varasm.c (output_constructor): Make constructor annotation conditional on ASM_COMMENT...
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57 NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
72
73 Using a reload register for several reloads in one insn:
74
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
78
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
82
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
86
87 #define REG_OK_STRICT
88
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tm_p.h"
95 #include "insn-config.h"
96 #include "expr.h"
97 #include "optabs.h"
98 #include "recog.h"
99 #include "reload.h"
100 #include "regs.h"
101 #include "hard-reg-set.h"
102 #include "flags.h"
103 #include "real.h"
104 #include "output.h"
105 #include "function.h"
106 #include "toplev.h"
107
108 #ifndef REGNO_MODE_OK_FOR_BASE_P
109 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
110 #endif
111
112 #ifndef REG_MODE_OK_FOR_BASE_P
113 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
114 #endif
115 \f
116 /* All reloads of the current insn are recorded here. See reload.h for
117 comments. */
118 int n_reloads;
119 struct reload rld[MAX_RELOADS];
120
121 /* All the "earlyclobber" operands of the current insn
122 are recorded here. */
123 int n_earlyclobbers;
124 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
125
126 int reload_n_operands;
127
128 /* Replacing reloads.
129
130 If `replace_reloads' is nonzero, then as each reload is recorded
131 an entry is made for it in the table `replacements'.
132 Then later `subst_reloads' can look through that table and
133 perform all the replacements needed. */
134
135 /* Nonzero means record the places to replace. */
136 static int replace_reloads;
137
138 /* Each replacement is recorded with a structure like this. */
139 struct replacement
140 {
141 rtx *where; /* Location to store in */
142 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
143 a SUBREG; 0 otherwise. */
144 int what; /* which reload this is for */
145 enum machine_mode mode; /* mode it must have */
146 };
147
148 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
149
150 /* Number of replacements currently recorded. */
151 static int n_replacements;
152
153 /* Used to track what is modified by an operand. */
154 struct decomposition
155 {
156 int reg_flag; /* Nonzero if referencing a register. */
157 int safe; /* Nonzero if this can't conflict with anything. */
158 rtx base; /* Base address for MEM. */
159 HOST_WIDE_INT start; /* Starting offset or register number. */
160 HOST_WIDE_INT end; /* Ending offset or register number. */
161 };
162
163 #ifdef SECONDARY_MEMORY_NEEDED
164
165 /* Save MEMs needed to copy from one class of registers to another. One MEM
166 is used per mode, but normally only one or two modes are ever used.
167
168 We keep two versions, before and after register elimination. The one
169 after register elimination is record separately for each operand. This
170 is done in case the address is not valid to be sure that we separately
171 reload each. */
172
173 static rtx secondary_memlocs[NUM_MACHINE_MODES];
174 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
175 #endif
176
177 /* The instruction we are doing reloads for;
178 so we can test whether a register dies in it. */
179 static rtx this_insn;
180
181 /* Nonzero if this instruction is a user-specified asm with operands. */
182 static int this_insn_is_asm;
183
184 /* If hard_regs_live_known is nonzero,
185 we can tell which hard regs are currently live,
186 at least enough to succeed in choosing dummy reloads. */
187 static int hard_regs_live_known;
188
189 /* Indexed by hard reg number,
190 element is nonnegative if hard reg has been spilled.
191 This vector is passed to `find_reloads' as an argument
192 and is not changed here. */
193 static short *static_reload_reg_p;
194
195 /* Set to 1 in subst_reg_equivs if it changes anything. */
196 static int subst_reg_equivs_changed;
197
198 /* On return from push_reload, holds the reload-number for the OUT
199 operand, which can be different for that from the input operand. */
200 static int output_reloadnum;
201
202 /* Compare two RTX's. */
203 #define MATCHES(x, y) \
204 (x == y || (x != 0 && (GET_CODE (x) == REG \
205 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
206 : rtx_equal_p (x, y) && ! side_effects_p (x))))
207
208 /* Indicates if two reloads purposes are for similar enough things that we
209 can merge their reloads. */
210 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
211 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
212 || ((when1) == (when2) && (op1) == (op2)) \
213 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
214 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
215 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
216 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
217 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
218
219 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
220 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
221 ((when1) != (when2) \
222 || ! ((op1) == (op2) \
223 || (when1) == RELOAD_FOR_INPUT \
224 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
226
227 /* If we are going to reload an address, compute the reload type to
228 use. */
229 #define ADDR_TYPE(type) \
230 ((type) == RELOAD_FOR_INPUT_ADDRESS \
231 ? RELOAD_FOR_INPADDR_ADDRESS \
232 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
233 ? RELOAD_FOR_OUTADDR_ADDRESS \
234 : (type)))
235
236 #ifdef HAVE_SECONDARY_RELOADS
237 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
238 enum machine_mode, enum reload_type,
239 enum insn_code *);
240 #endif
241 static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
242 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
243 static void push_replacement (rtx *, int, enum machine_mode);
244 static void dup_replacements (rtx *, rtx *);
245 static void combine_reloads (void);
246 static int find_reusable_reload (rtx *, rtx, enum reg_class,
247 enum reload_type, int, int);
248 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
249 enum machine_mode, enum reg_class, int, int);
250 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
251 static struct decomposition decompose (rtx);
252 static int immune_p (rtx, rtx, struct decomposition);
253 static int alternative_allows_memconst (const char *, int);
254 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
255 int *);
256 static rtx make_memloc (rtx, int);
257 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
258 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
259 int, enum reload_type, int, rtx);
260 static rtx subst_reg_equivs (rtx, rtx);
261 static rtx subst_indexed_address (rtx);
262 static void update_auto_inc_notes (rtx, int, int);
263 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
264 int, enum reload_type,int, rtx);
265 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
266 enum machine_mode, int,
267 enum reload_type, int);
268 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
269 int, rtx);
270 static void copy_replacements_1 (rtx *, rtx *, int);
271 static int find_inc_amount (rtx, rtx);
272 \f
273 #ifdef HAVE_SECONDARY_RELOADS
274
275 /* Determine if any secondary reloads are needed for loading (if IN_P is
276 nonzero) or storing (if IN_P is zero) X to or from a reload register of
277 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
278 are needed, push them.
279
280 Return the reload number of the secondary reload we made, or -1 if
281 we didn't need one. *PICODE is set to the insn_code to use if we do
282 need a secondary reload. */
283
284 static int
285 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
286 enum reg_class reload_class,
287 enum machine_mode reload_mode, enum reload_type type,
288 enum insn_code *picode)
289 {
290 enum reg_class class = NO_REGS;
291 enum machine_mode mode = reload_mode;
292 enum insn_code icode = CODE_FOR_nothing;
293 enum reg_class t_class = NO_REGS;
294 enum machine_mode t_mode = VOIDmode;
295 enum insn_code t_icode = CODE_FOR_nothing;
296 enum reload_type secondary_type;
297 int s_reload, t_reload = -1;
298
299 if (type == RELOAD_FOR_INPUT_ADDRESS
300 || type == RELOAD_FOR_OUTPUT_ADDRESS
301 || type == RELOAD_FOR_INPADDR_ADDRESS
302 || type == RELOAD_FOR_OUTADDR_ADDRESS)
303 secondary_type = type;
304 else
305 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
306
307 *picode = CODE_FOR_nothing;
308
309 /* If X is a paradoxical SUBREG, use the inner value to determine both the
310 mode and object being reloaded. */
311 if (GET_CODE (x) == SUBREG
312 && (GET_MODE_SIZE (GET_MODE (x))
313 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
314 {
315 x = SUBREG_REG (x);
316 reload_mode = GET_MODE (x);
317 }
318
319 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
320 is still a pseudo-register by now, it *must* have an equivalent MEM
321 but we don't want to assume that), use that equivalent when seeing if
322 a secondary reload is needed since whether or not a reload is needed
323 might be sensitive to the form of the MEM. */
324
325 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
326 && reg_equiv_mem[REGNO (x)] != 0)
327 x = reg_equiv_mem[REGNO (x)];
328
329 #ifdef SECONDARY_INPUT_RELOAD_CLASS
330 if (in_p)
331 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
332 #endif
333
334 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
335 if (! in_p)
336 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
337 #endif
338
339 /* If we don't need any secondary registers, done. */
340 if (class == NO_REGS)
341 return -1;
342
343 /* Get a possible insn to use. If the predicate doesn't accept X, don't
344 use the insn. */
345
346 icode = (in_p ? reload_in_optab[(int) reload_mode]
347 : reload_out_optab[(int) reload_mode]);
348
349 if (icode != CODE_FOR_nothing
350 && insn_data[(int) icode].operand[in_p].predicate
351 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
352 icode = CODE_FOR_nothing;
353
354 /* If we will be using an insn, see if it can directly handle the reload
355 register we will be using. If it can, the secondary reload is for a
356 scratch register. If it can't, we will use the secondary reload for
357 an intermediate register and require a tertiary reload for the scratch
358 register. */
359
360 if (icode != CODE_FOR_nothing)
361 {
362 /* If IN_P is nonzero, the reload register will be the output in
363 operand 0. If IN_P is zero, the reload register will be the input
364 in operand 1. Outputs should have an initial "=", which we must
365 skip. */
366
367 enum reg_class insn_class;
368
369 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
370 insn_class = ALL_REGS;
371 else
372 {
373 const char *insn_constraint
374 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
375 char insn_letter = *insn_constraint;
376 insn_class
377 = (insn_letter == 'r' ? GENERAL_REGS
378 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
379 insn_constraint));
380
381 if (insn_class == NO_REGS)
382 abort ();
383 if (in_p
384 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
385 abort ();
386 }
387
388 /* The scratch register's constraint must start with "=&". */
389 if (insn_data[(int) icode].operand[2].constraint[0] != '='
390 || insn_data[(int) icode].operand[2].constraint[1] != '&')
391 abort ();
392
393 if (reg_class_subset_p (reload_class, insn_class))
394 mode = insn_data[(int) icode].operand[2].mode;
395 else
396 {
397 const char *t_constraint
398 = &insn_data[(int) icode].operand[2].constraint[2];
399 char t_letter = *t_constraint;
400 class = insn_class;
401 t_mode = insn_data[(int) icode].operand[2].mode;
402 t_class = (t_letter == 'r' ? GENERAL_REGS
403 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
404 t_constraint));
405 t_icode = icode;
406 icode = CODE_FOR_nothing;
407 }
408 }
409
410 /* This case isn't valid, so fail. Reload is allowed to use the same
411 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
412 in the case of a secondary register, we actually need two different
413 registers for correct code. We fail here to prevent the possibility of
414 silently generating incorrect code later.
415
416 The convention is that secondary input reloads are valid only if the
417 secondary_class is different from class. If you have such a case, you
418 can not use secondary reloads, you must work around the problem some
419 other way.
420
421 Allow this when a reload_in/out pattern is being used. I.e. assume
422 that the generated code handles this case. */
423
424 if (in_p && class == reload_class && icode == CODE_FOR_nothing
425 && t_icode == CODE_FOR_nothing)
426 abort ();
427
428 /* If we need a tertiary reload, see if we have one we can reuse or else
429 make a new one. */
430
431 if (t_class != NO_REGS)
432 {
433 for (t_reload = 0; t_reload < n_reloads; t_reload++)
434 if (rld[t_reload].secondary_p
435 && (reg_class_subset_p (t_class, rld[t_reload].class)
436 || reg_class_subset_p (rld[t_reload].class, t_class))
437 && ((in_p && rld[t_reload].inmode == t_mode)
438 || (! in_p && rld[t_reload].outmode == t_mode))
439 && ((in_p && (rld[t_reload].secondary_in_icode
440 == CODE_FOR_nothing))
441 || (! in_p &&(rld[t_reload].secondary_out_icode
442 == CODE_FOR_nothing)))
443 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
444 && MERGABLE_RELOADS (secondary_type,
445 rld[t_reload].when_needed,
446 opnum, rld[t_reload].opnum))
447 {
448 if (in_p)
449 rld[t_reload].inmode = t_mode;
450 if (! in_p)
451 rld[t_reload].outmode = t_mode;
452
453 if (reg_class_subset_p (t_class, rld[t_reload].class))
454 rld[t_reload].class = t_class;
455
456 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
457 rld[t_reload].optional &= optional;
458 rld[t_reload].secondary_p = 1;
459 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
460 opnum, rld[t_reload].opnum))
461 rld[t_reload].when_needed = RELOAD_OTHER;
462 }
463
464 if (t_reload == n_reloads)
465 {
466 /* We need to make a new tertiary reload for this register class. */
467 rld[t_reload].in = rld[t_reload].out = 0;
468 rld[t_reload].class = t_class;
469 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
470 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
471 rld[t_reload].reg_rtx = 0;
472 rld[t_reload].optional = optional;
473 rld[t_reload].inc = 0;
474 /* Maybe we could combine these, but it seems too tricky. */
475 rld[t_reload].nocombine = 1;
476 rld[t_reload].in_reg = 0;
477 rld[t_reload].out_reg = 0;
478 rld[t_reload].opnum = opnum;
479 rld[t_reload].when_needed = secondary_type;
480 rld[t_reload].secondary_in_reload = -1;
481 rld[t_reload].secondary_out_reload = -1;
482 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
483 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
484 rld[t_reload].secondary_p = 1;
485
486 n_reloads++;
487 }
488 }
489
490 /* See if we can reuse an existing secondary reload. */
491 for (s_reload = 0; s_reload < n_reloads; s_reload++)
492 if (rld[s_reload].secondary_p
493 && (reg_class_subset_p (class, rld[s_reload].class)
494 || reg_class_subset_p (rld[s_reload].class, class))
495 && ((in_p && rld[s_reload].inmode == mode)
496 || (! in_p && rld[s_reload].outmode == mode))
497 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
498 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
499 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
500 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
501 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
502 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
503 opnum, rld[s_reload].opnum))
504 {
505 if (in_p)
506 rld[s_reload].inmode = mode;
507 if (! in_p)
508 rld[s_reload].outmode = mode;
509
510 if (reg_class_subset_p (class, rld[s_reload].class))
511 rld[s_reload].class = class;
512
513 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
514 rld[s_reload].optional &= optional;
515 rld[s_reload].secondary_p = 1;
516 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
517 opnum, rld[s_reload].opnum))
518 rld[s_reload].when_needed = RELOAD_OTHER;
519 }
520
521 if (s_reload == n_reloads)
522 {
523 #ifdef SECONDARY_MEMORY_NEEDED
524 /* If we need a memory location to copy between the two reload regs,
525 set it up now. Note that we do the input case before making
526 the reload and the output case after. This is due to the
527 way reloads are output. */
528
529 if (in_p && icode == CODE_FOR_nothing
530 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
531 {
532 get_secondary_mem (x, reload_mode, opnum, type);
533
534 /* We may have just added new reloads. Make sure we add
535 the new reload at the end. */
536 s_reload = n_reloads;
537 }
538 #endif
539
540 /* We need to make a new secondary reload for this register class. */
541 rld[s_reload].in = rld[s_reload].out = 0;
542 rld[s_reload].class = class;
543
544 rld[s_reload].inmode = in_p ? mode : VOIDmode;
545 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
546 rld[s_reload].reg_rtx = 0;
547 rld[s_reload].optional = optional;
548 rld[s_reload].inc = 0;
549 /* Maybe we could combine these, but it seems too tricky. */
550 rld[s_reload].nocombine = 1;
551 rld[s_reload].in_reg = 0;
552 rld[s_reload].out_reg = 0;
553 rld[s_reload].opnum = opnum;
554 rld[s_reload].when_needed = secondary_type;
555 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
556 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
557 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
558 rld[s_reload].secondary_out_icode
559 = ! in_p ? t_icode : CODE_FOR_nothing;
560 rld[s_reload].secondary_p = 1;
561
562 n_reloads++;
563
564 #ifdef SECONDARY_MEMORY_NEEDED
565 if (! in_p && icode == CODE_FOR_nothing
566 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
567 get_secondary_mem (x, mode, opnum, type);
568 #endif
569 }
570
571 *picode = icode;
572 return s_reload;
573 }
574 #endif /* HAVE_SECONDARY_RELOADS */
575 \f
576 #ifdef SECONDARY_MEMORY_NEEDED
577
578 /* Return a memory location that will be used to copy X in mode MODE.
579 If we haven't already made a location for this mode in this insn,
580 call find_reloads_address on the location being returned. */
581
582 rtx
583 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
584 int opnum, enum reload_type type)
585 {
586 rtx loc;
587 int mem_valid;
588
589 /* By default, if MODE is narrower than a word, widen it to a word.
590 This is required because most machines that require these memory
591 locations do not support short load and stores from all registers
592 (e.g., FP registers). */
593
594 #ifdef SECONDARY_MEMORY_NEEDED_MODE
595 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
596 #else
597 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
598 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
599 #endif
600
601 /* If we already have made a MEM for this operand in MODE, return it. */
602 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
603 return secondary_memlocs_elim[(int) mode][opnum];
604
605 /* If this is the first time we've tried to get a MEM for this mode,
606 allocate a new one. `something_changed' in reload will get set
607 by noticing that the frame size has changed. */
608
609 if (secondary_memlocs[(int) mode] == 0)
610 {
611 #ifdef SECONDARY_MEMORY_NEEDED_RTX
612 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
613 #else
614 secondary_memlocs[(int) mode]
615 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
616 #endif
617 }
618
619 /* Get a version of the address doing any eliminations needed. If that
620 didn't give us a new MEM, make a new one if it isn't valid. */
621
622 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
623 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
624
625 if (! mem_valid && loc == secondary_memlocs[(int) mode])
626 loc = copy_rtx (loc);
627
628 /* The only time the call below will do anything is if the stack
629 offset is too large. In that case IND_LEVELS doesn't matter, so we
630 can just pass a zero. Adjust the type to be the address of the
631 corresponding object. If the address was valid, save the eliminated
632 address. If it wasn't valid, we need to make a reload each time, so
633 don't save it. */
634
635 if (! mem_valid)
636 {
637 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
638 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
639 : RELOAD_OTHER);
640
641 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
642 opnum, type, 0, 0);
643 }
644
645 secondary_memlocs_elim[(int) mode][opnum] = loc;
646 return loc;
647 }
648
649 /* Clear any secondary memory locations we've made. */
650
651 void
652 clear_secondary_mem (void)
653 {
654 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
655 }
656 #endif /* SECONDARY_MEMORY_NEEDED */
657 \f
658 /* Find the largest class for which every register number plus N is valid in
659 M1 (if in range) and is cheap to move into REGNO.
660 Abort if no such class exists. */
661
662 static enum reg_class
663 find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
664 unsigned int dest_regno ATTRIBUTE_UNUSED)
665 {
666 int best_cost = -1;
667 int class;
668 int regno;
669 enum reg_class best_class = NO_REGS;
670 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
671 unsigned int best_size = 0;
672 int cost;
673
674 for (class = 1; class < N_REG_CLASSES; class++)
675 {
676 int bad = 0;
677 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
678 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
679 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
680 && ! HARD_REGNO_MODE_OK (regno + n, m1))
681 bad = 1;
682
683 if (bad)
684 continue;
685 cost = REGISTER_MOVE_COST (m1, class, dest_class);
686
687 if ((reg_class_size[class] > best_size
688 && (best_cost < 0 || best_cost >= cost))
689 || best_cost > cost)
690 {
691 best_class = class;
692 best_size = reg_class_size[class];
693 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
694 }
695 }
696
697 if (best_size == 0)
698 abort ();
699
700 return best_class;
701 }
702 \f
703 /* Return the number of a previously made reload that can be combined with
704 a new one, or n_reloads if none of the existing reloads can be used.
705 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
706 push_reload, they determine the kind of the new reload that we try to
707 combine. P_IN points to the corresponding value of IN, which can be
708 modified by this function.
709 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
710
711 static int
712 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
713 enum reload_type type, int opnum, int dont_share)
714 {
715 rtx in = *p_in;
716 int i;
717 /* We can't merge two reloads if the output of either one is
718 earlyclobbered. */
719
720 if (earlyclobber_operand_p (out))
721 return n_reloads;
722
723 /* We can use an existing reload if the class is right
724 and at least one of IN and OUT is a match
725 and the other is at worst neutral.
726 (A zero compared against anything is neutral.)
727
728 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
729 for the same thing since that can cause us to need more reload registers
730 than we otherwise would. */
731
732 for (i = 0; i < n_reloads; i++)
733 if ((reg_class_subset_p (class, rld[i].class)
734 || reg_class_subset_p (rld[i].class, class))
735 /* If the existing reload has a register, it must fit our class. */
736 && (rld[i].reg_rtx == 0
737 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
738 true_regnum (rld[i].reg_rtx)))
739 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
740 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
741 || (out != 0 && MATCHES (rld[i].out, out)
742 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
743 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
744 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
745 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
746 return i;
747
748 /* Reloading a plain reg for input can match a reload to postincrement
749 that reg, since the postincrement's value is the right value.
