.dup_loc[i - n_ops]);
941 enum reg_class cl = recog_op_alt[opn][alt].cl;
942
943 if (recog_data.operand_type[opn] == OP_OUT)
944 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
945 recog_op_alt[opn][alt].earlyclobber);
946 }
947
948 /* Step 6B: Record destination regs in REG_FRAME_RELATED_EXPR
949 notes for update. */
950 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
951 if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
952 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
953 OP_INOUT, 0);
954
955 /* Step 7: Close chains for registers that were never
956 really used here. */
957 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
958 if (REG_NOTE_KIND (note) == REG_UNUSED)
959 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
960 OP_IN, 0);
961 }
962 if (insn == BB_END (bb))
963 break;
964 }
965
966 /* Since we close every chain when we find a REG_DEAD note, anything that
967 is still open lives past the basic block, so it can't be renamed. */
968 return closed_chains;
969 }
970
971 /* Dump all def/use chains in CHAINS to DUMP_FILE. They are
972 printed in reverse order as that's how we build them. */
973
974 static void
975 dump_def_use_chain (struct du_chain *chains)
976 {
977 while (chains)
978 {
979 struct du_chain *this = chains;
980 int r = REGNO (*this->loc);
981 int nregs = hard_regno_nregs[r][GET_MODE (*this->loc)];
982 fprintf (dump_file, "Register %s (%d):", reg_names[r], nregs);
983 while (this)
984 {
985 fprintf (dump_file, " %d [%s]", INSN_UID (this->insn),
986 reg_class_names[this->cl]);
987 this = this->next_use;
988 }
989 fprintf (dump_file, "\n");
990 chains = chains->next_chain;
991 }
992 }
993 \f
994 /* The following code does forward propagation of hard register copies.
995 The object is to eliminate as many dependencies as possible, so that
996 we have the most scheduling freedom. As a side effect, we also clean
997 up some silly register allocation decisions made by reload. This
998 code may be obsoleted by a new register allocator. */
999
1000 /* For each register, we have a list of registers that contain the same
1001 value. The OLDEST_REGNO field points to the head of the list, and
1002 the NEXT_REGNO field runs through the list. The MODE field indicates
1003 what mode the data is known to be in; this field is VOIDmode when the
1004 register is not known to contain valid data. */
1005
1006 struct value_data_entry
1007 {
1008 enum machine_mode mode;
1009 unsigned int oldest_regno;
1010 unsigned int next_regno;
1011 };
1012
1013 struct value_data
1014 {
1015 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
1016 unsigned int max_value_regs;
1017 };
1018
1019 static void kill_value_one_regno (unsigned, struct value_data *);
1020 static void kill_value_regno (unsigned, unsigned, struct value_data *);
1021 static void kill_value (rtx, struct value_data *);
1022 static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
1023 static void init_value_data (struct value_data *);
1024 static void kill_clobbered_value (rtx, const_rtx, void *);
1025 static void kill_set_value (rtx, const_rtx, void *);
1026 static int kill_autoinc_value (rtx *, void *);
1027 static void copy_value (rtx, rtx, struct value_data *);
1028 static bool mode_change_ok (enum machine_mode, enum machine_mode,
1029 unsigned int);
1030 static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
1031 enum machine_mode, unsigned int, unsigned int);
1032 static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
1033 static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
1034 struct value_data *);
1035 static bool replace_oldest_value_addr (rtx *, enum reg_class,
1036 enum machine_mode, rtx,
1037 struct value_data *);
1038 static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
1039 static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
1040 extern void debug_value_data (struct value_data *);
1041 #ifdef ENABLE_CHECKING
1042 static void validate_value_data (struct value_data *);
1043 #endif
1044
1045 /* Kill register REGNO. This involves removing it from any value
