regrename.c (copy_value): Ignore the copy if the source register is present in the...
[gcc.git] / gcc / regrename.c
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #define REG_OK_STRICT
22
23 #include "config.h"
24 #include "system.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "reload.h"
32 #include "output.h"
33 #include "function.h"
34 #include "recog.h"
35 #include "flags.h"
36 #include "toplev.h"
37 #include "obstack.h"
38
39 #define obstack_chunk_alloc xmalloc
40 #define obstack_chunk_free free
41
42 #ifndef REGNO_MODE_OK_FOR_BASE_P
43 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
44 #endif
45
46 #ifndef REG_MODE_OK_FOR_BASE_P
47 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
48 #endif
49
50 static const char *const reg_class_names[] = REG_CLASS_NAMES;
51
52 struct du_chain
53 {
54 struct du_chain *next_chain;
55 struct du_chain *next_use;
56
57 rtx insn;
58 rtx *loc;
59 enum reg_class class;
60 unsigned int need_caller_save_reg:1;
61 unsigned int earlyclobber:1;
62 };
63
64 enum scan_actions
65 {
66 terminate_all_read,
67 terminate_overlapping_read,
68 terminate_write,
69 terminate_dead,
70 mark_read,
71 mark_write
72 };
73
74 static const char * const scan_actions_name[] =
75 {
76 "terminate_all_read",
77 "terminate_overlapping_read",
78 "terminate_write",
79 "terminate_dead",
80 "mark_read",
81 "mark_write"
82 };
83
84 static struct obstack rename_obstack;
85
86 static void do_replace PARAMS ((struct du_chain *, int));
87 static void scan_rtx_reg PARAMS ((rtx, rtx *, enum reg_class,
88 enum scan_actions, enum op_type, int));
89 static void scan_rtx_address PARAMS ((rtx, rtx *, enum reg_class,
90 enum scan_actions, enum machine_mode));
91 static void scan_rtx PARAMS ((rtx, rtx *, enum reg_class,
92 enum scan_actions, enum op_type, int));
93 static struct du_chain *build_def_use PARAMS ((basic_block));
94 static void dump_def_use_chain PARAMS ((struct du_chain *));
95 static void note_sets PARAMS ((rtx, rtx, void *));
96 static void clear_dead_regs PARAMS ((HARD_REG_SET *, enum machine_mode, rtx));
97 static void merge_overlapping_regs PARAMS ((basic_block, HARD_REG_SET *,
98 struct du_chain *));
99
100 /* Called through note_stores from update_life. Find sets of registers, and
101 record them in *DATA (which is actually a HARD_REG_SET *). */
102
103 static void
104 note_sets (x, set, data)
105 rtx x;
106 rtx set ATTRIBUTE_UNUSED;
107 void *data;
108 {
109 HARD_REG_SET *pset = (HARD_REG_SET *) data;
110 unsigned int regno;
111 int nregs;
112 if (GET_CODE (x) != REG)
113 return;
114 regno = REGNO (x);
115 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
116
117 /* There must not be pseudos at this point. */
118 if (regno + nregs > FIRST_PSEUDO_REGISTER)
119 abort ();
120
121 while (nregs-- > 0)
122 SET_HARD_REG_BIT (*pset, regno + nregs);
123 }
124
125 /* Clear all registers from *PSET for which a note of kind KIND can be found
126 in the list NOTES. */
127
128 static void
129 clear_dead_regs (pset, kind, notes)
130 HARD_REG_SET *pset;
131 enum machine_mode kind;
132 rtx notes;
133 {
134 rtx note;
135 for (note = notes; note; note = XEXP (note, 1))
136 if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
137 {
138 rtx reg = XEXP (note, 0);
139 unsigned int regno = REGNO (reg);
140 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
141
142 /* There must not be pseudos at this point. */
143 if (regno + nregs > FIRST_PSEUDO_REGISTER)
144 abort ();
145
146 while (nregs-- > 0)
147 CLEAR_HARD_REG_BIT (*pset, regno + nregs);
148 }
149 }
150
151 /* For a def-use chain CHAIN in basic block B, find which registers overlap
152 its lifetime and set the corresponding bits in *PSET. */
153
154 static void
155 merge_overlapping_regs (b, pset, chain)
156 basic_block b;
157 HARD_REG_SET *pset;
158 struct du_chain *chain;
159 {
160 struct du_chain *t = chain;
161 rtx insn;
162 HARD_REG_SET live;
163
164 REG_SET_TO_HARD_REG_SET (live, b->global_live_at_start);
165 insn = b->head;
166 while (t)
167 {
168 /* Search forward until the next reference to the register to be
169 renamed. */
170 while (insn != t->insn)
171 {
172 if (INSN_P (insn))
173 {
174 clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
175 note_stores (PATTERN (insn), note_sets, (void *) &live);
176 /* Only record currently live regs if we are inside the
177 reg's live range. */
178 if (t != chain)
179 IOR_HARD_REG_SET (*pset, live);
180 clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
181 }
182 insn = NEXT_INSN (insn);
183 }
184
185 IOR_HARD_REG_SET (*pset, live);
186
187 /* For the last reference, also merge in all registers set in the
188 same insn.
189 @@@ We only have take earlyclobbered sets into account. */
190 if (! t->next_use)
191 note_stores (PATTERN (insn), note_sets, (void *) pset);
192
193 t = t->next_use;
194 }
195 }
196
197 /* Perform register renaming on the current function. */
198
199 void
200 regrename_optimize ()
201 {
202 int tick[FIRST_PSEUDO_REGISTER];
203 int this_tick = 0;
204 int b;
205 char *first_obj;
206
207 memset (tick, 0, sizeof tick);
208
209 gcc_obstack_init (&rename_obstack);
210 first_obj = (char *) obstack_alloc (&rename_obstack, 0);
211
212 for (b = 0; b < n_basic_blocks; b++)
213 {
214 basic_block bb = BASIC_BLOCK (b);
215 struct du_chain *all_chains = 0;
216 HARD_REG_SET unavailable;
217 HARD_REG_SET regs_seen;
218
219 CLEAR_HARD_REG_SET (unavailable);
220
221 if (rtl_dump_file)
222 fprintf (rtl_dump_file, "\nBasic block %d:\n", b);
223
224 all_chains = build_def_use (bb);
225
226 if (rtl_dump_file)
227 dump_def_use_chain (all_chains);
228
229 CLEAR_HARD_REG_SET (unavailable);
230 /* Don't clobber traceback for noreturn functions. */
231 if (frame_pointer_needed)
232 {
233 int i;
234
235 for (i = HARD_REGNO_NREGS (FRAME_POINTER_REGNUM, Pmode); i--;)
236 SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
237
238 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
239 for (i = HARD_REGNO_NREGS (HARD_FRAME_POINTER_REGNUM, Pmode); i--;)
240 SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
241 #endif
242 }
243
244 CLEAR_HARD_REG_SET (regs_seen);
245 while (all_chains)
246 {
247 int new_reg, best_new_reg = -1;
248 int n_uses;
249 struct du_chain *this = all_chains;
250 struct du_chain *tmp, *last;
251 HARD_REG_SET this_unavailable;
252 int reg = REGNO (*this->loc);
253 int i;
254
