Major cutover to using system.h:
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 88, 89, 92-7, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57 NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
72
73
74 Using a reload register for several reloads in one insn:
75
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
79
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
83
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
87
88 #define REG_OK_STRICT
89
90 #include "config.h"
91 #include "system.h"
92 #include "rtl.h"
93 #include "insn-config.h"
94 #include "insn-codes.h"
95 #include "recog.h"
96 #include "reload.h"
97 #include "regs.h"
98 #include "hard-reg-set.h"
99 #include "flags.h"
100 #include "real.h"
101 #include "output.h"
102 #include "expr.h"
103
104 #ifndef REGISTER_MOVE_COST
105 #define REGISTER_MOVE_COST(x, y) 2
106 #endif
107
108 #ifndef REGNO_MODE_OK_FOR_BASE_P
109 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
110 #endif
111
112 #ifndef REG_MODE_OK_FOR_BASE_P
113 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
114 #endif
115 \f
116 /* The variables set up by `find_reloads' are:
117
118 n_reloads number of distinct reloads needed; max reload # + 1
119 tables indexed by reload number
120 reload_in rtx for value to reload from
121 reload_out rtx for where to store reload-reg afterward if nec
122 (often the same as reload_in)
123 reload_reg_class enum reg_class, saying what regs to reload into
124 reload_inmode enum machine_mode; mode this operand should have
125 when reloaded, on input.
126 reload_outmode enum machine_mode; mode this operand should have
127 when reloaded, on output.
128 reload_optional char, nonzero for an optional reload.
129 Optional reloads are ignored unless the
130 value is already sitting in a register.
131 reload_inc int, positive amount to increment or decrement by if
132 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
133 Ignored otherwise (don't assume it is zero).
134 reload_in_reg rtx. A reg for which reload_in is the equivalent.
135 If reload_in is a symbol_ref which came from
136 reg_equiv_constant, then this is the pseudo
137 which has that symbol_ref as equivalent.
138 reload_reg_rtx rtx. This is the register to reload into.
139 If it is zero when `find_reloads' returns,
140 you must find a suitable register in the class
141 specified by reload_reg_class, and store here
142 an rtx for that register with mode from
143 reload_inmode or reload_outmode.
144 reload_nocombine char, nonzero if this reload shouldn't be
145 combined with another reload.
146 reload_opnum int, operand number being reloaded. This is
147 used to group related reloads and need not always
148 be equal to the actual operand number in the insn,
149 though it current will be; for in-out operands, it
150 is one of the two operand numbers.
151 reload_when_needed enum, classifies reload as needed either for
152 addressing an input reload, addressing an output,
153 for addressing a non-reloaded mem ref,
154 or for unspecified purposes (i.e., more than one
155 of the above).
156 reload_secondary_p int, 1 if this is a secondary register for one
157 or more reloads.
158 reload_secondary_in_reload
159 reload_secondary_out_reload
160 int, gives the reload number of a secondary
161 reload, when needed; otherwise -1
162 reload_secondary_in_icode
163 reload_secondary_out_icode
164 enum insn_code, if a secondary reload is required,
165 gives the INSN_CODE that uses the secondary
166 reload as a scratch register, or CODE_FOR_nothing
167 if the secondary reload register is to be an
168 intermediate register. */
169 int n_reloads;
170
171 rtx reload_in[MAX_RELOADS];
172 rtx reload_out[MAX_RELOADS];
173 enum reg_class reload_reg_class[MAX_RELOADS];
174 enum machine_mode reload_inmode[MAX_RELOADS];
175 enum machine_mode reload_outmode[MAX_RELOADS];
176 rtx reload_reg_rtx[MAX_RELOADS];
177 char reload_optional[MAX_RELOADS];
178 int reload_inc[MAX_RELOADS];
179 rtx reload_in_reg[MAX_RELOADS];
180 char reload_nocombine[MAX_RELOADS];
181 int reload_opnum[MAX_RELOADS];
182 enum reload_type reload_when_needed[MAX_RELOADS];
183 int reload_secondary_p[MAX_RELOADS];
184 int reload_secondary_in_reload[MAX_RELOADS];
185 int reload_secondary_out_reload[MAX_RELOADS];
186 enum insn_code reload_secondary_in_icode[MAX_RELOADS];
187 enum insn_code reload_secondary_out_icode[MAX_RELOADS];
188
189 /* All the "earlyclobber" operands of the current insn
190 are recorded here. */
191 int n_earlyclobbers;
192 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
193
194 int reload_n_operands;
195
196 /* Replacing reloads.
197
198 If `replace_reloads' is nonzero, then as each reload is recorded
199 an entry is made for it in the table `replacements'.
200 Then later `subst_reloads' can look through that table and
201 perform all the replacements needed. */
202
203 /* Nonzero means record the places to replace. */
204 static int replace_reloads;
205
206 /* Each replacement is recorded with a structure like this. */
207 struct replacement
208 {
209 rtx *where; /* Location to store in */
210 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
211 a SUBREG; 0 otherwise. */
212 int what; /* which reload this is for */
213 enum machine_mode mode; /* mode it must have */
214 };
215
216 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
217
218 /* Number of replacements currently recorded. */
219 static int n_replacements;
220
221 /* Used to track what is modified by an operand. */
222 struct decomposition
223 {
224 int reg_flag; /* Nonzero if referencing a register. */
225 int safe; /* Nonzero if this can't conflict with anything. */
226 rtx base; /* Base address for MEM. */
227 HOST_WIDE_INT start; /* Starting offset or register number. */
228 HOST_WIDE_INT end; /* Ending offset or register number. */
229 };
230
231 /* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
232 (see reg_equiv_address). */
233 static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
234 static int n_memlocs;
235
236 #ifdef SECONDARY_MEMORY_NEEDED
237
238 /* Save MEMs needed to copy from one class of registers to another. One MEM
239 is used per mode, but normally only one or two modes are ever used.
240
241 We keep two versions, before and after register elimination. The one
242 after register elimination is record separately for each operand. This
243 is done in case the address is not valid to be sure that we separately
244 reload each. */
245
246 static rtx secondary_memlocs[NUM_MACHINE_MODES];
247 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
248 #endif
249
250 /* The instruction we are doing reloads for;
251 so we can test whether a register dies in it. */
252 static rtx this_insn;
253
254 /* Nonzero if this instruction is a user-specified asm with operands. */
255 static int this_insn_is_asm;
256
257 /* If hard_regs_live_known is nonzero,
258 we can tell which hard regs are currently live,
259 at least enough to succeed in choosing dummy reloads. */
260 static int hard_regs_live_known;
261
262 /* Indexed by hard reg number,
263 element is nonnegative if hard reg has been spilled.
264 This vector is passed to `find_reloads' as an argument
265 and is not changed here. */
266 static short *static_reload_reg_p;
267
268 /* Set to 1 in subst_reg_equivs if it changes anything. */
269 static int subst_reg_equivs_changed;
270
271 /* On return from push_reload, holds the reload-number for the OUT
272 operand, which can be different for that from the input operand. */
273 static int output_reloadnum;
274
275 /* Compare two RTX's. */
276 #define MATCHES(x, y) \
277 (x == y || (x != 0 && (GET_CODE (x) == REG \
278 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
279 : rtx_equal_p (x, y) && ! side_effects_p (x))))
280
281 /* Indicates if two reloads purposes are for similar enough things that we
282 can merge their reloads. */
283 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
284 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
285 || ((when1) == (when2) && (op1) == (op2)) \
286 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
287 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
288 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
289 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
290 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
291
292 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
293 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
294 ((when1) != (when2) \
295 || ! ((op1) == (op2) \
296 || (when1) == RELOAD_FOR_INPUT \
297 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
298 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
299
300 /* If we are going to reload an address, compute the reload type to
301 use. */
302 #define ADDR_TYPE(type) \
303 ((type) == RELOAD_FOR_INPUT_ADDRESS \
304 ? RELOAD_FOR_INPADDR_ADDRESS \
305 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
306 ? RELOAD_FOR_OUTADDR_ADDRESS \
307 : (type)))
308
309 #ifdef HAVE_SECONDARY_RELOADS
310 static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
311 enum machine_mode, enum reload_type,
312 enum insn_code *));
313 #endif
314 static enum reg_class find_valid_class PROTO((enum machine_mode, int));
315 static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
316 enum machine_mode, enum machine_mode,
317 int, int, int, enum reload_type));
318 static void push_replacement PROTO((rtx *, int, enum machine_mode));
319 static void combine_reloads PROTO((void));
320 static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
321 enum machine_mode, enum machine_mode,
322 enum reg_class, int, int));
323 static int earlyclobber_operand_p PROTO((rtx));
324 static int hard_reg_set_here_p PROTO((int, int, rtx));
325 static struct decomposition decompose PROTO((rtx));
326 static int immune_p PROTO((rtx, rtx, struct decomposition));
327 static int alternative_allows_memconst PROTO((char *, int));
328 static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
329 static rtx make_memloc PROTO((rtx, int));
330 static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
331 int, enum reload_type, int, rtx));
332 static rtx subst_reg_equivs PROTO((rtx));
333 static rtx subst_indexed_address PROTO((rtx));
334 static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
335 int, enum reload_type,int, rtx));
336 static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
337 enum machine_mode, int,
338 enum reload_type, int));
339 static int find_inc_amount PROTO((rtx, rtx));
340 \f
341 #ifdef HAVE_SECONDARY_RELOADS
342
343 /* Determine if any secondary reloads are needed for loading (if IN_P is
344 non-zero) or storing (if IN_P is zero) X to or from a reload register of
345 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
346 are needed, push them.
347
348 Return the reload number of the secondary reload we made, or -1 if
349 we didn't need one. *PICODE is set to the insn_code to use if we do
350 need a secondary reload. */
351
352 static int
353 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
354 type, picode)
355 int in_p;
356 rtx x;
357 int opnum;
358 int optional;
359 enum reg_class reload_class;
360 enum machine_mode reload_mode;
361 enum reload_type type;
362 enum insn_code *picode;
363 {
364 enum reg_class class = NO_REGS;
365 enum machine_mode mode = reload_mode;
366 enum insn_code icode = CODE_FOR_nothing;
367 enum reg_class t_class = NO_REGS;
368 enum machine_mode t_mode = VOIDmode;
369 enum insn_code t_icode = CODE_FOR_nothing;
370 enum reload_type secondary_type;
371 int s_reload, t_reload = -1;
372
373 if (type == RELOAD_FOR_INPUT_ADDRESS
374 || type == RELOAD_FOR_OUTPUT_ADDRESS
375 || type == RELOAD_FOR_INPADDR_ADDRESS
376 || type == RELOAD_FOR_OUTADDR_ADDRESS)
377 secondary_type = type;
378 else
379 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
380
381 *picode = CODE_FOR_nothing;
382
383 /* If X is a paradoxical SUBREG, use the inner value to determine both the
384 mode and object being reloaded. */
385 if (GET_CODE (x) == SUBREG
386 && (GET_MODE_SIZE (GET_MODE (x))
387 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
388 {
389 x = SUBREG_REG (x);
390 reload_mode = GET_MODE (x);
391 }
392
393 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
394 is still a pseudo-register by now, it *must* have an equivalent MEM
395 but we don't want to assume that), use that equivalent when seeing if
396 a secondary reload is needed since whether or not a reload is needed
397 might be sensitive to the form of the MEM. */
398
399 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
400 && reg_equiv_mem[REGNO (x)] != 0)
401 x = reg_equiv_mem[REGNO (x)];
402
403 #ifdef SECONDARY_INPUT_RELOAD_CLASS
404 if (in_p)
405 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
406 #endif
407
408 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
409 if (! in_p)
410 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
411 #endif
412
413 /* If we don't need any secondary registers, done. */
414 if (class == NO_REGS)
415 return -1;
416
417 /* Get a possible insn to use. If the predicate doesn't accept X, don't
418 use the insn. */
419
420 icode = (in_p ? reload_in_optab[(int) reload_mode]
421 : reload_out_optab[(int) reload_mode]);
422
423 if (icode != CODE_FOR_nothing
424 && insn_operand_predicate[(int) icode][in_p]
425 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
426 icode = CODE_FOR_nothing;
427
428 /* If we will be using an insn, see if it can directly handle the reload
429 register we will be using. If it can, the secondary reload is for a
430 scratch register. If it can't, we will use the secondary reload for
431 an intermediate register and require a tertiary reload for the scratch
432 register. */
433
434 if (icode != CODE_FOR_nothing)
435 {
436 /* If IN_P is non-zero, the reload register will be the output in
437 operand 0. If IN_P is zero, the reload register will be the input
438 in operand 1. Outputs should have an initial "=", which we must
439 skip. */
440
441 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
442 enum reg_class insn_class
443 = (insn_letter == 'r' ? GENERAL_REGS
444 : REG_CLASS_FROM_LETTER (insn_letter));
445
446 if (insn_class == NO_REGS
447 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
448 /* The scratch register's constraint must start with "=&". */
449 || insn_operand_constraint[(int) icode][2][0] != '='
450 || insn_operand_constraint[(int) icode][2][1] != '&')
451 abort ();
452
453 if (reg_class_subset_p (reload_class, insn_class))
454 mode = insn_operand_mode[(int) icode][2];
455 else
456 {
457 char t_letter = insn_operand_constraint[(int) icode][2][2];
458 class = insn_class;
459 t_mode = insn_operand_mode[(int) icode][2];
460 t_class = (t_letter == 'r' ? GENERAL_REGS
461 : REG_CLASS_FROM_LETTER (t_letter));
462 t_icode = icode;
463 icode = CODE_FOR_nothing;
464 }
465 }
466
467 /* This case isn't valid, so fail. Reload is allowed to use the same
468 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
469 in the case of a secondary register, we actually need two different
470 registers for correct code. We fail here to prevent the possibility of
471 silently generating incorrect code later.
472
473 The convention is that secondary input reloads are valid only if the
474 secondary_class is different from class. If you have such a case, you
475 can not use secondary reloads, you must work around the problem some
476 other way.
477
478 Allow this when MODE is not reload_mode and assume that the generated
479 code handles this case (it does on the Alpha, which is the only place
480 this currently happens). */
481
482 if (in_p && class == reload_class && mode == reload_mode)
483 abort ();
484
485 /* If we need a tertiary reload, see if we have one we can reuse or else
486 make a new one. */
487
488 if (t_class != NO_REGS)
489 {
490 for (t_reload = 0; t_reload < n_reloads; t_reload++)
491 if (reload_secondary_p[t_reload]
492 && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
493 || reg_class_subset_p (reload_reg_class[t_reload], t_class))
494 && ((in_p && reload_inmode[t_reload] == t_mode)
495 || (! in_p && reload_outmode[t_reload] == t_mode))
496 && ((in_p && (reload_secondary_in_icode[t_reload]
497 == CODE_FOR_nothing))
498 || (! in_p &&(reload_secondary_out_icode[t_reload]
499 == CODE_FOR_nothing)))
500 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
501 && MERGABLE_RELOADS (secondary_type,
502 reload_when_needed[t_reload],
503 opnum, reload_opnum[t_reload]))
504 {
505 if (in_p)
506 reload_inmode[t_reload] = t_mode;
507 if (! in_p)
508 reload_outmode[t_reload] = t_mode;
509
510 if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
511 reload_reg_class[t_reload] = t_class;
512
513 reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
514 reload_optional[t_reload] &= optional;
515 reload_secondary_p[t_reload] = 1;
516 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
517 opnum, reload_opnum[t_reload]))
518 reload_when_needed[t_reload] = RELOAD_OTHER;
519 }
520
521 if (t_reload == n_reloads)
522 {
523 /* We need to make a new tertiary reload for this register class. */
524 reload_in[t_reload] = reload_out[t_reload] = 0;
525 reload_reg_class[t_reload] = t_class;
526 reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
527 reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
528 reload_reg_rtx[t_reload] = 0;
529 reload_optional[t_reload] = optional;
530 reload_inc[t_reload] = 0;
531 /* Maybe we could combine these, but it seems too tricky. */
532 reload_nocombine[t_reload] = 1;
533 reload_in_reg[t_reload] = 0;
534 reload_opnum[t_reload] = opnum;
535 reload_when_needed[t_reload] = secondary_type;
536 reload_secondary_in_reload[t_reload] = -1;
537 reload_secondary_out_reload[t_reload] = -1;
538 reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
539 reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
540 reload_secondary_p[t_reload] = 1;
541
542 n_reloads++;
543 }
544 }
545
546 /* See if we can reuse an existing secondary reload. */
547 for (s_reload = 0; s_reload < n_reloads; s_reload++)
548 if (reload_secondary_p[s_reload]
549 && (reg_class_subset_p (class, reload_reg_class[s_reload])
550 || reg_class_subset_p (reload_reg_class[s_reload], class))
551 && ((in_p && reload_inmode[s_reload] == mode)
552 || (! in_p && reload_outmode[s_reload] == mode))
553 && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
554 || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
555 && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
556 || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
557 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
558 && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
559 opnum, reload_opnum[s_reload]))
560 {
561 if (in_p)
562 reload_inmode[s_reload] = mode;
563 if (! in_p)
564 reload_outmode[s_reload] = mode;
565
566 if (reg_class_subset_p (class, reload_reg_class[s_reload]))
567 reload_reg_class[s_reload] = class;
568
569 reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
570 reload_optional[s_reload] &= optional;
571 reload_secondary_p[s_reload] = 1;
572 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
573 opnum, reload_opnum[s_reload]))
574 reload_when_needed[s_reload] = RELOAD_OTHER;
575 }
576
577 if (s_reload == n_reloads)
578 {
579 #ifdef SECONDARY_MEMORY_NEEDED
580 /* If we need a memory location to copy between the two reload regs,
581 set it up now. Note that we do the input case before making
582 the reload and the output case after. This is due to the
583 way reloads are output. */
584
585 if (in_p && icode == CODE_FOR_nothing
586 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
587 get_secondary_mem (x, reload_mode, opnum, type);
588 #endif
589
590 /* We need to make a new secondary reload for this register class. */
591 reload_in[s_reload] = reload_out[s_reload] = 0;
592 reload_reg_class[s_reload] = class;
593
594 reload_inmode[s_reload] = in_p ? mode : VOIDmode;
595 reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
596 reload_reg_rtx[s_reload] = 0;
597 reload_optional[s_reload] = optional;
598 reload_inc[s_reload] = 0;
599 /* Maybe we could combine these, but it seems too tricky. */
600 reload_nocombine[s_reload] = 1;
601 reload_in_reg[s_reload] = 0;
602 reload_opnum[s_reload] = opnum;
603 reload_when_needed[s_reload] = secondary_type;
604 reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
605 reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
606 reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
607 reload_secondary_out_icode[s_reload]
608 = ! in_p ? t_icode : CODE_FOR_nothing;
609 reload_secondary_p[s_reload] = 1;
610
611 n_reloads++;
612
613 #ifdef SECONDARY_MEMORY_NEEDED
614 if (! in_p && icode == CODE_FOR_nothing
615 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
616 get_secondary_mem (x, mode, opnum, type);
617 #endif
618 }
619
620 *picode = icode;
621 return s_reload;
622 }
623 #endif /* HAVE_SECONDARY_RELOADS */
624 \f
625 #ifdef SECONDARY_MEMORY_NEEDED
626
627 /* Return a memory location that will be used to copy X in mode MODE.
628 If we haven't already made a location for this mode in this insn,
629 call find_reloads_address on the location being returned. */
630
631 rtx
632 get_secondary_mem (x, mode, opnum, type)
633 rtx x;
634 enum machine_mode mode;
635 int opnum;
636 enum reload_type type;
637 {
638 rtx loc;
639 int mem_valid;
640
641 /* By default, if MODE is narrower than a word, widen it to a word.
642 This is required because most machines that require these memory
643 locations do not support short load and stores from all registers
644 (e.g., FP registers). */
645
646 #ifdef SECONDARY_MEMORY_NEEDED_MODE
647 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
648 #else
649 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
650 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
651 #endif
652
653 /* If we already have made a MEM for this operand in MODE, return it. */
654 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
655 return secondary_memlocs_elim[(int) mode][opnum];
656
657 /* If this is the first time we've tried to get a MEM for this mode,
658 allocate a new one. `something_changed' in reload will get set
659 by noticing that the frame size has changed. */
660
661 if (secondary_memlocs[(int) mode] == 0)
662 {
663 #ifdef SECONDARY_MEMORY_NEEDED_RTX
664 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
665 #else
666 secondary_memlocs[(int) mode]
667 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
668 #endif
669 }
670
671 /* Get a version of the address doing any eliminations needed. If that
672 didn't give us a new MEM, make a new one if it isn't valid. */
673
674 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
675 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
676
677 if (! mem_valid && loc == secondary_memlocs[(int) mode])
678 loc = copy_rtx (loc);
679
680 /* The only time the call below will do anything is if the stack
681 offset is too large. In that case IND_LEVELS doesn't matter, so we
682 can just pass a zero. Adjust the type to be the address of the
683 corresponding object. If the address was valid, save the eliminated
684 address. If it wasn't valid, we need to make a reload each time, so
685 don't save it. */
686
687 if (! mem_valid)
688 {
689 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
690 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
691 : RELOAD_OTHER);
692
693 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
694 opnum, type, 0, 0);
695 }
696
697 secondary_memlocs_elim[(int) mode][opnum] = loc;
698 return loc;
699 }
700
701 /* Clear any secondary memory locations we've made. */
702
703 void
704 clear_secondary_mem ()
705 {
706 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
707 }
708 #endif /* SECONDARY_MEMORY_NEEDED */
709 \f
710 /* Find the largest class for which every register number plus N is valid in
711 M1 (if in range). Abort if no such class exists. */
712
713 static enum reg_class
714 find_valid_class (m1, n)
715 enum machine_mode m1;
716 int n;
717 {
718 int class;
719 int regno;
720 enum reg_class best_class;
721 int best_size = 0;
722
723 for (class = 1; class < N_REG_CLASSES; class++)
724 {
725 int bad = 0;
726 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
727 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
728 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
729 && ! HARD_REGNO_MODE_OK (regno + n, m1))
730 bad = 1;
731
732 if (! bad && reg_class_size[class] > best_size)
733 best_class = class, best_size = reg_class_size[class];
734 }
735
736 if (best_size == 0)
737 abort ();
738
739 return best_class;
740 }
741 \f
742 /* Record one reload that needs to be performed.
743 IN is an rtx saying where the data are to be found before this instruction.
744 OUT says where they must be stored after the instruction.
745 (IN is zero for data not read, and OUT is zero for data not written.)
746 INLOC and OUTLOC point to the places in the instructions where
747 IN and OUT were found.
748 If IN and OUT are both non-zero, it means the same register must be used
749 to reload both IN and OUT.
750
751 CLASS is a register class required for the reloaded data.
752 INMODE is the machine mode that the instruction requires
753 for the reg that replaces IN and OUTMODE is likewise for OUT.
754
755 If IN is zero, then OUT's location and mode should be passed as
756 INLOC and INMODE.
757
758 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
759
760 OPTIONAL nonzero means this reload does not need to be performed:
761 it can be discarded if that is more convenient.
762
763 OPNUM and TYPE say what the purpose of this reload is.
764
765 The return value is the reload-number for this reload.
766
767 If both IN and OUT are nonzero, in some rare cases we might
768 want to make two separate reloads. (Actually we never do this now.)
769 Therefore, the reload-number for OUT is stored in
770 output_reloadnum when we return; the return value applies to IN.
771 Usually (presently always), when IN and OUT are nonzero,
772 the two reload-numbers are equal, but the caller should be careful to
773 distinguish them. */
774
775 static int
776 push_reload (in, out, inloc, outloc, class,
777 inmode, outmode, strict_low, optional, opnum, type)
778 register rtx in, out;
779 rtx *inloc, *outloc;
780 enum reg_class class;
781 enum machine_mode inmode, outmode;
782 int strict_low;
783 int optional;
784 int opnum;
785 enum reload_type type;
786 {
787 register int i;
788 int dont_share = 0;
789 int dont_remove_subreg = 0;
790 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
791 int secondary_in_reload = -1, secondary_out_reload = -1;
792 enum insn_code secondary_in_icode = CODE_FOR_nothing;
793 enum insn_code secondary_out_icode = CODE_FOR_nothing;
794
795 /* INMODE and/or OUTMODE could be VOIDmode if no mode
796 has been specified for the operand. In that case,
797 use the operand's mode as the mode to reload. */
798 if (inmode == VOIDmode && in != 0)
799 inmode = GET_MODE (in);
800 if (outmode == VOIDmode && out != 0)
801 outmode = GET_MODE (out);
802
803 /* If IN is a pseudo register everywhere-equivalent to a constant, and
804 it is not in a hard register, reload straight from the constant,
805 since we want to get rid of such pseudo registers.