1046 lists, and resetting the value mode to VOIDmode. This is only a
1047 helper function; it does not handle any hard registers overlapping
1048 with REGNO. */
1049
1050 static void
1051 kill_value_one_regno (unsigned int regno, struct value_data *vd)
1052 {
1053 unsigned int i, next;
1054
1055 if (vd->e[regno].oldest_regno != regno)
1056 {
1057 for (i = vd->e[regno].oldest_regno;
1058 vd->e[i].next_regno != regno;
1059 i = vd->e[i].next_regno)
1060 continue;
1061 vd->e[i].next_regno = vd->e[regno].next_regno;
1062 }
1063 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
1064 {
1065 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
1066 vd->e[i].oldest_regno = next;
1067 }
1068
1069 vd->e[regno].mode = VOIDmode;
1070 vd->e[regno].oldest_regno = regno;
1071 vd->e[regno].next_regno = INVALID_REGNUM;
1072
1073 #ifdef ENABLE_CHECKING
1074 validate_value_data (vd);
1075 #endif
1076 }
1077
1078 /* Kill the value in register REGNO for NREGS, and any other registers
1079 whose values overlap. */
1080
1081 static void
1082 kill_value_regno (unsigned int regno, unsigned int nregs,
1083 struct value_data *vd)
1084 {
1085 unsigned int j;
1086
1087 /* Kill the value we're told to kill. */
1088 for (j = 0; j < nregs; ++j)
1089 kill_value_one_regno (regno + j, vd);
1090
1091 /* Kill everything that overlapped what we're told to kill. */
1092 if (regno < vd->max_value_regs)
1093 j = 0;
1094 else
1095 j = regno - vd->max_value_regs;
1096 for (; j < regno; ++j)
1097 {
1098 unsigned int i, n;
1099 if (vd->e[j].mode == VOIDmode)
1100 continue;
1101 n = hard_regno_nregs[j][vd->e[j].mode];
1102 if (j + n > regno)
1103 for (i = 0; i < n; ++i)
1104 kill_value_one_regno (j + i, vd);
1105 }
1106 }
1107
1108 /* Kill X. This is a convenience function wrapping kill_value_regno
1109 so that we mind the mode the register is in. */
1110
1111 static void
1112 kill_value (rtx x, struct value_data *vd)
1113 {
1114 rtx orig_rtx = x;
1115
1116 if (GET_CODE (x) == SUBREG)
1117 {
1118 x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
1119 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
1120 if (x == NULL_RTX)
1121 x = SUBREG_REG (orig_rtx);
1122 }
1123 if (REG_P (x))
1124 {
1125 unsigned int regno = REGNO (x);
1126 unsigned int n = hard_regno_nregs[regno][GET_MODE (x)];
1127
1128 kill_value_regno (regno, n, vd);
1129 }
1130 }
1131
1132 /* Remember that REGNO is valid in MODE. */
1133
1134 static void
1135 set_value_regno (unsigned int regno, enum machine_mode mode,
1136 struct value_data *vd)
1137 {
1138 unsigned int nregs;
1139
1140 vd->e[regno].mode = mode;
1141
1142 nregs = hard_regno_nregs[regno][mode];
1143 if (nregs > vd->max_value_regs)
1144 vd->max_value_regs = nregs;
1145 }
1146
1147 /* Initialize VD such that there are no known relationships between regs. */
1148
1149 static void
1150 init_value_data (struct value_data *vd)
1151 {
1152 int i;
1153 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1154 {
1155 vd->e[i].mode = VOIDmode;
1156 vd->e[i].oldest_regno = i;
1157 vd->e[i].next_regno = INVALID_REGNUM;
1158 }
1159 vd->max_value_regs = 0;
1160 }
1161
1162 /* Called through note_stores. If X is clobbered, kill its value. */
1163
1164 static void
1165 kill_clobbered_value (rtx x, const_rtx set, void *data)
1166 {
1167 struct value_data *const vd = (struct value_data *) data;
1168 if (GET_CODE (set) == CLOBBER)
1169 kill_value (x, vd);
1170 }
1171
1172 /* Called through note_stores. If X is set, not clobbered, kill its
1173 current value and install it as the root of its own value list. */
1174
1175 static void
1176 kill_set_value (rtx x, const_rtx set, void *data)
1177 {
1178 struct value_data *const vd = (struct value_data *) data;
1179 if (GET_CODE (set) != CLOBBER)
1180 {
1181 kill_value (x, vd);
1182 if (REG_P (x))
1183 set_value_regno (REGNO (x), GET_MODE (x), vd);
1184 }
1185 }
1186
1187 /* Called through for_each_rtx. Kill any register used as the base of an
1188 auto-increment expression, and install that register as the root of its
1189 own value list. */
1190
1191 static int