255 all_chains = this->next_chain;
256
257 #if 0 /* This just disables optimization opportunities. */
258 /* Only rename once we've seen the reg more than once. */
259 if (! TEST_HARD_REG_BIT (regs_seen, reg))
260 {
261 SET_HARD_REG_BIT (regs_seen, reg);
262 continue;
263 }
264 #endif
265
266 if (fixed_regs[reg] || global_regs[reg]
267 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
268 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
269 #else
270 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
271 #endif
272 )
273 continue;
274
275 COPY_HARD_REG_SET (this_unavailable, unavailable);
276
277 /* Find last entry on chain (which has the need_caller_save bit),
278 count number of uses, and narrow the set of registers we can
279 use for renaming. */
280 n_uses = 0;
281 for (last = this; last->next_use; last = last->next_use)
282 {
283 n_uses++;
284 IOR_COMPL_HARD_REG_SET (this_unavailable,
285 reg_class_contents[last->class]);
286 }
287 if (n_uses < 1)
288 continue;
289
290 IOR_COMPL_HARD_REG_SET (this_unavailable,
291 reg_class_contents[last->class]);
292
293 if (this->need_caller_save_reg)
294 IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
295
296 merge_overlapping_regs (bb, &this_unavailable, this);
297
298 /* Now potential_regs is a reasonable approximation, let's
299 have a closer look at each register still in there. */
300 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
301 {
302 int nregs = HARD_REGNO_NREGS (new_reg, GET_MODE (*this->loc));
303
304 for (i = nregs - 1; i >= 0; --i)
305 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
306 || fixed_regs[new_reg + i]
307 || global_regs[new_reg + i]
308 /* Can't use regs which aren't saved by the prologue. */
309 || (! regs_ever_live[new_reg + i]
310 && ! call_used_regs[new_reg + i])
311 #ifdef LEAF_REGISTERS
312 /* We can't use a non-leaf register if we're in a
313 leaf function. */
314 || (current_function_is_leaf
315 && !LEAF_REGISTERS[new_reg + i])
316 #endif
317 #ifdef HARD_REGNO_RENAME_OK
318 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
319 #endif
320 )
321 break;
322 if (i >= 0)
323 continue;
324
325 /* See whether it accepts all modes that occur in
326 definition and uses. */
327 for (tmp = this; tmp; tmp = tmp->next_use)
328 if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc)))
329 break;
330 if (! tmp)
331 {
332 if (best_new_reg == -1
333 || tick[best_new_reg] > tick[new_reg])
334 best_new_reg = new_reg;
335 }
336 }
337
338 if (rtl_dump_file)
339 {
340 fprintf (rtl_dump_file, "Register %s in insn %d",
341 reg_names[reg], INSN_UID (last->insn));
342 if (last->need_caller_save_reg)
343 fprintf (rtl_dump_file, " crosses a call");
344 }
345
346 if (best_new_reg == -1)
347 {
348 if (rtl_dump_file)
349 fprintf (rtl_dump_file, "; no available registers\n");
350 continue;
351 }
352
353 do_replace (this, best_new_reg);
354 tick[best_new_reg] = this_tick++;
355
356 if (rtl_dump_file)
357 fprintf (rtl_dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
358 }
359
360 obstack_free (&rename_obstack, first_obj);
361 }
362
363 obstack_free (&rename_obstack, NULL);
364
365 if (rtl_dump_file)
366 fputc ('\n', rtl_dump_file);
367
368 count_or_remove_death_notes (NULL, 1);
369 update_life_info (NULL, UPDATE_LIFE_LOCAL,
370 PROP_REG_INFO | PROP_DEATH_NOTES);
371 }
372
373 static void
374 do_replace (chain, reg)
375 struct du_chain *chain;
376 int reg;
377 {
378 while (chain)
379 {
380 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
381 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
382 if (regno >= FIRST_PSEUDO_REGISTER)
383 ORIGINAL_REGNO (*chain->loc) = regno;
384 chain = chain->next_use;
385 }
386 }
387
388
389 static struct du_chain *open_chains;
390 static struct du_chain *closed_chains;
391
392 static void
393 scan_rtx_reg (insn, loc, class, action, type, earlyclobber)
394 rtx insn;
395 rtx *loc;
396 enum reg_class class;
397 enum scan_actions action;
398 enum op_type type;
399 int earlyclobber;
400 {
401 struct du_chain **p;
402 rtx x = *loc;
403 enum machine_mode mode = GET_MODE (x);
404 int this_regno = REGNO (x);
405 int this_nregs = HARD_REGNO_NREGS (this_regno, mode);
406
407 if (action == mark_write)
408 {
409 if (type == OP_OUT)
410 {
411 struct du_chain *this = (struct du_chain *)
412 obstack_alloc (&rename_obstack, sizeof (struct du_chain));
413 this->next_use = 0;
414 this->next_chain = open_chains;
415 this->loc = loc;
416 this->insn = insn;
417 this->class = class;
418 this->need_caller_save_reg = 0;
419 this->earlyclobber = earlyclobber;
420 open_chains = this;
421 }
422 return;
423 }
424
425 if ((type == OP_OUT && action != terminate_write)
426 || (type != OP_OUT && action == terminate_write))
427 return;
428
429 for (p = &open_chains; *p;)
430 {
431 struct du_chain *this = *p;
432
433 /* Check if the chain has been terminated if it has then skip to
434 the next chain.
435
436 This can happen when we've already appended the location to
437 the chain in Step 3, but are trying to hide in-out operands
438 from terminate_write in Step 5. */
439
440 if (*this->loc == cc0_rtx)
441 p = &this->next_chain;
442 else
443 {
444 int regno = REGNO (*this->loc);
445 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (*this->loc));
446 int exact_match = (regno == this_regno && nregs == this_nregs);
447
448 if (regno + nregs <= this_regno
449 || this_regno + this_nregs <= regno)
450 {
451 p = &this->next_chain;
452 continue;
453 }
454
455 if (action == mark_read)
456 {
457 if (! exact_match)
458 abort ();
459
460 /* ??? Class NO_REGS can happen if the md file makes use of
461 EXTRA_CONSTRAINTS to match registers. Which is arguably
462 wrong, but there we are. Since we know not what this may
463 be replaced with, terminate the chain. */
464 if (class != NO_REGS)
465 {
466 this = (struct du_chain *)
467 obstack_alloc (&rename_obstack, sizeof (struct du_chain));
468 this->next_use = 0;
469 this->next_chain = (*p)->next_chain;
470 this->loc = loc;
471 this->insn = insn;
472 this->class = class;
473 this->need_caller_save_reg = 0;
474 while (*p)
475 p = &(*p)->next_use;
476 *p = this;
477 return;
478 }
479 }
480
481 if (action != terminate_overlapping_read || ! exact_match)
482 {
483 struct du_chain *next = this->next_chain;
484
485 /* Whether the terminated chain can be used for renaming
486 depends on the action and this being an exact match.