806 Often this is done earlier, but not always in find_reloads_address. */
807 if (in != 0 && GET_CODE (in) == REG)
808 {
809 register int regno = REGNO (in);
810
811 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
812 && reg_equiv_constant[regno] != 0)
813 in = reg_equiv_constant[regno];
814 }
815
816 /* Likewise for OUT. Of course, OUT will never be equivalent to
817 an actual constant, but it might be equivalent to a memory location
818 (in the case of a parameter). */
819 if (out != 0 && GET_CODE (out) == REG)
820 {
821 register int regno = REGNO (out);
822
823 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
824 && reg_equiv_constant[regno] != 0)
825 out = reg_equiv_constant[regno];
826 }
827
828 /* If we have a read-write operand with an address side-effect,
829 change either IN or OUT so the side-effect happens only once. */
830 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
831 {
832 if (GET_CODE (XEXP (in, 0)) == POST_INC
833 || GET_CODE (XEXP (in, 0)) == POST_DEC)
834 in = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
835 if (GET_CODE (XEXP (in, 0)) == PRE_INC
836 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
837 out = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
838 }
839
840 /* If we are reloading a (SUBREG constant ...), really reload just the
841 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
842 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
843 a pseudo and hence will become a MEM) with M1 wider than M2 and the
844 register is a pseudo, also reload the inside expression.
845 For machines that extend byte loads, do this for any SUBREG of a pseudo
846 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
847 M2 is an integral mode that gets extended when loaded.
848 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
849 either M1 is not valid for R or M2 is wider than a word but we only
850 need one word to store an M2-sized quantity in R.
851 (However, if OUT is nonzero, we need to reload the reg *and*
852 the subreg, so do nothing here, and let following statement handle it.)
853
854 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
855 we can't handle it here because CONST_INT does not indicate a mode.
856
857 Similarly, we must reload the inside expression if we have a
858 STRICT_LOW_PART (presumably, in == out in the cas).
859
860 Also reload the inner expression if it does not require a secondary
861 reload but the SUBREG does.
862
863 Finally, reload the inner expression if it is a register that is in
864 the class whose registers cannot be referenced in a different size
865 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
866 cannot reload just the inside since we might end up with the wrong
867 register class. */
868
869 if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
870 #ifdef CLASS_CANNOT_CHANGE_SIZE
871 && class != CLASS_CANNOT_CHANGE_SIZE
872 #endif
873 && (CONSTANT_P (SUBREG_REG (in))
874 || GET_CODE (SUBREG_REG (in)) == PLUS
875 || strict_low
876 || (((GET_CODE (SUBREG_REG (in)) == REG
877 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
878 || GET_CODE (SUBREG_REG (in)) == MEM)
879 && ((GET_MODE_SIZE (inmode)
880 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
881 #ifdef LOAD_EXTEND_OP
882 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
883 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
884 <= UNITS_PER_WORD)
885 && (GET_MODE_SIZE (inmode)
886 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
887 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
888 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
889 #endif
890 #ifdef WORD_REGISTER_OPERATIONS
891 || ((GET_MODE_SIZE (inmode)
892 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
893 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
894 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
895 / UNITS_PER_WORD)))
896 #endif
897 ))
898 || (GET_CODE (SUBREG_REG (in)) == REG
899 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
900 /* The case where out is nonzero
901 is handled differently in the following statement. */
902 && (out == 0 || SUBREG_WORD (in) == 0)
903 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
904 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
905 > UNITS_PER_WORD)
906 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
907 / UNITS_PER_WORD)
908 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
909 GET_MODE (SUBREG_REG (in)))))
910 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
911 + SUBREG_WORD (in)),
912 inmode)))
913 #ifdef SECONDARY_INPUT_RELOAD_CLASS
914 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
915 && (SECONDARY_INPUT_RELOAD_CLASS (class,
916 GET_MODE (SUBREG_REG (in)),
917 SUBREG_REG (in))
918 == NO_REGS))
919 #endif
920 #ifdef CLASS_CANNOT_CHANGE_SIZE
921 || (GET_CODE (SUBREG_REG (in)) == REG
922 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
923 && (TEST_HARD_REG_BIT
924 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
925 REGNO (SUBREG_REG (in))))
926 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
927 != GET_MODE_SIZE (inmode)))
928 #endif
929 ))
930 {
931 in_subreg_loc = inloc;
932 inloc = &SUBREG_REG (in);
933 in = *inloc;
934 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
935 if (GET_CODE (in) == MEM)
936 /* This is supposed to happen only for paradoxical subregs made by
937 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
938 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
939 abort ();
940 #endif
941 inmode = GET_MODE (in);
942 }
943
944 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
945 either M1 is not valid for R or M2 is wider than a word but we only
946 need one word to store an M2-sized quantity in R.
947
948 However, we must reload the inner reg *as well as* the subreg in
949 that case. */
950
951 /* Similar issue for (SUBREG constant ...) if it was not handled by the
952 code above. This can happen if SUBREG_WORD != 0. */
953
954 if (in != 0 && GET_CODE (in) == SUBREG
955 && (CONSTANT_P (SUBREG_REG (in))
956 || (GET_CODE (SUBREG_REG (in)) == REG
957 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
958 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
959 + SUBREG_WORD (in),
960 inmode)
961 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
962 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
963 > UNITS_PER_WORD)
964 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
965 / UNITS_PER_WORD)
966 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
967 GET_MODE (SUBREG_REG (in)))))))))
968 {
969 /* This relies on the fact that emit_reload_insns outputs the
970 instructions for input reloads of type RELOAD_OTHER in the same
971 order as the reloads. Thus if the outer reload is also of type
972 RELOAD_OTHER, we are guaranteed that this inner reload will be
973 output before the outer reload. */
974 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
975 find_valid_class (inmode, SUBREG_WORD (in)),
976 VOIDmode, VOIDmode, 0, 0, opnum, type);
977 dont_remove_subreg = 1;
978 }
979
980 /* Similarly for paradoxical and problematical SUBREGs on the output.
981 Note that there is no reason we need worry about the previous value
982 of SUBREG_REG (out); even if wider than out,
983 storing in a subreg is entitled to clobber it all
984 (except in the case of STRICT_LOW_PART,
985 and in that case the constraint should label it input-output.) */
986 if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
987 #ifdef CLASS_CANNOT_CHANGE_SIZE
988 && class != CLASS_CANNOT_CHANGE_SIZE
989 #endif
990 && (CONSTANT_P (SUBREG_REG (out))
991 || strict_low
992 || (((GET_CODE (SUBREG_REG (out)) == REG
993 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
994 || GET_CODE (SUBREG_REG (out)) == MEM)
995 && ((GET_MODE_SIZE (outmode)
996 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
997 #ifdef WORD_REGISTER_OPERATIONS
998 || ((GET_MODE_SIZE (outmode)
999 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1000 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1001 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1002 / UNITS_PER_WORD)))
1003 #endif
1004 ))
1005 || (GET_CODE (SUBREG_REG (out)) == REG
1006 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1007 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1008 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1009 > UNITS_PER_WORD)
1010 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1011 / UNITS_PER_WORD)
1012 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1013 GET_MODE (SUBREG_REG (out)))))
1014 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1015 + SUBREG_WORD (out)),
1016 outmode)))
1017 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1018 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1019 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1020 GET_MODE (SUBREG_REG (out)),
1021 SUBREG_REG (out))
1022 == NO_REGS))
1023 #endif
1024 #ifdef CLASS_CANNOT_CHANGE_SIZE
1025 || (GET_CODE (SUBREG_REG (out)) == REG
1026 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1027 && (TEST_HARD_REG_BIT
1028 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1029 REGNO (SUBREG_REG (out))))
1030 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1031 != GET_MODE_SIZE (outmode)))
1032 #endif
1033 ))
1034 {
1035 out_subreg_loc = outloc;
1036 outloc = &SUBREG_REG (out);
1037 out = *outloc;
1038 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1039 if (GET_CODE (out) == MEM
1040 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1041 abort ();
1042 #endif
1043 outmode = GET_MODE (out);
1044 }
1045
1046 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1047 either M1 is not valid for R or M2 is wider than a word but we only
1048 need one word to store an M2-sized quantity in R.
1049
1050 However, we must reload the inner reg *as well as* the subreg in
1051 that case. In this case, the inner reg is an in-out reload. */
1052
1053 if (out != 0 && GET_CODE (out) == SUBREG
1054 && GET_CODE (SUBREG_REG (out)) == REG
1055 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1056 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1057 outmode)
1058 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1059 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1060 > UNITS_PER_WORD)
1061 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1062 / UNITS_PER_WORD)
1063 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1064 GET_MODE (SUBREG_REG (out)))))))
1065 {
1066 /* This relies on the fact that emit_reload_insns outputs the
1067 instructions for output reloads of type RELOAD_OTHER in reverse
1068 order of the reloads. Thus if the outer reload is also of type
1069 RELOAD_OTHER, we are guaranteed that this inner reload will be
1070 output after the outer reload. */
1071 dont_remove_subreg = 1;
1072 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1073 &SUBREG_REG (out),
1074 find_valid_class (outmode, SUBREG_WORD (out)),
1075 VOIDmode, VOIDmode, 0, 0,
1076 opnum, RELOAD_OTHER);
1077 }
1078
1079 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1080 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1081 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1082 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1083 dont_share = 1;
1084
1085 /* If IN is a SUBREG of a hard register, make a new REG. This
1086 simplifies some of the cases below. */
1087
1088 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1089 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1090 && ! dont_remove_subreg)
1091 in = gen_rtx_REG (GET_MODE (in),
1092 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1093
1094 /* Similarly for OUT. */
1095 if (out != 0 && GET_CODE (out) == SUBREG
1096 && GET_CODE (SUBREG_REG (out)) == REG
1097 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1098 && ! dont_remove_subreg)
1099 out = gen_rtx_REG (GET_MODE (out),
1100 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1101
1102 /* Narrow down the class of register wanted if that is
1103 desirable on this machine for efficiency. */
1104 if (in != 0)
1105 class = PREFERRED_RELOAD_CLASS (in, class);
1106
1107 /* Output reloads may need analogous treatment, different in detail. */
1108 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1109 if (out != 0)
1110 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1111 #endif
1112
1113 /* Make sure we use a class that can handle the actual pseudo
1114 inside any subreg. For example, on the 386, QImode regs
1115 can appear within SImode subregs. Although GENERAL_REGS
1116 can handle SImode, QImode needs a smaller class. */
1117 #ifdef LIMIT_RELOAD_CLASS
1118 if (in_subreg_loc)
1119 class = LIMIT_RELOAD_CLASS (inmode, class);
1120 else if (in != 0 && GET_CODE (in) == SUBREG)
1121 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1122
1123 if (out_subreg_loc)
1124 class = LIMIT_RELOAD_CLASS (outmode, class);
1125 if (out != 0 && GET_CODE (out) == SUBREG)
1126 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1127 #endif
1128
1129 /* Verify that this class is at least possible for the mode that
1130 is specified. */
1131 if (this_insn_is_asm)
1132 {
1133 enum machine_mode mode;
1134 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1135 mode = inmode;
1136 else
1137 mode = outmode;
1138 if (mode == VOIDmode)
1139 {
1140 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1141 mode = word_mode;
1142 if (in != 0)
1143 inmode = word_mode;
1144 if (out != 0)
1145 outmode = word_mode;
1146 }
1147 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1148 if (HARD_REGNO_MODE_OK (i, mode)
1149 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1150 {
1151 int nregs = HARD_REGNO_NREGS (i, mode);
1152
1153 int j;
1154 for (j = 1; j < nregs; j++)
1155 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1156 break;
1157 if (j == nregs)
1158 break;
1159 }
1160 if (i == FIRST_PSEUDO_REGISTER)
1161 {
1162 error_for_asm (this_insn, "impossible register constraint in `asm'");
1163 class = ALL_REGS;
1164 }
1165 }
1166
1167 if (class == NO_REGS)
1168 abort ();
1169
1170 /* We can use an existing reload if the class is right
1171 and at least one of IN and OUT is a match
1172 and the other is at worst neutral.
1173 (A zero compared against anything is neutral.)
1174
1175 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1176 for the same thing since that can cause us to need more reload registers
1177 than we otherwise would. */
1178
1179 for (i = 0; i < n_reloads; i++)
1180 if ((reg_class_subset_p (class, reload_reg_class[i])
1181 || reg_class_subset_p (reload_reg_class[i], class))
1182 /* If the existing reload has a register, it must fit our class. */
1183 && (reload_reg_rtx[i] == 0
1184 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1185 true_regnum (reload_reg_rtx[i])))
1186 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
1187 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
1188 ||
1189 (out != 0 && MATCHES (reload_out[i], out)
1190 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
1191 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
1192 && MERGABLE_RELOADS (type, reload_when_needed[i],
1193 opnum, reload_opnum[i]))
1194 break;
1195
1196 /* Reloading a plain reg for input can match a reload to postincrement
1197 that reg, since the postincrement's value is the right value.
1198 Likewise, it can match a preincrement reload, since we regard
1199 the preincrementation as happening before any ref in this insn
1200 to that register. */
1201 if (i == n_reloads)
1202 for (i = 0; i < n_reloads; i++)
1203 if ((reg_class_subset_p (class, reload_reg_class[i])
1204 || reg_class_subset_p (reload_reg_class[i], class))
1205 /* If the existing reload has a register, it must fit our class. */
1206 && (reload_reg_rtx[i] == 0
1207 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1208 true_regnum (reload_reg_rtx[i])))
1209 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
1210 && ((GET_CODE (in) == REG
1211 && (GET_CODE (reload_in[i]) == POST_INC
1212 || GET_CODE (reload_in[i]) == POST_DEC
1213 || GET_CODE (reload_in[i]) == PRE_INC
1214 || GET_CODE (reload_in[i]) == PRE_DEC)
1215 && MATCHES (XEXP (reload_in[i], 0), in))
1216 ||
1217 (GET_CODE (reload_in[i]) == REG
1218 && (GET_CODE (in) == POST_INC
1219 || GET_CODE (in) == POST_DEC
1220 || GET_CODE (in) == PRE_INC
1221 || GET_CODE (in) == PRE_DEC)
1222 && MATCHES (XEXP (in, 0), reload_in[i])))
1223 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
1224 && MERGABLE_RELOADS (type, reload_when_needed[i],
1225 opnum, reload_opnum[i]))
1226 {
1227 /* Make sure reload_in ultimately has the increment,
1228 not the plain register. */
1229 if (GET_CODE (in) == REG)
1230 in = reload_in[i];
1231 break;
1232 }
1233
1234 if (i == n_reloads)
1235 {
1236 /* See if we need a secondary reload register to move between CLASS
1237 and IN or CLASS and OUT. Get the icode and push any required reloads
1238 needed for each of them if so. */
1239
1240 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1241 if (in != 0)
1242 secondary_in_reload
1243 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1244 &secondary_in_icode);
1245 #endif
1246
1247 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1248 if (out != 0 && GET_CODE (out) != SCRATCH)
1249 secondary_out_reload
1250 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1251 type, &secondary_out_icode);
1252 #endif
1253
1254 /* We found no existing reload suitable for re-use.
1255 So add an additional reload. */
1256
1257 #ifdef SECONDARY_MEMORY_NEEDED
1258 /* If a memory location is needed for the copy, make one. */
1259 if (in != 0 && GET_CODE (in) == REG
1260 && REGNO (in) < FIRST_PSEUDO_REGISTER
1261 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1262 class, inmode))
1263 get_secondary_mem (in, inmode, opnum, type);
1264 #endif
1265
1266 i = n_reloads;
1267 reload_in[i] = in;
1268 reload_out[i] = out;
1269 reload_reg_class[i] = class;
1270 reload_inmode[i] = inmode;
1271 reload_outmode[i] = outmode;
1272 reload_reg_rtx[i] = 0;
1273 reload_optional[i] = optional;
1274 reload_inc[i] = 0;
1275 reload_nocombine[i] = 0;
1276 reload_in_reg[i] = inloc ? *inloc : 0;
1277 reload_opnum[i] = opnum;
1278 reload_when_needed[i] = type;
1279 reload_secondary_in_reload[i] = secondary_in_reload;
1280 reload_secondary_out_reload[i] = secondary_out_reload;
1281 reload_secondary_in_icode[i] = secondary_in_icode;
1282 reload_secondary_out_icode[i] = secondary_out_icode;
1283 reload_secondary_p[i] = 0;
1284
1285 n_reloads++;
1286
1287 #ifdef SECONDARY_MEMORY_NEEDED
1288 if (out != 0 && GET_CODE (out) == REG
1289 && REGNO (out) < FIRST_PSEUDO_REGISTER
1290 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1291 outmode))
1292 get_secondary_mem (out, outmode, opnum, type);
1293 #endif
1294 }
1295 else
1296 {
1297 /* We are reusing an existing reload,
1298 but we may have additional information for it.
1299 For example, we may now have both IN and OUT
1300 while the old one may have just one of them. */
1301
1302 /* The modes can be different. If they are, we want to reload in
1303 the larger mode, so that the value is valid for both modes. */
1304 if (inmode != VOIDmode
1305 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (reload_inmode[i]))
1306 reload_inmode[i] = inmode;
1307 if (outmode != VOIDmode
1308 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (reload_outmode[i]))
1309 reload_outmode[i] = outmode;
1310 if (in != 0)
1311 reload_in[i] = in;
1312 if (out != 0)
1313 reload_out[i] = out;
1314 if (reg_class_subset_p (class, reload_reg_class[i]))
1315 reload_reg_class[i] = class;
1316 reload_optional[i] &= optional;
1317 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1318 opnum, reload_opnum[i]))
1319 reload_when_needed[i] = RELOAD_OTHER;
1320 reload_opnum[i] = MIN (reload_opnum[i], opnum);
1321 }
1322
1323 /* If the ostensible rtx being reload differs from the rtx found
1324 in the location to substitute, this reload is not safe to combine
1325 because we cannot reliably tell whether it appears in the insn. */
1326
1327 if (in != 0 && in != *inloc)
1328 reload_nocombine[i] = 1;
1329
1330 #if 0
1331 /* This was replaced by changes in find_reloads_address_1 and the new
1332 function inc_for_reload, which go with a new meaning of reload_inc. */
1333
1334 /* If this is an IN/OUT reload in an insn that sets the CC,
1335 it must be for an autoincrement. It doesn't work to store
1336 the incremented value after the insn because that would clobber the CC.
1337 So we must do the increment of the value reloaded from,
1338 increment it, store it back, then decrement again. */
1339 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1340 {
1341 out = 0;
1342 reload_out[i] = 0;
1343 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1344 /* If we did not find a nonzero amount-to-increment-by,
1345 that contradicts the belief that IN is being incremented
1346 in an address in this insn. */
1347 if (reload_inc[i] == 0)
1348 abort ();
1349 }
1350 #endif
1351
1352 /* If we will replace IN and OUT with the reload-reg,
1353 record where they are located so that substitution need
1354 not do a tree walk. */
1355
1356 if (replace_reloads)
1357 {
1358 if (inloc != 0)
1359 {
1360 register struct replacement *r = &replacements[n_replacements++];
1361 r->what = i;
1362 r->subreg_loc = in_subreg_loc;
1363 r->where = inloc;
1364 r->mode = inmode;
1365 }
1366 if (outloc != 0 && outloc != inloc)
1367 {
1368 register struct replacement *r = &replacements[n_replacements++];
1369 r->what = i;
1370 r->where = outloc;
1371 r->subreg_loc = out_subreg_loc;
1372 r->mode = outmode;
1373 }
1374 }
1375
1376 /* If this reload is just being introduced and it has both
1377 an incoming quantity and an outgoing quantity that are
1378 supposed to be made to match, see if either one of the two
1379 can serve as the place to reload into.
1380
1381 If one of them is acceptable, set reload_reg_rtx[i]
1382 to that one. */
1383
1384 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1385 {
1386 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
1387 inmode, outmode,
1388 reload_reg_class[i], i,
1389 earlyclobber_operand_p (out));
1390
1391 /* If the outgoing register already contains the same value
1392 as the incoming one, we can dispense with loading it.
1393 The easiest way to tell the caller that is to give a phony
1394 value for the incoming operand (same as outgoing one). */
1395 if (reload_reg_rtx[i] == out
1396 && (GET_CODE (in) == REG || CONSTANT_P (in))
1397 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1398 static_reload_reg_p, i, inmode))
1399 reload_in[i] = out;
1400 }
1401
1402 /* If this is an input reload and the operand contains a register that
1403 dies in this insn and is used nowhere else, see if it is the right class
1404 to be used for this reload. Use it if so. (This occurs most commonly
1405 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1406 this if it is also an output reload that mentions the register unless
1407 the output is a SUBREG that clobbers an entire register.
1408
1409 Note that the operand might be one of the spill regs, if it is a
1410 pseudo reg and we are in a block where spilling has not taken place.
1411 But if there is no spilling in this block, that is OK.
1412 An explicitly used hard reg cannot be a spill reg. */
1413
1414 if (reload_reg_rtx[i] == 0 && in != 0)
1415 {
1416 rtx note;
1417 int regno;
1418
1419 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1420 if (REG_NOTE_KIND (note) == REG_DEAD
1421 && GET_CODE (XEXP (note, 0)) == REG
1422 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1423 && reg_mentioned_p (XEXP (note, 0), in)
1424 && ! refers_to_regno_for_reload_p (regno,
1425 (regno
1426 + HARD_REGNO_NREGS (regno,
1427 inmode)),
1428 PATTERN (this_insn), inloc)
1429 /* If this is also an output reload, IN cannot be used as
1430 the reload register if it is set in this insn unless IN
1431 is also OUT. */
1432 && (out == 0 || in == out
1433 || ! hard_reg_set_here_p (regno,
1434 (regno
1435 + HARD_REGNO_NREGS (regno,
1436 inmode)),
1437 PATTERN (this_insn)))
1438 /* ??? Why is this code so different from the previous?
1439 Is there any simple coherent way to describe the two together?
1440 What's going on here. */
1441 && (in != out
1442 || (GET_CODE (in) == SUBREG
1443 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1444 / UNITS_PER_WORD)
1445 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1446 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1447 /* Make sure the operand fits in the reg that dies. */
1448 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1449 && HARD_REGNO_MODE_OK (regno, inmode)
1450 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1451 && HARD_REGNO_MODE_OK (regno, outmode)
1452 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1453 && !fixed_regs[regno])
1454 {
1455 reload_reg_rtx[i] = gen_rtx_REG (inmode, regno);
1456 break;
1457 }
1458 }
1459
1460 if (out)
1461 output_reloadnum = i;
1462
1463 return i;
1464 }
1465
1466 /* Record an additional place we must replace a value
1467 for which we have already recorded a reload.
1468 RELOADNUM is the value returned by push_reload
1469 when the reload was recorded.
1470 This is used in insn patterns that use match_dup. */
1471
1472 static void
1473 push_replacement (loc, reloadnum, mode)
1474 rtx *loc;
1475 int reloadnum;
1476 enum machine_mode mode;
1477 {
1478 if (replace_reloads)
1479 {
1480 register struct replacement *r = &replacements[n_replacements++];
1481 r->what = reloadnum;
1482 r->where = loc;
1483 r->subreg_loc = 0;
1484 r->mode = mode;
1485 }
1486 }
1487 \f
1488 /* Transfer all replacements that used to be in reload FROM to be in
1489 reload TO. */
1490
1491 void
1492 transfer_replacements (to, from)
1493 int to, from;
1494 {
1495 int i;
1496
1497 for (i = 0; i < n_replacements; i++)
1498 if (replacements[i].what == from)
1499 replacements[i].what = to;
1500 }
1501 \f
1502 /* If there is only one output reload, and it is not for an earlyclobber
1503 operand, try to combine it with a (logically unrelated) input reload
1504 to reduce the number of reload registers needed.
1505
1506 This is safe if the input reload does not appear in
1507 the value being output-reloaded, because this implies
1508 it is not needed any more once the original insn completes.
1509
1510 If that doesn't work, see we can use any of the registers that
1511 die in this insn as a reload register. We can if it is of the right
1512 class and does not appear in the value being output-reloaded. */
1513
1514 static void
1515 combine_reloads ()
1516 {
1517 int i;
1518 int output_reload = -1;
1519 int secondary_out = -1;
1520 rtx note;
1521
1522 /* Find the output reload; return unless there is exactly one
1523 and that one is mandatory. */
1524
1525 for (i = 0; i < n_reloads; i++)
1526 if (reload_out[i] != 0)
1527 {
1528 if (output_reload >= 0)
1529 return;
1530 output_reload = i;
1531 }
1532
1533 if (output_reload < 0 || reload_optional[output_reload])
1534 return;
1535
1536 /* An input-output reload isn't combinable. */
1537
1538 if (reload_in[output_reload] != 0)
1539 return;
1540
1541 /* If this reload is for an earlyclobber operand, we can't do anything. */
1542 if (earlyclobber_operand_p (reload_out[output_reload]))
1543 return;
1544
1545 /* Check each input reload; can we combine it? */
1546
1547 for (i = 0; i < n_reloads; i++)
1548 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1549 /* Life span of this reload must not extend past main insn. */
1550 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
1551 && reload_when_needed[i] != RELOAD_FOR_OUTADDR_ADDRESS
1552 && reload_when_needed[i] != RELOAD_OTHER
1553 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1554 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1555 reload_outmode[output_reload]))
1556 && reload_inc[i] == 0
1557 && reload_reg_rtx[i] == 0
1558 #ifdef SECONDARY_MEMORY_NEEDED
1559 /* Don't combine two reloads with different secondary
1560 memory locations. */
1561 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1562 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1563 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1564 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
1565 #endif
1566 && (SMALL_REGISTER_CLASSES
1567 ? (reload_reg_class[i] == reload_reg_class[output_reload])
1568 : (reg_class_subset_p (reload_reg_class[i],
1569 reload_reg_class[output_reload])
1570 || reg_class_subset_p (reload_reg_class[output_reload],
1571 reload_reg_class[i])))
1572 && (MATCHES (reload_in[i], reload_out[output_reload])
1573 /* Args reversed because the first arg seems to be
1574 the one that we imagine being modified
1575 while the second is the one that might be affected. */
1576 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1577 reload_in[i])
1578 /* However, if the input is a register that appears inside
1579 the output, then we also can't share.