750 Likewise, it can match a preincrement reload, since we regard
751 the preincrementation as happening before any ref in this insn
752 to that register. */
753 for (i = 0; i < n_reloads; i++)
754 if ((reg_class_subset_p (class, rld[i].class)
755 || reg_class_subset_p (rld[i].class, class))
756 /* If the existing reload has a register, it must fit our
757 class. */
758 && (rld[i].reg_rtx == 0
759 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
760 true_regnum (rld[i].reg_rtx)))
761 && out == 0 && rld[i].out == 0 && rld[i].in != 0
762 && ((GET_CODE (in) == REG
763 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
764 && MATCHES (XEXP (rld[i].in, 0), in))
765 || (GET_CODE (rld[i].in) == REG
766 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
767 && MATCHES (XEXP (in, 0), rld[i].in)))
768 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
769 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
770 && MERGABLE_RELOADS (type, rld[i].when_needed,
771 opnum, rld[i].opnum))
772 {
773 /* Make sure reload_in ultimately has the increment,
774 not the plain register. */
775 if (GET_CODE (in) == REG)
776 *p_in = rld[i].in;
777 return i;
778 }
779 return n_reloads;
780 }
781
782 /* Return nonzero if X is a SUBREG which will require reloading of its
783 SUBREG_REG expression. */
784
785 static int
786 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
787 {
788 rtx inner;
789
790 /* Only SUBREGs are problematical. */
791 if (GET_CODE (x) != SUBREG)
792 return 0;
793
794 inner = SUBREG_REG (x);
795
796 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
797 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
798 return 1;
799
800 /* If INNER is not a hard register, then INNER will not need to
801 be reloaded. */
802 if (GET_CODE (inner) != REG
803 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
804 return 0;
805
806 /* If INNER is not ok for MODE, then INNER will need reloading. */
807 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
808 return 1;
809
810 /* If the outer part is a word or smaller, INNER larger than a
811 word and the number of regs for INNER is not the same as the
812 number of words in INNER, then INNER will need reloading. */
813 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
814 && output
815 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
816 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
817 != (int) HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
818 }
819
820 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
821 requiring an extra reload register. The caller has already found that
822 IN contains some reference to REGNO, so check that we can produce the
823 new value in a single step. E.g. if we have
824 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
825 instruction that adds one to a register, this should succeed.
826 However, if we have something like
827 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
828 needs to be loaded into a register first, we need a separate reload
829 register.
830 Such PLUS reloads are generated by find_reload_address_part.
831 The out-of-range PLUS expressions are usually introduced in the instruction
832 patterns by register elimination and substituting pseudos without a home
833 by their function-invariant equivalences. */
834 static int
835 can_reload_into (rtx in, int regno, enum machine_mode mode)
836 {
837 rtx dst, test_insn;
838 int r = 0;
839 struct recog_data save_recog_data;
840
841 /* For matching constraints, we often get notional input reloads where
842 we want to use the original register as the reload register. I.e.
843 technically this is a non-optional input-output reload, but IN is
844 already a valid register, and has been chosen as the reload register.
845 Speed this up, since it trivially works. */
846 if (GET_CODE (in) == REG)
847 return 1;
848
849 /* To test MEMs properly, we'd have to take into account all the reloads
850 that are already scheduled, which can become quite complicated.
851 And since we've already handled address reloads for this MEM, it
852 should always succeed anyway. */
853 if (GET_CODE (in) == MEM)
854 return 1;
855
856 /* If we can make a simple SET insn that does the job, everything should
857 be fine. */
858 dst = gen_rtx_REG (mode, regno);
859 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
860 save_recog_data = recog_data;
861 if (recog_memoized (test_insn) >= 0)
862 {
863 extract_insn (test_insn);
864 r = constrain_operands (1);
865 }
866 recog_data = save_recog_data;
867 return r;
868 }
869
870 /* Record one reload that needs to be performed.
871 IN is an rtx saying where the data are to be found before this instruction.
872 OUT says where they must be stored after the instruction.
873 (IN is zero for data not read, and OUT is zero for data not written.)
874 INLOC and OUTLOC point to the places in the instructions where
875 IN and OUT were found.
876 If IN and OUT are both nonzero, it means the same register must be used
877 to reload both IN and OUT.
878
879 CLASS is a register class required for the reloaded data.
880 INMODE is the machine mode that the instruction requires
881 for the reg that replaces IN and OUTMODE is likewise for OUT.
882
883 If IN is zero, then OUT's location and mode should be passed as
884 INLOC and INMODE.
885
886 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
887
888 OPTIONAL nonzero means this reload does not need to be performed:
889 it can be discarded if that is more convenient.
890
891 OPNUM and TYPE say what the purpose of this reload is.
892
893 The return value is the reload-number for this reload.
894
895 If both IN and OUT are nonzero, in some rare cases we might
896 want to make two separate reloads. (Actually we never do this now.)
897 Therefore, the reload-number for OUT is stored in
898 output_reloadnum when we return; the return value applies to IN.
899 Usually (presently always), when IN and OUT are nonzero,
900 the two reload-numbers are equal, but the caller should be careful to
901 distinguish them. */
902
903 int
904 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
905 enum reg_class class, enum machine_mode inmode,
906 enum machine_mode outmode, int strict_low, int optional,
907 int opnum, enum reload_type type)
908 {
909 int i;
910 int dont_share = 0;
911 int dont_remove_subreg = 0;
912 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
913 int secondary_in_reload = -1, secondary_out_reload = -1;
914 enum insn_code secondary_in_icode = CODE_FOR_nothing;
915 enum insn_code secondary_out_icode = CODE_FOR_nothing;
916
917 /* INMODE and/or OUTMODE could be VOIDmode if no mode
918 has been specified for the operand. In that case,
919 use the operand's mode as the mode to reload. */
920 if (inmode == VOIDmode && in != 0)
921 inmode = GET_MODE (in);
922 if (outmode == VOIDmode && out != 0)
923 outmode = GET_MODE (out);
924
925 /* If IN is a pseudo register everywhere-equivalent to a constant, and
926 it is not in a hard register, reload straight from the constant,
927 since we want to get rid of such pseudo registers.
928 Often this is done earlier, but not always in find_reloads_address. */
929 if (in != 0 && GET_CODE (in) == REG)
930 {
931 int regno = REGNO (in);
932
933 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
934 && reg_equiv_constant[regno] != 0)
935 in = reg_equiv_constant[regno];
936 }
937
938 /* Likewise for OUT. Of course, OUT will never be equivalent to
939 an actual constant, but it might be equivalent to a memory location
940 (in the case of a parameter). */
941 if (out != 0 && GET_CODE (out) == REG)
942 {
943 int regno = REGNO (out);
944
945 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
946 && reg_equiv_constant[regno] != 0)
947 out = reg_equiv_constant[regno];
948 }
949
950 /* If we have a read-write operand with an address side-effect,
951 change either IN or OUT so the side-effect happens only once. */
952 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
953 switch (GET_CODE (XEXP (in, 0)))
954 {
955 case POST_INC: case POST_DEC: case POST_MODIFY:
956 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
957 break;
958
959 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
960 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
961 break;
962
963 default:
964 break;
965 }
966
967 /* If we are reloading a (SUBREG constant ...), really reload just the
968 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
969 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
970 a pseudo and hence will become a MEM) with M1 wider than M2 and the
971 register is a pseudo, also reload the inside expression.
972 For machines that extend byte loads, do this for any SUBREG of a pseudo
973 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
974 M2 is an integral mode that gets extended when loaded.
975 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
976 either M1 is not valid for R or M2 is wider than a word but we only
977 need one word to store an M2-sized quantity in R.
978 (However, if OUT is nonzero, we need to reload the reg *and*
979 the subreg, so do nothing here, and let following statement handle it.)
980
981 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
982 we can't handle it here because CONST_INT does not indicate a mode.
983
984 Similarly, we must reload the inside expression if we have a
985 STRICT_LOW_PART (presumably, in == out in the cas).
986
987 Also reload the inner expression if it does not require a secondary
988 reload but the SUBREG does.
989
990 Finally, reload the inner expression if it is a register that is in
991 the class whose registers cannot be referenced in a different size
992 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
993 cannot reload just the inside since we might end up with the wrong
994 register class. But if it is inside a STRICT_LOW_PART, we have
995 no choice, so we hope we do get the right register class there. */
996
997 if (in != 0 && GET_CODE (in) == SUBREG
998 && (subreg_lowpart_p (in) || strict_low)
999 #ifdef CANNOT_CHANGE_MODE_CLASS
1000 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1001 #endif
1002 && (CONSTANT_P (SUBREG_REG (in))
1003 || GET_CODE (SUBREG_REG (in)) == PLUS
1004 || strict_low
1005 || (((GET_CODE (SUBREG_REG (in)) == REG
1006 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1007 || GET_CODE (SUBREG_REG (in)) == MEM)
1008 && ((GET_MODE_SIZE (inmode)
1009 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1010 #ifdef LOAD_EXTEND_OP
1011 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1012 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1013 <= UNITS_PER_WORD)
1014 && (GET_MODE_SIZE (inmode)
1015 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1016 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1017 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
1018 #endif
1019 #ifdef WORD_REGISTER_OPERATIONS
1020 || ((GET_MODE_SIZE (inmode)
1021 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1022 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1023 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1024 / UNITS_PER_WORD)))
1025 #endif
1026 ))
1027 || (GET_CODE (SUBREG_REG (in)) == REG
1028 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1029 /* The case where out is nonzero
1030 is handled differently in the following statement. */
1031 && (out == 0 || subreg_lowpart_p (in))
1032 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1033 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1034 > UNITS_PER_WORD)
1035 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1036 / UNITS_PER_WORD)
1037 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1038 GET_MODE (SUBREG_REG (in)))))
1039 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1040 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1041 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1042 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1043 GET_MODE (SUBREG_REG (in)),
1044 SUBREG_REG (in))
1045 == NO_REGS))
1046 #endif
1047 #ifdef CANNOT_CHANGE_MODE_CLASS
1048 || (GET_CODE (SUBREG_REG (in)) == REG
1049 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1050 && REG_CANNOT_CHANGE_MODE_P
1051 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1052 #endif
1053 ))
1054 {
1055 in_subreg_loc = inloc;
1056 inloc = &SUBREG_REG (in);
1057 in = *inloc;
1058 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1059 if (GET_CODE (in) == MEM)
1060 /* This is supposed to happen only for paradoxical subregs made by
1061 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1062 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1063 abort ();
1064 #endif
1065 inmode = GET_MODE (in);
1066 }
1067
1068 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1069 either M1 is not valid for R or M2 is wider than a word but we only
1070 need one word to store an M2-sized quantity in R.
1071
1072 However, we must reload the inner reg *as well as* the subreg in
1073 that case. */
1074
1075 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1076 code above. This can happen if SUBREG_BYTE != 0. */
1077
1078 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1079 {
1080 enum reg_class in_class = class;
1081
1082 if (GET_CODE (SUBREG_REG (in)) == REG)
1083 in_class
1084 = find_valid_class (inmode,
1085 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1086 GET_MODE (SUBREG_REG (in)),
1087 SUBREG_BYTE (in),
1088 GET_MODE (in)),
1089 REGNO (SUBREG_REG (in)));
1090
1091 /* This relies on the fact that emit_reload_insns outputs the
1092 instructions for input reloads of type RELOAD_OTHER in the same
1093 order as the reloads. Thus if the outer reload is also of type
1094 RELOAD_OTHER, we are guaranteed that this inner reload will be
1095 output before the outer reload. */
1096 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1097 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1098 dont_remove_subreg = 1;
1099 }
1100
1101 /* Similarly for paradoxical and problematical SUBREGs on the output.
1102 Note that there is no reason we need worry about the previous value
1103 of SUBREG_REG (out); even if wider than out,
1104 storing in a subreg is entitled to clobber it all
1105 (except in the case of STRICT_LOW_PART,
1106 and in that case the constraint should label it input-output.) */
1107 if (out != 0 && GET_CODE (out) == SUBREG
1108 && (subreg_lowpart_p (out) || strict_low)
1109 #ifdef CANNOT_CHANGE_MODE_CLASS
1110 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1111 #endif
1112 && (CONSTANT_P (SUBREG_REG (out))
1113 || strict_low
1114 || (((GET_CODE (SUBREG_REG (out)) == REG
1115 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1116 || GET_CODE (SUBREG_REG (out)) == MEM)
1117 && ((GET_MODE_SIZE (outmode)
1118 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1119 #ifdef WORD_REGISTER_OPERATIONS
1120 || ((GET_MODE_SIZE (outmode)
1121 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1122 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1123 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1124 / UNITS_PER_WORD)))
1125 #endif
1126 ))
1127 || (GET_CODE (SUBREG_REG (out)) == REG
1128 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1129 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1130 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1131 > UNITS_PER_WORD)
1132 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1133 / UNITS_PER_WORD)
1134 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1135 GET_MODE (SUBREG_REG (out)))))
1136 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1137 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1138 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1139 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1140 GET_MODE (SUBREG_REG (out)),
1141 SUBREG_REG (out))
1142 == NO_REGS))
1143 #endif
1144 #ifdef CANNOT_CHANGE_MODE_CLASS
1145 || (GET_CODE (SUBREG_REG (out)) == REG
1146 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1147 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1148 GET_MODE (SUBREG_REG (out)),
1149 outmode))
1150 #endif
1151 ))
1152 {
1153 out_subreg_loc = outloc;
1154 outloc = &SUBREG_REG (out);
1155 out = *outloc;
1156 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1157 if (GET_CODE (out) == MEM
1158 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1159 abort ();
1160 #endif
1161 outmode = GET_MODE (out);
1162 }
1163
1164 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1165 either M1 is not valid for R or M2 is wider than a word but we only
1166 need one word to store an M2-sized quantity in R.
1167
1168 However, we must reload the inner reg *as well as* the subreg in
1169 that case. In this case, the inner reg is an in-out reload. */
1170
1171 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1172 {
1173 /* This relies on the fact that emit_reload_insns outputs the
1174 instructions for output reloads of type RELOAD_OTHER in reverse
1175 order of the reloads. Thus if the outer reload is also of type
1176 RELOAD_OTHER, we are guaranteed that this inner reload will be
1177 output after the outer reload. */
1178 dont_remove_subreg = 1;
1179 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1180 &SUBREG_REG (out),
1181 find_valid_class (outmode,
1182 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1183 GET_MODE (SUBREG_REG (out)),
1184 SUBREG_BYTE (out),
1185 GET_MODE (out)),
1186 REGNO (SUBREG_REG (out))),
1187 VOIDmode, VOIDmode, 0, 0,
1188 opnum, RELOAD_OTHER);
1189 }
1190
1191 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1192 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1193 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1194 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1195 dont_share = 1;
1196
1197 /* If IN is a SUBREG of a hard register, make a new REG. This
1198 simplifies some of the cases below. */
1199
1200 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1201 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1202 && ! dont_remove_subreg)
1203 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1204
1205 /* Similarly for OUT. */
1206 if (out != 0 && GET_CODE (out) == SUBREG
1207 && GET_CODE (SUBREG_REG (out)) == REG
1208 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1209 && ! dont_remove_subreg)
1210 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1211
1212 /* Narrow down the class of register wanted if that is
1213 desirable on this machine for efficiency. */
1214 if (in != 0)
1215 class = PREFERRED_RELOAD_CLASS (in, class);
1216
1217 /* Output reloads may need analogous treatment, different in detail. */
1218 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1219 if (out != 0)
1220 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1221 #endif
1222
1223 /* Make sure we use a class that can handle the actual pseudo
1224 inside any subreg. For example, on the 386, QImode regs
1225 can appear within SImode subregs. Although GENERAL_REGS
1226 can handle SImode, QImode needs a smaller class. */
1227 #ifdef LIMIT_RELOAD_CLASS
1228 if (in_subreg_loc)
1229 class = LIMIT_RELOAD_CLASS (inmode, class);
1230 else if (in != 0 && GET_CODE (in) == SUBREG)
1231 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1232
1233 if (out_subreg_loc)
1234 class = LIMIT_RELOAD_CLASS (outmode, class);
1235 if (out != 0 && GET_CODE (out) == SUBREG)
1236 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1237 #endif
1238
1239 /* Verify that this class is at least possible for the mode that
1240 is specified. */
1241 if (this_insn_is_asm)
1242 {
1243 enum machine_mode mode;
1244 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1245 mode = inmode;
1246 else
1247 mode = outmode;
1248 if (mode == VOIDmode)
1249 {
1250 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1251 mode = word_mode;
1252 if (in != 0)
1253 inmode = word_mode;
1254 if (out != 0)
1255 outmode = word_mode;
1256 }
1257 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1258 if (HARD_REGNO_MODE_OK (i, mode)
1259 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1260 {
1261 int nregs = HARD_REGNO_NREGS (i, mode);
1262
1263 int j;
1264 for (j = 1; j < nregs; j++)
1265 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1266 break;
1267 if (j == nregs)
1268 break;
1269 }
1270 if (i == FIRST_PSEUDO_REGISTER)
1271 {
1272 error_for_asm (this_insn, "impossible register constraint in `asm'");
1273 class = ALL_REGS;
1274 }
1275 }
1276
1277 /* Optional output reloads are always OK even if we have no register class,
1278 since the function of these reloads is only to have spill_reg_store etc.
1279 set, so that the storing insn can be deleted later. */
1280 if (class == NO_REGS
1281 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1282 abort ();
1283
1284 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1285
1286 if (i == n_reloads)
1287 {
1288 /* See if we need a secondary reload register to move between CLASS
1289 and IN or CLASS and OUT. Get the icode and push any required reloads
1290 needed for each of them if so. */
1291
1292 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1293 if (in != 0)
1294 secondary_in_reload
1295 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1296 &secondary_in_icode);
1297 #endif
1298
1299 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1300 if (out != 0 && GET_CODE (out) != SCRATCH)
1301 secondary_out_reload
1302 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1303 type, &secondary_out_icode);
1304 #endif
1305
1306 /* We found no existing reload suitable for re-use.
1307 So add an additional reload. */
1308
1309 #ifdef SECONDARY_MEMORY_NEEDED
1310 /* If a memory location is needed for the copy, make one. */
1311 if (in != 0 && (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
1312 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1313 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1314 class, inmode))
1315 get_secondary_mem (in, inmode, opnum, type);
1316 #endif
1317
1318 i = n_reloads;
1319 rld[i].in = in;
1320 rld[i].out = out;
1321 rld[i].class = class;
1322 rld[i].inmode = inmode;
1323 rld[i].outmode = outmode;
1324 rld[i].reg_rtx = 0;
1325 rld[i].optional = optional;
1326 rld[i].inc = 0;
1327 rld[i].nocombine = 0;
1328 rld[i].in_reg = inloc ? *inloc : 0;
1329 rld[i].out_reg = outloc ? *outloc : 0;
1330 rld[i].opnum = opnum;
1331 rld[i].when_needed = type;
1332 rld[i].secondary_in_reload = secondary_in_reload;
1333 rld[i].secondary_out_reload = secondary_out_reload;
1334 rld[i].secondary_in_icode = secondary_in_icode;
1335 rld[i].secondary_out_icode = secondary_out_icode;
1336 rld[i].secondary_p = 0;
1337
1338 n_reloads++;
1339
1340 #ifdef SECONDARY_MEMORY_NEEDED
1341 if (out != 0 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
1342 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1343 && SECONDARY_MEMORY_NEEDED (class,
1344 REGNO_REG_CLASS (reg_or_subregno (out)),
1345 outmode))
1346 get_secondary_mem (out, outmode, opnum, type);
1347 #endif
1348 }
1349 else
1350 {
1351 /* We are reusing an existing reload,
1352 but we may have additional information for it.
1353 For example, we may now have both IN and OUT
1354 while the old one may have just one of them. */
1355
1356 /* The modes can be different. If they are, we want to reload in
1357 the larger mode, so that the value is valid for both modes. */
1358 if (inmode != VOIDmode
1359 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1360 rld[i].inmode = inmode;
1361 if (outmode != VOIDmode
1362 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1363 rld[i].outmode = outmode;
1364 if (in != 0)
1365 {
1366 rtx in_reg = inloc ? *inloc : 0;
1367 /* If we merge reloads for two distinct rtl expressions that
1368 are identical in content, there might be duplicate address
1369 reloads. Remove the extra set now, so that if we later find
1370 that we can inherit this reload, we can get rid of the
1371 address reloads altogether.
1372
1373 Do not do this if both reloads are optional since the result
1374 would be an optional reload which could potentially leave
1375 unresolved address replacements.
1376
1377 It is not sufficient to call transfer_replacements since
1378 choose_reload_regs will remove the replacements for address
1379 reloads of inherited reloads which results in the same
1380 problem. */
1381 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1382 && ! (rld[i].optional && optional))
1383 {
1384 /* We must keep the address reload with the lower operand
1385 number alive. */
1386 if (opnum > rld[i].opnum)
1387 {
1388 remove_address_replacements (in);
1389 in = rld[i].in;
1390 in_reg = rld[i].in_reg;
1391 }
1392 else
1393 remove_address_replacements (rld[i].in);
1394 }
1395 rld[i].in = in;
1396 rld[i].in_reg = in_reg;
1397 }
1398 if (out != 0)
1399 {
1400 rld[i].out = out;
1401 rld[i].out_reg = outloc ? *outloc : 0;
1402 }
1403 if (reg_class_subset_p (class, rld[i].class))
1404 rld[i].class = class;
1405 rld[i].optional &= optional;
1406 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1407 opnum, rld[i].opnum))
1408 rld[i].when_needed = RELOAD_OTHER;
1409 rld[i].opnum = MIN (rld[i].opnum, opnum);
1410 }
1411
1412 /* If the ostensible rtx being reloaded differs from the rtx found
1413 in the location to substitute, this reload is not safe to combine
1414 because we cannot reliably tell whether it appears in the insn. */
1415
1416 if (in != 0 && in != *inloc)
1417 rld[i].nocombine = 1;
1418
1419 #if 0
1420 /* This was replaced by changes in find_reloads_address_1 and the new
1421 function inc_for_reload, which go with a new meaning of reload_inc. */
1422
1423 /* If this is an IN/OUT reload in an insn that sets the CC,
1424 it must be for an autoincrement. It doesn't work to store
1425 the incremented value after the insn because that would clobber the CC.