487 In either case, we remove this element from open_chains. */
488
489 if ((action == terminate_dead || action == terminate_write)
490 && exact_match)
491 {
492 this->next_chain = closed_chains;
493 closed_chains = this;
494 if (rtl_dump_file)
495 fprintf (rtl_dump_file,
496 "Closing chain %s at insn %d (%s)\n",
497 reg_names[REGNO (*this->loc)], INSN_UID (insn),
498 scan_actions_name[(int) action]);
499 }
500 else
501 {
502 if (rtl_dump_file)
503 fprintf (rtl_dump_file,
504 "Discarding chain %s at insn %d (%s)\n",
505 reg_names[REGNO (*this->loc)], INSN_UID (insn),
506 scan_actions_name[(int) action]);
507 }
508 *p = next;
509 }
510 else
511 p = &this->next_chain;
512 }
513 }
514 }
515
516 /* Adapted from find_reloads_address_1. CLASS is INDEX_REG_CLASS or
517 BASE_REG_CLASS depending on how the register is being considered. */
518
519 static void
520 scan_rtx_address (insn, loc, class, action, mode)
521 rtx insn;
522 rtx *loc;
523 enum reg_class class;
524 enum scan_actions action;
525 enum machine_mode mode;
526 {
527 rtx x = *loc;
528 RTX_CODE code = GET_CODE (x);
529 const char *fmt;
530 int i, j;
531
532 if (action == mark_write)
533 return;
534
535 switch (code)
536 {
537 case PLUS:
538 {
539 rtx orig_op0 = XEXP (x, 0);
540 rtx orig_op1 = XEXP (x, 1);
541 RTX_CODE code0 = GET_CODE (orig_op0);
542 RTX_CODE code1 = GET_CODE (orig_op1);
543 rtx op0 = orig_op0;
544 rtx op1 = orig_op1;
545 rtx *locI = NULL;
546 rtx *locB = NULL;
547
548 if (GET_CODE (op0) == SUBREG)
549 {
550 op0 = SUBREG_REG (op0);
551 code0 = GET_CODE (op0);
552 }
553
554 if (GET_CODE (op1) == SUBREG)
555 {
556 op1 = SUBREG_REG (op1);
557 code1 = GET_CODE (op1);
558 }
559
560 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
561 || code0 == ZERO_EXTEND || code1 == MEM)
562 {
563 locI = &XEXP (x, 0);
564 locB = &XEXP (x, 1);
565 }
566 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
567 || code1 == ZERO_EXTEND || code0 == MEM)
568 {
569 locI = &XEXP (x, 1);
570 locB = &XEXP (x, 0);
571 }
572 else if (code0 == CONST_INT || code0 == CONST
573 || code0 == SYMBOL_REF || code0 == LABEL_REF)
574 locB = &XEXP (x, 1);
575 else if (code1 == CONST_INT || code1 == CONST
576 || code1 == SYMBOL_REF || code1 == LABEL_REF)
577 locB = &XEXP (x, 0);
578 else if (code0 == REG && code1 == REG)
579 {
580 int index_op;
581
582 if (REG_OK_FOR_INDEX_P (op0)
583 && REG_MODE_OK_FOR_BASE_P (op1, mode))
584 index_op = 0;
585 else if (REG_OK_FOR_INDEX_P (op1)
586 && REG_MODE_OK_FOR_BASE_P (op0, mode))
587 index_op = 1;
588 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
589 index_op = 0;
590 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
591 index_op = 1;
592 else if (REG_OK_FOR_INDEX_P (op1))
593 index_op = 1;
594 else
595 index_op = 0;
596
597 locI = &XEXP (x, index_op);
598 locB = &XEXP (x, !index_op);
599 }
600 else if (code0 == REG)
601 {
602 locI = &XEXP (x, 0);
603 locB = &XEXP (x, 1);
604 }
605 else if (code1 == REG)
606 {
607 locI = &XEXP (x, 1);
608 locB = &XEXP (x, 0);
609 }
610
611 if (locI)
612 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
613 if (locB)
614 scan_rtx_address (insn, locB, MODE_BASE_REG_CLASS (mode), action, mode);
615 return;
616 }
617
618 case POST_INC:
619 case POST_DEC:
620 case POST_MODIFY:
621 case PRE_INC:
622 case PRE_DEC:
623 case PRE_MODIFY:
624 #ifndef AUTO_INC_DEC
625 /* If the target doesn't claim to handle autoinc, this must be
626 something special, like a stack push. Kill this chain. */
627 action = terminate_all_read;
628 #endif
629 break;
630
631 case MEM:
632 scan_rtx_address (insn, &XEXP (x, 0),
633 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
634 GET_MODE (x));
635 return;
636
637 case REG:
638 scan_rtx_reg (insn, loc, class, action, OP_IN, 0);
639 return;
640
641 default:
642 break;
643 }
644
645 fmt = GET_RTX_FORMAT (code);
646 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
647 {
648 if (fmt[i] == 'e')
649 scan_rtx_address (insn, &XEXP (x, i), class, action, mode);
650 else if (fmt[i] == 'E')
651 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
652 scan_rtx_address (insn, &XVECEXP (x, i, j), class, action, mode);
653 }
654 }
655
656 static void
657 scan_rtx (insn, loc, class, action, type, earlyclobber)
658 rtx insn;
659 rtx *loc;
660 enum reg_class class;
661 enum scan_actions action;
662 enum op_type type;
663 int earlyclobber;
664 {
665 const char *fmt;
666 rtx x = *loc;
667 enum rtx_code code = GET_CODE (x);
668 int i, j;
669
670 code = GET_CODE (x);
671 switch (code)
672 {
673 case CONST:
674 case CONST_INT:
675 case CONST_DOUBLE:
676 case SYMBOL_REF:
677 case LABEL_REF:
678 case CC0:
679 case PC:
680 return;
681
682 case REG:
683 scan_rtx_reg (insn, loc, class, action, type, earlyclobber);
684 return;
685
686 case MEM:
687 scan_rtx_address (insn, &XEXP (x, 0),
688 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
689 GET_MODE (x));
690 return;
691
692 case SET:
693 scan_rtx (insn, &SET_SRC (x), class, action, OP_IN, 0);
694 scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 0);
695 return;
696
697 case STRICT_LOW_PART:
698 scan_rtx (insn, &XEXP (x, 0), class, action, OP_INOUT, earlyclobber);
699 return;
700
701 case ZERO_EXTRACT:
702 case SIGN_EXTRACT:
703 scan_rtx (insn, &XEXP (x, 0), class, action,
704 type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
705 scan_rtx (insn, &XEXP (x, 1), class, action, OP_IN, 0);
706 scan_rtx (insn, &XEXP (x, 2), class, action, OP_IN, 0);
707 return;
708
709 case POST_INC:
710 case PRE_INC:
711 case POST_DEC:
712 case PRE_DEC:
713 case POST_MODIFY:
714 case PRE_MODIFY:
715 /* Should only happen inside MEM. */
716 abort ();
717
718 case CLOBBER:
719 scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 1);
720 return;
721
722 case EXPR_LIST:
723 scan_rtx (insn, &XEXP (x, 0), class, action, type, 0);
724 if (XEXP (x, 1))
725 scan_rtx (insn, &XEXP (x, 1), class, action, type, 0);
726 return;
727
728 default:
729 break;
730 }
731
732 fmt = GET_RTX_FORMAT (code);
733 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
734 {
735 if (fmt[i] == 'e')
736 scan_rtx (insn, &XEXP (x, i), class, action, type, 0);
737 else if (fmt[i] == 'E')
738 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
739 scan_rtx (insn, &XVECEXP (x, i, j), class, action, type, 0);
740 }
741 }
742
743 /* Build def/use chain */
744
745 static struct du_chain *
746 build_def_use (bb)
747 basic_block bb;
748 {
749 rtx insn;
750
751 open_chains = closed_chains = NULL;
752
753 for (insn = bb->head; ; insn = NEXT_INSN (insn))
754 {
755 if (INSN_P (insn))
756 {
757 int n_ops;
758 rtx note;
759 rtx old_operands[MAX_RECOG_OPERANDS];
760 rtx old_dups[MAX_DUP_OPERANDS];
761 int i;
762 int alt;
763 int predicated;
764
765 /* Process the insn, determining its effect on the def-use
766 chains. We perform the following steps with the register
767 references in the insn:
768 (1) Any read that overlaps an open chain, but doesn't exactly
769 match, causes that chain to be closed. We can't deal
770 with overlaps yet.