1580 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1581 If the same reload reg is used for both reg 69 and the
1582 result to be stored in memory, then that result
1583 will clobber the address of the memory ref. */
1584 && ! (GET_CODE (reload_in[i]) == REG
1585 && reg_overlap_mentioned_for_reload_p (reload_in[i],
1586 reload_out[output_reload]))))
1587 && (reg_class_size[(int) reload_reg_class[i]]
1588 || SMALL_REGISTER_CLASSES)
1589 /* We will allow making things slightly worse by combining an
1590 input and an output, but no worse than that. */
1591 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1592 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
1593 {
1594 int j;
1595
1596 /* We have found a reload to combine with! */
1597 reload_out[i] = reload_out[output_reload];
1598 reload_outmode[i] = reload_outmode[output_reload];
1599 /* Mark the old output reload as inoperative. */
1600 reload_out[output_reload] = 0;
1601 /* The combined reload is needed for the entire insn. */
1602 reload_when_needed[i] = RELOAD_OTHER;
1603 /* If the output reload had a secondary reload, copy it. */
1604 if (reload_secondary_out_reload[output_reload] != -1)
1605 {
1606 reload_secondary_out_reload[i]
1607 = reload_secondary_out_reload[output_reload];
1608 reload_secondary_out_icode[i]
1609 = reload_secondary_out_icode[output_reload];
1610 }
1611
1612 #ifdef SECONDARY_MEMORY_NEEDED
1613 /* Copy any secondary MEM. */
1614 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1615 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1616 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
1617 #endif
1618 /* If required, minimize the register class. */
1619 if (reg_class_subset_p (reload_reg_class[output_reload],
1620 reload_reg_class[i]))
1621 reload_reg_class[i] = reload_reg_class[output_reload];
1622
1623 /* Transfer all replacements from the old reload to the combined. */
1624 for (j = 0; j < n_replacements; j++)
1625 if (replacements[j].what == output_reload)
1626 replacements[j].what = i;
1627
1628 return;
1629 }
1630
1631 /* If this insn has only one operand that is modified or written (assumed
1632 to be the first), it must be the one corresponding to this reload. It
1633 is safe to use anything that dies in this insn for that output provided
1634 that it does not occur in the output (we already know it isn't an
1635 earlyclobber. If this is an asm insn, give up. */
1636
1637 if (INSN_CODE (this_insn) == -1)
1638 return;
1639
1640 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1641 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1642 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1643 return;
1644
1645 /* See if some hard register that dies in this insn and is not used in
1646 the output is the right class. Only works if the register we pick
1647 up can fully hold our output reload. */
1648 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1649 if (REG_NOTE_KIND (note) == REG_DEAD
1650 && GET_CODE (XEXP (note, 0)) == REG
1651 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1652 reload_out[output_reload])
1653 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1654 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1655 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1656 REGNO (XEXP (note, 0)))
1657 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1658 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1659 /* Ensure that a secondary or tertiary reload for this output
1660 won't want this register. */
1661 && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
1662 || (! (TEST_HARD_REG_BIT
1663 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1664 REGNO (XEXP (note, 0))))
1665 && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
1666 || ! (TEST_HARD_REG_BIT
1667 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1668 REGNO (XEXP (note, 0)))))))
1669 && ! fixed_regs[REGNO (XEXP (note, 0))])
1670 {
1671 reload_reg_rtx[output_reload]
1672 = gen_rtx_REG (reload_outmode[output_reload],
1673 REGNO (XEXP (note, 0)));
1674 return;
1675 }
1676 }
1677 \f
1678 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1679 See if one of IN and OUT is a register that may be used;
1680 this is desirable since a spill-register won't be needed.
1681 If so, return the register rtx that proves acceptable.
1682
1683 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1684 CLASS is the register class required for the reload.
1685
1686 If FOR_REAL is >= 0, it is the number of the reload,
1687 and in some cases when it can be discovered that OUT doesn't need
1688 to be computed, clear out reload_out[FOR_REAL].
1689
1690 If FOR_REAL is -1, this should not be done, because this call
1691 is just to see if a register can be found, not to find and install it.
1692
1693 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1694 puts an additional constraint on being able to use IN for OUT since
1695 IN must not appear elsewhere in the insn (it is assumed that IN itself
1696 is safe from the earlyclobber). */
1697
1698 static rtx
1699 find_dummy_reload (real_in, real_out, inloc, outloc,
1700 inmode, outmode, class, for_real, earlyclobber)
1701 rtx real_in, real_out;
1702 rtx *inloc, *outloc;
1703 enum machine_mode inmode, outmode;
1704 enum reg_class class;
1705 int for_real;
1706 int earlyclobber;
1707 {
1708 rtx in = real_in;
1709 rtx out = real_out;
1710 int in_offset = 0;
1711 int out_offset = 0;
1712 rtx value = 0;
1713
1714 /* If operands exceed a word, we can't use either of them
1715 unless they have the same size. */
1716 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1717 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1718 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1719 return 0;
1720
1721 /* Find the inside of any subregs. */
1722 while (GET_CODE (out) == SUBREG)
1723 {
1724 out_offset = SUBREG_WORD (out);
1725 out = SUBREG_REG (out);
1726 }
1727 while (GET_CODE (in) == SUBREG)
1728 {
1729 in_offset = SUBREG_WORD (in);
1730 in = SUBREG_REG (in);
1731 }
1732
1733 /* Narrow down the reg class, the same way push_reload will;
1734 otherwise we might find a dummy now, but push_reload won't. */
1735 class = PREFERRED_RELOAD_CLASS (in, class);
1736
1737 /* See if OUT will do. */
1738 if (GET_CODE (out) == REG
1739 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1740 {
1741 register int regno = REGNO (out) + out_offset;
1742 int nwords = HARD_REGNO_NREGS (regno, outmode);
1743 rtx saved_rtx;
1744
1745 /* When we consider whether the insn uses OUT,
1746 ignore references within IN. They don't prevent us
1747 from copying IN into OUT, because those refs would
1748 move into the insn that reloads IN.
1749
1750 However, we only ignore IN in its role as this reload.
1751 If the insn uses IN elsewhere and it contains OUT,
1752 that counts. We can't be sure it's the "same" operand
1753 so it might not go through this reload. */
1754 saved_rtx = *inloc;
1755 *inloc = const0_rtx;
1756
1757 if (regno < FIRST_PSEUDO_REGISTER
1758 /* A fixed reg that can overlap other regs better not be used
1759 for reloading in any way. */
1760 #ifdef OVERLAPPING_REGNO_P
1761 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1762 #endif
1763 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1764 PATTERN (this_insn), outloc))
1765 {
1766 int i;
1767 for (i = 0; i < nwords; i++)
1768 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1769 regno + i))
1770 break;
1771
1772 if (i == nwords)
1773 {
1774 if (GET_CODE (real_out) == REG)
1775 value = real_out;
1776 else
1777 value = gen_rtx_REG (outmode, regno);
1778 }
1779 }
1780
1781 *inloc = saved_rtx;
1782 }
1783
1784 /* Consider using IN if OUT was not acceptable
1785 or if OUT dies in this insn (like the quotient in a divmod insn).
1786 We can't use IN unless it is dies in this insn,
1787 which means we must know accurately which hard regs are live.
1788 Also, the result can't go in IN if IN is used within OUT,
1789 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1790 if (hard_regs_live_known
1791 && GET_CODE (in) == REG
1792 && REGNO (in) < FIRST_PSEUDO_REGISTER
1793 && (value == 0
1794 || find_reg_note (this_insn, REG_UNUSED, real_out))
1795 && find_reg_note (this_insn, REG_DEAD, real_in)
1796 && !fixed_regs[REGNO (in)]
1797 && HARD_REGNO_MODE_OK (REGNO (in),
1798 /* The only case where out and real_out might
1799 have different modes is where real_out
1800 is a subreg, and in that case, out
1801 has a real mode. */
1802 (GET_MODE (out) != VOIDmode
1803 ? GET_MODE (out) : outmode)))
1804 {
1805 register int regno = REGNO (in) + in_offset;
1806 int nwords = HARD_REGNO_NREGS (regno, inmode);
1807
1808 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1809 && ! hard_reg_set_here_p (regno, regno + nwords,
1810 PATTERN (this_insn))
1811 && (! earlyclobber
1812 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1813 PATTERN (this_insn), inloc)))
1814 {
1815 int i;
1816 for (i = 0; i < nwords; i++)
1817 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1818 regno + i))
1819 break;
1820
1821 if (i == nwords)
1822 {
1823 /* If we were going to use OUT as the reload reg
1824 and changed our mind, it means OUT is a dummy that
1825 dies here. So don't bother copying value to it. */
1826 if (for_real >= 0 && value == real_out)
1827 reload_out[for_real] = 0;
1828 if (GET_CODE (real_in) == REG)
1829 value = real_in;
1830 else
1831 value = gen_rtx_REG (inmode, regno);
1832 }
1833 }
1834 }
1835
1836 return value;
1837 }
1838 \f
1839 /* This page contains subroutines used mainly for determining
1840 whether the IN or an OUT of a reload can serve as the
1841 reload register. */
1842
1843 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1844
1845 static int
1846 earlyclobber_operand_p (x)
1847 rtx x;
1848 {
1849 int i;
1850
1851 for (i = 0; i < n_earlyclobbers; i++)
1852 if (reload_earlyclobbers[i] == x)
1853 return 1;
1854
1855 return 0;
1856 }
1857
1858 /* Return 1 if expression X alters a hard reg in the range
1859 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1860 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1861 X should be the body of an instruction. */
1862
1863 static int
1864 hard_reg_set_here_p (beg_regno, end_regno, x)
1865 register int beg_regno, end_regno;
1866 rtx x;
1867 {
1868 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1869 {
1870 register rtx op0 = SET_DEST (x);
1871 while (GET_CODE (op0) == SUBREG)
1872 op0 = SUBREG_REG (op0);
1873 if (GET_CODE (op0) == REG)
1874 {
1875 register int r = REGNO (op0);
1876 /* See if this reg overlaps range under consideration. */
1877 if (r < end_regno
1878 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1879 return 1;
1880 }
1881 }
1882 else if (GET_CODE (x) == PARALLEL)
1883 {
1884 register int i = XVECLEN (x, 0) - 1;
1885 for (; i >= 0; i--)
1886 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1887 return 1;
1888 }
1889
1890 return 0;
1891 }
1892
1893 /* Return 1 if ADDR is a valid memory address for mode MODE,
1894 and check that each pseudo reg has the proper kind of
1895 hard reg. */
1896
1897 int
1898 strict_memory_address_p (mode, addr)
1899 enum machine_mode mode;
1900 register rtx addr;
1901 {
1902 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1903 return 0;
1904
1905 win:
1906 return 1;
1907 }
1908 \f
1909 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1910 if they are the same hard reg, and has special hacks for
1911 autoincrement and autodecrement.
1912 This is specifically intended for find_reloads to use
1913 in determining whether two operands match.
1914 X is the operand whose number is the lower of the two.
1915
1916 The value is 2 if Y contains a pre-increment that matches
1917 a non-incrementing address in X. */
1918
1919 /* ??? To be completely correct, we should arrange to pass
1920 for X the output operand and for Y the input operand.
1921 For now, we assume that the output operand has the lower number
1922 because that is natural in (SET output (... input ...)). */
1923
1924 int
1925 operands_match_p (x, y)
1926 register rtx x, y;
1927 {
1928 register int i;
1929 register RTX_CODE code = GET_CODE (x);
1930 register char *fmt;
1931 int success_2;
1932
1933 if (x == y)
1934 return 1;
1935 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1936 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1937 && GET_CODE (SUBREG_REG (y)) == REG)))
1938 {
1939 register int j;
1940
1941 if (code == SUBREG)
1942 {
1943 i = REGNO (SUBREG_REG (x));
1944 if (i >= FIRST_PSEUDO_REGISTER)
1945 goto slow;
1946 i += SUBREG_WORD (x);
1947 }
1948 else
1949 i = REGNO (x);
1950
1951 if (GET_CODE (y) == SUBREG)
1952 {
1953 j = REGNO (SUBREG_REG (y));
1954 if (j >= FIRST_PSEUDO_REGISTER)
1955 goto slow;
1956 j += SUBREG_WORD (y);
1957 }
1958 else
1959 j = REGNO (y);
1960
1961 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1962 multiple hard register group, so that for example (reg:DI 0) and
1963 (reg:SI 1) will be considered the same register. */
1964 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1965 && i < FIRST_PSEUDO_REGISTER)
1966 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1967 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1968 && j < FIRST_PSEUDO_REGISTER)
1969 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1970
1971 return i == j;
1972 }
1973 /* If two operands must match, because they are really a single
1974 operand of an assembler insn, then two postincrements are invalid
1975 because the assembler insn would increment only once.
1976 On the other hand, an postincrement matches ordinary indexing
1977 if the postincrement is the output operand. */
1978 if (code == POST_DEC || code == POST_INC)
1979 return operands_match_p (XEXP (x, 0), y);
1980 /* Two preincrements are invalid
1981 because the assembler insn would increment only once.
1982 On the other hand, an preincrement matches ordinary indexing
1983 if the preincrement is the input operand.
1984 In this case, return 2, since some callers need to do special
1985 things when this happens. */
1986 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
1987 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
1988
1989 slow:
1990
1991 /* Now we have disposed of all the cases
1992 in which different rtx codes can match. */
1993 if (code != GET_CODE (y))
1994 return 0;
1995 if (code == LABEL_REF)
1996 return XEXP (x, 0) == XEXP (y, 0);
1997 if (code == SYMBOL_REF)
1998 return XSTR (x, 0) == XSTR (y, 0);
1999
2000 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2001
2002 if (GET_MODE (x) != GET_MODE (y))
2003 return 0;
2004
2005 /* Compare the elements. If any pair of corresponding elements
2006 fail to match, return 0 for the whole things. */
2007
2008 success_2 = 0;
2009 fmt = GET_RTX_FORMAT (code);
2010 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2011 {
2012 int val;
2013 switch (fmt[i])
2014 {
2015 case 'w':
2016 if (XWINT (x, i) != XWINT (y, i))
2017 return 0;
2018 break;
2019
2020 case 'i':
2021 if (XINT (x, i) != XINT (y, i))
2022 return 0;
2023 break;
2024
2025 case 'e':
2026 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2027 if (val == 0)
2028 return 0;
2029 /* If any subexpression returns 2,
2030 we should return 2 if we are successful. */
2031 if (val == 2)
2032 success_2 = 1;
2033 break;
2034
2035 case '0':
2036 break;
2037
2038 /* It is believed that rtx's at this level will never
2039 contain anything but integers and other rtx's,
2040 except for within LABEL_REFs and SYMBOL_REFs. */
2041 default:
2042 abort ();
2043 }
2044 }
2045 return 1 + success_2;
2046 }
2047 \f
2048 /* Return the number of times character C occurs in string S. */
2049
2050 int
2051 n_occurrences (c, s)
2052 int c;
2053 char *s;
2054 {
2055 int n = 0;
2056 while (*s)
2057 n += (*s++ == c);
2058 return n;
2059 }
2060 \f
2061 /* Describe the range of registers or memory referenced by X.
2062 If X is a register, set REG_FLAG and put the first register
2063 number into START and the last plus one into END.
2064 If X is a memory reference, put a base address into BASE
2065 and a range of integer offsets into START and END.
2066 If X is pushing on the stack, we can assume it causes no trouble,
2067 so we set the SAFE field. */
2068
2069 static struct decomposition
2070 decompose (x)
2071 rtx x;
2072 {
2073 struct decomposition val;
2074 int all_const = 0;
2075
2076 val.reg_flag = 0;
2077 val.safe = 0;
2078 val.base = 0;
2079 if (GET_CODE (x) == MEM)
2080 {
2081 rtx base, offset = 0;
2082 rtx addr = XEXP (x, 0);
2083
2084 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2085 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2086 {
2087 val.base = XEXP (addr, 0);
2088 val.start = - GET_MODE_SIZE (GET_MODE (x));
2089 val.end = GET_MODE_SIZE (GET_MODE (x));
2090 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2091 return val;
2092 }
2093
2094 if (GET_CODE (addr) == CONST)
2095 {
2096 addr = XEXP (addr, 0);
2097 all_const = 1;
2098 }
2099 if (GET_CODE (addr) == PLUS)
2100 {
2101 if (CONSTANT_P (XEXP (addr, 0)))
2102 {
2103 base = XEXP (addr, 1);
2104 offset = XEXP (addr, 0);
2105 }
2106 else if (CONSTANT_P (XEXP (addr, 1)))
2107 {
2108 base = XEXP (addr, 0);
2109 offset = XEXP (addr, 1);
2110 }
2111 }
2112
2113 if (offset == 0)
2114 {
2115 base = addr;
2116 offset = const0_rtx;
2117 }
2118 if (GET_CODE (offset) == CONST)
2119 offset = XEXP (offset, 0);
2120 if (GET_CODE (offset) == PLUS)
2121 {
2122 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2123 {
2124 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2125 offset = XEXP (offset, 0);
2126 }
2127 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2128 {
2129 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2130 offset = XEXP (offset, 1);
2131 }
2132 else
2133 {
2134 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2135 offset = const0_rtx;
2136 }
2137 }
2138 else if (GET_CODE (offset) != CONST_INT)
2139 {
2140 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2141 offset = const0_rtx;
2142 }
2143
2144 if (all_const && GET_CODE (base) == PLUS)
2145 base = gen_rtx_CONST (GET_MODE (base), base);
2146
2147 if (GET_CODE (offset) != CONST_INT)
2148 abort ();
2149
2150 val.start = INTVAL (offset);
2151 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2152 val.base = base;
2153 return val;
2154 }
2155 else if (GET_CODE (x) == REG)
2156 {
2157 val.reg_flag = 1;
2158 val.start = true_regnum (x);
2159 if (val.start < 0)
2160 {
2161 /* A pseudo with no hard reg. */
2162 val.start = REGNO (x);
2163 val.end = val.start + 1;
2164 }
2165 else
2166 /* A hard reg. */
2167 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2168 }
2169 else if (GET_CODE (x) == SUBREG)
2170 {
2171 if (GET_CODE (SUBREG_REG (x)) != REG)
2172 /* This could be more precise, but it's good enough. */
2173 return decompose (SUBREG_REG (x));
2174 val.reg_flag = 1;
2175 val.start = true_regnum (x);
2176 if (val.start < 0)
2177 return decompose (SUBREG_REG (x));
2178 else
2179 /* A hard reg. */
2180 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2181 }
2182 else if (CONSTANT_P (x)
2183 /* This hasn't been assigned yet, so it can't conflict yet. */
2184 || GET_CODE (x) == SCRATCH)
2185 val.safe = 1;
2186 else
2187 abort ();
2188 return val;
2189 }
2190
2191 /* Return 1 if altering Y will not modify the value of X.
2192 Y is also described by YDATA, which should be decompose (Y). */
2193
2194 static int
2195 immune_p (x, y, ydata)
2196 rtx x, y;
2197 struct decomposition ydata;
2198 {
2199 struct decomposition xdata;
2200
2201 if (ydata.reg_flag)
2202 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
2203 if (ydata.safe)
2204 return 1;
2205
2206 if (GET_CODE (y) != MEM)
2207 abort ();
2208 /* If Y is memory and X is not, Y can't affect X. */
2209 if (GET_CODE (x) != MEM)
2210 return 1;
2211
2212 xdata = decompose (x);
2213
2214 if (! rtx_equal_p (xdata.base, ydata.base))
2215 {
2216 /* If bases are distinct symbolic constants, there is no overlap. */
2217 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2218 return 1;
2219 /* Constants and stack slots never overlap. */
2220 if (CONSTANT_P (xdata.base)
2221 && (ydata.base == frame_pointer_rtx
2222 || ydata.base == hard_frame_pointer_rtx
2223 || ydata.base == stack_pointer_rtx))
2224 return 1;
2225 if (CONSTANT_P (ydata.base)
2226 && (xdata.base == frame_pointer_rtx
2227 || xdata.base == hard_frame_pointer_rtx
2228 || xdata.base == stack_pointer_rtx))
2229 return 1;
2230 /* If either base is variable, we don't know anything. */
2231 return 0;
2232 }
2233
2234
2235 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2236 }
2237
2238 /* Similar, but calls decompose. */
2239
2240 int
2241 safe_from_earlyclobber (op, clobber)
2242 rtx op, clobber;
2243 {
2244 struct decomposition early_data;
2245
2246 early_data = decompose (clobber);
2247 return immune_p (op, clobber, early_data);
2248 }
2249 \f
2250 /* Main entry point of this file: search the body of INSN
2251 for values that need reloading and record them with push_reload.
2252 REPLACE nonzero means record also where the values occur
2253 so that subst_reloads can be used.
2254
2255 IND_LEVELS says how many levels of indirection are supported by this
2256 machine; a value of zero means that a memory reference is not a valid
2257 memory address.
2258
2259 LIVE_KNOWN says we have valid information about which hard
2260 regs are live at each point in the program; this is true when
2261 we are called from global_alloc but false when stupid register
2262 allocation has been done.
2263
2264 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2265 which is nonnegative if the reg has been commandeered for reloading into.
2266 It is copied into STATIC_RELOAD_REG_P and referenced from there
2267 by various subroutines. */
2268
2269 void
2270 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2271 rtx insn;
2272 int replace, ind_levels;
2273 int live_known;
2274 short *reload_reg_p;
2275 {
2276 #ifdef REGISTER_CONSTRAINTS
2277
2278 register int insn_code_number;
2279 register int i, j;
2280 int noperands;
2281 /* These are the constraints for the insn. We don't change them. */
2282 char *constraints1[MAX_RECOG_OPERANDS];
2283 /* These start out as the constraints for the insn
2284 and they are chewed up as we consider alternatives. */
2285 char *constraints[MAX_RECOG_OPERANDS];
2286 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2287 a register. */
2288 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2289 char pref_or_nothing[MAX_RECOG_OPERANDS];
2290 /* Nonzero for a MEM operand whose entire address needs a reload. */
2291 int address_reloaded[MAX_RECOG_OPERANDS];
2292 /* Value of enum reload_type to use for operand. */
2293 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2294 /* Value of enum reload_type to use within address of operand. */
2295 enum reload_type address_type[MAX_RECOG_OPERANDS];
2296 /* Save the usage of each operand. */
2297 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2298 int no_input_reloads = 0, no_output_reloads = 0;
2299 int n_alternatives;
2300 int this_alternative[MAX_RECOG_OPERANDS];
2301 char this_alternative_win[MAX_RECOG_OPERANDS];
2302 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2303 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2304 int this_alternative_matches[MAX_RECOG_OPERANDS];
2305 int swapped;
2306 int goal_alternative[MAX_RECOG_OPERANDS];
2307 int this_alternative_number;
2308 int goal_alternative_number;
2309 int operand_reloadnum[MAX_RECOG_OPERANDS];
2310 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2311 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2312 char goal_alternative_win[MAX_RECOG_OPERANDS];
2313 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2314 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2315 int goal_alternative_swapped;
2316 int best;
2317 int commutative;
2318 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2319 rtx substed_operand[MAX_RECOG_OPERANDS];
2320 rtx body = PATTERN (insn);
2321 rtx set = single_set (insn);
2322 int goal_earlyclobber, this_earlyclobber;
2323 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2324
2325 this_insn = insn;
2326 this_insn_is_asm = 0; /* Tentative. */
2327 n_reloads = 0;
2328 n_replacements = 0;
2329 n_memlocs = 0;
2330 n_earlyclobbers = 0;
2331 replace_reloads = replace;
2332 hard_regs_live_known = live_known;
2333 static_reload_reg_p = reload_reg_p;
2334
2335 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2336 neither are insns that SET cc0. Insns that use CC0 are not allowed
2337 to have any input reloads. */
2338 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2339 no_output_reloads = 1;
2340
2341 #ifdef HAVE_cc0
2342 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2343 no_input_reloads = 1;
2344 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2345 no_output_reloads = 1;
2346 #endif
2347
2348 #ifdef SECONDARY_MEMORY_NEEDED
2349 /* The eliminated forms of any secondary memory locations are per-insn, so
2350 clear them out here. */
2351
2352 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
2353 #endif
2354
2355 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2356 Make OPERANDS point to a vector of operand values.
2357 Make OPERAND_LOCS point to a vector of pointers to
2358 where the operands were found.
2359 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2360 constraint-strings for this insn.
