acconfig.h: _GLIBCPP_USING_THREADS and some workaround types added.
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file contains subroutines used only from the file reload1.c.
24 It knows how to scan one insn for operands and values
25 that need to be copied into registers to make valid code.
26 It also finds other operands and values which are valid
27 but for which equivalent values in registers exist and
28 ought to be used instead.
29
30 Before processing the first insn of the function, call `init_reload'.
31
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
38
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
45
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
54
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
57
58 NOTE SIDE EFFECTS:
59
60 find_reloads can alter the operands of the instruction it is called on.
61
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
66
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
69
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
73
74
75 Using a reload register for several reloads in one insn:
76
77 When an insn has reloads, it is considered as having three parts:
78 the input reloads, the insn itself after reloading, and the output reloads.
79 Reloads of values used in memory addresses are often needed for only one part.
80
81 When this is so, reload_when_needed records which part needs the reload.
82 Two reloads for different parts of the insn can share the same reload
83 register.
84
85 When a reload is used for addresses in multiple parts, or when it is
86 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
87 a register with any other reload. */
88
89 #define REG_OK_STRICT
90
91 #include "config.h"
92 #include "system.h"
93 #include "rtl.h"
94 #include "tm_p.h"
95 #include "insn-config.h"
96 #include "insn-codes.h"
97 #include "recog.h"
98 #include "reload.h"
99 #include "regs.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "real.h"
103 #include "output.h"
104 #include "function.h"
105 #include "expr.h"
106 #include "toplev.h"
107
108 #ifndef REGISTER_MOVE_COST
109 #define REGISTER_MOVE_COST(x, y) 2
110 #endif
111
112 #ifndef REGNO_MODE_OK_FOR_BASE_P
113 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
114 #endif
115
116 #ifndef REG_MODE_OK_FOR_BASE_P
117 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
118 #endif
119 \f
120 /* All reloads of the current insn are recorded here. See reload.h for
121 comments. */
122 int n_reloads;
123 struct reload rld[MAX_RELOADS];
124
125 /* All the "earlyclobber" operands of the current insn
126 are recorded here. */
127 int n_earlyclobbers;
128 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
129
130 int reload_n_operands;
131
132 /* Replacing reloads.
133
134 If `replace_reloads' is nonzero, then as each reload is recorded
135 an entry is made for it in the table `replacements'.
136 Then later `subst_reloads' can look through that table and
137 perform all the replacements needed. */
138
139 /* Nonzero means record the places to replace. */
140 static int replace_reloads;
141
142 /* Each replacement is recorded with a structure like this. */
143 struct replacement
144 {
145 rtx *where; /* Location to store in */
146 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
147 a SUBREG; 0 otherwise. */
148 int what; /* which reload this is for */
149 enum machine_mode mode; /* mode it must have */
150 };
151
152 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
153
154 /* Number of replacements currently recorded. */
155 static int n_replacements;
156
157 /* Used to track what is modified by an operand. */
158 struct decomposition
159 {
160 int reg_flag; /* Nonzero if referencing a register. */
161 int safe; /* Nonzero if this can't conflict with anything. */
162 rtx base; /* Base address for MEM. */
163 HOST_WIDE_INT start; /* Starting offset or register number. */
164 HOST_WIDE_INT end; /* Ending offset or register number. */
165 };
166
167 #ifdef SECONDARY_MEMORY_NEEDED
168
169 /* Save MEMs needed to copy from one class of registers to another. One MEM
170 is used per mode, but normally only one or two modes are ever used.
171
172 We keep two versions, before and after register elimination. The one
173 after register elimination is record separately for each operand. This
174 is done in case the address is not valid to be sure that we separately
175 reload each. */
176
177 static rtx secondary_memlocs[NUM_MACHINE_MODES];
178 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
179 #endif
180
181 /* The instruction we are doing reloads for;
182 so we can test whether a register dies in it. */
183 static rtx this_insn;
184
185 /* Nonzero if this instruction is a user-specified asm with operands. */
186 static int this_insn_is_asm;
187
188 /* If hard_regs_live_known is nonzero,
189 we can tell which hard regs are currently live,
190 at least enough to succeed in choosing dummy reloads. */
191 static int hard_regs_live_known;
192
193 /* Indexed by hard reg number,
194 element is nonnegative if hard reg has been spilled.
195 This vector is passed to `find_reloads' as an argument
196 and is not changed here. */
197 static short *static_reload_reg_p;
198
199 /* Set to 1 in subst_reg_equivs if it changes anything. */
200 static int subst_reg_equivs_changed;
201
202 /* On return from push_reload, holds the reload-number for the OUT
203 operand, which can be different for that from the input operand. */
204 static int output_reloadnum;
205
206 /* Compare two RTX's. */
207 #define MATCHES(x, y) \
208 (x == y || (x != 0 && (GET_CODE (x) == REG \
209 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
210 : rtx_equal_p (x, y) && ! side_effects_p (x))))
211
212 /* Indicates if two reloads purposes are for similar enough things that we
213 can merge their reloads. */
214 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
215 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
216 || ((when1) == (when2) && (op1) == (op2)) \
217 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
218 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
219 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
220 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
221 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
222
223 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
224 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
225 ((when1) != (when2) \
226 || ! ((op1) == (op2) \
227 || (when1) == RELOAD_FOR_INPUT \
228 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
230
231 /* If we are going to reload an address, compute the reload type to
232 use. */
233 #define ADDR_TYPE(type) \
234 ((type) == RELOAD_FOR_INPUT_ADDRESS \
235 ? RELOAD_FOR_INPADDR_ADDRESS \
236 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
237 ? RELOAD_FOR_OUTADDR_ADDRESS \
238 : (type)))
239
240 #ifdef HAVE_SECONDARY_RELOADS
241 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
242 enum machine_mode, enum reload_type,
243 enum insn_code *));
244 #endif
245 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int));
246 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
247 static int push_reload PARAMS ((rtx, rtx, rtx *, rtx *, enum reg_class,
248 enum machine_mode, enum machine_mode,
249 int, int, int, enum reload_type));
250 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
251 static void combine_reloads PARAMS ((void));
252 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
253 enum reload_type, int, int));
254 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
255 enum machine_mode, enum machine_mode,
256 enum reg_class, int, int));
257 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
258 static struct decomposition decompose PARAMS ((rtx));
259 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
260 static int alternative_allows_memconst PARAMS ((const char *, int));
261 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
262 int, rtx, int *));
263 static rtx make_memloc PARAMS ((rtx, int));
264 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
265 int, enum reload_type, int, rtx));
266 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
267 static rtx subst_indexed_address PARAMS ((rtx));
268 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
269 int, enum reload_type,int, rtx));
270 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
271 enum machine_mode, int,
272 enum reload_type, int));
273 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int, enum reload_type,
274 int, rtx));
275 static int find_inc_amount PARAMS ((rtx, rtx));
276 \f
277 #ifdef HAVE_SECONDARY_RELOADS
278
279 /* Determine if any secondary reloads are needed for loading (if IN_P is
280 non-zero) or storing (if IN_P is zero) X to or from a reload register of
281 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
282 are needed, push them.
283
284 Return the reload number of the secondary reload we made, or -1 if
285 we didn't need one. *PICODE is set to the insn_code to use if we do
286 need a secondary reload. */
287
288 static int
289 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
290 type, picode)
291 int in_p;
292 rtx x;
293 int opnum;
294 int optional;
295 enum reg_class reload_class;
296 enum machine_mode reload_mode;
297 enum reload_type type;
298 enum insn_code *picode;
299 {
300 enum reg_class class = NO_REGS;
301 enum machine_mode mode = reload_mode;
302 enum insn_code icode = CODE_FOR_nothing;
303 enum reg_class t_class = NO_REGS;
304 enum machine_mode t_mode = VOIDmode;
305 enum insn_code t_icode = CODE_FOR_nothing;
306 enum reload_type secondary_type;
307 int s_reload, t_reload = -1;
308
309 if (type == RELOAD_FOR_INPUT_ADDRESS
310 || type == RELOAD_FOR_OUTPUT_ADDRESS
311 || type == RELOAD_FOR_INPADDR_ADDRESS
312 || type == RELOAD_FOR_OUTADDR_ADDRESS)
313 secondary_type = type;
314 else
315 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
316
317 *picode = CODE_FOR_nothing;
318
319 /* If X is a paradoxical SUBREG, use the inner value to determine both the
320 mode and object being reloaded. */
321 if (GET_CODE (x) == SUBREG
322 && (GET_MODE_SIZE (GET_MODE (x))
323 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
324 {
325 x = SUBREG_REG (x);
326 reload_mode = GET_MODE (x);
327 }
328
329 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
330 is still a pseudo-register by now, it *must* have an equivalent MEM
331 but we don't want to assume that), use that equivalent when seeing if
332 a secondary reload is needed since whether or not a reload is needed
333 might be sensitive to the form of the MEM. */
334
335 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
336 && reg_equiv_mem[REGNO (x)] != 0)
337 x = reg_equiv_mem[REGNO (x)];
338
339 #ifdef SECONDARY_INPUT_RELOAD_CLASS
340 if (in_p)
341 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
342 #endif
343
344 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
345 if (! in_p)
346 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
347 #endif
348
349 /* If we don't need any secondary registers, done. */
350 if (class == NO_REGS)
351 return -1;
352
353 /* Get a possible insn to use. If the predicate doesn't accept X, don't
354 use the insn. */
355
356 icode = (in_p ? reload_in_optab[(int) reload_mode]
357 : reload_out_optab[(int) reload_mode]);
358
359 if (icode != CODE_FOR_nothing
360 && insn_data[(int) icode].operand[in_p].predicate
361 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
362 icode = CODE_FOR_nothing;
363
364 /* If we will be using an insn, see if it can directly handle the reload
365 register we will be using. If it can, the secondary reload is for a
366 scratch register. If it can't, we will use the secondary reload for
367 an intermediate register and require a tertiary reload for the scratch
368 register. */
369
370 if (icode != CODE_FOR_nothing)
371 {
372 /* If IN_P is non-zero, the reload register will be the output in
373 operand 0. If IN_P is zero, the reload register will be the input
374 in operand 1. Outputs should have an initial "=", which we must
375 skip. */
376
377 char insn_letter
378 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
379 enum reg_class insn_class
380 = (insn_letter == 'r' ? GENERAL_REGS
381 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
382
383 if (insn_class == NO_REGS
384 || (in_p
385 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
386 /* The scratch register's constraint must start with "=&". */
387 || insn_data[(int) icode].operand[2].constraint[0] != '='
388 || insn_data[(int) icode].operand[2].constraint[1] != '&')
389 abort ();
390
391 if (reg_class_subset_p (reload_class, insn_class))
392 mode = insn_data[(int) icode].operand[2].mode;
393 else
394 {
395 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
396 class = insn_class;
397 t_mode = insn_data[(int) icode].operand[2].mode;
398 t_class = (t_letter == 'r' ? GENERAL_REGS
399 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
400 t_icode = icode;
401 icode = CODE_FOR_nothing;
402 }
403
404 secondary_type = in_p ? RELOAD_FOR_INPUT : RELOAD_FOR_OUTPUT;
405 }
406
407 /* This case isn't valid, so fail. Reload is allowed to use the same
408 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
409 in the case of a secondary register, we actually need two different
410 registers for correct code. We fail here to prevent the possibility of
411 silently generating incorrect code later.
412
413 The convention is that secondary input reloads are valid only if the
414 secondary_class is different from class. If you have such a case, you
415 can not use secondary reloads, you must work around the problem some
416 other way.
417
418 Allow this when MODE is not reload_mode and assume that the generated
419 code handles this case (it does on the Alpha, which is the only place
420 this currently happens). */
421
422 if (in_p && class == reload_class && mode == reload_mode)
423 abort ();
424
425 /* If we need a tertiary reload, see if we have one we can reuse or else
426 make a new one. */
427
428 if (t_class != NO_REGS)
429 {
430 for (t_reload = 0; t_reload < n_reloads; t_reload++)
431 if (rld[t_reload].secondary_p
432 && (reg_class_subset_p (t_class, rld[t_reload].class)
433 || reg_class_subset_p (rld[t_reload].class, t_class))
434 && ((in_p && rld[t_reload].inmode == t_mode)
435 || (! in_p && rld[t_reload].outmode == t_mode))
436 && ((in_p && (rld[t_reload].secondary_in_icode
437 == CODE_FOR_nothing))
438 || (! in_p &&(rld[t_reload].secondary_out_icode
439 == CODE_FOR_nothing)))
440 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
441 && MERGABLE_RELOADS (secondary_type,
442 rld[t_reload].when_needed,
443 opnum, rld[t_reload].opnum))
444 {
445 if (in_p)
446 rld[t_reload].inmode = t_mode;
447 if (! in_p)
448 rld[t_reload].outmode = t_mode;
449
450 if (reg_class_subset_p (t_class, rld[t_reload].class))
451 rld[t_reload].class = t_class;
452
453 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
454 rld[t_reload].optional &= optional;
455 rld[t_reload].secondary_p = 1;
456 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
457 opnum, rld[t_reload].opnum))
458 rld[t_reload].when_needed = RELOAD_OTHER;
459 }
460
461 if (t_reload == n_reloads)
462 {
463 /* We need to make a new tertiary reload for this register class. */
464 rld[t_reload].in = rld[t_reload].out = 0;
465 rld[t_reload].class = t_class;
466 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
467 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
468 rld[t_reload].reg_rtx = 0;
469 rld[t_reload].optional = optional;
470 rld[t_reload].inc = 0;
471 /* Maybe we could combine these, but it seems too tricky. */
472 rld[t_reload].nocombine = 1;
473 rld[t_reload].in_reg = 0;
474 rld[t_reload].out_reg = 0;
475 rld[t_reload].opnum = opnum;
476 rld[t_reload].when_needed = secondary_type;
477 rld[t_reload].secondary_in_reload = -1;
478 rld[t_reload].secondary_out_reload = -1;
479 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
480 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
481 rld[t_reload].secondary_p = 1;
482
483 n_reloads++;
484 }
485 }
486
487 /* See if we can reuse an existing secondary reload. */
488 for (s_reload = 0; s_reload < n_reloads; s_reload++)
489 if (rld[s_reload].secondary_p
490 && (reg_class_subset_p (class, rld[s_reload].class)
491 || reg_class_subset_p (rld[s_reload].class, class))
492 && ((in_p && rld[s_reload].inmode == mode)
493 || (! in_p && rld[s_reload].outmode == mode))
494 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
495 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
496 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
497 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
498 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
499 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
500 opnum, rld[s_reload].opnum))
501 {
502 if (in_p)
503 rld[s_reload].inmode = mode;
504 if (! in_p)
505 rld[s_reload].outmode = mode;
506
507 if (reg_class_subset_p (class, rld[s_reload].class))
508 rld[s_reload].class = class;
509
510 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
511 rld[s_reload].optional &= optional;
512 rld[s_reload].secondary_p = 1;
513 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
514 opnum, rld[s_reload].opnum))
515 rld[s_reload].when_needed = RELOAD_OTHER;
516 }
517
518 if (s_reload == n_reloads)
519 {
520 #ifdef SECONDARY_MEMORY_NEEDED
521 /* If we need a memory location to copy between the two reload regs,
522 set it up now. Note that we do the input case before making
523 the reload and the output case after. This is due to the
524 way reloads are output. */
525
526 if (in_p && icode == CODE_FOR_nothing
527 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
528 {
529 get_secondary_mem (x, reload_mode, opnum, type);
530
531 /* We may have just added new reloads. Make sure we add
532 the new reload at the end. */
533 s_reload = n_reloads;
534 }
535 #endif
536
537 /* We need to make a new secondary reload for this register class. */
538 rld[s_reload].in = rld[s_reload].out = 0;
539 rld[s_reload].class = class;
540
541 rld[s_reload].inmode = in_p ? mode : VOIDmode;
542 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
543 rld[s_reload].reg_rtx = 0;
544 rld[s_reload].optional = optional;
545 rld[s_reload].inc = 0;
546 /* Maybe we could combine these, but it seems too tricky. */
547 rld[s_reload].nocombine = 1;
548 rld[s_reload].in_reg = 0;
549 rld[s_reload].out_reg = 0;
550 rld[s_reload].opnum = opnum;
551 rld[s_reload].when_needed = secondary_type;
552 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
553 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
554 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
555 rld[s_reload].secondary_out_icode
556 = ! in_p ? t_icode : CODE_FOR_nothing;
557 rld[s_reload].secondary_p = 1;
558
559 n_reloads++;
560
561 #ifdef SECONDARY_MEMORY_NEEDED
562 if (! in_p && icode == CODE_FOR_nothing
563 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
564 get_secondary_mem (x, mode, opnum, type);
565 #endif
566 }
567
568 *picode = icode;
569 return s_reload;
570 }
571 #endif /* HAVE_SECONDARY_RELOADS */
572 \f
573 #ifdef SECONDARY_MEMORY_NEEDED
574
575 /* Return a memory location that will be used to copy X in mode MODE.
576 If we haven't already made a location for this mode in this insn,
577 call find_reloads_address on the location being returned. */
578
579 rtx
580 get_secondary_mem (x, mode, opnum, type)
581 rtx x ATTRIBUTE_UNUSED;
582 enum machine_mode mode;
583 int opnum;
584 enum reload_type type;
585 {
586 rtx loc;
587 int mem_valid;
588
589 /* By default, if MODE is narrower than a word, widen it to a word.
590 This is required because most machines that require these memory
591 locations do not support short load and stores from all registers
592 (e.g., FP registers). */
593
594 #ifdef SECONDARY_MEMORY_NEEDED_MODE
595 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
596 #else
597 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
598 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
599 #endif
600
601 /* If we already have made a MEM for this operand in MODE, return it. */
602 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
603 return secondary_memlocs_elim[(int) mode][opnum];
604
605 /* If this is the first time we've tried to get a MEM for this mode,
606 allocate a new one. `something_changed' in reload will get set
607 by noticing that the frame size has changed. */
608
609 if (secondary_memlocs[(int) mode] == 0)
610 {
611 #ifdef SECONDARY_MEMORY_NEEDED_RTX
612 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
613 #else
614 secondary_memlocs[(int) mode]
615 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
616 #endif
617 }
618
619 /* Get a version of the address doing any eliminations needed. If that
620 didn't give us a new MEM, make a new one if it isn't valid. */
621
622 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
623 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
624
625 if (! mem_valid && loc == secondary_memlocs[(int) mode])
626 loc = copy_rtx (loc);
627
628 /* The only time the call below will do anything is if the stack
629 offset is too large. In that case IND_LEVELS doesn't matter, so we
630 can just pass a zero. Adjust the type to be the address of the
631 corresponding object. If the address was valid, save the eliminated
632 address. If it wasn't valid, we need to make a reload each time, so
633 don't save it. */
634
635 if (! mem_valid)
636 {
637 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
638 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
639 : RELOAD_OTHER);
640
641 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
642 opnum, type, 0, 0);
643 }
644
645 secondary_memlocs_elim[(int) mode][opnum] = loc;
646 return loc;
647 }
648
649 /* Clear any secondary memory locations we've made. */
650
651 void
652 clear_secondary_mem ()
653 {
654 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
655 }
656 #endif /* SECONDARY_MEMORY_NEEDED */
657 \f
658 /* Find the largest class for which every register number plus N is valid in
659 M1 (if in range). Abort if no such class exists. */
660
661 static enum reg_class
662 find_valid_class (m1, n)
663 enum machine_mode m1 ATTRIBUTE_UNUSED;
664 int n;
665 {
666 int class;
667 int regno;
668 enum reg_class best_class = NO_REGS;
669 unsigned int best_size = 0;
670
671 for (class = 1; class < N_REG_CLASSES; class++)
672 {
673 int bad = 0;
674 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
675 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
676 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
677 && ! HARD_REGNO_MODE_OK (regno + n, m1))
678 bad = 1;
679
680 if (! bad && reg_class_size[class] > best_size)
681 best_class = class, best_size = reg_class_size[class];
682 }
683
684 if (best_size == 0)
685 abort ();
686
687 return best_class;
688 }
689 \f
690 /* Return the number of a previously made reload that can be combined with
691 a new one, or n_reloads if none of the existing reloads can be used.
692 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
693 push_reload, they determine the kind of the new reload that we try to
694 combine. P_IN points to the corresponding value of IN, which can be
695 modified by this function.
696 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
697 static int
698 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
699 rtx *p_in, out;
700 enum reg_class class;
701 enum reload_type type;
702 int opnum, dont_share;
703 {
704 rtx in = *p_in;
705 int i;
706 /* We can't merge two reloads if the output of either one is
707 earlyclobbered. */
708
709 if (earlyclobber_operand_p (out))
710 return n_reloads;
711
712 /* We can use an existing reload if the class is right
713 and at least one of IN and OUT is a match
714 and the other is at worst neutral.
715 (A zero compared against anything is neutral.)
716
717 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
718 for the same thing since that can cause us to need more reload registers
719 than we otherwise would. */
720
721 for (i = 0; i < n_reloads; i++)
722 if ((reg_class_subset_p (class, rld[i].class)
723 || reg_class_subset_p (rld[i].class, class))
724 /* If the existing reload has a register, it must fit our class. */
725 && (rld[i].reg_rtx == 0
726 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
727 true_regnum (rld[i].reg_rtx)))
728 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
729 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
730 || (out != 0 && MATCHES (rld[i].out, out)
731 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
732 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
733 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
734 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
735 return i;
736
737 /* Reloading a plain reg for input can match a reload to postincrement
738 that reg, since the postincrement's value is the right value.
739 Likewise, it can match a preincrement reload, since we regard
740 the preincrementation as happening before any ref in this insn
741 to that register. */
742 for (i = 0; i < n_reloads; i++)
743 if ((reg_class_subset_p (class, rld[i].class)
744 || reg_class_subset_p (rld[i].class, class))
745 /* If the existing reload has a register, it must fit our
746 class. */
747 && (rld[i].reg_rtx == 0
748 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
749 true_regnum (rld[i].reg_rtx)))
750 && out == 0 && rld[i].out == 0 && rld[i].in != 0
751 && ((GET_CODE (in) == REG
752 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
753 && MATCHES (XEXP (rld[i].in, 0), in))
754 || (GET_CODE (rld[i].in) == REG
755 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
756 && MATCHES (XEXP (in, 0), rld[i].in)))
757 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
758 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
759 && MERGABLE_RELOADS (type, rld[i].when_needed,
760 opnum, rld[i].opnum))
761 {
762 /* Make sure reload_in ultimately has the increment,
763 not the plain register. */
764 if (GET_CODE (in) == REG)
765 *p_in = rld[i].in;
766 return i;
767 }
768 return n_reloads;
769 }
770
771 /* Return nonzero if X is a SUBREG which will require reloading of its
772 SUBREG_REG expression. */
773
774 static int
775 reload_inner_reg_of_subreg (x, mode)
776 rtx x;
777 enum machine_mode mode;
778 {
779 rtx inner;
780
781 /* Only SUBREGs are problematical. */
782 if (GET_CODE (x) != SUBREG)
783 return 0;
784
785 inner = SUBREG_REG (x);
786
787 /* If INNER is a constant, then INNER must be reloaded. */
788 if (CONSTANT_P (inner))
789 return 1;
790
791 /* If INNER is not a hard register, then INNER will not need to
792 be reloaded. */
793 if (GET_CODE (inner) != REG
794 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
795 return 0;
796
797 /* If INNER is not ok for MODE, then INNER will need reloading. */
798 if (! HARD_REGNO_MODE_OK (REGNO (inner) + SUBREG_WORD (x), mode))
799 return 1;
800
801 /* If the outer part is a word or smaller, INNER larger than a
802 word and the number of regs for INNER is not the same as the
803 number of words in INNER, then INNER will need reloading. */
804 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
805 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
806 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
807 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
808 }
809
810 /* Record one reload that needs to be performed.
811 IN is an rtx saying where the data are to be found before this instruction.
812 OUT says where they must be stored after the instruction.
813 (IN is zero for data not read, and OUT is zero for data not written.)
814 INLOC and OUTLOC point to the places in the instructions where
815 IN and OUT were found.
816 If IN and OUT are both non-zero, it means the same register must be used
817 to reload both IN and OUT.
818
819 CLASS is a register class required for the reloaded data.
820 INMODE is the machine mode that the instruction requires
821 for the reg that replaces IN and OUTMODE is likewise for OUT.
822
823 If IN is zero, then OUT's location and mode should be passed as
824 INLOC and INMODE.
825
826 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
827
828 OPTIONAL nonzero means this reload does not need to be performed:
829 it can be discarded if that is more convenient.
830
831 OPNUM and TYPE say what the purpose of this reload is.
832
833 The return value is the reload-number for this reload.
834
835 If both IN and OUT are nonzero, in some rare cases we might
836 want to make two separate reloads. (Actually we never do this now.)
837 Therefore, the reload-number for OUT is stored in
838 output_reloadnum when we return; the return value applies to IN.
839 Usually (presently always), when IN and OUT are nonzero,
840 the two reload-numbers are equal, but the caller should be careful to
841 distinguish them. */
842
843 static int
844 push_reload (in, out, inloc, outloc, class,
845 inmode, outmode, strict_low, optional, opnum, type)
846 rtx in, out;
847 rtx *inloc, *outloc;
848 enum reg_class class;
849 enum machine_mode inmode, outmode;
850 int strict_low;
851 int optional;
852 int opnum;
853 enum reload_type type;
854 {
855 register int i;
856 int dont_share = 0;
857 int dont_remove_subreg = 0;
858 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
859 int secondary_in_reload = -1, secondary_out_reload = -1;
860 enum insn_code secondary_in_icode = CODE_FOR_nothing;
861 enum insn_code secondary_out_icode = CODE_FOR_nothing;
862
863 /* INMODE and/or OUTMODE could be VOIDmode if no mode
864 has been specified for the operand. In that case,
865 use the operand's mode as the mode to reload. */
866 if (inmode == VOIDmode && in != 0)
867 inmode = GET_MODE (in);
868 if (outmode == VOIDmode && out != 0)
869 outmode = GET_MODE (out);
870
871 /* If IN is a pseudo register everywhere-equivalent to a constant, and
872 it is not in a hard register, reload straight from the constant,
873 since we want to get rid of such pseudo registers.