771 (2) Any read outside an operand causes any chain it overlaps
772 with to be closed, since we can't replace it.
773 (3) Any read inside an operand is added if there's already
774 an open chain for it.
775 (4) For any REG_DEAD note we find, close open chains that
776 overlap it.
777 (5) For any write we find, close open chains that overlap it.
778 (6) For any write we find in an operand, make a new chain.
779 (7) For any REG_UNUSED, close any chains we just opened. */
780
781 extract_insn (insn);
782 constrain_operands (1);
783 preprocess_constraints ();
784 alt = which_alternative;
785 n_ops = recog_data.n_operands;
786
787 /* Simplify the code below by rewriting things to reflect
788 matching constraints. Also promote OP_OUT to OP_INOUT
789 in predicated instructions. */
790
791 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
792 for (i = 0; i < n_ops; ++i)
793 {
794 int matches = recog_op_alt[i][alt].matches;
795 if (matches >= 0)
796 recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
797 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
798 || (predicated && recog_data.operand_type[i] == OP_OUT))
799 recog_data.operand_type[i] = OP_INOUT;
800 }
801
802 /* Step 1: Close chains for which we have overlapping reads. */
803 for (i = 0; i < n_ops; i++)
804 scan_rtx (insn, recog_data.operand_loc[i],
805 NO_REGS, terminate_overlapping_read,
806 recog_data.operand_type[i], 0);
807
808 /* Step 2: Close chains for which we have reads outside operands.
809 We do this by munging all operands into CC0, and closing
810 everything remaining. */
811
812 for (i = 0; i < n_ops; i++)
813 {
814 old_operands[i] = recog_data.operand[i];
815 /* Don't squash match_operator or match_parallel here, since
816 we don't know that all of the contained registers are
817 reachable by proper operands. */
818 if (recog_data.constraints[i][0] == '\0')
819 continue;
820 *recog_data.operand_loc[i] = cc0_rtx;
821 }
822 for (i = 0; i < recog_data.n_dups; i++)
823 {
824 old_dups[i] = *recog_data.dup_loc[i];
825 *recog_data.dup_loc[i] = cc0_rtx;
826 }
827
828 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
829 OP_IN, 0);
830
831 for (i = 0; i < recog_data.n_dups; i++)
832 *recog_data.dup_loc[i] = old_dups[i];
833 for (i = 0; i < n_ops; i++)
834 *recog_data.operand_loc[i] = old_operands[i];
835
836 /* Step 2B: Can't rename function call argument registers. */
837 if (GET_CODE (insn) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (insn))
838 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
839 NO_REGS, terminate_all_read, OP_IN, 0);
840
841 /* Step 2C: Can't rename asm operands that were originally
842 hard registers. */
843 if (asm_noperands (PATTERN (insn)) > 0)
844 for (i = 0; i < n_ops; i++)
845 {
846 rtx *loc = recog_data.operand_loc[i];
847 rtx op = *loc;
848
849 if (GET_CODE (op) == REG
850 && REGNO (op) == ORIGINAL_REGNO (op)
851 && (recog_data.operand_type[i] == OP_IN
852 || recog_data.operand_type[i] == OP_INOUT))
853 scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
854 }
855
856 /* Step 3: Append to chains for reads inside operands. */
857 for (i = 0; i < n_ops + recog_data.n_dups; i++)
858 {
859 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
860 rtx *loc = (i < n_ops
861 ? recog_data.operand_loc[opn]
862 : recog_data.dup_loc[i - n_ops]);
863 enum reg_class class = recog_op_alt[opn][alt].class;
864 enum op_type type = recog_data.operand_type[opn];
865
866 /* Don't scan match_operand here, since we've no reg class
867 information to pass down. Any operands that we could
868 substitute in will be represented elsewhere. */
869 if (recog_data.constraints[opn][0] == '\0')
870 continue;
871
872 if (recog_op_alt[opn][alt].is_address)
873 scan_rtx_address (insn, loc, class, mark_read, VOIDmode);
874 else
875 scan_rtx (insn, loc, class, mark_read, type, 0);
876 }
877
878 /* Step 4: Close chains for registers that die here.
879 Also record updates for REG_INC notes. */
880 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
881 {
882 if (REG_NOTE_KIND (note) == REG_DEAD)
883 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
884 OP_IN, 0);
885 else if (REG_NOTE_KIND (note) == REG_INC)
886 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
887 OP_INOUT, 0);
888 }
889
890 /* Step 4B: If this is a call, any chain live at this point
891 requires a caller-saved reg. */
892 if (GET_CODE (insn) == CALL_INSN)
893 {
894 struct du_chain *p;
895 for (p = open_chains; p; p = p->next_chain)
896 p->need_caller_save_reg = 1;
897 }
898
899 /* Step 5: Close open chains that overlap writes. Similar to
900 step 2, we hide in-out operands, since we do not want to
901 close these chains. */
902
903 for (i = 0; i < n_ops; i++)
904 {
905 old_operands[i] = recog_data.operand[i];
906 if (recog_data.operand_type[i] == OP_INOUT)
907 *recog_data.operand_loc[i] = cc0_rtx;
908 }
909 for (i = 0; i < recog_data.n_dups; i++)
910 {
911 int opn = recog_data.dup_num[i];
912 old_dups[i] = *recog_data.dup_loc[i];
913 if (recog_data.operand_type[opn] == OP_INOUT)
914 *recog_data.dup_loc[i] = cc0_rtx;
915 }
916
917 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
918
919 for (i = 0; i < recog_data.n_dups; i++)
920 *recog_data.dup_loc[i] = old_dups[i];
921 for (i = 0; i < n_ops; i++)
922 *recog_data.operand_loc[i] = old_operands[i];