2361 Return if the insn needs no reload processing. */
2362
2363 switch (GET_CODE (body))
2364 {
2365 case USE:
2366 case CLOBBER:
2367 case ASM_INPUT:
2368 case ADDR_VEC:
2369 case ADDR_DIFF_VEC:
2370 return;
2371
2372 case SET:
2373 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2374 is cheap to move between them. If it is not, there may not be an insn
2375 to do the copy, so we may need a reload. */
2376 if (GET_CODE (SET_DEST (body)) == REG
2377 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2378 && GET_CODE (SET_SRC (body)) == REG
2379 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2380 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2381 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2382 return;
2383 case PARALLEL:
2384 case ASM_OPERANDS:
2385 reload_n_operands = noperands = asm_noperands (body);
2386 if (noperands >= 0)
2387 {
2388 /* This insn is an `asm' with operands. */
2389
2390 insn_code_number = -1;
2391 this_insn_is_asm = 1;
2392
2393 /* expand_asm_operands makes sure there aren't too many operands. */
2394 if (noperands > MAX_RECOG_OPERANDS)
2395 abort ();
2396
2397 /* Now get the operand values and constraints out of the insn. */
2398
2399 decode_asm_operands (body, recog_operand, recog_operand_loc,
2400 constraints, operand_mode);
2401 if (noperands > 0)
2402 {
2403 bcopy ((char *) constraints, (char *) constraints1,
2404 noperands * sizeof (char *));
2405 n_alternatives = n_occurrences (',', constraints[0]) + 1;
2406 for (i = 1; i < noperands; i++)
2407 if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
2408 {
2409 error_for_asm (insn, "operand constraints differ in number of alternatives");
2410 /* Avoid further trouble with this insn. */
2411 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
2412 n_reloads = 0;
2413 return;
2414 }
2415 }
2416 break;
2417 }
2418
2419 default:
2420 /* Ordinary insn: recognize it, get the operands via insn_extract
2421 and get the constraints. */
2422
2423 insn_code_number = recog_memoized (insn);
2424 if (insn_code_number < 0)
2425 fatal_insn_not_found (insn);
2426
2427 reload_n_operands = noperands = insn_n_operands[insn_code_number];
2428 n_alternatives = insn_n_alternatives[insn_code_number];
2429 /* Just return "no reloads" if insn has no operands with constraints. */
2430 if (n_alternatives == 0)
2431 return;
2432 insn_extract (insn);
2433 for (i = 0; i < noperands; i++)
2434 {
2435 constraints[i] = constraints1[i]
2436 = insn_operand_constraint[insn_code_number][i];
2437 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2438 }
2439 }
2440
2441 if (noperands == 0)
2442 return;
2443
2444 commutative = -1;
2445
2446 /* If we will need to know, later, whether some pair of operands
2447 are the same, we must compare them now and save the result.
2448 Reloading the base and index registers will clobber them
2449 and afterward they will fail to match. */
2450
2451 for (i = 0; i < noperands; i++)
2452 {
2453 register char *p;
2454 register int c;
2455
2456 substed_operand[i] = recog_operand[i];
2457 p = constraints[i];
2458
2459 modified[i] = RELOAD_READ;
2460
2461 /* Scan this operand's constraint to see if it is an output operand,
2462 an in-out operand, is commutative, or should match another. */
2463
2464 while ((c = *p++))
2465 {
2466 if (c == '=')
2467 modified[i] = RELOAD_WRITE;
2468 else if (c == '+')
2469 modified[i] = RELOAD_READ_WRITE;
2470 else if (c == '%')
2471 {
2472 /* The last operand should not be marked commutative. */
2473 if (i == noperands - 1)
2474 {
2475 if (this_insn_is_asm)
2476 warning_for_asm (this_insn,
2477 "`%%' constraint used with last operand");
2478 else
2479 abort ();
2480 }
2481 else
2482 commutative = i;
2483 }
2484 else if (c >= '0' && c <= '9')
2485 {
2486 c -= '0';
2487 operands_match[c][i]
2488 = operands_match_p (recog_operand[c], recog_operand[i]);
2489
2490 /* An operand may not match itself. */
2491 if (c == i)
2492 {
2493 if (this_insn_is_asm)
2494 warning_for_asm (this_insn,
2495 "operand %d has constraint %d", i, c);
2496 else
2497 abort ();
2498 }
2499
2500 /* If C can be commuted with C+1, and C might need to match I,
2501 then C+1 might also need to match I. */
2502 if (commutative >= 0)
2503 {
2504 if (c == commutative || c == commutative + 1)
2505 {
2506 int other = c + (c == commutative ? 1 : -1);
2507 operands_match[other][i]
2508 = operands_match_p (recog_operand[other], recog_operand[i]);
2509 }
2510 if (i == commutative || i == commutative + 1)
2511 {
2512 int other = i + (i == commutative ? 1 : -1);
2513 operands_match[c][other]
2514 = operands_match_p (recog_operand[c], recog_operand[other]);
2515 }
2516 /* Note that C is supposed to be less than I.
2517 No need to consider altering both C and I because in
2518 that case we would alter one into the other. */
2519 }
2520 }
2521 }
2522 }
2523
2524 /* Examine each operand that is a memory reference or memory address
2525 and reload parts of the addresses into index registers.
2526 Also here any references to pseudo regs that didn't get hard regs
2527 but are equivalent to constants get replaced in the insn itself
2528 with those constants. Nobody will ever see them again.
2529
2530 Finally, set up the preferred classes of each operand. */
2531
2532 for (i = 0; i < noperands; i++)
2533 {
2534 register RTX_CODE code = GET_CODE (recog_operand[i]);
2535
2536 address_reloaded[i] = 0;
2537 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2538 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2539 : RELOAD_OTHER);
2540 address_type[i]
2541 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2542 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2543 : RELOAD_OTHER);
2544
2545 if (*constraints[i] == 0)
2546 /* Ignore things like match_operator operands. */
2547 ;
2548 else if (constraints[i][0] == 'p')
2549 {
2550 find_reloads_address (VOIDmode, NULL_PTR,
2551 recog_operand[i], recog_operand_loc[i],
2552 i, operand_type[i], ind_levels, insn);
2553
2554 /* If we now have a simple operand where we used to have a
2555 PLUS or MULT, re-recognize and try again. */
2556 if ((GET_RTX_CLASS (GET_CODE (*recog_operand_loc[i])) == 'o'
2557 || GET_CODE (*recog_operand_loc[i]) == SUBREG)
2558 && (GET_CODE (recog_operand[i]) == MULT
2559 || GET_CODE (recog_operand[i]) == PLUS))
2560 {
2561 INSN_CODE (insn) = -1;
2562 find_reloads (insn, replace, ind_levels, live_known,
2563 reload_reg_p);
2564 return;
2565 }
2566
2567 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2568 }
2569 else if (code == MEM)
2570 {
2571 if (find_reloads_address (GET_MODE (recog_operand[i]),
2572 recog_operand_loc[i],
2573 XEXP (recog_operand[i], 0),
2574 &XEXP (recog_operand[i], 0),
2575 i, address_type[i], ind_levels, insn))
2576 address_reloaded[i] = 1;
2577 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2578 }
2579 else if (code == SUBREG)
2580 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2581 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2582 ind_levels,
2583 set != 0
2584 && &SET_DEST (set) == recog_operand_loc[i]);
2585 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2586 /* We can get a PLUS as an "operand" as a result of register
2587 elimination. See eliminate_regs and gen_reload. We handle
2588 a unary operator by reloading the operand. */
2589 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2590 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2591 ind_levels, 0);
2592 else if (code == REG)
2593 {
2594 /* This is equivalent to calling find_reloads_toplev.
2595 The code is duplicated for speed.
2596 When we find a pseudo always equivalent to a constant,
2597 we replace it by the constant. We must be sure, however,
2598 that we don't try to replace it in the insn in which it
2599 is being set. */
2600 register int regno = REGNO (recog_operand[i]);
2601 if (reg_equiv_constant[regno] != 0
2602 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
2603 substed_operand[i] = recog_operand[i]
2604 = reg_equiv_constant[regno];
2605 #if 0 /* This might screw code in reload1.c to delete prior output-reload
2606 that feeds this insn. */
2607 if (reg_equiv_mem[regno] != 0)
2608 substed_operand[i] = recog_operand[i]
2609 = reg_equiv_mem[regno];
2610 #endif
2611 if (reg_equiv_address[regno] != 0)
2612 {
2613 /* If reg_equiv_address is not a constant address, copy it,
2614 since it may be shared. */
2615 /* We must rerun eliminate_regs, in case the elimination
2616 offsets have changed. */
2617 rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
2618 0, NULL_RTX),
2619 0);
2620
2621 if (rtx_varies_p (address))
2622 address = copy_rtx (address);
2623
2624 /* If this is an output operand, we must output a CLOBBER
2625 after INSN so find_equiv_reg knows REGNO is being written.
2626 Mark this insn specially, do we can put our output reloads
2627 after it. */
2628
2629 if (modified[i] != RELOAD_READ)
2630 PUT_MODE (emit_insn_after (gen_rtx_CLOBBER (VOIDmode,
2631 recog_operand[i]),
2632 insn),
2633 DImode);
2634
2635 *recog_operand_loc[i] = recog_operand[i]
2636 = gen_rtx_MEM (GET_MODE (recog_operand[i]), address);
2637 RTX_UNCHANGING_P (recog_operand[i])
2638 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2639 find_reloads_address (GET_MODE (recog_operand[i]),
2640 recog_operand_loc[i],
2641 XEXP (recog_operand[i], 0),
2642 &XEXP (recog_operand[i], 0),
2643 i, address_type[i], ind_levels, insn);
2644 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2645 }
2646 }
2647 /* If the operand is still a register (we didn't replace it with an
2648 equivalent), get the preferred class to reload it into. */
2649 code = GET_CODE (recog_operand[i]);
2650 preferred_class[i]
2651 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
2652 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2653 pref_or_nothing[i]
2654 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
2655 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
2656 }
2657
2658 /* If this is simply a copy from operand 1 to operand 0, merge the
2659 preferred classes for the operands. */
2660 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2661 && recog_operand[1] == SET_SRC (set))
2662 {
2663 preferred_class[0] = preferred_class[1]
2664 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2665 pref_or_nothing[0] |= pref_or_nothing[1];
2666 pref_or_nothing[1] |= pref_or_nothing[0];
2667 }
2668
2669 /* Now see what we need for pseudo-regs that didn't get hard regs
2670 or got the wrong kind of hard reg. For this, we must consider
2671 all the operands together against the register constraints. */
2672
2673 best = MAX_RECOG_OPERANDS + 300;
2674
2675 swapped = 0;
2676 goal_alternative_swapped = 0;
2677 try_swapped:
2678
2679 /* The constraints are made of several alternatives.
2680 Each operand's constraint looks like foo,bar,... with commas
2681 separating the alternatives. The first alternatives for all
2682 operands go together, the second alternatives go together, etc.
2683
2684 First loop over alternatives. */
2685
2686 for (this_alternative_number = 0;
2687 this_alternative_number < n_alternatives;
2688 this_alternative_number++)
2689 {
2690 /* Loop over operands for one constraint alternative. */
2691 /* LOSERS counts those that don't fit this alternative
2692 and would require loading. */
2693 int losers = 0;
2694 /* BAD is set to 1 if it some operand can't fit this alternative
2695 even after reloading. */
2696 int bad = 0;
2697 /* REJECT is a count of how undesirable this alternative says it is
2698 if any reloading is required. If the alternative matches exactly
2699 then REJECT is ignored, but otherwise it gets this much
2700 counted against it in addition to the reloading needed. Each
2701 ? counts three times here since we want the disparaging caused by
2702 a bad register class to only count 1/3 as much. */
2703 int reject = 0;
2704
2705 this_earlyclobber = 0;
2706
2707 for (i = 0; i < noperands; i++)
2708 {
2709 register char *p = constraints[i];
2710 register int win = 0;
2711 /* 0 => this operand can be reloaded somehow for this alternative */
2712 int badop = 1;
2713 /* 0 => this operand can be reloaded if the alternative allows regs. */
2714 int winreg = 0;
2715 int c;
2716 register rtx operand = recog_operand[i];
2717 int offset = 0;
2718 /* Nonzero means this is a MEM that must be reloaded into a reg
2719 regardless of what the constraint says. */
2720 int force_reload = 0;
2721 int offmemok = 0;
2722 /* Nonzero if a constant forced into memory would be OK for this
2723 operand. */
2724 int constmemok = 0;
2725 int earlyclobber = 0;
2726
2727 /* If the predicate accepts a unary operator, it means that
2728 we need to reload the operand. */
2729 if (GET_RTX_CLASS (GET_CODE (operand)) == '1')
2730 operand = XEXP (operand, 0);
2731
2732 /* If the operand is a SUBREG, extract
2733 the REG or MEM (or maybe even a constant) within.
2734 (Constants can occur as a result of reg_equiv_constant.) */
2735
2736 while (GET_CODE (operand) == SUBREG)
2737 {
2738 offset += SUBREG_WORD (operand);
2739 operand = SUBREG_REG (operand);
2740 /* Force reload if this is a constant or PLUS or if there may may
2741 be a problem accessing OPERAND in the outer mode. */
2742 if (CONSTANT_P (operand)
2743 || GET_CODE (operand) == PLUS
2744 /* We must force a reload of paradoxical SUBREGs
2745 of a MEM because the alignment of the inner value
2746 may not be enough to do the outer reference. On
2747 big-endian machines, it may also reference outside
2748 the object.
2749
2750 On machines that extend byte operations and we have a
2751 SUBREG where both the inner and outer modes are no wider
2752 than a word and the inner mode is narrower, is integral,
2753 and gets extended when loaded from memory, combine.c has
2754 made assumptions about the behavior of the machine in such
2755 register access. If the data is, in fact, in memory we
2756 must always load using the size assumed to be in the
2757 register and let the insn do the different-sized
2758 accesses.
2759
2760 This is doubly true if WORD_REGISTER_OPERATIONS. In
2761 this case eliminate_regs has left non-paradoxical
2762 subregs for push_reloads to see. Make sure it does
2763 by forcing the reload.
2764
2765 ??? When is it right at this stage to have a subreg
2766 of a mem that is _not_ to be handled specialy? IMO
2767 those should have been reduced to just a mem. */
2768 || ((GET_CODE (operand) == MEM
2769 || (GET_CODE (operand)== REG
2770 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2771 #ifndef WORD_REGISTER_OPERATIONS
2772 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2773 < BIGGEST_ALIGNMENT)
2774 && (GET_MODE_SIZE (operand_mode[i])
2775 > GET_MODE_SIZE (GET_MODE (operand))))
2776 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2777 #ifdef LOAD_EXTEND_OP
2778 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2779 && (GET_MODE_SIZE (GET_MODE (operand))
2780 <= UNITS_PER_WORD)
2781 && (GET_MODE_SIZE (operand_mode[i])
2782 > GET_MODE_SIZE (GET_MODE (operand)))
2783 && INTEGRAL_MODE_P (GET_MODE (operand))
2784 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2785 #endif
2786 )
2787 #endif
2788 )
2789 /* Subreg of a hard reg which can't handle the subreg's mode
2790 or which would handle that mode in the wrong number of
2791 registers for subregging to work. */
2792 || (GET_CODE (operand) == REG
2793 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2794 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2795 && (GET_MODE_SIZE (GET_MODE (operand))
2796 > UNITS_PER_WORD)
2797 && ((GET_MODE_SIZE (GET_MODE (operand))
2798 / UNITS_PER_WORD)
2799 != HARD_REGNO_NREGS (REGNO (operand),
2800 GET_MODE (operand))))
2801 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2802 operand_mode[i]))))
2803 force_reload = 1;
2804 }
2805
2806 this_alternative[i] = (int) NO_REGS;
2807 this_alternative_win[i] = 0;
2808 this_alternative_offmemok[i] = 0;
2809 this_alternative_earlyclobber[i] = 0;
2810 this_alternative_matches[i] = -1;
2811
2812 /* An empty constraint or empty alternative
2813 allows anything which matched the pattern. */
2814 if (*p == 0 || *p == ',')
2815 win = 1, badop = 0;
2816
2817 /* Scan this alternative's specs for this operand;
2818 set WIN if the operand fits any letter in this alternative.
2819 Otherwise, clear BADOP if this operand could
2820 fit some letter after reloads,
2821 or set WINREG if this operand could fit after reloads
2822 provided the constraint allows some registers. */
2823
2824 while (*p && (c = *p++) != ',')
2825 switch (c)
2826 {
2827 case '=':
2828 case '+':
2829 case '*':
2830 break;
2831
2832 case '%':
2833 /* The last operand should not be marked commutative. */
2834 if (i != noperands - 1)
2835 commutative = i;
2836 break;
2837
2838 case '?':
2839 reject += 3;
2840 break;
2841
2842 case '!':
2843 reject = 300;
2844 break;
2845
2846 case '#':
2847 /* Ignore rest of this alternative as far as
2848 reloading is concerned. */
2849 while (*p && *p != ',') p++;
2850 break;
2851
2852 case '0':
2853 case '1':
2854 case '2':
2855 case '3':
2856 case '4':
2857 c -= '0';
2858 this_alternative_matches[i] = c;
2859 /* We are supposed to match a previous operand.
2860 If we do, we win if that one did.
2861 If we do not, count both of the operands as losers.
2862 (This is too conservative, since most of the time
2863 only a single reload insn will be needed to make
2864 the two operands win. As a result, this alternative
2865 may be rejected when it is actually desirable.) */
2866 if ((swapped && (c != commutative || i != commutative + 1))
2867 /* If we are matching as if two operands were swapped,
2868 also pretend that operands_match had been computed
2869 with swapped.
2870 But if I is the second of those and C is the first,
2871 don't exchange them, because operands_match is valid
2872 only on one side of its diagonal. */
2873 ? (operands_match
2874 [(c == commutative || c == commutative + 1)
2875 ? 2*commutative + 1 - c : c]
2876 [(i == commutative || i == commutative + 1)
2877 ? 2*commutative + 1 - i : i])
2878 : operands_match[c][i])
2879 {
2880 /* If we are matching a non-offsettable address where an
2881 offsettable address was expected, then we must reject
2882 this combination, because we can't reload it. */
2883 if (this_alternative_offmemok[c]
2884 && GET_CODE (recog_operand[c]) == MEM
2885 && this_alternative[c] == (int) NO_REGS
2886 && ! this_alternative_win[c])
2887 bad = 1;
2888
2889 win = this_alternative_win[c];
2890 }
2891 else
2892 {
2893 /* Operands don't match. */
2894 rtx value;
2895 /* Retroactively mark the operand we had to match
2896 as a loser, if it wasn't already. */
2897 if (this_alternative_win[c])
2898 losers++;
2899 this_alternative_win[c] = 0;
2900 if (this_alternative[c] == (int) NO_REGS)
2901 bad = 1;
2902 /* But count the pair only once in the total badness of
2903 this alternative, if the pair can be a dummy reload. */
2904 value
2905 = find_dummy_reload (recog_operand[i], recog_operand[c],
2906 recog_operand_loc[i], recog_operand_loc[c],
2907 operand_mode[i], operand_mode[c],
2908 this_alternative[c], -1,
2909 this_alternative_earlyclobber[c]);
2910
2911 if (value != 0)
2912 losers--;
2913 }
2914 /* This can be fixed with reloads if the operand
2915 we are supposed to match can be fixed with reloads. */
2916 badop = 0;
2917 this_alternative[i] = this_alternative[c];
2918
2919 /* If we have to reload this operand and some previous
2920 operand also had to match the same thing as this
2921 operand, we don't know how to do that. So reject this
2922 alternative. */
2923 if (! win || force_reload)
2924 for (j = 0; j < i; j++)
2925 if (this_alternative_matches[j]
2926 == this_alternative_matches[i])
2927 badop = 1;
2928
2929 break;
2930
2931 case 'p':
2932 /* All necessary reloads for an address_operand
2933 were handled in find_reloads_address. */
2934 this_alternative[i] = (int) BASE_REG_CLASS;
2935 win = 1;
2936 break;
2937
2938 case 'm':
2939 if (force_reload)
2940 break;
2941 if (GET_CODE (operand) == MEM
2942 || (GET_CODE (operand) == REG
2943 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2944 && reg_renumber[REGNO (operand)] < 0))
2945 win = 1;
2946 if (CONSTANT_P (operand)
2947 /* force_const_mem does not accept HIGH. */
2948 && GET_CODE (operand) != HIGH)
2949 badop = 0;
2950 constmemok = 1;
2951 break;
2952
2953 case '<':
2954 if (GET_CODE (operand) == MEM
2955 && ! address_reloaded[i]
2956 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2957 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2958 win = 1;
2959 break;
2960
2961 case '>':
2962 if (GET_CODE (operand) == MEM
2963 && ! address_reloaded[i]
2964 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2965 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2966 win = 1;
2967 break;
2968
2969 /* Memory operand whose address is not offsettable. */
2970 case 'V':
2971 if (force_reload)
2972 break;
2973 if (GET_CODE (operand) == MEM
2974 && ! (ind_levels ? offsettable_memref_p (operand)
2975 : offsettable_nonstrict_memref_p (operand))
2976 /* Certain mem addresses will become offsettable
2977 after they themselves are reloaded. This is important;
2978 we don't want our own handling of unoffsettables
2979 to override the handling of reg_equiv_address. */
2980 && !(GET_CODE (XEXP (operand, 0)) == REG
2981 && (ind_levels == 0
2982 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
2983 win = 1;
2984 break;
2985
2986 /* Memory operand whose address is offsettable. */
2987 case 'o':
2988 if (force_reload)
2989 break;
2990 if ((GET_CODE (operand) == MEM
2991 /* If IND_LEVELS, find_reloads_address won't reload a
2992 pseudo that didn't get a hard reg, so we have to
2993 reject that case. */
2994 && (ind_levels ? offsettable_memref_p (operand)
2995 : offsettable_nonstrict_memref_p (operand)))
2996 /* A reloaded auto-increment address is offsettable,
2997 because it is now just a simple register indirect. */
2998 || (GET_CODE (operand) == MEM
2999 && address_reloaded[i]
3000 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3001 || GET_CODE (XEXP (operand, 0)) == PRE_DEC
3002 || GET_CODE (XEXP (operand, 0)) == POST_INC
3003 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3004 /* Certain mem addresses will become offsettable
3005 after they themselves are reloaded. This is important;
3006 we don't want our own handling of unoffsettables
3007 to override the handling of reg_equiv_address. */
3008 || (GET_CODE (operand) == MEM
3009 && GET_CODE (XEXP (operand, 0)) == REG
3010 && (ind_levels == 0
3011 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
3012 || (GET_CODE (operand) == REG
3013 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3014 && reg_renumber[REGNO (operand)] < 0
3015 /* If reg_equiv_address is nonzero, we will be
3016 loading it into a register; hence it will be
3017 offsettable, but we cannot say that reg_equiv_mem
3018 is offsettable without checking. */
3019 && ((reg_equiv_mem[REGNO (operand)] != 0
3020 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3021 || (reg_equiv_address[REGNO (operand)] != 0))))
3022 win = 1;
3023 /* force_const_mem does not accept HIGH. */
3024 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3025 || GET_CODE (operand) == MEM)
3026 badop = 0;
3027 constmemok = 1;
3028 offmemok = 1;
3029 break;
3030
3031 case '&':
3032 /* Output operand that is stored before the need for the
3033 input operands (and their index registers) is over. */
3034 earlyclobber = 1, this_earlyclobber = 1;
3035 break;
3036
3037 case 'E':
3038 #ifndef REAL_ARITHMETIC
3039 /* Match any floating double constant, but only if
3040 we can examine the bits of it reliably. */
3041 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3042 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3043 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3044 break;
3045 #endif
3046 if (GET_CODE (operand) == CONST_DOUBLE)
3047 win = 1;
3048 break;
3049
3050 case 'F':
3051 if (GET_CODE (operand) == CONST_DOUBLE)
3052 win = 1;
3053 break;
3054
3055 case 'G':
3056 case 'H':
3057 if (GET_CODE (operand) == CONST_DOUBLE
3058 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3059 win = 1;
3060 break;
3061
3062 case 's':
3063 if (GET_CODE (operand) == CONST_INT
3064 || (GET_CODE (operand) == CONST_DOUBLE
3065 && GET_MODE (operand) == VOIDmode))
3066 break;
3067 case 'i':
3068 if (CONSTANT_P (operand)
3069 #ifdef LEGITIMATE_PIC_OPERAND_P
3070 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3071 #endif
3072 )
3073 win = 1;
3074 break;
3075
3076 case 'n':
3077 if (GET_CODE (operand) == CONST_INT
3078 || (GET_CODE (operand) == CONST_DOUBLE
3079 && GET_MODE (operand) == VOIDmode))
3080 win = 1;
3081 break;
3082
3083 case 'I':
3084 case 'J':
3085 case 'K':
3086 case 'L':
3087 case 'M':
3088 case 'N':
3089 case 'O':
3090 case 'P':
3091 if (GET_CODE (operand) == CONST_INT
3092 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3093 win = 1;
3094 break;
3095
3096 case 'X':
3097 win = 1;
3098 break;
3099
3100 case 'g':
3101 if (! force_reload
3102 /* A PLUS is never a valid operand, but reload can make
3103 it from a register when eliminating registers. */
3104 && GET_CODE (operand) != PLUS
3105 /* A SCRATCH is not a valid operand. */
3106 && GET_CODE (operand) != SCRATCH
3107 #ifdef LEGITIMATE_PIC_OPERAND_P
3108 && (! CONSTANT_P (operand)
3109 || ! flag_pic
3110 || LEGITIMATE_PIC_OPERAND_P (operand))
3111 #endif
3112 && (GENERAL_REGS == ALL_REGS
3113 || GET_CODE (operand) != REG
3114 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3115 && reg_renumber[REGNO (operand)] < 0)))
3116 win = 1;
3117 /* Drop through into 'r' case */
3118
3119 case 'r':
3120 this_alternative[i]
3121 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3122 goto reg;
3123
3124 #ifdef EXTRA_CONSTRAINT
3125 case 'Q':
3126 case 'R':
3127 case 'S':
3128 case 'T':
3129 case 'U':
3130 if (EXTRA_CONSTRAINT (operand, c))
3131 win = 1;
3132 break;
3133 #endif
3134
3135 default:
3136 this_alternative[i]
3137 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3138
3139 reg:
3140 if (GET_MODE (operand) == BLKmode)
3141 break;
3142 winreg = 1;
3143 if (GET_CODE (operand) == REG
3144 && reg_fits_class_p (operand, this_alternative[i],
3145 offset, GET_MODE (recog_operand[i])))
3146 win = 1;
3147 break;
3148 }
3149
3150 constraints[i] = p;
3151
3152 /* If this operand could be handled with a reg,
3153 and some reg is allowed, then this operand can be handled. */
3154 if (winreg && this_alternative[i] != (int) NO_REGS)
3155 badop = 0;
3156
3157 /* Record which operands fit this alternative. */
3158 this_alternative_earlyclobber[i] = earlyclobber;
3159 if (win && ! force_reload)
3160 this_alternative_win[i] = 1;
3161 else
3162 {
3163 int const_to_mem = 0;
3164
3165 this_alternative_offmemok[i] = offmemok;
3166 losers++;
3167 if (badop)
3168 bad = 1;
3169 /* Alternative loses if it has no regs for a reg operand. */
3170 if (GET_CODE (operand) == REG
3171 && this_alternative[i] == (int) NO_REGS
3172 && this_alternative_matches[i] < 0)
3173 bad = 1;
3174
3175 /* Alternative loses if it requires a type of reload not
3176 permitted for this insn. We can always reload SCRATCH
3177 and objects with a REG_UNUSED note. */
3178 if (GET_CODE (operand) != SCRATCH
3179 && modified[i] != RELOAD_READ && no_output_reloads
3180 && ! find_reg_note (insn, REG_UNUSED, operand))
3181 bad = 1;
3182 else if (modified[i] != RELOAD_WRITE && no_input_reloads)
3183 bad = 1;
3184
3185 /* If this is a constant that is reloaded into the desired
3186 class by copying it to memory first, count that as another
3187 reload. This is consistent with other code and is
3188 required to avoid choosing another alternative when
3189 the constant is moved into memory by this function on
3190 an early reload pass. Note that the test here is
3191 precisely the same as in the code below that calls
3192 force_const_mem. */
3193 if (CONSTANT_P (operand)
3194 /* force_const_mem does not accept HIGH. */
3195 && GET_CODE (operand) != HIGH
3196 && (PREFERRED_RELOAD_CLASS (operand,
3197 (enum reg_class) this_alternative[i])
3198 == NO_REGS)
3199 && operand_mode[i] != VOIDmode)
3200 {
3201 const_to_mem = 1;
3202 if (this_alternative[i] != (int) NO_REGS)
3203 losers++;
3204 }
3205
3206 /* If we can't reload this value at all, reject this
3207 alternative. Note that we could also lose due to
3208 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3209 here. */
3210
3211 if (! CONSTANT_P (operand)
3212 && (enum reg_class) this_alternative[i] != NO_REGS
3213 && (PREFERRED_RELOAD_CLASS (operand,
3214 (enum reg_class) this_alternative[i])
3215 == NO_REGS))
3216 bad = 1;
3217
3218 /* We prefer to reload pseudos over reloading other things,
3219 since such reloads may be able to be eliminated later.