874 Often this is done earlier, but not always in find_reloads_address. */
875 if (in != 0 && GET_CODE (in) == REG)
876 {
877 register int regno = REGNO (in);
878
879 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
880 && reg_equiv_constant[regno] != 0)
881 in = reg_equiv_constant[regno];
882 }
883
884 /* Likewise for OUT. Of course, OUT will never be equivalent to
885 an actual constant, but it might be equivalent to a memory location
886 (in the case of a parameter). */
887 if (out != 0 && GET_CODE (out) == REG)
888 {
889 register int regno = REGNO (out);
890
891 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
892 && reg_equiv_constant[regno] != 0)
893 out = reg_equiv_constant[regno];
894 }
895
896 /* If we have a read-write operand with an address side-effect,
897 change either IN or OUT so the side-effect happens only once. */
898 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
899 {
900 if (GET_CODE (XEXP (in, 0)) == POST_INC
901 || GET_CODE (XEXP (in, 0)) == POST_DEC
902 || GET_CODE (XEXP (in, 0)) == POST_MODIFY)
903 {
904 rtx new = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
905
906 MEM_COPY_ATTRIBUTES (new, in);
907 in = new;
908 }
909 if (GET_CODE (XEXP (in, 0)) == PRE_INC
910 || GET_CODE (XEXP (in, 0)) == PRE_DEC
911 || GET_CODE (XEXP (in, 0)) == PRE_MODIFY)
912 {
913 rtx new = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
914
915 MEM_COPY_ATTRIBUTES (new, out);
916 out = new;
917 }
918 }
919
920 /* If we are reloading a (SUBREG constant ...), really reload just the
921 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
922 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
923 a pseudo and hence will become a MEM) with M1 wider than M2 and the
924 register is a pseudo, also reload the inside expression.
925 For machines that extend byte loads, do this for any SUBREG of a pseudo
926 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
927 M2 is an integral mode that gets extended when loaded.
928 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
929 either M1 is not valid for R or M2 is wider than a word but we only
930 need one word to store an M2-sized quantity in R.
931 (However, if OUT is nonzero, we need to reload the reg *and*
932 the subreg, so do nothing here, and let following statement handle it.)
933
934 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
935 we can't handle it here because CONST_INT does not indicate a mode.
936
937 Similarly, we must reload the inside expression if we have a
938 STRICT_LOW_PART (presumably, in == out in the cas).
939
940 Also reload the inner expression if it does not require a secondary
941 reload but the SUBREG does.
942
943 Finally, reload the inner expression if it is a register that is in
944 the class whose registers cannot be referenced in a different size
945 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
946 cannot reload just the inside since we might end up with the wrong
947 register class. But if it is inside a STRICT_LOW_PART, we have
948 no choice, so we hope we do get the right register class there. */
949
950 if (in != 0 && GET_CODE (in) == SUBREG
951 && (SUBREG_WORD (in) == 0 || strict_low)
952 #ifdef CLASS_CANNOT_CHANGE_MODE
953 && class != CLASS_CANNOT_CHANGE_MODE
954 #endif
955 && (CONSTANT_P (SUBREG_REG (in))
956 || GET_CODE (SUBREG_REG (in)) == PLUS
957 || strict_low
958 || (((GET_CODE (SUBREG_REG (in)) == REG
959 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
960 || GET_CODE (SUBREG_REG (in)) == MEM)
961 && ((GET_MODE_SIZE (inmode)
962 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
963 #ifdef LOAD_EXTEND_OP
964 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
965 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
966 <= UNITS_PER_WORD)
967 && (GET_MODE_SIZE (inmode)
968 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
969 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
970 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
971 #endif
972 #ifdef WORD_REGISTER_OPERATIONS
973 || ((GET_MODE_SIZE (inmode)
974 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
975 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
976 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
977 / UNITS_PER_WORD)))
978 #endif
979 ))
980 || (GET_CODE (SUBREG_REG (in)) == REG
981 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
982 /* The case where out is nonzero
983 is handled differently in the following statement. */
984 && (out == 0 || SUBREG_WORD (in) == 0)
985 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
986 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
987 > UNITS_PER_WORD)
988 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
989 / UNITS_PER_WORD)
990 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
991 GET_MODE (SUBREG_REG (in)))))
992 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
993 + SUBREG_WORD (in)),
994 inmode)))
995 #ifdef SECONDARY_INPUT_RELOAD_CLASS
996 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
997 && (SECONDARY_INPUT_RELOAD_CLASS (class,
998 GET_MODE (SUBREG_REG (in)),
999 SUBREG_REG (in))
1000 == NO_REGS))
1001 #endif
1002 #ifdef CLASS_CANNOT_CHANGE_MODE
1003 || (GET_CODE (SUBREG_REG (in)) == REG
1004 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1005 && (TEST_HARD_REG_BIT
1006 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1007 REGNO (SUBREG_REG (in))))
1008 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1009 inmode))
1010 #endif
1011 ))
1012 {
1013 in_subreg_loc = inloc;
1014 inloc = &SUBREG_REG (in);
1015 in = *inloc;
1016 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1017 if (GET_CODE (in) == MEM)
1018 /* This is supposed to happen only for paradoxical subregs made by
1019 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1020 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1021 abort ();
1022 #endif
1023 inmode = GET_MODE (in);
1024 }
1025
1026 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1027 either M1 is not valid for R or M2 is wider than a word but we only
1028 need one word to store an M2-sized quantity in R.
1029
1030 However, we must reload the inner reg *as well as* the subreg in
1031 that case. */
1032
1033 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1034 code above. This can happen if SUBREG_WORD != 0. */
1035
1036 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1037 {
1038 /* This relies on the fact that emit_reload_insns outputs the
1039 instructions for input reloads of type RELOAD_OTHER in the same
1040 order as the reloads. Thus if the outer reload is also of type
1041 RELOAD_OTHER, we are guaranteed that this inner reload will be
1042 output before the outer reload. */
1043 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
1044 find_valid_class (inmode, SUBREG_WORD (in)),
1045 VOIDmode, VOIDmode, 0, 0, opnum, type);
1046 dont_remove_subreg = 1;
1047 }
1048
1049 /* Similarly for paradoxical and problematical SUBREGs on the output.
1050 Note that there is no reason we need worry about the previous value
1051 of SUBREG_REG (out); even if wider than out,
1052 storing in a subreg is entitled to clobber it all
1053 (except in the case of STRICT_LOW_PART,
1054 and in that case the constraint should label it input-output.) */
1055 if (out != 0 && GET_CODE (out) == SUBREG
1056 && (SUBREG_WORD (out) == 0 || strict_low)
1057 #ifdef CLASS_CANNOT_CHANGE_MODE
1058 && class != CLASS_CANNOT_CHANGE_MODE
1059 #endif
1060 && (CONSTANT_P (SUBREG_REG (out))
1061 || strict_low
1062 || (((GET_CODE (SUBREG_REG (out)) == REG
1063 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1064 || GET_CODE (SUBREG_REG (out)) == MEM)
1065 && ((GET_MODE_SIZE (outmode)
1066 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1067 #ifdef WORD_REGISTER_OPERATIONS
1068 || ((GET_MODE_SIZE (outmode)
1069 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1070 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1071 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1072 / UNITS_PER_WORD)))
1073 #endif
1074 ))
1075 || (GET_CODE (SUBREG_REG (out)) == REG
1076 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1077 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1078 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1079 > UNITS_PER_WORD)
1080 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1081 / UNITS_PER_WORD)
1082 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1083 GET_MODE (SUBREG_REG (out)))))
1084 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1085 + SUBREG_WORD (out)),
1086 outmode)))
1087 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1088 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1089 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1090 GET_MODE (SUBREG_REG (out)),
1091 SUBREG_REG (out))
1092 == NO_REGS))
1093 #endif
1094 #ifdef CLASS_CANNOT_CHANGE_MODE
1095 || (GET_CODE (SUBREG_REG (out)) == REG
1096 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1097 && (TEST_HARD_REG_BIT
1098 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1099 REGNO (SUBREG_REG (out))))
1100 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1101 outmode))
1102 #endif
1103 ))
1104 {
1105 out_subreg_loc = outloc;
1106 outloc = &SUBREG_REG (out);
1107 out = *outloc;
1108 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1109 if (GET_CODE (out) == MEM
1110 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1111 abort ();
1112 #endif
1113 outmode = GET_MODE (out);
1114 }
1115
1116 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1117 either M1 is not valid for R or M2 is wider than a word but we only
1118 need one word to store an M2-sized quantity in R.
1119
1120 However, we must reload the inner reg *as well as* the subreg in
1121 that case. In this case, the inner reg is an in-out reload. */
1122
1123 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1124 {
1125 /* This relies on the fact that emit_reload_insns outputs the
1126 instructions for output reloads of type RELOAD_OTHER in reverse
1127 order of the reloads. Thus if the outer reload is also of type
1128 RELOAD_OTHER, we are guaranteed that this inner reload will be
1129 output after the outer reload. */
1130 dont_remove_subreg = 1;
1131 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1132 &SUBREG_REG (out),
1133 find_valid_class (outmode, SUBREG_WORD (out)),
1134 VOIDmode, VOIDmode, 0, 0,
1135 opnum, RELOAD_OTHER);
1136 }
1137
1138 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1139 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1140 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1141 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1142 dont_share = 1;
1143
1144 /* If IN is a SUBREG of a hard register, make a new REG. This
1145 simplifies some of the cases below. */
1146
1147 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1148 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1149 && ! dont_remove_subreg)
1150 in = gen_rtx_REG (GET_MODE (in),
1151 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1152
1153 /* Similarly for OUT. */
1154 if (out != 0 && GET_CODE (out) == SUBREG
1155 && GET_CODE (SUBREG_REG (out)) == REG
1156 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1157 && ! dont_remove_subreg)
1158 out = gen_rtx_REG (GET_MODE (out),
1159 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1160
1161 /* Narrow down the class of register wanted if that is
1162 desirable on this machine for efficiency. */
1163 if (in != 0)
1164 class = PREFERRED_RELOAD_CLASS (in, class);
1165
1166 /* Output reloads may need analogous treatment, different in detail. */
1167 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1168 if (out != 0)
1169 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1170 #endif
1171
1172 /* Make sure we use a class that can handle the actual pseudo
1173 inside any subreg. For example, on the 386, QImode regs
1174 can appear within SImode subregs. Although GENERAL_REGS
1175 can handle SImode, QImode needs a smaller class. */
1176 #ifdef LIMIT_RELOAD_CLASS
1177 if (in_subreg_loc)
1178 class = LIMIT_RELOAD_CLASS (inmode, class);
1179 else if (in != 0 && GET_CODE (in) == SUBREG)
1180 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1181
1182 if (out_subreg_loc)
1183 class = LIMIT_RELOAD_CLASS (outmode, class);
1184 if (out != 0 && GET_CODE (out) == SUBREG)
1185 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1186 #endif
1187
1188 /* Verify that this class is at least possible for the mode that
1189 is specified. */
1190 if (this_insn_is_asm)
1191 {
1192 enum machine_mode mode;
1193 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1194 mode = inmode;
1195 else
1196 mode = outmode;
1197 if (mode == VOIDmode)
1198 {
1199 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1200 mode = word_mode;
1201 if (in != 0)
1202 inmode = word_mode;
1203 if (out != 0)
1204 outmode = word_mode;
1205 }
1206 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1207 if (HARD_REGNO_MODE_OK (i, mode)
1208 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1209 {
1210 int nregs = HARD_REGNO_NREGS (i, mode);
1211
1212 int j;
1213 for (j = 1; j < nregs; j++)
1214 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1215 break;
1216 if (j == nregs)
1217 break;
1218 }
1219 if (i == FIRST_PSEUDO_REGISTER)
1220 {
1221 error_for_asm (this_insn, "impossible register constraint in `asm'");
1222 class = ALL_REGS;
1223 }
1224 }
1225
1226 /* Optional output reloads are always OK even if we have no register class,
1227 since the function of these reloads is only to have spill_reg_store etc.
1228 set, so that the storing insn can be deleted later. */
1229 if (class == NO_REGS
1230 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1231 abort ();
1232
1233 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1234
1235 if (i == n_reloads)
1236 {
1237 /* See if we need a secondary reload register to move between CLASS
1238 and IN or CLASS and OUT. Get the icode and push any required reloads
1239 needed for each of them if so. */
1240
1241 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1242 if (in != 0)
1243 secondary_in_reload
1244 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1245 &secondary_in_icode);
1246 #endif
1247
1248 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1249 if (out != 0 && GET_CODE (out) != SCRATCH)
1250 secondary_out_reload
1251 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1252 type, &secondary_out_icode);
1253 #endif
1254
1255 /* We found no existing reload suitable for re-use.
1256 So add an additional reload. */
1257
1258 #ifdef SECONDARY_MEMORY_NEEDED
1259 /* If a memory location is needed for the copy, make one. */
1260 if (in != 0 && GET_CODE (in) == REG
1261 && REGNO (in) < FIRST_PSEUDO_REGISTER
1262 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1263 class, inmode))
1264 get_secondary_mem (in, inmode, opnum, type);
1265 #endif
1266
1267 i = n_reloads;
1268 rld[i].in = in;
1269 rld[i].out = out;
1270 rld[i].class = class;
1271 rld[i].inmode = inmode;
1272 rld[i].outmode = outmode;
1273 rld[i].reg_rtx = 0;
1274 rld[i].optional = optional;
1275 rld[i].inc = 0;
1276 rld[i].nocombine = 0;
1277 rld[i].in_reg = inloc ? *inloc : 0;
1278 rld[i].out_reg = outloc ? *outloc : 0;
1279 rld[i].opnum = opnum;
1280 rld[i].when_needed = type;
1281 rld[i].secondary_in_reload = secondary_in_reload;
1282 rld[i].secondary_out_reload = secondary_out_reload;
1283 rld[i].secondary_in_icode = secondary_in_icode;
1284 rld[i].secondary_out_icode = secondary_out_icode;
1285 rld[i].secondary_p = 0;
1286
1287 n_reloads++;
1288
1289 #ifdef SECONDARY_MEMORY_NEEDED
1290 if (out != 0 && GET_CODE (out) == REG
1291 && REGNO (out) < FIRST_PSEUDO_REGISTER
1292 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1293 outmode))
1294 get_secondary_mem (out, outmode, opnum, type);
1295 #endif
1296 }
1297 else
1298 {
1299 /* We are reusing an existing reload,
1300 but we may have additional information for it.
1301 For example, we may now have both IN and OUT
1302 while the old one may have just one of them. */
1303
1304 /* The modes can be different. If they are, we want to reload in
1305 the larger mode, so that the value is valid for both modes. */
1306 if (inmode != VOIDmode
1307 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1308 rld[i].inmode = inmode;
1309 if (outmode != VOIDmode
1310 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1311 rld[i].outmode = outmode;
1312 if (in != 0)
1313 {
1314 rtx in_reg = inloc ? *inloc : 0;
1315 /* If we merge reloads for two distinct rtl expressions that
1316 are identical in content, there might be duplicate address
1317 reloads. Remove the extra set now, so that if we later find
1318 that we can inherit this reload, we can get rid of the
1319 address reloads altogether.
1320
1321 Do not do this if both reloads are optional since the result
1322 would be an optional reload which could potentially leave
1323 unresolved address replacements.
1324
1325 It is not sufficient to call transfer_replacements since
1326 choose_reload_regs will remove the replacements for address
1327 reloads of inherited reloads which results in the same
1328 problem. */
1329 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1330 && ! (rld[i].optional && optional))
1331 {
1332 /* We must keep the address reload with the lower operand
1333 number alive. */
1334 if (opnum > rld[i].opnum)
1335 {
1336 remove_address_replacements (in);
1337 in = rld[i].in;
1338 in_reg = rld[i].in_reg;
1339 }
1340 else
1341 remove_address_replacements (rld[i].in);
1342 }
1343 rld[i].in = in;
1344 rld[i].in_reg = in_reg;
1345 }
1346 if (out != 0)
1347 {
1348 rld[i].out = out;
1349 rld[i].out_reg = outloc ? *outloc : 0;
1350 }
1351 if (reg_class_subset_p (class, rld[i].class))
1352 rld[i].class = class;
1353 rld[i].optional &= optional;
1354 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1355 opnum, rld[i].opnum))
1356 rld[i].when_needed = RELOAD_OTHER;
1357 rld[i].opnum = MIN (rld[i].opnum, opnum);
1358 }
1359
1360 /* If the ostensible rtx being reload differs from the rtx found
1361 in the location to substitute, this reload is not safe to combine
1362 because we cannot reliably tell whether it appears in the insn. */
1363
1364 if (in != 0 && in != *inloc)
1365 rld[i].nocombine = 1;
1366
1367 #if 0
1368 /* This was replaced by changes in find_reloads_address_1 and the new
1369 function inc_for_reload, which go with a new meaning of reload_inc. */
1370
1371 /* If this is an IN/OUT reload in an insn that sets the CC,
1372 it must be for an autoincrement. It doesn't work to store
1373 the incremented value after the insn because that would clobber the CC.
1374 So we must do the increment of the value reloaded from,
1375 increment it, store it back, then decrement again. */
1376 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1377 {
1378 out = 0;
1379 rld[i].out = 0;
1380 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1381 /* If we did not find a nonzero amount-to-increment-by,
1382 that contradicts the belief that IN is being incremented
1383 in an address in this insn. */
1384 if (rld[i].inc == 0)
1385 abort ();
1386 }
1387 #endif
1388
1389 /* If we will replace IN and OUT with the reload-reg,
1390 record where they are located so that substitution need
1391 not do a tree walk. */
1392
1393 if (replace_reloads)
1394 {
1395 if (inloc != 0)
1396 {
1397 register struct replacement *r = &replacements[n_replacements++];
1398 r->what = i;
1399 r->subreg_loc = in_subreg_loc;
1400 r->where = inloc;
1401 r->mode = inmode;
1402 }
1403 if (outloc != 0 && outloc != inloc)
1404 {
1405 register struct replacement *r = &replacements[n_replacements++];
1406 r->what = i;
1407 r->where = outloc;
1408 r->subreg_loc = out_subreg_loc;
1409 r->mode = outmode;
1410 }
1411 }
1412
1413 /* If this reload is just being introduced and it has both
1414 an incoming quantity and an outgoing quantity that are
1415 supposed to be made to match, see if either one of the two
1416 can serve as the place to reload into.
1417
1418 If one of them is acceptable, set rld[i].reg_rtx
1419 to that one. */
1420
1421 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1422 {
1423 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1424 inmode, outmode,
1425 rld[i].class, i,
1426 earlyclobber_operand_p (out));
1427
1428 /* If the outgoing register already contains the same value
1429 as the incoming one, we can dispense with loading it.
1430 The easiest way to tell the caller that is to give a phony
1431 value for the incoming operand (same as outgoing one). */
1432 if (rld[i].reg_rtx == out
1433 && (GET_CODE (in) == REG || CONSTANT_P (in))
1434 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1435 static_reload_reg_p, i, inmode))
1436 rld[i].in = out;
1437 }
1438
1439 /* If this is an input reload and the operand contains a register that
1440 dies in this insn and is used nowhere else, see if it is the right class
1441 to be used for this reload. Use it if so. (This occurs most commonly
1442 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1443 this if it is also an output reload that mentions the register unless
1444 the output is a SUBREG that clobbers an entire register.
1445
1446 Note that the operand might be one of the spill regs, if it is a
1447 pseudo reg and we are in a block where spilling has not taken place.
1448 But if there is no spilling in this block, that is OK.
1449 An explicitly used hard reg cannot be a spill reg. */
1450
1451 if (rld[i].reg_rtx == 0 && in != 0)
1452 {
1453 rtx note;
1454 int regno;
1455
1456 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1457 if (REG_NOTE_KIND (note) == REG_DEAD
1458 && GET_CODE (XEXP (note, 0)) == REG
1459 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1460 && reg_mentioned_p (XEXP (note, 0), in)
1461 && ! refers_to_regno_for_reload_p (regno,
1462 (regno
1463 + HARD_REGNO_NREGS (regno,
1464 inmode)),
1465 PATTERN (this_insn), inloc)
1466 /* If this is also an output reload, IN cannot be used as
1467 the reload register if it is set in this insn unless IN
1468 is also OUT. */
1469 && (out == 0 || in == out
1470 || ! hard_reg_set_here_p (regno,
1471 (regno
1472 + HARD_REGNO_NREGS (regno,
1473 inmode)),
1474 PATTERN (this_insn)))
1475 /* ??? Why is this code so different from the previous?
1476 Is there any simple coherent way to describe the two together?
1477 What's going on here. */
1478 && (in != out
1479 || (GET_CODE (in) == SUBREG
1480 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1481 / UNITS_PER_WORD)
1482 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1483 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1484 /* Make sure the operand fits in the reg that dies. */
1485 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1486 && HARD_REGNO_MODE_OK (regno, inmode)
1487 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1488 && HARD_REGNO_MODE_OK (regno, outmode))
1489 {
1490 unsigned int offs;
1491 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1492 HARD_REGNO_NREGS (regno, outmode));
1493
1494 for (offs = 0; offs < nregs; offs++)
1495 if (fixed_regs[regno + offs]
1496 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1497 regno + offs))
1498 break;
1499
1500 if (offs == nregs)
1501 {
1502 rld[i].reg_rtx = gen_rtx_REG (inmode, regno);
1503 break;
1504 }
1505 }
1506 }
1507
1508 if (out)
1509 output_reloadnum = i;
1510
1511 return i;
1512 }
1513
1514 /* Record an additional place we must replace a value
1515 for which we have already recorded a reload.
1516 RELOADNUM is the value returned by push_reload
1517 when the reload was recorded.
1518 This is used in insn patterns that use match_dup. */
1519
1520 static void
1521 push_replacement (loc, reloadnum, mode)
1522 rtx *loc;
1523 int reloadnum;
1524 enum machine_mode mode;
1525 {
1526 if (replace_reloads)
1527 {
1528 register struct replacement *r = &replacements[n_replacements++];
1529 r->what = reloadnum;
1530 r->where = loc;
1531 r->subreg_loc = 0;
1532 r->mode = mode;
1533 }
1534 }
1535 \f
1536 /* Transfer all replacements that used to be in reload FROM to be in
1537 reload TO. */
1538
1539 void
1540 transfer_replacements (to, from)
1541 int to, from;
1542 {
1543 int i;
1544
1545 for (i = 0; i < n_replacements; i++)
1546 if (replacements[i].what == from)
1547 replacements[i].what = to;
1548 }
1549 \f
1550 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1551 or a subpart of it. If we have any replacements registered for IN_RTX,
1552 cancel the reloads that were supposed to load them.
1553 Return non-zero if we canceled any reloads. */
1554 int
1555 remove_address_replacements (in_rtx)
1556 rtx in_rtx;
1557 {
1558 int i, j;
1559 char reload_flags[MAX_RELOADS];
1560 int something_changed = 0;
1561
1562 bzero (reload_flags, sizeof reload_flags);
1563 for (i = 0, j = 0; i < n_replacements; i++)
1564 {
1565 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1566 reload_flags[replacements[i].what] |= 1;
1567 else
1568 {
1569 replacements[j++] = replacements[i];
1570 reload_flags[replacements[i].what] |= 2;
1571 }
1572 }
1573 /* Note that the following store must be done before the recursive calls. */
1574 n_replacements = j;
1575
1576 for (i = n_reloads - 1; i >= 0; i--)
1577 {
1578 if (reload_flags[i] == 1)
1579 {
1580 deallocate_reload_reg (i);
1581 remove_address_replacements (rld[i].in);
1582 rld[i].in = 0;
1583 something_changed = 1;
1584 }
1585 }
1586 return something_changed;
1587 }
1588 \f
1589 /* If there is only one output reload, and it is not for an earlyclobber
1590 operand, try to combine it with a (logically unrelated) input reload
1591 to reduce the number of reload registers needed.
1592
1593 This is safe if the input reload does not appear in
1594 the value being output-reloaded, because this implies
1595 it is not needed any more once the original insn completes.
1596
1597 If that doesn't work, see we can use any of the registers that
1598 die in this insn as a reload register. We can if it is of the right
1599 class and does not appear in the value being output-reloaded. */
1600
1601 static void
1602 combine_reloads ()
1603 {
1604 int i;
1605 int output_reload = -1;
1606 int secondary_out = -1;
1607 rtx note;
1608
1609 /* Find the output reload; return unless there is exactly one
1610 and that one is mandatory. */
1611
1612 for (i = 0; i < n_reloads; i++)
1613 if (rld[i].out != 0)
1614 {
1615 if (output_reload >= 0)
1616 return;
1617 output_reload = i;
1618 }
1619
1620 if (output_reload < 0 || rld[output_reload].optional)
1621 return;
1622
1623 /* An input-output reload isn't combinable. */
1624
1625 if (rld[output_reload].in != 0)
1626 return;
1627
1628 /* If this reload is for an earlyclobber operand, we can't do anything. */
1629 if (earlyclobber_operand_p (rld[output_reload].out))
1630 return;
1631
1632 /* Check each input reload; can we combine it? */
1633
1634 for (i = 0; i < n_reloads; i++)
1635 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1636 /* Life span of this reload must not extend past main insn. */
1637 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1638 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1639 && rld[i].when_needed != RELOAD_OTHER
1640 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1641 == CLASS_MAX_NREGS (rld[output_reload].class,
1642 rld[output_reload].outmode))
1643 && rld[i].inc == 0
1644 && rld[i].reg_rtx == 0
1645 #ifdef SECONDARY_MEMORY_NEEDED
1646 /* Don't combine two reloads with different secondary
1647 memory locations. */
1648 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1649 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1650 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1651 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1652 #endif
1653 && (SMALL_REGISTER_CLASSES
1654 ? (rld[i].class == rld[output_reload].class)
1655 : (reg_class_subset_p (rld[i].class,
1656 rld[output_reload].class)
1657 || reg_class_subset_p (rld[output_reload].class,
1658 rld[i].class)))
1659 && (MATCHES (rld[i].in, rld[output_reload].out)
1660 /* Args reversed because the first arg seems to be
1661 the one that we imagine being modified
1662 while the second is the one that might be affected. */
1663 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1664 rld[i].in)
1665 /* However, if the input is a register that appears inside
1666 the output, then we also can't share.