923
924 /* Step 6: Begin new chains for writes inside operands. */
925 /* ??? Many targets have output constraints on the SET_DEST
926 of a call insn, which is stupid, since these are certainly
927 ABI defined hard registers. Don't change calls at all.
928 Similarly take special care for asm statement that originally
929 referenced hard registers. */
930 if (asm_noperands (PATTERN (insn)) > 0)
931 {
932 for (i = 0; i < n_ops; i++)
933 if (recog_data.operand_type[i] == OP_OUT)
934 {
935 rtx *loc = recog_data.operand_loc[i];
936 rtx op = *loc;
937 enum reg_class class = recog_op_alt[i][alt].class;
938
939 if (GET_CODE (op) == REG
940 && REGNO (op) == ORIGINAL_REGNO (op))
941 continue;
942
943 scan_rtx (insn, loc, class, mark_write, OP_OUT,
944 recog_op_alt[i][alt].earlyclobber);
945 }
946 }
947 else if (GET_CODE (insn) != CALL_INSN)
948 for (i = 0; i < n_ops + recog_data.n_dups; i++)
949 {
950 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
951 rtx *loc = (i < n_ops
952 ? recog_data.operand_loc[opn]
953 : recog_data.dup_loc[i - n_ops]);
954 enum reg_class class = recog_op_alt[opn][alt].class;
955
956 if (recog_data.operand_type[opn] == OP_OUT)
957 scan_rtx (insn, loc, class, mark_write, OP_OUT,
958 recog_op_alt[opn][alt].earlyclobber);
959 }
960
961 /* Step 7: Close chains for registers that were never
962 really used here. */
963 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
964 if (REG_NOTE_KIND (note) == REG_UNUSED)
965 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
966 OP_IN, 0);
967 }
968 if (insn == bb->end)
969 break;
970 }
971
972 /* Since we close every chain when we find a REG_DEAD note, anything that
973 is still open lives past the basic block, so it can't be renamed. */
974 return closed_chains;
975 }
976
977 /* Dump all def/use chains in CHAINS to RTL_DUMP_FILE. They are
978 printed in reverse order as that's how we build them. */
979
980 static void
981 dump_def_use_chain (chains)
982 struct du_chain *chains;
983 {
984 while (chains)
985 {
986 struct du_chain *this = chains;
987 int r = REGNO (*this->loc);
988 int nregs = HARD_REGNO_NREGS (r, GET_MODE (*this->loc));
989 fprintf (rtl_dump_file, "Register %s (%d):", reg_names[r], nregs);
990 while (this)
991 {
992 fprintf (rtl_dump_file, " %d [%s]", INSN_UID (this->insn),
993 reg_class_names[this->class]);
994 this = this->next_use;
995 }
996 fprintf (rtl_dump_file, "\n");
997 chains = chains->next_chain;
998 }
999 }
1000 \f
1001 /* The following code does forward propagation of hard register copies.
1002 The object is to eliminate as many dependencies as possible, so that
1003 we have the most scheduling freedom. As a side effect, we also clean
1004 up some silly register allocation decisions made by reload. This
1005 code may be obsoleted by a new register allocator. */
1006
1007 /* For each register, we have a list of registers that contain the same
1008 value. The OLDEST_REGNO field points to the head of the list, and
1009 the NEXT_REGNO field runs through the list. The MODE field indicates
1010 what mode the data is known to be in; this field is VOIDmode when the
1011 register is not known to contain valid data. */
1012
1013 struct value_data_entry
1014 {
1015 enum machine_mode mode;
1016 unsigned int oldest_regno;
1017 unsigned int next_regno;
1018 };
1019
1020 struct value_data
1021 {
1022 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
1023 unsigned int max_value_regs;
1024 };
1025
1026 static void kill_value_regno PARAMS ((unsigned, struct value_data *));
1027 static void kill_value PARAMS ((rtx, struct value_data *));
1028 static void set_value_regno PARAMS ((unsigned, enum machine_mode,
1029 struct value_data *));
1030 static void init_value_data PARAMS ((struct value_data *));
1031 static void kill_clobbered_value PARAMS ((rtx, rtx, void *));
1032 static void kill_set_value PARAMS ((rtx, rtx, void *));
1033 static int kill_autoinc_value PARAMS ((rtx *, void *));
1034 static void copy_value PARAMS ((rtx, rtx, struct value_data *));
1035 static bool mode_change_ok PARAMS ((enum machine_mode, enum machine_mode,
1036 unsigned int));
1037 static rtx find_oldest_value_reg PARAMS ((enum reg_class, rtx,
1038 struct value_data *));
1039 static bool replace_oldest_value_reg PARAMS ((rtx *, enum reg_class, rtx,
1040 struct value_data *));
1041 static bool replace_oldest_value_addr PARAMS ((rtx *, enum reg_class,
1042 enum machine_mode, rtx,
1043 struct value_data *));
1044 static bool replace_oldest_value_mem PARAMS ((rtx, rtx, struct value_data *));
1045 static bool copyprop_hardreg_forward_1 PARAMS ((basic_block,
1046 struct value_data *));
1047 extern void debug_value_data PARAMS ((struct value_data *));
1048 #ifdef ENABLE_CHECKING
1049 static void validate_value_data PARAMS ((struct value_data *));
1050 #endif
1051
1052 /* Kill register REGNO. This involves removing it from any value lists,
1053 and resetting the value mode to VOIDmode. */
1054
1055 static void
1056 kill_value_regno (regno, vd)
1057 unsigned int regno;
1058 struct value_data *vd;
1059 {
1060 unsigned int i, next;
1061
1062 if (vd->e[regno].oldest_regno != regno)
1063 {
1064 for (i = vd->e[regno].oldest_regno;
1065 vd->e[i].next_regno != regno;
1066 i = vd->e[i].next_regno)
1067 continue;
1068 vd->e[i].next_regno = vd->e[regno].next_regno;
1069 }
1070 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
1071 {
1072 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
1073 vd->e[i].oldest_regno = next;
1074 }
1075
1076 vd->e[regno].mode = VOIDmode;
1077 vd->e[regno].oldest_regno = regno;
1078 vd->e[regno].next_regno = INVALID_REGNUM;
1079
1080 #ifdef ENABLE_CHECKING
1081 validate_value_data (vd);
1082 #endif
1083 }
1084
1085 /* Kill X. This is a convenience function for kill_value_regno
1086 so that we mind the mode the register is in. */
1087
1088 static void
1089 kill_value (x, vd)
1090 rtx x;
1091 struct value_data *vd;
1092 {
1093 if (REG_P (x))
1094 {
1095 unsigned int regno = REGNO (x);
1096 unsigned int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
1097 unsigned int i, j;
1098
1099 /* Kill the value we're told to kill. */
1100 for (i = 0; i < n; ++i)
1101 kill_value_regno (regno + i, vd);
1102
1103 /* Kill everything that overlapped what we're told to kill. */
1104 if (regno < vd->max_value_regs)
1105 j = 0;
1106 else
1107 j = regno - vd->max_value_regs;
1108 for (; j < regno; ++j)
1109 {
1110 if (vd->e[j].mode == VOIDmode)
1111 continue;
1112 n = HARD_REGNO_NREGS (regno, vd->e[j].mode);
1113 if (j + n > regno)
1114 for (i = 0; i < n; ++i)
1115 kill_value_regno (j + i, vd);
1116 }
1117 }
1118 }
1119
1120 /* Remember that REGNO is valid in MODE. */
1121
1122 static void
1123 set_value_regno (regno, mode, vd)
1124 unsigned int regno;
1125 enum machine_mode mode;
1126 struct value_data *vd;
1127 {
1128 unsigned int nregs;