1426 So we must do the increment of the value reloaded from,
1427 increment it, store it back, then decrement again. */
1428 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1429 {
1430 out = 0;
1431 rld[i].out = 0;
1432 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1433 /* If we did not find a nonzero amount-to-increment-by,
1434 that contradicts the belief that IN is being incremented
1435 in an address in this insn. */
1436 if (rld[i].inc == 0)
1437 abort ();
1438 }
1439 #endif
1440
1441 /* If we will replace IN and OUT with the reload-reg,
1442 record where they are located so that substitution need
1443 not do a tree walk. */
1444
1445 if (replace_reloads)
1446 {
1447 if (inloc != 0)
1448 {
1449 struct replacement *r = &replacements[n_replacements++];
1450 r->what = i;
1451 r->subreg_loc = in_subreg_loc;
1452 r->where = inloc;
1453 r->mode = inmode;
1454 }
1455 if (outloc != 0 && outloc != inloc)
1456 {
1457 struct replacement *r = &replacements[n_replacements++];
1458 r->what = i;
1459 r->where = outloc;
1460 r->subreg_loc = out_subreg_loc;
1461 r->mode = outmode;
1462 }
1463 }
1464
1465 /* If this reload is just being introduced and it has both
1466 an incoming quantity and an outgoing quantity that are
1467 supposed to be made to match, see if either one of the two
1468 can serve as the place to reload into.
1469
1470 If one of them is acceptable, set rld[i].reg_rtx
1471 to that one. */
1472
1473 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1474 {
1475 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1476 inmode, outmode,
1477 rld[i].class, i,
1478 earlyclobber_operand_p (out));
1479
1480 /* If the outgoing register already contains the same value
1481 as the incoming one, we can dispense with loading it.
1482 The easiest way to tell the caller that is to give a phony
1483 value for the incoming operand (same as outgoing one). */
1484 if (rld[i].reg_rtx == out
1485 && (GET_CODE (in) == REG || CONSTANT_P (in))
1486 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1487 static_reload_reg_p, i, inmode))
1488 rld[i].in = out;
1489 }
1490
1491 /* If this is an input reload and the operand contains a register that
1492 dies in this insn and is used nowhere else, see if it is the right class
1493 to be used for this reload. Use it if so. (This occurs most commonly
1494 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1495 this if it is also an output reload that mentions the register unless
1496 the output is a SUBREG that clobbers an entire register.
1497
1498 Note that the operand might be one of the spill regs, if it is a
1499 pseudo reg and we are in a block where spilling has not taken place.
1500 But if there is no spilling in this block, that is OK.
1501 An explicitly used hard reg cannot be a spill reg. */
1502
1503 if (rld[i].reg_rtx == 0 && in != 0)
1504 {
1505 rtx note;
1506 int regno;
1507 enum machine_mode rel_mode = inmode;
1508
1509 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1510 rel_mode = outmode;
1511
1512 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1513 if (REG_NOTE_KIND (note) == REG_DEAD
1514 && GET_CODE (XEXP (note, 0)) == REG
1515 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1516 && reg_mentioned_p (XEXP (note, 0), in)
1517 && ! refers_to_regno_for_reload_p (regno,
1518 (regno
1519 + HARD_REGNO_NREGS (regno,
1520 rel_mode)),
1521 PATTERN (this_insn), inloc)
1522 /* If this is also an output reload, IN cannot be used as
1523 the reload register if it is set in this insn unless IN
1524 is also OUT. */
1525 && (out == 0 || in == out
1526 || ! hard_reg_set_here_p (regno,
1527 (regno
1528 + HARD_REGNO_NREGS (regno,
1529 rel_mode)),
1530 PATTERN (this_insn)))
1531 /* ??? Why is this code so different from the previous?
1532 Is there any simple coherent way to describe the two together?
1533 What's going on here. */
1534 && (in != out
1535 || (GET_CODE (in) == SUBREG
1536 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1537 / UNITS_PER_WORD)
1538 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1539 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1540 /* Make sure the operand fits in the reg that dies. */
1541 && (GET_MODE_SIZE (rel_mode)
1542 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1543 && HARD_REGNO_MODE_OK (regno, inmode)
1544 && HARD_REGNO_MODE_OK (regno, outmode))
1545 {
1546 unsigned int offs;
1547 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1548 HARD_REGNO_NREGS (regno, outmode));
1549
1550 for (offs = 0; offs < nregs; offs++)
1551 if (fixed_regs[regno + offs]
1552 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1553 regno + offs))
1554 break;
1555
1556 if (offs == nregs
1557 && (! (refers_to_regno_for_reload_p
1558 (regno, (regno + HARD_REGNO_NREGS (regno, inmode)),
1559 in, (rtx *)0))
1560 || can_reload_into (in, regno, inmode)))
1561 {
1562 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1563 break;
1564 }
1565 }
1566 }
1567
1568 if (out)
1569 output_reloadnum = i;
1570
1571 return i;
1572 }
1573
1574 /* Record an additional place we must replace a value
1575 for which we have already recorded a reload.
1576 RELOADNUM is the value returned by push_reload
1577 when the reload was recorded.
1578 This is used in insn patterns that use match_dup. */
1579
1580 static void
1581 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1582 {
1583 if (replace_reloads)
1584 {
1585 struct replacement *r = &replacements[n_replacements++];
1586 r->what = reloadnum;
1587 r->where = loc;
1588 r->subreg_loc = 0;
1589 r->mode = mode;
1590 }
1591 }
1592
1593 /* Duplicate any replacement we have recorded to apply at
1594 location ORIG_LOC to also be performed at DUP_LOC.
1595 This is used in insn patterns that use match_dup. */
1596
1597 static void
1598 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1599 {
1600 int i, n = n_replacements;
1601
1602 for (i = 0; i < n; i++)
1603 {
1604 struct replacement *r = &replacements[i];
1605 if (r->where == orig_loc)
1606 push_replacement (dup_loc, r->what, r->mode);
1607 }
1608 }
1609 \f
1610 /* Transfer all replacements that used to be in reload FROM to be in
1611 reload TO. */
1612
1613 void
1614 transfer_replacements (int to, int from)
1615 {
1616 int i;
1617
1618 for (i = 0; i < n_replacements; i++)
1619 if (replacements[i].what == from)
1620 replacements[i].what = to;
1621 }
1622 \f
1623 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1624 or a subpart of it. If we have any replacements registered for IN_RTX,
1625 cancel the reloads that were supposed to load them.
1626 Return nonzero if we canceled any reloads. */
1627 int
1628 remove_address_replacements (rtx in_rtx)
1629 {
1630 int i, j;
1631 char reload_flags[MAX_RELOADS];
1632 int something_changed = 0;
1633
1634 memset (reload_flags, 0, sizeof reload_flags);
1635 for (i = 0, j = 0; i < n_replacements; i++)
1636 {
1637 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1638 reload_flags[replacements[i].what] |= 1;
1639 else
1640 {
1641 replacements[j++] = replacements[i];
1642 reload_flags[replacements[i].what] |= 2;
1643 }
1644 }
1645 /* Note that the following store must be done before the recursive calls. */
1646 n_replacements = j;
1647
1648 for (i = n_reloads - 1; i >= 0; i--)
1649 {
1650 if (reload_flags[i] == 1)
1651 {
1652 deallocate_reload_reg (i);
1653 remove_address_replacements (rld[i].in);
1654 rld[i].in = 0;
1655 something_changed = 1;
1656 }
1657 }
1658 return something_changed;
1659 }
1660 \f
1661 /* If there is only one output reload, and it is not for an earlyclobber
1662 operand, try to combine it with a (logically unrelated) input reload
1663 to reduce the number of reload registers needed.
1664
1665 This is safe if the input reload does not appear in
1666 the value being output-reloaded, because this implies
1667 it is not needed any more once the original insn completes.
1668
1669 If that doesn't work, see we can use any of the registers that
1670 die in this insn as a reload register. We can if it is of the right
1671 class and does not appear in the value being output-reloaded. */
1672
1673 static void
1674 combine_reloads (void)
1675 {
1676 int i;
1677 int output_reload = -1;
1678 int secondary_out = -1;
1679 rtx note;
1680
1681 /* Find the output reload; return unless there is exactly one
1682 and that one is mandatory. */
1683
1684 for (i = 0; i < n_reloads; i++)
1685 if (rld[i].out != 0)
1686 {
1687 if (output_reload >= 0)
1688 return;
1689 output_reload = i;
1690 }
1691
1692 if (output_reload < 0 || rld[output_reload].optional)
1693 return;
1694
1695 /* An input-output reload isn't combinable. */
1696
1697 if (rld[output_reload].in != 0)
1698 return;
1699
1700 /* If this reload is for an earlyclobber operand, we can't do anything. */
1701 if (earlyclobber_operand_p (rld[output_reload].out))
1702 return;
1703
1704 /* If there is a reload for part of the address of this operand, we would
1705 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1706 its life to the point where doing this combine would not lower the
1707 number of spill registers needed. */
1708 for (i = 0; i < n_reloads; i++)
1709 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1710 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1711 && rld[i].opnum == rld[output_reload].opnum)
1712 return;
1713
1714 /* Check each input reload; can we combine it? */
1715
1716 for (i = 0; i < n_reloads; i++)
1717 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1718 /* Life span of this reload must not extend past main insn. */
1719 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1720 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1721 && rld[i].when_needed != RELOAD_OTHER
1722 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1723 == CLASS_MAX_NREGS (rld[output_reload].class,
1724 rld[output_reload].outmode))
1725 && rld[i].inc == 0
1726 && rld[i].reg_rtx == 0
1727 #ifdef SECONDARY_MEMORY_NEEDED
1728 /* Don't combine two reloads with different secondary
1729 memory locations. */
1730 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1731 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1732 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1733 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1734 #endif
1735 && (SMALL_REGISTER_CLASSES
1736 ? (rld[i].class == rld[output_reload].class)
1737 : (reg_class_subset_p (rld[i].class,
1738 rld[output_reload].class)
1739 || reg_class_subset_p (rld[output_reload].class,
1740 rld[i].class)))
1741 && (MATCHES (rld[i].in, rld[output_reload].out)
1742 /* Args reversed because the first arg seems to be
1743 the one that we imagine being modified
1744 while the second is the one that might be affected. */
1745 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1746 rld[i].in)
1747 /* However, if the input is a register that appears inside
1748 the output, then we also can't share.
1749 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1750 If the same reload reg is used for both reg 69 and the
1751 result to be stored in memory, then that result
1752 will clobber the address of the memory ref. */
1753 && ! (GET_CODE (rld[i].in) == REG
1754 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1755 rld[output_reload].out))))
1756 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1757 rld[i].when_needed != RELOAD_FOR_INPUT)
1758 && (reg_class_size[(int) rld[i].class]
1759 || SMALL_REGISTER_CLASSES)
1760 /* We will allow making things slightly worse by combining an
1761 input and an output, but no worse than that. */
1762 && (rld[i].when_needed == RELOAD_FOR_INPUT
1763 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1764 {
1765 int j;
1766
1767 /* We have found a reload to combine with! */
1768 rld[i].out = rld[output_reload].out;
1769 rld[i].out_reg = rld[output_reload].out_reg;
1770 rld[i].outmode = rld[output_reload].outmode;
1771 /* Mark the old output reload as inoperative. */
1772 rld[output_reload].out = 0;
1773 /* The combined reload is needed for the entire insn. */
1774 rld[i].when_needed = RELOAD_OTHER;
1775 /* If the output reload had a secondary reload, copy it. */
1776 if (rld[output_reload].secondary_out_reload != -1)
1777 {
1778 rld[i].secondary_out_reload
1779 = rld[output_reload].secondary_out_reload;
1780 rld[i].secondary_out_icode
1781 = rld[output_reload].secondary_out_icode;
1782 }
1783
1784 #ifdef SECONDARY_MEMORY_NEEDED
1785 /* Copy any secondary MEM. */
1786 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1787 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1788 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1789 #endif
1790 /* If required, minimize the register class. */
1791 if (reg_class_subset_p (rld[output_reload].class,
1792 rld[i].class))
1793 rld[i].class = rld[output_reload].class;
1794
1795 /* Transfer all replacements from the old reload to the combined. */
1796 for (j = 0; j < n_replacements; j++)
1797 if (replacements[j].what == output_reload)
1798 replacements[j].what = i;
1799
1800 return;
1801 }
1802
1803 /* If this insn has only one operand that is modified or written (assumed
1804 to be the first), it must be the one corresponding to this reload. It
1805 is safe to use anything that dies in this insn for that output provided
1806 that it does not occur in the output (we already know it isn't an
1807 earlyclobber. If this is an asm insn, give up. */
1808
1809 if (INSN_CODE (this_insn) == -1)
1810 return;
1811
1812 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1813 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1814 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1815 return;
1816
1817 /* See if some hard register that dies in this insn and is not used in
1818 the output is the right class. Only works if the register we pick
1819 up can fully hold our output reload. */
1820 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1821 if (REG_NOTE_KIND (note) == REG_DEAD
1822 && GET_CODE (XEXP (note, 0)) == REG
1823 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1824 rld[output_reload].out)
1825 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1826 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1827 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1828 REGNO (XEXP (note, 0)))
1829 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1830 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1831 /* Ensure that a secondary or tertiary reload for this output
1832 won't want this register. */
1833 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1834 || (! (TEST_HARD_REG_BIT
1835 (reg_class_contents[(int) rld[secondary_out].class],
1836 REGNO (XEXP (note, 0))))
1837 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1838 || ! (TEST_HARD_REG_BIT
1839 (reg_class_contents[(int) rld[secondary_out].class],
1840 REGNO (XEXP (note, 0)))))))
1841 && ! fixed_regs[REGNO (XEXP (note, 0))])
1842 {
1843 rld[output_reload].reg_rtx
1844 = gen_rtx_REG (rld[output_reload].outmode,
1845 REGNO (XEXP (note, 0)));
1846 return;
1847 }
1848 }
1849 \f
1850 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1851 See if one of IN and OUT is a register that may be used;
1852 this is desirable since a spill-register won't be needed.
1853 If so, return the register rtx that proves acceptable.
1854
1855 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1856 CLASS is the register class required for the reload.
1857
1858 If FOR_REAL is >= 0, it is the number of the reload,
1859 and in some cases when it can be discovered that OUT doesn't need
1860 to be computed, clear out rld[FOR_REAL].out.
1861
1862 If FOR_REAL is -1, this should not be done, because this call
1863 is just to see if a register can be found, not to find and install it.
1864
1865 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1866 puts an additional constraint on being able to use IN for OUT since
1867 IN must not appear elsewhere in the insn (it is assumed that IN itself
1868 is safe from the earlyclobber). */
1869
1870 static rtx
1871 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1872 enum machine_mode inmode, enum machine_mode outmode,
1873 enum reg_class class, int for_real, int earlyclobber)
1874 {
1875 rtx in = real_in;
1876 rtx out = real_out;
1877 int in_offset = 0;
1878 int out_offset = 0;
1879 rtx value = 0;
1880
1881 /* If operands exceed a word, we can't use either of them
1882 unless they have the same size. */
1883 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1884 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1885 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1886 return 0;
1887
1888 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1889 respectively refers to a hard register. */
1890
1891 /* Find the inside of any subregs. */
1892 while (GET_CODE (out) == SUBREG)
1893 {
1894 if (GET_CODE (SUBREG_REG (out)) == REG
1895 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1896 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1897 GET_MODE (SUBREG_REG (out)),
1898 SUBREG_BYTE (out),
1899 GET_MODE (out));
1900 out = SUBREG_REG (out);
1901 }
1902 while (GET_CODE (in) == SUBREG)
1903 {
1904 if (GET_CODE (SUBREG_REG (in)) == REG
1905 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1906 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1907 GET_MODE (SUBREG_REG (in)),
1908 SUBREG_BYTE (in),
1909 GET_MODE (in));
1910 in = SUBREG_REG (in);
1911 }
1912
1913 /* Narrow down the reg class, the same way push_reload will;
1914 otherwise we might find a dummy now, but push_reload won't. */
1915 class = PREFERRED_RELOAD_CLASS (in, class);
1916
1917 /* See if OUT will do. */
1918 if (GET_CODE (out) == REG
1919 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1920 {
1921 unsigned int regno = REGNO (out) + out_offset;
1922 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1923 rtx saved_rtx;
1924
1925 /* When we consider whether the insn uses OUT,
1926 ignore references within IN. They don't prevent us
1927 from copying IN into OUT, because those refs would
1928 move into the insn that reloads IN.
1929
1930 However, we only ignore IN in its role as this reload.
1931 If the insn uses IN elsewhere and it contains OUT,
1932 that counts. We can't be sure it's the "same" operand
1933 so it might not go through this reload. */
1934 saved_rtx = *inloc;
1935 *inloc = const0_rtx;
1936
1937 if (regno < FIRST_PSEUDO_REGISTER
1938 && HARD_REGNO_MODE_OK (regno, outmode)
1939 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1940 PATTERN (this_insn), outloc))
1941 {
1942 unsigned int i;
1943
1944 for (i = 0; i < nwords; i++)
1945 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1946 regno + i))
1947 break;
1948
1949 if (i == nwords)
1950 {
1951 if (GET_CODE (real_out) == REG)
1952 value = real_out;
1953 else
1954 value = gen_rtx_REG (outmode, regno);
1955 }
1956 }
1957
1958 *inloc = saved_rtx;
1959 }
1960
1961 /* Consider using IN if OUT was not acceptable
1962 or if OUT dies in this insn (like the quotient in a divmod insn).
1963 We can't use IN unless it is dies in this insn,
1964 which means we must know accurately which hard regs are live.
1965 Also, the result can't go in IN if IN is used within OUT,
1966 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1967 if (hard_regs_live_known
1968 && GET_CODE (in) == REG
1969 && REGNO (in) < FIRST_PSEUDO_REGISTER
1970 && (value == 0
1971 || find_reg_note (this_insn, REG_UNUSED, real_out))
1972 && find_reg_note (this_insn, REG_DEAD, real_in)
1973 && !fixed_regs[REGNO (in)]
1974 && HARD_REGNO_MODE_OK (REGNO (in),
1975 /* The only case where out and real_out might
1976 have different modes is where real_out
1977 is a subreg, and in that case, out
1978 has a real mode. */
1979 (GET_MODE (out) != VOIDmode
1980 ? GET_MODE (out) : outmode)))
1981 {
1982 unsigned int regno = REGNO (in) + in_offset;
1983 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1984
1985 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1986 && ! hard_reg_set_here_p (regno, regno + nwords,
1987 PATTERN (this_insn))
1988 && (! earlyclobber
1989 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1990 PATTERN (this_insn), inloc)))
1991 {
1992 unsigned int i;
1993
1994 for (i = 0; i < nwords; i++)
1995 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1996 regno + i))
1997 break;
1998
1999 if (i == nwords)
2000 {
2001 /* If we were going to use OUT as the reload reg
2002 and changed our mind, it means OUT is a dummy that
2003 dies here. So don't bother copying value to it. */
2004 if (for_real >= 0 && value == real_out)
2005 rld[for_real].out = 0;
2006 if (GET_CODE (real_in) == REG)
2007 value = real_in;
2008 else
2009 value = gen_rtx_REG (inmode, regno);
2010 }
2011 }
2012 }
2013
2014 return value;
2015 }
2016 \f
2017 /* This page contains subroutines used mainly for determining
2018 whether the IN or an OUT of a reload can serve as the
2019 reload register. */
2020
2021 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2022
2023 int
2024 earlyclobber_operand_p (rtx x)
2025 {
2026 int i;
2027
2028 for (i = 0; i < n_earlyclobbers; i++)
2029 if (reload_earlyclobbers[i] == x)
2030 return 1;
2031
2032 return 0;
2033 }
2034
2035 /* Return 1 if expression X alters a hard reg in the range
2036 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2037 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2038 X should be the body of an instruction. */
2039
2040 static int
2041 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2042 {
2043 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2044 {
2045 rtx op0 = SET_DEST (x);
2046
2047 while (GET_CODE (op0) == SUBREG)
2048 op0 = SUBREG_REG (op0);
2049 if (GET_CODE (op0) == REG)
2050 {
2051 unsigned int r = REGNO (op0);
2052
2053 /* See if this reg overlaps range under consideration. */
2054 if (r < end_regno
2055 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2056 return 1;
2057 }
2058 }
2059 else if (GET_CODE (x) == PARALLEL)
2060 {
2061 int i = XVECLEN (x, 0) - 1;
2062
2063 for (; i >= 0; i--)
2064 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2065 return 1;
2066 }
2067
2068 return 0;
2069 }
2070
2071 /* Return 1 if ADDR is a valid memory address for mode MODE,
2072 and check that each pseudo reg has the proper kind of
2073 hard reg. */
2074
2075 int
2076 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2077 {
2078 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2079 return 0;
2080
2081 win:
2082 return 1;
2083 }
2084 \f
2085 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2086 if they are the same hard reg, and has special hacks for
2087 autoincrement and autodecrement.