1192 kill_autoinc_value (rtx *px, void *data)
1193 {
1194 rtx x = *px;
1195 struct value_data *const vd = (struct value_data *) data;
1196
1197 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
1198 {
1199 x = XEXP (x, 0);
1200 kill_value (x, vd);
1201 set_value_regno (REGNO (x), Pmode, vd);
1202 return -1;
1203 }
1204
1205 return 0;
1206 }
1207
1208 /* Assert that SRC has been copied to DEST. Adjust the data structures
1209 to reflect that SRC contains an older copy of the shared value. */
1210
1211 static void
1212 copy_value (rtx dest, rtx src, struct value_data *vd)
1213 {
1214 unsigned int dr = REGNO (dest);
1215 unsigned int sr = REGNO (src);
1216 unsigned int dn, sn;
1217 unsigned int i;
1218
1219 /* ??? At present, it's possible to see noop sets. It'd be nice if
1220 this were cleaned up beforehand... */
1221 if (sr == dr)
1222 return;
1223
1224 /* Do not propagate copies to the stack pointer, as that can leave
1225 memory accesses with no scheduling dependency on the stack update. */
1226 if (dr == STACK_POINTER_REGNUM)
1227 return;
1228
1229 /* Likewise with the frame pointer, if we're using one. */
1230 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
1231 return;
1232
1233 /* Do not propagate copies to fixed or global registers, patterns
1234 can be relying to see particular fixed register or users can
1235 expect the chosen global register in asm. */
1236 if (fixed_regs[dr] || global_regs[dr])
1237 return;
1238
1239 /* If SRC and DEST overlap, don't record anything. */
1240 dn = hard_regno_nregs[dr][GET_MODE (dest)];
1241 sn = hard_regno_nregs[sr][GET_MODE (dest)];
1242 if ((dr > sr && dr < sr + sn)
1243 || (sr > dr && sr < dr + dn))
1244 return;
1245
1246 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1247 assign it now and assume the value came from an input argument
1248 or somesuch. */
1249 if (vd->e[sr].mode == VOIDmode)
1250 set_value_regno (sr, vd->e[dr].mode, vd);
1251
1252 /* If we are narrowing the input to a smaller number of hard regs,
1253 and it is in big endian, we are really extracting a high part.
1254 Since we generally associate a low part of a value with the value itself,
1255 we must not do the same for the high part.
1256 Note we can still get low parts for the same mode combination through
1257 a two-step copy involving differently sized hard regs.
1258 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1259 (set (reg:DI r0) (reg:DI fr0))
1260 (set (reg:SI fr2) (reg:SI r0))
1261 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1262 (set (reg:SI fr2) (reg:SI fr0))
1263 loads the high part of (reg:DI fr0) into fr2.
1264
1265 We can't properly represent the latter case in our tables, so don't
1266 record anything then. */
1267 else if (sn < (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode]
1268 && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
1269 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
1270 return;
1271
1272 /* If SRC had been assigned a mode narrower than the copy, we can't
1273 link DEST into the chain, because not all of the pieces of the
1274 copy came from oldest_regno. */
1275 else if (sn > (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode])
1276 return;
1277
1278 /* Link DR at the end of the value chain used by SR. */
1279
1280 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
1281
1282 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
1283 continue;
1284 vd->e[i].next_regno = dr;
1285
1286 #ifdef ENABLE_CHECKING
1287 validate_value_data (vd);
1288 #endif
1289 }
1290
1291 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1292
1293 static bool
1294 mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
1295 unsigned int regno ATTRIBUTE_UNUSED)
1296 {
1297 if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
1298 return false;
1299
1300 #ifdef CANNOT_CHANGE_MODE_CLASS
1301 return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
1302 #endif
1303
1304 return true;
1305 }
1306
1307 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
1308 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1309 in NEW_MODE.