1667 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1668 If the same reload reg is used for both reg 69 and the
1669 result to be stored in memory, then that result
1670 will clobber the address of the memory ref. */
1671 && ! (GET_CODE (rld[i].in) == REG
1672 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1673 rld[output_reload].out))))
1674 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1675 && (reg_class_size[(int) rld[i].class]
1676 || SMALL_REGISTER_CLASSES)
1677 /* We will allow making things slightly worse by combining an
1678 input and an output, but no worse than that. */
1679 && (rld[i].when_needed == RELOAD_FOR_INPUT
1680 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1681 {
1682 int j;
1683
1684 /* We have found a reload to combine with! */
1685 rld[i].out = rld[output_reload].out;
1686 rld[i].out_reg = rld[output_reload].out_reg;
1687 rld[i].outmode = rld[output_reload].outmode;
1688 /* Mark the old output reload as inoperative. */
1689 rld[output_reload].out = 0;
1690 /* The combined reload is needed for the entire insn. */
1691 rld[i].when_needed = RELOAD_OTHER;
1692 /* If the output reload had a secondary reload, copy it. */
1693 if (rld[output_reload].secondary_out_reload != -1)
1694 {
1695 rld[i].secondary_out_reload
1696 = rld[output_reload].secondary_out_reload;
1697 rld[i].secondary_out_icode
1698 = rld[output_reload].secondary_out_icode;
1699 }
1700
1701 #ifdef SECONDARY_MEMORY_NEEDED
1702 /* Copy any secondary MEM. */
1703 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1704 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1705 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1706 #endif
1707 /* If required, minimize the register class. */
1708 if (reg_class_subset_p (rld[output_reload].class,
1709 rld[i].class))
1710 rld[i].class = rld[output_reload].class;
1711
1712 /* Transfer all replacements from the old reload to the combined. */
1713 for (j = 0; j < n_replacements; j++)
1714 if (replacements[j].what == output_reload)
1715 replacements[j].what = i;
1716
1717 return;
1718 }
1719
1720 /* If this insn has only one operand that is modified or written (assumed
1721 to be the first), it must be the one corresponding to this reload. It
1722 is safe to use anything that dies in this insn for that output provided
1723 that it does not occur in the output (we already know it isn't an
1724 earlyclobber. If this is an asm insn, give up. */
1725
1726 if (INSN_CODE (this_insn) == -1)
1727 return;
1728
1729 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1730 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1731 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1732 return;
1733
1734 /* See if some hard register that dies in this insn and is not used in
1735 the output is the right class. Only works if the register we pick
1736 up can fully hold our output reload. */
1737 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1738 if (REG_NOTE_KIND (note) == REG_DEAD
1739 && GET_CODE (XEXP (note, 0)) == REG
1740 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1741 rld[output_reload].out)
1742 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1743 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1744 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1745 REGNO (XEXP (note, 0)))
1746 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1747 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1748 /* Ensure that a secondary or tertiary reload for this output
1749 won't want this register. */
1750 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1751 || (! (TEST_HARD_REG_BIT
1752 (reg_class_contents[(int) rld[secondary_out].class],
1753 REGNO (XEXP (note, 0))))
1754 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1755 || ! (TEST_HARD_REG_BIT
1756 (reg_class_contents[(int) rld[secondary_out].class],
1757 REGNO (XEXP (note, 0)))))))
1758 && ! fixed_regs[REGNO (XEXP (note, 0))])
1759 {
1760 rld[output_reload].reg_rtx
1761 = gen_rtx_REG (rld[output_reload].outmode,
1762 REGNO (XEXP (note, 0)));
1763 return;
1764 }
1765 }
1766 \f
1767 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1768 See if one of IN and OUT is a register that may be used;
1769 this is desirable since a spill-register won't be needed.
1770 If so, return the register rtx that proves acceptable.
1771
1772 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1773 CLASS is the register class required for the reload.
1774
1775 If FOR_REAL is >= 0, it is the number of the reload,
1776 and in some cases when it can be discovered that OUT doesn't need
1777 to be computed, clear out rld[FOR_REAL].out.
1778
1779 If FOR_REAL is -1, this should not be done, because this call
1780 is just to see if a register can be found, not to find and install it.
1781
1782 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1783 puts an additional constraint on being able to use IN for OUT since
1784 IN must not appear elsewhere in the insn (it is assumed that IN itself
1785 is safe from the earlyclobber). */
1786
1787 static rtx
1788 find_dummy_reload (real_in, real_out, inloc, outloc,
1789 inmode, outmode, class, for_real, earlyclobber)
1790 rtx real_in, real_out;
1791 rtx *inloc, *outloc;
1792 enum machine_mode inmode, outmode;
1793 enum reg_class class;
1794 int for_real;
1795 int earlyclobber;
1796 {
1797 rtx in = real_in;
1798 rtx out = real_out;
1799 int in_offset = 0;
1800 int out_offset = 0;
1801 rtx value = 0;
1802
1803 /* If operands exceed a word, we can't use either of them
1804 unless they have the same size. */
1805 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1806 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1807 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1808 return 0;
1809
1810 /* Find the inside of any subregs. */
1811 while (GET_CODE (out) == SUBREG)
1812 {
1813 out_offset = SUBREG_WORD (out);
1814 out = SUBREG_REG (out);
1815 }
1816 while (GET_CODE (in) == SUBREG)
1817 {
1818 in_offset = SUBREG_WORD (in);
1819 in = SUBREG_REG (in);
1820 }
1821
1822 /* Narrow down the reg class, the same way push_reload will;
1823 otherwise we might find a dummy now, but push_reload won't. */
1824 class = PREFERRED_RELOAD_CLASS (in, class);
1825
1826 /* See if OUT will do. */
1827 if (GET_CODE (out) == REG
1828 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1829 {
1830 unsigned int regno = REGNO (out) + out_offset;
1831 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1832 rtx saved_rtx;
1833
1834 /* When we consider whether the insn uses OUT,
1835 ignore references within IN. They don't prevent us
1836 from copying IN into OUT, because those refs would
1837 move into the insn that reloads IN.
1838
1839 However, we only ignore IN in its role as this reload.
1840 If the insn uses IN elsewhere and it contains OUT,
1841 that counts. We can't be sure it's the "same" operand
1842 so it might not go through this reload. */
1843 saved_rtx = *inloc;
1844 *inloc = const0_rtx;
1845
1846 if (regno < FIRST_PSEUDO_REGISTER
1847 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1848 PATTERN (this_insn), outloc))
1849 {
1850 unsigned int i;
1851
1852 for (i = 0; i < nwords; i++)
1853 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1854 regno + i))
1855 break;
1856
1857 if (i == nwords)
1858 {
1859 if (GET_CODE (real_out) == REG)
1860 value = real_out;
1861 else
1862 value = gen_rtx_REG (outmode, regno);
1863 }
1864 }
1865
1866 *inloc = saved_rtx;
1867 }
1868
1869 /* Consider using IN if OUT was not acceptable
1870 or if OUT dies in this insn (like the quotient in a divmod insn).
1871 We can't use IN unless it is dies in this insn,
1872 which means we must know accurately which hard regs are live.
1873 Also, the result can't go in IN if IN is used within OUT,
1874 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1875 if (hard_regs_live_known
1876 && GET_CODE (in) == REG
1877 && REGNO (in) < FIRST_PSEUDO_REGISTER
1878 && (value == 0
1879 || find_reg_note (this_insn, REG_UNUSED, real_out))
1880 && find_reg_note (this_insn, REG_DEAD, real_in)
1881 && !fixed_regs[REGNO (in)]
1882 && HARD_REGNO_MODE_OK (REGNO (in),
1883 /* The only case where out and real_out might
1884 have different modes is where real_out
1885 is a subreg, and in that case, out
1886 has a real mode. */
1887 (GET_MODE (out) != VOIDmode
1888 ? GET_MODE (out) : outmode)))
1889 {
1890 unsigned int regno = REGNO (in) + in_offset;
1891 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1892
1893 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1894 && ! hard_reg_set_here_p (regno, regno + nwords,
1895 PATTERN (this_insn))
1896 && (! earlyclobber
1897 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1898 PATTERN (this_insn), inloc)))
1899 {
1900 unsigned int i;
1901
1902 for (i = 0; i < nwords; i++)
1903 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1904 regno + i))
1905 break;
1906
1907 if (i == nwords)
1908 {
1909 /* If we were going to use OUT as the reload reg
1910 and changed our mind, it means OUT is a dummy that
1911 dies here. So don't bother copying value to it. */
1912 if (for_real >= 0 && value == real_out)
1913 rld[for_real].out = 0;
1914 if (GET_CODE (real_in) == REG)
1915 value = real_in;
1916 else
1917 value = gen_rtx_REG (inmode, regno);
1918 }
1919 }
1920 }
1921
1922 return value;
1923 }
1924 \f
1925 /* This page contains subroutines used mainly for determining
1926 whether the IN or an OUT of a reload can serve as the
1927 reload register. */
1928
1929 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1930
1931 int
1932 earlyclobber_operand_p (x)
1933 rtx x;
1934 {
1935 int i;
1936
1937 for (i = 0; i < n_earlyclobbers; i++)
1938 if (reload_earlyclobbers[i] == x)
1939 return 1;
1940
1941 return 0;
1942 }
1943
1944 /* Return 1 if expression X alters a hard reg in the range
1945 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1946 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1947 X should be the body of an instruction. */
1948
1949 static int
1950 hard_reg_set_here_p (beg_regno, end_regno, x)
1951 unsigned int beg_regno, end_regno;
1952 rtx x;
1953 {
1954 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1955 {
1956 register rtx op0 = SET_DEST (x);
1957
1958 while (GET_CODE (op0) == SUBREG)
1959 op0 = SUBREG_REG (op0);
1960 if (GET_CODE (op0) == REG)
1961 {
1962 unsigned int r = REGNO (op0);
1963
1964 /* See if this reg overlaps range under consideration. */
1965 if (r < end_regno
1966 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1967 return 1;
1968 }
1969 }
1970 else if (GET_CODE (x) == PARALLEL)
1971 {
1972 register int i = XVECLEN (x, 0) - 1;
1973
1974 for (; i >= 0; i--)
1975 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1976 return 1;
1977 }
1978
1979 return 0;
1980 }
1981
1982 /* Return 1 if ADDR is a valid memory address for mode MODE,
1983 and check that each pseudo reg has the proper kind of
1984 hard reg. */
1985
1986 int
1987 strict_memory_address_p (mode, addr)
1988 enum machine_mode mode ATTRIBUTE_UNUSED;
1989 register rtx addr;
1990 {
1991 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1992 return 0;
1993
1994 win:
1995 return 1;
1996 }
1997 \f
1998 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1999 if they are the same hard reg, and has special hacks for
2000 autoincrement and autodecrement.
2001 This is specifically intended for find_reloads to use
2002 in determining whether two operands match.
2003 X is the operand whose number is the lower of the two.
2004
2005 The value is 2 if Y contains a pre-increment that matches
2006 a non-incrementing address in X. */
2007
2008 /* ??? To be completely correct, we should arrange to pass
2009 for X the output operand and for Y the input operand.
2010 For now, we assume that the output operand has the lower number
2011 because that is natural in (SET output (... input ...)). */
2012
2013 int
2014 operands_match_p (x, y)
2015 register rtx x, y;
2016 {
2017 register int i;
2018 register RTX_CODE code = GET_CODE (x);
2019 register const char *fmt;
2020 int success_2;
2021
2022 if (x == y)
2023 return 1;
2024 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2025 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2026 && GET_CODE (SUBREG_REG (y)) == REG)))
2027 {
2028 register int j;
2029
2030 if (code == SUBREG)
2031 {
2032 i = REGNO (SUBREG_REG (x));
2033 if (i >= FIRST_PSEUDO_REGISTER)
2034 goto slow;
2035 i += SUBREG_WORD (x);
2036 }
2037 else
2038 i = REGNO (x);
2039
2040 if (GET_CODE (y) == SUBREG)
2041 {
2042 j = REGNO (SUBREG_REG (y));
2043 if (j >= FIRST_PSEUDO_REGISTER)
2044 goto slow;
2045 j += SUBREG_WORD (y);
2046 }
2047 else
2048 j = REGNO (y);
2049
2050 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2051 multiple hard register group, so that for example (reg:DI 0) and
2052 (reg:SI 1) will be considered the same register. */
2053 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2054 && i < FIRST_PSEUDO_REGISTER)
2055 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2056 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2057 && j < FIRST_PSEUDO_REGISTER)
2058 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2059
2060 return i == j;
2061 }
2062 /* If two operands must match, because they are really a single
2063 operand of an assembler insn, then two postincrements are invalid
2064 because the assembler insn would increment only once.
2065 On the other hand, an postincrement matches ordinary indexing
2066 if the postincrement is the output operand. */
2067 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2068 return operands_match_p (XEXP (x, 0), y);
2069 /* Two preincrements are invalid
2070 because the assembler insn would increment only once.
2071 On the other hand, an preincrement matches ordinary indexing
2072 if the preincrement is the input operand.
2073 In this case, return 2, since some callers need to do special
2074 things when this happens. */
2075 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2076 || GET_CODE (y) == PRE_MODIFY)
2077 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2078
2079 slow:
2080
2081 /* Now we have disposed of all the cases
2082 in which different rtx codes can match. */
2083 if (code != GET_CODE (y))
2084 return 0;
2085 if (code == LABEL_REF)
2086 return XEXP (x, 0) == XEXP (y, 0);
2087 if (code == SYMBOL_REF)
2088 return XSTR (x, 0) == XSTR (y, 0);
2089
2090 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2091
2092 if (GET_MODE (x) != GET_MODE (y))
2093 return 0;
2094
2095 /* Compare the elements. If any pair of corresponding elements
2096 fail to match, return 0 for the whole things. */
2097
2098 success_2 = 0;
2099 fmt = GET_RTX_FORMAT (code);
2100 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2101 {
2102 int val, j;
2103 switch (fmt[i])
2104 {
2105 case 'w':
2106 if (XWINT (x, i) != XWINT (y, i))
2107 return 0;
2108 break;
2109
2110 case 'i':
2111 if (XINT (x, i) != XINT (y, i))
2112 return 0;
2113 break;
2114
2115 case 'e':
2116 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2117 if (val == 0)
2118 return 0;
2119 /* If any subexpression returns 2,
2120 we should return 2 if we are successful. */
2121 if (val == 2)
2122 success_2 = 1;
2123 break;
2124
2125 case '0':
2126 break;
2127
2128 case 'E':
2129 if (XVECLEN (x, i) != XVECLEN (y, i))
2130 return 0;
2131 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2132 {
2133 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2134 if (val == 0)
2135 return 0;
2136 if (val == 2)
2137 success_2 = 1;
2138 }
2139 break;
2140
2141 /* It is believed that rtx's at this level will never
2142 contain anything but integers and other rtx's,
2143 except for within LABEL_REFs and SYMBOL_REFs. */
2144 default:
2145 abort ();
2146 }
2147 }
2148 return 1 + success_2;
2149 }
2150 \f
2151 /* Describe the range of registers or memory referenced by X.
2152 If X is a register, set REG_FLAG and put the first register
2153 number into START and the last plus one into END.
2154 If X is a memory reference, put a base address into BASE
2155 and a range of integer offsets into START and END.
2156 If X is pushing on the stack, we can assume it causes no trouble,
2157 so we set the SAFE field. */
2158
2159 static struct decomposition
2160 decompose (x)
2161 rtx x;
2162 {
2163 struct decomposition val;
2164 int all_const = 0;
2165
2166 val.reg_flag = 0;
2167 val.safe = 0;
2168 val.base = 0;
2169 if (GET_CODE (x) == MEM)
2170 {
2171 rtx base = NULL_RTX, offset = 0;
2172 rtx addr = XEXP (x, 0);
2173
2174 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2175 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2176 {
2177 val.base = XEXP (addr, 0);
2178 val.start = - GET_MODE_SIZE (GET_MODE (x));
2179 val.end = GET_MODE_SIZE (GET_MODE (x));
2180 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2181 return val;
2182 }
2183
2184 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2185 {
2186 if (GET_CODE (XEXP (addr, 1)) == PLUS
2187 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2188 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2189 {
2190 val.base = XEXP (addr, 0);
2191 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2192 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2193 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2194 return val;
2195 }
2196 }
2197
2198 if (GET_CODE (addr) == CONST)
2199 {
2200 addr = XEXP (addr, 0);
2201 all_const = 1;
2202 }
2203 if (GET_CODE (addr) == PLUS)
2204 {
2205 if (CONSTANT_P (XEXP (addr, 0)))
2206 {
2207 base = XEXP (addr, 1);
2208 offset = XEXP (addr, 0);
2209 }
2210 else if (CONSTANT_P (XEXP (addr, 1)))
2211 {
2212 base = XEXP (addr, 0);
2213 offset = XEXP (addr, 1);
2214 }
2215 }
2216
2217 if (offset == 0)
2218 {
2219 base = addr;
2220 offset = const0_rtx;
2221 }
2222 if (GET_CODE (offset) == CONST)
2223 offset = XEXP (offset, 0);
2224 if (GET_CODE (offset) == PLUS)
2225 {
2226 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2227 {
2228 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2229 offset = XEXP (offset, 0);
2230 }
2231 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2232 {
2233 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2234 offset = XEXP (offset, 1);
2235 }
2236 else
2237 {
2238 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2239 offset = const0_rtx;
2240 }
2241 }
2242 else if (GET_CODE (offset) != CONST_INT)
2243 {
2244 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2245 offset = const0_rtx;
2246 }
2247
2248 if (all_const && GET_CODE (base) == PLUS)
2249 base = gen_rtx_CONST (GET_MODE (base), base);
2250
2251 if (GET_CODE (offset) != CONST_INT)
2252 abort ();
2253
2254 val.start = INTVAL (offset);
2255 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2256 val.base = base;
2257 return val;
2258 }
2259 else if (GET_CODE (x) == REG)
2260 {
2261 val.reg_flag = 1;
2262 val.start = true_regnum (x);
2263 if (val.start < 0)
2264 {
2265 /* A pseudo with no hard reg. */
2266 val.start = REGNO (x);
2267 val.end = val.start + 1;
2268 }
2269 else
2270 /* A hard reg. */
2271 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2272 }
2273 else if (GET_CODE (x) == SUBREG)
2274 {
2275 if (GET_CODE (SUBREG_REG (x)) != REG)
2276 /* This could be more precise, but it's good enough. */
2277 return decompose (SUBREG_REG (x));
2278 val.reg_flag = 1;
2279 val.start = true_regnum (x);
2280 if (val.start < 0)
2281 return decompose (SUBREG_REG (x));
2282 else
2283 /* A hard reg. */
2284 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2285 }
2286 else if (CONSTANT_P (x)
2287 /* This hasn't been assigned yet, so it can't conflict yet. */
2288 || GET_CODE (x) == SCRATCH)
2289 val.safe = 1;
2290 else
2291 abort ();
2292 return val;
2293 }
2294
2295 /* Return 1 if altering Y will not modify the value of X.
2296 Y is also described by YDATA, which should be decompose (Y). */
2297
2298 static int
2299 immune_p (x, y, ydata)
2300 rtx x, y;
2301 struct decomposition ydata;
2302 {
2303 struct decomposition xdata;
2304
2305 if (ydata.reg_flag)
2306 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
2307 if (ydata.safe)
2308 return 1;
2309
2310 if (GET_CODE (y) != MEM)
2311 abort ();
2312 /* If Y is memory and X is not, Y can't affect X. */
2313 if (GET_CODE (x) != MEM)
2314 return 1;
2315
2316 xdata = decompose (x);
2317
2318 if (! rtx_equal_p (xdata.base, ydata.base))
2319 {
2320 /* If bases are distinct symbolic constants, there is no overlap. */
2321 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2322 return 1;
2323 /* Constants and stack slots never overlap. */
2324 if (CONSTANT_P (xdata.base)
2325 && (ydata.base == frame_pointer_rtx
2326 || ydata.base == hard_frame_pointer_rtx
2327 || ydata.base == stack_pointer_rtx))
2328 return 1;
2329 if (CONSTANT_P (ydata.base)
2330 && (xdata.base == frame_pointer_rtx
2331 || xdata.base == hard_frame_pointer_rtx
2332 || xdata.base == stack_pointer_rtx))
2333 return 1;
2334 /* If either base is variable, we don't know anything. */
2335 return 0;
2336 }
2337
2338
2339 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2340 }
2341
2342 /* Similar, but calls decompose. */
2343
2344 int
2345 safe_from_earlyclobber (op, clobber)
2346 rtx op, clobber;
2347 {
2348 struct decomposition early_data;
2349
2350 early_data = decompose (clobber);
2351 return immune_p (op, clobber, early_data);
2352 }
2353 \f
2354 /* Main entry point of this file: search the body of INSN
2355 for values that need reloading and record them with push_reload.
2356 REPLACE nonzero means record also where the values occur
2357 so that subst_reloads can be used.
2358
2359 IND_LEVELS says how many levels of indirection are supported by this
2360 machine; a value of zero means that a memory reference is not a valid
2361 memory address.
2362
2363 LIVE_KNOWN says we have valid information about which hard
2364 regs are live at each point in the program; this is true when
2365 we are called from global_alloc but false when stupid register
2366 allocation has been done.
2367
2368 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2369 which is nonnegative if the reg has been commandeered for reloading into.
2370 It is copied into STATIC_RELOAD_REG_P and referenced from there
2371 by various subroutines.
2372
2373 Return TRUE if some operands need to be changed, because of swapping
2374 commutative operands, reg_equiv_address substitution, or whatever. */
2375
2376 int
2377 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2378 rtx insn;
2379 int replace, ind_levels;
2380 int live_known;
2381 short *reload_reg_p;
2382 {
2383 register int insn_code_number;
2384 register int i, j;
2385 int noperands;
2386 /* These start out as the constraints for the insn
2387 and they are chewed up as we consider alternatives. */
2388 char *constraints[MAX_RECOG_OPERANDS];
2389 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2390 a register. */
2391 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2392 char pref_or_nothing[MAX_RECOG_OPERANDS];
2393 /* Nonzero for a MEM operand whose entire address needs a reload. */
2394 int address_reloaded[MAX_RECOG_OPERANDS];
2395 /* Value of enum reload_type to use for operand. */
2396 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2397 /* Value of enum reload_type to use within address of operand. */
2398 enum reload_type address_type[MAX_RECOG_OPERANDS];
2399 /* Save the usage of each operand. */
2400 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2401 int no_input_reloads = 0, no_output_reloads = 0;
2402 int n_alternatives;
2403 int this_alternative[MAX_RECOG_OPERANDS];
2404 char this_alternative_win[MAX_RECOG_OPERANDS];
2405 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2406 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2407 int this_alternative_matches[MAX_RECOG_OPERANDS];
2408 int swapped;
2409 int goal_alternative[MAX_RECOG_OPERANDS];
2410 int this_alternative_number;
2411 int goal_alternative_number = 0;
2412 int operand_reloadnum[MAX_RECOG_OPERANDS];
2413 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2414 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2415 char goal_alternative_win[MAX_RECOG_OPERANDS];
2416 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2417 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2418 int goal_alternative_swapped;
2419 int best;
2420 int commutative;
2421 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2422 rtx substed_operand[MAX_RECOG_OPERANDS];
2423 rtx body = PATTERN (insn);
2424 rtx set = single_set (insn);
2425 int goal_earlyclobber = 0, this_earlyclobber;
2426 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2427 int retval = 0;
2428
2429 this_insn = insn;
2430 n_reloads = 0;
2431 n_replacements = 0;
2432 n_earlyclobbers = 0;
2433 replace_reloads = replace;
2434 hard_regs_live_known = live_known;
2435 static_reload_reg_p = reload_reg_p;
2436
2437 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2438 neither are insns that SET cc0. Insns that use CC0 are not allowed
2439 to have any input reloads. */
2440 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2441 no_output_reloads = 1;
2442
2443 #ifdef HAVE_cc0
2444 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2445 no_input_reloads = 1;
2446 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2447 no_output_reloads = 1;
2448 #endif
2449
2450 #ifdef SECONDARY_MEMORY_NEEDED
2451 /* The eliminated forms of any secondary memory locations are per-insn, so
2452 clear them out here. */
2453
2454 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
2455 #endif
2456
2457 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2458 is cheap to move between them. If it is not, there may not be an insn
2459 to do the copy, so we may need a reload. */
2460 if (GET_CODE (body) == SET
2461 && GET_CODE (SET_DEST (body)) == REG
2462 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2463 && GET_CODE (SET_SRC (body)) == REG
2464 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2465 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2466 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2467 return 0;
2468
2469 extract_insn (insn);
2470
2471 noperands = reload_n_operands = recog_data.n_operands;
2472 n_alternatives = recog_data.n_alternatives;
2473
2474 /* Just return "no reloads" if insn has no operands with constraints. */
2475 if (noperands == 0 || n_alternatives == 0)
2476 return 0;
2477
2478 insn_code_number = INSN_CODE (insn);
2479 this_insn_is_asm = insn_code_number < 0;
2480
2481 memcpy (operand_mode, recog_data.operand_mode,
2482 noperands * sizeof (enum machine_mode));
2483 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2484
2485 commutative = -1;
2486
2487 /* If we will need to know, later, whether some pair of operands
2488 are the same, we must compare them now and save the result.
2489 Reloading the base and index registers will clobber them
2490 and afterward they will fail to match. */
2491
2492 for (i = 0; i < noperands; i++)
2493 {
2494 register char *p;
2495 register int c;
2496
2497 substed_operand[i] = recog_data.operand[i];
2498 p = constraints[i];
2499
2500 modified[i] = RELOAD_READ;
2501
2502 /* Scan this operand's constraint to see if it is an output operand,
2503 an in-out operand, is commutative, or should match another. */
2504
2505 while ((c = *p++))
2506 {
2507 if (c == '=')
2508 modified[i] = RELOAD_WRITE;
2509 else if (c == '+')
2510 modified[i] = RELOAD_READ_WRITE;
2511 else if (c == '%')
2512 {
2513 /* The last operand should not be marked commutative. */
2514 if (i == noperands - 1)
2515 abort ();
2516
2517 commutative = i;
2518 }
2519 else if (c >= '0' && c <= '9')
2520 {
2521 c -= '0';
2522 operands_match[c][i]
2523 = operands_match_p (recog_data.operand[c],
2524 recog_data.operand[i]);
2525
2526 /* An operand may not match itself. */
2527 if (c == i)
2528 abort ();
2529
2530 /* If C can be commuted with C+1, and C might need to match I,
2531 then C+1 might also need to match I. */
2532 if (commutative >= 0)
2533 {
2534 if (c == commutative || c == commutative + 1)
2535 {
2536 int other = c + (c == commutative ? 1 : -1);
2537 operands_match[other][i]
2538 = operands_match_p (recog_data.operand[other],
2539 recog_data.operand[i]);
2540 }
2541 if (i == commutative || i == commutative + 1)
2542 {
2543 int other = i + (i == commutative ? 1 : -1);
2544 operands_match[c][other]
2545 = operands_match_p (recog_data.operand[c],
2546 recog_data.operand[other]);
2547 }
2548 /* Note that C is supposed to be less than I.
2549 No need to consider altering both C and I because in
2550 that case we would alter one into the other. */
2551 }
2552 }
2553 }
2554 }
2555
2556 /* Examine each operand that is a memory reference or memory address
2557 and reload parts of the addresses into index registers.
2558 Also here any references to pseudo regs that didn't get hard regs
2559 but are equivalent to constants get replaced in the insn itself
2560 with those constants. Nobody will ever see them again.