2088 This is specifically intended for find_reloads to use
2089 in determining whether two operands match.
2090 X is the operand whose number is the lower of the two.
2091
2092 The value is 2 if Y contains a pre-increment that matches
2093 a non-incrementing address in X. */
2094
2095 /* ??? To be completely correct, we should arrange to pass
2096 for X the output operand and for Y the input operand.
2097 For now, we assume that the output operand has the lower number
2098 because that is natural in (SET output (... input ...)). */
2099
2100 int
2101 operands_match_p (rtx x, rtx y)
2102 {
2103 int i;
2104 RTX_CODE code = GET_CODE (x);
2105 const char *fmt;
2106 int success_2;
2107
2108 if (x == y)
2109 return 1;
2110 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2111 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2112 && GET_CODE (SUBREG_REG (y)) == REG)))
2113 {
2114 int j;
2115
2116 if (code == SUBREG)
2117 {
2118 i = REGNO (SUBREG_REG (x));
2119 if (i >= FIRST_PSEUDO_REGISTER)
2120 goto slow;
2121 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2122 GET_MODE (SUBREG_REG (x)),
2123 SUBREG_BYTE (x),
2124 GET_MODE (x));
2125 }
2126 else
2127 i = REGNO (x);
2128
2129 if (GET_CODE (y) == SUBREG)
2130 {
2131 j = REGNO (SUBREG_REG (y));
2132 if (j >= FIRST_PSEUDO_REGISTER)
2133 goto slow;
2134 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2135 GET_MODE (SUBREG_REG (y)),
2136 SUBREG_BYTE (y),
2137 GET_MODE (y));
2138 }
2139 else
2140 j = REGNO (y);
2141
2142 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2143 multiple hard register group, so that for example (reg:DI 0) and
2144 (reg:SI 1) will be considered the same register. */
2145 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2146 && i < FIRST_PSEUDO_REGISTER)
2147 i += HARD_REGNO_NREGS (i, GET_MODE (x)) - 1;
2148 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2149 && j < FIRST_PSEUDO_REGISTER)
2150 j += HARD_REGNO_NREGS (j, GET_MODE (y)) - 1;
2151
2152 return i == j;
2153 }
2154 /* If two operands must match, because they are really a single
2155 operand of an assembler insn, then two postincrements are invalid
2156 because the assembler insn would increment only once.
2157 On the other hand, a postincrement matches ordinary indexing
2158 if the postincrement is the output operand. */
2159 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2160 return operands_match_p (XEXP (x, 0), y);
2161 /* Two preincrements are invalid
2162 because the assembler insn would increment only once.
2163 On the other hand, a preincrement matches ordinary indexing
2164 if the preincrement is the input operand.
2165 In this case, return 2, since some callers need to do special
2166 things when this happens. */
2167 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2168 || GET_CODE (y) == PRE_MODIFY)
2169 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2170
2171 slow:
2172
2173 /* Now we have disposed of all the cases
2174 in which different rtx codes can match. */
2175 if (code != GET_CODE (y))
2176 return 0;
2177 if (code == LABEL_REF)
2178 return XEXP (x, 0) == XEXP (y, 0);
2179 if (code == SYMBOL_REF)
2180 return XSTR (x, 0) == XSTR (y, 0);
2181
2182 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2183
2184 if (GET_MODE (x) != GET_MODE (y))
2185 return 0;
2186
2187 /* Compare the elements. If any pair of corresponding elements
2188 fail to match, return 0 for the whole things. */
2189
2190 success_2 = 0;
2191 fmt = GET_RTX_FORMAT (code);
2192 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2193 {
2194 int val, j;
2195 switch (fmt[i])
2196 {
2197 case 'w':
2198 if (XWINT (x, i) != XWINT (y, i))
2199 return 0;
2200 break;
2201
2202 case 'i':
2203 if (XINT (x, i) != XINT (y, i))
2204 return 0;
2205 break;
2206
2207 case 'e':
2208 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2209 if (val == 0)
2210 return 0;
2211 /* If any subexpression returns 2,
2212 we should return 2 if we are successful. */
2213 if (val == 2)
2214 success_2 = 1;
2215 break;
2216
2217 case '0':
2218 break;
2219
2220 case 'E':
2221 if (XVECLEN (x, i) != XVECLEN (y, i))
2222 return 0;
2223 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2224 {
2225 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2226 if (val == 0)
2227 return 0;
2228 if (val == 2)
2229 success_2 = 1;
2230 }
2231 break;
2232
2233 /* It is believed that rtx's at this level will never
2234 contain anything but integers and other rtx's,
2235 except for within LABEL_REFs and SYMBOL_REFs. */
2236 default:
2237 abort ();
2238 }
2239 }
2240 return 1 + success_2;
2241 }
2242 \f
2243 /* Describe the range of registers or memory referenced by X.
2244 If X is a register, set REG_FLAG and put the first register
2245 number into START and the last plus one into END.
2246 If X is a memory reference, put a base address into BASE
2247 and a range of integer offsets into START and END.
2248 If X is pushing on the stack, we can assume it causes no trouble,
2249 so we set the SAFE field. */
2250
2251 static struct decomposition
2252 decompose (rtx x)
2253 {
2254 struct decomposition val;
2255 int all_const = 0;
2256
2257 val.reg_flag = 0;
2258 val.safe = 0;
2259 val.base = 0;
2260 if (GET_CODE (x) == MEM)
2261 {
2262 rtx base = NULL_RTX, offset = 0;
2263 rtx addr = XEXP (x, 0);
2264
2265 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2266 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2267 {
2268 val.base = XEXP (addr, 0);
2269 val.start = -GET_MODE_SIZE (GET_MODE (x));
2270 val.end = GET_MODE_SIZE (GET_MODE (x));
2271 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2272 return val;
2273 }
2274
2275 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2276 {
2277 if (GET_CODE (XEXP (addr, 1)) == PLUS
2278 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2279 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2280 {
2281 val.base = XEXP (addr, 0);
2282 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2283 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2284 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2285 return val;
2286 }
2287 }
2288
2289 if (GET_CODE (addr) == CONST)
2290 {
2291 addr = XEXP (addr, 0);
2292 all_const = 1;
2293 }
2294 if (GET_CODE (addr) == PLUS)
2295 {
2296 if (CONSTANT_P (XEXP (addr, 0)))
2297 {
2298 base = XEXP (addr, 1);
2299 offset = XEXP (addr, 0);
2300 }
2301 else if (CONSTANT_P (XEXP (addr, 1)))
2302 {
2303 base = XEXP (addr, 0);
2304 offset = XEXP (addr, 1);
2305 }
2306 }
2307
2308 if (offset == 0)
2309 {
2310 base = addr;
2311 offset = const0_rtx;
2312 }
2313 if (GET_CODE (offset) == CONST)
2314 offset = XEXP (offset, 0);
2315 if (GET_CODE (offset) == PLUS)
2316 {
2317 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2318 {
2319 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2320 offset = XEXP (offset, 0);
2321 }
2322 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2323 {
2324 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2325 offset = XEXP (offset, 1);
2326 }
2327 else
2328 {
2329 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2330 offset = const0_rtx;
2331 }
2332 }
2333 else if (GET_CODE (offset) != CONST_INT)
2334 {
2335 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2336 offset = const0_rtx;
2337 }
2338
2339 if (all_const && GET_CODE (base) == PLUS)
2340 base = gen_rtx_CONST (GET_MODE (base), base);
2341
2342 if (GET_CODE (offset) != CONST_INT)
2343 abort ();
2344
2345 val.start = INTVAL (offset);
2346 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2347 val.base = base;
2348 return val;
2349 }
2350 else if (GET_CODE (x) == REG)
2351 {
2352 val.reg_flag = 1;
2353 val.start = true_regnum (x);
2354 if (val.start < 0)
2355 {
2356 /* A pseudo with no hard reg. */
2357 val.start = REGNO (x);
2358 val.end = val.start + 1;
2359 }
2360 else
2361 /* A hard reg. */
2362 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2363 }
2364 else if (GET_CODE (x) == SUBREG)
2365 {
2366 if (GET_CODE (SUBREG_REG (x)) != REG)
2367 /* This could be more precise, but it's good enough. */
2368 return decompose (SUBREG_REG (x));
2369 val.reg_flag = 1;
2370 val.start = true_regnum (x);
2371 if (val.start < 0)
2372 return decompose (SUBREG_REG (x));
2373 else
2374 /* A hard reg. */
2375 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2376 }
2377 else if (CONSTANT_P (x)
2378 /* This hasn't been assigned yet, so it can't conflict yet. */
2379 || GET_CODE (x) == SCRATCH)
2380 val.safe = 1;
2381 else
2382 abort ();
2383 return val;
2384 }
2385
2386 /* Return 1 if altering Y will not modify the value of X.
2387 Y is also described by YDATA, which should be decompose (Y). */
2388
2389 static int
2390 immune_p (rtx x, rtx y, struct decomposition ydata)
2391 {
2392 struct decomposition xdata;
2393
2394 if (ydata.reg_flag)
2395 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2396 if (ydata.safe)
2397 return 1;
2398
2399 if (GET_CODE (y) != MEM)
2400 abort ();
2401 /* If Y is memory and X is not, Y can't affect X. */
2402 if (GET_CODE (x) != MEM)
2403 return 1;
2404
2405 xdata = decompose (x);
2406
2407 if (! rtx_equal_p (xdata.base, ydata.base))
2408 {
2409 /* If bases are distinct symbolic constants, there is no overlap. */
2410 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2411 return 1;
2412 /* Constants and stack slots never overlap. */
2413 if (CONSTANT_P (xdata.base)
2414 && (ydata.base == frame_pointer_rtx
2415 || ydata.base == hard_frame_pointer_rtx
2416 || ydata.base == stack_pointer_rtx))
2417 return 1;
2418 if (CONSTANT_P (ydata.base)
2419 && (xdata.base == frame_pointer_rtx
2420 || xdata.base == hard_frame_pointer_rtx
2421 || xdata.base == stack_pointer_rtx))
2422 return 1;
2423 /* If either base is variable, we don't know anything. */
2424 return 0;
2425 }
2426
2427 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2428 }
2429
2430 /* Similar, but calls decompose. */
2431
2432 int
2433 safe_from_earlyclobber (rtx op, rtx clobber)
2434 {
2435 struct decomposition early_data;
2436
2437 early_data = decompose (clobber);
2438 return immune_p (op, clobber, early_data);
2439 }
2440 \f
2441 /* Main entry point of this file: search the body of INSN
2442 for values that need reloading and record them with push_reload.
2443 REPLACE nonzero means record also where the values occur
2444 so that subst_reloads can be used.
2445
2446 IND_LEVELS says how many levels of indirection are supported by this
2447 machine; a value of zero means that a memory reference is not a valid
2448 memory address.
2449
2450 LIVE_KNOWN says we have valid information about which hard
2451 regs are live at each point in the program; this is true when
2452 we are called from global_alloc but false when stupid register
2453 allocation has been done.
2454
2455 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2456 which is nonnegative if the reg has been commandeered for reloading into.
2457 It is copied into STATIC_RELOAD_REG_P and referenced from there
2458 by various subroutines.
2459
2460 Return TRUE if some operands need to be changed, because of swapping
2461 commutative operands, reg_equiv_address substitution, or whatever. */
2462
2463 int
2464 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2465 short *reload_reg_p)
2466 {
2467 int insn_code_number;
2468 int i, j;
2469 int noperands;
2470 /* These start out as the constraints for the insn
2471 and they are chewed up as we consider alternatives. */
2472 char *constraints[MAX_RECOG_OPERANDS];
2473 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2474 a register. */
2475 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2476 char pref_or_nothing[MAX_RECOG_OPERANDS];
2477 /* Nonzero for a MEM operand whose entire address needs a reload. */
2478 int address_reloaded[MAX_RECOG_OPERANDS];
2479 /* Nonzero for an address operand that needs to be completely reloaded. */
2480 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2481 /* Value of enum reload_type to use for operand. */
2482 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2483 /* Value of enum reload_type to use within address of operand. */
2484 enum reload_type address_type[MAX_RECOG_OPERANDS];
2485 /* Save the usage of each operand. */
2486 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2487 int no_input_reloads = 0, no_output_reloads = 0;
2488 int n_alternatives;
2489 int this_alternative[MAX_RECOG_OPERANDS];
2490 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2491 char this_alternative_win[MAX_RECOG_OPERANDS];
2492 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2493 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2494 int this_alternative_matches[MAX_RECOG_OPERANDS];
2495 int swapped;
2496 int goal_alternative[MAX_RECOG_OPERANDS];
2497 int this_alternative_number;
2498 int goal_alternative_number = 0;
2499 int operand_reloadnum[MAX_RECOG_OPERANDS];
2500 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2501 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2502 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2503 char goal_alternative_win[MAX_RECOG_OPERANDS];
2504 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2505 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2506 int goal_alternative_swapped;
2507 int best;
2508 int commutative;
2509 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2510 rtx substed_operand[MAX_RECOG_OPERANDS];
2511 rtx body = PATTERN (insn);
2512 rtx set = single_set (insn);
2513 int goal_earlyclobber = 0, this_earlyclobber;
2514 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2515 int retval = 0;
2516
2517 this_insn = insn;
2518 n_reloads = 0;
2519 n_replacements = 0;
2520 n_earlyclobbers = 0;
2521 replace_reloads = replace;
2522 hard_regs_live_known = live_known;
2523 static_reload_reg_p = reload_reg_p;
2524
2525 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2526 neither are insns that SET cc0. Insns that use CC0 are not allowed
2527 to have any input reloads. */
2528 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2529 no_output_reloads = 1;
2530
2531 #ifdef HAVE_cc0
2532 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2533 no_input_reloads = 1;
2534 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2535 no_output_reloads = 1;
2536 #endif
2537
2538 #ifdef SECONDARY_MEMORY_NEEDED
2539 /* The eliminated forms of any secondary memory locations are per-insn, so
2540 clear them out here. */
2541
2542 memset (secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2543 #endif
2544
2545 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2546 is cheap to move between them. If it is not, there may not be an insn
2547 to do the copy, so we may need a reload. */
2548 if (GET_CODE (body) == SET
2549 && GET_CODE (SET_DEST (body)) == REG
2550 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2551 && GET_CODE (SET_SRC (body)) == REG
2552 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2553 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2554 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2555 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2556 return 0;
2557
2558 extract_insn (insn);
2559
2560 noperands = reload_n_operands = recog_data.n_operands;
2561 n_alternatives = recog_data.n_alternatives;
2562
2563 /* Just return "no reloads" if insn has no operands with constraints. */
2564 if (noperands == 0 || n_alternatives == 0)
2565 return 0;
2566
2567 insn_code_number = INSN_CODE (insn);
2568 this_insn_is_asm = insn_code_number < 0;
2569
2570 memcpy (operand_mode, recog_data.operand_mode,
2571 noperands * sizeof (enum machine_mode));
2572 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2573
2574 commutative = -1;
2575
2576 /* If we will need to know, later, whether some pair of operands
2577 are the same, we must compare them now and save the result.
2578 Reloading the base and index registers will clobber them
2579 and afterward they will fail to match. */
2580
2581 for (i = 0; i < noperands; i++)
2582 {
2583 char *p;
2584 int c;
2585
2586 substed_operand[i] = recog_data.operand[i];
2587 p = constraints[i];
2588
2589 modified[i] = RELOAD_READ;
2590
2591 /* Scan this operand's constraint to see if it is an output operand,
2592 an in-out operand, is commutative, or should match another. */
2593
2594 while ((c = *p))
2595 {
2596 p += CONSTRAINT_LEN (c, p);
2597 if (c == '=')
2598 modified[i] = RELOAD_WRITE;
2599 else if (c == '+')
2600 modified[i] = RELOAD_READ_WRITE;
2601 else if (c == '%')
2602 {
2603 /* The last operand should not be marked commutative. */
2604 if (i == noperands - 1)
2605 abort ();
2606
2607 commutative = i;
2608 }
2609 else if (ISDIGIT (c))
2610 {
2611 c = strtoul (p - 1, &p, 10);
2612
2613 operands_match[c][i]
2614 = operands_match_p (recog_data.operand[c],
2615 recog_data.operand[i]);
2616
2617 /* An operand may not match itself. */
2618 if (c == i)
2619 abort ();
2620
2621 /* If C can be commuted with C+1, and C might need to match I,
2622 then C+1 might also need to match I. */
2623 if (commutative >= 0)
2624 {
2625 if (c == commutative || c == commutative + 1)
2626 {
2627 int other = c + (c == commutative ? 1 : -1);
2628 operands_match[other][i]
2629 = operands_match_p (recog_data.operand[other],
2630 recog_data.operand[i]);
2631 }
2632 if (i == commutative || i == commutative + 1)
2633 {
2634 int other = i + (i == commutative ? 1 : -1);
2635 operands_match[c][other]
2636 = operands_match_p (recog_data.operand[c],
2637 recog_data.operand[other]);
2638 }
2639 /* Note that C is supposed to be less than I.
2640 No need to consider altering both C and I because in
2641 that case we would alter one into the other. */
2642 }
2643 }
2644 }
2645 }
2646
2647 /* Examine each operand that is a memory reference or memory address
2648 and reload parts of the addresses into index registers.
2649 Also here any references to pseudo regs that didn't get hard regs
2650 but are equivalent to constants get replaced in the insn itself
2651 with those constants. Nobody will ever see them again.
2652
2653 Finally, set up the preferred classes of each operand. */
2654
2655 for (i = 0; i < noperands; i++)
2656 {
2657 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2658
2659 address_reloaded[i] = 0;
2660 address_operand_reloaded[i] = 0;
2661 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2662 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2663 : RELOAD_OTHER);
2664 address_type[i]
2665 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2666 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2667 : RELOAD_OTHER);
2668
2669 if (*constraints[i] == 0)
2670 /* Ignore things like match_operator operands. */
2671 ;
2672 else if (constraints[i][0] == 'p'
2673 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2674 {
2675 address_operand_reloaded[i]
2676 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2677 recog_data.operand[i],
2678 recog_data.operand_loc[i],
2679 i, operand_type[i], ind_levels, insn);
2680
2681 /* If we now have a simple operand where we used to have a
2682 PLUS or MULT, re-recognize and try again. */
2683 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2684 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2685 && (GET_CODE (recog_data.operand[i]) == MULT
2686 || GET_CODE (recog_data.operand[i]) == PLUS))
2687 {
2688 INSN_CODE (insn) = -1;
2689 retval = find_reloads (insn, replace, ind_levels, live_known,
2690 reload_reg_p);
2691 return retval;
2692 }
2693
2694 recog_data.operand[i] = *recog_data.operand_loc[i];
2695 substed_operand[i] = recog_data.operand[i];
2696
2697 /* Address operands are reloaded in their existing mode,
2698 no matter what is specified in the machine description. */
2699 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2700 }
2701 else if (code == MEM)
2702 {
2703 address_reloaded[i]
2704 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2705 recog_data.operand_loc[i],
2706 XEXP (recog_data.operand[i], 0),
2707 &XEXP (recog_data.operand[i], 0),
2708 i, address_type[i], ind_levels, insn);
2709 recog_data.operand[i] = *recog_data.operand_loc[i];
2710 substed_operand[i] = recog_data.operand[i];
2711 }
2712 else if (code == SUBREG)
2713 {
2714 rtx reg = SUBREG_REG (recog_data.operand[i]);
2715 rtx op
2716 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2717 ind_levels,
2718 set != 0
2719 && &SET_DEST (set) == recog_data.operand_loc[i],
2720 insn,
2721 &address_reloaded[i]);
2722
2723 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2724 that didn't get a hard register, emit a USE with a REG_EQUAL
2725 note in front so that we might inherit a previous, possibly
2726 wider reload. */
2727
2728 if (replace
2729 && GET_CODE (op) == MEM
2730 && GET_CODE (reg) == REG
2731 && (GET_MODE_SIZE (GET_MODE (reg))
2732 >= GET_MODE_SIZE (GET_MODE (op))))
2733 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2734 insn),
2735 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2736
2737 substed_operand[i] = recog_data.operand[i] = op;
2738 }
2739 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2740 /* We can get a PLUS as an "operand" as a result of register
2741 elimination. See eliminate_regs and gen_reload. We handle
2742 a unary operator by reloading the operand. */
2743 substed_operand[i] = recog_data.operand[i]
2744 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2745 ind_levels, 0, insn,
2746 &address_reloaded[i]);
2747 else if (code == REG)
2748 {
2749 /* This is equivalent to calling find_reloads_toplev.