1310 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
1311
1312 static rtx
1313 maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
1314 enum machine_mode new_mode, unsigned int regno,
1315 unsigned int copy_regno ATTRIBUTE_UNUSED)
1316 {
1317 if (orig_mode == new_mode)
1318 return gen_rtx_raw_REG (new_mode, regno);
1319 else if (mode_change_ok (orig_mode, new_mode, regno))
1320 {
1321 int copy_nregs = hard_regno_nregs[copy_regno][copy_mode];
1322 int use_nregs = hard_regno_nregs[copy_regno][new_mode];
1323 int copy_offset
1324 = GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
1325 int offset
1326 = GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
1327 int byteoffset = offset % UNITS_PER_WORD;
1328 int wordoffset = offset - byteoffset;
1329
1330 offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
1331 + (BYTES_BIG_ENDIAN ? byteoffset : 0));
1332 return gen_rtx_raw_REG (new_mode,
1333 regno + subreg_regno_offset (regno, orig_mode,
1334 offset,
1335 new_mode));
1336 }
1337 return NULL_RTX;
1338 }
1339
1340 /* Find the oldest copy of the value contained in REGNO that is in
1341 register class CL and has mode MODE. If found, return an rtx
1342 of that oldest register, otherwise return NULL. */
1343
1344 static rtx
1345 find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
1346 {
1347 unsigned int regno = REGNO (reg);
1348 enum machine_mode mode = GET_MODE (reg);
1349 unsigned int i;
1350
1351 /* If we are accessing REG in some mode other that what we set it in,
1352 make sure that the replacement is valid. In particular, consider
1353 (set (reg:DI r11) (...))
1354 (set (reg:SI r9) (reg:SI r11))
1355 (set (reg:SI r10) (...))
1356 (set (...) (reg:DI r9))
1357 Replacing r9 with r11 is invalid. */
1358 if (mode != vd->e[regno].mode)
1359 {
1360 if (hard_regno_nregs[regno][mode]
1361 > hard_regno_nregs[regno][vd->e[regno].mode])
1362 return NULL_RTX;
1363 }
1364
1365 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
1366 {
1367 enum machine_mode oldmode = vd->e[i].mode;
1368 rtx new;
1369
1370 if (!in_hard_reg_set_p (reg_class_contents[cl], mode, i))
1371 return NULL_RTX;
1372
1373 new = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
1374 if (new)
1375 {
1376 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
1377 REG_ATTRS (new) = REG_ATTRS (reg);
1378 return new;
1379 }
1380 }
1381
1382 return NULL_RTX;
1383 }
1384
1385 /* If possible, replace the register at *LOC with the oldest register
1386 in register class CL. Return true if successfully replaced. */
1387
1388 static bool
1389 replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx insn,
1390 struct value_data *vd)
1391 {
1392 rtx new = find_oldest_value_reg (cl, *loc, vd);
1393 if (new)
1394 {
1395 if (dump_file)
1396 fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
1397 INSN_UID (insn), REGNO (*loc), REGNO (new));
1398
1399 validate_change (insn, loc, new, 1);
1400 return true;
1401 }
1402 return false;
1403 }
1404
1405 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1406 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1407 BASE_REG_CLASS depending on how the register is being considered. */
1408
1409 static bool
1410 replace_oldest_value_addr (rtx *loc, enum reg_class cl,
1411 enum machine_mode mode, rtx insn,
1412 struct value_data *vd)
1413 {
1414 rtx x = *loc;
1415 RTX_CODE code = GET_CODE (x);
1416 const char *fmt;
1417 int i, j;
1418 bool changed = false;
1419
1420 switch (code)
1421 {
1422 case PLUS:
1423 {
1424 rtx orig_op0 = XEXP (x, 0);
1425 rtx orig_op1 = XEXP (x, 1);
1426 RTX_CODE code0 = GET_CODE (orig_op0);
1427 RTX_CODE code1 = GET_CODE (orig_op1);
1428 rtx op0 = orig_op0;
1429 rtx op1 = orig_op1;
1430 rtx *locI = NULL;
1431 rtx *locB = NULL;
1432 enum rtx_code index_code = SCRATCH;
1433
1434 if (GET_CODE (op0) == SUBREG)
1435 {
1436 op0 = SUBREG_REG (op0);
1437 code0 = GET_CODE (op0);
1438 }
1439
1440 if (GET_CODE (op1) == SUBREG)
1441 {
1442 op1 = SUBREG_REG (op1);
1443 code1 = GET_CODE (op1);
1444 }
1445
1446 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1447 || code0 == ZERO_EXTEND || code1 == MEM)
1448 {
1449 locI = &XEXP (x, 0);
1450 locB = &XEXP (x, 1);
1451 index_code = GET_CODE (*locI);
1452 }
1453 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1454 || code1 == ZERO_EXTEND || code0 == MEM)
1455 {
1456 locI = &XEXP (x, 1);