2561
2562 Finally, set up the preferred classes of each operand. */
2563
2564 for (i = 0; i < noperands; i++)
2565 {
2566 register RTX_CODE code = GET_CODE (recog_data.operand[i]);
2567
2568 address_reloaded[i] = 0;
2569 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2570 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2571 : RELOAD_OTHER);
2572 address_type[i]
2573 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2574 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2575 : RELOAD_OTHER);
2576
2577 if (*constraints[i] == 0)
2578 /* Ignore things like match_operator operands. */
2579 ;
2580 else if (constraints[i][0] == 'p')
2581 {
2582 find_reloads_address (VOIDmode, NULL_PTR,
2583 recog_data.operand[i],
2584 recog_data.operand_loc[i],
2585 i, operand_type[i], ind_levels, insn);
2586
2587 /* If we now have a simple operand where we used to have a
2588 PLUS or MULT, re-recognize and try again. */
2589 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2590 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2591 && (GET_CODE (recog_data.operand[i]) == MULT
2592 || GET_CODE (recog_data.operand[i]) == PLUS))
2593 {
2594 INSN_CODE (insn) = -1;
2595 retval = find_reloads (insn, replace, ind_levels, live_known,
2596 reload_reg_p);
2597 return retval;
2598 }
2599
2600 recog_data.operand[i] = *recog_data.operand_loc[i];
2601 substed_operand[i] = recog_data.operand[i];
2602 }
2603 else if (code == MEM)
2604 {
2605 address_reloaded[i]
2606 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2607 recog_data.operand_loc[i],
2608 XEXP (recog_data.operand[i], 0),
2609 &XEXP (recog_data.operand[i], 0),
2610 i, address_type[i], ind_levels, insn);
2611 recog_data.operand[i] = *recog_data.operand_loc[i];
2612 substed_operand[i] = recog_data.operand[i];
2613 }
2614 else if (code == SUBREG)
2615 {
2616 rtx reg = SUBREG_REG (recog_data.operand[i]);
2617 rtx op
2618 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2619 ind_levels,
2620 set != 0
2621 && &SET_DEST (set) == recog_data.operand_loc[i],
2622 insn,
2623 &address_reloaded[i]);
2624
2625 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2626 that didn't get a hard register, emit a USE with a REG_EQUAL
2627 note in front so that we might inherit a previous, possibly
2628 wider reload. */
2629
2630 if (replace
2631 && GET_CODE (op) == MEM
2632 && GET_CODE (reg) == REG
2633 && (GET_MODE_SIZE (GET_MODE (reg))
2634 >= GET_MODE_SIZE (GET_MODE (op))))
2635 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2636 = gen_rtx_EXPR_LIST (REG_EQUAL,
2637 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2638
2639 substed_operand[i] = recog_data.operand[i] = op;
2640 }
2641 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2642 /* We can get a PLUS as an "operand" as a result of register
2643 elimination. See eliminate_regs and gen_reload. We handle
2644 a unary operator by reloading the operand. */
2645 substed_operand[i] = recog_data.operand[i]
2646 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2647 ind_levels, 0, insn,
2648 &address_reloaded[i]);
2649 else if (code == REG)
2650 {
2651 /* This is equivalent to calling find_reloads_toplev.
2652 The code is duplicated for speed.
2653 When we find a pseudo always equivalent to a constant,
2654 we replace it by the constant. We must be sure, however,
2655 that we don't try to replace it in the insn in which it
2656 is being set. */
2657 register int regno = REGNO (recog_data.operand[i]);
2658 if (reg_equiv_constant[regno] != 0
2659 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2660 {
2661 /* Record the existing mode so that the check if constants are
2662 allowed will work when operand_mode isn't specified. */
2663
2664 if (operand_mode[i] == VOIDmode)
2665 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2666
2667 substed_operand[i] = recog_data.operand[i]
2668 = reg_equiv_constant[regno];
2669 }
2670 if (reg_equiv_memory_loc[regno] != 0
2671 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2672 /* We need not give a valid is_set_dest argument since the case
2673 of a constant equivalence was checked above. */
2674 substed_operand[i] = recog_data.operand[i]
2675 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2676 ind_levels, 0, insn,
2677 &address_reloaded[i]);
2678 }
2679 /* If the operand is still a register (we didn't replace it with an
2680 equivalent), get the preferred class to reload it into. */
2681 code = GET_CODE (recog_data.operand[i]);
2682 preferred_class[i]
2683 = ((code == REG && REGNO (recog_data.operand[i])
2684 >= FIRST_PSEUDO_REGISTER)
2685 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2686 : NO_REGS);
2687 pref_or_nothing[i]
2688 = (code == REG
2689 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2690 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2691 }
2692
2693 /* If this is simply a copy from operand 1 to operand 0, merge the
2694 preferred classes for the operands. */
2695 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2696 && recog_data.operand[1] == SET_SRC (set))
2697 {
2698 preferred_class[0] = preferred_class[1]
2699 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2700 pref_or_nothing[0] |= pref_or_nothing[1];
2701 pref_or_nothing[1] |= pref_or_nothing[0];
2702 }
2703
2704 /* Now see what we need for pseudo-regs that didn't get hard regs
2705 or got the wrong kind of hard reg. For this, we must consider
2706 all the operands together against the register constraints. */
2707
2708 best = MAX_RECOG_OPERANDS * 2 + 600;
2709
2710 swapped = 0;
2711 goal_alternative_swapped = 0;
2712 try_swapped:
2713
2714 /* The constraints are made of several alternatives.
2715 Each operand's constraint looks like foo,bar,... with commas
2716 separating the alternatives. The first alternatives for all
2717 operands go together, the second alternatives go together, etc.
2718
2719 First loop over alternatives. */
2720
2721 for (this_alternative_number = 0;
2722 this_alternative_number < n_alternatives;
2723 this_alternative_number++)
2724 {
2725 /* Loop over operands for one constraint alternative. */
2726 /* LOSERS counts those that don't fit this alternative
2727 and would require loading. */
2728 int losers = 0;
2729 /* BAD is set to 1 if it some operand can't fit this alternative
2730 even after reloading. */
2731 int bad = 0;
2732 /* REJECT is a count of how undesirable this alternative says it is
2733 if any reloading is required. If the alternative matches exactly
2734 then REJECT is ignored, but otherwise it gets this much
2735 counted against it in addition to the reloading needed. Each
2736 ? counts three times here since we want the disparaging caused by
2737 a bad register class to only count 1/3 as much. */
2738 int reject = 0;
2739
2740 this_earlyclobber = 0;
2741
2742 for (i = 0; i < noperands; i++)
2743 {
2744 register char *p = constraints[i];
2745 register int win = 0;
2746 /* 0 => this operand can be reloaded somehow for this alternative */
2747 int badop = 1;
2748 /* 0 => this operand can be reloaded if the alternative allows regs. */
2749 int winreg = 0;
2750 int c;
2751 register rtx operand = recog_data.operand[i];
2752 int offset = 0;
2753 /* Nonzero means this is a MEM that must be reloaded into a reg
2754 regardless of what the constraint says. */
2755 int force_reload = 0;
2756 int offmemok = 0;
2757 /* Nonzero if a constant forced into memory would be OK for this
2758 operand. */
2759 int constmemok = 0;
2760 int earlyclobber = 0;
2761
2762 /* If the predicate accepts a unary operator, it means that
2763 we need to reload the operand, but do not do this for
2764 match_operator and friends. */
2765 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2766 operand = XEXP (operand, 0);
2767
2768 /* If the operand is a SUBREG, extract
2769 the REG or MEM (or maybe even a constant) within.
2770 (Constants can occur as a result of reg_equiv_constant.) */
2771
2772 while (GET_CODE (operand) == SUBREG)
2773 {
2774 offset += SUBREG_WORD (operand);
2775 operand = SUBREG_REG (operand);
2776 /* Force reload if this is a constant or PLUS or if there may
2777 be a problem accessing OPERAND in the outer mode. */
2778 if (CONSTANT_P (operand)
2779 || GET_CODE (operand) == PLUS
2780 /* We must force a reload of paradoxical SUBREGs
2781 of a MEM because the alignment of the inner value
2782 may not be enough to do the outer reference. On
2783 big-endian machines, it may also reference outside
2784 the object.
2785
2786 On machines that extend byte operations and we have a
2787 SUBREG where both the inner and outer modes are no wider
2788 than a word and the inner mode is narrower, is integral,
2789 and gets extended when loaded from memory, combine.c has
2790 made assumptions about the behavior of the machine in such
2791 register access. If the data is, in fact, in memory we
2792 must always load using the size assumed to be in the
2793 register and let the insn do the different-sized
2794 accesses.
2795
2796 This is doubly true if WORD_REGISTER_OPERATIONS. In
2797 this case eliminate_regs has left non-paradoxical
2798 subregs for push_reloads to see. Make sure it does
2799 by forcing the reload.
2800
2801 ??? When is it right at this stage to have a subreg
2802 of a mem that is _not_ to be handled specialy? IMO
2803 those should have been reduced to just a mem. */
2804 || ((GET_CODE (operand) == MEM
2805 || (GET_CODE (operand)== REG
2806 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2807 #ifndef WORD_REGISTER_OPERATIONS
2808 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2809 < BIGGEST_ALIGNMENT)
2810 && (GET_MODE_SIZE (operand_mode[i])
2811 > GET_MODE_SIZE (GET_MODE (operand))))
2812 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2813 #ifdef LOAD_EXTEND_OP
2814 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2815 && (GET_MODE_SIZE (GET_MODE (operand))
2816 <= UNITS_PER_WORD)
2817 && (GET_MODE_SIZE (operand_mode[i])
2818 > GET_MODE_SIZE (GET_MODE (operand)))
2819 && INTEGRAL_MODE_P (GET_MODE (operand))
2820 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2821 #endif
2822 )
2823 #endif
2824 )
2825 /* Subreg of a hard reg which can't handle the subreg's mode
2826 or which would handle that mode in the wrong number of
2827 registers for subregging to work. */
2828 || (GET_CODE (operand) == REG
2829 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2830 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2831 && (GET_MODE_SIZE (GET_MODE (operand))
2832 > UNITS_PER_WORD)
2833 && ((GET_MODE_SIZE (GET_MODE (operand))
2834 / UNITS_PER_WORD)
2835 != HARD_REGNO_NREGS (REGNO (operand),
2836 GET_MODE (operand))))
2837 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2838 operand_mode[i]))))
2839 force_reload = 1;
2840 }
2841
2842 this_alternative[i] = (int) NO_REGS;
2843 this_alternative_win[i] = 0;
2844 this_alternative_offmemok[i] = 0;
2845 this_alternative_earlyclobber[i] = 0;
2846 this_alternative_matches[i] = -1;
2847
2848 /* An empty constraint or empty alternative
2849 allows anything which matched the pattern. */
2850 if (*p == 0 || *p == ',')
2851 win = 1, badop = 0;
2852
2853 /* Scan this alternative's specs for this operand;
2854 set WIN if the operand fits any letter in this alternative.
2855 Otherwise, clear BADOP if this operand could
2856 fit some letter after reloads,
2857 or set WINREG if this operand could fit after reloads
2858 provided the constraint allows some registers. */
2859
2860 while (*p && (c = *p++) != ',')
2861 switch (c)
2862 {
2863 case '=': case '+': case '*':
2864 break;
2865
2866 case '%':
2867 /* The last operand should not be marked commutative. */
2868 if (i != noperands - 1)
2869 commutative = i;
2870 break;
2871
2872 case '?':
2873 reject += 6;
2874 break;
2875
2876 case '!':
2877 reject = 600;
2878 break;
2879
2880 case '#':
2881 /* Ignore rest of this alternative as far as
2882 reloading is concerned. */
2883 while (*p && *p != ',') p++;
2884 break;
2885
2886 case '0': case '1': case '2': case '3': case '4':
2887 case '5': case '6': case '7': case '8': case '9':
2888
2889 c -= '0';
2890 this_alternative_matches[i] = c;
2891 /* We are supposed to match a previous operand.
2892 If we do, we win if that one did.
2893 If we do not, count both of the operands as losers.
2894 (This is too conservative, since most of the time
2895 only a single reload insn will be needed to make
2896 the two operands win. As a result, this alternative
2897 may be rejected when it is actually desirable.) */
2898 if ((swapped && (c != commutative || i != commutative + 1))
2899 /* If we are matching as if two operands were swapped,
2900 also pretend that operands_match had been computed
2901 with swapped.
2902 But if I is the second of those and C is the first,
2903 don't exchange them, because operands_match is valid
2904 only on one side of its diagonal. */
2905 ? (operands_match
2906 [(c == commutative || c == commutative + 1)
2907 ? 2*commutative + 1 - c : c]
2908 [(i == commutative || i == commutative + 1)
2909 ? 2*commutative + 1 - i : i])
2910 : operands_match[c][i])
2911 {
2912 /* If we are matching a non-offsettable address where an
2913 offsettable address was expected, then we must reject
2914 this combination, because we can't reload it. */
2915 if (this_alternative_offmemok[c]
2916 && GET_CODE (recog_data.operand[c]) == MEM
2917 && this_alternative[c] == (int) NO_REGS
2918 && ! this_alternative_win[c])
2919 bad = 1;
2920
2921 win = this_alternative_win[c];
2922 }
2923 else
2924 {
2925 /* Operands don't match. */
2926 rtx value;
2927 /* Retroactively mark the operand we had to match
2928 as a loser, if it wasn't already. */
2929 if (this_alternative_win[c])
2930 losers++;
2931 this_alternative_win[c] = 0;
2932 if (this_alternative[c] == (int) NO_REGS)
2933 bad = 1;
2934 /* But count the pair only once in the total badness of
2935 this alternative, if the pair can be a dummy reload. */
2936 value
2937 = find_dummy_reload (recog_data.operand[i],
2938 recog_data.operand[c],
2939 recog_data.operand_loc[i],
2940 recog_data.operand_loc[c],
2941 operand_mode[i], operand_mode[c],
2942 this_alternative[c], -1,
2943 this_alternative_earlyclobber[c]);
2944
2945 if (value != 0)
2946 losers--;
2947 }
2948 /* This can be fixed with reloads if the operand
2949 we are supposed to match can be fixed with reloads. */
2950 badop = 0;
2951 this_alternative[i] = this_alternative[c];
2952
2953 /* If we have to reload this operand and some previous
2954 operand also had to match the same thing as this
2955 operand, we don't know how to do that. So reject this
2956 alternative. */
2957 if (! win || force_reload)
2958 for (j = 0; j < i; j++)
2959 if (this_alternative_matches[j]
2960 == this_alternative_matches[i])
2961 badop = 1;
2962
2963 break;
2964
2965 case 'p':
2966 /* All necessary reloads for an address_operand
2967 were handled in find_reloads_address. */
2968 this_alternative[i] = (int) BASE_REG_CLASS;
2969 win = 1;
2970 break;
2971
2972 case 'm':
2973 if (force_reload)
2974 break;
2975 if (GET_CODE (operand) == MEM
2976 || (GET_CODE (operand) == REG
2977 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2978 && reg_renumber[REGNO (operand)] < 0))
2979 win = 1;
2980 if (CONSTANT_P (operand)
2981 /* force_const_mem does not accept HIGH. */
2982 && GET_CODE (operand) != HIGH)
2983 badop = 0;
2984 constmemok = 1;
2985 break;
2986
2987 case '<':
2988 if (GET_CODE (operand) == MEM
2989 && ! address_reloaded[i]
2990 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2991 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2992 win = 1;
2993 break;
2994
2995 case '>':
2996 if (GET_CODE (operand) == MEM
2997 && ! address_reloaded[i]
2998 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2999 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3000 win = 1;
3001 break;
3002
3003 /* Memory operand whose address is not offsettable. */
3004 case 'V':
3005 if (force_reload)
3006 break;
3007 if (GET_CODE (operand) == MEM
3008 && ! (ind_levels ? offsettable_memref_p (operand)
3009 : offsettable_nonstrict_memref_p (operand))
3010 /* Certain mem addresses will become offsettable
3011 after they themselves are reloaded. This is important;
3012 we don't want our own handling of unoffsettables
3013 to override the handling of reg_equiv_address. */
3014 && !(GET_CODE (XEXP (operand, 0)) == REG
3015 && (ind_levels == 0
3016 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3017 win = 1;
3018 break;
3019
3020 /* Memory operand whose address is offsettable. */
3021 case 'o':
3022 if (force_reload)
3023 break;
3024 if ((GET_CODE (operand) == MEM
3025 /* If IND_LEVELS, find_reloads_address won't reload a
3026 pseudo that didn't get a hard reg, so we have to
3027 reject that case. */
3028 && ((ind_levels ? offsettable_memref_p (operand)
3029 : offsettable_nonstrict_memref_p (operand))
3030 /* A reloaded address is offsettable because it is now
3031 just a simple register indirect. */
3032 || address_reloaded[i]))
3033 || (GET_CODE (operand) == REG
3034 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3035 && reg_renumber[REGNO (operand)] < 0
3036 /* If reg_equiv_address is nonzero, we will be
3037 loading it into a register; hence it will be
3038 offsettable, but we cannot say that reg_equiv_mem
3039 is offsettable without checking. */
3040 && ((reg_equiv_mem[REGNO (operand)] != 0
3041 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3042 || (reg_equiv_address[REGNO (operand)] != 0))))
3043 win = 1;
3044 /* force_const_mem does not accept HIGH. */
3045 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3046 || GET_CODE (operand) == MEM)
3047 badop = 0;
3048 constmemok = 1;
3049 offmemok = 1;
3050 break;
3051
3052 case '&':
3053 /* Output operand that is stored before the need for the
3054 input operands (and their index registers) is over. */
3055 earlyclobber = 1, this_earlyclobber = 1;
3056 break;
3057
3058 case 'E':
3059 #ifndef REAL_ARITHMETIC
3060 /* Match any floating double constant, but only if
3061 we can examine the bits of it reliably. */
3062 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3063 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3064 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3065 break;
3066 #endif
3067 if (GET_CODE (operand) == CONST_DOUBLE)
3068 win = 1;
3069 break;
3070
3071 case 'F':
3072 if (GET_CODE (operand) == CONST_DOUBLE)
3073 win = 1;
3074 break;
3075
3076 case 'G':
3077 case 'H':
3078 if (GET_CODE (operand) == CONST_DOUBLE
3079 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3080 win = 1;
3081 break;
3082
3083 case 's':
3084 if (GET_CODE (operand) == CONST_INT
3085 || (GET_CODE (operand) == CONST_DOUBLE
3086 && GET_MODE (operand) == VOIDmode))
3087 break;
3088 case 'i':
3089 if (CONSTANT_P (operand)
3090 #ifdef LEGITIMATE_PIC_OPERAND_P
3091 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3092 #endif
3093 )
3094 win = 1;
3095 break;
3096
3097 case 'n':
3098 if (GET_CODE (operand) == CONST_INT
3099 || (GET_CODE (operand) == CONST_DOUBLE
3100 && GET_MODE (operand) == VOIDmode))
3101 win = 1;
3102 break;
3103
3104 case 'I':
3105 case 'J':
3106 case 'K':
3107 case 'L':
3108 case 'M':
3109 case 'N':
3110 case 'O':
3111 case 'P':
3112 if (GET_CODE (operand) == CONST_INT
3113 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3114 win = 1;
3115 break;
3116
3117 case 'X':
3118 win = 1;
3119 break;
3120
3121 case 'g':
3122 if (! force_reload
3123 /* A PLUS is never a valid operand, but reload can make
3124 it from a register when eliminating registers. */
3125 && GET_CODE (operand) != PLUS
3126 /* A SCRATCH is not a valid operand. */
3127 && GET_CODE (operand) != SCRATCH
3128 #ifdef LEGITIMATE_PIC_OPERAND_P
3129 && (! CONSTANT_P (operand)
3130 || ! flag_pic
3131 || LEGITIMATE_PIC_OPERAND_P (operand))
3132 #endif
3133 && (GENERAL_REGS == ALL_REGS
3134 || GET_CODE (operand) != REG
3135 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3136 && reg_renumber[REGNO (operand)] < 0)))
3137 win = 1;
3138 /* Drop through into 'r' case */
3139
3140 case 'r':
3141 this_alternative[i]
3142 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3143 goto reg;
3144
3145 #ifdef EXTRA_CONSTRAINT
3146 case 'Q':
3147 case 'R':
3148 case 'S':
3149 case 'T':
3150 case 'U':
3151 if (EXTRA_CONSTRAINT (operand, c))
3152 win = 1;
3153 break;
3154 #endif
3155
3156 default:
3157 this_alternative[i]
3158 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3159
3160 reg:
3161 if (GET_MODE (operand) == BLKmode)
3162 break;
3163 winreg = 1;
3164 if (GET_CODE (operand) == REG
3165 && reg_fits_class_p (operand, this_alternative[i],
3166 offset, GET_MODE (recog_data.operand[i])))
3167 win = 1;
3168 break;
3169 }
3170
3171 constraints[i] = p;
3172
3173 /* If this operand could be handled with a reg,
3174 and some reg is allowed, then this operand can be handled. */
3175 if (winreg && this_alternative[i] != (int) NO_REGS)
3176 badop = 0;
3177
3178 /* Record which operands fit this alternative. */
3179 this_alternative_earlyclobber[i] = earlyclobber;
3180 if (win && ! force_reload)
3181 this_alternative_win[i] = 1;
3182 else
3183 {
3184 int const_to_mem = 0;
3185
3186 this_alternative_offmemok[i] = offmemok;
3187 losers++;
3188 if (badop)
3189 bad = 1;
3190 /* Alternative loses if it has no regs for a reg operand. */
3191 if (GET_CODE (operand) == REG
3192 && this_alternative[i] == (int) NO_REGS
3193 && this_alternative_matches[i] < 0)
3194 bad = 1;
3195
3196 /* If this is a constant that is reloaded into the desired
3197 class by copying it to memory first, count that as another
3198 reload. This is consistent with other code and is
3199 required to avoid choosing another alternative when
3200 the constant is moved into memory by this function on
3201 an early reload pass. Note that the test here is
3202 precisely the same as in the code below that calls
3203 force_const_mem. */
3204 if (CONSTANT_P (operand)
3205 /* force_const_mem does not accept HIGH. */
3206 && GET_CODE (operand) != HIGH
3207 && ((PREFERRED_RELOAD_CLASS (operand,
3208 (enum reg_class) this_alternative[i])
3209 == NO_REGS)
3210 || no_input_reloads)
3211 && operand_mode[i] != VOIDmode)
3212 {
3213 const_to_mem = 1;
3214 if (this_alternative[i] != (int) NO_REGS)
3215 losers++;
3216 }
3217
3218 /* If we can't reload this value at all, reject this
3219 alternative. Note that we could also lose due to
3220 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3221 here. */
3222
3223 if (! CONSTANT_P (operand)
3224 && (enum reg_class) this_alternative[i] != NO_REGS
3225 && (PREFERRED_RELOAD_CLASS (operand,
3226 (enum reg_class) this_alternative[i])
3227 == NO_REGS))
3228 bad = 1;
3229
3230 /* Alternative loses if it requires a type of reload not
3231 permitted for this insn. We can always reload SCRATCH
3232 and objects with a REG_UNUSED note. */
3233 else if (GET_CODE (operand) != SCRATCH
3234 && modified[i] != RELOAD_READ && no_output_reloads
3235 && ! find_reg_note (insn, REG_UNUSED, operand))
3236 bad = 1;
3237 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3238 && ! const_to_mem)
3239 bad = 1;
3240
3241
3242 /* We prefer to reload pseudos over reloading other things,
3243 since such reloads may be able to be eliminated later.
3244 If we are reloading a SCRATCH, we won't be generating any
3245 insns, just using a register, so it is also preferred.
3246 So bump REJECT in other cases. Don't do this in the
3247 case where we are forcing a constant into memory and
3248 it will then win since we don't want to have a different
3249 alternative match then. */
3250 if (! (GET_CODE (operand) == REG
3251 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3252 && GET_CODE (operand) != SCRATCH
3253 && ! (const_to_mem && constmemok))
3254 reject += 2;
3255
3256 /* Input reloads can be inherited more often than output
3257 reloads can be removed, so penalize output reloads. */
3258 if (operand_type[i] != RELOAD_FOR_INPUT
3259 && GET_CODE (operand) != SCRATCH)
3260 reject++;
3261 }
3262
3263 /* If this operand is a pseudo register that didn't get a hard
3264 reg and this alternative accepts some register, see if the
3265 class that we want is a subset of the preferred class for this
3266 register. If not, but it intersects that class, use the
3267 preferred class instead. If it does not intersect the preferred
3268 class, show that usage of this alternative should be discouraged;
3269 it will be discouraged more still if the register is `preferred
3270 or nothing'. We do this because it increases the chance of
3271 reusing our spill register in a later insn and avoiding a pair
3272 of memory stores and loads.
3273
3274 Don't bother with this if this alternative will accept this
3275 operand.
3276
3277 Don't do this for a multiword operand, since it is only a
3278 small win and has the risk of requiring more spill registers,
3279 which could cause a large loss.