2750 The code is duplicated for speed.
2751 When we find a pseudo always equivalent to a constant,
2752 we replace it by the constant. We must be sure, however,
2753 that we don't try to replace it in the insn in which it
2754 is being set. */
2755 int regno = REGNO (recog_data.operand[i]);
2756 if (reg_equiv_constant[regno] != 0
2757 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2758 {
2759 /* Record the existing mode so that the check if constants are
2760 allowed will work when operand_mode isn't specified. */
2761
2762 if (operand_mode[i] == VOIDmode)
2763 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2764
2765 substed_operand[i] = recog_data.operand[i]
2766 = reg_equiv_constant[regno];
2767 }
2768 if (reg_equiv_memory_loc[regno] != 0
2769 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2770 /* We need not give a valid is_set_dest argument since the case
2771 of a constant equivalence was checked above. */
2772 substed_operand[i] = recog_data.operand[i]
2773 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2774 ind_levels, 0, insn,
2775 &address_reloaded[i]);
2776 }
2777 /* If the operand is still a register (we didn't replace it with an
2778 equivalent), get the preferred class to reload it into. */
2779 code = GET_CODE (recog_data.operand[i]);
2780 preferred_class[i]
2781 = ((code == REG && REGNO (recog_data.operand[i])
2782 >= FIRST_PSEUDO_REGISTER)
2783 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2784 : NO_REGS);
2785 pref_or_nothing[i]
2786 = (code == REG
2787 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2788 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2789 }
2790
2791 /* If this is simply a copy from operand 1 to operand 0, merge the
2792 preferred classes for the operands. */
2793 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2794 && recog_data.operand[1] == SET_SRC (set))
2795 {
2796 preferred_class[0] = preferred_class[1]
2797 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2798 pref_or_nothing[0] |= pref_or_nothing[1];
2799 pref_or_nothing[1] |= pref_or_nothing[0];
2800 }
2801
2802 /* Now see what we need for pseudo-regs that didn't get hard regs
2803 or got the wrong kind of hard reg. For this, we must consider
2804 all the operands together against the register constraints. */
2805
2806 best = MAX_RECOG_OPERANDS * 2 + 600;
2807
2808 swapped = 0;
2809 goal_alternative_swapped = 0;
2810 try_swapped:
2811
2812 /* The constraints are made of several alternatives.
2813 Each operand's constraint looks like foo,bar,... with commas
2814 separating the alternatives. The first alternatives for all
2815 operands go together, the second alternatives go together, etc.
2816
2817 First loop over alternatives. */
2818
2819 for (this_alternative_number = 0;
2820 this_alternative_number < n_alternatives;
2821 this_alternative_number++)
2822 {
2823 /* Loop over operands for one constraint alternative. */
2824 /* LOSERS counts those that don't fit this alternative
2825 and would require loading. */
2826 int losers = 0;
2827 /* BAD is set to 1 if it some operand can't fit this alternative
2828 even after reloading. */
2829 int bad = 0;
2830 /* REJECT is a count of how undesirable this alternative says it is
2831 if any reloading is required. If the alternative matches exactly
2832 then REJECT is ignored, but otherwise it gets this much
2833 counted against it in addition to the reloading needed. Each
2834 ? counts three times here since we want the disparaging caused by
2835 a bad register class to only count 1/3 as much. */
2836 int reject = 0;
2837
2838 this_earlyclobber = 0;
2839
2840 for (i = 0; i < noperands; i++)
2841 {
2842 char *p = constraints[i];
2843 char *end;
2844 int len;
2845 int win = 0;
2846 int did_match = 0;
2847 /* 0 => this operand can be reloaded somehow for this alternative. */
2848 int badop = 1;
2849 /* 0 => this operand can be reloaded if the alternative allows regs. */
2850 int winreg = 0;
2851 int c;
2852 int m;
2853 rtx operand = recog_data.operand[i];
2854 int offset = 0;
2855 /* Nonzero means this is a MEM that must be reloaded into a reg
2856 regardless of what the constraint says. */
2857 int force_reload = 0;
2858 int offmemok = 0;
2859 /* Nonzero if a constant forced into memory would be OK for this
2860 operand. */
2861 int constmemok = 0;
2862 int earlyclobber = 0;
2863
2864 /* If the predicate accepts a unary operator, it means that
2865 we need to reload the operand, but do not do this for
2866 match_operator and friends. */
2867 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2868 operand = XEXP (operand, 0);
2869
2870 /* If the operand is a SUBREG, extract
2871 the REG or MEM (or maybe even a constant) within.
2872 (Constants can occur as a result of reg_equiv_constant.) */
2873
2874 while (GET_CODE (operand) == SUBREG)
2875 {
2876 /* Offset only matters when operand is a REG and
2877 it is a hard reg. This is because it is passed
2878 to reg_fits_class_p if it is a REG and all pseudos
2879 return 0 from that function. */
2880 if (GET_CODE (SUBREG_REG (operand)) == REG
2881 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2882 {
2883 if (!subreg_offset_representable_p
2884 (REGNO (SUBREG_REG (operand)),
2885 GET_MODE (SUBREG_REG (operand)),
2886 SUBREG_BYTE (operand),
2887 GET_MODE (operand)))
2888 force_reload = 1;
2889 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2890 GET_MODE (SUBREG_REG (operand)),
2891 SUBREG_BYTE (operand),
2892 GET_MODE (operand));
2893 }
2894 operand = SUBREG_REG (operand);
2895 /* Force reload if this is a constant or PLUS or if there may
2896 be a problem accessing OPERAND in the outer mode. */
2897 if (CONSTANT_P (operand)
2898 || GET_CODE (operand) == PLUS
2899 /* We must force a reload of paradoxical SUBREGs
2900 of a MEM because the alignment of the inner value
2901 may not be enough to do the outer reference. On
2902 big-endian machines, it may also reference outside
2903 the object.
2904
2905 On machines that extend byte operations and we have a
2906 SUBREG where both the inner and outer modes are no wider
2907 than a word and the inner mode is narrower, is integral,
2908 and gets extended when loaded from memory, combine.c has
2909 made assumptions about the behavior of the machine in such
2910 register access. If the data is, in fact, in memory we
2911 must always load using the size assumed to be in the
2912 register and let the insn do the different-sized
2913 accesses.
2914
2915 This is doubly true if WORD_REGISTER_OPERATIONS. In
2916 this case eliminate_regs has left non-paradoxical
2917 subregs for push_reload to see. Make sure it does
2918 by forcing the reload.
2919
2920 ??? When is it right at this stage to have a subreg
2921 of a mem that is _not_ to be handled specially? IMO
2922 those should have been reduced to just a mem. */
2923 || ((GET_CODE (operand) == MEM
2924 || (GET_CODE (operand)== REG
2925 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2926 #ifndef WORD_REGISTER_OPERATIONS
2927 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2928 < BIGGEST_ALIGNMENT)
2929 && (GET_MODE_SIZE (operand_mode[i])
2930 > GET_MODE_SIZE (GET_MODE (operand))))
2931 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2932 #ifdef LOAD_EXTEND_OP
2933 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2934 && (GET_MODE_SIZE (GET_MODE (operand))
2935 <= UNITS_PER_WORD)
2936 && (GET_MODE_SIZE (operand_mode[i])
2937 > GET_MODE_SIZE (GET_MODE (operand)))
2938 && INTEGRAL_MODE_P (GET_MODE (operand))
2939 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2940 #endif
2941 )
2942 #endif
2943 )
2944 )
2945 force_reload = 1;
2946 }
2947
2948 this_alternative[i] = (int) NO_REGS;
2949 this_alternative_win[i] = 0;
2950 this_alternative_match_win[i] = 0;
2951 this_alternative_offmemok[i] = 0;
2952 this_alternative_earlyclobber[i] = 0;
2953 this_alternative_matches[i] = -1;
2954
2955 /* An empty constraint or empty alternative
2956 allows anything which matched the pattern. */
2957 if (*p == 0 || *p == ',')
2958 win = 1, badop = 0;
2959
2960 /* Scan this alternative's specs for this operand;
2961 set WIN if the operand fits any letter in this alternative.
2962 Otherwise, clear BADOP if this operand could
2963 fit some letter after reloads,
2964 or set WINREG if this operand could fit after reloads
2965 provided the constraint allows some registers. */
2966
2967 do
2968 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2969 {
2970 case '\0':
2971 len = 0;
2972 break;
2973 case ',':
2974 c = '\0';
2975 break;
2976
2977 case '=': case '+': case '*':
2978 break;
2979
2980 case '%':
2981 /* The last operand should not be marked commutative. */
2982 if (i != noperands - 1)
2983 commutative = i;
2984 break;
2985
2986 case '?':
2987 reject += 6;
2988 break;
2989
2990 case '!':
2991 reject = 600;
2992 break;
2993
2994 case '#':
2995 /* Ignore rest of this alternative as far as
2996 reloading is concerned. */
2997 do
2998 p++;
2999 while (*p && *p != ',');
3000 len = 0;
3001 break;
3002
3003 case '0': case '1': case '2': case '3': case '4':
3004 case '5': case '6': case '7': case '8': case '9':
3005 m = strtoul (p, &end, 10);
3006 p = end;
3007 len = 0;
3008
3009 this_alternative_matches[i] = m;
3010 /* We are supposed to match a previous operand.
3011 If we do, we win if that one did.
3012 If we do not, count both of the operands as losers.
3013 (This is too conservative, since most of the time
3014 only a single reload insn will be needed to make
3015 the two operands win. As a result, this alternative
3016 may be rejected when it is actually desirable.) */
3017 if ((swapped && (m != commutative || i != commutative + 1))
3018 /* If we are matching as if two operands were swapped,
3019 also pretend that operands_match had been computed
3020 with swapped.
3021 But if I is the second of those and C is the first,
3022 don't exchange them, because operands_match is valid
3023 only on one side of its diagonal. */
3024 ? (operands_match
3025 [(m == commutative || m == commutative + 1)
3026 ? 2 * commutative + 1 - m : m]
3027 [(i == commutative || i == commutative + 1)
3028 ? 2 * commutative + 1 - i : i])
3029 : operands_match[m][i])
3030 {
3031 /* If we are matching a non-offsettable address where an
3032 offsettable address was expected, then we must reject
3033 this combination, because we can't reload it. */
3034 if (this_alternative_offmemok[m]
3035 && GET_CODE (recog_data.operand[m]) == MEM
3036 && this_alternative[m] == (int) NO_REGS
3037 && ! this_alternative_win[m])
3038 bad = 1;
3039
3040 did_match = this_alternative_win[m];
3041 }
3042 else
3043 {
3044 /* Operands don't match. */
3045 rtx value;
3046 /* Retroactively mark the operand we had to match
3047 as a loser, if it wasn't already. */
3048 if (this_alternative_win[m])
3049 losers++;
3050 this_alternative_win[m] = 0;
3051 if (this_alternative[m] == (int) NO_REGS)
3052 bad = 1;
3053 /* But count the pair only once in the total badness of
3054 this alternative, if the pair can be a dummy reload. */
3055 value
3056 = find_dummy_reload (recog_data.operand[i],
3057 recog_data.operand[m],
3058 recog_data.operand_loc[i],
3059 recog_data.operand_loc[m],
3060 operand_mode[i], operand_mode[m],
3061 this_alternative[m], -1,
3062 this_alternative_earlyclobber[m]);
3063
3064 if (value != 0)
3065 losers--;
3066 }
3067 /* This can be fixed with reloads if the operand
3068 we are supposed to match can be fixed with reloads. */
3069 badop = 0;
3070 this_alternative[i] = this_alternative[m];
3071
3072 /* If we have to reload this operand and some previous
3073 operand also had to match the same thing as this
3074 operand, we don't know how to do that. So reject this
3075 alternative. */
3076 if (! did_match || force_reload)
3077 for (j = 0; j < i; j++)
3078 if (this_alternative_matches[j]
3079 == this_alternative_matches[i])
3080 badop = 1;
3081 break;
3082
3083 case 'p':
3084 /* All necessary reloads for an address_operand
3085 were handled in find_reloads_address. */
3086 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3087 win = 1;
3088 badop = 0;
3089 break;
3090
3091 case 'm':
3092 if (force_reload)
3093 break;
3094 if (GET_CODE (operand) == MEM
3095 || (GET_CODE (operand) == REG
3096 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3097 && reg_renumber[REGNO (operand)] < 0))
3098 win = 1;
3099 if (CONSTANT_P (operand)
3100 /* force_const_mem does not accept HIGH. */
3101 && GET_CODE (operand) != HIGH)
3102 badop = 0;
3103 constmemok = 1;
3104 break;
3105
3106 case '<':
3107 if (GET_CODE (operand) == MEM
3108 && ! address_reloaded[i]
3109 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3110 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3111 win = 1;
3112 break;
3113
3114 case '>':
3115 if (GET_CODE (operand) == MEM
3116 && ! address_reloaded[i]
3117 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3118 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3119 win = 1;
3120 break;
3121
3122 /* Memory operand whose address is not offsettable. */
3123 case 'V':
3124 if (force_reload)
3125 break;
3126 if (GET_CODE (operand) == MEM
3127 && ! (ind_levels ? offsettable_memref_p (operand)
3128 : offsettable_nonstrict_memref_p (operand))
3129 /* Certain mem addresses will become offsettable
3130 after they themselves are reloaded. This is important;
3131 we don't want our own handling of unoffsettables
3132 to override the handling of reg_equiv_address. */
3133 && !(GET_CODE (XEXP (operand, 0)) == REG
3134 && (ind_levels == 0
3135 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3136 win = 1;
3137 break;
3138
3139 /* Memory operand whose address is offsettable. */
3140 case 'o':
3141 if (force_reload)
3142 break;
3143 if ((GET_CODE (operand) == MEM
3144 /* If IND_LEVELS, find_reloads_address won't reload a
3145 pseudo that didn't get a hard reg, so we have to
3146 reject that case. */
3147 && ((ind_levels ? offsettable_memref_p (operand)
3148 : offsettable_nonstrict_memref_p (operand))
3149 /* A reloaded address is offsettable because it is now
3150 just a simple register indirect. */
3151 || address_reloaded[i]))
3152 || (GET_CODE (operand) == REG
3153 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3154 && reg_renumber[REGNO (operand)] < 0
3155 /* If reg_equiv_address is nonzero, we will be
3156 loading it into a register; hence it will be
3157 offsettable, but we cannot say that reg_equiv_mem
3158 is offsettable without checking. */
3159 && ((reg_equiv_mem[REGNO (operand)] != 0
3160 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3161 || (reg_equiv_address[REGNO (operand)] != 0))))
3162 win = 1;
3163 /* force_const_mem does not accept HIGH. */
3164 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3165 || GET_CODE (operand) == MEM)
3166 badop = 0;
3167 constmemok = 1;
3168 offmemok = 1;
3169 break;
3170
3171 case '&':
3172 /* Output operand that is stored before the need for the
3173 input operands (and their index registers) is over. */
3174 earlyclobber = 1, this_earlyclobber = 1;
3175 break;
3176
3177 case 'E':
3178 case 'F':
3179 if (GET_CODE (operand) == CONST_DOUBLE
3180 || (GET_CODE (operand) == CONST_VECTOR
3181 && (GET_MODE_CLASS (GET_MODE (operand))
3182 == MODE_VECTOR_FLOAT)))
3183 win = 1;
3184 break;
3185
3186 case 'G':
3187 case 'H':
3188 if (GET_CODE (operand) == CONST_DOUBLE
3189 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3190 win = 1;
3191 break;
3192
3193 case 's':
3194 if (GET_CODE (operand) == CONST_INT
3195 || (GET_CODE (operand) == CONST_DOUBLE
3196 && GET_MODE (operand) == VOIDmode))
3197 break;
3198 case 'i':
3199 if (CONSTANT_P (operand)
3200 #ifdef LEGITIMATE_PIC_OPERAND_P
3201 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3202 #endif
3203 )
3204 win = 1;
3205 break;
3206
3207 case 'n':
3208 if (GET_CODE (operand) == CONST_INT
3209 || (GET_CODE (operand) == CONST_DOUBLE
3210 && GET_MODE (operand) == VOIDmode))
3211 win = 1;
3212 break;
3213
3214 case 'I':
3215 case 'J':
3216 case 'K':
3217 case 'L':
3218 case 'M':
3219 case 'N':
3220 case 'O':
3221 case 'P':
3222 if (GET_CODE (operand) == CONST_INT
3223 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3224 win = 1;
3225 break;
3226
3227 case 'X':
3228 win = 1;
3229 break;
3230
3231 case 'g':
3232 if (! force_reload
3233 /* A PLUS is never a valid operand, but reload can make
3234 it from a register when eliminating registers. */
3235 && GET_CODE (operand) != PLUS
3236 /* A SCRATCH is not a valid operand. */
3237 && GET_CODE (operand) != SCRATCH
3238 #ifdef LEGITIMATE_PIC_OPERAND_P
3239 && (! CONSTANT_P (operand)
3240 || ! flag_pic
3241 || LEGITIMATE_PIC_OPERAND_P (operand))
3242 #endif
3243 && (GENERAL_REGS == ALL_REGS
3244 || GET_CODE (operand) != REG
3245 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3246 && reg_renumber[REGNO (operand)] < 0)))
3247 win = 1;
3248 /* Drop through into 'r' case. */
3249
3250 case 'r':
3251 this_alternative[i]
3252 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3253 goto reg;
3254
3255 default:
3256 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3257 {
3258 #ifdef EXTRA_CONSTRAINT_STR
3259 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3260 {
3261 if (force_reload)
3262 break;
3263 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3264 win = 1;
3265 /* If the address was already reloaded,
3266 we win as well. */
3267 if (GET_CODE (operand) == MEM && address_reloaded[i])
3268 win = 1;
3269 /* Likewise if the address will be reloaded because
3270 reg_equiv_address is nonzero. For reg_equiv_mem
3271 we have to check. */
3272 if (GET_CODE (operand) == REG
3273 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3274 && reg_renumber[REGNO (operand)] < 0
3275 && ((reg_equiv_mem[REGNO (operand)] != 0
3276 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3277 || (reg_equiv_address[REGNO (operand)] != 0)))
3278 win = 1;
3279
3280 /* If we didn't already win, we can reload
3281 constants via force_const_mem, and other
3282 MEMs by reloading the address like for 'o'. */
3283 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3284 || GET_CODE (operand) == MEM)
3285 badop = 0;
3286 constmemok = 1;
3287 offmemok = 1;
3288 break;
3289 }
3290 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3291 {
3292 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3293 win = 1;
3294
3295 /* If we didn't already win, we can reload
3296 the address into a base register. */
3297 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3298 badop = 0;
3299 break;
3300 }
3301
3302 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3303 win = 1;
3304 #endif
3305 break;
3306 }
3307
3308 this_alternative[i]
3309 = (int) (reg_class_subunion
3310 [this_alternative[i]]
3311 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3312 reg:
3313 if (GET_MODE (operand) == BLKmode)
3314 break;
3315 winreg = 1;
3316 if (GET_CODE (operand) == REG
3317 && reg_fits_class_p (operand, this_alternative[i],
3318 offset, GET_MODE (recog_data.operand[i])))
3319 win = 1;
3320 break;
3321 }
3322 while ((p += len), c);
3323
3324 constraints[i] = p;
3325
3326 /* If this operand could be handled with a reg,
3327 and some reg is allowed, then this operand can be handled. */
3328 if (winreg && this_alternative[i] != (int) NO_REGS)
3329 badop = 0;
3330
3331 /* Record which operands fit this alternative. */
3332 this_alternative_earlyclobber[i] = earlyclobber;
3333 if (win && ! force_reload)
3334 this_alternative_win[i] = 1;
3335 else if (did_match && ! force_reload)
3336 this_alternative_match_win[i] = 1;
3337 else
3338 {
3339 int const_to_mem = 0;
3340
3341 this_alternative_offmemok[i] = offmemok;
3342 losers++;
3343 if (badop)
3344 bad = 1;
3345 /* Alternative loses if it has no regs for a reg operand. */
3346 if (GET_CODE (operand) == REG
3347 && this_alternative[i] == (int) NO_REGS
3348 && this_alternative_matches[i] < 0)
3349 bad = 1;
3350
3351 /* If this is a constant that is reloaded into the desired
3352 class by copying it to memory first, count that as another
3353 reload. This is consistent with other code and is
3354 required to avoid choosing another alternative when
3355 the constant is moved into memory by this function on
3356 an early reload pass. Note that the test here is
3357 precisely the same as in the code below that calls
3358 force_const_mem. */
3359 if (CONSTANT_P (operand)
3360 /* force_const_mem does not accept HIGH. */
3361 && GET_CODE (operand) != HIGH
3362 && ((PREFERRED_RELOAD_CLASS (operand,
3363 (enum reg_class) this_alternative[i])
3364 == NO_REGS)
3365 || no_input_reloads)
3366 && operand_mode[i] != VOIDmode)
3367 {
3368 const_to_mem = 1;
3369 if (this_alternative[i] != (int) NO_REGS)
3370 losers++;
3371 }
3372
3373 /* If we can't reload this value at all, reject this
3374 alternative. Note that we could also lose due to
3375 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3376 here. */
3377
3378 if (! CONSTANT_P (operand)
3379 && (enum reg_class) this_alternative[i] != NO_REGS
3380 && (PREFERRED_RELOAD_CLASS (operand,
3381 (enum reg_class) this_alternative[i])
3382 == NO_REGS))
3383 bad = 1;
3384
3385 /* Alternative loses if it requires a type of reload not
3386 permitted for this insn. We can always reload SCRATCH
3387 and objects with a REG_UNUSED note. */
3388 else if (GET_CODE (operand) != SCRATCH
3389 && modified[i] != RELOAD_READ && no_output_reloads
3390 && ! find_reg_note (insn, REG_UNUSED, operand))
3391 bad = 1;
3392 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3393 && ! const_to_mem)
3394 bad = 1;
3395
3396 /* We prefer to reload pseudos over reloading other things,
3397 since such reloads may be able to be eliminated later.