1457 locB = &XEXP (x, 0);
1458 index_code = GET_CODE (*locI);
1459 }
1460 else if (code0 == CONST_INT || code0 == CONST
1461 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1462 {
1463 locB = &XEXP (x, 1);
1464 index_code = GET_CODE (XEXP (x, 0));
1465 }
1466 else if (code1 == CONST_INT || code1 == CONST
1467 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1468 {
1469 locB = &XEXP (x, 0);
1470 index_code = GET_CODE (XEXP (x, 1));
1471 }
1472 else if (code0 == REG && code1 == REG)
1473 {
1474 int index_op;
1475 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
1476
1477 if (REGNO_OK_FOR_INDEX_P (regno1)
1478 && regno_ok_for_base_p (regno0, mode, PLUS, REG))
1479 index_op = 1;
1480 else if (REGNO_OK_FOR_INDEX_P (regno0)
1481 && regno_ok_for_base_p (regno1, mode, PLUS, REG))
1482 index_op = 0;
1483 else if (regno_ok_for_base_p (regno0, mode, PLUS, REG)
1484 || REGNO_OK_FOR_INDEX_P (regno1))
1485 index_op = 1;
1486 else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
1487 index_op = 0;
1488 else
1489 index_op = 1;
1490
1491 locI = &XEXP (x, index_op);
1492 locB = &XEXP (x, !index_op);
1493 index_code = GET_CODE (*locI);
1494 }
1495 else if (code0 == REG)
1496 {
1497 locI = &XEXP (x, 0);
1498 locB = &XEXP (x, 1);
1499 index_code = GET_CODE (*locI);
1500 }
1501 else if (code1 == REG)
1502 {
1503 locI = &XEXP (x, 1);
1504 locB = &XEXP (x, 0);
1505 index_code = GET_CODE (*locI);
1506 }
1507
1508 if (locI)
1509 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
1510 insn, vd);
1511 if (locB)
1512 changed |= replace_oldest_value_addr (locB,
1513 base_reg_class (mode, PLUS,
1514 index_code),
1515 mode, insn, vd);
1516 return changed;
1517 }
1518
1519 case POST_INC:
1520 case POST_DEC:
1521 case POST_MODIFY:
1522 case PRE_INC:
1523 case PRE_DEC:
1524 case PRE_MODIFY:
1525 return false;
1526
1527 case MEM:
1528 return replace_oldest_value_mem (x, insn, vd);
1529
1530 case REG:
1531 return replace_oldest_value_reg (loc, cl, insn, vd);
1532
1533 default:
1534 break;
1535 }
1536
1537 fmt = GET_RTX_FORMAT (code);
1538 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1539 {
1540 if (fmt[i] == 'e')
1541 changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode,
1542 insn, vd);
1543 else if (fmt[i] == 'E')
1544 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1545 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
1546 mode, insn, vd);
1547 }
1548
1549 return changed;
1550 }
1551
1552 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1553
1554 static bool
1555 replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
1556 {
1557 return replace_oldest_value_addr (&XEXP (x, 0),
1558 base_reg_class (GET_MODE (x), MEM,
1559 SCRATCH),
1560 GET_MODE (x), insn, vd);
1561 }
1562
1563 /* Perform the forward copy propagation on basic block BB. */
1564
1565 static bool
1566 copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
1567 {
1568 bool changed = false;
1569 rtx insn;
1570
1571 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1572 {
1573 int n_ops, i, alt, predicated;
1574 bool is_asm, any_replacements;
1575 rtx set;
1576 bool replaced[MAX_RECOG_OPERANDS];
1577
1578 if (! INSN_P (insn))
1579 {
1580 if (insn == BB_END (bb))
1581 break;
1582 else
1583 continue;
1584 }
1585
1586 set = single_set (insn);
1587 extract_insn (insn);
1588 if (! constrain_operands (1))
1589 fatal_insn_not_found (insn);
1590 preprocess_constraints ();
1591 alt = which_alternative;
1592 n_ops = recog_data.n_operands;
1593 is_asm = asm_noperands (PATTERN (insn)) >= 0;
1594
1595 /* Simplify the code below by rewriting things to reflect
1596 matching constraints. Also promote OP_OUT to OP_INOUT
1597 in predicated instructions. */
1598
1599 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1600 for (i = 0; i < n_ops; ++i)
1601 {
1602 int matches = recog_op_alt[i][alt].matches;
1603 if (matches >= 0)
1604 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1605 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1606 || (predicated && recog_data.operand_type[i] == OP_OUT))
1607 recog_data.operand_type[i] = OP_INOUT;
1608 }
1609
1610 /* For each earlyclobber operand, zap the value data. */
1611 for (i = 0; i < n_ops; i++)
1612 if (recog_op_alt[i][alt].earlyclobber)
1613 kill_value (recog_data.operand[i], vd);
1614
1615 /* Within asms, a clobber cannot overlap inputs or outputs.