3220 If we are reloading a SCRATCH, we won't be generating any
3221 insns, just using a register, so it is also preferred.
3222 So bump REJECT in other cases. Don't do this in the
3223 case where we are forcing a constant into memory and
3224 it will then win since we don't want to have a different
3225 alternative match then. */
3226 if (! (GET_CODE (operand) == REG
3227 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3228 && GET_CODE (operand) != SCRATCH
3229 && ! (const_to_mem && constmemok))
3230 reject++;
3231 }
3232
3233 /* If this operand is a pseudo register that didn't get a hard
3234 reg and this alternative accepts some register, see if the
3235 class that we want is a subset of the preferred class for this
3236 register. If not, but it intersects that class, use the
3237 preferred class instead. If it does not intersect the preferred
3238 class, show that usage of this alternative should be discouraged;
3239 it will be discouraged more still if the register is `preferred
3240 or nothing'. We do this because it increases the chance of
3241 reusing our spill register in a later insn and avoiding a pair
3242 of memory stores and loads.
3243
3244 Don't bother with this if this alternative will accept this
3245 operand.
3246
3247 Don't do this for a multiword operand, since it is only a
3248 small win and has the risk of requiring more spill registers,
3249 which could cause a large loss.
3250
3251 Don't do this if the preferred class has only one register
3252 because we might otherwise exhaust the class. */
3253
3254
3255 if (! win && this_alternative[i] != (int) NO_REGS
3256 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3257 && reg_class_size[(int) preferred_class[i]] > 1)
3258 {
3259 if (! reg_class_subset_p (this_alternative[i],
3260 preferred_class[i]))
3261 {
3262 /* Since we don't have a way of forming the intersection,
3263 we just do something special if the preferred class
3264 is a subset of the class we have; that's the most
3265 common case anyway. */
3266 if (reg_class_subset_p (preferred_class[i],
3267 this_alternative[i]))
3268 this_alternative[i] = (int) preferred_class[i];
3269 else
3270 reject += (1 + pref_or_nothing[i]);
3271 }
3272 }
3273 }
3274
3275 /* Now see if any output operands that are marked "earlyclobber"
3276 in this alternative conflict with any input operands
3277 or any memory addresses. */
3278
3279 for (i = 0; i < noperands; i++)
3280 if (this_alternative_earlyclobber[i]
3281 && this_alternative_win[i])
3282 {
3283 struct decomposition early_data;
3284
3285 early_data = decompose (recog_operand[i]);
3286
3287 if (modified[i] == RELOAD_READ)
3288 {
3289 if (this_insn_is_asm)
3290 warning_for_asm (this_insn,
3291 "`&' constraint used with input operand");
3292 else
3293 abort ();
3294 continue;
3295 }
3296
3297 if (this_alternative[i] == NO_REGS)
3298 {
3299 this_alternative_earlyclobber[i] = 0;
3300 if (this_insn_is_asm)
3301 error_for_asm (this_insn,
3302 "`&' constraint used with no register class");
3303 else
3304 abort ();
3305 }
3306
3307 for (j = 0; j < noperands; j++)
3308 /* Is this an input operand or a memory ref? */
3309 if ((GET_CODE (recog_operand[j]) == MEM
3310 || modified[j] != RELOAD_WRITE)
3311 && j != i
3312 /* Ignore things like match_operator operands. */
3313 && *constraints1[j] != 0
3314 /* Don't count an input operand that is constrained to match
3315 the early clobber operand. */
3316 && ! (this_alternative_matches[j] == i
3317 && rtx_equal_p (recog_operand[i], recog_operand[j]))
3318 /* Is it altered by storing the earlyclobber operand? */
3319 && !immune_p (recog_operand[j], recog_operand[i], early_data))
3320 {
3321 /* If the output is in a single-reg class,
3322 it's costly to reload it, so reload the input instead. */
3323 if (reg_class_size[this_alternative[i]] == 1
3324 && (GET_CODE (recog_operand[j]) == REG
3325 || GET_CODE (recog_operand[j]) == SUBREG))
3326 {
3327 losers++;
3328 this_alternative_win[j] = 0;
3329 }
3330 else
3331 break;
3332 }
3333 /* If an earlyclobber operand conflicts with something,
3334 it must be reloaded, so request this and count the cost. */
3335 if (j != noperands)
3336 {
3337 losers++;
3338 this_alternative_win[i] = 0;
3339 for (j = 0; j < noperands; j++)
3340 if (this_alternative_matches[j] == i
3341 && this_alternative_win[j])
3342 {
3343 this_alternative_win[j] = 0;
3344 losers++;
3345 }
3346 }
3347 }
3348
3349 /* If one alternative accepts all the operands, no reload required,
3350 choose that alternative; don't consider the remaining ones. */
3351 if (losers == 0)
3352 {
3353 /* Unswap these so that they are never swapped at `finish'. */
3354 if (commutative >= 0)
3355 {
3356 recog_operand[commutative] = substed_operand[commutative];
3357 recog_operand[commutative + 1]
3358 = substed_operand[commutative + 1];
3359 }
3360 for (i = 0; i < noperands; i++)
3361 {
3362 goal_alternative_win[i] = 1;
3363 goal_alternative[i] = this_alternative[i];
3364 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3365 goal_alternative_matches[i] = this_alternative_matches[i];
3366 goal_alternative_earlyclobber[i]
3367 = this_alternative_earlyclobber[i];
3368 }
3369 goal_alternative_number = this_alternative_number;
3370 goal_alternative_swapped = swapped;
3371 goal_earlyclobber = this_earlyclobber;
3372 goto finish;
3373 }
3374
3375 /* REJECT, set by the ! and ? constraint characters and when a register
3376 would be reloaded into a non-preferred class, discourages the use of
3377 this alternative for a reload goal. REJECT is incremented by three
3378 for each ? and one for each non-preferred class. */
3379 losers = losers * 3 + reject;
3380
3381 /* If this alternative can be made to work by reloading,
3382 and it needs less reloading than the others checked so far,
3383 record it as the chosen goal for reloading. */
3384 if (! bad && best > losers)
3385 {
3386 for (i = 0; i < noperands; i++)
3387 {
3388 goal_alternative[i] = this_alternative[i];
3389 goal_alternative_win[i] = this_alternative_win[i];
3390 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3391 goal_alternative_matches[i] = this_alternative_matches[i];
3392 goal_alternative_earlyclobber[i]
3393 = this_alternative_earlyclobber[i];
3394 }
3395 goal_alternative_swapped = swapped;
3396 best = losers;
3397 goal_alternative_number = this_alternative_number;
3398 goal_earlyclobber = this_earlyclobber;
3399 }
3400 }
3401
3402 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3403 then we need to try each alternative twice,
3404 the second time matching those two operands
3405 as if we had exchanged them.
3406 To do this, really exchange them in operands.
3407
3408 If we have just tried the alternatives the second time,
3409 return operands to normal and drop through. */
3410
3411 if (commutative >= 0)
3412 {
3413 swapped = !swapped;
3414 if (swapped)
3415 {
3416 register enum reg_class tclass;
3417 register int t;
3418
3419 recog_operand[commutative] = substed_operand[commutative + 1];
3420 recog_operand[commutative + 1] = substed_operand[commutative];
3421
3422 tclass = preferred_class[commutative];
3423 preferred_class[commutative] = preferred_class[commutative + 1];
3424 preferred_class[commutative + 1] = tclass;
3425
3426 t = pref_or_nothing[commutative];
3427 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3428 pref_or_nothing[commutative + 1] = t;
3429
3430 bcopy ((char *) constraints1, (char *) constraints,
3431 noperands * sizeof (char *));
3432 goto try_swapped;
3433 }
3434 else
3435 {
3436 recog_operand[commutative] = substed_operand[commutative];
3437 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3438 }
3439 }
3440
3441 /* The operands don't meet the constraints.
3442 goal_alternative describes the alternative
3443 that we could reach by reloading the fewest operands.
3444 Reload so as to fit it. */
3445
3446 if (best == MAX_RECOG_OPERANDS + 300)
3447 {
3448 /* No alternative works with reloads?? */
3449 if (insn_code_number >= 0)
3450 abort ();
3451 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3452 /* Avoid further trouble with this insn. */
3453 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3454 n_reloads = 0;
3455 return;
3456 }
3457
3458 /* Jump to `finish' from above if all operands are valid already.
3459 In that case, goal_alternative_win is all 1. */
3460 finish:
3461
3462 /* Right now, for any pair of operands I and J that are required to match,
3463 with I < J,
3464 goal_alternative_matches[J] is I.
3465 Set up goal_alternative_matched as the inverse function:
3466 goal_alternative_matched[I] = J. */
3467
3468 for (i = 0; i < noperands; i++)
3469 goal_alternative_matched[i] = -1;
3470
3471 for (i = 0; i < noperands; i++)
3472 if (! goal_alternative_win[i]
3473 && goal_alternative_matches[i] >= 0)
3474 goal_alternative_matched[goal_alternative_matches[i]] = i;
3475
3476 /* If the best alternative is with operands 1 and 2 swapped,
3477 consider them swapped before reporting the reloads. Update the
3478 operand numbers of any reloads already pushed. */
3479
3480 if (goal_alternative_swapped)
3481 {
3482 register rtx tem;
3483
3484 tem = substed_operand[commutative];
3485 substed_operand[commutative] = substed_operand[commutative + 1];
3486 substed_operand[commutative + 1] = tem;
3487 tem = recog_operand[commutative];
3488 recog_operand[commutative] = recog_operand[commutative + 1];
3489 recog_operand[commutative + 1] = tem;
3490
3491 for (i = 0; i < n_reloads; i++)
3492 {
3493 if (reload_opnum[i] == commutative)
3494 reload_opnum[i] = commutative + 1;
3495 else if (reload_opnum[i] == commutative + 1)
3496 reload_opnum[i] = commutative;
3497 }
3498 }
3499
3500 /* Perform whatever substitutions on the operands we are supposed
3501 to make due to commutativity or replacement of registers
3502 with equivalent constants or memory slots. */
3503
3504 for (i = 0; i < noperands; i++)
3505 {
3506 *recog_operand_loc[i] = substed_operand[i];
3507 /* While we are looping on operands, initialize this. */
3508 operand_reloadnum[i] = -1;
3509
3510 /* If this is an earlyclobber operand, we need to widen the scope.
3511 The reload must remain valid from the start of the insn being
3512 reloaded until after the operand is stored into its destination.
3513 We approximate this with RELOAD_OTHER even though we know that we
3514 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3515
3516 One special case that is worth checking is when we have an
3517 output that is earlyclobber but isn't used past the insn (typically
3518 a SCRATCH). In this case, we only need have the reload live
3519 through the insn itself, but not for any of our input or output
3520 reloads.
3521
3522 In any case, anything needed to address this operand can remain
3523 however they were previously categorized. */
3524
3525 if (goal_alternative_earlyclobber[i])
3526 operand_type[i]
3527 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3528 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3529 }
3530
3531 /* Any constants that aren't allowed and can't be reloaded
3532 into registers are here changed into memory references. */
3533 for (i = 0; i < noperands; i++)
3534 if (! goal_alternative_win[i]
3535 && CONSTANT_P (recog_operand[i])
3536 /* force_const_mem does not accept HIGH. */
3537 && GET_CODE (recog_operand[i]) != HIGH
3538 && (PREFERRED_RELOAD_CLASS (recog_operand[i],
3539 (enum reg_class) goal_alternative[i])
3540 == NO_REGS)
3541 && operand_mode[i] != VOIDmode)
3542 {
3543 *recog_operand_loc[i] = recog_operand[i]
3544 = find_reloads_toplev (force_const_mem (operand_mode[i],
3545 recog_operand[i]),
3546 i, address_type[i], ind_levels, 0);
3547 if (alternative_allows_memconst (constraints1[i],
3548 goal_alternative_number))
3549 goal_alternative_win[i] = 1;
3550 }
3551
3552 /* Record the values of the earlyclobber operands for the caller. */
3553 if (goal_earlyclobber)
3554 for (i = 0; i < noperands; i++)
3555 if (goal_alternative_earlyclobber[i])
3556 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3557
3558 /* Now record reloads for all the operands that need them. */
3559 for (i = 0; i < noperands; i++)
3560 if (! goal_alternative_win[i])
3561 {
3562 /* Operands that match previous ones have already been handled. */
3563 if (goal_alternative_matches[i] >= 0)
3564 ;
3565 /* Handle an operand with a nonoffsettable address
3566 appearing where an offsettable address will do
3567 by reloading the address into a base register.
3568
3569 ??? We can also do this when the operand is a register and
3570 reg_equiv_mem is not offsettable, but this is a bit tricky,
3571 so we don't bother with it. It may not be worth doing. */
3572 else if (goal_alternative_matched[i] == -1
3573 && goal_alternative_offmemok[i]
3574 && GET_CODE (recog_operand[i]) == MEM)
3575 {
3576 operand_reloadnum[i]
3577 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3578 &XEXP (recog_operand[i], 0), NULL_PTR,
3579 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
3580 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3581 reload_inc[operand_reloadnum[i]]
3582 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
3583
3584 /* If this operand is an output, we will have made any
3585 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3586 now we are treating part of the operand as an input, so
3587 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3588
3589 if (modified[i] == RELOAD_WRITE)
3590 {
3591 for (j = 0; j < n_reloads; j++)
3592 {
3593 if (reload_opnum[j] == i)
3594 {
3595 if (reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3596 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
3597 else if (reload_when_needed[j]
3598 == RELOAD_FOR_OUTADDR_ADDRESS)
3599 reload_when_needed[j] = RELOAD_FOR_INPADDR_ADDRESS;
3600 }
3601 }
3602 }
3603 }
3604 else if (goal_alternative_matched[i] == -1)
3605 operand_reloadnum[i]
3606 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3607 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3608 (modified[i] != RELOAD_WRITE
3609 ? recog_operand_loc[i] : 0),
3610 modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
3611 (enum reg_class) goal_alternative[i],
3612 (modified[i] == RELOAD_WRITE
3613 ? VOIDmode : operand_mode[i]),
3614 (modified[i] == RELOAD_READ
3615 ? VOIDmode : operand_mode[i]),
3616 (insn_code_number < 0 ? 0
3617 : insn_operand_strict_low[insn_code_number][i]),
3618 0, i, operand_type[i]);
3619 /* In a matching pair of operands, one must be input only
3620 and the other must be output only.
3621 Pass the input operand as IN and the other as OUT. */
3622 else if (modified[i] == RELOAD_READ
3623 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3624 {
3625 operand_reloadnum[i]
3626 = push_reload (recog_operand[i],
3627 recog_operand[goal_alternative_matched[i]],
3628 recog_operand_loc[i],
3629 recog_operand_loc[goal_alternative_matched[i]],
3630 (enum reg_class) goal_alternative[i],
3631 operand_mode[i],
3632 operand_mode[goal_alternative_matched[i]],
3633 0, 0, i, RELOAD_OTHER);
3634 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3635 }
3636 else if (modified[i] == RELOAD_WRITE
3637 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3638 {
3639 operand_reloadnum[goal_alternative_matched[i]]
3640 = push_reload (recog_operand[goal_alternative_matched[i]],
3641 recog_operand[i],
3642 recog_operand_loc[goal_alternative_matched[i]],
3643 recog_operand_loc[i],
3644 (enum reg_class) goal_alternative[i],
3645 operand_mode[goal_alternative_matched[i]],
3646 operand_mode[i],
3647 0, 0, i, RELOAD_OTHER);
3648 operand_reloadnum[i] = output_reloadnum;
3649 }
3650 else if (insn_code_number >= 0)
3651 abort ();
3652 else
3653 {
3654 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3655 /* Avoid further trouble with this insn. */
3656 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3657 n_reloads = 0;
3658 return;
3659 }
3660 }
3661 else if (goal_alternative_matched[i] < 0
3662 && goal_alternative_matches[i] < 0
3663 && optimize)
3664 {
3665 /* For each non-matching operand that's a MEM or a pseudo-register
3666 that didn't get a hard register, make an optional reload.
3667 This may get done even if the insn needs no reloads otherwise. */
3668
3669 rtx operand = recog_operand[i];
3670
3671 while (GET_CODE (operand) == SUBREG)
3672 operand = XEXP (operand, 0);
3673 if ((GET_CODE (operand) == MEM
3674 || (GET_CODE (operand) == REG
3675 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3676 && (enum reg_class) goal_alternative[i] != NO_REGS
3677 && ! no_input_reloads
3678 /* Optional output reloads don't do anything and we mustn't
3679 make in-out reloads on insns that are not permitted output
3680 reloads. */
3681 && (modified[i] == RELOAD_READ
3682 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
3683 operand_reloadnum[i]
3684 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3685 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3686 (modified[i] != RELOAD_WRITE
3687 ? recog_operand_loc[i] : 0),
3688 (modified[i] != RELOAD_READ
3689 ? recog_operand_loc[i] : 0),
3690 (enum reg_class) goal_alternative[i],
3691 (modified[i] == RELOAD_WRITE
3692 ? VOIDmode : operand_mode[i]),
3693 (modified[i] == RELOAD_READ
3694 ? VOIDmode : operand_mode[i]),
3695 (insn_code_number < 0 ? 0
3696 : insn_operand_strict_low[insn_code_number][i]),
3697 1, i, operand_type[i]);
3698 }
3699 else if (goal_alternative_matches[i] >= 0
3700 && goal_alternative_win[goal_alternative_matches[i]]
3701 && modified[i] == RELOAD_READ
3702 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3703 && ! no_input_reloads && ! no_output_reloads
3704 && optimize)
3705 {
3706 /* Similarly, make an optional reload for a pair of matching
3707 objects that are in MEM or a pseudo that didn't get a hard reg. */
3708
3709 rtx operand = recog_operand[i];
3710
3711 while (GET_CODE (operand) == SUBREG)
3712 operand = XEXP (operand, 0);
3713 if ((GET_CODE (operand) == MEM
3714 || (GET_CODE (operand) == REG
3715 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3716 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3717 != NO_REGS))
3718 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3719 = push_reload (recog_operand[goal_alternative_matches[i]],
3720 recog_operand[i],
3721 recog_operand_loc[goal_alternative_matches[i]],
3722 recog_operand_loc[i],
3723 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3724 operand_mode[goal_alternative_matches[i]],
3725 operand_mode[i],
3726 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3727 }
3728
3729 /* If this insn pattern contains any MATCH_DUP's, make sure that
3730 they will be substituted if the operands they match are substituted.
3731 Also do now any substitutions we already did on the operands.
3732
3733 Don't do this if we aren't making replacements because we might be
3734 propagating things allocated by frame pointer elimination into places
3735 it doesn't expect. */
3736
3737 if (insn_code_number >= 0 && replace)
3738 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3739 {
3740 int opno = recog_dup_num[i];
3741 *recog_dup_loc[i] = *recog_operand_loc[opno];
3742 if (operand_reloadnum[opno] >= 0)
3743 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3744 insn_operand_mode[insn_code_number][opno]);
3745 }
3746
3747 #if 0
3748 /* This loses because reloading of prior insns can invalidate the equivalence
3749 (or at least find_equiv_reg isn't smart enough to find it any more),
3750 causing this insn to need more reload regs than it needed before.
3751 It may be too late to make the reload regs available.
3752 Now this optimization is done safely in choose_reload_regs. */
3753
3754 /* For each reload of a reg into some other class of reg,
3755 search for an existing equivalent reg (same value now) in the right class.
3756 We can use it as long as we don't need to change its contents. */
3757 for (i = 0; i < n_reloads; i++)
3758 if (reload_reg_rtx[i] == 0
3759 && reload_in[i] != 0
3760 && GET_CODE (reload_in[i]) == REG
3761 && reload_out[i] == 0)
3762 {
3763 reload_reg_rtx[i]
3764 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3765 static_reload_reg_p, 0, reload_inmode[i]);
3766 /* Prevent generation of insn to load the value
3767 because the one we found already has the value. */
3768 if (reload_reg_rtx[i])
3769 reload_in[i] = reload_reg_rtx[i];
3770 }
3771 #endif
3772
3773 /* Perhaps an output reload can be combined with another
3774 to reduce needs by one. */
3775 if (!goal_earlyclobber)
3776 combine_reloads ();
3777
3778 /* If we have a pair of reloads for parts of an address, they are reloading
3779 the same object, the operands themselves were not reloaded, and they
3780 are for two operands that are supposed to match, merge the reloads and
3781 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3782
3783 for (i = 0; i < n_reloads; i++)
3784 {
3785 int k;
3786
3787 for (j = i + 1; j < n_reloads; j++)
3788 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3789 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3790 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3791 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3792 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
3793 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS
3794 || reload_when_needed[j] == RELOAD_FOR_INPADDR_ADDRESS
3795 || reload_when_needed[j] == RELOAD_FOR_OUTADDR_ADDRESS)
3796 && rtx_equal_p (reload_in[i], reload_in[j])
3797 && (operand_reloadnum[reload_opnum[i]] < 0
3798 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3799 && (operand_reloadnum[reload_opnum[j]] < 0
3800 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3801 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3802 || (goal_alternative_matches[reload_opnum[j]]
3803 == reload_opnum[i])))
3804 {
3805 for (k = 0; k < n_replacements; k++)
3806 if (replacements[k].what == j)
3807 replacements[k].what = i;
3808
3809 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3810 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3811 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3812 else
3813 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3814 reload_in[j] = 0;
3815 }
3816 }
3817
3818 /* Scan all the reloads and update their type.
3819 If a reload is for the address of an operand and we didn't reload
3820 that operand, change the type. Similarly, change the operand number
3821 of a reload when two operands match. If a reload is optional, treat it
3822 as though the operand isn't reloaded.
3823
3824 ??? This latter case is somewhat odd because if we do the optional
3825 reload, it means the object is hanging around. Thus we need only
3826 do the address reload if the optional reload was NOT done.
3827
3828 Change secondary reloads to be the address type of their operand, not
3829 the normal type.