3398 If we are reloading a SCRATCH, we won't be generating any
3399 insns, just using a register, so it is also preferred.
3400 So bump REJECT in other cases. Don't do this in the
3401 case where we are forcing a constant into memory and
3402 it will then win since we don't want to have a different
3403 alternative match then. */
3404 if (! (GET_CODE (operand) == REG
3405 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3406 && GET_CODE (operand) != SCRATCH
3407 && ! (const_to_mem && constmemok))
3408 reject += 2;
3409
3410 /* Input reloads can be inherited more often than output
3411 reloads can be removed, so penalize output reloads. */
3412 if (operand_type[i] != RELOAD_FOR_INPUT
3413 && GET_CODE (operand) != SCRATCH)
3414 reject++;
3415 }
3416
3417 /* If this operand is a pseudo register that didn't get a hard
3418 reg and this alternative accepts some register, see if the
3419 class that we want is a subset of the preferred class for this
3420 register. If not, but it intersects that class, use the
3421 preferred class instead. If it does not intersect the preferred
3422 class, show that usage of this alternative should be discouraged;
3423 it will be discouraged more still if the register is `preferred
3424 or nothing'. We do this because it increases the chance of
3425 reusing our spill register in a later insn and avoiding a pair
3426 of memory stores and loads.
3427
3428 Don't bother with this if this alternative will accept this
3429 operand.
3430
3431 Don't do this for a multiword operand, since it is only a
3432 small win and has the risk of requiring more spill registers,
3433 which could cause a large loss.
3434
3435 Don't do this if the preferred class has only one register
3436 because we might otherwise exhaust the class. */
3437
3438 if (! win && ! did_match
3439 && this_alternative[i] != (int) NO_REGS
3440 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3441 && reg_class_size[(int) preferred_class[i]] > 1)
3442 {
3443 if (! reg_class_subset_p (this_alternative[i],
3444 preferred_class[i]))
3445 {
3446 /* Since we don't have a way of forming the intersection,
3447 we just do something special if the preferred class
3448 is a subset of the class we have; that's the most
3449 common case anyway. */
3450 if (reg_class_subset_p (preferred_class[i],
3451 this_alternative[i]))
3452 this_alternative[i] = (int) preferred_class[i];
3453 else
3454 reject += (2 + 2 * pref_or_nothing[i]);
3455 }
3456 }
3457 }
3458
3459 /* Now see if any output operands that are marked "earlyclobber"
3460 in this alternative conflict with any input operands
3461 or any memory addresses. */
3462
3463 for (i = 0; i < noperands; i++)
3464 if (this_alternative_earlyclobber[i]
3465 && (this_alternative_win[i] || this_alternative_match_win[i]))
3466 {
3467 struct decomposition early_data;
3468
3469 early_data = decompose (recog_data.operand[i]);
3470
3471 if (modified[i] == RELOAD_READ)
3472 abort ();
3473
3474 if (this_alternative[i] == NO_REGS)
3475 {
3476 this_alternative_earlyclobber[i] = 0;
3477 if (this_insn_is_asm)
3478 error_for_asm (this_insn,
3479 "`&' constraint used with no register class");
3480 else
3481 abort ();
3482 }
3483
3484 for (j = 0; j < noperands; j++)
3485 /* Is this an input operand or a memory ref? */
3486 if ((GET_CODE (recog_data.operand[j]) == MEM
3487 || modified[j] != RELOAD_WRITE)
3488 && j != i
3489 /* Ignore things like match_operator operands. */
3490 && *recog_data.constraints[j] != 0
3491 /* Don't count an input operand that is constrained to match
3492 the early clobber operand. */
3493 && ! (this_alternative_matches[j] == i
3494 && rtx_equal_p (recog_data.operand[i],
3495 recog_data.operand[j]))
3496 /* Is it altered by storing the earlyclobber operand? */
3497 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3498 early_data))
3499 {
3500 /* If the output is in a single-reg class,
3501 it's costly to reload it, so reload the input instead. */
3502 if (reg_class_size[this_alternative[i]] == 1
3503 && (GET_CODE (recog_data.operand[j]) == REG
3504 || GET_CODE (recog_data.operand[j]) == SUBREG))
3505 {
3506 losers++;
3507 this_alternative_win[j] = 0;
3508 this_alternative_match_win[j] = 0;
3509 }
3510 else
3511 break;
3512 }
3513 /* If an earlyclobber operand conflicts with something,
3514 it must be reloaded, so request this and count the cost. */
3515 if (j != noperands)
3516 {
3517 losers++;
3518 this_alternative_win[i] = 0;
3519 this_alternative_match_win[j] = 0;
3520 for (j = 0; j < noperands; j++)
3521 if (this_alternative_matches[j] == i
3522 && this_alternative_match_win[j])
3523 {
3524 this_alternative_win[j] = 0;
3525 this_alternative_match_win[j] = 0;
3526 losers++;
3527 }
3528 }
3529 }
3530
3531 /* If one alternative accepts all the operands, no reload required,
3532 choose that alternative; don't consider the remaining ones. */
3533 if (losers == 0)
3534 {
3535 /* Unswap these so that they are never swapped at `finish'. */
3536 if (commutative >= 0)
3537 {
3538 recog_data.operand[commutative] = substed_operand[commutative];
3539 recog_data.operand[commutative + 1]
3540 = substed_operand[commutative + 1];
3541 }
3542 for (i = 0; i < noperands; i++)
3543 {
3544 goal_alternative_win[i] = this_alternative_win[i];
3545 goal_alternative_match_win[i] = this_alternative_match_win[i];
3546 goal_alternative[i] = this_alternative[i];
3547 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3548 goal_alternative_matches[i] = this_alternative_matches[i];
3549 goal_alternative_earlyclobber[i]
3550 = this_alternative_earlyclobber[i];
3551 }
3552 goal_alternative_number = this_alternative_number;
3553 goal_alternative_swapped = swapped;
3554 goal_earlyclobber = this_earlyclobber;
3555 goto finish;
3556 }
3557
3558 /* REJECT, set by the ! and ? constraint characters and when a register
3559 would be reloaded into a non-preferred class, discourages the use of
3560 this alternative for a reload goal. REJECT is incremented by six
3561 for each ? and two for each non-preferred class. */
3562 losers = losers * 6 + reject;
3563
3564 /* If this alternative can be made to work by reloading,
3565 and it needs less reloading than the others checked so far,
3566 record it as the chosen goal for reloading. */
3567 if (! bad && best > losers)
3568 {
3569 for (i = 0; i < noperands; i++)
3570 {
3571 goal_alternative[i] = this_alternative[i];
3572 goal_alternative_win[i] = this_alternative_win[i];
3573 goal_alternative_match_win[i] = this_alternative_match_win[i];
3574 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3575 goal_alternative_matches[i] = this_alternative_matches[i];
3576 goal_alternative_earlyclobber[i]
3577 = this_alternative_earlyclobber[i];
3578 }
3579 goal_alternative_swapped = swapped;
3580 best = losers;
3581 goal_alternative_number = this_alternative_number;
3582 goal_earlyclobber = this_earlyclobber;
3583 }
3584 }
3585
3586 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3587 then we need to try each alternative twice,
3588 the second time matching those two operands
3589 as if we had exchanged them.
3590 To do this, really exchange them in operands.
3591
3592 If we have just tried the alternatives the second time,
3593 return operands to normal and drop through. */
3594
3595 if (commutative >= 0)
3596 {
3597 swapped = !swapped;
3598 if (swapped)
3599 {
3600 enum reg_class tclass;
3601 int t;
3602
3603 recog_data.operand[commutative] = substed_operand[commutative + 1];
3604 recog_data.operand[commutative + 1] = substed_operand[commutative];
3605 /* Swap the duplicates too. */
3606 for (i = 0; i < recog_data.n_dups; i++)
3607 if (recog_data.dup_num[i] == commutative
3608 || recog_data.dup_num[i] == commutative + 1)
3609 *recog_data.dup_loc[i]
3610 = recog_data.operand[(int) recog_data.dup_num[i]];
3611
3612 tclass = preferred_class[commutative];
3613 preferred_class[commutative] = preferred_class[commutative + 1];
3614 preferred_class[commutative + 1] = tclass;
3615
3616 t = pref_or_nothing[commutative];
3617 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3618 pref_or_nothing[commutative + 1] = t;
3619
3620 memcpy (constraints, recog_data.constraints,
3621 noperands * sizeof (char *));
3622 goto try_swapped;
3623 }
3624 else
3625 {
3626 recog_data.operand[commutative] = substed_operand[commutative];
3627 recog_data.operand[commutative + 1]
3628 = substed_operand[commutative + 1];
3629 /* Unswap the duplicates too. */
3630 for (i = 0; i < recog_data.n_dups; i++)
3631 if (recog_data.dup_num[i] == commutative
3632 || recog_data.dup_num[i] == commutative + 1)
3633 *recog_data.dup_loc[i]
3634 = recog_data.operand[(int) recog_data.dup_num[i]];
3635 }
3636 }
3637
3638 /* The operands don't meet the constraints.
3639 goal_alternative describes the alternative
3640 that we could reach by reloading the fewest operands.
3641 Reload so as to fit it. */
3642
3643 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3644 {
3645 /* No alternative works with reloads?? */
3646 if (insn_code_number >= 0)
3647 fatal_insn ("unable to generate reloads for:", insn);
3648 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3649 /* Avoid further trouble with this insn. */
3650 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3651 n_reloads = 0;
3652 return 0;
3653 }
3654
3655 /* Jump to `finish' from above if all operands are valid already.
3656 In that case, goal_alternative_win is all 1. */
3657 finish:
3658
3659 /* Right now, for any pair of operands I and J that are required to match,
3660 with I < J,
3661 goal_alternative_matches[J] is I.
3662 Set up goal_alternative_matched as the inverse function:
3663 goal_alternative_matched[I] = J. */
3664
3665 for (i = 0; i < noperands; i++)
3666 goal_alternative_matched[i] = -1;
3667
3668 for (i = 0; i < noperands; i++)
3669 if (! goal_alternative_win[i]
3670 && goal_alternative_matches[i] >= 0)
3671 goal_alternative_matched[goal_alternative_matches[i]] = i;
3672
3673 for (i = 0; i < noperands; i++)
3674 goal_alternative_win[i] |= goal_alternative_match_win[i];
3675
3676 /* If the best alternative is with operands 1 and 2 swapped,
3677 consider them swapped before reporting the reloads. Update the
3678 operand numbers of any reloads already pushed. */
3679
3680 if (goal_alternative_swapped)
3681 {
3682 rtx tem;
3683
3684 tem = substed_operand[commutative];
3685 substed_operand[commutative] = substed_operand[commutative + 1];
3686 substed_operand[commutative + 1] = tem;
3687 tem = recog_data.operand[commutative];
3688 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3689 recog_data.operand[commutative + 1] = tem;
3690 tem = *recog_data.operand_loc[commutative];
3691 *recog_data.operand_loc[commutative]
3692 = *recog_data.operand_loc[commutative + 1];
3693 *recog_data.operand_loc[commutative + 1] = tem;
3694
3695 for (i = 0; i < n_reloads; i++)
3696 {
3697 if (rld[i].opnum == commutative)
3698 rld[i].opnum = commutative + 1;
3699 else if (rld[i].opnum == commutative + 1)
3700 rld[i].opnum = commutative;
3701 }
3702 }
3703
3704 for (i = 0; i < noperands; i++)
3705 {
3706 operand_reloadnum[i] = -1;
3707
3708 /* If this is an earlyclobber operand, we need to widen the scope.
3709 The reload must remain valid from the start of the insn being
3710 reloaded until after the operand is stored into its destination.
3711 We approximate this with RELOAD_OTHER even though we know that we
3712 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3713
3714 One special case that is worth checking is when we have an
3715 output that is earlyclobber but isn't used past the insn (typically
3716 a SCRATCH). In this case, we only need have the reload live
3717 through the insn itself, but not for any of our input or output
3718 reloads.
3719 But we must not accidentally narrow the scope of an existing
3720 RELOAD_OTHER reload - leave these alone.
3721
3722 In any case, anything needed to address this operand can remain
3723 however they were previously categorized. */
3724
3725 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3726 operand_type[i]
3727 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3728 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3729 }
3730
3731 /* Any constants that aren't allowed and can't be reloaded
3732 into registers are here changed into memory references. */
3733 for (i = 0; i < noperands; i++)
3734 if (! goal_alternative_win[i]
3735 && CONSTANT_P (recog_data.operand[i])
3736 /* force_const_mem does not accept HIGH. */
3737 && GET_CODE (recog_data.operand[i]) != HIGH
3738 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3739 (enum reg_class) goal_alternative[i])
3740 == NO_REGS)
3741 || no_input_reloads)
3742 && operand_mode[i] != VOIDmode)
3743 {
3744 substed_operand[i] = recog_data.operand[i]
3745 = find_reloads_toplev (force_const_mem (operand_mode[i],
3746 recog_data.operand[i]),
3747 i, address_type[i], ind_levels, 0, insn,
3748 NULL);
3749 if (alternative_allows_memconst (recog_data.constraints[i],
3750 goal_alternative_number))
3751 goal_alternative_win[i] = 1;
3752 }
3753
3754 /* Record the values of the earlyclobber operands for the caller. */
3755 if (goal_earlyclobber)
3756 for (i = 0; i < noperands; i++)
3757 if (goal_alternative_earlyclobber[i])
3758 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3759
3760 /* Now record reloads for all the operands that need them. */
3761 for (i = 0; i < noperands; i++)
3762 if (! goal_alternative_win[i])
3763 {
3764 /* Operands that match previous ones have already been handled. */
3765 if (goal_alternative_matches[i] >= 0)
3766 ;
3767 /* Handle an operand with a nonoffsettable address
3768 appearing where an offsettable address will do
3769 by reloading the address into a base register.
3770
3771 ??? We can also do this when the operand is a register and
3772 reg_equiv_mem is not offsettable, but this is a bit tricky,
3773 so we don't bother with it. It may not be worth doing. */
3774 else if (goal_alternative_matched[i] == -1
3775 && goal_alternative_offmemok[i]
3776 && GET_CODE (recog_data.operand[i]) == MEM)
3777 {
3778 operand_reloadnum[i]
3779 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3780 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3781 MODE_BASE_REG_CLASS (VOIDmode),
3782 GET_MODE (XEXP (recog_data.operand[i], 0)),
3783 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3784 rld[operand_reloadnum[i]].inc
3785 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3786
3787 /* If this operand is an output, we will have made any
3788 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3789 now we are treating part of the operand as an input, so
3790 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3791
3792 if (modified[i] == RELOAD_WRITE)
3793 {
3794 for (j = 0; j < n_reloads; j++)
3795 {
3796 if (rld[j].opnum == i)
3797 {
3798 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3799 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3800 else if (rld[j].when_needed
3801 == RELOAD_FOR_OUTADDR_ADDRESS)
3802 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3803 }
3804 }
3805 }
3806 }
3807 else if (goal_alternative_matched[i] == -1)
3808 {
3809 operand_reloadnum[i]
3810 = push_reload ((modified[i] != RELOAD_WRITE
3811 ? recog_data.operand[i] : 0),
3812 (modified[i] != RELOAD_READ
3813 ? recog_data.operand[i] : 0),
3814 (modified[i] != RELOAD_WRITE
3815 ? recog_data.operand_loc[i] : 0),
3816 (modified[i] != RELOAD_READ
3817 ? recog_data.operand_loc[i] : 0),
3818 (enum reg_class) goal_alternative[i],
3819 (modified[i] == RELOAD_WRITE
3820 ? VOIDmode : operand_mode[i]),
3821 (modified[i] == RELOAD_READ
3822 ? VOIDmode : operand_mode[i]),
3823 (insn_code_number < 0 ? 0
3824 : insn_data[insn_code_number].operand[i].strict_low),
3825 0, i, operand_type[i]);
3826 }
3827 /* In a matching pair of operands, one must be input only
3828 and the other must be output only.
3829 Pass the input operand as IN and the other as OUT. */
3830 else if (modified[i] == RELOAD_READ
3831 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3832 {
3833 operand_reloadnum[i]
3834 = push_reload (recog_data.operand[i],
3835 recog_data.operand[goal_alternative_matched[i]],
3836 recog_data.operand_loc[i],
3837 recog_data.operand_loc[goal_alternative_matched[i]],
3838 (enum reg_class) goal_alternative[i],
3839 operand_mode[i],
3840 operand_mode[goal_alternative_matched[i]],
3841 0, 0, i, RELOAD_OTHER);
3842 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3843 }
3844 else if (modified[i] == RELOAD_WRITE
3845 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3846 {
3847 operand_reloadnum[goal_alternative_matched[i]]
3848 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3849 recog_data.operand[i],
3850 recog_data.operand_loc[goal_alternative_matched[i]],
3851 recog_data.operand_loc[i],
3852 (enum reg_class) goal_alternative[i],
3853 operand_mode[goal_alternative_matched[i]],
3854 operand_mode[i],
3855 0, 0, i, RELOAD_OTHER);
3856 operand_reloadnum[i] = output_reloadnum;
3857 }
3858 else if (insn_code_number >= 0)
3859 abort ();
3860 else
3861 {
3862 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3863 /* Avoid further trouble with this insn. */
3864 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3865 n_reloads = 0;
3866 return 0;
3867 }
3868 }
3869 else if (goal_alternative_matched[i] < 0
3870 && goal_alternative_matches[i] < 0
3871 && !address_operand_reloaded[i]
3872 && optimize)
3873 {
3874 /* For each non-matching operand that's a MEM or a pseudo-register
3875 that didn't get a hard register, make an optional reload.
3876 This may get done even if the insn needs no reloads otherwise. */
3877
3878 rtx operand = recog_data.operand[i];
3879
3880 while (GET_CODE (operand) == SUBREG)
3881 operand = SUBREG_REG (operand);
3882 if ((GET_CODE (operand) == MEM
3883 || (GET_CODE (operand) == REG
3884 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3885 /* If this is only for an output, the optional reload would not
3886 actually cause us to use a register now, just note that
3887 something is stored here. */
3888 && ((enum reg_class) goal_alternative[i] != NO_REGS
3889 || modified[i] == RELOAD_WRITE)
3890 && ! no_input_reloads
3891 /* An optional output reload might allow to delete INSN later.
3892 We mustn't make in-out reloads on insns that are not permitted
3893 output reloads.
3894 If this is an asm, we can't delete it; we must not even call
3895 push_reload for an optional output reload in this case,
3896 because we can't be sure that the constraint allows a register,
3897 and push_reload verifies the constraints for asms. */
3898 && (modified[i] == RELOAD_READ
3899 || (! no_output_reloads && ! this_insn_is_asm)))
3900 operand_reloadnum[i]
3901 = push_reload ((modified[i] != RELOAD_WRITE
3902 ? recog_data.operand[i] : 0),
3903 (modified[i] != RELOAD_READ
3904 ? recog_data.operand[i] : 0),
3905 (modified[i] != RELOAD_WRITE
3906 ? recog_data.operand_loc[i] : 0),
3907 (modified[i] != RELOAD_READ
3908 ? recog_data.operand_loc[i] : 0),
3909 (enum reg_class) goal_alternative[i],
3910 (modified[i] == RELOAD_WRITE
3911 ? VOIDmode : operand_mode[i]),
3912 (modified[i] == RELOAD_READ
3913 ? VOIDmode : operand_mode[i]),
3914 (insn_code_number < 0 ? 0
3915 : insn_data[insn_code_number].operand[i].strict_low),
3916 1, i, operand_type[i]);
3917 /* If a memory reference remains (either as a MEM or a pseudo that
3918 did not get a hard register), yet we can't make an optional
3919 reload, check if this is actually a pseudo register reference;
3920 we then need to emit a USE and/or a CLOBBER so that reload
3921 inheritance will do the right thing. */
3922 else if (replace
3923 && (GET_CODE (operand) == MEM
3924 || (GET_CODE (operand) == REG
3925 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3926 && reg_renumber [REGNO (operand)] < 0)))
3927 {
3928 operand = *recog_data.operand_loc[i];
3929
3930 while (GET_CODE (operand) == SUBREG)
3931 operand = SUBREG_REG (operand);
3932 if (GET_CODE (operand) == REG)
3933 {
3934 if (modified[i] != RELOAD_WRITE)
3935 /* We mark the USE with QImode so that we recognize
3936 it as one that can be safely deleted at the end
3937 of reload. */
3938 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3939 insn), QImode);
3940 if (modified[i] != RELOAD_READ)
3941 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3942 }
3943 }
3944 }
3945 else if (goal_alternative_matches[i] >= 0
3946 && goal_alternative_win[goal_alternative_matches[i]]
3947 && modified[i] == RELOAD_READ
3948 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3949 && ! no_input_reloads && ! no_output_reloads
3950 && optimize)
3951 {
3952 /* Similarly, make an optional reload for a pair of matching
3953 objects that are in MEM or a pseudo that didn't get a hard reg. */
3954
3955 rtx operand = recog_data.operand[i];
3956
3957 while (GET_CODE (operand) == SUBREG)
3958 operand = SUBREG_REG (operand);
3959 if ((GET_CODE (operand) == MEM
3960 || (GET_CODE (operand) == REG
3961 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3962 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3963 != NO_REGS))
3964 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3965 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3966 recog_data.operand[i],
3967 recog_data.operand_loc[goal_alternative_matches[i]],
3968 recog_data.operand_loc[i],
3969 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3970 operand_mode[goal_alternative_matches[i]],
3971 operand_mode[i],
3972 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3973 }
3974
3975 /* Perform whatever substitutions on the operands we are supposed
3976 to make due to commutativity or replacement of registers
3977 with equivalent constants or memory slots. */
3978
3979 for (i = 0; i < noperands; i++)
3980 {
3981 /* We only do this on the last pass through reload, because it is
3982 possible for some data (like reg_equiv_address) to be changed during
3983 later passes. Moreover, we loose the opportunity to get a useful
3984 reload_{in,out}_reg when we do these replacements. */
3985
3986 if (replace)
3987 {
3988 rtx substitution = substed_operand[i];
3989
3990 *recog_data.operand_loc[i] = substitution;
3991
3992 /* If we're replacing an operand with a LABEL_REF, we need
3993 to make sure that there's a REG_LABEL note attached to
3994 this instruction. */
3995 if (GET_CODE (insn) != JUMP_INSN
3996 && GET_CODE (substitution) == LABEL_REF
3997 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3998 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3999 XEXP (substitution, 0),
4000 REG_NOTES (insn));
4001 }
4002 else
4003 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4004 }
4005
4006 /* If this insn pattern contains any MATCH_DUP's, make sure that
4007 they will be substituted if the operands they match are substituted.