1616 I wouldn't think this were true for regular insns, but
1617 scan_rtx treats them like that... */
1618 note_stores (PATTERN (insn), kill_clobbered_value, vd);
1619
1620 /* Kill all auto-incremented values. */
1621 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1622 for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
1623
1624 /* Kill all early-clobbered operands. */
1625 for (i = 0; i < n_ops; i++)
1626 if (recog_op_alt[i][alt].earlyclobber)
1627 kill_value (recog_data.operand[i], vd);
1628
1629 /* Special-case plain move instructions, since we may well
1630 be able to do the move from a different register class. */
1631 if (set && REG_P (SET_SRC (set)))
1632 {
1633 rtx src = SET_SRC (set);
1634 unsigned int regno = REGNO (src);
1635 enum machine_mode mode = GET_MODE (src);
1636 unsigned int i;
1637 rtx new;
1638
1639 /* If we are accessing SRC in some mode other that what we
1640 set it in, make sure that the replacement is valid. */
1641 if (mode != vd->e[regno].mode)
1642 {
1643 if (hard_regno_nregs[regno][mode]
1644 > hard_regno_nregs[regno][vd->e[regno].mode])
1645 goto no_move_special_case;
1646 }
1647
1648 /* If the destination is also a register, try to find a source
1649 register in the same class. */
1650 if (REG_P (SET_DEST (set)))
1651 {
1652 new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
1653 if (new && validate_change (insn, &SET_SRC (set), new, 0))
1654 {
1655 if (dump_file)
1656 fprintf (dump_file,
1657 "insn %u: replaced reg %u with %u\n",
1658 INSN_UID (insn), regno, REGNO (new));
1659 changed = true;
1660 goto did_replacement;
1661 }
1662 }
1663
1664 /* Otherwise, try all valid registers and see if its valid. */
1665 for (i = vd->e[regno].oldest_regno; i != regno;
1666 i = vd->e[i].next_regno)
1667 {
1668 new = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
1669 mode, i, regno);
1670 if (new != NULL_RTX)
1671 {
1672 if (validate_change (insn, &SET_SRC (set), new, 0))
1673 {
1674 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
1675 REG_ATTRS (new) = REG_ATTRS (src);
1676 if (dump_file)
1677 fprintf (dump_file,
1678 "insn %u: replaced reg %u with %u\n",
1679 INSN_UID (insn), regno, REGNO (new));
1680 changed = true;
1681 goto did_replacement;
1682 }
1683 }
1684 }
1685 }
1686 no_move_special_case:
1687
1688 any_replacements = false;
1689
1690 /* For each input operand, replace a hard register with the
1691 eldest live copy that's in an appropriate register class. */
1692 for (i = 0; i < n_ops; i++)
1693 {
1694 replaced[i] = false;
1695
1696 /* Don't scan match_operand here, since we've no reg class
1697 information to pass down. Any operands that we could
1698 substitute in will be represented elsewhere. */
1699 if (recog_data.constraints[i][0] == '\0')
1700 continue;
1701
1702 /* Don't replace in asms intentionally referencing hard regs. */
1703 if (is_asm && REG_P (recog_data.operand[i])
1704 && (REGNO (recog_data.operand[i])
1705 == ORIGINAL_REGNO (recog_data.operand[i])))
1706 continue;
1707
1708 if (recog_data.operand_type[i] == OP_IN)
1709 {
1710 if (recog_op_alt[i][alt].is_address)
1711 replaced[i]
1712 = replace_oldest_value_addr (recog_data.operand_loc[i],
1713 recog_op_alt[i][alt].cl,
1714 VOIDmode, insn, vd);
1715 else if (REG_P (recog_data.operand[i]))
1716 replaced[i]
1717 = replace_oldest_value_reg (recog_data.operand_loc[i],
1718 recog_op_alt[i][alt].cl,
1719 insn, vd);
1720 else if (MEM_P (recog_data.operand[i]))
1721 replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
1722 insn, vd);