1129
1130 vd->e[regno].mode = mode;
1131
1132 nregs = HARD_REGNO_NREGS (regno, mode);
1133 if (nregs > vd->max_value_regs)
1134 vd->max_value_regs = nregs;
1135 }
1136
1137 /* Initialize VD such that there are no known relationships between regs. */
1138
1139 static void
1140 init_value_data (vd)
1141 struct value_data *vd;
1142 {
1143 int i;
1144 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1145 {
1146 vd->e[i].mode = VOIDmode;
1147 vd->e[i].oldest_regno = i;
1148 vd->e[i].next_regno = INVALID_REGNUM;
1149 }
1150 vd->max_value_regs = 0;
1151 }
1152
1153 /* Called through note_stores. If X is clobbered, kill its value. */
1154
1155 static void
1156 kill_clobbered_value (x, set, data)
1157 rtx x;
1158 rtx set;
1159 void *data;
1160 {
1161 struct value_data *vd = data;
1162 if (GET_CODE (set) == CLOBBER)
1163 kill_value (x, vd);
1164 }
1165
1166 /* Called through note_stores. If X is set, not clobbered, kill its
1167 current value and install it as the root of its own value list. */
1168
1169 static void
1170 kill_set_value (x, set, data)
1171 rtx x;
1172 rtx set;
1173 void *data;
1174 {
1175 struct value_data *vd = data;
1176 if (GET_CODE (set) != CLOBBER && REG_P (x))
1177 {
1178 kill_value (x, vd);
1179 set_value_regno (REGNO (x), GET_MODE (x), vd);
1180 }
1181 }
1182
1183 /* Called through for_each_rtx. Kill any register used as the base of an
1184 auto-increment expression, and install that register as the root of its
1185 own value list. */
1186
1187 static int
1188 kill_autoinc_value (px, data)
1189 rtx *px;
1190 void *data;
1191 {
1192 rtx x = *px;
1193 struct value_data *vd = data;
1194
1195 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
1196 {
1197 x = XEXP (x, 0);
1198 kill_value (x, vd);
1199 set_value_regno (REGNO (x), Pmode, vd);
1200 return -1;
1201 }
1202
1203 return 0;
1204 }
1205
1206 /* Assert that SRC has been copied to DEST. Adjust the data structures
1207 to reflect that SRC contains an older copy of the shared value. */
1208
1209 static void
1210 copy_value (dest, src, vd)
1211 rtx dest;
1212 rtx src;
1213 struct value_data *vd;
1214 {
1215 unsigned int dr = REGNO (dest);
1216 unsigned int sr = REGNO (src);
1217 unsigned int dn, sn;
1218 unsigned int i;
1219
1220 /* ??? At present, it's possible to see noop sets. It'd be nice if
1221 this were cleaned up beforehand... */
1222 if (sr == dr)
1223 return;
1224
1225 /* Do not propagate copies to the stack pointer, as that can leave
1226 memory accesses with no scheduling dependancy on the stack update. */
1227 if (dr == STACK_POINTER_REGNUM)
1228 return;
1229
1230 /* Likewise with the frame pointer, if we're using one. */
1231 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
1232 return;
1233
1234 /* If SRC and DEST overlap, don't record anything. */
1235 dn = HARD_REGNO_NREGS (dr, GET_MODE (dest));
1236 sn = HARD_REGNO_NREGS (sr, GET_MODE (dest));
1237 if ((dr > sr && dr < sr + sn)
1238 || (sr > dr && sr < dr + dn))
1239 return;
1240
1241 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1242 assign it now and assume the value came from an input argument
1243 or somesuch. */
1244 if (vd->e[sr].mode == VOIDmode)
1245 set_value_regno (sr, vd->e[dr].mode, vd);
1246
1247 /* If SRC had been assigned a mode narrower than the copy, we can't
1248 link DEST into the chain, because not all of the pieces of the
1249 copy came from oldest_regno. */
1250 else if (sn > (unsigned int) HARD_REGNO_NREGS (sr, vd->e[sr].mode))
1251 return;
1252
1253 /* Link DR at the end of the value chain used by SR. */
1254
1255 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
1256
1257 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
1258 continue;
1259 vd->e[i].next_regno = dr;
1260
1261 #ifdef ENABLE_CHECKING
1262 validate_value_data (vd);
1263 #endif
1264 }
1265
1266 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1267
1268 static bool
1269 mode_change_ok (orig_mode, new_mode, regno)
1270 enum machine_mode orig_mode, new_mode;
1271 unsigned int regno ATTRIBUTE_UNUSED;
1272 {
1273 if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
1274 return false;
1275
1276 #ifdef CLASS_CANNOT_CHANGE_MODE
1277 if (TEST_HARD_REG_BIT (reg_class_contents[CLASS_CANNOT_CHANGE_MODE], regno)
1278 && CLASS_CANNOT_CHANGE_MODE_P (orig_mode, new_mode))
1279 return false;
1280 #endif
1281
1282 return true;
1283 }
1284
1285 /* Find the oldest copy of the value contained in REGNO that is in
1286 register class CLASS and has mode MODE. If found, return an rtx
1287 of that oldest register, otherwise return NULL. */
1288
1289 static rtx
1290 find_oldest_value_reg (class, reg, vd)
1291 enum reg_class class;
1292 rtx reg;
1293 struct value_data *vd;
1294 {
1295 unsigned int regno = REGNO (reg);
1296 enum machine_mode mode = GET_MODE (reg);
1297 unsigned int i;
1298
1299 /* If we are accessing REG in some mode other that what we set it in,
1300 make sure that the replacement is valid. In particular, consider
1301 (set (reg:DI r11) (...))
1302 (set (reg:SI r9) (reg:SI r11))
1303 (set (reg:SI r10) (...))
1304 (set (...) (reg:DI r9))
1305 Replacing r9 with r11 is invalid. */
1306 if (mode != vd->e[regno].mode)
1307 {
1308 if (HARD_REGNO_NREGS (regno, mode)
1309 > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
1310 return NULL_RTX;
1311 }
1312
1313 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
1314 if (TEST_HARD_REG_BIT (reg_class_contents[class], i)
1315 && (vd->e[i].mode == mode
1316 || mode_change_ok (vd->e[i].mode, mode, regno)))
1317 {
1318 rtx new = gen_rtx_raw_REG (mode, i);
1319 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
1320 return new;
1321 }
1322
1323 return NULL_RTX;
1324 }
1325
1326 /* If possible, replace the register at *LOC with the oldest register
1327 in register class CLASS. Return true if successfully replaced. */
1328
1329 static bool
1330 replace_oldest_value_reg (loc, class, insn, vd)
1331 rtx *loc;
1332 enum reg_class class;
1333 rtx insn;
1334 struct value_data *vd;
1335 {
1336 rtx new = find_oldest_value_reg (class, *loc, vd);
1337 if (new)
1338 {
1339 if (rtl_dump_file)
1340 fprintf (rtl_dump_file, "insn %u: replaced reg %u with %u\n",
1341 INSN_UID (insn), REGNO (*loc), REGNO (new));
1342
1343 *loc = new;
1344 return true;
1345 }
1346 return false;
1347 }
1348
1349 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1350 Adapted from find_reloads_address_1. CLASS is INDEX_REG_CLASS or
1351 BASE_REG_CLASS depending on how the register is being considered. */
1352
1353 static bool
1354 replace_oldest_value_addr (loc, class, mode, insn, vd)
1355 rtx *loc;
1356 enum reg_class class;
1357 enum machine_mode mode;
1358 rtx insn;
1359 struct value_data *vd;
1360 {
1361 rtx x = *loc;
1362 RTX_CODE code = GET_CODE (x);
1363 const char *fmt;
1364 int i, j;
1365 bool changed = false;
1366