3830
3831 If an operand's reload is now RELOAD_OTHER, change any
3832 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3833 RELOAD_FOR_OTHER_ADDRESS. */
3834
3835 for (i = 0; i < n_reloads; i++)
3836 {
3837 if (reload_secondary_p[i]
3838 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3839 reload_when_needed[i] = address_type[reload_opnum[i]];
3840
3841 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3842 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3843 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3844 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3845 && (operand_reloadnum[reload_opnum[i]] < 0
3846 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
3847 {
3848 /* If we have a secondary reload to go along with this reload,
3849 change its type to RELOAD_FOR_OPADDR_ADDR. */
3850
3851 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3852 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
3853 && reload_secondary_in_reload[i] != -1)
3854 {
3855 int secondary_in_reload = reload_secondary_in_reload[i];
3856
3857 reload_when_needed[secondary_in_reload]
3858 = RELOAD_FOR_OPADDR_ADDR;
3859
3860 /* If there's a tertiary reload we have to change it also. */
3861 if (secondary_in_reload > 0
3862 && reload_secondary_in_reload[secondary_in_reload] != -1)
3863 reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
3864 = RELOAD_FOR_OPADDR_ADDR;
3865 }
3866
3867 if ((reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3868 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3869 && reload_secondary_out_reload[i] != -1)
3870 {
3871 int secondary_out_reload = reload_secondary_out_reload[i];
3872
3873 reload_when_needed[secondary_out_reload]
3874 = RELOAD_FOR_OPADDR_ADDR;
3875
3876 /* If there's a tertiary reload we have to change it also. */
3877 if (secondary_out_reload
3878 && reload_secondary_out_reload[secondary_out_reload] != -1)
3879 reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
3880 = RELOAD_FOR_OPADDR_ADDR;
3881 }
3882 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3883 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3884 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3885 else
3886 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3887 }
3888
3889 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3890 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
3891 && operand_reloadnum[reload_opnum[i]] >= 0
3892 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3893 == RELOAD_OTHER))
3894 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3895
3896 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3897 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3898 }
3899
3900 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3901 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3902 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3903
3904 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3905 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3906 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3907 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3908 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3909 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3910 This is complicated by the fact that a single operand can have more
3911 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3912 choose_reload_regs without affecting code quality, and cases that
3913 actually fail are extremely rare, so it turns out to be better to fix
3914 the problem here by not generating cases that choose_reload_regs will
3915 fail for. */
3916
3917 {
3918 int op_addr_reloads = 0;
3919 for (i = 0; i < n_reloads; i++)
3920 if (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS)
3921 op_addr_reloads++;
3922
3923 if (op_addr_reloads > 1)
3924 for (i = 0; i < n_reloads; i++)
3925 if (reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR)
3926 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3927 }
3928
3929 /* See if we have any reloads that are now allowed to be merged
3930 because we've changed when the reload is needed to
3931 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
3932 check for the most common cases. */
3933
3934 for (i = 0; i < n_reloads; i++)
3935 if (reload_in[i] != 0 && reload_out[i] == 0
3936 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
3937 || reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR
3938 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
3939 for (j = 0; j < n_reloads; j++)
3940 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
3941 && reload_when_needed[j] == reload_when_needed[i]
3942 && MATCHES (reload_in[i], reload_in[j])
3943 && reload_reg_class[i] == reload_reg_class[j]
3944 && !reload_nocombine[i] && !reload_nocombine[j]
3945 && reload_reg_rtx[i] == reload_reg_rtx[j])
3946 {
3947 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
3948 transfer_replacements (i, j);
3949 reload_in[j] = 0;
3950 }
3951
3952 #else /* no REGISTER_CONSTRAINTS */
3953 int noperands;
3954 int insn_code_number;
3955 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
3956 register int i;
3957 rtx body = PATTERN (insn);
3958
3959 n_reloads = 0;
3960 n_replacements = 0;
3961 n_earlyclobbers = 0;
3962 replace_reloads = replace;
3963 this_insn = insn;
3964
3965 /* Find what kind of insn this is. NOPERANDS gets number of operands.
3966 Store the operand values in RECOG_OPERAND and the locations
3967 of the words in the insn that point to them in RECOG_OPERAND_LOC.
3968 Return if the insn needs no reload processing. */
3969
3970 switch (GET_CODE (body))
3971 {
3972 case USE:
3973 case CLOBBER:
3974 case ASM_INPUT:
3975 case ADDR_VEC:
3976 case ADDR_DIFF_VEC:
3977 return;
3978
3979 case PARALLEL:
3980 case SET:
3981 noperands = asm_noperands (body);
3982 if (noperands >= 0)
3983 {
3984 /* This insn is an `asm' with operands.
3985 First, find out how many operands, and allocate space. */
3986
3987 insn_code_number = -1;
3988 /* ??? This is a bug! ???
3989 Give up and delete this insn if it has too many operands. */
3990 if (noperands > MAX_RECOG_OPERANDS)
3991 abort ();
3992
3993 /* Now get the operand values out of the insn. */
3994
3995 decode_asm_operands (body, recog_operand, recog_operand_loc,
3996 NULL_PTR, NULL_PTR);
3997 break;
3998 }
3999
4000 default:
4001 /* Ordinary insn: recognize it, allocate space for operands and
4002 constraints, and get them out via insn_extract. */
4003
4004 insn_code_number = recog_memoized (insn);
4005 noperands = insn_n_operands[insn_code_number];
4006 insn_extract (insn);
4007 }
4008
4009 if (noperands == 0)
4010 return;
4011
4012 for (i = 0; i < noperands; i++)
4013 {
4014 register RTX_CODE code = GET_CODE (recog_operand[i]);
4015 int is_set_dest = GET_CODE (body) == SET && (i == 0);
4016
4017 if (insn_code_number >= 0)
4018 if (insn_operand_address_p[insn_code_number][i])
4019 find_reloads_address (VOIDmode, NULL_PTR,
4020 recog_operand[i], recog_operand_loc[i],
4021 i, RELOAD_FOR_INPUT, ind_levels, insn);
4022
4023 /* In these cases, we can't tell if the operand is an input
4024 or an output, so be conservative. In practice it won't be
4025 problem. */
4026
4027 if (code == MEM)
4028 find_reloads_address (GET_MODE (recog_operand[i]),
4029 recog_operand_loc[i],
4030 XEXP (recog_operand[i], 0),
4031 &XEXP (recog_operand[i], 0),
4032 i, RELOAD_OTHER, ind_levels, insn);
4033 if (code == SUBREG)
4034 recog_operand[i] = *recog_operand_loc[i]
4035 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
4036 ind_levels, is_set_dest);
4037 if (code == REG)
4038 {
4039 register int regno = REGNO (recog_operand[i]);
4040 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4041 recog_operand[i] = *recog_operand_loc[i]
4042 = reg_equiv_constant[regno];
4043 #if 0 /* This might screw code in reload1.c to delete prior output-reload
4044 that feeds this insn. */
4045 if (reg_equiv_mem[regno] != 0)
4046 recog_operand[i] = *recog_operand_loc[i]
4047 = reg_equiv_mem[regno];
4048 #endif
4049 }
4050 }
4051
4052 /* Perhaps an output reload can be combined with another
4053 to reduce needs by one. */
4054 if (!goal_earlyclobber)
4055 combine_reloads ();
4056 #endif /* no REGISTER_CONSTRAINTS */
4057 }
4058
4059 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4060 accepts a memory operand with constant address. */
4061
4062 static int
4063 alternative_allows_memconst (constraint, altnum)
4064 char *constraint;
4065 int altnum;
4066 {
4067 register int c;
4068 /* Skip alternatives before the one requested. */
4069 while (altnum > 0)
4070 {
4071 while (*constraint++ != ',');
4072 altnum--;
4073 }
4074 /* Scan the requested alternative for 'm' or 'o'.
4075 If one of them is present, this alternative accepts memory constants. */
4076 while ((c = *constraint++) && c != ',' && c != '#')
4077 if (c == 'm' || c == 'o')
4078 return 1;
4079 return 0;
4080 }
4081 \f
4082 /* Scan X for memory references and scan the addresses for reloading.
4083 Also checks for references to "constant" regs that we want to eliminate
4084 and replaces them with the values they stand for.
4085 We may alter X destructively if it contains a reference to such.
4086 If X is just a constant reg, we return the equivalent value
4087 instead of X.
4088
4089 IND_LEVELS says how many levels of indirect addressing this machine
4090 supports.
4091
4092 OPNUM and TYPE identify the purpose of the reload.
4093
4094 IS_SET_DEST is true if X is the destination of a SET, which is not
4095 appropriate to be replaced by a constant. */
4096
4097 static rtx
4098 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
4099 rtx x;
4100 int opnum;
4101 enum reload_type type;
4102 int ind_levels;
4103 int is_set_dest;
4104 {
4105 register RTX_CODE code = GET_CODE (x);
4106
4107 register char *fmt = GET_RTX_FORMAT (code);
4108 register int i;
4109
4110 if (code == REG)
4111 {
4112 /* This code is duplicated for speed in find_reloads. */
4113 register int regno = REGNO (x);
4114 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4115 x = reg_equiv_constant[regno];
4116 #if 0
4117 /* This creates (subreg (mem...)) which would cause an unnecessary
4118 reload of the mem. */
4119 else if (reg_equiv_mem[regno] != 0)
4120 x = reg_equiv_mem[regno];
4121 #endif
4122 else if (reg_equiv_address[regno] != 0)
4123 {
4124 /* If reg_equiv_address varies, it may be shared, so copy it. */
4125 /* We must rerun eliminate_regs, in case the elimination
4126 offsets have changed. */
4127 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
4128 NULL_RTX),
4129 0);
4130
4131 if (rtx_varies_p (addr))
4132 addr = copy_rtx (addr);
4133
4134 x = gen_rtx_MEM (GET_MODE (x), addr);
4135 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4136 find_reloads_address (GET_MODE (x), NULL_PTR,
4137 XEXP (x, 0),
4138 &XEXP (x, 0), opnum, type, ind_levels, 0);
4139 }
4140 return x;
4141 }
4142 if (code == MEM)
4143 {
4144 rtx tem = x;
4145 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4146 opnum, type, ind_levels, 0);
4147 return tem;
4148 }
4149
4150 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4151 {
4152 /* Check for SUBREG containing a REG that's equivalent to a constant.
4153 If the constant has a known value, truncate it right now.
4154 Similarly if we are extracting a single-word of a multi-word
4155 constant. If the constant is symbolic, allow it to be substituted
4156 normally. push_reload will strip the subreg later. If the
4157 constant is VOIDmode, abort because we will lose the mode of
4158 the register (this should never happen because one of the cases
4159 above should handle it). */
4160
4161 register int regno = REGNO (SUBREG_REG (x));
4162 rtx tem;
4163
4164 if (subreg_lowpart_p (x)
4165 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4166 && reg_equiv_constant[regno] != 0
4167 && (tem = gen_lowpart_common (GET_MODE (x),
4168 reg_equiv_constant[regno])) != 0)
4169 return tem;
4170
4171 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4172 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4173 && reg_equiv_constant[regno] != 0
4174 && (tem = operand_subword (reg_equiv_constant[regno],
4175 SUBREG_WORD (x), 0,
4176 GET_MODE (SUBREG_REG (x)))) != 0)
4177 return tem;
4178
4179 /* If the SUBREG is wider than a word, the above test will fail.
4180 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4181 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4182 a 32 bit target. We still can - and have to - handle this
4183 for non-paradoxical subregs of CONST_INTs. */
4184 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4185 && reg_equiv_constant[regno] != 0
4186 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4187 && (GET_MODE_SIZE (GET_MODE (x))
4188 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4189 {
4190 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4191 if (WORDS_BIG_ENDIAN)
4192 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4193 - GET_MODE_BITSIZE (GET_MODE (x))
4194 - shift);
4195 /* Here we use the knowledge that CONST_INTs have a
4196 HOST_WIDE_INT field. */
4197 if (shift >= HOST_BITS_PER_WIDE_INT)
4198 shift = HOST_BITS_PER_WIDE_INT - 1;
4199 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4200 }
4201
4202 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4203 && reg_equiv_constant[regno] != 0
4204 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4205 abort ();
4206
4207 /* If the subreg contains a reg that will be converted to a mem,
4208 convert the subreg to a narrower memref now.
4209 Otherwise, we would get (subreg (mem ...) ...),
4210 which would force reload of the mem.
4211
4212 We also need to do this if there is an equivalent MEM that is
4213 not offsettable. In that case, alter_subreg would produce an
4214 invalid address on big-endian machines.
4215
4216 For machines that extend byte loads, we must not reload using
4217 a wider mode if we have a paradoxical SUBREG. find_reloads will
4218 force a reload in that case. So we should not do anything here. */
4219
4220 else if (regno >= FIRST_PSEUDO_REGISTER
4221 #ifdef LOAD_EXTEND_OP
4222 && (GET_MODE_SIZE (GET_MODE (x))
4223 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4224 #endif
4225 && (reg_equiv_address[regno] != 0
4226 || (reg_equiv_mem[regno] != 0
4227 && (! strict_memory_address_p (GET_MODE (x),
4228 XEXP (reg_equiv_mem[regno], 0))
4229 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
4230 {
4231 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
4232 /* We must rerun eliminate_regs, in case the elimination
4233 offsets have changed. */
4234 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
4235 NULL_RTX),
4236 0);
4237 if (BYTES_BIG_ENDIAN)
4238 {
4239 int size;
4240 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
4241 offset += MIN (size, UNITS_PER_WORD);
4242 size = GET_MODE_SIZE (GET_MODE (x));
4243 offset -= MIN (size, UNITS_PER_WORD);
4244 }
4245 addr = plus_constant (addr, offset);
4246 x = gen_rtx_MEM (GET_MODE (x), addr);
4247 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4248 find_reloads_address (GET_MODE (x), NULL_PTR,
4249 XEXP (x, 0),
4250 &XEXP (x, 0), opnum, type, ind_levels, 0);
4251 }
4252
4253 }
4254
4255 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4256 {
4257 if (fmt[i] == 'e')
4258 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
4259 ind_levels, is_set_dest);
4260 }
4261 return x;
4262 }
4263
4264 /* Return a mem ref for the memory equivalent of reg REGNO.
4265 This mem ref is not shared with anything. */
4266
4267 static rtx
4268 make_memloc (ad, regno)
4269 rtx ad;
4270 int regno;
4271 {
4272 #if 0
4273 register int i;
4274 #endif
4275 /* We must rerun eliminate_regs, in case the elimination
4276 offsets have changed. */
4277 rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4278
4279 #if 0 /* We cannot safely reuse a memloc made here;
4280 if the pseudo appears twice, and its mem needs a reload,
4281 it gets two separate reloads assigned, but it only
4282 gets substituted with the second of them;
4283 then it can get used before that reload reg gets loaded up. */
4284 for (i = 0; i < n_memlocs; i++)
4285 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
4286 return memlocs[i];
4287 #endif
4288
4289 /* If TEM might contain a pseudo, we must copy it to avoid
4290 modifying it when we do the substitution for the reload. */
4291 if (rtx_varies_p (tem))
4292 tem = copy_rtx (tem);
4293
4294 tem = gen_rtx_MEM (GET_MODE (ad), tem);
4295 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4296 memlocs[n_memlocs++] = tem;
4297 return tem;
4298 }
4299
4300 /* Record all reloads needed for handling memory address AD
4301 which appears in *LOC in a memory reference to mode MODE
4302 which itself is found in location *MEMREFLOC.
4303 Note that we take shortcuts assuming that no multi-reg machine mode
4304 occurs as part of an address.
4305
4306 OPNUM and TYPE specify the purpose of this reload.
4307
4308 IND_LEVELS says how many levels of indirect addressing this machine
4309 supports.
4310
4311 INSN, if nonzero, is the insn in which we do the reload. It is used
4312 to determine if we may generate output reloads.
4313
4314 Value is nonzero if this address is reloaded or replaced as a whole.
4315 This is interesting to the caller if the address is an autoincrement.
4316
4317 Note that there is no verification that the address will be valid after
4318 this routine does its work. Instead, we rely on the fact that the address
4319 was valid when reload started. So we need only undo things that reload
4320 could have broken. These are wrong register types, pseudos not allocated
4321 to a hard register, and frame pointer elimination. */
4322
4323 static int
4324 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4325 enum machine_mode mode;
4326 rtx *memrefloc;
4327 rtx ad;
4328 rtx *loc;
4329 int opnum;
4330 enum reload_type type;
4331 int ind_levels;
4332 rtx insn;
4333 {
4334 register int regno;
4335 rtx tem;
4336
4337 /* If the address is a register, see if it is a legitimate address and
4338 reload if not. We first handle the cases where we need not reload
4339 or where we must reload in a non-standard way. */
4340
4341 if (GET_CODE (ad) == REG)
4342 {
4343 regno = REGNO (ad);
4344
4345 if (reg_equiv_constant[regno] != 0
4346 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4347 {
4348 *loc = ad = reg_equiv_constant[regno];
4349 return 1;
4350 }
4351
4352 else if (reg_equiv_address[regno] != 0)
4353 {
4354 tem = make_memloc (ad, regno);
4355 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
4356 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4357 ind_levels, insn);
4358 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4359 reload_address_base_reg_class,
4360 GET_MODE (ad), VOIDmode, 0, 0,
4361 opnum, type);
4362 return 1;
4363 }
4364
4365 /* We can avoid a reload if the register's equivalent memory expression
4366 is valid as an indirect memory address.
4367 But not all addresses are valid in a mem used as an indirect address:
4368 only reg or reg+constant. */
4369
4370 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
4371 && strict_memory_address_p (mode, reg_equiv_mem[regno])
4372 && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
4373 || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
4374 && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
4375 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
4376 return 0;
4377
4378 /* The only remaining case where we can avoid a reload is if this is a
4379 hard register that is valid as a base register and which is not the
4380 subject of a CLOBBER in this insn. */
4381
4382 else if (regno < FIRST_PSEUDO_REGISTER
4383 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4384 && ! regno_clobbered_p (regno, this_insn))
4385 return 0;
4386
4387 /* If we do not have one of the cases above, we must do the reload. */
4388 push_reload (ad, NULL_RTX, loc, NULL_PTR, reload_address_base_reg_class,
4389 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4390 return 1;
4391 }
4392
4393 if (strict_memory_address_p (mode, ad))
4394 {
4395 /* The address appears valid, so reloads are not needed.
4396 But the address may contain an eliminable register.
4397 This can happen because a machine with indirect addressing
4398 may consider a pseudo register by itself a valid address even when
4399 it has failed to get a hard reg.
4400 So do a tree-walk to find and eliminate all such regs. */
4401
4402 /* But first quickly dispose of a common case. */
4403 if (GET_CODE (ad) == PLUS
4404 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4405 && GET_CODE (XEXP (ad, 0)) == REG
4406 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4407 return 0;
4408
4409 subst_reg_equivs_changed = 0;
4410 *loc = subst_reg_equivs (ad);
4411
4412 if (! subst_reg_equivs_changed)
4413 return 0;
4414
4415 /* Check result for validity after substitution. */
4416 if (strict_memory_address_p (mode, ad))
4417 return 0;
4418 }
4419
4420 /* The address is not valid. We have to figure out why. One possibility
4421 is that it is itself a MEM. This can happen when the frame pointer is
4422 being eliminated, a pseudo is not allocated to a hard register, and the
4423 offset between the frame and stack pointers is not its initial value.
4424 In that case the pseudo will have been replaced by a MEM referring to
4425 the stack pointer. */
4426 if (GET_CODE (ad) == MEM)
4427 {
4428 /* First ensure that the address in this MEM is valid. Then, unless
4429 indirect addresses are valid, reload the MEM into a register. */
4430 tem = ad;
4431 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4432 opnum, ADDR_TYPE (type),
4433 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4434
4435 /* If tem was changed, then we must create a new memory reference to
4436 hold it and store it back into memrefloc. */
4437 if (tem != ad && memrefloc)
4438 {
4439 *memrefloc = copy_rtx (*memrefloc);
4440 copy_replacements (tem, XEXP (*memrefloc, 0));
4441 loc = &XEXP (*memrefloc, 0);
4442 }
4443
4444 /* Check similar cases as for indirect addresses as above except
4445 that we can allow pseudos and a MEM since they should have been
4446 taken care of above. */
4447
4448 if (ind_levels == 0
4449 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4450 || GET_CODE (XEXP (tem, 0)) == MEM
4451 || ! (GET_CODE (XEXP (tem, 0)) == REG
4452 || (GET_CODE (XEXP (tem, 0)) == PLUS
4453 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4454 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4455 {
4456 /* Must use TEM here, not AD, since it is the one that will
4457 have any subexpressions reloaded, if needed. */
4458 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4459 reload_address_base_reg_class, GET_MODE (tem),
4460 VOIDmode, 0,
4461 0, opnum, type);
4462 return 1;
4463 }
4464 else
4465 return 0;
4466 }
4467
4468 /* If we have address of a stack slot but it's not valid because the
4469 displacement is too large, compute the sum in a register.
4470 Handle all base registers here, not just fp/ap/sp, because on some
4471 targets (namely SH) we can also get too large displacements from
4472 big-endian corrections. */
4473 else if (GET_CODE (ad) == PLUS
4474 && GET_CODE (XEXP (ad, 0)) == REG
4475 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4476 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4477 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4478 {
4479 /* Unshare the MEM rtx so we can safely alter it. */
4480 if (memrefloc)
4481 {
4482 *memrefloc = copy_rtx (*memrefloc);
4483 loc = &XEXP (*memrefloc, 0);
4484 }
4485 if (double_reg_address_ok)
4486 {
4487 /* Unshare the sum as well. */
4488 *loc = ad = copy_rtx (ad);
4489 /* Reload the displacement into an index reg.
4490 We assume the frame pointer or arg pointer is a base reg. */
4491 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4492 reload_address_index_reg_class,
4493 GET_MODE (ad), opnum, type, ind_levels);
4494 }
4495 else
4496 {
4497 /* If the sum of two regs is not necessarily valid,
4498 reload the sum into a base reg.
4499 That will at least work. */
4500 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4501 Pmode, opnum, type, ind_levels);
4502 }
4503 return 1;
4504 }
4505
4506 /* If we have an indexed stack slot, there are three possible reasons why
4507 it might be invalid: The index might need to be reloaded, the address
4508 might have been made by frame pointer elimination and hence have a
4509 constant out of range, or both reasons might apply.
4510
4511 We can easily check for an index needing reload, but even if that is the
4512 case, we might also have an invalid constant. To avoid making the
4513 conservative assumption and requiring two reloads, we see if this address
4514 is valid when not interpreted strictly. If it is, the only problem is
4515 that the index needs a reload and find_reloads_address_1 will take care
4516 of it.
4517
4518 There is still a case when we might generate an extra reload,
4519 however. In certain cases eliminate_regs will return a MEM for a REG
4520 (see the code there for details). In those cases, memory_address_p
4521 applied to our address will return 0 so we will think that our offset
4522 must be too large. But it might indeed be valid and the only problem
4523 is that a MEM is present where a REG should be. This case should be
4524 very rare and there doesn't seem to be any way to avoid it.
4525
4526 If we decide to do something here, it must be that
4527 `double_reg_address_ok' is true and that this address rtl was made by
4528 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4529 rework the sum so that the reload register will be added to the index.
4530 This is safe because we know the address isn't shared.
4531
4532 We check for fp/ap/sp as both the first and second operand of the
4533 innermost PLUS. */
4534
4535 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4536 && GET_CODE (XEXP (ad, 0)) == PLUS
4537 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4538 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4539 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4540 #endif
4541 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4542 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4543 #endif
4544 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4545 && ! memory_address_p (mode, ad))
4546 {
4547 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4548 plus_constant (XEXP (XEXP (ad, 0), 0),
4549 INTVAL (XEXP (ad, 1))),
4550 XEXP (XEXP (ad, 0), 1));
4551 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4552 reload_address_base_reg_class,
4553 GET_MODE (ad), opnum, type, ind_levels);
4554 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4555 type, 0, insn);
4556
4557 return 1;
4558 }
4559
4560 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4561 && GET_CODE (XEXP (ad, 0)) == PLUS
4562 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4563 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4564 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4565 #endif
4566 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4567 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4568 #endif
4569 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4570 && ! memory_address_p (mode, ad))
4571 {
4572 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4573 XEXP (XEXP (ad, 0), 0),
4574 plus_constant (XEXP (XEXP (ad, 0), 1),
4575 INTVAL (XEXP (ad, 1))));
4576 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4577 reload_address_base_reg_class,
4578 GET_MODE (ad), opnum, type, ind_levels);
4579 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4580 type, 0, insn);
4581
4582 return 1;
4583 }
4584
4585 /* See if address becomes valid when an eliminable register
4586 in a sum is replaced. */
4587
4588 tem = ad;
4589 if (GET_CODE (ad) == PLUS)
4590 tem = subst_indexed_address (ad);
4591 if (tem != ad && strict_memory_address_p (mode, tem))
4592 {
4593 /* Ok, we win that way. Replace any additional eliminable
4594 registers. */
4595
4596 subst_reg_equivs_changed = 0;
4597 tem = subst_reg_equivs (tem);
4598
4599 /* Make sure that didn't make the address invalid again. */
4600
4601 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4602 {
4603 *loc = tem;
4604 return 0;
4605 }
4606 }
4607
4608 /* If constants aren't valid addresses, reload the constant address
4609 into a register. */
4610 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4611 {
4612 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4613 Unshare it so we can safely alter it. */
4614 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4615 && CONSTANT_POOL_ADDRESS_P (ad))
4616 {
4617 *memrefloc = copy_rtx (*memrefloc);
4618 loc = &XEXP (*memrefloc, 0);
4619 }
4620
4621 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4622 Pmode, opnum, type,
4623 ind_levels);
4624 return 1;
4625 }
4626
4627 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4628 insn);
4629 }
4630 \f
4631 /* Find all pseudo regs appearing in AD
4632 that are eliminable in favor of equivalent values
4633 and do not have hard regs; replace them by their equivalents. */
4634
4635 static rtx
4636 subst_reg_equivs (ad)
4637 rtx ad;
4638 {
4639 register RTX_CODE code = GET_CODE (ad);
4640 register int i;
4641 register char *fmt;
4642
4643 switch (code)
4644 {
4645 case HIGH:
4646 case CONST_INT:
4647 case CONST:
4648 case CONST_DOUBLE:
4649 case SYMBOL_REF:
4650 case LABEL_REF:
4651 case PC:
4652 case CC0:
4653 return ad;
4654
4655 case REG:
4656 {
4657 register int regno = REGNO (ad);
4658
4659 if (reg_equiv_constant[regno] != 0)
4660 {
4661 subst_reg_equivs_changed = 1;
4662 return reg_equiv_constant[regno];
4663 }
4664 }
4665 return ad;
4666
4667 case PLUS:
4668 /* Quickly dispose of a common case. */
4669 if (XEXP (ad, 0) == frame_pointer_rtx
4670 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4671 return ad;
4672 break;
4673
4674 default:
4675 break;
4676 }
4677
4678 fmt = GET_RTX_FORMAT (code);
4679 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4680 if (fmt[i] == 'e')
4681 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4682 return ad;
4683 }
4684 \f
4685 /* Compute the sum of X and Y, making canonicalizations assumed in an
4686 address, namely: sum constant integers, surround the sum of two
4687 constants with a CONST, put the constant as the second operand, and
4688 group the constant on the outermost sum.