4008 Also do now any substitutions we already did on the operands.
4009
4010 Don't do this if we aren't making replacements because we might be
4011 propagating things allocated by frame pointer elimination into places
4012 it doesn't expect. */
4013
4014 if (insn_code_number >= 0 && replace)
4015 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4016 {
4017 int opno = recog_data.dup_num[i];
4018 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4019 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4020 }
4021
4022 #if 0
4023 /* This loses because reloading of prior insns can invalidate the equivalence
4024 (or at least find_equiv_reg isn't smart enough to find it any more),
4025 causing this insn to need more reload regs than it needed before.
4026 It may be too late to make the reload regs available.
4027 Now this optimization is done safely in choose_reload_regs. */
4028
4029 /* For each reload of a reg into some other class of reg,
4030 search for an existing equivalent reg (same value now) in the right class.
4031 We can use it as long as we don't need to change its contents. */
4032 for (i = 0; i < n_reloads; i++)
4033 if (rld[i].reg_rtx == 0
4034 && rld[i].in != 0
4035 && GET_CODE (rld[i].in) == REG
4036 && rld[i].out == 0)
4037 {
4038 rld[i].reg_rtx
4039 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4040 static_reload_reg_p, 0, rld[i].inmode);
4041 /* Prevent generation of insn to load the value
4042 because the one we found already has the value. */
4043 if (rld[i].reg_rtx)
4044 rld[i].in = rld[i].reg_rtx;
4045 }
4046 #endif
4047
4048 /* Perhaps an output reload can be combined with another
4049 to reduce needs by one. */
4050 if (!goal_earlyclobber)
4051 combine_reloads ();
4052
4053 /* If we have a pair of reloads for parts of an address, they are reloading
4054 the same object, the operands themselves were not reloaded, and they
4055 are for two operands that are supposed to match, merge the reloads and
4056 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4057
4058 for (i = 0; i < n_reloads; i++)
4059 {
4060 int k;
4061
4062 for (j = i + 1; j < n_reloads; j++)
4063 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4064 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4065 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4066 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4067 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4068 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4069 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4070 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4071 && rtx_equal_p (rld[i].in, rld[j].in)
4072 && (operand_reloadnum[rld[i].opnum] < 0
4073 || rld[operand_reloadnum[rld[i].opnum]].optional)
4074 && (operand_reloadnum[rld[j].opnum] < 0
4075 || rld[operand_reloadnum[rld[j].opnum]].optional)
4076 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4077 || (goal_alternative_matches[rld[j].opnum]
4078 == rld[i].opnum)))
4079 {
4080 for (k = 0; k < n_replacements; k++)
4081 if (replacements[k].what == j)
4082 replacements[k].what = i;
4083
4084 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4085 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4086 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4087 else
4088 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4089 rld[j].in = 0;
4090 }
4091 }
4092
4093 /* Scan all the reloads and update their type.
4094 If a reload is for the address of an operand and we didn't reload
4095 that operand, change the type. Similarly, change the operand number
4096 of a reload when two operands match. If a reload is optional, treat it
4097 as though the operand isn't reloaded.
4098
4099 ??? This latter case is somewhat odd because if we do the optional
4100 reload, it means the object is hanging around. Thus we need only
4101 do the address reload if the optional reload was NOT done.
4102
4103 Change secondary reloads to be the address type of their operand, not
4104 the normal type.
4105
4106 If an operand's reload is now RELOAD_OTHER, change any
4107 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4108 RELOAD_FOR_OTHER_ADDRESS. */
4109
4110 for (i = 0; i < n_reloads; i++)
4111 {
4112 if (rld[i].secondary_p
4113 && rld[i].when_needed == operand_type[rld[i].opnum])
4114 rld[i].when_needed = address_type[rld[i].opnum];
4115
4116 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4117 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4118 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4119 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4120 && (operand_reloadnum[rld[i].opnum] < 0
4121 || rld[operand_reloadnum[rld[i].opnum]].optional))
4122 {
4123 /* If we have a secondary reload to go along with this reload,
4124 change its type to RELOAD_FOR_OPADDR_ADDR. */
4125
4126 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4127 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4128 && rld[i].secondary_in_reload != -1)
4129 {
4130 int secondary_in_reload = rld[i].secondary_in_reload;
4131
4132 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4133
4134 /* If there's a tertiary reload we have to change it also. */
4135 if (secondary_in_reload > 0
4136 && rld[secondary_in_reload].secondary_in_reload != -1)
4137 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4138 = RELOAD_FOR_OPADDR_ADDR;
4139 }
4140
4141 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4142 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4143 && rld[i].secondary_out_reload != -1)
4144 {
4145 int secondary_out_reload = rld[i].secondary_out_reload;
4146
4147 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4148
4149 /* If there's a tertiary reload we have to change it also. */
4150 if (secondary_out_reload
4151 && rld[secondary_out_reload].secondary_out_reload != -1)
4152 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4153 = RELOAD_FOR_OPADDR_ADDR;
4154 }
4155
4156 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4157 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4158 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4159 else
4160 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4161 }
4162
4163 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4164 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4165 && operand_reloadnum[rld[i].opnum] >= 0
4166 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4167 == RELOAD_OTHER))
4168 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4169
4170 if (goal_alternative_matches[rld[i].opnum] >= 0)
4171 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4172 }
4173
4174 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4175 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4176 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4177
4178 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4179 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4180 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4181 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4182 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4183 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4184 This is complicated by the fact that a single operand can have more
4185 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4186 choose_reload_regs without affecting code quality, and cases that
4187 actually fail are extremely rare, so it turns out to be better to fix
4188 the problem here by not generating cases that choose_reload_regs will
4189 fail for. */
4190 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4191 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4192 a single operand.
4193 We can reduce the register pressure by exploiting that a
4194 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4195 does not conflict with any of them, if it is only used for the first of
4196 the RELOAD_FOR_X_ADDRESS reloads. */
4197 {
4198 int first_op_addr_num = -2;
4199 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4200 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4201 int need_change = 0;
4202 /* We use last_op_addr_reload and the contents of the above arrays
4203 first as flags - -2 means no instance encountered, -1 means exactly
4204 one instance encountered.
4205 If more than one instance has been encountered, we store the reload
4206 number of the first reload of the kind in question; reload numbers
4207 are known to be non-negative. */
4208 for (i = 0; i < noperands; i++)
4209 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4210 for (i = n_reloads - 1; i >= 0; i--)
4211 {
4212 switch (rld[i].when_needed)
4213 {
4214 case RELOAD_FOR_OPERAND_ADDRESS:
4215 if (++first_op_addr_num >= 0)
4216 {
4217 first_op_addr_num = i;
4218 need_change = 1;
4219 }
4220 break;
4221 case RELOAD_FOR_INPUT_ADDRESS:
4222 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4223 {
4224 first_inpaddr_num[rld[i].opnum] = i;
4225 need_change = 1;
4226 }
4227 break;
4228 case RELOAD_FOR_OUTPUT_ADDRESS:
4229 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4230 {
4231 first_outpaddr_num[rld[i].opnum] = i;
4232 need_change = 1;
4233 }
4234 break;
4235 default:
4236 break;
4237 }
4238 }
4239
4240 if (need_change)
4241 {
4242 for (i = 0; i < n_reloads; i++)
4243 {
4244 int first_num;
4245 enum reload_type type;
4246
4247 switch (rld[i].when_needed)
4248 {
4249 case RELOAD_FOR_OPADDR_ADDR:
4250 first_num = first_op_addr_num;
4251 type = RELOAD_FOR_OPERAND_ADDRESS;
4252 break;
4253 case RELOAD_FOR_INPADDR_ADDRESS:
4254 first_num = first_inpaddr_num[rld[i].opnum];
4255 type = RELOAD_FOR_INPUT_ADDRESS;
4256 break;
4257 case RELOAD_FOR_OUTADDR_ADDRESS:
4258 first_num = first_outpaddr_num[rld[i].opnum];
4259 type = RELOAD_FOR_OUTPUT_ADDRESS;
4260 break;
4261 default:
4262 continue;
4263 }
4264 if (first_num < 0)
4265 continue;
4266 else if (i > first_num)
4267 rld[i].when_needed = type;
4268 else
4269 {
4270 /* Check if the only TYPE reload that uses reload I is
4271 reload FIRST_NUM. */
4272 for (j = n_reloads - 1; j > first_num; j--)
4273 {
4274 if (rld[j].when_needed == type
4275 && (rld[i].secondary_p
4276 ? rld[j].secondary_in_reload == i
4277 : reg_mentioned_p (rld[i].in, rld[j].in)))
4278 {
4279 rld[i].when_needed = type;
4280 break;
4281 }
4282 }
4283 }
4284 }
4285 }
4286 }
4287
4288 /* See if we have any reloads that are now allowed to be merged
4289 because we've changed when the reload is needed to
4290 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4291 check for the most common cases. */
4292
4293 for (i = 0; i < n_reloads; i++)
4294 if (rld[i].in != 0 && rld[i].out == 0
4295 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4296 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4297 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4298 for (j = 0; j < n_reloads; j++)
4299 if (i != j && rld[j].in != 0 && rld[j].out == 0
4300 && rld[j].when_needed == rld[i].when_needed
4301 && MATCHES (rld[i].in, rld[j].in)
4302 && rld[i].class == rld[j].class
4303 && !rld[i].nocombine && !rld[j].nocombine
4304 && rld[i].reg_rtx == rld[j].reg_rtx)
4305 {
4306 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4307 transfer_replacements (i, j);
4308 rld[j].in = 0;
4309 }
4310
4311 #ifdef HAVE_cc0
4312 /* If we made any reloads for addresses, see if they violate a
4313 "no input reloads" requirement for this insn. But loads that we
4314 do after the insn (such as for output addresses) are fine. */
4315 if (no_input_reloads)
4316 for (i = 0; i < n_reloads; i++)
4317 if (rld[i].in != 0
4318 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4319 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4320 abort ();
4321 #endif
4322
4323 /* Compute reload_mode and reload_nregs. */
4324 for (i = 0; i < n_reloads; i++)
4325 {
4326 rld[i].mode
4327 = (rld[i].inmode == VOIDmode
4328 || (GET_MODE_SIZE (rld[i].outmode)
4329 > GET_MODE_SIZE (rld[i].inmode)))
4330 ? rld[i].outmode : rld[i].inmode;
4331
4332 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4333 }
4334
4335 /* Special case a simple move with an input reload and a
4336 destination of a hard reg, if the hard reg is ok, use it. */
4337 for (i = 0; i < n_reloads; i++)
4338 if (rld[i].when_needed == RELOAD_FOR_INPUT
4339 && GET_CODE (PATTERN (insn)) == SET
4340 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4341 && SET_SRC (PATTERN (insn)) == rld[i].in)
4342 {
4343 rtx dest = SET_DEST (PATTERN (insn));
4344 unsigned int regno = REGNO (dest);
4345
4346 if (regno < FIRST_PSEUDO_REGISTER
4347 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4348 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4349 {
4350 int nr = HARD_REGNO_NREGS (regno, rld[i].mode);
4351 int ok = 1, nri;
4352
4353 for (nri = 1; nri < nr; nri ++)
4354 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4355 ok = 0;
4356
4357 if (ok)
4358 rld[i].reg_rtx = dest;
4359 }
4360 }
4361
4362 return retval;
4363 }
4364
4365 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4366 accepts a memory operand with constant address. */
4367
4368 static int
4369 alternative_allows_memconst (const char *constraint, int altnum)
4370 {
4371 int c;
4372 /* Skip alternatives before the one requested. */
4373 while (altnum > 0)
4374 {
4375 while (*constraint++ != ',');
4376 altnum--;
4377 }
4378 /* Scan the requested alternative for 'm' or 'o'.
4379 If one of them is present, this alternative accepts memory constants. */
4380 for (; (c = *constraint) && c != ',' && c != '#';
4381 constraint += CONSTRAINT_LEN (c, constraint))
4382 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4383 return 1;
4384 return 0;
4385 }
4386 \f
4387 /* Scan X for memory references and scan the addresses for reloading.
4388 Also checks for references to "constant" regs that we want to eliminate
4389 and replaces them with the values they stand for.
4390 We may alter X destructively if it contains a reference to such.
4391 If X is just a constant reg, we return the equivalent value
4392 instead of X.
4393
4394 IND_LEVELS says how many levels of indirect addressing this machine
4395 supports.
4396
4397 OPNUM and TYPE identify the purpose of the reload.
4398
4399 IS_SET_DEST is true if X is the destination of a SET, which is not
4400 appropriate to be replaced by a constant.
4401
4402 INSN, if nonzero, is the insn in which we do the reload. It is used
4403 to determine if we may generate output reloads, and where to put USEs
4404 for pseudos that we have to replace with stack slots.
4405
4406 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4407 result of find_reloads_address. */
4408
4409 static rtx
4410 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4411 int ind_levels, int is_set_dest, rtx insn,
4412 int *address_reloaded)
4413 {
4414 RTX_CODE code = GET_CODE (x);
4415
4416 const char *fmt = GET_RTX_FORMAT (code);
4417 int i;
4418 int copied;
4419
4420 if (code == REG)
4421 {
4422 /* This code is duplicated for speed in find_reloads. */
4423 int regno = REGNO (x);
4424 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4425 x = reg_equiv_constant[regno];
4426 #if 0
4427 /* This creates (subreg (mem...)) which would cause an unnecessary
4428 reload of the mem. */
4429 else if (reg_equiv_mem[regno] != 0)
4430 x = reg_equiv_mem[regno];
4431 #endif
4432 else if (reg_equiv_memory_loc[regno]
4433 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4434 {
4435 rtx mem = make_memloc (x, regno);
4436 if (reg_equiv_address[regno]
4437 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4438 {
4439 /* If this is not a toplevel operand, find_reloads doesn't see
4440 this substitution. We have to emit a USE of the pseudo so
4441 that delete_output_reload can see it. */
4442 if (replace_reloads && recog_data.operand[opnum] != x)
4443 /* We mark the USE with QImode so that we recognize it
4444 as one that can be safely deleted at the end of
4445 reload. */
4446 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4447 QImode);
4448 x = mem;
4449 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4450 opnum, type, ind_levels, insn);
4451 if (address_reloaded)
4452 *address_reloaded = i;
4453 }
4454 }
4455 return x;
4456 }
4457 if (code == MEM)
4458 {
4459 rtx tem = x;
4460
4461 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4462 opnum, type, ind_levels, insn);
4463 if (address_reloaded)
4464 *address_reloaded = i;
4465
4466 return tem;
4467 }
4468
4469 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4470 {
4471 /* Check for SUBREG containing a REG that's equivalent to a constant.
4472 If the constant has a known value, truncate it right now.
4473 Similarly if we are extracting a single-word of a multi-word
4474 constant. If the constant is symbolic, allow it to be substituted
4475 normally. push_reload will strip the subreg later. If the
4476 constant is VOIDmode, abort because we will lose the mode of
4477 the register (this should never happen because one of the cases
4478 above should handle it). */
4479
4480 int regno = REGNO (SUBREG_REG (x));
4481 rtx tem;
4482
4483 if (subreg_lowpart_p (x)
4484 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4485 && reg_equiv_constant[regno] != 0
4486 && (tem = gen_lowpart_common (GET_MODE (x),
4487 reg_equiv_constant[regno])) != 0)
4488 return tem;
4489
4490 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4491 && reg_equiv_constant[regno] != 0)
4492 {
4493 tem =
4494 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4495 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4496 if (!tem)
4497 abort ();
4498 return tem;
4499 }
4500
4501 /* If the subreg contains a reg that will be converted to a mem,
4502 convert the subreg to a narrower memref now.
4503 Otherwise, we would get (subreg (mem ...) ...),
4504 which would force reload of the mem.
4505
4506 We also need to do this if there is an equivalent MEM that is
4507 not offsettable. In that case, alter_subreg would produce an
4508 invalid address on big-endian machines.
4509
4510 For machines that extend byte loads, we must not reload using
4511 a wider mode if we have a paradoxical SUBREG. find_reloads will
4512 force a reload in that case. So we should not do anything here. */
4513
4514 else if (regno >= FIRST_PSEUDO_REGISTER
4515 #ifdef LOAD_EXTEND_OP
4516 && (GET_MODE_SIZE (GET_MODE (x))
4517 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4518 #endif
4519 && (reg_equiv_address[regno] != 0
4520 || (reg_equiv_mem[regno] != 0
4521 && (! strict_memory_address_p (GET_MODE (x),
4522 XEXP (reg_equiv_mem[regno], 0))
4523 || ! offsettable_memref_p (reg_equiv_mem[regno])
4524 || num_not_at_initial_offset))))
4525 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4526 insn);
4527 }
4528
4529 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4530 {
4531 if (fmt[i] == 'e')
4532 {
4533 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4534 ind_levels, is_set_dest, insn,
4535 address_reloaded);
4536 /* If we have replaced a reg with it's equivalent memory loc -
4537 that can still be handled here e.g. if it's in a paradoxical
4538 subreg - we must make the change in a copy, rather than using
4539 a destructive change. This way, find_reloads can still elect
4540 not to do the change. */
4541 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4542 {
4543 x = shallow_copy_rtx (x);
4544 copied = 1;
4545 }
4546 XEXP (x, i) = new_part;
4547 }
4548 }
4549 return x;
4550 }
4551
4552 /* Return a mem ref for the memory equivalent of reg REGNO.
4553 This mem ref is not shared with anything. */
4554
4555 static rtx
4556 make_memloc (rtx ad, int regno)
4557 {
4558 /* We must rerun eliminate_regs, in case the elimination
4559 offsets have changed. */
4560 rtx tem
4561 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4562
4563 /* If TEM might contain a pseudo, we must copy it to avoid
4564 modifying it when we do the substitution for the reload. */
4565 if (rtx_varies_p (tem, 0))
4566 tem = copy_rtx (tem);
4567
4568 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4569 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4570
4571 /* Copy the result if it's still the same as the equivalence, to avoid
4572 modifying it when we do the substitution for the reload. */
4573 if (tem == reg_equiv_memory_loc[regno])
4574 tem = copy_rtx (tem);
4575 return tem;
4576 }
4577
4578 /* Returns true if AD could be turned into a valid memory reference
4579 to mode MODE by reloading the part pointed to by PART into a
4580 register. */
4581
4582 static int
4583 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4584 {
4585 int retv;
4586 rtx tem = *part;
4587 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4588
4589 *part = reg;
4590 retv = memory_address_p (mode, ad);
4591 *part = tem;
4592
4593 return retv;
4594 }
4595
4596 /* Record all reloads needed for handling memory address AD
4597 which appears in *LOC in a memory reference to mode MODE
4598 which itself is found in location *MEMREFLOC.
4599 Note that we take shortcuts assuming that no multi-reg machine mode
4600 occurs as part of an address.
4601
4602 OPNUM and TYPE specify the purpose of this reload.
4603
4604 IND_LEVELS says how many levels of indirect addressing this machine
4605 supports.
4606
4607 INSN, if nonzero, is the insn in which we do the reload. It is used
4608 to determine if we may generate output reloads, and where to put USEs
4609 for pseudos that we have to replace with stack slots.