1723 }
1724 else if (MEM_P (recog_data.operand[i]))
1725 replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
1726 insn, vd);
1727
1728 /* If we performed any replacement, update match_dups. */
1729 if (replaced[i])
1730 {
1731 int j;
1732 rtx new;
1733
1734 new = *recog_data.operand_loc[i];
1735 recog_data.operand[i] = new;
1736 for (j = 0; j < recog_data.n_dups; j++)
1737 if (recog_data.dup_num[j] == i)
1738 validate_unshare_change (insn, recog_data.dup_loc[j], new, 1);
1739
1740 any_replacements = true;
1741 }
1742 }
1743
1744 if (any_replacements)
1745 {
1746 if (! apply_change_group ())
1747 {
1748 for (i = 0; i < n_ops; i++)
1749 if (replaced[i])
1750 {
1751 rtx old = *recog_data.operand_loc[i];
1752 recog_data.operand[i] = old;
1753 }
1754
1755 if (dump_file)
1756 fprintf (dump_file,
1757 "insn %u: reg replacements not verified\n",
1758 INSN_UID (insn));
1759 }
1760 else
1761 changed = true;
1762 }
1763
1764 did_replacement:
1765 /* Clobber call-clobbered registers. */
1766 if (CALL_P (insn))
1767 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1768 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1769 kill_value_regno (i, 1, vd);
1770
1771 /* Notice stores. */
1772 note_stores (PATTERN (insn), kill_set_value, vd);
1773
1774 /* Notice copies. */
1775 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
1776 copy_value (SET_DEST (set), SET_SRC (set), vd);
1777
1778 if (insn == BB_END (bb))
1779 break;
1780 }
1781
1782 return changed;
1783 }
1784
1785 /* Main entry point for the forward copy propagation optimization. */
1786
1787 static void
1788 copyprop_hardreg_forward (void)
1789 {
1790 struct value_data *all_vd;
1791 basic_block bb;
1792 sbitmap visited;
1793
1794 all_vd = XNEWVEC (struct value_data, last_basic_block);
1795
1796 visited = sbitmap_alloc (last_basic_block);
1797 sbitmap_zero (visited);
1798
1799 FOR_EACH_BB (bb)
1800 {
1801 SET_BIT (visited, bb->index);
1802
1803 /* If a block has a single predecessor, that we've already
1804 processed, begin with the value data that was live at
1805 the end of the predecessor block. */
1806 /* ??? Ought to use more intelligent queuing of blocks. */
1807 if (single_pred_p (bb)
1808 && TEST_BIT (visited, single_pred (bb)->index)
1809 && ! (single_pred_edge (bb)->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
1810 all_vd[bb->index] = all_vd[single_pred (bb)->index];
1811 else
1812 init_value_data (all_vd + bb->index);
1813
1814 copyprop_hardreg_forward_1 (bb, all_vd + bb->index);
1815 }
1816
1817 sbitmap_free (visited);
1818 free (all_vd);
1819 }
1820
1821 /* Dump the value chain data to stderr. */
1822
1823 void
1824 debug_value_data (struct value_data *vd)
1825 {
1826 HARD_REG_SET set;
1827 unsigned int i, j;
1828
1829 CLEAR_HARD_REG_SET (set);
1830
1831 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1832 if (vd->e[i].oldest_regno == i)
1833 {
1834 if (vd->e[i].mode == VOIDmode)
1835 {
1836 if (vd->e[i].next_regno != INVALID_REGNUM)
1837 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1838 i, vd->e[i].next_regno);
1839 continue;
1840 }
1841
1842 SET_HARD_REG_BIT (set, i);
1843 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1844
1845 for (j = vd->e[i].next_regno;
1846 j != INVALID_REGNUM;
1847 j = vd->e[j].next_regno)
1848 {
1849 if (TEST_HARD_REG_BIT (set, j))
1850 {
1851 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1852 return;
1853 }
1854
1855 if (vd->e[j].oldest_regno != i)
1856 {
1857 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1858 j, vd->e[j].oldest_regno);