3280
3281 Don't do this if the preferred class has only one register
3282 because we might otherwise exhaust the class. */
3283
3284
3285 if (! win && this_alternative[i] != (int) NO_REGS
3286 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3287 && reg_class_size[(int) preferred_class[i]] > 1)
3288 {
3289 if (! reg_class_subset_p (this_alternative[i],
3290 preferred_class[i]))
3291 {
3292 /* Since we don't have a way of forming the intersection,
3293 we just do something special if the preferred class
3294 is a subset of the class we have; that's the most
3295 common case anyway. */
3296 if (reg_class_subset_p (preferred_class[i],
3297 this_alternative[i]))
3298 this_alternative[i] = (int) preferred_class[i];
3299 else
3300 reject += (2 + 2 * pref_or_nothing[i]);
3301 }
3302 }
3303 }
3304
3305 /* Now see if any output operands that are marked "earlyclobber"
3306 in this alternative conflict with any input operands
3307 or any memory addresses. */
3308
3309 for (i = 0; i < noperands; i++)
3310 if (this_alternative_earlyclobber[i]
3311 && this_alternative_win[i])
3312 {
3313 struct decomposition early_data;
3314
3315 early_data = decompose (recog_data.operand[i]);
3316
3317 if (modified[i] == RELOAD_READ)
3318 abort ();
3319
3320 if (this_alternative[i] == NO_REGS)
3321 {
3322 this_alternative_earlyclobber[i] = 0;
3323 if (this_insn_is_asm)
3324 error_for_asm (this_insn,
3325 "`&' constraint used with no register class");
3326 else
3327 abort ();
3328 }
3329
3330 for (j = 0; j < noperands; j++)
3331 /* Is this an input operand or a memory ref? */
3332 if ((GET_CODE (recog_data.operand[j]) == MEM
3333 || modified[j] != RELOAD_WRITE)
3334 && j != i
3335 /* Ignore things like match_operator operands. */
3336 && *recog_data.constraints[j] != 0
3337 /* Don't count an input operand that is constrained to match
3338 the early clobber operand. */
3339 && ! (this_alternative_matches[j] == i
3340 && rtx_equal_p (recog_data.operand[i],
3341 recog_data.operand[j]))
3342 /* Is it altered by storing the earlyclobber operand? */
3343 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3344 early_data))
3345 {
3346 /* If the output is in a single-reg class,
3347 it's costly to reload it, so reload the input instead. */
3348 if (reg_class_size[this_alternative[i]] == 1
3349 && (GET_CODE (recog_data.operand[j]) == REG
3350 || GET_CODE (recog_data.operand[j]) == SUBREG))
3351 {
3352 losers++;
3353 this_alternative_win[j] = 0;
3354 }
3355 else
3356 break;
3357 }
3358 /* If an earlyclobber operand conflicts with something,
3359 it must be reloaded, so request this and count the cost. */
3360 if (j != noperands)
3361 {
3362 losers++;
3363 this_alternative_win[i] = 0;
3364 for (j = 0; j < noperands; j++)
3365 if (this_alternative_matches[j] == i
3366 && this_alternative_win[j])
3367 {
3368 this_alternative_win[j] = 0;
3369 losers++;
3370 }
3371 }
3372 }
3373
3374 /* If one alternative accepts all the operands, no reload required,
3375 choose that alternative; don't consider the remaining ones. */
3376 if (losers == 0)
3377 {
3378 /* Unswap these so that they are never swapped at `finish'. */
3379 if (commutative >= 0)
3380 {
3381 recog_data.operand[commutative] = substed_operand[commutative];
3382 recog_data.operand[commutative + 1]
3383 = substed_operand[commutative + 1];
3384 }
3385 for (i = 0; i < noperands; i++)
3386 {
3387 goal_alternative_win[i] = 1;
3388 goal_alternative[i] = this_alternative[i];
3389 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3390 goal_alternative_matches[i] = this_alternative_matches[i];
3391 goal_alternative_earlyclobber[i]
3392 = this_alternative_earlyclobber[i];
3393 }
3394 goal_alternative_number = this_alternative_number;
3395 goal_alternative_swapped = swapped;
3396 goal_earlyclobber = this_earlyclobber;
3397 goto finish;
3398 }
3399
3400 /* REJECT, set by the ! and ? constraint characters and when a register
3401 would be reloaded into a non-preferred class, discourages the use of
3402 this alternative for a reload goal. REJECT is incremented by six
3403 for each ? and two for each non-preferred class. */
3404 losers = losers * 6 + reject;
3405
3406 /* If this alternative can be made to work by reloading,
3407 and it needs less reloading than the others checked so far,
3408 record it as the chosen goal for reloading. */
3409 if (! bad && best > losers)
3410 {
3411 for (i = 0; i < noperands; i++)
3412 {
3413 goal_alternative[i] = this_alternative[i];
3414 goal_alternative_win[i] = this_alternative_win[i];
3415 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3416 goal_alternative_matches[i] = this_alternative_matches[i];
3417 goal_alternative_earlyclobber[i]
3418 = this_alternative_earlyclobber[i];
3419 }
3420 goal_alternative_swapped = swapped;
3421 best = losers;
3422 goal_alternative_number = this_alternative_number;
3423 goal_earlyclobber = this_earlyclobber;
3424 }
3425 }
3426
3427 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3428 then we need to try each alternative twice,
3429 the second time matching those two operands
3430 as if we had exchanged them.
3431 To do this, really exchange them in operands.
3432
3433 If we have just tried the alternatives the second time,
3434 return operands to normal and drop through. */
3435
3436 if (commutative >= 0)
3437 {
3438 swapped = !swapped;
3439 if (swapped)
3440 {
3441 register enum reg_class tclass;
3442 register int t;
3443
3444 recog_data.operand[commutative] = substed_operand[commutative + 1];
3445 recog_data.operand[commutative + 1] = substed_operand[commutative];
3446
3447 tclass = preferred_class[commutative];
3448 preferred_class[commutative] = preferred_class[commutative + 1];
3449 preferred_class[commutative + 1] = tclass;
3450
3451 t = pref_or_nothing[commutative];
3452 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3453 pref_or_nothing[commutative + 1] = t;
3454
3455 memcpy (constraints, recog_data.constraints,
3456 noperands * sizeof (char *));
3457 goto try_swapped;
3458 }
3459 else
3460 {
3461 recog_data.operand[commutative] = substed_operand[commutative];
3462 recog_data.operand[commutative + 1]
3463 = substed_operand[commutative + 1];
3464 }
3465 }
3466
3467 /* The operands don't meet the constraints.
3468 goal_alternative describes the alternative
3469 that we could reach by reloading the fewest operands.
3470 Reload so as to fit it. */
3471
3472 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3473 {
3474 /* No alternative works with reloads?? */
3475 if (insn_code_number >= 0)
3476 fatal_insn ("Unable to generate reloads for:", insn);
3477 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3478 /* Avoid further trouble with this insn. */
3479 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3480 n_reloads = 0;
3481 return 0;
3482 }
3483
3484 /* Jump to `finish' from above if all operands are valid already.
3485 In that case, goal_alternative_win is all 1. */
3486 finish:
3487
3488 /* Right now, for any pair of operands I and J that are required to match,
3489 with I < J,
3490 goal_alternative_matches[J] is I.
3491 Set up goal_alternative_matched as the inverse function:
3492 goal_alternative_matched[I] = J. */
3493
3494 for (i = 0; i < noperands; i++)
3495 goal_alternative_matched[i] = -1;
3496
3497 for (i = 0; i < noperands; i++)
3498 if (! goal_alternative_win[i]
3499 && goal_alternative_matches[i] >= 0)
3500 goal_alternative_matched[goal_alternative_matches[i]] = i;
3501
3502 /* If the best alternative is with operands 1 and 2 swapped,
3503 consider them swapped before reporting the reloads. Update the
3504 operand numbers of any reloads already pushed. */
3505
3506 if (goal_alternative_swapped)
3507 {
3508 register rtx tem;
3509
3510 tem = substed_operand[commutative];
3511 substed_operand[commutative] = substed_operand[commutative + 1];
3512 substed_operand[commutative + 1] = tem;
3513 tem = recog_data.operand[commutative];
3514 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3515 recog_data.operand[commutative + 1] = tem;
3516 tem = *recog_data.operand_loc[commutative];
3517 *recog_data.operand_loc[commutative]
3518 = *recog_data.operand_loc[commutative + 1];
3519 *recog_data.operand_loc[commutative+1] = tem;
3520
3521 for (i = 0; i < n_reloads; i++)
3522 {
3523 if (rld[i].opnum == commutative)
3524 rld[i].opnum = commutative + 1;
3525 else if (rld[i].opnum == commutative + 1)
3526 rld[i].opnum = commutative;
3527 }
3528 }
3529
3530 for (i = 0; i < noperands; i++)
3531 {
3532 operand_reloadnum[i] = -1;
3533
3534 /* If this is an earlyclobber operand, we need to widen the scope.
3535 The reload must remain valid from the start of the insn being
3536 reloaded until after the operand is stored into its destination.
3537 We approximate this with RELOAD_OTHER even though we know that we
3538 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3539
3540 One special case that is worth checking is when we have an
3541 output that is earlyclobber but isn't used past the insn (typically
3542 a SCRATCH). In this case, we only need have the reload live
3543 through the insn itself, but not for any of our input or output
3544 reloads.
3545 But we must not accidentally narrow the scope of an existing
3546 RELOAD_OTHER reload - leave these alone.
3547
3548 In any case, anything needed to address this operand can remain
3549 however they were previously categorized. */
3550
3551 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3552 operand_type[i]
3553 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3554 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3555 }
3556
3557 /* Any constants that aren't allowed and can't be reloaded
3558 into registers are here changed into memory references. */
3559 for (i = 0; i < noperands; i++)
3560 if (! goal_alternative_win[i]
3561 && CONSTANT_P (recog_data.operand[i])
3562 /* force_const_mem does not accept HIGH. */
3563 && GET_CODE (recog_data.operand[i]) != HIGH
3564 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3565 (enum reg_class) goal_alternative[i])
3566 == NO_REGS)
3567 || no_input_reloads)
3568 && operand_mode[i] != VOIDmode)
3569 {
3570 substed_operand[i] = recog_data.operand[i]
3571 = find_reloads_toplev (force_const_mem (operand_mode[i],
3572 recog_data.operand[i]),
3573 i, address_type[i], ind_levels, 0, insn,
3574 NULL);
3575 if (alternative_allows_memconst (recog_data.constraints[i],
3576 goal_alternative_number))
3577 goal_alternative_win[i] = 1;
3578 }
3579
3580 /* Record the values of the earlyclobber operands for the caller. */
3581 if (goal_earlyclobber)
3582 for (i = 0; i < noperands; i++)
3583 if (goal_alternative_earlyclobber[i])
3584 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3585
3586 /* Now record reloads for all the operands that need them. */
3587 for (i = 0; i < noperands; i++)
3588 if (! goal_alternative_win[i])
3589 {
3590 /* Operands that match previous ones have already been handled. */
3591 if (goal_alternative_matches[i] >= 0)
3592 ;
3593 /* Handle an operand with a nonoffsettable address
3594 appearing where an offsettable address will do
3595 by reloading the address into a base register.
3596
3597 ??? We can also do this when the operand is a register and
3598 reg_equiv_mem is not offsettable, but this is a bit tricky,
3599 so we don't bother with it. It may not be worth doing. */
3600 else if (goal_alternative_matched[i] == -1
3601 && goal_alternative_offmemok[i]
3602 && GET_CODE (recog_data.operand[i]) == MEM)
3603 {
3604 operand_reloadnum[i]
3605 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3606 &XEXP (recog_data.operand[i], 0), NULL_PTR,
3607 BASE_REG_CLASS,
3608 GET_MODE (XEXP (recog_data.operand[i], 0)),
3609 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3610 rld[operand_reloadnum[i]].inc
3611 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3612
3613 /* If this operand is an output, we will have made any
3614 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3615 now we are treating part of the operand as an input, so
3616 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3617
3618 if (modified[i] == RELOAD_WRITE)
3619 {
3620 for (j = 0; j < n_reloads; j++)
3621 {
3622 if (rld[j].opnum == i)
3623 {
3624 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3625 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3626 else if (rld[j].when_needed
3627 == RELOAD_FOR_OUTADDR_ADDRESS)
3628 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3629 }
3630 }
3631 }
3632 }
3633 else if (goal_alternative_matched[i] == -1)
3634 {
3635 operand_reloadnum[i]
3636 = push_reload ((modified[i] != RELOAD_WRITE
3637 ? recog_data.operand[i] : 0),
3638 (modified[i] != RELOAD_READ
3639 ? recog_data.operand[i] : 0),
3640 (modified[i] != RELOAD_WRITE
3641 ? recog_data.operand_loc[i] : 0),
3642 (modified[i] != RELOAD_READ
3643 ? recog_data.operand_loc[i] : 0),
3644 (enum reg_class) goal_alternative[i],
3645 (modified[i] == RELOAD_WRITE
3646 ? VOIDmode : operand_mode[i]),
3647 (modified[i] == RELOAD_READ
3648 ? VOIDmode : operand_mode[i]),
3649 (insn_code_number < 0 ? 0
3650 : insn_data[insn_code_number].operand[i].strict_low),
3651 0, i, operand_type[i]);
3652 }
3653 /* In a matching pair of operands, one must be input only
3654 and the other must be output only.
3655 Pass the input operand as IN and the other as OUT. */
3656 else if (modified[i] == RELOAD_READ
3657 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3658 {
3659 operand_reloadnum[i]
3660 = push_reload (recog_data.operand[i],
3661 recog_data.operand[goal_alternative_matched[i]],
3662 recog_data.operand_loc[i],
3663 recog_data.operand_loc[goal_alternative_matched[i]],
3664 (enum reg_class) goal_alternative[i],
3665 operand_mode[i],
3666 operand_mode[goal_alternative_matched[i]],
3667 0, 0, i, RELOAD_OTHER);
3668 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3669 }
3670 else if (modified[i] == RELOAD_WRITE
3671 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3672 {
3673 operand_reloadnum[goal_alternative_matched[i]]
3674 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3675 recog_data.operand[i],
3676 recog_data.operand_loc[goal_alternative_matched[i]],
3677 recog_data.operand_loc[i],
3678 (enum reg_class) goal_alternative[i],
3679 operand_mode[goal_alternative_matched[i]],
3680 operand_mode[i],
3681 0, 0, i, RELOAD_OTHER);
3682 operand_reloadnum[i] = output_reloadnum;
3683 }
3684 else if (insn_code_number >= 0)
3685 abort ();
3686 else
3687 {
3688 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3689 /* Avoid further trouble with this insn. */
3690 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3691 n_reloads = 0;
3692 return 0;
3693 }
3694 }
3695 else if (goal_alternative_matched[i] < 0
3696 && goal_alternative_matches[i] < 0
3697 && optimize)
3698 {
3699 /* For each non-matching operand that's a MEM or a pseudo-register
3700 that didn't get a hard register, make an optional reload.
3701 This may get done even if the insn needs no reloads otherwise. */
3702
3703 rtx operand = recog_data.operand[i];
3704
3705 while (GET_CODE (operand) == SUBREG)
3706 operand = XEXP (operand, 0);
3707 if ((GET_CODE (operand) == MEM
3708 || (GET_CODE (operand) == REG
3709 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3710 /* If this is only for an output, the optional reload would not
3711 actually cause us to use a register now, just note that
3712 something is stored here. */
3713 && ((enum reg_class) goal_alternative[i] != NO_REGS
3714 || modified[i] == RELOAD_WRITE)
3715 && ! no_input_reloads
3716 /* An optional output reload might allow to delete INSN later.
3717 We mustn't make in-out reloads on insns that are not permitted
3718 output reloads.
3719 If this is an asm, we can't delete it; we must not even call
3720 push_reload for an optional output reload in this case,
3721 because we can't be sure that the constraint allows a register,
3722 and push_reload verifies the constraints for asms. */
3723 && (modified[i] == RELOAD_READ
3724 || (! no_output_reloads && ! this_insn_is_asm)))
3725 operand_reloadnum[i]
3726 = push_reload ((modified[i] != RELOAD_WRITE
3727 ? recog_data.operand[i] : 0),
3728 (modified[i] != RELOAD_READ
3729 ? recog_data.operand[i] : 0),
3730 (modified[i] != RELOAD_WRITE
3731 ? recog_data.operand_loc[i] : 0),
3732 (modified[i] != RELOAD_READ
3733 ? recog_data.operand_loc[i] : 0),
3734 (enum reg_class) goal_alternative[i],
3735 (modified[i] == RELOAD_WRITE
3736 ? VOIDmode : operand_mode[i]),
3737 (modified[i] == RELOAD_READ
3738 ? VOIDmode : operand_mode[i]),
3739 (insn_code_number < 0 ? 0
3740 : insn_data[insn_code_number].operand[i].strict_low),
3741 1, i, operand_type[i]);
3742 /* If a memory reference remains (either as a MEM or a pseudo that
3743 did not get a hard register), yet we can't make an optional
3744 reload, check if this is actually a pseudo register reference;
3745 we then need to emit a USE and/or a CLOBBER so that reload
3746 inheritance will do the right thing. */
3747 else if (replace
3748 && (GET_CODE (operand) == MEM
3749 || (GET_CODE (operand) == REG
3750 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3751 && reg_renumber [REGNO (operand)] < 0)))
3752 {
3753 operand = *recog_data.operand_loc[i];
3754
3755 while (GET_CODE (operand) == SUBREG)
3756 operand = XEXP (operand, 0);
3757 if (GET_CODE (operand) == REG)
3758 {
3759 if (modified[i] != RELOAD_WRITE)
3760 emit_insn_before (gen_rtx_USE (VOIDmode, operand), insn);
3761 if (modified[i] != RELOAD_READ)
3762 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3763 }
3764 }
3765 }
3766 else if (goal_alternative_matches[i] >= 0
3767 && goal_alternative_win[goal_alternative_matches[i]]
3768 && modified[i] == RELOAD_READ
3769 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3770 && ! no_input_reloads && ! no_output_reloads
3771 && optimize)
3772 {
3773 /* Similarly, make an optional reload for a pair of matching
3774 objects that are in MEM or a pseudo that didn't get a hard reg. */
3775
3776 rtx operand = recog_data.operand[i];
3777
3778 while (GET_CODE (operand) == SUBREG)
3779 operand = XEXP (operand, 0);
3780 if ((GET_CODE (operand) == MEM
3781 || (GET_CODE (operand) == REG
3782 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3783 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3784 != NO_REGS))
3785 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3786 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3787 recog_data.operand[i],
3788 recog_data.operand_loc[goal_alternative_matches[i]],
3789 recog_data.operand_loc[i],
3790 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3791 operand_mode[goal_alternative_matches[i]],
3792 operand_mode[i],
3793 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3794 }
3795
3796 /* Perform whatever substitutions on the operands we are supposed
3797 to make due to commutativity or replacement of registers
3798 with equivalent constants or memory slots. */
3799
3800 for (i = 0; i < noperands; i++)
3801 {
3802 /* We only do this on the last pass through reload, because it is
3803 possible for some data (like reg_equiv_address) to be changed during
3804 later passes. Moreover, we loose the opportunity to get a useful
3805 reload_{in,out}_reg when we do these replacements. */
3806
3807 if (replace)
3808 {
3809 rtx substitution = substed_operand[i];
3810
3811 *recog_data.operand_loc[i] = substitution;
3812
3813 /* If we're replacing an operand with a LABEL_REF, we need
3814 to make sure that there's a REG_LABEL note attached to
3815 this instruction. */
3816 if (GET_CODE (insn) != JUMP_INSN
3817 && GET_CODE (substitution) == LABEL_REF
3818 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3819 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
3820 XEXP (substitution, 0),
3821 REG_NOTES (insn));
3822 }
3823 else
3824 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3825 }
3826
3827 /* If this insn pattern contains any MATCH_DUP's, make sure that
3828 they will be substituted if the operands they match are substituted.
3829 Also do now any substitutions we already did on the operands.
3830
3831 Don't do this if we aren't making replacements because we might be
3832 propagating things allocated by frame pointer elimination into places
3833 it doesn't expect. */
3834
3835 if (insn_code_number >= 0 && replace)
3836 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3837 {
3838 int opno = recog_data.dup_num[i];
3839 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3840 if (operand_reloadnum[opno] >= 0)
3841 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3842 insn_data[insn_code_number].operand[opno].mode);
3843 }
3844
3845 #if 0
3846 /* This loses because reloading of prior insns can invalidate the equivalence
3847 (or at least find_equiv_reg isn't smart enough to find it any more),
3848 causing this insn to need more reload regs than it needed before.
3849 It may be too late to make the reload regs available.
3850 Now this optimization is done safely in choose_reload_regs. */
3851
3852 /* For each reload of a reg into some other class of reg,
3853 search for an existing equivalent reg (same value now) in the right class.
3854 We can use it as long as we don't need to change its contents. */
3855 for (i = 0; i < n_reloads; i++)
3856 if (rld[i].reg_rtx == 0
3857 && rld[i].in != 0
3858 && GET_CODE (rld[i].in) == REG
3859 && rld[i].out == 0)
3860 {
3861 rld[i].reg_rtx
3862 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3863 static_reload_reg_p, 0, rld[i].inmode);
3864 /* Prevent generation of insn to load the value
3865 because the one we found already has the value. */
3866 if (rld[i].reg_rtx)
3867 rld[i].in = rld[i].reg_rtx;
3868 }
3869 #endif
3870
3871 /* Perhaps an output reload can be combined with another
3872 to reduce needs by one. */
3873 if (!goal_earlyclobber)
3874 combine_reloads ();
3875
3876 /* If we have a pair of reloads for parts of an address, they are reloading
3877 the same object, the operands themselves were not reloaded, and they
3878 are for two operands that are supposed to match, merge the reloads and
3879 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3880
3881 for (i = 0; i < n_reloads; i++)
3882 {
3883 int k;
3884
3885 for (j = i + 1; j < n_reloads; j++)
3886 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3887 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3888 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3889 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3890 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3891 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3892 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3893 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3894 && rtx_equal_p (rld[i].in, rld[j].in)
3895 && (operand_reloadnum[rld[i].opnum] < 0
3896 || rld[operand_reloadnum[rld[i].opnum]].optional)
3897 && (operand_reloadnum[rld[j].opnum] < 0
3898 || rld[operand_reloadnum[rld[j].opnum]].optional)
3899 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3900 || (goal_alternative_matches[rld[j].opnum]
3901 == rld[i].opnum)))
3902 {
3903 for (k = 0; k < n_replacements; k++)
3904 if (replacements[k].what == j)
3905 replacements[k].what = i;
3906
3907 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3908 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3909 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3910 else
3911 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3912 rld[j].in = 0;
3913 }
3914 }
3915
3916 /* Scan all the reloads and update their type.
3917 If a reload is for the address of an operand and we didn't reload
3918 that operand, change the type. Similarly, change the operand number
3919 of a reload when two operands match. If a reload is optional, treat it
3920 as though the operand isn't reloaded.
3921
3922 ??? This latter case is somewhat odd because if we do the optional
3923 reload, it means the object is hanging around. Thus we need only
3924 do the address reload if the optional reload was NOT done.
3925
3926 Change secondary reloads to be the address type of their operand, not
3927 the normal type.
3928
3929 If an operand's reload is now RELOAD_OTHER, change any
3930 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3931 RELOAD_FOR_OTHER_ADDRESS. */
3932
3933 for (i = 0; i < n_reloads; i++)
3934 {
3935 if (rld[i].secondary_p
3936 && rld[i].when_needed == operand_type[rld[i].opnum]
3937 && (operand_reloadnum[rld[i].opnum] < 0
3938 || (rld[operand_reloadnum[rld[i].opnum]].secondary_in_icode == -1
3939 && rld[operand_reloadnum[rld[i].opnum]].secondary_out_icode == -1)))
3940 rld[i].when_needed = address_type[rld[i].opnum];
3941
3942 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3943 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3944 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3945 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3946 && (operand_reloadnum[rld[i].opnum] < 0
3947 || rld[operand_reloadnum[rld[i].opnum]].optional))
3948 {
3949 /* If we have a secondary reload to go along with this reload,
3950 change its type to RELOAD_FOR_OPADDR_ADDR. */
3951
3952 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3953 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
3954 && rld[i].secondary_in_reload != -1)
3955 {
3956 int secondary_in_reload = rld[i].secondary_in_reload;
3957
3958 rld[secondary_in_reload].when_needed
3959 = (rld[i].secondary_in_icode == -1
3960 ? RELOAD_FOR_OPADDR_ADDR
3961 : RELOAD_FOR_OPERAND_ADDRESS);
3962
3963 /* If there's a tertiary reload we have to change it also. */
3964 if (secondary_in_reload > 0
3965 && rld[secondary_in_reload].secondary_in_reload != -1)
3966 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
3967 = rld[secondary_in_reload].when_needed;
3968 }
3969
3970 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3971 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3972 && rld[i].secondary_out_reload != -1)
3973 {
3974 int secondary_out_reload = rld[i].secondary_out_reload;
3975
3976 rld[secondary_out_reload].when_needed
3977 = (rld[i].secondary_out_icode == -1
3978 ? RELOAD_FOR_OPADDR_ADDR
3979 : RELOAD_FOR_OPERAND_ADDRESS);
3980
3981 /* If there's a tertiary reload we have to change it also. */
3982 if (secondary_out_reload
3983 && rld[secondary_out_reload].secondary_out_reload != -1)
3984 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
3985 = rld[secondary_out_reload].when_needed;
3986 }
3987
3988 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3989 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3990 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3991 else
3992 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3993 }
3994
3995 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3996 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
3997 && operand_reloadnum[rld[i].opnum] >= 0
3998 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
3999 == RELOAD_OTHER))
4000 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4001
4002 if (goal_alternative_matches[rld[i].opnum] >= 0)
4003 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4004 }
4005
4006 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4007 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4008 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4009
4010 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4011 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4012 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4013 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4014 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4015 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4016 This is complicated by the fact that a single operand can have more
4017 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4018 choose_reload_regs without affecting code quality, and cases that
4019 actually fail are extremely rare, so it turns out to be better to fix
4020 the problem here by not generating cases that choose_reload_regs will
4021 fail for. */
4022 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4023 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4024 a single operand.
4025 We can reduce the register pressure by exploiting that a
4026 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4027 does not conflict with any of them, if it is only used for the first of
4028 the RELOAD_FOR_X_ADDRESS reloads. */
4029 {
4030 int first_op_addr_num = -2;
4031 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4032 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4033 int need_change= 0;
4034 /* We use last_op_addr_reload and the contents of the above arrays
4035 first as flags - -2 means no instance encountered, -1 means exactly
4036 one instance encountered.