1367 switch (code)
1368 {
1369 case PLUS:
1370 {
1371 rtx orig_op0 = XEXP (x, 0);
1372 rtx orig_op1 = XEXP (x, 1);
1373 RTX_CODE code0 = GET_CODE (orig_op0);
1374 RTX_CODE code1 = GET_CODE (orig_op1);
1375 rtx op0 = orig_op0;
1376 rtx op1 = orig_op1;
1377 rtx *locI = NULL;
1378 rtx *locB = NULL;
1379
1380 if (GET_CODE (op0) == SUBREG)
1381 {
1382 op0 = SUBREG_REG (op0);
1383 code0 = GET_CODE (op0);
1384 }
1385
1386 if (GET_CODE (op1) == SUBREG)
1387 {
1388 op1 = SUBREG_REG (op1);
1389 code1 = GET_CODE (op1);
1390 }
1391
1392 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1393 || code0 == ZERO_EXTEND || code1 == MEM)
1394 {
1395 locI = &XEXP (x, 0);
1396 locB = &XEXP (x, 1);
1397 }
1398 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1399 || code1 == ZERO_EXTEND || code0 == MEM)
1400 {
1401 locI = &XEXP (x, 1);
1402 locB = &XEXP (x, 0);
1403 }
1404 else if (code0 == CONST_INT || code0 == CONST
1405 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1406 locB = &XEXP (x, 1);
1407 else if (code1 == CONST_INT || code1 == CONST
1408 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1409 locB = &XEXP (x, 0);
1410 else if (code0 == REG && code1 == REG)
1411 {
1412 int index_op;
1413
1414 if (REG_OK_FOR_INDEX_P (op0)
1415 && REG_MODE_OK_FOR_BASE_P (op1, mode))
1416 index_op = 0;
1417 else if (REG_OK_FOR_INDEX_P (op1)
1418 && REG_MODE_OK_FOR_BASE_P (op0, mode))
1419 index_op = 1;
1420 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
1421 index_op = 0;
1422 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
1423 index_op = 1;
1424 else if (REG_OK_FOR_INDEX_P (op1))
1425 index_op = 1;
1426 else
1427 index_op = 0;
1428
1429 locI = &XEXP (x, index_op);
1430 locB = &XEXP (x, !index_op);
1431 }
1432 else if (code0 == REG)
1433 {
1434 locI = &XEXP (x, 0);
1435 locB = &XEXP (x, 1);
1436 }
1437 else if (code1 == REG)
1438 {
1439 locI = &XEXP (x, 1);
1440 locB = &XEXP (x, 0);
1441 }
1442
1443 if (locI)
1444 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
1445 insn, vd);
1446 if (locB)
1447 changed |= replace_oldest_value_addr (locB,
1448 MODE_BASE_REG_CLASS (mode),
1449 mode, insn, vd);
1450 return changed;
1451 }
1452
1453 case POST_INC:
1454 case POST_DEC:
1455 case POST_MODIFY:
1456 case PRE_INC:
1457 case PRE_DEC:
1458 case PRE_MODIFY:
1459 return false;
1460
1461 case MEM:
1462 return replace_oldest_value_mem (x, insn, vd);
1463
1464 case REG:
1465 return replace_oldest_value_reg (loc, class, insn, vd);
1466
1467 default:
1468 break;
1469 }
1470
1471 fmt = GET_RTX_FORMAT (code);
1472 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1473 {
1474 if (fmt[i] == 'e')
1475 changed |= replace_oldest_value_addr (&XEXP (x, i), class, mode,
1476 insn, vd);
1477 else if (fmt[i] == 'E')
1478 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1479 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), class,
1480 mode, insn, vd);
1481 }
1482
1483 return changed;
1484 }
1485
1486 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1487
1488 static bool
1489 replace_oldest_value_mem (x, insn, vd)
1490 rtx x;
1491 rtx insn;
1492 struct value_data *vd;
1493 {
1494 return replace_oldest_value_addr (&XEXP (x, 0),
1495 MODE_BASE_REG_CLASS (GET_MODE (x)),
1496 GET_MODE (x), insn, vd);
1497 }
1498
1499 /* Perform the forward copy propagation on basic block BB. */
1500
1501 static bool
1502 copyprop_hardreg_forward_1 (bb, vd)
1503 basic_block bb;
1504 struct value_data *vd;
1505 {
1506 bool changed = false;
1507 rtx insn;
1508
1509 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1510 {
1511 int n_ops, i, alt, predicated;
1512 bool is_asm;
1513 rtx set;
1514
1515 if (! INSN_P (insn))
1516 {
1517 if (insn == bb->end)
1518 break;
1519 else
1520 continue;
1521 }
1522
1523 set = single_set (insn);
1524 extract_insn (insn);
1525 constrain_operands (1);
1526 preprocess_constraints ();
1527 alt = which_alternative;
1528 n_ops = recog_data.n_operands;
1529 is_asm = asm_noperands (PATTERN (insn)) >= 0;
1530
1531 /* Simplify the code below by rewriting things to reflect
1532 matching constraints. Also promote OP_OUT to OP_INOUT
1533 in predicated instructions. */
1534
1535 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1536 for (i = 0; i < n_ops; ++i)
1537 {
1538 int matches = recog_op_alt[i][alt].matches;
1539 if (matches >= 0)
1540 recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
1541 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1542 || (predicated && recog_data.operand_type[i] == OP_OUT))
1543 recog_data.operand_type[i] = OP_INOUT;
1544 }
1545
1546 /* For each earlyclobber operand, zap the value data. */
1547 for (i = 0; i < n_ops; i++)
1548 if (recog_op_alt[i][alt].earlyclobber)
1549 kill_value (recog_data.operand[i], vd);
1550
1551 /* Within asms, a clobber cannot overlap inputs or outputs.
1552 I wouldn't think this were true for regular insns, but
1553 scan_rtx treats them like that... */
1554 note_stores (PATTERN (insn), kill_clobbered_value, vd);
1555
1556 /* Kill all auto-incremented values. */
1557 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1558 for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
1559
1560 /* Kill all early-clobbered operands. */
1561 for (i = 0; i < n_ops; i++)
1562 if (recog_op_alt[i][alt].earlyclobber)
1563 kill_value (recog_data.operand[i], vd);
1564
1565 /* Special-case plain move instructions, since we may well
1566 be able to do the move from a different register class. */
1567 if (set && REG_P (SET_SRC (set)))
1568 {
1569 rtx src = SET_SRC (set);
1570 unsigned int regno = REGNO (src);
1571 enum machine_mode mode = GET_MODE (src);
1572 unsigned int i;
1573 rtx new;
1574
1575 /* If we are accessing SRC in some mode other that what we
1576 set it in, make sure that the replacement is valid. */
1577 if (mode != vd->e[regno].mode)
1578 {
1579 if (HARD_REGNO_NREGS (regno, mode)
1580 > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
1581 goto no_move_special_case;
1582 }
1583
1584 /* If the destination is also a register, try to find a source
1585 register in the same class. */
1586 if (REG_P (SET_DEST (set)))
1587 {
1588 new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
1589 if (new && validate_change (insn, &SET_SRC (set), new, 0))
1590 {
1591 if (rtl_dump_file)
1592 fprintf (rtl_dump_file,
1593 "insn %u: replaced reg %u with %u\n",
1594 INSN_UID (insn), regno, REGNO (new));
1595 changed = true;
1596 goto did_replacement;
1597 }
1598 }
1599
1600 /* Otherwise, try all valid registers and see if its valid. */
1601 for (i = vd->e[regno].oldest_regno; i != regno;
1602 i = vd->e[i].next_regno)
1603 if (mode == vd->e[regno].mode)
1604 {
1605 new = gen_rtx_raw_REG (mode, i);
1606 if (validate_change (insn, &SET_SRC (set), new, 0))
1607 {
1608 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
1609 if (rtl_dump_file)