4689
4690 This routine assumes both inputs are already in canonical form. */
4691
4692 rtx
4693 form_sum (x, y)
4694 rtx x, y;
4695 {
4696 rtx tem;
4697 enum machine_mode mode = GET_MODE (x);
4698
4699 if (mode == VOIDmode)
4700 mode = GET_MODE (y);
4701
4702 if (mode == VOIDmode)
4703 mode = Pmode;
4704
4705 if (GET_CODE (x) == CONST_INT)
4706 return plus_constant (y, INTVAL (x));
4707 else if (GET_CODE (y) == CONST_INT)
4708 return plus_constant (x, INTVAL (y));
4709 else if (CONSTANT_P (x))
4710 tem = x, x = y, y = tem;
4711
4712 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4713 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4714
4715 /* Note that if the operands of Y are specified in the opposite
4716 order in the recursive calls below, infinite recursion will occur. */
4717 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4718 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4719
4720 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4721 constant will have been placed second. */
4722 if (CONSTANT_P (x) && CONSTANT_P (y))
4723 {
4724 if (GET_CODE (x) == CONST)
4725 x = XEXP (x, 0);
4726 if (GET_CODE (y) == CONST)
4727 y = XEXP (y, 0);
4728
4729 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4730 }
4731
4732 return gen_rtx_PLUS (mode, x, y);
4733 }
4734 \f
4735 /* If ADDR is a sum containing a pseudo register that should be
4736 replaced with a constant (from reg_equiv_constant),
4737 return the result of doing so, and also apply the associative
4738 law so that the result is more likely to be a valid address.
4739 (But it is not guaranteed to be one.)
4740
4741 Note that at most one register is replaced, even if more are
4742 replaceable. Also, we try to put the result into a canonical form
4743 so it is more likely to be a valid address.
4744
4745 In all other cases, return ADDR. */
4746
4747 static rtx
4748 subst_indexed_address (addr)
4749 rtx addr;
4750 {
4751 rtx op0 = 0, op1 = 0, op2 = 0;
4752 rtx tem;
4753 int regno;
4754
4755 if (GET_CODE (addr) == PLUS)
4756 {
4757 /* Try to find a register to replace. */
4758 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4759 if (GET_CODE (op0) == REG
4760 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4761 && reg_renumber[regno] < 0
4762 && reg_equiv_constant[regno] != 0)
4763 op0 = reg_equiv_constant[regno];
4764 else if (GET_CODE (op1) == REG
4765 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4766 && reg_renumber[regno] < 0
4767 && reg_equiv_constant[regno] != 0)
4768 op1 = reg_equiv_constant[regno];
4769 else if (GET_CODE (op0) == PLUS
4770 && (tem = subst_indexed_address (op0)) != op0)
4771 op0 = tem;
4772 else if (GET_CODE (op1) == PLUS
4773 && (tem = subst_indexed_address (op1)) != op1)
4774 op1 = tem;
4775 else
4776 return addr;
4777
4778 /* Pick out up to three things to add. */
4779 if (GET_CODE (op1) == PLUS)
4780 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4781 else if (GET_CODE (op0) == PLUS)
4782 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4783
4784 /* Compute the sum. */
4785 if (op2 != 0)
4786 op1 = form_sum (op1, op2);
4787 if (op1 != 0)
4788 op0 = form_sum (op0, op1);
4789
4790 return op0;
4791 }
4792 return addr;
4793 }
4794 \f
4795 /* Record the pseudo registers we must reload into hard registers in a
4796 subexpression of a would-be memory address, X referring to a value
4797 in mode MODE. (This function is not called if the address we find
4798 is strictly valid.)
4799
4800 CONTEXT = 1 means we are considering regs as index regs,
4801 = 0 means we are considering them as base regs.
4802
4803 OPNUM and TYPE specify the purpose of any reloads made.
4804
4805 IND_LEVELS says how many levels of indirect addressing are
4806 supported at this point in the address.
4807
4808 INSN, if nonzero, is the insn in which we do the reload. It is used
4809 to determine if we may generate output reloads.
4810
4811 We return nonzero if X, as a whole, is reloaded or replaced. */
4812
4813 /* Note that we take shortcuts assuming that no multi-reg machine mode
4814 occurs as part of an address.
4815 Also, this is not fully machine-customizable; it works for machines
4816 such as vaxes and 68000's and 32000's, but other possible machines
4817 could have addressing modes that this does not handle right. */
4818
4819 static int
4820 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
4821 enum machine_mode mode;
4822 rtx x;
4823 int context;
4824 rtx *loc;
4825 int opnum;
4826 enum reload_type type;
4827 int ind_levels;
4828 rtx insn;
4829 {
4830 register RTX_CODE code = GET_CODE (x);
4831
4832 switch (code)
4833 {
4834 case PLUS:
4835 {
4836 register rtx orig_op0 = XEXP (x, 0);
4837 register rtx orig_op1 = XEXP (x, 1);
4838 register RTX_CODE code0 = GET_CODE (orig_op0);
4839 register RTX_CODE code1 = GET_CODE (orig_op1);
4840 register rtx op0 = orig_op0;
4841 register rtx op1 = orig_op1;
4842
4843 if (GET_CODE (op0) == SUBREG)
4844 {
4845 op0 = SUBREG_REG (op0);
4846 code0 = GET_CODE (op0);
4847 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
4848 op0 = gen_rtx_REG (word_mode,
4849 REGNO (op0) + SUBREG_WORD (orig_op0));
4850 }
4851
4852 if (GET_CODE (op1) == SUBREG)
4853 {
4854 op1 = SUBREG_REG (op1);
4855 code1 = GET_CODE (op1);
4856 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
4857 op1 = gen_rtx_REG (GET_MODE (op1),
4858 REGNO (op1) + SUBREG_WORD (orig_op1));
4859 }
4860
4861 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
4862 || code0 == ZERO_EXTEND || code1 == MEM)
4863 {
4864 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4865 type, ind_levels, insn);
4866 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4867 type, ind_levels, insn);
4868 }
4869
4870 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
4871 || code1 == ZERO_EXTEND || code0 == MEM)
4872 {
4873 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4874 type, ind_levels, insn);
4875 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4876 type, ind_levels, insn);
4877 }
4878
4879 else if (code0 == CONST_INT || code0 == CONST
4880 || code0 == SYMBOL_REF || code0 == LABEL_REF)
4881 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4882 type, ind_levels, insn);
4883
4884 else if (code1 == CONST_INT || code1 == CONST
4885 || code1 == SYMBOL_REF || code1 == LABEL_REF)
4886 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4887 type, ind_levels, insn);
4888
4889 else if (code0 == REG && code1 == REG)
4890 {
4891 if (REG_OK_FOR_INDEX_P (op0)
4892 && REG_MODE_OK_FOR_BASE_P (op1, mode))
4893 return 0;
4894 else if (REG_OK_FOR_INDEX_P (op1)
4895 && REG_MODE_OK_FOR_BASE_P (op0, mode))
4896 return 0;
4897 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
4898 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4899 type, ind_levels, insn);
4900 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
4901 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4902 type, ind_levels, insn);
4903 else if (REG_OK_FOR_INDEX_P (op1))
4904 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4905 type, ind_levels, insn);
4906 else if (REG_OK_FOR_INDEX_P (op0))
4907 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4908 type, ind_levels, insn);
4909 else
4910 {
4911 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4912 type, ind_levels, insn);
4913 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4914 type, ind_levels, insn);
4915 }
4916 }
4917
4918 else if (code0 == REG)
4919 {
4920 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4921 type, ind_levels, insn);
4922 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4923 type, ind_levels, insn);
4924 }
4925
4926 else if (code1 == REG)
4927 {
4928 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4929 type, ind_levels, insn);
4930 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4931 type, ind_levels, insn);
4932 }
4933 }
4934
4935 return 0;
4936
4937 case POST_INC:
4938 case POST_DEC:
4939 case PRE_INC:
4940 case PRE_DEC:
4941 if (GET_CODE (XEXP (x, 0)) == REG)
4942 {
4943 register int regno = REGNO (XEXP (x, 0));
4944 int value = 0;
4945 rtx x_orig = x;
4946
4947 /* A register that is incremented cannot be constant! */
4948 if (regno >= FIRST_PSEUDO_REGISTER
4949 && reg_equiv_constant[regno] != 0)
4950 abort ();
4951
4952 /* Handle a register that is equivalent to a memory location
4953 which cannot be addressed directly. */
4954 if (reg_equiv_address[regno] != 0)
4955 {
4956 rtx tem = make_memloc (XEXP (x, 0), regno);
4957 /* First reload the memory location's address.
4958 We can't use ADDR_TYPE (type) here, because we need to
4959 write back the value after reading it, hence we actually
4960 need two registers. */
4961 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
4962 &XEXP (tem, 0), opnum, type,
4963 ind_levels, insn);
4964 /* Put this inside a new increment-expression. */
4965 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
4966 /* Proceed to reload that, as if it contained a register. */
4967 }
4968
4969 /* If we have a hard register that is ok as an index,
4970 don't make a reload. If an autoincrement of a nice register
4971 isn't "valid", it must be that no autoincrement is "valid".
4972 If that is true and something made an autoincrement anyway,
4973 this must be a special context where one is allowed.
4974 (For example, a "push" instruction.)
4975 We can't improve this address, so leave it alone. */
4976
4977 /* Otherwise, reload the autoincrement into a suitable hard reg
4978 and record how much to increment by. */
4979
4980 if (reg_renumber[regno] >= 0)
4981 regno = reg_renumber[regno];
4982 if ((regno >= FIRST_PSEUDO_REGISTER
4983 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
4984 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
4985 {
4986 #ifdef AUTO_INC_DEC
4987 register rtx link;
4988 #endif
4989 int reloadnum;
4990
4991 /* If we can output the register afterwards, do so, this
4992 saves the extra update.
4993 We can do so if we have an INSN - i.e. no JUMP_INSN nor
4994 CALL_INSN - and it does not set CC0.
4995 But don't do this if we cannot directly address the
4996 memory location, since this will make it harder to
4997 reuse address reloads, and increases register pressure.
4998 Also don't do this if we can probably update x directly. */
4999 rtx equiv = reg_equiv_mem[regno];
5000 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5001 if (insn && GET_CODE (insn) == INSN && equiv
5002 #ifdef HAVE_cc0
5003 && ! sets_cc0_p (PATTERN (insn))
5004 #endif
5005 && ! (icode != CODE_FOR_nothing
5006 && (*insn_operand_predicate[icode][0]) (equiv, Pmode)
5007 && (*insn_operand_predicate[icode][1]) (equiv, Pmode)))
5008 {
5009 loc = &XEXP (x, 0);
5010 x = XEXP (x, 0);
5011 reloadnum
5012 = push_reload (x, x, loc, loc,
5013 (context
5014 ? reload_address_index_reg_class
5015 : reload_address_base_reg_class),
5016 GET_MODE (x), GET_MODE (x), 0, 0,
5017 opnum, RELOAD_OTHER);
5018 }
5019 else
5020 {
5021 reloadnum
5022 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5023 (context
5024 ? reload_address_index_reg_class
5025 : reload_address_base_reg_class),
5026 GET_MODE (x), GET_MODE (x), 0, 0,
5027 opnum, type);
5028 reload_inc[reloadnum]
5029 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5030
5031 value = 1;
5032 }
5033
5034 #ifdef AUTO_INC_DEC
5035 /* Update the REG_INC notes. */
5036
5037 for (link = REG_NOTES (this_insn);
5038 link; link = XEXP (link, 1))
5039 if (REG_NOTE_KIND (link) == REG_INC
5040 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
5041 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5042 #endif
5043 }
5044 return value;
5045 }
5046
5047 else if (GET_CODE (XEXP (x, 0)) == MEM)
5048 {
5049 /* This is probably the result of a substitution, by eliminate_regs,
5050 of an equivalent address for a pseudo that was not allocated to a
5051 hard register. Verify that the specified address is valid and
5052 reload it into a register. */
5053 rtx tem = XEXP (x, 0);
5054 register rtx link;
5055 int reloadnum;
5056
5057 /* Since we know we are going to reload this item, don't decrement
5058 for the indirection level.
5059
5060 Note that this is actually conservative: it would be slightly
5061 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5062 reload1.c here. */
5063 /* We can't use ADDR_TYPE (type) here, because we need to
5064 write back the value after reading it, hence we actually
5065 need two registers. */
5066 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5067 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5068 opnum, type, ind_levels, insn);
5069
5070 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
5071 (context
5072 ? reload_address_index_reg_class
5073 : reload_address_base_reg_class),
5074 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5075 reload_inc[reloadnum]
5076 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5077
5078 link = FIND_REG_INC_NOTE (this_insn, tem);
5079 if (link != 0)
5080 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5081
5082 return 1;
5083 }
5084 return 0;
5085
5086 case MEM:
5087 /* This is probably the result of a substitution, by eliminate_regs, of
5088 an equivalent address for a pseudo that was not allocated to a hard
5089 register. Verify that the specified address is valid and reload it
5090 into a register.
5091
5092 Since we know we are going to reload this item, don't decrement for
5093 the indirection level.
5094
5095 Note that this is actually conservative: it would be slightly more
5096 efficient to use the value of SPILL_INDIRECT_LEVELS from
5097 reload1.c here. */
5098
5099 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5100 opnum, ADDR_TYPE (type), ind_levels, insn);
5101 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
5102 (context ? reload_address_index_reg_class
5103 : reload_address_base_reg_class),
5104 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5105 return 1;
5106
5107 case REG:
5108 {
5109 register int regno = REGNO (x);
5110
5111 if (reg_equiv_constant[regno] != 0)
5112 {
5113 find_reloads_address_part (reg_equiv_constant[regno], loc,
5114 (context
5115 ? reload_address_index_reg_class
5116 : reload_address_base_reg_class),
5117 GET_MODE (x), opnum, type, ind_levels);
5118 return 1;
5119 }
5120
5121 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5122 that feeds this insn. */
5123 if (reg_equiv_mem[regno] != 0)
5124 {
5125 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
5126 (context
5127 ? reload_address_index_reg_class
5128 : reload_address_base_reg_class),
5129 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5130 return 1;
5131 }
5132 #endif
5133
5134 if (reg_equiv_address[regno] != 0)
5135 {
5136 x = make_memloc (x, regno);
5137 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
5138 opnum, ADDR_TYPE (type), ind_levels, insn);
5139 }
5140
5141 if (reg_renumber[regno] >= 0)
5142 regno = reg_renumber[regno];
5143
5144 if ((regno >= FIRST_PSEUDO_REGISTER
5145 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5146 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5147 {
5148 push_reload (x, NULL_RTX, loc, NULL_PTR,
5149 (context
5150 ? reload_address_index_reg_class
5151 : reload_address_base_reg_class),
5152 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5153 return 1;
5154 }
5155
5156 /* If a register appearing in an address is the subject of a CLOBBER
5157 in this insn, reload it into some other register to be safe.
5158 The CLOBBER is supposed to make the register unavailable
5159 from before this insn to after it. */
5160 if (regno_clobbered_p (regno, this_insn))
5161 {
5162 push_reload (x, NULL_RTX, loc, NULL_PTR,
5163 (context
5164 ? reload_address_index_reg_class
5165 : reload_address_base_reg_class),
5166 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5167 return 1;
5168 }
5169 }
5170 return 0;
5171
5172 case SUBREG:
5173 if (GET_CODE (SUBREG_REG (x)) == REG)
5174 {
5175 /* If this is a SUBREG of a hard register and the resulting register
5176 is of the wrong class, reload the whole SUBREG. This avoids
5177 needless copies if SUBREG_REG is multi-word. */
5178 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5179 {
5180 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5181
5182 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5183 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5184 {
5185 push_reload (x, NULL_RTX, loc, NULL_PTR,
5186 (context
5187 ? reload_address_index_reg_class
5188 : reload_address_base_reg_class),
5189 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5190 return 1;
5191 }
5192 }
5193 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5194 is larger than the class size, then reload the whole SUBREG. */
5195 else
5196 {
5197 enum reg_class class = (context
5198 ? reload_address_index_reg_class
5199 : reload_address_base_reg_class);
5200 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5201 > reg_class_size[class])
5202 {
5203 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5204 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5205 return 1;
5206 }
5207 }
5208 }
5209 break;
5210
5211 default:
5212 break;
5213 }
5214
5215 {
5216 register char *fmt = GET_RTX_FORMAT (code);
5217 register int i;
5218
5219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5220 {
5221 if (fmt[i] == 'e')
5222 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5223 opnum, type, ind_levels, insn);
5224 }
5225 }
5226
5227 return 0;
5228 }
5229 \f
5230 /* X, which is found at *LOC, is a part of an address that needs to be
5231 reloaded into a register of class CLASS. If X is a constant, or if
5232 X is a PLUS that contains a constant, check that the constant is a
5233 legitimate operand and that we are supposed to be able to load
5234 it into the register.
5235
5236 If not, force the constant into memory and reload the MEM instead.
5237
5238 MODE is the mode to use, in case X is an integer constant.
5239
5240 OPNUM and TYPE describe the purpose of any reloads made.
5241
5242 IND_LEVELS says how many levels of indirect addressing this machine
5243 supports. */
5244
5245 static void
5246 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5247 rtx x;
5248 rtx *loc;
5249 enum reg_class class;
5250 enum machine_mode mode;
5251 int opnum;
5252 enum reload_type type;
5253 int ind_levels;
5254 {
5255 if (CONSTANT_P (x)
5256 && (! LEGITIMATE_CONSTANT_P (x)
5257 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5258 {
5259 rtx tem = x = force_const_mem (mode, x);
5260 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5261 opnum, type, ind_levels, 0);
5262 }
5263
5264 else if (GET_CODE (x) == PLUS
5265 && CONSTANT_P (XEXP (x, 1))
5266 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5267 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5268 {
5269 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5270
5271 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5272 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5273 opnum, type, ind_levels, 0);
5274 }
5275
5276 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5277 mode, VOIDmode, 0, 0, opnum, type);
5278 }
5279 \f
5280 /* Substitute into the current INSN the registers into which we have reloaded
5281 the things that need reloading. The array `replacements'
5282 says contains the locations of all pointers that must be changed
5283 and says what to replace them with.
5284
5285 Return the rtx that X translates into; usually X, but modified. */
5286
5287 void
5288 subst_reloads ()
5289 {
5290 register int i;
5291
5292 for (i = 0; i < n_replacements; i++)
5293 {
5294 register struct replacement *r = &replacements[i];
5295 register rtx reloadreg = reload_reg_rtx[r->what];
5296 if (reloadreg)
5297 {
5298 /* Encapsulate RELOADREG so its machine mode matches what
5299 used to be there. Note that gen_lowpart_common will
5300 do the wrong thing if RELOADREG is multi-word. RELOADREG
5301 will always be a REG here. */
5302 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5303 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5304
5305 /* If we are putting this into a SUBREG and RELOADREG is a
5306 SUBREG, we would be making nested SUBREGs, so we have to fix
5307 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5308
5309 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5310 {
5311 if (GET_MODE (*r->subreg_loc)
5312 == GET_MODE (SUBREG_REG (reloadreg)))
5313 *r->subreg_loc = SUBREG_REG (reloadreg);
5314 else
5315 {
5316 *r->where = SUBREG_REG (reloadreg);
5317 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5318 }
5319 }
5320 else
5321 *r->where = reloadreg;
5322 }
5323 /* If reload got no reg and isn't optional, something's wrong. */
5324 else if (! reload_optional[r->what])
5325 abort ();
5326 }
5327 }
5328 \f
5329 /* Make a copy of any replacements being done into X and move those copies
5330 to locations in Y, a copy of X. We only look at the highest level of
5331 the RTL. */
5332
5333 void
5334 copy_replacements (x, y)
5335 rtx x;
5336 rtx y;
5337 {
5338 int i, j;
5339 enum rtx_code code = GET_CODE (x);
5340 char *fmt = GET_RTX_FORMAT (code);
5341 struct replacement *r;
5342
5343 /* We can't support X being a SUBREG because we might then need to know its
5344 location if something inside it was replaced. */
5345 if (code == SUBREG)
5346 abort ();
5347
5348 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5349 if (fmt[i] == 'e')
5350 for (j = 0; j < n_replacements; j++)
5351 {
5352 if (replacements[j].subreg_loc == &XEXP (x, i))
5353 {
5354 r = &replacements[n_replacements++];
5355 r->where = replacements[j].where;
5356 r->subreg_loc = &XEXP (y, i);
5357 r->what = replacements[j].what;
5358 r->mode = replacements[j].mode;
5359 }
5360 else if (replacements[j].where == &XEXP (x, i))
5361 {
5362 r = &replacements[n_replacements++];
5363 r->where = &XEXP (y, i);
5364 r->subreg_loc = 0;
5365 r->what = replacements[j].what;
5366 r->mode = replacements[j].mode;
5367 }
5368 }
5369 }
5370 \f
5371 /* If LOC was scheduled to be replaced by something, return the replacement.
5372 Otherwise, return *LOC. */
5373
5374 rtx
5375 find_replacement (loc)
5376 rtx *loc;
5377 {
5378 struct replacement *r;
5379
5380 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5381 {
5382 rtx reloadreg = reload_reg_rtx[r->what];
5383
5384 if (reloadreg && r->where == loc)
5385 {
5386 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5387 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5388
5389 return reloadreg;
5390 }
5391 else if (reloadreg && r->subreg_loc == loc)
5392 {
5393 /* RELOADREG must be either a REG or a SUBREG.
5394
5395 ??? Is it actually still ever a SUBREG? If so, why? */
5396
5397 if (GET_CODE (reloadreg) == REG)
5398 return gen_rtx_REG (GET_MODE (*loc),
5399 REGNO (reloadreg) + SUBREG_WORD (*loc));
5400 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5401 return reloadreg;
5402 else
5403 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5404 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5405 }
5406 }
5407
5408 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5409 what's inside and make a new rtl if so. */
5410 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5411 || GET_CODE (*loc) == MULT)
5412 {
5413 rtx x = find_replacement (&XEXP (*loc, 0));
5414 rtx y = find_replacement (&XEXP (*loc, 1));
5415
5416 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5417 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5418 }
5419
5420 return *loc;
5421 }
5422 \f
5423 /* Return nonzero if register in range [REGNO, ENDREGNO)
5424 appears either explicitly or implicitly in X
5425 other than being stored into (except for earlyclobber operands).
5426
5427 References contained within the substructure at LOC do not count.
5428 LOC may be zero, meaning don't ignore anything.
5429
5430 This is similar to refers_to_regno_p in rtlanal.c except that we
5431 look at equivalences for pseudos that didn't get hard registers. */
5432
5433 int
5434 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5435 int regno, endregno;
5436 rtx x;
5437 rtx *loc;
5438 {
5439 register int i;
5440 register RTX_CODE code;
5441 register char *fmt;
5442
5443 if (x == 0)
5444 return 0;
5445
5446 repeat:
5447 code = GET_CODE (x);
5448
5449 switch (code)
5450 {
5451 case REG:
5452 i = REGNO (x);
5453
5454 /* If this is a pseudo, a hard register must not have been allocated.