1859 return;
1860 }
1861 SET_HARD_REG_BIT (set, j);
1862 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1863 }
1864 fputc ('\n', stderr);
1865 }
1866
1867 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1868 if (! TEST_HARD_REG_BIT (set, i)
1869 && (vd->e[i].mode != VOIDmode
1870 || vd->e[i].oldest_regno != i
1871 || vd->e[i].next_regno != INVALID_REGNUM))
1872 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1873 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1874 vd->e[i].next_regno);
1875 }
1876
1877 #ifdef ENABLE_CHECKING
1878 static void
1879 validate_value_data (struct value_data *vd)
1880 {
1881 HARD_REG_SET set;
1882 unsigned int i, j;
1883
1884 CLEAR_HARD_REG_SET (set);
1885
1886 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1887 if (vd->e[i].oldest_regno == i)
1888 {
1889 if (vd->e[i].mode == VOIDmode)
1890 {
1891 if (vd->e[i].next_regno != INVALID_REGNUM)
1892 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1893 i, vd->e[i].next_regno);
1894 continue;
1895 }
1896
1897 SET_HARD_REG_BIT (set, i);
1898
1899 for (j = vd->e[i].next_regno;
1900 j != INVALID_REGNUM;
1901 j = vd->e[j].next_regno)
1902 {
1903 if (TEST_HARD_REG_BIT (set, j))
1904 internal_error ("validate_value_data: Loop in regno chain (%u)",
1905 j);
1906 if (vd->e[j].oldest_regno != i)
1907 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1908 j, vd->e[j].oldest_regno);
1909
1910 SET_HARD_REG_BIT (set, j);
1911 }
1912 }
1913
1914 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1915 if (! TEST_HARD_REG_BIT (set, i)
1916 && (vd->e[i].mode != VOIDmode
1917 || vd->e[i].oldest_regno != i
1918 || vd->e[i].next_regno != INVALID_REGNUM))
1919 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1920 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1921 vd->e[i].next_regno);
1922 }
1923 #endif
1924 \f
1925 static bool
1926 gate_handle_regrename (void)
1927 {
1928 return (optimize > 0 && (flag_rename_registers));
1929 }
1930
1931
1932 /* Run the regrename and cprop passes. */
1933 static unsigned int
1934 rest_of_handle_regrename (void)
1935 {
1936 regrename_optimize ();
1937 return 0;
1938 }
1939
1940 struct rtl_opt_pass pass_regrename =
1941 {
1942 {
1943 RTL_PASS,
1944 "rnreg", /* name */
1945 gate_handle_regrename, /* gate */
1946 rest_of_handle_regrename, /* execute */
1947 NULL, /* sub */
1948 NULL, /* next */
1949 0, /* static_pass_number */
1950 TV_RENAME_REGISTERS, /* tv_id */
1951 0, /* properties_required */
1952 0, /* properties_provided */
1953 0, /* properties_destroyed */
1954 0, /* todo_flags_start */
1955 TODO_df_finish | TODO_verify_rtl_sharing |
1956 TODO_dump_func /* todo_flags_finish */
1957 }
1958 };
1959
1960 static bool
1961 gate_handle_cprop (void)
1962 {
1963 return (optimize > 0 && (flag_cprop_registers));
1964 }
1965
1966
1967 /* Run the regrename and cprop passes. */
1968 static unsigned int
1969 rest_of_handle_cprop (void)
1970 {
1971 copyprop_hardreg_forward ();
1972 return 0;
1973 }
1974
1975 struct rtl_opt_pass pass_cprop_hardreg =
1976 {
1977 {
1978 RTL_PASS,
1979 "cprop_hardreg", /* name */
1980 gate_handle_cprop, /* gate */
1981 rest_of_handle_cprop, /* execute */
1982 NULL, /* sub */
1983 NULL, /* next */
1984 0, /* static_pass_number */
1985 TV_RENAME_REGISTERS, /* tv_id */
1986 0, /* properties_required */
1987 0, /* properties_provided */
1988 0, /* properties_destroyed */
1989 0, /* todo_flags_start */
1990 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
1991 }
1992 };
1993