4037 If more than one instance has been encountered, we store the reload
4038 number of the first reload of the kind in question; reload numbers
4039 are known to be non-negative. */
4040 for (i = 0; i < noperands; i++)
4041 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4042 for (i = n_reloads - 1; i >= 0; i--)
4043 {
4044 switch (rld[i].when_needed)
4045 {
4046 case RELOAD_FOR_OPERAND_ADDRESS:
4047 if (++first_op_addr_num >= 0)
4048 {
4049 first_op_addr_num = i;
4050 need_change = 1;
4051 }
4052 break;
4053 case RELOAD_FOR_INPUT_ADDRESS:
4054 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4055 {
4056 first_inpaddr_num[rld[i].opnum] = i;
4057 need_change = 1;
4058 }
4059 break;
4060 case RELOAD_FOR_OUTPUT_ADDRESS:
4061 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4062 {
4063 first_outpaddr_num[rld[i].opnum] = i;
4064 need_change = 1;
4065 }
4066 break;
4067 default:
4068 break;
4069 }
4070 }
4071
4072 if (need_change)
4073 {
4074 for (i = 0; i < n_reloads; i++)
4075 {
4076 int first_num;
4077 enum reload_type type;
4078
4079 switch (rld[i].when_needed)
4080 {
4081 case RELOAD_FOR_OPADDR_ADDR:
4082 first_num = first_op_addr_num;
4083 type = RELOAD_FOR_OPERAND_ADDRESS;
4084 break;
4085 case RELOAD_FOR_INPADDR_ADDRESS:
4086 first_num = first_inpaddr_num[rld[i].opnum];
4087 type = RELOAD_FOR_INPUT_ADDRESS;
4088 break;
4089 case RELOAD_FOR_OUTADDR_ADDRESS:
4090 first_num = first_outpaddr_num[rld[i].opnum];
4091 type = RELOAD_FOR_OUTPUT_ADDRESS;
4092 break;
4093 default:
4094 continue;
4095 }
4096 if (first_num < 0)
4097 continue;
4098 else if (i > first_num)
4099 rld[i].when_needed = type;
4100 else
4101 {
4102 /* Check if the only TYPE reload that uses reload I is
4103 reload FIRST_NUM. */
4104 for (j = n_reloads - 1; j > first_num; j--)
4105 {
4106 if (rld[j].when_needed == type
4107 && (rld[i].secondary_p
4108 ? rld[j].secondary_in_reload == i
4109 : reg_mentioned_p (rld[i].in, rld[j].in)))
4110 {
4111 rld[i].when_needed = type;
4112 break;
4113 }
4114 }
4115 }
4116 }
4117 }
4118 }
4119
4120 /* See if we have any reloads that are now allowed to be merged
4121 because we've changed when the reload is needed to
4122 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4123 check for the most common cases. */
4124
4125 for (i = 0; i < n_reloads; i++)
4126 if (rld[i].in != 0 && rld[i].out == 0
4127 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4128 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4129 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4130 for (j = 0; j < n_reloads; j++)
4131 if (i != j && rld[j].in != 0 && rld[j].out == 0
4132 && rld[j].when_needed == rld[i].when_needed
4133 && MATCHES (rld[i].in, rld[j].in)
4134 && rld[i].class == rld[j].class
4135 && !rld[i].nocombine && !rld[j].nocombine
4136 && rld[i].reg_rtx == rld[j].reg_rtx)
4137 {
4138 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4139 transfer_replacements (i, j);
4140 rld[j].in = 0;
4141 }
4142
4143 #ifdef HAVE_cc0
4144 /* If we made any reloads for addresses, see if they violate a
4145 "no input reloads" requirement for this insn. But loads that we
4146 do after the insn (such as for output addresses) are fine. */
4147 if (no_input_reloads)
4148 for (i = 0; i < n_reloads; i++)
4149 if (rld[i].in != 0
4150 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4151 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4152 abort ();
4153 #endif
4154
4155 /* Compute reload_mode and reload_nregs. */
4156 for (i = 0; i < n_reloads; i++)
4157 {
4158 rld[i].mode
4159 = (rld[i].inmode == VOIDmode
4160 || (GET_MODE_SIZE (rld[i].outmode)
4161 > GET_MODE_SIZE (rld[i].inmode)))
4162 ? rld[i].outmode : rld[i].inmode;
4163
4164 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4165 }
4166
4167 return retval;
4168 }
4169
4170 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4171 accepts a memory operand with constant address. */
4172
4173 static int
4174 alternative_allows_memconst (constraint, altnum)
4175 const char *constraint;
4176 int altnum;
4177 {
4178 register int c;
4179 /* Skip alternatives before the one requested. */
4180 while (altnum > 0)
4181 {
4182 while (*constraint++ != ',');
4183 altnum--;
4184 }
4185 /* Scan the requested alternative for 'm' or 'o'.
4186 If one of them is present, this alternative accepts memory constants. */
4187 while ((c = *constraint++) && c != ',' && c != '#')
4188 if (c == 'm' || c == 'o')
4189 return 1;
4190 return 0;
4191 }
4192 \f
4193 /* Scan X for memory references and scan the addresses for reloading.
4194 Also checks for references to "constant" regs that we want to eliminate
4195 and replaces them with the values they stand for.
4196 We may alter X destructively if it contains a reference to such.
4197 If X is just a constant reg, we return the equivalent value
4198 instead of X.
4199
4200 IND_LEVELS says how many levels of indirect addressing this machine
4201 supports.
4202
4203 OPNUM and TYPE identify the purpose of the reload.
4204
4205 IS_SET_DEST is true if X is the destination of a SET, which is not
4206 appropriate to be replaced by a constant.
4207
4208 INSN, if nonzero, is the insn in which we do the reload. It is used
4209 to determine if we may generate output reloads, and where to put USEs
4210 for pseudos that we have to replace with stack slots.
4211
4212 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4213 result of find_reloads_address. */
4214
4215 static rtx
4216 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4217 address_reloaded)
4218 rtx x;
4219 int opnum;
4220 enum reload_type type;
4221 int ind_levels;
4222 int is_set_dest;
4223 rtx insn;
4224 int *address_reloaded;
4225 {
4226 register RTX_CODE code = GET_CODE (x);
4227
4228 register const char *fmt = GET_RTX_FORMAT (code);
4229 register int i;
4230 int copied;
4231
4232 if (code == REG)
4233 {
4234 /* This code is duplicated for speed in find_reloads. */
4235 register int regno = REGNO (x);
4236 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4237 x = reg_equiv_constant[regno];
4238 #if 0
4239 /* This creates (subreg (mem...)) which would cause an unnecessary
4240 reload of the mem. */
4241 else if (reg_equiv_mem[regno] != 0)
4242 x = reg_equiv_mem[regno];
4243 #endif
4244 else if (reg_equiv_memory_loc[regno]
4245 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4246 {
4247 rtx mem = make_memloc (x, regno);
4248 if (reg_equiv_address[regno]
4249 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4250 {
4251 /* If this is not a toplevel operand, find_reloads doesn't see
4252 this substitution. We have to emit a USE of the pseudo so
4253 that delete_output_reload can see it. */
4254 if (replace_reloads && recog_data.operand[opnum] != x)
4255 emit_insn_before (gen_rtx_USE (VOIDmode, x), insn);
4256 x = mem;
4257 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4258 opnum, type, ind_levels, insn);
4259 if (address_reloaded)
4260 *address_reloaded = i;
4261 }
4262 }
4263 return x;
4264 }
4265 if (code == MEM)
4266 {
4267 rtx tem = x;
4268
4269 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4270 opnum, type, ind_levels, insn);
4271 if (address_reloaded)
4272 *address_reloaded = i;
4273
4274 return tem;
4275 }
4276
4277 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4278 {
4279 /* Check for SUBREG containing a REG that's equivalent to a constant.
4280 If the constant has a known value, truncate it right now.
4281 Similarly if we are extracting a single-word of a multi-word
4282 constant. If the constant is symbolic, allow it to be substituted
4283 normally. push_reload will strip the subreg later. If the
4284 constant is VOIDmode, abort because we will lose the mode of
4285 the register (this should never happen because one of the cases
4286 above should handle it). */
4287
4288 register int regno = REGNO (SUBREG_REG (x));
4289 rtx tem;
4290
4291 if (subreg_lowpart_p (x)
4292 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4293 && reg_equiv_constant[regno] != 0
4294 && (tem = gen_lowpart_common (GET_MODE (x),
4295 reg_equiv_constant[regno])) != 0)
4296 return tem;
4297
4298 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4299 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4300 && reg_equiv_constant[regno] != 0
4301 && (tem = operand_subword (reg_equiv_constant[regno],
4302 SUBREG_WORD (x), 0,
4303 GET_MODE (SUBREG_REG (x)))) != 0)
4304 {
4305 /* TEM is now a word sized constant for the bits from X that
4306 we wanted. However, TEM may be the wrong representation.
4307
4308 Use gen_lowpart_common to convert a CONST_INT into a
4309 CONST_DOUBLE and vice versa as needed according to by the mode
4310 of the SUBREG. */
4311 tem = gen_lowpart_common (GET_MODE (x), tem);
4312 if (!tem)
4313 abort ();
4314 return tem;
4315 }
4316
4317 /* If the SUBREG is wider than a word, the above test will fail.
4318 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4319 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4320 a 32 bit target. We still can - and have to - handle this
4321 for non-paradoxical subregs of CONST_INTs. */
4322 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4323 && reg_equiv_constant[regno] != 0
4324 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4325 && (GET_MODE_SIZE (GET_MODE (x))
4326 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4327 {
4328 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4329 if (WORDS_BIG_ENDIAN)
4330 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4331 - GET_MODE_BITSIZE (GET_MODE (x))
4332 - shift);
4333 /* Here we use the knowledge that CONST_INTs have a
4334 HOST_WIDE_INT field. */
4335 if (shift >= HOST_BITS_PER_WIDE_INT)
4336 shift = HOST_BITS_PER_WIDE_INT - 1;
4337 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4338 }
4339
4340 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4341 && reg_equiv_constant[regno] != 0
4342 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4343 abort ();
4344
4345 /* If the subreg contains a reg that will be converted to a mem,
4346 convert the subreg to a narrower memref now.
4347 Otherwise, we would get (subreg (mem ...) ...),
4348 which would force reload of the mem.
4349
4350 We also need to do this if there is an equivalent MEM that is
4351 not offsettable. In that case, alter_subreg would produce an
4352 invalid address on big-endian machines.
4353
4354 For machines that extend byte loads, we must not reload using
4355 a wider mode if we have a paradoxical SUBREG. find_reloads will
4356 force a reload in that case. So we should not do anything here. */
4357
4358 else if (regno >= FIRST_PSEUDO_REGISTER
4359 #ifdef LOAD_EXTEND_OP
4360 && (GET_MODE_SIZE (GET_MODE (x))
4361 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4362 #endif
4363 && (reg_equiv_address[regno] != 0
4364 || (reg_equiv_mem[regno] != 0
4365 && (! strict_memory_address_p (GET_MODE (x),
4366 XEXP (reg_equiv_mem[regno], 0))
4367 || ! offsettable_memref_p (reg_equiv_mem[regno])
4368 || num_not_at_initial_offset))))
4369 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4370 insn);
4371 }
4372 else if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM
4373 && (GET_MODE_SIZE (GET_MODE (x))
4374 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4375 && mode_dependent_address_p (XEXP (SUBREG_REG (x), 0)))
4376 {
4377 /* A paradoxical subreg will simply have the mode of the access
4378 changed, so we need to reload such a memory operand to stabilize
4379 the meaning of the memory access. */
4380 enum machine_mode subreg_mode = GET_MODE (SUBREG_REG (x));
4381
4382 if (is_set_dest)
4383 push_reload (NULL_RTX, SUBREG_REG (x), NULL_PTR, &SUBREG_REG (x),
4384 find_valid_class (subreg_mode, SUBREG_WORD (x)),
4385 VOIDmode, subreg_mode, 0, 0, opnum, type);
4386 else
4387 push_reload (SUBREG_REG (x), NULL_RTX, &SUBREG_REG (x), NULL_PTR,
4388 find_valid_class (subreg_mode, SUBREG_WORD (x)),
4389 subreg_mode, VOIDmode, 0, 0, opnum, type);
4390 }
4391
4392 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4393 {
4394 if (fmt[i] == 'e')
4395 {
4396 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4397 ind_levels, is_set_dest, insn,
4398 address_reloaded);
4399 /* If we have replaced a reg with it's equivalent memory loc -
4400 that can still be handled here e.g. if it's in a paradoxical
4401 subreg - we must make the change in a copy, rather than using
4402 a destructive change. This way, find_reloads can still elect
4403 not to do the change. */
4404 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4405 {
4406 x = shallow_copy_rtx (x);
4407 copied = 1;
4408 }
4409 XEXP (x, i) = new_part;
4410 }
4411 }
4412 return x;
4413 }
4414
4415 /* Return a mem ref for the memory equivalent of reg REGNO.
4416 This mem ref is not shared with anything. */
4417
4418 static rtx
4419 make_memloc (ad, regno)
4420 rtx ad;
4421 int regno;
4422 {
4423 /* We must rerun eliminate_regs, in case the elimination
4424 offsets have changed. */
4425 rtx tem
4426 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4427
4428 /* If TEM might contain a pseudo, we must copy it to avoid
4429 modifying it when we do the substitution for the reload. */
4430 if (rtx_varies_p (tem))
4431 tem = copy_rtx (tem);
4432
4433 tem = gen_rtx_MEM (GET_MODE (ad), tem);
4434 MEM_COPY_ATTRIBUTES (tem, reg_equiv_memory_loc[regno]);
4435 return tem;
4436 }
4437
4438 /* Record all reloads needed for handling memory address AD
4439 which appears in *LOC in a memory reference to mode MODE
4440 which itself is found in location *MEMREFLOC.
4441 Note that we take shortcuts assuming that no multi-reg machine mode
4442 occurs as part of an address.
4443
4444 OPNUM and TYPE specify the purpose of this reload.
4445
4446 IND_LEVELS says how many levels of indirect addressing this machine
4447 supports.
4448
4449 INSN, if nonzero, is the insn in which we do the reload. It is used
4450 to determine if we may generate output reloads, and where to put USEs
4451 for pseudos that we have to replace with stack slots.
4452
4453 Value is nonzero if this address is reloaded or replaced as a whole.
4454 This is interesting to the caller if the address is an autoincrement.
4455
4456 Note that there is no verification that the address will be valid after
4457 this routine does its work. Instead, we rely on the fact that the address
4458 was valid when reload started. So we need only undo things that reload
4459 could have broken. These are wrong register types, pseudos not allocated
4460 to a hard register, and frame pointer elimination. */
4461
4462 static int
4463 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4464 enum machine_mode mode;
4465 rtx *memrefloc;
4466 rtx ad;
4467 rtx *loc;
4468 int opnum;
4469 enum reload_type type;
4470 int ind_levels;
4471 rtx insn;
4472 {
4473 register int regno;
4474 int removed_and = 0;
4475 rtx tem;
4476
4477 /* If the address is a register, see if it is a legitimate address and
4478 reload if not. We first handle the cases where we need not reload
4479 or where we must reload in a non-standard way. */
4480
4481 if (GET_CODE (ad) == REG)
4482 {
4483 regno = REGNO (ad);
4484
4485 if (reg_equiv_constant[regno] != 0
4486 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4487 {
4488 *loc = ad = reg_equiv_constant[regno];
4489 return 0;
4490 }
4491
4492 tem = reg_equiv_memory_loc[regno];
4493 if (tem != 0)
4494 {
4495 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4496 {
4497 tem = make_memloc (ad, regno);
4498 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4499 {
4500 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
4501 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4502 ind_levels, insn);
4503 }
4504 /* We can avoid a reload if the register's equivalent memory
4505 expression is valid as an indirect memory address.
4506 But not all addresses are valid in a mem used as an indirect
4507 address: only reg or reg+constant. */
4508
4509 if (ind_levels > 0
4510 && strict_memory_address_p (mode, tem)
4511 && (GET_CODE (XEXP (tem, 0)) == REG
4512 || (GET_CODE (XEXP (tem, 0)) == PLUS
4513 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4514 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4515 {
4516 /* TEM is not the same as what we'll be replacing the
4517 pseudo with after reload, put a USE in front of INSN
4518 in the final reload pass. */
4519 if (replace_reloads
4520 && num_not_at_initial_offset
4521 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4522 {
4523 *loc = tem;
4524 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4525 /* This doesn't really count as replacing the address
4526 as a whole, since it is still a memory access. */
4527 }
4528 return 0;
4529 }
4530 ad = tem;
4531 }
4532 }
4533
4534 /* The only remaining case where we can avoid a reload is if this is a
4535 hard register that is valid as a base register and which is not the
4536 subject of a CLOBBER in this insn. */
4537
4538 else if (regno < FIRST_PSEUDO_REGISTER
4539 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4540 && ! regno_clobbered_p (regno, this_insn))
4541 return 0;
4542
4543 /* If we do not have one of the cases above, we must do the reload. */
4544 push_reload (ad, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
4545 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4546 return 1;
4547 }
4548
4549 if (strict_memory_address_p (mode, ad))
4550 {
4551 /* The address appears valid, so reloads are not needed.
4552 But the address may contain an eliminable register.
4553 This can happen because a machine with indirect addressing
4554 may consider a pseudo register by itself a valid address even when
4555 it has failed to get a hard reg.
4556 So do a tree-walk to find and eliminate all such regs. */
4557
4558 /* But first quickly dispose of a common case. */
4559 if (GET_CODE (ad) == PLUS
4560 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4561 && GET_CODE (XEXP (ad, 0)) == REG
4562 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4563 return 0;
4564
4565 subst_reg_equivs_changed = 0;
4566 *loc = subst_reg_equivs (ad, insn);
4567
4568 if (! subst_reg_equivs_changed)
4569 return 0;
4570
4571 /* Check result for validity after substitution. */
4572 if (strict_memory_address_p (mode, ad))
4573 return 0;
4574 }
4575
4576 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4577 do
4578 {
4579 if (memrefloc)
4580 {
4581 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4582 ind_levels, win);
4583 }
4584 break;
4585 win:
4586 *memrefloc = copy_rtx (*memrefloc);
4587 XEXP (*memrefloc, 0) = ad;
4588 move_replacements (&ad, &XEXP (*memrefloc, 0));
4589 return 1;
4590 }
4591 while (0);
4592 #endif
4593
4594 /* The address is not valid. We have to figure out why. First see if
4595 we have an outer AND and remove it if so. Then analyze what's inside. */
4596
4597 if (GET_CODE (ad) == AND)
4598 {
4599 removed_and = 1;
4600 loc = &XEXP (ad, 0);
4601 ad = *loc;
4602 }
4603
4604 /* One possibility for why the address is invalid is that it is itself
4605 a MEM. This can happen when the frame pointer is being eliminated, a
4606 pseudo is not allocated to a hard register, and the offset between the
4607 frame and stack pointers is not its initial value. In that case the
4608 pseudo will have been replaced by a MEM referring to the
4609 stack pointer. */
4610 if (GET_CODE (ad) == MEM)
4611 {
4612 /* First ensure that the address in this MEM is valid. Then, unless
4613 indirect addresses are valid, reload the MEM into a register. */
4614 tem = ad;
4615 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4616 opnum, ADDR_TYPE (type),
4617 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4618
4619 /* If tem was changed, then we must create a new memory reference to
4620 hold it and store it back into memrefloc. */
4621 if (tem != ad && memrefloc)
4622 {
4623 *memrefloc = copy_rtx (*memrefloc);
4624 copy_replacements (tem, XEXP (*memrefloc, 0));
4625 loc = &XEXP (*memrefloc, 0);
4626 if (removed_and)
4627 loc = &XEXP (*loc, 0);
4628 }
4629
4630 /* Check similar cases as for indirect addresses as above except
4631 that we can allow pseudos and a MEM since they should have been
4632 taken care of above. */
4633
4634 if (ind_levels == 0
4635 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4636 || GET_CODE (XEXP (tem, 0)) == MEM
4637 || ! (GET_CODE (XEXP (tem, 0)) == REG
4638 || (GET_CODE (XEXP (tem, 0)) == PLUS
4639 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4640 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4641 {
4642 /* Must use TEM here, not AD, since it is the one that will
4643 have any subexpressions reloaded, if needed. */
4644 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4645 BASE_REG_CLASS, GET_MODE (tem),
4646 VOIDmode, 0,
4647 0, opnum, type);
4648 return ! removed_and;
4649 }
4650 else
4651 return 0;
4652 }
4653
4654 /* If we have address of a stack slot but it's not valid because the
4655 displacement is too large, compute the sum in a register.
4656 Handle all base registers here, not just fp/ap/sp, because on some
4657 targets (namely SH) we can also get too large displacements from
4658 big-endian corrections. */
4659 else if (GET_CODE (ad) == PLUS
4660 && GET_CODE (XEXP (ad, 0)) == REG
4661 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4662 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4663 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4664 {
4665 /* Unshare the MEM rtx so we can safely alter it. */
4666 if (memrefloc)
4667 {
4668 *memrefloc = copy_rtx (*memrefloc);
4669 loc = &XEXP (*memrefloc, 0);
4670 if (removed_and)
4671 loc = &XEXP (*loc, 0);
4672 }
4673
4674 if (double_reg_address_ok)
4675 {
4676 /* Unshare the sum as well. */
4677 *loc = ad = copy_rtx (ad);
4678
4679 /* Reload the displacement into an index reg.
4680 We assume the frame pointer or arg pointer is a base reg. */
4681 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4682 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4683 type, ind_levels);
4684 return 0;
4685 }
4686 else
4687 {
4688 /* If the sum of two regs is not necessarily valid,
4689 reload the sum into a base reg.
4690 That will at least work. */
4691 find_reloads_address_part (ad, loc, BASE_REG_CLASS,
4692 Pmode, opnum, type, ind_levels);
4693 }
4694 return ! removed_and;
4695 }
4696
4697 /* If we have an indexed stack slot, there are three possible reasons why
4698 it might be invalid: The index might need to be reloaded, the address
4699 might have been made by frame pointer elimination and hence have a
4700 constant out of range, or both reasons might apply.
4701
4702 We can easily check for an index needing reload, but even if that is the
4703 case, we might also have an invalid constant. To avoid making the
4704 conservative assumption and requiring two reloads, we see if this address
4705 is valid when not interpreted strictly. If it is, the only problem is
4706 that the index needs a reload and find_reloads_address_1 will take care
4707 of it.
4708
4709 If we decide to do something here, it must be that
4710 `double_reg_address_ok' is true and that this address rtl was made by
4711 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4712 rework the sum so that the reload register will be added to the index.
4713 This is safe because we know the address isn't shared.
4714
4715 We check for fp/ap/sp as both the first and second operand of the
4716 innermost PLUS. */
4717
4718 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4719 && GET_CODE (XEXP (ad, 0)) == PLUS
4720 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4721 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4722 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4723 #endif
4724 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4725 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4726 #endif
4727 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4728 && ! memory_address_p (mode, ad))
4729 {
4730 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4731 plus_constant (XEXP (XEXP (ad, 0), 0),
4732 INTVAL (XEXP (ad, 1))),
4733 XEXP (XEXP (ad, 0), 1));
4734 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4735 GET_MODE (ad), opnum, type, ind_levels);
4736 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4737 type, 0, insn);
4738
4739 return 0;
4740 }
4741
4742 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4743 && GET_CODE (XEXP (ad, 0)) == PLUS
4744 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4745 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4746 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4747 #endif
4748 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4749 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4750 #endif
4751 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4752 && ! memory_address_p (mode, ad))
4753 {
4754 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4755 XEXP (XEXP (ad, 0), 0),
4756 plus_constant (XEXP (XEXP (ad, 0), 1),
4757 INTVAL (XEXP (ad, 1))));
4758 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
4759 GET_MODE (ad), opnum, type, ind_levels);
4760 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4761 type, 0, insn);
4762
4763 return 0;
4764 }
4765
4766 /* See if address becomes valid when an eliminable register
4767 in a sum is replaced. */
4768
4769 tem = ad;
4770 if (GET_CODE (ad) == PLUS)
4771 tem = subst_indexed_address (ad);
4772 if (tem != ad && strict_memory_address_p (mode, tem))
4773 {
4774 /* Ok, we win that way. Replace any additional eliminable
4775 registers. */
4776
4777 subst_reg_equivs_changed = 0;
4778 tem = subst_reg_equivs (tem, insn);
4779
4780 /* Make sure that didn't make the address invalid again. */
4781
4782 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4783 {
4784 *loc = tem;
4785 return 0;
4786 }
4787 }
4788
4789 /* If constants aren't valid addresses, reload the constant address
4790 into a register. */
4791 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4792 {
4793 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4794 Unshare it so we can safely alter it. */
4795 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4796 && CONSTANT_POOL_ADDRESS_P (ad))
4797 {
4798 *memrefloc = copy_rtx (*memrefloc);
4799 loc = &XEXP (*memrefloc, 0);
4800 if (removed_and)
4801 loc = &XEXP (*loc, 0);
4802 }
4803
4804 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
4805 ind_levels);
4806 return ! removed_and;
4807 }
4808
4809 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4810 insn);
4811 }
4812 \f
4813 /* Find all pseudo regs appearing in AD
4814 that are eliminable in favor of equivalent values
4815 and do not have hard regs; replace them by their equivalents.
4816 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4817 front of it for pseudos that we have to replace with stack slots. */
4818
4819 static rtx
4820 subst_reg_equivs (ad, insn)
4821 rtx ad;
4822 rtx insn;
4823 {
4824 register RTX_CODE code = GET_CODE (ad);
4825 register int i;
4826 register const char *fmt;
4827
4828 switch (code)
4829 {
4830 case HIGH:
4831 case CONST_INT:
4832 case CONST:
4833 case CONST_DOUBLE:
4834 case SYMBOL_REF:
4835 case LABEL_REF:
4836 case PC:
4837 case CC0:
4838 return ad;
4839
4840 case REG:
4841 {
4842 register int regno = REGNO (ad);
4843
4844 if (reg_equiv_constant[regno] != 0)
4845 {
4846 subst_reg_equivs_changed = 1;
4847 return reg_equiv_constant[regno];
4848 }
4849 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4850 {
4851 rtx mem = make_memloc (ad, regno);
4852 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4853 {
4854 subst_reg_equivs_changed = 1;
4855 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4856 return mem;
4857 }
4858 }
4859 }
4860 return ad;
4861
4862 case PLUS:
4863 /* Quickly dispose of a common case. */
4864 if (XEXP (ad, 0) == frame_pointer_rtx
4865 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4866 return ad;
4867 break;
4868
4869 default:
4870 break;
4871 }
4872
4873 fmt = GET_RTX_FORMAT (code);
4874 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4875 if (fmt[i] == 'e')
4876 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4877 return ad;
4878 }
4879 \f
4880 /* Compute the sum of X and Y, making canonicalizations assumed in an
4881 address, namely: sum constant integers, surround the sum of two
4882 constants with a CONST, put the constant as the second operand, and
4883 group the constant on the outermost sum.
4884
4885 This routine assumes both inputs are already in canonical form. */
4886
4887 rtx
4888 form_sum (x, y)
4889 rtx x, y;
4890 {
4891 rtx tem;
4892 enum machine_mode mode = GET_MODE (x);
4893
4894 if (mode == VOIDmode)
4895 mode = GET_MODE (y);
4896
4897 if (mode == VOIDmode)
4898 mode = Pmode;
4899
4900 if (GET_CODE (x) == CONST_INT)
4901 return plus_constant (y, INTVAL (x));
4902 else if (GET_CODE (y) == CONST_INT)
4903 return plus_constant (x, INTVAL (y));
4904 else if (CONSTANT_P (x))
4905 tem = x, x = y, y = tem;
4906
4907 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4908 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4909
4910 /* Note that if the operands of Y are specified in the opposite
4911 order in the recursive calls below, infinite recursion will occur. */
4912 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4913 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4914
4915 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4916 constant will have been placed second. */
4917 if (CONSTANT_P (x) && CONSTANT_P (y))
4918 {
4919 if (GET_CODE (x) == CONST)
4920 x = XEXP (x, 0);
4921 if (GET_CODE (y) == CONST)
4922 y = XEXP (y, 0);
4923
4924 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4925 }
4926
4927 return gen_rtx_PLUS (mode, x, y);
4928 }
4929 \f
4930 /* If ADDR is a sum containing a pseudo register that should be
4931 replaced with a constant (from reg_equiv_constant),
4932 return the result of doing so, and also apply the associative
4933 law so that the result is more likely to be a valid address.
4934 (But it is not guaranteed to be one.)
4935
4936 Note that at most one register is replaced, even if more are
4937 replaceable. Also, we try to put the result into a canonical form
4938 so it is more likely to be a valid address.