5455 X must therefore either be a constant or be in memory. */
5456 if (i >= FIRST_PSEUDO_REGISTER)
5457 {
5458 if (reg_equiv_memory_loc[i])
5459 return refers_to_regno_for_reload_p (regno, endregno,
5460 reg_equiv_memory_loc[i],
5461 NULL_PTR);
5462
5463 if (reg_equiv_constant[i])
5464 return 0;
5465
5466 abort ();
5467 }
5468
5469 return (endregno > i
5470 && regno < i + (i < FIRST_PSEUDO_REGISTER
5471 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5472 : 1));
5473
5474 case SUBREG:
5475 /* If this is a SUBREG of a hard reg, we can see exactly which
5476 registers are being modified. Otherwise, handle normally. */
5477 if (GET_CODE (SUBREG_REG (x)) == REG
5478 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5479 {
5480 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5481 int inner_endregno
5482 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5483 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5484
5485 return endregno > inner_regno && regno < inner_endregno;
5486 }
5487 break;
5488
5489 case CLOBBER:
5490 case SET:
5491 if (&SET_DEST (x) != loc
5492 /* Note setting a SUBREG counts as referring to the REG it is in for
5493 a pseudo but not for hard registers since we can
5494 treat each word individually. */
5495 && ((GET_CODE (SET_DEST (x)) == SUBREG
5496 && loc != &SUBREG_REG (SET_DEST (x))
5497 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5498 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5499 && refers_to_regno_for_reload_p (regno, endregno,
5500 SUBREG_REG (SET_DEST (x)),
5501 loc))
5502 /* If the output is an earlyclobber operand, this is
5503 a conflict. */
5504 || ((GET_CODE (SET_DEST (x)) != REG
5505 || earlyclobber_operand_p (SET_DEST (x)))
5506 && refers_to_regno_for_reload_p (regno, endregno,
5507 SET_DEST (x), loc))))
5508 return 1;
5509
5510 if (code == CLOBBER || loc == &SET_SRC (x))
5511 return 0;
5512 x = SET_SRC (x);
5513 goto repeat;
5514
5515 default:
5516 break;
5517 }
5518
5519 /* X does not match, so try its subexpressions. */
5520
5521 fmt = GET_RTX_FORMAT (code);
5522 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5523 {
5524 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5525 {
5526 if (i == 0)
5527 {
5528 x = XEXP (x, 0);
5529 goto repeat;
5530 }
5531 else
5532 if (refers_to_regno_for_reload_p (regno, endregno,
5533 XEXP (x, i), loc))
5534 return 1;
5535 }
5536 else if (fmt[i] == 'E')
5537 {
5538 register int j;
5539 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5540 if (loc != &XVECEXP (x, i, j)
5541 && refers_to_regno_for_reload_p (regno, endregno,
5542 XVECEXP (x, i, j), loc))
5543 return 1;
5544 }
5545 }
5546 return 0;
5547 }
5548
5549 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5550 we check if any register number in X conflicts with the relevant register
5551 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5552 contains a MEM (we don't bother checking for memory addresses that can't
5553 conflict because we expect this to be a rare case.
5554
5555 This function is similar to reg_overlap_mention_p in rtlanal.c except
5556 that we look at equivalences for pseudos that didn't get hard registers. */
5557
5558 int
5559 reg_overlap_mentioned_for_reload_p (x, in)
5560 rtx x, in;
5561 {
5562 int regno, endregno;
5563
5564 if (GET_CODE (x) == SUBREG)
5565 {
5566 regno = REGNO (SUBREG_REG (x));
5567 if (regno < FIRST_PSEUDO_REGISTER)
5568 regno += SUBREG_WORD (x);
5569 }
5570 else if (GET_CODE (x) == REG)
5571 {
5572 regno = REGNO (x);
5573
5574 /* If this is a pseudo, it must not have been assigned a hard register.
5575 Therefore, it must either be in memory or be a constant. */
5576
5577 if (regno >= FIRST_PSEUDO_REGISTER)
5578 {
5579 if (reg_equiv_memory_loc[regno])
5580 return refers_to_mem_for_reload_p (in);
5581 else if (reg_equiv_constant[regno])
5582 return 0;
5583 abort ();
5584 }
5585 }
5586 else if (CONSTANT_P (x))
5587 return 0;
5588 else if (GET_CODE (x) == MEM)
5589 return refers_to_mem_for_reload_p (in);
5590 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5591 || GET_CODE (x) == CC0)
5592 return reg_mentioned_p (x, in);
5593 else
5594 abort ();
5595
5596 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5597 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5598
5599 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
5600 }
5601
5602 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
5603 registers. */
5604
5605 int
5606 refers_to_mem_for_reload_p (x)
5607 rtx x;
5608 {
5609 char *fmt;
5610 int i;
5611
5612 if (GET_CODE (x) == MEM)
5613 return 1;
5614
5615 if (GET_CODE (x) == REG)
5616 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5617 && reg_equiv_memory_loc[REGNO (x)]);
5618
5619 fmt = GET_RTX_FORMAT (GET_CODE (x));
5620 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5621 if (fmt[i] == 'e'
5622 && (GET_CODE (XEXP (x, i)) == MEM
5623 || refers_to_mem_for_reload_p (XEXP (x, i))))
5624 return 1;
5625
5626 return 0;
5627 }
5628 \f
5629 /* Check the insns before INSN to see if there is a suitable register
5630 containing the same value as GOAL.
5631 If OTHER is -1, look for a register in class CLASS.
5632 Otherwise, just see if register number OTHER shares GOAL's value.
5633
5634 Return an rtx for the register found, or zero if none is found.
5635
5636 If RELOAD_REG_P is (short *)1,
5637 we reject any hard reg that appears in reload_reg_rtx
5638 because such a hard reg is also needed coming into this insn.
5639
5640 If RELOAD_REG_P is any other nonzero value,
5641 it is a vector indexed by hard reg number
5642 and we reject any hard reg whose element in the vector is nonnegative
5643 as well as any that appears in reload_reg_rtx.
5644
5645 If GOAL is zero, then GOALREG is a register number; we look
5646 for an equivalent for that register.
5647
5648 MODE is the machine mode of the value we want an equivalence for.
5649 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5650
5651 This function is used by jump.c as well as in the reload pass.
5652
5653 If GOAL is the sum of the stack pointer and a constant, we treat it
5654 as if it were a constant except that sp is required to be unchanging. */
5655
5656 rtx
5657 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5658 register rtx goal;
5659 rtx insn;
5660 enum reg_class class;
5661 register int other;
5662 short *reload_reg_p;
5663 int goalreg;
5664 enum machine_mode mode;
5665 {
5666 register rtx p = insn;
5667 rtx goaltry, valtry, value, where;
5668 register rtx pat;
5669 register int regno = -1;
5670 int valueno;
5671 int goal_mem = 0;
5672 int goal_const = 0;
5673 int goal_mem_addr_varies = 0;
5674 int need_stable_sp = 0;
5675 int nregs;
5676 int valuenregs;
5677
5678 if (goal == 0)
5679 regno = goalreg;
5680 else if (GET_CODE (goal) == REG)
5681 regno = REGNO (goal);
5682 else if (GET_CODE (goal) == MEM)
5683 {
5684 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5685 if (MEM_VOLATILE_P (goal))
5686 return 0;
5687 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5688 return 0;
5689 /* An address with side effects must be reexecuted. */
5690 switch (code)
5691 {
5692 case POST_INC:
5693 case PRE_INC:
5694 case POST_DEC:
5695 case PRE_DEC:
5696 return 0;
5697 default:
5698 break;
5699 }
5700 goal_mem = 1;
5701 }
5702 else if (CONSTANT_P (goal))
5703 goal_const = 1;
5704 else if (GET_CODE (goal) == PLUS
5705 && XEXP (goal, 0) == stack_pointer_rtx
5706 && CONSTANT_P (XEXP (goal, 1)))
5707 goal_const = need_stable_sp = 1;
5708 else
5709 return 0;
5710
5711 /* On some machines, certain regs must always be rejected
5712 because they don't behave the way ordinary registers do. */
5713
5714 #ifdef OVERLAPPING_REGNO_P
5715 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5716 && OVERLAPPING_REGNO_P (regno))
5717 return 0;
5718 #endif
5719
5720 /* Scan insns back from INSN, looking for one that copies
5721 a value into or out of GOAL.
5722 Stop and give up if we reach a label. */
5723
5724 while (1)
5725 {
5726 p = PREV_INSN (p);
5727 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5728 return 0;
5729 if (GET_CODE (p) == INSN
5730 /* If we don't want spill regs ... */
5731 && (! (reload_reg_p != 0
5732 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
5733 /* ... then ignore insns introduced by reload; they aren't useful
5734 and can cause results in reload_as_needed to be different
5735 from what they were when calculating the need for spills.
5736 If we notice an input-reload insn here, we will reject it below,
5737 but it might hide a usable equivalent. That makes bad code.
5738 It may even abort: perhaps no reg was spilled for this insn
5739 because it was assumed we would find that equivalent. */
5740 || INSN_UID (p) < reload_first_uid))
5741 {
5742 rtx tem;
5743 pat = single_set (p);
5744 /* First check for something that sets some reg equal to GOAL. */
5745 if (pat != 0
5746 && ((regno >= 0
5747 && true_regnum (SET_SRC (pat)) == regno
5748 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5749 ||
5750 (regno >= 0
5751 && true_regnum (SET_DEST (pat)) == regno
5752 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
5753 ||
5754 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
5755 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5756 || (goal_mem
5757 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
5758 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
5759 || (goal_mem
5760 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
5761 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
5762 /* If we are looking for a constant,
5763 and something equivalent to that constant was copied
5764 into a reg, we can use that reg. */
5765 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5766 NULL_RTX))
5767 && rtx_equal_p (XEXP (tem, 0), goal)
5768 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5769 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5770 NULL_RTX))
5771 && GET_CODE (SET_DEST (pat)) == REG
5772 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5773 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5774 && GET_CODE (goal) == CONST_INT
5775 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
5776 VOIDmode))
5777 && rtx_equal_p (goal, goaltry)
5778 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
5779 VOIDmode))
5780 && (valueno = true_regnum (valtry)) >= 0)
5781 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5782 NULL_RTX))
5783 && GET_CODE (SET_DEST (pat)) == REG
5784 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5785 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5786 && GET_CODE (goal) == CONST_INT
5787 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
5788 VOIDmode))
5789 && rtx_equal_p (goal, goaltry)
5790 && (valtry
5791 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
5792 && (valueno = true_regnum (valtry)) >= 0)))
5793 if (other >= 0
5794 ? valueno == other
5795 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
5796 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
5797 valueno)))
5798 {
5799 value = valtry;
5800 where = p;
5801 break;
5802 }
5803 }
5804 }
5805
5806 /* We found a previous insn copying GOAL into a suitable other reg VALUE
5807 (or copying VALUE into GOAL, if GOAL is also a register).
5808 Now verify that VALUE is really valid. */
5809
5810 /* VALUENO is the register number of VALUE; a hard register. */
5811
5812 /* Don't try to re-use something that is killed in this insn. We want
5813 to be able to trust REG_UNUSED notes. */
5814 if (find_reg_note (where, REG_UNUSED, value))
5815 return 0;
5816
5817 /* If we propose to get the value from the stack pointer or if GOAL is
5818 a MEM based on the stack pointer, we need a stable SP. */
5819 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
5820 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
5821 goal)))
5822 need_stable_sp = 1;
5823
5824 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
5825 if (GET_MODE (value) != mode)
5826 return 0;
5827
5828 /* Reject VALUE if it was loaded from GOAL
5829 and is also a register that appears in the address of GOAL. */
5830
5831 if (goal_mem && value == SET_DEST (single_set (where))
5832 && refers_to_regno_for_reload_p (valueno,
5833 (valueno
5834 + HARD_REGNO_NREGS (valueno, mode)),
5835 goal, NULL_PTR))
5836 return 0;
5837
5838 /* Reject registers that overlap GOAL. */
5839
5840 if (!goal_mem && !goal_const
5841 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
5842 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
5843 return 0;
5844
5845 /* Reject VALUE if it is one of the regs reserved for reloads.
5846 Reload1 knows how to reuse them anyway, and it would get
5847 confused if we allocated one without its knowledge.
5848 (Now that insns introduced by reload are ignored above,
5849 this case shouldn't happen, but I'm not positive.) */
5850
5851 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
5852 && reload_reg_p[valueno] >= 0)
5853 return 0;
5854
5855 /* On some machines, certain regs must always be rejected
5856 because they don't behave the way ordinary registers do. */
5857
5858 #ifdef OVERLAPPING_REGNO_P
5859 if (OVERLAPPING_REGNO_P (valueno))
5860 return 0;
5861 #endif
5862
5863 nregs = HARD_REGNO_NREGS (regno, mode);
5864 valuenregs = HARD_REGNO_NREGS (valueno, mode);
5865
5866 /* Reject VALUE if it is a register being used for an input reload
5867 even if it is not one of those reserved. */
5868
5869 if (reload_reg_p != 0)
5870 {
5871 int i;
5872 for (i = 0; i < n_reloads; i++)
5873 if (reload_reg_rtx[i] != 0 && reload_in[i])
5874 {
5875 int regno1 = REGNO (reload_reg_rtx[i]);
5876 int nregs1 = HARD_REGNO_NREGS (regno1,
5877 GET_MODE (reload_reg_rtx[i]));
5878 if (regno1 < valueno + valuenregs
5879 && regno1 + nregs1 > valueno)
5880 return 0;
5881 }
5882 }
5883
5884 if (goal_mem)
5885 /* We must treat frame pointer as varying here,
5886 since it can vary--in a nonlocal goto as generated by expand_goto. */
5887 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
5888
5889 /* Now verify that the values of GOAL and VALUE remain unaltered
5890 until INSN is reached. */
5891
5892 p = insn;
5893 while (1)
5894 {
5895 p = PREV_INSN (p);
5896 if (p == where)
5897 return value;
5898
5899 /* Don't trust the conversion past a function call
5900 if either of the two is in a call-clobbered register, or memory. */
5901 if (GET_CODE (p) == CALL_INSN
5902 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5903 && call_used_regs[regno])
5904 ||
5905 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5906 && call_used_regs[valueno])
5907 ||
5908 goal_mem
5909 || need_stable_sp))
5910 return 0;
5911
5912 #ifdef NON_SAVING_SETJMP
5913 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
5914 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
5915 return 0;
5916 #endif
5917
5918 #ifdef INSN_CLOBBERS_REGNO_P
5919 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5920 && INSN_CLOBBERS_REGNO_P (p, valueno))
5921 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5922 && INSN_CLOBBERS_REGNO_P (p, regno)))
5923 return 0;
5924 #endif
5925
5926 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5927 {
5928 /* If this insn P stores in either GOAL or VALUE, return 0.
5929 If GOAL is a memory ref and this insn writes memory, return 0.
5930 If GOAL is a memory ref and its address is not constant,
5931 and this insn P changes a register used in GOAL, return 0. */
5932
5933 pat = PATTERN (p);
5934 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
5935 {
5936 register rtx dest = SET_DEST (pat);
5937 while (GET_CODE (dest) == SUBREG
5938 || GET_CODE (dest) == ZERO_EXTRACT
5939 || GET_CODE (dest) == SIGN_EXTRACT
5940 || GET_CODE (dest) == STRICT_LOW_PART)
5941 dest = XEXP (dest, 0);
5942 if (GET_CODE (dest) == REG)
5943 {
5944 register int xregno = REGNO (dest);
5945 int xnregs;
5946 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5947 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5948 else
5949 xnregs = 1;
5950 if (xregno < regno + nregs && xregno + xnregs > regno)
5951 return 0;
5952 if (xregno < valueno + valuenregs
5953 && xregno + xnregs > valueno)
5954 return 0;
5955 if (goal_mem_addr_varies
5956 && reg_overlap_mentioned_for_reload_p (dest, goal))
5957 return 0;
5958 }
5959 else if (goal_mem && GET_CODE (dest) == MEM
5960 && ! push_operand (dest, GET_MODE (dest)))
5961 return 0;
5962 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
5963 && reg_equiv_memory_loc[regno] != 0)
5964 return 0;
5965 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
5966 return 0;
5967 }
5968 else if (GET_CODE (pat) == PARALLEL)
5969 {
5970 register int i;
5971 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
5972 {
5973 register rtx v1 = XVECEXP (pat, 0, i);
5974 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
5975 {
5976 register rtx dest = SET_DEST (v1);
5977 while (GET_CODE (dest) == SUBREG
5978 || GET_CODE (dest) == ZERO_EXTRACT
5979 || GET_CODE (dest) == SIGN_EXTRACT
5980 || GET_CODE (dest) == STRICT_LOW_PART)
5981 dest = XEXP (dest, 0);
5982 if (GET_CODE (dest) == REG)
5983 {
5984 register int xregno = REGNO (dest);
5985 int xnregs;
5986 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5987 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5988 else
5989 xnregs = 1;
5990 if (xregno < regno + nregs
5991 && xregno + xnregs > regno)
5992 return 0;
5993 if (xregno < valueno + valuenregs
5994 && xregno + xnregs > valueno)
5995 return 0;
5996 if (goal_mem_addr_varies
5997 && reg_overlap_mentioned_for_reload_p (dest,
5998 goal))
5999 return 0;
6000 }
6001 else if (goal_mem && GET_CODE (dest) == MEM
6002 && ! push_operand (dest, GET_MODE (dest)))
6003 return 0;
6004 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6005 && reg_equiv_memory_loc[regno] != 0)
6006 return 0;
6007 else if (need_stable_sp
6008 && push_operand (dest, GET_MODE (dest)))
6009 return 0;
6010 }
6011 }
6012 }
6013
6014 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6015 {
6016 rtx link;
6017
6018 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6019 link = XEXP (link, 1))
6020 {
6021 pat = XEXP (link, 0);
6022 if (GET_CODE (pat) == CLOBBER)
6023 {
6024 register rtx dest = SET_DEST (pat);
6025 while (GET_CODE (dest) == SUBREG
6026 || GET_CODE (dest) == ZERO_EXTRACT
6027 || GET_CODE (dest) == SIGN_EXTRACT
6028 || GET_CODE (dest) == STRICT_LOW_PART)
6029 dest = XEXP (dest, 0);
6030 if (GET_CODE (dest) == REG)
6031 {
6032 register int xregno = REGNO (dest);
6033 int xnregs;
6034 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6035 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6036 else
6037 xnregs = 1;
6038 if (xregno < regno + nregs
6039 && xregno + xnregs > regno)
6040 return 0;
6041 if (xregno < valueno + valuenregs
6042 && xregno + xnregs > valueno)
6043 return 0;
6044 if (goal_mem_addr_varies
6045 && reg_overlap_mentioned_for_reload_p (dest,
6046 goal))
6047 return 0;
6048 }
6049 else if (goal_mem && GET_CODE (dest) == MEM
6050 && ! push_operand (dest, GET_MODE (dest)))
6051 return 0;
6052 else if (need_stable_sp
6053 && push_operand (dest, GET_MODE (dest)))
6054 return 0;
6055 }
6056 }
6057 }
6058
6059 #ifdef AUTO_INC_DEC
6060 /* If this insn auto-increments or auto-decrements
6061 either regno or valueno, return 0 now.
6062 If GOAL is a memory ref and its address is not constant,
6063 and this insn P increments a register used in GOAL, return 0. */
6064 {
6065 register rtx link;
6066
6067 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6068 if (REG_NOTE_KIND (link) == REG_INC
6069 && GET_CODE (XEXP (link, 0)) == REG)
6070 {
6071 register int incno = REGNO (XEXP (link, 0));
6072 if (incno < regno + nregs && incno >= regno)
6073 return 0;
6074 if (incno < valueno + valuenregs && incno >= valueno)
6075 return 0;
6076 if (goal_mem_addr_varies
6077 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6078 goal))
6079 return 0;
6080 }
6081 }
6082 #endif
6083 }
6084 }
6085 }
6086 \f
6087 /* Find a place where INCED appears in an increment or decrement operator
6088 within X, and return the amount INCED is incremented or decremented by.
6089 The value is always positive. */
6090
6091 static int
6092 find_inc_amount (x, inced)
6093 rtx x, inced;
6094 {
6095 register enum rtx_code code = GET_CODE (x);
6096 register char *fmt;
6097 register int i;
6098
6099 if (code == MEM)
6100 {
6101 register rtx addr = XEXP (x, 0);
6102 if ((GET_CODE (addr) == PRE_DEC
6103 || GET_CODE (addr) == POST_DEC
6104 || GET_CODE (addr) == PRE_INC
6105 || GET_CODE (addr) == POST_INC)
6106 && XEXP (addr, 0) == inced)
6107 return GET_MODE_SIZE (GET_MODE (x));
6108 }
6109
6110 fmt = GET_RTX_FORMAT (code);
6111 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6112 {
6113 if (fmt[i] == 'e')
6114 {
6115 register int tem = find_inc_amount (XEXP (x, i), inced);
6116 if (tem != 0)
6117 return tem;
6118 }
6119 if (fmt[i] == 'E')
6120 {
6121 register int j;
6122 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6123 {
6124 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6125 if (tem != 0)
6126 return tem;
6127 }
6128 }
6129 }
6130
6131 return 0;
6132 }
6133 \f
6134 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6135
6136 int
6137 regno_clobbered_p (regno, insn)
6138 int regno;
6139 rtx insn;
6140 {
6141 if (GET_CODE (PATTERN (insn)) == CLOBBER
6142 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6143 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6144
6145 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6146 {
6147 int i = XVECLEN (PATTERN (insn), 0) - 1;
6148
6149 for (; i >= 0; i--)
6150 {
6151 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6152 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6153 && REGNO (XEXP (elt, 0)) == regno)
6154 return 1;
6155 }
6156 }
6157
6158 return 0;
6159 }
6160
6161 static char *reload_when_needed_name[] =
6162 {
6163 "RELOAD_FOR_INPUT",
6164 "RELOAD_FOR_OUTPUT",
6165 "RELOAD_FOR_INSN",
6166 "RELOAD_FOR_INPUT_ADDRESS",
6167 "RELOAD_FOR_INPADDR_ADDRESS",
6168 "RELOAD_FOR_OUTPUT_ADDRESS",
6169 "RELOAD_FOR_OUTADDR_ADDRESS",
6170 "RELOAD_FOR_OPERAND_ADDRESS",
6171 "RELOAD_FOR_OPADDR_ADDR",
6172 "RELOAD_OTHER",
6173 "RELOAD_FOR_OTHER_ADDRESS"
6174 };
6175
6176 static char *reg_class_names[] = REG_CLASS_NAMES;
6177
6178 /* These functions are used to print the variables set by 'find_reloads' */
6179
6180 void
6181 debug_reload_to_stream (f)
6182 FILE *f;
6183 {
6184 int r;
6185 char *prefix;
6186
6187 if (! f)
6188 f = stderr;
6189 for (r = 0; r < n_reloads; r++)
6190 {
6191 fprintf (f, "Reload %d: ", r);
6192
6193 if (reload_in[r] != 0)
6194 {
6195 fprintf (f, "reload_in (%s) = ",
6196 GET_MODE_NAME (reload_inmode[r]));
6197 print_inline_rtx (f, reload_in[r], 24);
6198 fprintf (f, "\n\t");
6199 }
6200
6201 if (reload_out[r] != 0)
6202 {
6203 fprintf (f, "reload_out (%s) = ",
6204 GET_MODE_NAME (reload_outmode[r]));
6205 print_inline_rtx (f, reload_out[r], 24);
6206 fprintf (f, "\n\t");
6207 }
6208
6209 fprintf (f, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
6210
6211 fprintf (f, "%s (opnum = %d)",
6212 reload_when_needed_name[(int) reload_when_needed[r]],
6213 reload_opnum[r]);
6214
6215 if (reload_optional[r])
6216 fprintf (f, ", optional");
6217
6218 if (reload_inc[r] != 0)
6219 fprintf (f, ", inc by %d", reload_inc[r]);
6220
6221 if (reload_nocombine[r])
6222 fprintf (f, ", can't combine");
6223
6224 if (reload_secondary_p[r])
6225 fprintf (f, ", secondary_reload_p");
6226
6227 if (reload_in_reg[r] != 0)
6228 {
6229 fprintf (f, "\n\treload_in_reg: ");
6230 print_inline_rtx (f, reload_in_reg[r], 24);
6231 }
6232
6233 if (reload_reg_rtx[r] != 0)
6234 {
6235 fprintf (f, "\n\treload_reg_rtx: ");
6236 print_inline_rtx (f, reload_reg_rtx[r], 24);
6237 }
6238
6239 prefix = "\n\t";
6240 if (reload_secondary_in_reload[r] != -1)
6241 {
6242 fprintf (f, "%ssecondary_in_reload = %d",
6243 prefix, reload_secondary_in_reload[r]);
6244 prefix = ", ";
6245 }
6246
6247 if (reload_secondary_out_reload[r] != -1)
6248 fprintf (f, "%ssecondary_out_reload = %d\n",
6249 prefix, reload_secondary_out_reload[r]);
6250
6251 prefix = "\n\t";
6252 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
6253 {
6254 fprintf (f, "%ssecondary_in_icode = %s", prefix, insn_name[r]);
6255 prefix = ", ";
6256 }
6257
6258 if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
6259 fprintf (f, "%ssecondary_out_icode = %s", prefix, insn_name[r]);
6260
6261 fprintf (f, "\n");
6262 }
6263 }
6264
6265 void
6266 debug_reload ()
6267 {
6268 debug_reload_to_stream (stderr);
6269 }