1610 fprintf (rtl_dump_file,
1611 "insn %u: replaced reg %u with %u\n",
1612 INSN_UID (insn), regno, REGNO (new));
1613 changed = true;
1614 goto did_replacement;
1615 }
1616 }
1617 }
1618 no_move_special_case:
1619
1620 /* For each input operand, replace a hard register with the
1621 eldest live copy that's in an appropriate register class. */
1622 for (i = 0; i < n_ops; i++)
1623 {
1624 bool replaced = false;
1625
1626 /* Don't scan match_operand here, since we've no reg class
1627 information to pass down. Any operands that we could
1628 substitute in will be represented elsewhere. */
1629 if (recog_data.constraints[i][0] == '\0')
1630 continue;
1631
1632 /* Don't replace in asms intentionally referencing hard regs. */
1633 if (is_asm && GET_CODE (recog_data.operand[i]) == REG
1634 && (REGNO (recog_data.operand[i])
1635 == ORIGINAL_REGNO (recog_data.operand[i])))
1636 continue;
1637
1638 if (recog_data.operand_type[i] == OP_IN)
1639 {
1640 if (recog_op_alt[i][alt].is_address)
1641 replaced
1642 = replace_oldest_value_addr (recog_data.operand_loc[i],
1643 recog_op_alt[i][alt].class,
1644 VOIDmode, insn, vd);
1645 else if (REG_P (recog_data.operand[i]))
1646 replaced
1647 = replace_oldest_value_reg (recog_data.operand_loc[i],
1648 recog_op_alt[i][alt].class,
1649 insn, vd);
1650 else if (GET_CODE (recog_data.operand[i]) == MEM)
1651 replaced = replace_oldest_value_mem (recog_data.operand[i],
1652 insn, vd);
1653 }
1654 else if (GET_CODE (recog_data.operand[i]) == MEM)
1655 replaced = replace_oldest_value_mem (recog_data.operand[i],
1656 insn, vd);
1657
1658 /* If we performed any replacement, update match_dups. */
1659 if (replaced)
1660 {
1661 int j;
1662 rtx new;
1663
1664 changed = true;
1665
1666 new = *recog_data.operand_loc[i];
1667 recog_data.operand[i] = new;
1668 for (j = 0; j < recog_data.n_dups; j++)
1669 if (recog_data.dup_num[j] == i)
1670 *recog_data.dup_loc[j] = new;
1671 }
1672 }
1673
1674 did_replacement:
1675 /* Clobber call-clobbered registers. */
1676 if (GET_CODE (insn) == CALL_INSN)
1677 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1678 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1679 kill_value_regno (i, vd);
1680
1681 /* Notice stores. */
1682 note_stores (PATTERN (insn), kill_set_value, vd);
1683
1684 /* Notice copies. */
1685 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
1686 copy_value (SET_DEST (set), SET_SRC (set), vd);
1687
1688 if (insn == bb->end)
1689 break;
1690 }
1691
1692 return changed;
1693 }
1694
1695 /* Main entry point for the forward copy propagation optimization. */
1696
1697 void
1698 copyprop_hardreg_forward ()
1699 {
1700 struct value_data *all_vd;
1701 bool need_refresh;
1702 int b;
1703
1704 need_refresh = false;
1705
1706 all_vd = xmalloc (sizeof (struct value_data) * n_basic_blocks);
1707
1708 for (b = 0; b < n_basic_blocks; b++)
1709 {
1710 basic_block bb = BASIC_BLOCK (b);
1711
1712 /* If a block has a single predecessor, that we've already
1713 processed, begin with the value data that was live at
1714 the end of the predecessor block. */
1715 /* ??? Ought to use more intelligent queueing of blocks. */
1716 if (bb->pred
1717 && ! bb->pred->pred_next
1718 && ! (bb->pred->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1719 && bb->pred->src->index != ENTRY_BLOCK
1720 && bb->pred->src->index < b)
1721 all_vd[b] = all_vd[bb->pred->src->index];
1722 else
1723 init_value_data (all_vd + b);
1724
1725 if (copyprop_hardreg_forward_1 (bb, all_vd + b))
1726 need_refresh = true;
1727 }
1728
1729 if (need_refresh)
1730 {
1731 if (rtl_dump_file)
1732 fputs ("\n\n", rtl_dump_file);
1733
1734 /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1735 to scan, so we have to do a life update with no initial set of
1736 blocks Just In Case. */
1737 delete_noop_moves (get_insns ());
1738 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1739 PROP_DEATH_NOTES
1740 | PROP_SCAN_DEAD_CODE
1741 | PROP_KILL_DEAD_CODE);
1742 }
1743
1744 free (all_vd);
1745 }
1746
1747 /* Dump the value chain data to stderr. */
1748
1749 void
1750 debug_value_data (vd)
1751 struct value_data *vd;
1752 {
1753 HARD_REG_SET set;
1754 unsigned int i, j;
1755
1756 CLEAR_HARD_REG_SET (set);
1757
1758 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1759 if (vd->e[i].oldest_regno == i)
1760 {
1761 if (vd->e[i].mode == VOIDmode)
1762 {
1763 if (vd->e[i].next_regno != INVALID_REGNUM)
1764 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1765 i, vd->e[i].next_regno);
1766 continue;
1767 }
1768
1769 SET_HARD_REG_BIT (set, i);
1770 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1771
1772 for (j = vd->e[i].next_regno;
1773 j != INVALID_REGNUM;
1774 j = vd->e[j].next_regno)
1775 {
1776 if (TEST_HARD_REG_BIT (set, j))
1777 {
1778 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1779 return;
1780 }
1781
1782 if (vd->e[j].oldest_regno != i)
1783 {
1784 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1785 j, vd->e[j].oldest_regno);
1786 return;
1787 }
1788 SET_HARD_REG_BIT (set, j);
1789 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1790 }
1791 fputc ('\n', stderr);
1792 }
1793
1794 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1795 if (! TEST_HARD_REG_BIT (set, i)
1796 && (vd->e[i].mode != VOIDmode
1797 || vd->e[i].oldest_regno != i
1798 || vd->e[i].next_regno != INVALID_REGNUM))
1799 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1800 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1801 vd->e[i].next_regno);
1802 }
1803
1804 #ifdef ENABLE_CHECKING
1805 static void
1806 validate_value_data (vd)
1807 struct value_data *vd;
1808 {
1809 HARD_REG_SET set;
1810 unsigned int i, j;
1811
1812 CLEAR_HARD_REG_SET (set);
1813
1814 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1815 if (vd->e[i].oldest_regno == i)
1816 {
1817 if (vd->e[i].mode == VOIDmode)
1818 {
1819 if (vd->e[i].next_regno != INVALID_REGNUM)
1820 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1821 i, vd->e[i].next_regno);
1822 continue;
1823 }
1824
1825 SET_HARD_REG_BIT (set, i);
1826
1827 for (j = vd->e[i].next_regno;
1828 j != INVALID_REGNUM;
1829 j = vd->e[j].next_regno)
1830 {
1831 if (TEST_HARD_REG_BIT (set, j))
1832 internal_error ("validate_value_data: Loop in regno chain (%u)",
1833 j);
1834 if (vd->e[j].oldest_regno != i)
1835 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1836 j, vd->e[j].oldest_regno);
1837
1838 SET_HARD_REG_BIT (set, j);
1839 }
1840 }
1841
1842 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1843 if (! TEST_HARD_REG_BIT (set, i)
1844 && (vd->e[i].mode != VOIDmode
1845 || vd->e[i].oldest_regno != i
1846 || vd->e[i].next_regno != INVALID_REGNUM))
1847 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1848 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1849 vd->e[i].next_regno);
1850 }
1851 #endif