4939
4940 In all other cases, return ADDR. */
4941
4942 static rtx
4943 subst_indexed_address (addr)
4944 rtx addr;
4945 {
4946 rtx op0 = 0, op1 = 0, op2 = 0;
4947 rtx tem;
4948 int regno;
4949
4950 if (GET_CODE (addr) == PLUS)
4951 {
4952 /* Try to find a register to replace. */
4953 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4954 if (GET_CODE (op0) == REG
4955 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4956 && reg_renumber[regno] < 0
4957 && reg_equiv_constant[regno] != 0)
4958 op0 = reg_equiv_constant[regno];
4959 else if (GET_CODE (op1) == REG
4960 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4961 && reg_renumber[regno] < 0
4962 && reg_equiv_constant[regno] != 0)
4963 op1 = reg_equiv_constant[regno];
4964 else if (GET_CODE (op0) == PLUS
4965 && (tem = subst_indexed_address (op0)) != op0)
4966 op0 = tem;
4967 else if (GET_CODE (op1) == PLUS
4968 && (tem = subst_indexed_address (op1)) != op1)
4969 op1 = tem;
4970 else
4971 return addr;
4972
4973 /* Pick out up to three things to add. */
4974 if (GET_CODE (op1) == PLUS)
4975 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4976 else if (GET_CODE (op0) == PLUS)
4977 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4978
4979 /* Compute the sum. */
4980 if (op2 != 0)
4981 op1 = form_sum (op1, op2);
4982 if (op1 != 0)
4983 op0 = form_sum (op0, op1);
4984
4985 return op0;
4986 }
4987 return addr;
4988 }
4989 \f
4990 /* Record the pseudo registers we must reload into hard registers in a
4991 subexpression of a would-be memory address, X referring to a value
4992 in mode MODE. (This function is not called if the address we find
4993 is strictly valid.)
4994
4995 CONTEXT = 1 means we are considering regs as index regs,
4996 = 0 means we are considering them as base regs.
4997
4998 OPNUM and TYPE specify the purpose of any reloads made.
4999
5000 IND_LEVELS says how many levels of indirect addressing are
5001 supported at this point in the address.
5002
5003 INSN, if nonzero, is the insn in which we do the reload. It is used
5004 to determine if we may generate output reloads.
5005
5006 We return nonzero if X, as a whole, is reloaded or replaced. */
5007
5008 /* Note that we take shortcuts assuming that no multi-reg machine mode
5009 occurs as part of an address.
5010 Also, this is not fully machine-customizable; it works for machines
5011 such as vaxes and 68000's and 32000's, but other possible machines
5012 could have addressing modes that this does not handle right. */
5013
5014 static int
5015 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5016 enum machine_mode mode;
5017 rtx x;
5018 int context;
5019 rtx *loc;
5020 int opnum;
5021 enum reload_type type;
5022 int ind_levels;
5023 rtx insn;
5024 {
5025 register RTX_CODE code = GET_CODE (x);
5026
5027 switch (code)
5028 {
5029 case PLUS:
5030 {
5031 register rtx orig_op0 = XEXP (x, 0);
5032 register rtx orig_op1 = XEXP (x, 1);
5033 register RTX_CODE code0 = GET_CODE (orig_op0);
5034 register RTX_CODE code1 = GET_CODE (orig_op1);
5035 register rtx op0 = orig_op0;
5036 register rtx op1 = orig_op1;
5037
5038 if (GET_CODE (op0) == SUBREG)
5039 {
5040 op0 = SUBREG_REG (op0);
5041 code0 = GET_CODE (op0);
5042 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5043 op0 = gen_rtx_REG (word_mode,
5044 REGNO (op0) + SUBREG_WORD (orig_op0));
5045 }
5046
5047 if (GET_CODE (op1) == SUBREG)
5048 {
5049 op1 = SUBREG_REG (op1);
5050 code1 = GET_CODE (op1);
5051 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5052 op1 = gen_rtx_REG (GET_MODE (op1),
5053 REGNO (op1) + SUBREG_WORD (orig_op1));
5054 }
5055
5056 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5057 || code0 == ZERO_EXTEND || code1 == MEM)
5058 {
5059 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5060 type, ind_levels, insn);
5061 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5062 type, ind_levels, insn);
5063 }
5064
5065 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5066 || code1 == ZERO_EXTEND || code0 == MEM)
5067 {
5068 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5069 type, ind_levels, insn);
5070 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5071 type, ind_levels, insn);
5072 }
5073
5074 else if (code0 == CONST_INT || code0 == CONST
5075 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5076 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5077 type, ind_levels, insn);
5078
5079 else if (code1 == CONST_INT || code1 == CONST
5080 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5081 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5082 type, ind_levels, insn);
5083
5084 else if (code0 == REG && code1 == REG)
5085 {
5086 if (REG_OK_FOR_INDEX_P (op0)
5087 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5088 return 0;
5089 else if (REG_OK_FOR_INDEX_P (op1)
5090 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5091 return 0;
5092 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5093 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5094 type, ind_levels, insn);
5095 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5096 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5097 type, ind_levels, insn);
5098 else if (REG_OK_FOR_INDEX_P (op1))
5099 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5100 type, ind_levels, insn);
5101 else if (REG_OK_FOR_INDEX_P (op0))
5102 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5103 type, ind_levels, insn);
5104 else
5105 {
5106 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5107 type, ind_levels, insn);
5108 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5109 type, ind_levels, insn);
5110 }
5111 }
5112
5113 else if (code0 == REG)
5114 {
5115 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5116 type, ind_levels, insn);
5117 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5118 type, ind_levels, insn);
5119 }
5120
5121 else if (code1 == REG)
5122 {
5123 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5124 type, ind_levels, insn);
5125 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5126 type, ind_levels, insn);
5127 }
5128 }
5129
5130 return 0;
5131
5132 case POST_MODIFY:
5133 case PRE_MODIFY:
5134 {
5135 rtx op0 = XEXP (x, 0);
5136 rtx op1 = XEXP (x, 1);
5137
5138 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5139 return 0;
5140
5141 /* Currently, we only support {PRE,POST}_MODIFY constructs
5142 where a base register is {inc,dec}remented by the contents
5143 of another register or by a constant value. Thus, these
5144 operands must match. */
5145 if (op0 != XEXP (op1, 0))
5146 abort();
5147
5148 /* Require index register (or constant). Let's just handle the
5149 register case in the meantime... If the target allows
5150 auto-modify by a constant then we could try replacing a pseudo
5151 register with its equivalent constant where applicable. */
5152 if (REG_P (XEXP (op1, 1)))
5153 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5154 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5155 opnum, type, ind_levels, insn);
5156
5157 if (REG_P (XEXP (op1, 0)))
5158 {
5159 register int regno = REGNO (XEXP (op1, 0));
5160
5161 /* A register that is incremented cannot be constant! */
5162 if (regno >= FIRST_PSEUDO_REGISTER
5163 && reg_equiv_constant[regno] != 0)
5164 abort ();
5165
5166 /* Handle a register that is equivalent to a memory location
5167 which cannot be addressed directly. */
5168 if (reg_equiv_memory_loc[regno] != 0
5169 && (reg_equiv_address[regno] != 0
5170 || num_not_at_initial_offset))
5171 {
5172 rtx tem = make_memloc (XEXP (x, 0), regno);
5173
5174 if (reg_equiv_address[regno]
5175 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5176 {
5177 /* First reload the memory location's address.
5178 We can't use ADDR_TYPE (type) here, because we need to
5179 write back the value after reading it, hence we actually
5180 need two registers. */
5181 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5182 &XEXP (tem, 0), opnum, type,
5183 ind_levels, insn);
5184
5185 /* Then reload the memory location into a base
5186 register. */
5187 push_reload (tem, tem, &XEXP (x, 0), &XEXP (op1, 0),
5188 BASE_REG_CLASS, GET_MODE (x), GET_MODE (x),
5189 0, 0, opnum, RELOAD_OTHER);
5190 break;
5191 }
5192 }
5193
5194 if (reg_renumber[regno] >= 0)
5195 regno = reg_renumber[regno];
5196
5197 /* We require a base register here... */
5198 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5199 {
5200 push_reload (XEXP (op1, 0), XEXP (x, 0),
5201 &XEXP (op1, 0), &XEXP (x, 0),
5202 BASE_REG_CLASS,
5203 GET_MODE (x), GET_MODE (x), 0, 0,
5204 opnum, RELOAD_OTHER);
5205 }
5206 }
5207 else
5208 abort();
5209 }
5210 return 0;
5211
5212 case POST_INC:
5213 case POST_DEC:
5214 case PRE_INC:
5215 case PRE_DEC:
5216 if (GET_CODE (XEXP (x, 0)) == REG)
5217 {
5218 register int regno = REGNO (XEXP (x, 0));
5219 int value = 0;
5220 rtx x_orig = x;
5221
5222 /* A register that is incremented cannot be constant! */
5223 if (regno >= FIRST_PSEUDO_REGISTER
5224 && reg_equiv_constant[regno] != 0)
5225 abort ();
5226
5227 /* Handle a register that is equivalent to a memory location
5228 which cannot be addressed directly. */
5229 if (reg_equiv_memory_loc[regno] != 0
5230 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5231 {
5232 rtx tem = make_memloc (XEXP (x, 0), regno);
5233 if (reg_equiv_address[regno]
5234 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5235 {
5236 /* First reload the memory location's address.
5237 We can't use ADDR_TYPE (type) here, because we need to
5238 write back the value after reading it, hence we actually
5239 need two registers. */
5240 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5241 &XEXP (tem, 0), opnum, type,
5242 ind_levels, insn);
5243 /* Put this inside a new increment-expression. */
5244 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5245 /* Proceed to reload that, as if it contained a register. */
5246 }
5247 }
5248
5249 /* If we have a hard register that is ok as an index,
5250 don't make a reload. If an autoincrement of a nice register
5251 isn't "valid", it must be that no autoincrement is "valid".
5252 If that is true and something made an autoincrement anyway,
5253 this must be a special context where one is allowed.
5254 (For example, a "push" instruction.)
5255 We can't improve this address, so leave it alone. */
5256
5257 /* Otherwise, reload the autoincrement into a suitable hard reg
5258 and record how much to increment by. */
5259
5260 if (reg_renumber[regno] >= 0)
5261 regno = reg_renumber[regno];
5262 if ((regno >= FIRST_PSEUDO_REGISTER
5263 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5264 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5265 {
5266 #ifdef AUTO_INC_DEC
5267 register rtx link;
5268 #endif
5269 int reloadnum;
5270
5271 /* If we can output the register afterwards, do so, this
5272 saves the extra update.
5273 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5274 CALL_INSN - and it does not set CC0.
5275 But don't do this if we cannot directly address the
5276 memory location, since this will make it harder to
5277 reuse address reloads, and increases register pressure.
5278 Also don't do this if we can probably update x directly. */
5279 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5280 ? XEXP (x, 0)
5281 : reg_equiv_mem[regno]);
5282 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5283 if (insn && GET_CODE (insn) == INSN && equiv
5284 && memory_operand (equiv, GET_MODE (equiv))
5285 #ifdef HAVE_cc0
5286 && ! sets_cc0_p (PATTERN (insn))
5287 #endif
5288 && ! (icode != CODE_FOR_nothing
5289 && ((*insn_data[icode].operand[0].predicate)
5290 (equiv, Pmode))
5291 && ((*insn_data[icode].operand[1].predicate)
5292 (equiv, Pmode))))
5293 {
5294 loc = &XEXP (x, 0);
5295 x = XEXP (x, 0);
5296 reloadnum
5297 = push_reload (x, x, loc, loc,
5298 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5299 GET_MODE (x), GET_MODE (x), 0, 0,
5300 opnum, RELOAD_OTHER);
5301
5302 /* If we created a new MEM based on reg_equiv_mem[REGNO], then
5303 LOC above is part of the new MEM, not the MEM in INSN.
5304
5305 We must also replace the address of the MEM in INSN. */
5306 if (&XEXP (x_orig, 0) != loc)
5307 push_replacement (&XEXP (x_orig, 0), reloadnum, VOIDmode);
5308
5309 }
5310 else
5311 {
5312 reloadnum
5313 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5314 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5315 GET_MODE (x), GET_MODE (x), 0, 0,
5316 opnum, type);
5317 rld[reloadnum].inc
5318 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5319
5320 value = 1;
5321 }
5322
5323 #ifdef AUTO_INC_DEC
5324 /* Update the REG_INC notes. */
5325
5326 for (link = REG_NOTES (this_insn);
5327 link; link = XEXP (link, 1))
5328 if (REG_NOTE_KIND (link) == REG_INC
5329 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
5330 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5331 #endif
5332 }
5333 return value;
5334 }
5335
5336 else if (GET_CODE (XEXP (x, 0)) == MEM)
5337 {
5338 /* This is probably the result of a substitution, by eliminate_regs,
5339 of an equivalent address for a pseudo that was not allocated to a
5340 hard register. Verify that the specified address is valid and
5341 reload it into a register. */
5342 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5343 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5344 register rtx link;
5345 int reloadnum;
5346
5347 /* Since we know we are going to reload this item, don't decrement
5348 for the indirection level.
5349
5350 Note that this is actually conservative: it would be slightly
5351 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5352 reload1.c here. */
5353 /* We can't use ADDR_TYPE (type) here, because we need to
5354 write back the value after reading it, hence we actually
5355 need two registers. */
5356 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5357 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5358 opnum, type, ind_levels, insn);
5359
5360 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
5361 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5362 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5363 rld[reloadnum].inc
5364 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5365
5366 link = FIND_REG_INC_NOTE (this_insn, tem);
5367 if (link != 0)
5368 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5369
5370 return 1;
5371 }
5372 return 0;
5373
5374 case MEM:
5375 /* This is probably the result of a substitution, by eliminate_regs, of
5376 an equivalent address for a pseudo that was not allocated to a hard
5377 register. Verify that the specified address is valid and reload it
5378 into a register.
5379
5380 Since we know we are going to reload this item, don't decrement for
5381 the indirection level.
5382
5383 Note that this is actually conservative: it would be slightly more
5384 efficient to use the value of SPILL_INDIRECT_LEVELS from
5385 reload1.c here. */
5386
5387 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5388 opnum, ADDR_TYPE (type), ind_levels, insn);
5389 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
5390 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5391 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5392 return 1;
5393
5394 case REG:
5395 {
5396 register int regno = REGNO (x);
5397
5398 if (reg_equiv_constant[regno] != 0)
5399 {
5400 find_reloads_address_part (reg_equiv_constant[regno], loc,
5401 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5402 GET_MODE (x), opnum, type, ind_levels);
5403 return 1;
5404 }
5405
5406 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5407 that feeds this insn. */
5408 if (reg_equiv_mem[regno] != 0)
5409 {
5410 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
5411 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5412 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5413 return 1;
5414 }
5415 #endif
5416
5417 if (reg_equiv_memory_loc[regno]
5418 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5419 {
5420 rtx tem = make_memloc (x, regno);
5421 if (reg_equiv_address[regno] != 0
5422 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5423 {
5424 x = tem;
5425 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5426 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5427 ind_levels, insn);
5428 }
5429 }
5430
5431 if (reg_renumber[regno] >= 0)
5432 regno = reg_renumber[regno];
5433
5434 if ((regno >= FIRST_PSEUDO_REGISTER
5435 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5436 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5437 {
5438 push_reload (x, NULL_RTX, loc, NULL_PTR,
5439 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5440 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5441 return 1;
5442 }
5443
5444 /* If a register appearing in an address is the subject of a CLOBBER
5445 in this insn, reload it into some other register to be safe.
5446 The CLOBBER is supposed to make the register unavailable
5447 from before this insn to after it. */
5448 if (regno_clobbered_p (regno, this_insn))
5449 {
5450 push_reload (x, NULL_RTX, loc, NULL_PTR,
5451 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5452 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5453 return 1;
5454 }
5455 }
5456 return 0;
5457
5458 case SUBREG:
5459 if (GET_CODE (SUBREG_REG (x)) == REG)
5460 {
5461 /* If this is a SUBREG of a hard register and the resulting register
5462 is of the wrong class, reload the whole SUBREG. This avoids
5463 needless copies if SUBREG_REG is multi-word. */
5464 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5465 {
5466 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5467
5468 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5469 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5470 {
5471 push_reload (x, NULL_RTX, loc, NULL_PTR,
5472 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5473 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5474 return 1;
5475 }
5476 }
5477 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5478 is larger than the class size, then reload the whole SUBREG. */
5479 else
5480 {
5481 enum reg_class class = (context ? INDEX_REG_CLASS
5482 : BASE_REG_CLASS);
5483 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5484 > reg_class_size[class])
5485 {
5486 x = find_reloads_subreg_address (x, 0, opnum, type,
5487 ind_levels, insn);
5488 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5489 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5490 return 1;
5491 }
5492 }
5493 }
5494 break;
5495
5496 default:
5497 break;
5498 }
5499
5500 {
5501 register const char *fmt = GET_RTX_FORMAT (code);
5502 register int i;
5503
5504 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5505 {
5506 if (fmt[i] == 'e')
5507 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5508 opnum, type, ind_levels, insn);
5509 }
5510 }
5511
5512 return 0;
5513 }
5514 \f
5515 /* X, which is found at *LOC, is a part of an address that needs to be
5516 reloaded into a register of class CLASS. If X is a constant, or if
5517 X is a PLUS that contains a constant, check that the constant is a
5518 legitimate operand and that we are supposed to be able to load
5519 it into the register.
5520
5521 If not, force the constant into memory and reload the MEM instead.
5522
5523 MODE is the mode to use, in case X is an integer constant.
5524
5525 OPNUM and TYPE describe the purpose of any reloads made.
5526
5527 IND_LEVELS says how many levels of indirect addressing this machine
5528 supports. */
5529
5530 static void
5531 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5532 rtx x;
5533 rtx *loc;
5534 enum reg_class class;
5535 enum machine_mode mode;
5536 int opnum;
5537 enum reload_type type;
5538 int ind_levels;
5539 {
5540 if (CONSTANT_P (x)
5541 && (! LEGITIMATE_CONSTANT_P (x)
5542 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5543 {
5544 rtx tem;
5545
5546 /* If this is a CONST_INT, it could have been created by a
5547 plus_constant call in eliminate_regs, which means it may be
5548 on the reload_obstack. reload_obstack will be freed later, so
5549 we can't allow such RTL to be put in the constant pool. There
5550 is code in force_const_mem to check for this case, but it doesn't
5551 work because we have already popped off the reload_obstack, so
5552 rtl_obstack == saveable_obstack is true at this point. */
5553 if (GET_CODE (x) == CONST_INT)
5554 tem = x = force_const_mem (mode, GEN_INT (INTVAL (x)));
5555 else
5556 tem = x = force_const_mem (mode, x);
5557
5558 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5559 opnum, type, ind_levels, 0);
5560 }
5561
5562 else if (GET_CODE (x) == PLUS
5563 && CONSTANT_P (XEXP (x, 1))
5564 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5565 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5566 {
5567 rtx tem;
5568
5569 /* See comment above. */
5570 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5571 tem = force_const_mem (GET_MODE (x), GEN_INT (INTVAL (XEXP (x, 1))));
5572 else
5573 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5574
5575 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5576 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5577 opnum, type, ind_levels, 0);
5578 }
5579
5580 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5581 mode, VOIDmode, 0, 0, opnum, type);
5582 }
5583 \f
5584 /* X, a subreg of a pseudo, is a part of an address that needs to be
5585 reloaded.
5586
5587 If the pseudo is equivalent to a memory location that cannot be directly
5588 addressed, make the necessary address reloads.
5589
5590 If address reloads have been necessary, or if the address is changed
5591 by register elimination, return the rtx of the memory location;
5592 otherwise, return X.
5593
5594 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5595 memory location.
5596
5597 OPNUM and TYPE identify the purpose of the reload.
5598
5599 IND_LEVELS says how many levels of indirect addressing are
5600 supported at this point in the address.
5601
5602 INSN, if nonzero, is the insn in which we do the reload. It is used
5603 to determine where to put USEs for pseudos that we have to replace with
5604 stack slots. */
5605
5606 static rtx
5607 find_reloads_subreg_address (x, force_replace, opnum, type,
5608 ind_levels, insn)
5609 rtx x;
5610 int force_replace;
5611 int opnum;
5612 enum reload_type type;
5613 int ind_levels;
5614 rtx insn;
5615 {
5616 int regno = REGNO (SUBREG_REG (x));
5617
5618 if (reg_equiv_memory_loc[regno])
5619 {
5620 /* If the address is not directly addressable, or if the address is not
5621 offsettable, then it must be replaced. */
5622 if (! force_replace
5623 && (reg_equiv_address[regno]
5624 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5625 force_replace = 1;
5626
5627 if (force_replace || num_not_at_initial_offset)
5628 {
5629 rtx tem = make_memloc (SUBREG_REG (x), regno);
5630
5631 /* If the address changes because of register elimination, then
5632 it must be replaced. */
5633 if (force_replace
5634 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5635 {
5636 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
5637
5638 if (BYTES_BIG_ENDIAN)
5639 {
5640 int size;
5641
5642 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5643 offset += MIN (size, UNITS_PER_WORD);
5644 size = GET_MODE_SIZE (GET_MODE (x));
5645 offset -= MIN (size, UNITS_PER_WORD);
5646 }
5647 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5648 PUT_MODE (tem, GET_MODE (x));
5649 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5650 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5651 ind_levels, insn);
5652 /* If this is not a toplevel operand, find_reloads doesn't see
5653 this substitution. We have to emit a USE of the pseudo so
5654 that delete_output_reload can see it. */
5655 if (replace_reloads && recog_data.operand[opnum] != x)
5656 emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn);
5657 x = tem;
5658 }
5659 }
5660 }
5661 return x;
5662 }
5663 \f
5664 /* Substitute into the current INSN the registers into which we have reloaded
5665 the things that need reloading. The array `replacements'
5666 contains the locations of all pointers that must be changed
5667 and says what to replace them with.
5668
5669 Return the rtx that X translates into; usually X, but modified. */
5670
5671 void
5672 subst_reloads ()
5673 {
5674 register int i;
5675
5676 for (i = 0; i < n_replacements; i++)
5677 {
5678 register struct replacement *r = &replacements[i];
5679 register rtx reloadreg = rld[r->what].reg_rtx;
5680 if (reloadreg)
5681 {
5682 /* Encapsulate RELOADREG so its machine mode matches what
5683 used to be there. Note that gen_lowpart_common will
5684 do the wrong thing if RELOADREG is multi-word. RELOADREG
5685 will always be a REG here. */
5686 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5687 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5688
5689 /* If we are putting this into a SUBREG and RELOADREG is a
5690 SUBREG, we would be making nested SUBREGs, so we have to fix
5691 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5692
5693 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5694 {
5695 if (GET_MODE (*r->subreg_loc)
5696 == GET_MODE (SUBREG_REG (reloadreg)))
5697 *r->subreg_loc = SUBREG_REG (reloadreg);
5698 else
5699 {
5700 *r->where = SUBREG_REG (reloadreg);
5701 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5702 }
5703 }
5704 else
5705 *r->where = reloadreg;
5706 }
5707 /* If reload got no reg and isn't optional, something's wrong. */
5708 else if (! rld[r->what].optional)
5709 abort ();
5710 }
5711 }
5712 \f
5713 /* Make a copy of any replacements being done into X and move those copies
5714 to locations in Y, a copy of X. We only look at the highest level of
5715 the RTL. */
5716
5717 void
5718 copy_replacements (x, y)
5719 rtx x;
5720 rtx y;
5721 {
5722 int i, j;
5723 enum rtx_code code = GET_CODE (x);
5724 const char *fmt = GET_RTX_FORMAT (code);
5725 struct replacement *r;
5726
5727 /* We can't support X being a SUBREG because we might then need to know its
5728 location if something inside it was replaced. */
5729 if (code == SUBREG)
5730 abort ();
5731
5732 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5733 if (fmt[i] == 'e')
5734 for (j = 0; j < n_replacements; j++)
5735 {
5736 if (replacements[j].subreg_loc == &XEXP (x, i))
5737 {
5738 r = &replacements[n_replacements++];
5739 r->where = replacements[j].where;
5740 r->subreg_loc = &XEXP (y, i);
5741 r->what = replacements[j].what;
5742 r->mode = replacements[j].mode;
5743 }
5744 else if (replacements[j].where == &XEXP (x, i))
5745 {
5746 r = &replacements[n_replacements++];
5747 r->where = &XEXP (y, i);
5748 r->subreg_loc = 0;
5749 r->what = replacements[j].what;
5750 r->mode = replacements[j].mode;
5751 }
5752 }
5753 }
5754
5755 /* Change any replacements being done to *X to be done to *Y */
5756
5757 void
5758 move_replacements (x, y)
5759 rtx *x;
5760 rtx *y;
5761 {
5762 int i;
5763
5764 for (i = 0; i < n_replacements; i++)
5765 if (replacements[i].subreg_loc == x)
5766 replacements[i].subreg_loc = y;
5767 else if (replacements[i].where == x)
5768 {
5769 replacements[i].where = y;
5770 replacements[i].subreg_loc = 0;
5771 }
5772 }
5773 \f
5774 /* If LOC was scheduled to be replaced by something, return the replacement.
5775 Otherwise, return *LOC. */
5776
5777 rtx
5778 find_replacement (loc)
5779 rtx *loc;
5780 {
5781 struct replacement *r;
5782
5783 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5784 {
5785 rtx reloadreg = rld[r->what].reg_rtx;
5786
5787 if (reloadreg && r->where == loc)
5788 {
5789 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5790 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5791
5792 return reloadreg;
5793 }
5794 else if (reloadreg && r->subreg_loc == loc)
5795 {
5796 /* RELOADREG must be either a REG or a SUBREG.
5797
5798 ??? Is it actually still ever a SUBREG? If so, why? */
5799
5800 if (GET_CODE (reloadreg) == REG)
5801 return gen_rtx_REG (GET_MODE (*loc),
5802 REGNO (reloadreg) + SUBREG_WORD (*loc));
5803 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5804 return reloadreg;
5805 else
5806 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5807 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5808 }
5809 }
5810
5811 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5812 what's inside and make a new rtl if so. */
5813 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5814 || GET_CODE (*loc) == MULT)
5815 {
5816 rtx x = find_replacement (&XEXP (*loc, 0));
5817 rtx y = find_replacement (&XEXP (*loc, 1));
5818
5819 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5820 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5821 }
5822
5823 return *loc;
5824 }
5825 \f
5826 /* Return nonzero if register in range [REGNO, ENDREGNO)
5827 appears either explicitly or implicitly in X
5828 other than being stored into (except for earlyclobber operands).
5829
5830 References contained within the substructure at LOC do not count.
5831 LOC may be zero, meaning don't ignore anything.
5832
5833 This is similar to refers_to_regno_p in rtlanal.c except that we
5834 look at equivalences for pseudos that didn't get hard registers. */
5835
5836 int
5837 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5838 unsigned int regno, endregno;
5839 rtx x;
5840 rtx *loc;
5841 {
5842 int i;
5843 unsigned int r;
5844 RTX_CODE code;
5845 const char *fmt;
5846
5847 if (x == 0)
5848 return 0;
5849
5850 repeat:
5851 code = GET_CODE (x);
5852
5853 switch (code)
5854 {
5855 case REG:
5856 r = REGNO (x);
5857
5858 /* If this is a pseudo, a hard register must not have been allocated.
5859 X must therefore either be a constant or be in memory. */
5860 if (r >= FIRST_PSEUDO_REGISTER)
5861 {
5862 if (reg_equiv_memory_loc[r])
5863 return refers_to_regno_for_reload_p (regno, endregno,
5864 reg_equiv_memory_loc[r],
5865 NULL_PTR);
5866
5867 if (reg_equiv_constant[r])
5868 return 0;
5869
5870 abort ();
5871 }
5872
5873 return (endregno > r
5874 && regno < r + (r < FIRST_PSEUDO_REGISTER
5875 ? HARD_REGNO_NREGS (r, GET_MODE (x))
5876 : 1));
5877
5878 case SUBREG:
5879 /* If this is a SUBREG of a hard reg, we can see exactly which
5880 registers are being modified. Otherwise, handle normally. */
5881 if (GET_CODE (SUBREG_REG (x)) == REG
5882 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5883 {
5884 unsigned int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5885 unsigned int inner_endregno
5886 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5887 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5888
5889 return endregno > inner_regno && regno < inner_endregno;
5890 }
5891 break;
5892
5893 case CLOBBER:
5894 case SET:
5895 if (&SET_DEST (x) != loc
5896 /* Note setting a SUBREG counts as referring to the REG it is in for
5897 a pseudo but not for hard registers since we can
5898 treat each word individually. */
5899 && ((GET_CODE (SET_DEST (x)) == SUBREG
5900 && loc != &SUBREG_REG (SET_DEST (x))
5901 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5902 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5903 && refers_to_regno_for_reload_p (regno, endregno,
5904 SUBREG_REG (SET_DEST (x)),
5905 loc))
5906 /* If the output is an earlyclobber operand, this is
5907 a conflict. */
5908 || ((GET_CODE (SET_DEST (x)) != REG
5909 || earlyclobber_operand_p (SET_DEST (x)))
5910 && refers_to_regno_for_reload_p (regno, endregno,
5911 SET_DEST (x), loc))))
5912 return 1;
5913
5914 if (code == CLOBBER || loc == &SET_SRC (x))
5915 return 0;
5916 x = SET_SRC (x);
5917 goto repeat;
5918
5919 default:
5920 break;
5921 }
5922
5923 /* X does not match, so try its subexpressions. */
5924
5925 fmt = GET_RTX_FORMAT (code);
5926 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5927 {
5928 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5929 {
5930 if (i == 0)
5931 {
5932 x = XEXP (x, 0);
5933 goto repeat;
5934 }
5935 else
5936 if (refers_to_regno_for_reload_p (regno, endregno,
5937 XEXP (x, i), loc))
5938 return 1;
5939 }
5940 else if (fmt[i] == 'E')
5941 {
5942 register int j;
5943 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5944 if (loc != &XVECEXP (x, i, j)
5945 && refers_to_regno_for_reload_p (regno, endregno,
5946 XVECEXP (x, i, j), loc))
5947 return 1;
5948 }
5949 }
5950 return 0;
5951 }
5952
5953 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5954 we check if any register number in X conflicts with the relevant register
5955 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5956 contains a MEM (we don't bother checking for memory addresses that can't
5957 conflict because we expect this to be a rare case.
5958
5959 This function is similar to reg_overlap_mention_p in rtlanal.c except
5960 that we look at equivalences for pseudos that didn't get hard registers. */
5961
5962 int
5963 reg_overlap_mentioned_for_reload_p (x, in)
5964 rtx x, in;
5965 {
5966 int regno, endregno;
5967
5968 /* Overly conservative. */
5969 if (GET_CODE (x) == STRICT_LOW_PART)
5970 x = XEXP (x, 0);
5971
5972 /* If either argument is a constant, then modifying X can not affect IN. */
5973 if (CONSTANT_P (x) || CONSTANT_P (in))
5974 return 0;
5975 else if (GET_CODE (x) == SUBREG)
5976 {
5977 regno = REGNO (SUBREG_REG (x));
5978 if (regno < FIRST_PSEUDO_REGISTER)
5979 regno += SUBREG_WORD (x);
5980 }
5981 else if (GET_CODE (x) == REG)
5982 {
5983 regno = REGNO (x);
5984
5985 /* If this is a pseudo, it must not have been assigned a hard register.
5986 Therefore, it must either be in memory or be a constant. */
5987
5988 if (regno >= FIRST_PSEUDO_REGISTER)
5989 {
5990 if (reg_equiv_memory_loc[regno])
5991 return refers_to_mem_for_reload_p (in);
5992 else if (reg_equiv_constant[regno])
5993 return 0;
5994 abort ();
5995 }
5996 }
5997 else if (GET_CODE (x) == MEM)
5998 return refers_to_mem_for_reload_p (in);
5999 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6000 || GET_CODE (x) == CC0)
6001 return reg_mentioned_p (x, in);
6002 else
6003 abort ();
6004
6005 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6006 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6007
6008 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
6009 }
6010
6011 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6012 registers. */
6013
6014 int
6015 refers_to_mem_for_reload_p (x)
6016 rtx x;
6017 {
6018 const char *fmt;
6019 int i;
6020
6021 if (GET_CODE (x) == MEM)
6022 return 1;
6023
6024 if (GET_CODE (x) == REG)
6025 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6026 && reg_equiv_memory_loc[REGNO (x)]);
6027
6028 fmt = GET_RTX_FORMAT (GET_CODE (x));
6029 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6030 if (fmt[i] == 'e'
6031 && (GET_CODE (XEXP (x, i)) == MEM
6032 || refers_to_mem_for_reload_p (XEXP (x, i))))
6033 return 1;
6034
6035 return 0;
6036 }
6037 \f
6038 /* Check the insns before INSN to see if there is a suitable register
6039 containing the same value as GOAL.
6040 If OTHER is -1, look for a register in class CLASS.
6041 Otherwise, just see if register number OTHER shares GOAL's value.
6042
6043 Return an rtx for the register found, or zero if none is found.
6044
6045 If RELOAD_REG_P is (short *)1,
6046 we reject any hard reg that appears in reload_reg_rtx
6047 because such a hard reg is also needed coming into this insn.
6048
6049 If RELOAD_REG_P is any other nonzero value,
6050 it is a vector indexed by hard reg number
6051 and we reject any hard reg whose element in the vector is nonnegative
6052 as well as any that appears in reload_reg_rtx.
6053
6054 If GOAL is zero, then GOALREG is a register number; we look
6055 for an equivalent for that register.
6056
6057 MODE is the machine mode of the value we want an equivalence for.
6058 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6059
6060 This function is used by jump.c as well as in the reload pass.
6061
6062 If GOAL is the sum of the stack pointer and a constant, we treat it
6063 as if it were a constant except that sp is required to be unchanging. */
6064
6065 rtx
6066 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6067 register rtx goal;
6068 rtx insn;
6069 enum reg_class class;
6070 register int other;
6071 short *reload_reg_p;
6072 int goalreg;
6073 enum machine_mode mode;
6074 {
6075 register rtx p = insn;
6076 rtx goaltry, valtry, value, where;
6077 register rtx pat;
6078 register int regno = -1;
6079 int valueno;
6080 int goal_mem = 0;
6081 int goal_const = 0;
6082 int goal_mem_addr_varies = 0;
6083 int need_stable_sp = 0;
6084 int nregs;
6085 int valuenregs;
6086
6087 if (goal == 0)
6088 regno = goalreg;
6089 else if (GET_CODE (goal) == REG)
6090 regno = REGNO (goal);
6091 else if (GET_CODE (goal) == MEM)
6092 {
6093 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6094 if (MEM_VOLATILE_P (goal))
6095 return 0;
6096 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6097 return 0;
6098 /* An address with side effects must be reexecuted. */
6099 switch (code)
6100 {
6101 case POST_INC:
6102 case PRE_INC:
6103 case POST_DEC:
6104 case PRE_DEC:
6105 case POST_MODIFY:
6106 case PRE_MODIFY:
6107 return 0;
6108 default:
6109 break;
6110 }
6111 goal_mem = 1;
6112 }
6113 else if (CONSTANT_P (goal))
6114 goal_const = 1;
6115 else if (GET_CODE (goal) == PLUS
6116 && XEXP (goal, 0) == stack_pointer_rtx
6117 && CONSTANT_P (XEXP (goal, 1)))
6118 goal_const = need_stable_sp = 1;
6119 else if (GET_CODE (goal) == PLUS
6120 && XEXP (goal, 0) == frame_pointer_rtx
6121 && CONSTANT_P (XEXP (goal, 1)))
6122 goal_const = 1;
6123 else
6124 return 0;
6125
6126 /* Scan insns back from INSN, looking for one that copies
6127 a value into or out of GOAL.
6128 Stop and give up if we reach a label. */
6129
6130 while (1)
6131 {
6132 p = PREV_INSN (p);
6133 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6134 return 0;
6135
6136 if (GET_CODE (p) == INSN
6137 /* If we don't want spill regs ... */
6138 && (! (reload_reg_p != 0
6139 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6140 /* ... then ignore insns introduced by reload; they aren't
6141 useful and can cause results in reload_as_needed to be
6142 different from what they were when calculating the need for
6143 spills. If we notice an input-reload insn here, we will
6144 reject it below, but it might hide a usable equivalent.
6145 That makes bad code. It may even abort: perhaps no reg was
6146 spilled for this insn because it was assumed we would find
6147 that equivalent. */
6148 || INSN_UID (p) < reload_first_uid))
6149 {
6150 rtx tem;
6151 pat = single_set (p);
6152
6153 /* First check for something that sets some reg equal to GOAL. */
6154 if (pat != 0
6155 && ((regno >= 0
6156 && true_regnum (SET_SRC (pat)) == regno
6157 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6158 ||
6159 (regno >= 0
6160 && true_regnum (SET_DEST (pat)) == regno
6161 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6162 ||
6163 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6164 /* When looking for stack pointer + const,
6165 make sure we don't use a stack adjust. */
6166 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6167 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6168 || (goal_mem
6169 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6170 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6171 || (goal_mem
6172 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6173 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6174 /* If we are looking for a constant,
6175 and something equivalent to that constant was copied
6176 into a reg, we can use that reg. */
6177 || (goal_const && REG_NOTES (p) != 0
6178 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6179 && ((rtx_equal_p (XEXP (tem, 0), goal)
6180 && (valueno
6181 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6182 || (GET_CODE (SET_DEST (pat)) == REG
6183 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6184 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6185 == MODE_FLOAT)
6186 && GET_CODE (goal) == CONST_INT
6187 && 0 != (goaltry
6188 = operand_subword (XEXP (tem, 0), 0, 0,
6189 VOIDmode))
6190 && rtx_equal_p (goal, goaltry)
6191 && (valtry
6192 = operand_subword (SET_DEST (pat), 0, 0,
6193 VOIDmode))
6194 && (valueno = true_regnum (valtry)) >= 0)))
6195 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6196 NULL_RTX))
6197 && GET_CODE (SET_DEST (pat)) == REG
6198 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6199 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6200 == MODE_FLOAT)
6201 && GET_CODE (goal) == CONST_INT
6202 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6203 VOIDmode))
6204 && rtx_equal_p (goal, goaltry)
6205 && (valtry
6206 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6207 && (valueno = true_regnum (valtry)) >= 0)))
6208 if (other >= 0
6209 ? valueno == other
6210 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
6211 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6212 valueno)))
6213 {
6214 value = valtry;
6215 where = p;
6216 break;
6217 }
6218 }
6219 }
6220
6221 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6222 (or copying VALUE into GOAL, if GOAL is also a register).
6223 Now verify that VALUE is really valid. */
6224
6225 /* VALUENO is the register number of VALUE; a hard register. */
6226
6227 /* Don't try to re-use something that is killed in this insn. We want
6228 to be able to trust REG_UNUSED notes. */
6229 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6230 return 0;
6231
6232 /* If we propose to get the value from the stack pointer or if GOAL is
6233 a MEM based on the stack pointer, we need a stable SP. */
6234 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6235 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6236 goal)))
6237 need_stable_sp = 1;
6238
6239 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6240 if (GET_MODE (value) != mode)
6241 return 0;
6242
6243 /* Reject VALUE if it was loaded from GOAL
6244 and is also a register that appears in the address of GOAL. */
6245
6246 if (goal_mem && value == SET_DEST (single_set (where))
6247 && refers_to_regno_for_reload_p (valueno,
6248 (valueno
6249 + HARD_REGNO_NREGS (valueno, mode)),
6250 goal, NULL_PTR))
6251 return 0;
6252
6253 /* Reject registers that overlap GOAL. */
6254
6255 if (!goal_mem && !goal_const
6256 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6257 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6258 return 0;
6259
6260 nregs = HARD_REGNO_NREGS (regno, mode);
6261 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6262
6263 /* Reject VALUE if it is one of the regs reserved for reloads.
6264 Reload1 knows how to reuse them anyway, and it would get
6265 confused if we allocated one without its knowledge.
6266 (Now that insns introduced by reload are ignored above,
6267 this case shouldn't happen, but I'm not positive.) */
6268
6269 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6270 {
6271 int i;
6272 for (i = 0; i < valuenregs; ++i)
6273 if (reload_reg_p[valueno + i] >= 0)
6274 return 0;
6275 }
6276
6277 /* Reject VALUE if it is a register being used for an input reload
6278 even if it is not one of those reserved. */
6279
6280 if (reload_reg_p != 0)
6281 {
6282 int i;
6283 for (i = 0; i < n_reloads; i++)
6284 if (rld[i].reg_rtx != 0 && rld[i].in)
6285 {
6286 int regno1 = REGNO (rld[i].reg_rtx);
6287 int nregs1 = HARD_REGNO_NREGS (regno1,
6288 GET_MODE (rld[i].reg_rtx));
6289 if (regno1 < valueno + valuenregs
6290 && regno1 + nregs1 > valueno)
6291 return 0;
6292 }
6293 }
6294
6295 if (goal_mem)
6296 /* We must treat frame pointer as varying here,
6297 since it can vary--in a nonlocal goto as generated by expand_goto. */
6298 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6299
6300 /* Now verify that the values of GOAL and VALUE remain unaltered
6301 until INSN is reached. */
6302
6303 p = insn;
6304 while (1)
6305 {
6306 p = PREV_INSN (p);
6307 if (p == where)
6308 return value;
6309
6310 /* Don't trust the conversion past a function call
6311 if either of the two is in a call-clobbered register, or memory. */
6312 if (GET_CODE (p) == CALL_INSN)
6313 {
6314 int i;
6315
6316 if (goal_mem || need_stable_sp)
6317 return 0;
6318
6319 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6320 for (i = 0; i < nregs; ++i)
6321 if (call_used_regs[regno + i])
6322 return 0;
6323
6324 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6325 for (i = 0; i < valuenregs; ++i)
6326 if (call_used_regs[valueno + i])
6327 return 0;
6328 }
6329
6330 #ifdef NON_SAVING_SETJMP
6331 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
6332 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
6333 return 0;
6334 #endif
6335
6336 if (INSN_P (p))
6337 {
6338 pat = PATTERN (p);
6339
6340 /* Watch out for unspec_volatile, and volatile asms. */
6341 if (volatile_insn_p (pat))
6342 return 0;
6343
6344 /* If this insn P stores in either GOAL or VALUE, return 0.
6345 If GOAL is a memory ref and this insn writes memory, return 0.
6346 If GOAL is a memory ref and its address is not constant,
6347 and this insn P changes a register used in GOAL, return 0. */
6348
6349 if (GET_CODE (pat) == COND_EXEC)
6350 pat = COND_EXEC_CODE (pat);
6351 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6352 {
6353 register rtx dest = SET_DEST (pat);
6354 while (GET_CODE (dest) == SUBREG
6355 || GET_CODE (dest) == ZERO_EXTRACT
6356 || GET_CODE (dest) == SIGN_EXTRACT
6357 || GET_CODE (dest) == STRICT_LOW_PART)
6358 dest = XEXP (dest, 0);
6359 if (GET_CODE (dest) == REG)
6360 {
6361 register int xregno = REGNO (dest);
6362 int xnregs;
6363 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6364 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6365 else
6366 xnregs = 1;
6367 if (xregno < regno + nregs && xregno + xnregs > regno)
6368 return 0;
6369 if (xregno < valueno + valuenregs
6370 && xregno + xnregs > valueno)
6371 return 0;
6372 if (goal_mem_addr_varies
6373 && reg_overlap_mentioned_for_reload_p (dest, goal))
6374 return 0;
6375 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6376 return 0;
6377 }
6378 else if (goal_mem && GET_CODE (dest) == MEM
6379 && ! push_operand (dest, GET_MODE (dest)))
6380 return 0;
6381 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6382 && reg_equiv_memory_loc[regno] != 0)
6383 return 0;
6384 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6385 return 0;
6386 }
6387 else if (GET_CODE (pat) == PARALLEL)
6388 {
6389 register int i;
6390 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6391 {
6392 register rtx v1 = XVECEXP (pat, 0, i);
6393 if (GET_CODE (v1) == COND_EXEC)
6394 v1 = COND_EXEC_CODE (v1);
6395 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6396 {
6397 register rtx dest = SET_DEST (v1);
6398 while (GET_CODE (dest) == SUBREG
6399 || GET_CODE (dest) == ZERO_EXTRACT
6400 || GET_CODE (dest) == SIGN_EXTRACT
6401 || GET_CODE (dest) == STRICT_LOW_PART)
6402 dest = XEXP (dest, 0);
6403 if (GET_CODE (dest) == REG)
6404 {
6405 register int xregno = REGNO (dest);
6406 int xnregs;
6407 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6408 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6409 else
6410 xnregs = 1;
6411 if (xregno < regno + nregs
6412 && xregno + xnregs > regno)
6413 return 0;
6414 if (xregno < valueno + valuenregs
6415 && xregno + xnregs > valueno)
6416 return 0;
6417 if (goal_mem_addr_varies
6418 && reg_overlap_mentioned_for_reload_p (dest,
6419 goal))
6420 return 0;
6421 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6422 return 0;
6423 }
6424 else if (goal_mem && GET_CODE (dest) == MEM
6425 && ! push_operand (dest, GET_MODE (dest)))
6426 return 0;
6427 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6428 && reg_equiv_memory_loc[regno] != 0)
6429 return 0;
6430 else if (need_stable_sp
6431 && push_operand (dest, GET_MODE (dest)))
6432 return 0;
6433 }
6434 }
6435 }
6436
6437 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6438 {
6439 rtx link;
6440
6441 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6442 link = XEXP (link, 1))
6443 {
6444 pat = XEXP (link, 0);
6445 if (GET_CODE (pat) == CLOBBER)
6446 {
6447 register rtx dest = SET_DEST (pat);
6448
6449 if (GET_CODE (dest) == REG)
6450 {
6451 register int xregno = REGNO (dest);
6452 int xnregs
6453 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6454
6455 if (xregno < regno + nregs
6456 && xregno + xnregs > regno)
6457 return 0;
6458 else if (xregno < valueno + valuenregs
6459 && xregno + xnregs > valueno)
6460 return 0;
6461 else if (goal_mem_addr_varies
6462 && reg_overlap_mentioned_for_reload_p (dest,
6463 goal))
6464 return 0;
6465 }
6466
6467 else if (goal_mem && GET_CODE (dest) == MEM
6468 && ! push_operand (dest, GET_MODE (dest)))
6469 return 0;
6470 else if (need_stable_sp
6471 && push_operand (dest, GET_MODE (dest)))
6472 return 0;
6473 }
6474 }
6475 }
6476
6477 #ifdef AUTO_INC_DEC
6478 /* If this insn auto-increments or auto-decrements
6479 either regno or valueno, return 0 now.
6480 If GOAL is a memory ref and its address is not constant,
6481 and this insn P increments a register used in GOAL, return 0. */
6482 {
6483 register rtx link;
6484
6485 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6486 if (REG_NOTE_KIND (link) == REG_INC
6487 && GET_CODE (XEXP (link, 0)) == REG)
6488 {
6489 register int incno = REGNO (XEXP (link, 0));
6490 if (incno < regno + nregs && incno >= regno)
6491 return 0;
6492 if (incno < valueno + valuenregs && incno >= valueno)
6493 return 0;
6494 if (goal_mem_addr_varies
6495 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6496 goal))
6497 return 0;
6498 }
6499 }
6500 #endif
6501 }
6502 }
6503 }
6504 \f
6505 /* Find a place where INCED appears in an increment or decrement operator
6506 within X, and return the amount INCED is incremented or decremented by.
6507 The value is always positive. */
6508
6509 static int
6510 find_inc_amount (x, inced)
6511 rtx x, inced;
6512 {
6513 register enum rtx_code code = GET_CODE (x);
6514 register const char *fmt;
6515 register int i;
6516
6517 if (code == MEM)
6518 {
6519 register rtx addr = XEXP (x, 0);
6520 if ((GET_CODE (addr) == PRE_DEC
6521 || GET_CODE (addr) == POST_DEC
6522 || GET_CODE (addr) == PRE_INC
6523 || GET_CODE (addr) == POST_INC)
6524 && XEXP (addr, 0) == inced)
6525 return GET_MODE_SIZE (GET_MODE (x));
6526 else if ((GET_CODE (addr) == PRE_MODIFY
6527 || GET_CODE (addr) == POST_MODIFY)
6528 && GET_CODE (XEXP (addr, 1)) == PLUS
6529 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6530 && XEXP (addr, 0) == inced
6531 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6532 {
6533 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6534 return i < 0 ? -i : i;
6535 }
6536 }
6537
6538 fmt = GET_RTX_FORMAT (code);
6539 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6540 {
6541 if (fmt[i] == 'e')
6542 {
6543 register int tem = find_inc_amount (XEXP (x, i), inced);
6544 if (tem != 0)
6545 return tem;
6546 }
6547 if (fmt[i] == 'E')
6548 {
6549 register int j;
6550 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6551 {
6552 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6553 if (tem != 0)
6554 return tem;
6555 }
6556 }
6557 }
6558
6559 return 0;
6560 }
6561 \f
6562 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6563
6564 int
6565 regno_clobbered_p (regno, insn)
6566 unsigned int regno;
6567 rtx insn;
6568 {
6569 if (GET_CODE (PATTERN (insn)) == CLOBBER
6570 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6571 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6572
6573 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6574 {
6575 int i = XVECLEN (PATTERN (insn), 0) - 1;
6576
6577 for (; i >= 0; i--)
6578 {
6579 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6580 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6581 && REGNO (XEXP (elt, 0)) == regno)
6582 return 1;
6583 }
6584 }
6585
6586 return 0;
6587 }
6588
6589 static const char *reload_when_needed_name[] =
6590 {
6591 "RELOAD_FOR_INPUT",
6592 "RELOAD_FOR_OUTPUT",
6593 "RELOAD_FOR_INSN",
6594 "RELOAD_FOR_INPUT_ADDRESS",
6595 "RELOAD_FOR_INPADDR_ADDRESS",
6596 "RELOAD_FOR_OUTPUT_ADDRESS",
6597 "RELOAD_FOR_OUTADDR_ADDRESS",
6598 "RELOAD_FOR_OPERAND_ADDRESS",
6599 "RELOAD_FOR_OPADDR_ADDR",
6600 "RELOAD_OTHER",
6601 "RELOAD_FOR_OTHER_ADDRESS"
6602 };
6603
6604 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6605
6606 /* These functions are used to print the variables set by 'find_reloads' */
6607
6608 void
6609 debug_reload_to_stream (f)
6610 FILE *f;
6611 {
6612 int r;
6613 const char *prefix;
6614
6615 if (! f)
6616 f = stderr;
6617 for (r = 0; r < n_reloads; r++)
6618 {
6619 fprintf (f, "Reload %d: ", r);
6620
6621 if (rld[r].in != 0)
6622 {
6623 fprintf (f, "reload_in (%s) = ",
6624 GET_MODE_NAME (rld[r].inmode));
6625 print_inline_rtx (f, rld[r].in, 24);
6626 fprintf (f, "\n\t");
6627 }
6628
6629 if (rld[r].out != 0)
6630 {
6631 fprintf (f, "reload_out (%s) = ",
6632 GET_MODE_NAME (rld[r].outmode));
6633 print_inline_rtx (f, rld[r].out, 24);
6634 fprintf (f, "\n\t");
6635 }
6636
6637 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6638
6639 fprintf (f, "%s (opnum = %d)",
6640 reload_when_needed_name[(int) rld[r].when_needed],
6641 rld[r].opnum);
6642
6643 if (rld[r].optional)
6644 fprintf (f, ", optional");
6645
6646 if (rld[r].nongroup)
6647 fprintf (stderr, ", nongroup");
6648
6649 if (rld[r].inc != 0)
6650 fprintf (f, ", inc by %d", rld[r].inc);
6651
6652 if (rld[r].nocombine)
6653 fprintf (f, ", can't combine");
6654
6655 if (rld[r].secondary_p)
6656 fprintf (f, ", secondary_reload_p");
6657
6658 if (rld[r].in_reg != 0)
6659 {
6660 fprintf (f, "\n\treload_in_reg: ");
6661 print_inline_rtx (f, rld[r].in_reg, 24);
6662 }
6663
6664 if (rld[r].out_reg != 0)
6665 {
6666 fprintf (f, "\n\treload_out_reg: ");
6667 print_inline_rtx (f, rld[r].out_reg, 24);
6668 }
6669
6670 if (rld[r].reg_rtx != 0)
6671 {
6672 fprintf (f, "\n\treload_reg_rtx: ");
6673 print_inline_rtx (f, rld[r].reg_rtx, 24);
6674 }
6675
6676 prefix = "\n\t";
6677 if (rld[r].secondary_in_reload != -1)
6678 {
6679 fprintf (f, "%ssecondary_in_reload = %d",
6680 prefix, rld[r].secondary_in_reload);
6681 prefix = ", ";
6682 }
6683
6684 if (rld[r].secondary_out_reload != -1)
6685 fprintf (f, "%ssecondary_out_reload = %d\n",
6686 prefix, rld[r].secondary_out_reload);
6687
6688 prefix = "\n\t";
6689 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6690 {
6691 fprintf (stderr, "%ssecondary_in_icode = %s", prefix,
6692 insn_data[rld[r].secondary_in_icode].name);
6693 prefix = ", ";
6694 }
6695
6696 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6697 fprintf (stderr, "%ssecondary_out_icode = %s", prefix,
6698 insn_data[rld[r].secondary_out_icode].name);
6699
6700 fprintf (f, "\n");
6701 }
6702 }
6703
6704 void
6705 debug_reload ()
6706 {
6707 debug_reload_to_stream (stderr);
6708 }