4610
4611 Value is nonzero if this address is reloaded or replaced as a whole.
4612 This is interesting to the caller if the address is an autoincrement.
4613
4614 Note that there is no verification that the address will be valid after
4615 this routine does its work. Instead, we rely on the fact that the address
4616 was valid when reload started. So we need only undo things that reload
4617 could have broken. These are wrong register types, pseudos not allocated
4618 to a hard register, and frame pointer elimination. */
4619
4620 static int
4621 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4622 rtx *loc, int opnum, enum reload_type type,
4623 int ind_levels, rtx insn)
4624 {
4625 int regno;
4626 int removed_and = 0;
4627 rtx tem;
4628
4629 /* If the address is a register, see if it is a legitimate address and
4630 reload if not. We first handle the cases where we need not reload
4631 or where we must reload in a non-standard way. */
4632
4633 if (GET_CODE (ad) == REG)
4634 {
4635 regno = REGNO (ad);
4636
4637 /* If the register is equivalent to an invariant expression, substitute
4638 the invariant, and eliminate any eliminable register references. */
4639 tem = reg_equiv_constant[regno];
4640 if (tem != 0
4641 && (tem = eliminate_regs (tem, mode, insn))
4642 && strict_memory_address_p (mode, tem))
4643 {
4644 *loc = ad = tem;
4645 return 0;
4646 }
4647
4648 tem = reg_equiv_memory_loc[regno];
4649 if (tem != 0)
4650 {
4651 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4652 {
4653 tem = make_memloc (ad, regno);
4654 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4655 {
4656 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4657 &XEXP (tem, 0), opnum,
4658 ADDR_TYPE (type), ind_levels, insn);
4659 }
4660 /* We can avoid a reload if the register's equivalent memory
4661 expression is valid as an indirect memory address.
4662 But not all addresses are valid in a mem used as an indirect
4663 address: only reg or reg+constant. */
4664
4665 if (ind_levels > 0
4666 && strict_memory_address_p (mode, tem)
4667 && (GET_CODE (XEXP (tem, 0)) == REG
4668 || (GET_CODE (XEXP (tem, 0)) == PLUS
4669 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4670 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4671 {
4672 /* TEM is not the same as what we'll be replacing the
4673 pseudo with after reload, put a USE in front of INSN
4674 in the final reload pass. */
4675 if (replace_reloads
4676 && num_not_at_initial_offset
4677 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4678 {
4679 *loc = tem;
4680 /* We mark the USE with QImode so that we
4681 recognize it as one that can be safely
4682 deleted at the end of reload. */
4683 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4684 insn), QImode);
4685
4686 /* This doesn't really count as replacing the address
4687 as a whole, since it is still a memory access. */
4688 }
4689 return 0;
4690 }
4691 ad = tem;
4692 }
4693 }
4694
4695 /* The only remaining case where we can avoid a reload is if this is a
4696 hard register that is valid as a base register and which is not the
4697 subject of a CLOBBER in this insn. */
4698
4699 else if (regno < FIRST_PSEUDO_REGISTER
4700 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4701 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4702 return 0;
4703
4704 /* If we do not have one of the cases above, we must do the reload. */
4705 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4706 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4707 return 1;
4708 }
4709
4710 if (strict_memory_address_p (mode, ad))
4711 {
4712 /* The address appears valid, so reloads are not needed.
4713 But the address may contain an eliminable register.
4714 This can happen because a machine with indirect addressing
4715 may consider a pseudo register by itself a valid address even when
4716 it has failed to get a hard reg.
4717 So do a tree-walk to find and eliminate all such regs. */
4718
4719 /* But first quickly dispose of a common case. */
4720 if (GET_CODE (ad) == PLUS
4721 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4722 && GET_CODE (XEXP (ad, 0)) == REG
4723 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4724 return 0;
4725
4726 subst_reg_equivs_changed = 0;
4727 *loc = subst_reg_equivs (ad, insn);
4728
4729 if (! subst_reg_equivs_changed)
4730 return 0;
4731
4732 /* Check result for validity after substitution. */
4733 if (strict_memory_address_p (mode, ad))
4734 return 0;
4735 }
4736
4737 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4738 do
4739 {
4740 if (memrefloc)
4741 {
4742 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4743 ind_levels, win);
4744 }
4745 break;
4746 win:
4747 *memrefloc = copy_rtx (*memrefloc);
4748 XEXP (*memrefloc, 0) = ad;
4749 move_replacements (&ad, &XEXP (*memrefloc, 0));
4750 return 1;
4751 }
4752 while (0);
4753 #endif
4754
4755 /* The address is not valid. We have to figure out why. First see if
4756 we have an outer AND and remove it if so. Then analyze what's inside. */
4757
4758 if (GET_CODE (ad) == AND)
4759 {
4760 removed_and = 1;
4761 loc = &XEXP (ad, 0);
4762 ad = *loc;
4763 }
4764
4765 /* One possibility for why the address is invalid is that it is itself
4766 a MEM. This can happen when the frame pointer is being eliminated, a
4767 pseudo is not allocated to a hard register, and the offset between the
4768 frame and stack pointers is not its initial value. In that case the
4769 pseudo will have been replaced by a MEM referring to the
4770 stack pointer. */
4771 if (GET_CODE (ad) == MEM)
4772 {
4773 /* First ensure that the address in this MEM is valid. Then, unless
4774 indirect addresses are valid, reload the MEM into a register. */
4775 tem = ad;
4776 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4777 opnum, ADDR_TYPE (type),
4778 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4779
4780 /* If tem was changed, then we must create a new memory reference to
4781 hold it and store it back into memrefloc. */
4782 if (tem != ad && memrefloc)
4783 {
4784 *memrefloc = copy_rtx (*memrefloc);
4785 copy_replacements (tem, XEXP (*memrefloc, 0));
4786 loc = &XEXP (*memrefloc, 0);
4787 if (removed_and)
4788 loc = &XEXP (*loc, 0);
4789 }
4790
4791 /* Check similar cases as for indirect addresses as above except
4792 that we can allow pseudos and a MEM since they should have been
4793 taken care of above. */
4794
4795 if (ind_levels == 0
4796 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4797 || GET_CODE (XEXP (tem, 0)) == MEM
4798 || ! (GET_CODE (XEXP (tem, 0)) == REG
4799 || (GET_CODE (XEXP (tem, 0)) == PLUS
4800 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4801 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4802 {
4803 /* Must use TEM here, not AD, since it is the one that will
4804 have any subexpressions reloaded, if needed. */
4805 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4806 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4807 VOIDmode, 0,
4808 0, opnum, type);
4809 return ! removed_and;
4810 }
4811 else
4812 return 0;
4813 }
4814
4815 /* If we have address of a stack slot but it's not valid because the
4816 displacement is too large, compute the sum in a register.
4817 Handle all base registers here, not just fp/ap/sp, because on some
4818 targets (namely SH) we can also get too large displacements from
4819 big-endian corrections. */
4820 else if (GET_CODE (ad) == PLUS
4821 && GET_CODE (XEXP (ad, 0)) == REG
4822 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4823 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4824 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4825 {
4826 /* Unshare the MEM rtx so we can safely alter it. */
4827 if (memrefloc)
4828 {
4829 *memrefloc = copy_rtx (*memrefloc);
4830 loc = &XEXP (*memrefloc, 0);
4831 if (removed_and)
4832 loc = &XEXP (*loc, 0);
4833 }
4834
4835 if (double_reg_address_ok)
4836 {
4837 /* Unshare the sum as well. */
4838 *loc = ad = copy_rtx (ad);
4839
4840 /* Reload the displacement into an index reg.
4841 We assume the frame pointer or arg pointer is a base reg. */
4842 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4843 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4844 type, ind_levels);
4845 return 0;
4846 }
4847 else
4848 {
4849 /* If the sum of two regs is not necessarily valid,
4850 reload the sum into a base reg.
4851 That will at least work. */
4852 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4853 Pmode, opnum, type, ind_levels);
4854 }
4855 return ! removed_and;
4856 }
4857
4858 /* If we have an indexed stack slot, there are three possible reasons why
4859 it might be invalid: The index might need to be reloaded, the address
4860 might have been made by frame pointer elimination and hence have a
4861 constant out of range, or both reasons might apply.
4862
4863 We can easily check for an index needing reload, but even if that is the
4864 case, we might also have an invalid constant. To avoid making the
4865 conservative assumption and requiring two reloads, we see if this address
4866 is valid when not interpreted strictly. If it is, the only problem is
4867 that the index needs a reload and find_reloads_address_1 will take care
4868 of it.
4869
4870 Handle all base registers here, not just fp/ap/sp, because on some
4871 targets (namely SPARC) we can also get invalid addresses from preventive
4872 subreg big-endian corrections made by find_reloads_toplev.
4873
4874 If we decide to do something, it must be that `double_reg_address_ok'
4875 is true. We generate a reload of the base register + constant and
4876 rework the sum so that the reload register will be added to the index.
4877 This is safe because we know the address isn't shared.
4878
4879 We check for the base register as both the first and second operand of
4880 the innermost PLUS. */
4881
4882 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4883 && GET_CODE (XEXP (ad, 0)) == PLUS
4884 && GET_CODE (XEXP (XEXP (ad, 0), 0)) == REG
4885 && REGNO (XEXP (XEXP (ad, 0), 0)) < FIRST_PSEUDO_REGISTER
4886 && REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 0), mode)
4887 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 1)))
4888 {
4889 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4890 plus_constant (XEXP (XEXP (ad, 0), 0),
4891 INTVAL (XEXP (ad, 1))),
4892 XEXP (XEXP (ad, 0), 1));
4893 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4894 MODE_BASE_REG_CLASS (mode),
4895 GET_MODE (ad), opnum, type, ind_levels);
4896 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4897 type, 0, insn);
4898
4899 return 0;
4900 }
4901
4902 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4903 && GET_CODE (XEXP (ad, 0)) == PLUS
4904 && GET_CODE (XEXP (XEXP (ad, 0), 1)) == REG
4905 && REGNO (XEXP (XEXP (ad, 0), 1)) < FIRST_PSEUDO_REGISTER
4906 && REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 1), mode)
4907 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 0)))
4908 {
4909 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4910 XEXP (XEXP (ad, 0), 0),
4911 plus_constant (XEXP (XEXP (ad, 0), 1),
4912 INTVAL (XEXP (ad, 1))));
4913 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4914 MODE_BASE_REG_CLASS (mode),
4915 GET_MODE (ad), opnum, type, ind_levels);
4916 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4917 type, 0, insn);
4918
4919 return 0;
4920 }
4921
4922 /* See if address becomes valid when an eliminable register
4923 in a sum is replaced. */
4924
4925 tem = ad;
4926 if (GET_CODE (ad) == PLUS)
4927 tem = subst_indexed_address (ad);
4928 if (tem != ad && strict_memory_address_p (mode, tem))
4929 {
4930 /* Ok, we win that way. Replace any additional eliminable
4931 registers. */
4932
4933 subst_reg_equivs_changed = 0;
4934 tem = subst_reg_equivs (tem, insn);
4935
4936 /* Make sure that didn't make the address invalid again. */
4937
4938 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4939 {
4940 *loc = tem;
4941 return 0;
4942 }
4943 }
4944
4945 /* If constants aren't valid addresses, reload the constant address
4946 into a register. */
4947 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4948 {
4949 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4950 Unshare it so we can safely alter it. */
4951 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4952 && CONSTANT_POOL_ADDRESS_P (ad))
4953 {
4954 *memrefloc = copy_rtx (*memrefloc);
4955 loc = &XEXP (*memrefloc, 0);
4956 if (removed_and)
4957 loc = &XEXP (*loc, 0);
4958 }
4959
4960 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4961 Pmode, opnum, type, ind_levels);
4962 return ! removed_and;
4963 }
4964
4965 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4966 insn);
4967 }
4968 \f
4969 /* Find all pseudo regs appearing in AD
4970 that are eliminable in favor of equivalent values
4971 and do not have hard regs; replace them by their equivalents.
4972 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4973 front of it for pseudos that we have to replace with stack slots. */
4974
4975 static rtx
4976 subst_reg_equivs (rtx ad, rtx insn)
4977 {
4978 RTX_CODE code = GET_CODE (ad);
4979 int i;
4980 const char *fmt;
4981
4982 switch (code)
4983 {
4984 case HIGH:
4985 case CONST_INT:
4986 case CONST:
4987 case CONST_DOUBLE:
4988 case CONST_VECTOR:
4989 case SYMBOL_REF:
4990 case LABEL_REF:
4991 case PC:
4992 case CC0:
4993 return ad;
4994
4995 case REG:
4996 {
4997 int regno = REGNO (ad);
4998
4999 if (reg_equiv_constant[regno] != 0)
5000 {
5001 subst_reg_equivs_changed = 1;
5002 return reg_equiv_constant[regno];
5003 }
5004 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5005 {
5006 rtx mem = make_memloc (ad, regno);
5007 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5008 {
5009 subst_reg_equivs_changed = 1;
5010 /* We mark the USE with QImode so that we recognize it
5011 as one that can be safely deleted at the end of
5012 reload. */
5013 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5014 QImode);
5015 return mem;
5016 }
5017 }
5018 }
5019 return ad;
5020
5021 case PLUS:
5022 /* Quickly dispose of a common case. */
5023 if (XEXP (ad, 0) == frame_pointer_rtx
5024 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5025 return ad;
5026 break;
5027
5028 default:
5029 break;
5030 }
5031
5032 fmt = GET_RTX_FORMAT (code);
5033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5034 if (fmt[i] == 'e')
5035 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5036 return ad;
5037 }
5038 \f
5039 /* Compute the sum of X and Y, making canonicalizations assumed in an
5040 address, namely: sum constant integers, surround the sum of two
5041 constants with a CONST, put the constant as the second operand, and
5042 group the constant on the outermost sum.
5043
5044 This routine assumes both inputs are already in canonical form. */
5045
5046 rtx
5047 form_sum (rtx x, rtx y)
5048 {
5049 rtx tem;
5050 enum machine_mode mode = GET_MODE (x);
5051
5052 if (mode == VOIDmode)
5053 mode = GET_MODE (y);
5054
5055 if (mode == VOIDmode)
5056 mode = Pmode;
5057
5058 if (GET_CODE (x) == CONST_INT)
5059 return plus_constant (y, INTVAL (x));
5060 else if (GET_CODE (y) == CONST_INT)
5061 return plus_constant (x, INTVAL (y));
5062 else if (CONSTANT_P (x))
5063 tem = x, x = y, y = tem;
5064
5065 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5066 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5067
5068 /* Note that if the operands of Y are specified in the opposite
5069 order in the recursive calls below, infinite recursion will occur. */
5070 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5071 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5072
5073 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5074 constant will have been placed second. */
5075 if (CONSTANT_P (x) && CONSTANT_P (y))
5076 {
5077 if (GET_CODE (x) == CONST)
5078 x = XEXP (x, 0);
5079 if (GET_CODE (y) == CONST)
5080 y = XEXP (y, 0);
5081
5082 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5083 }
5084
5085 return gen_rtx_PLUS (mode, x, y);
5086 }
5087 \f
5088 /* If ADDR is a sum containing a pseudo register that should be
5089 replaced with a constant (from reg_equiv_constant),
5090 return the result of doing so, and also apply the associative
5091 law so that the result is more likely to be a valid address.
5092 (But it is not guaranteed to be one.)
5093
5094 Note that at most one register is replaced, even if more are
5095 replaceable. Also, we try to put the result into a canonical form
5096 so it is more likely to be a valid address.
5097
5098 In all other cases, return ADDR. */
5099
5100 static rtx
5101 subst_indexed_address (rtx addr)
5102 {
5103 rtx op0 = 0, op1 = 0, op2 = 0;
5104 rtx tem;
5105 int regno;
5106
5107 if (GET_CODE (addr) == PLUS)
5108 {
5109 /* Try to find a register to replace. */
5110 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5111 if (GET_CODE (op0) == REG
5112 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5113 && reg_renumber[regno] < 0
5114 && reg_equiv_constant[regno] != 0)
5115 op0 = reg_equiv_constant[regno];
5116 else if (GET_CODE (op1) == REG
5117 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5118 && reg_renumber[regno] < 0
5119 && reg_equiv_constant[regno] != 0)
5120 op1 = reg_equiv_constant[regno];
5121 else if (GET_CODE (op0) == PLUS
5122 && (tem = subst_indexed_address (op0)) != op0)
5123 op0 = tem;
5124 else if (GET_CODE (op1) == PLUS
5125 && (tem = subst_indexed_address (op1)) != op1)
5126 op1 = tem;
5127 else
5128 return addr;
5129
5130 /* Pick out up to three things to add. */
5131 if (GET_CODE (op1) == PLUS)
5132 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5133 else if (GET_CODE (op0) == PLUS)
5134 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5135
5136 /* Compute the sum. */
5137 if (op2 != 0)
5138 op1 = form_sum (op1, op2);
5139 if (op1 != 0)
5140 op0 = form_sum (op0, op1);
5141
5142 return op0;
5143 }
5144 return addr;
5145 }
5146 \f
5147 /* Update the REG_INC notes for an insn. It updates all REG_INC
5148 notes for the instruction which refer to REGNO the to refer
5149 to the reload number.
5150
5151 INSN is the insn for which any REG_INC notes need updating.
5152
5153 REGNO is the register number which has been reloaded.
5154
5155 RELOADNUM is the reload number. */
5156
5157 static void
5158 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5159 int reloadnum ATTRIBUTE_UNUSED)
5160 {
5161 #ifdef AUTO_INC_DEC
5162 rtx link;
5163
5164 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5165 if (REG_NOTE_KIND (link) == REG_INC
5166 && (int) REGNO (XEXP (link, 0)) == regno)
5167 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5168 #endif
5169 }
5170 \f
5171 /* Record the pseudo registers we must reload into hard registers in a
5172 subexpression of a would-be memory address, X referring to a value
5173 in mode MODE. (This function is not called if the address we find
5174 is strictly valid.)
5175
5176 CONTEXT = 1 means we are considering regs as index regs,
5177 = 0 means we are considering them as base regs.
5178
5179 OPNUM and TYPE specify the purpose of any reloads made.
5180
5181 IND_LEVELS says how many levels of indirect addressing are
5182 supported at this point in the address.
5183
5184 INSN, if nonzero, is the insn in which we do the reload. It is used
5185 to determine if we may generate output reloads.
5186
5187 We return nonzero if X, as a whole, is reloaded or replaced. */
5188
5189 /* Note that we take shortcuts assuming that no multi-reg machine mode
5190 occurs as part of an address.
5191 Also, this is not fully machine-customizable; it works for machines
5192 such as VAXen and 68000's and 32000's, but other possible machines
5193 could have addressing modes that this does not handle right. */
5194
5195 static int
5196 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5197 rtx *loc, int opnum, enum reload_type type,
5198 int ind_levels, rtx insn)
5199 {
5200 RTX_CODE code = GET_CODE (x);
5201
5202 switch (code)
5203 {
5204 case PLUS:
5205 {
5206 rtx orig_op0 = XEXP (x, 0);
5207 rtx orig_op1 = XEXP (x, 1);
5208 RTX_CODE code0 = GET_CODE (orig_op0);
5209 RTX_CODE code1 = GET_CODE (orig_op1);
5210 rtx op0 = orig_op0;
5211 rtx op1 = orig_op1;
5212
5213 if (GET_CODE (op0) == SUBREG)
5214 {
5215 op0 = SUBREG_REG (op0);
5216 code0 = GET_CODE (op0);
5217 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5218 op0 = gen_rtx_REG (word_mode,
5219 (REGNO (op0) +
5220 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5221 GET_MODE (SUBREG_REG (orig_op0)),
5222 SUBREG_BYTE (orig_op0),
5223 GET_MODE (orig_op0))));
5224 }
5225
5226 if (GET_CODE (op1) == SUBREG)
5227 {
5228 op1 = SUBREG_REG (op1);
5229 code1 = GET_CODE (op1);
5230 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5231 /* ??? Why is this given op1's mode and above for
5232 ??? op0 SUBREGs we use word_mode? */
5233 op1 = gen_rtx_REG (GET_MODE (op1),
5234 (REGNO (op1) +
5235 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5236 GET_MODE (SUBREG_REG (orig_op1)),
5237 SUBREG_BYTE (orig_op1),
5238 GET_MODE (orig_op1))));
5239 }
5240 /* Plus in the index register may be created only as a result of
5241 register remateralization for expression like &localvar*4. Reload it.
5242 It may be possible to combine the displacement on the outer level,
5243 but it is probably not worthwhile to do so. */
5244 if (context)
5245 {
5246 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5247 opnum, ADDR_TYPE (type), ind_levels, insn);
5248 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5249 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5250 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5251 return 1;
5252 }
5253
5254 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5255 || code0 == ZERO_EXTEND || code1 == MEM)
5256 {
5257 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5258 type, ind_levels, insn);
5259 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5260 type, ind_levels, insn);
5261 }
5262
5263 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5264 || code1 == ZERO_EXTEND || code0 == MEM)
5265 {
5266 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5267 type, ind_levels, insn);
5268 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5269 type, ind_levels, insn);
5270 }
5271
5272 else if (code0 == CONST_INT || code0 == CONST
5273 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5274 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5275 type, ind_levels, insn);
5276
5277 else if (code1 == CONST_INT || code1 == CONST
5278 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5279 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5280 type, ind_levels, insn);
5281
5282 else if (code0 == REG && code1 == REG)
5283 {
5284 if (REG_OK_FOR_INDEX_P (op0)
5285 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5286 return 0;
5287 else if (REG_OK_FOR_INDEX_P (op1)
5288 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5289 return 0;
5290 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5291 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5292 type, ind_levels, insn);
5293 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5294 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5295 type, ind_levels, insn);
5296 else if (REG_OK_FOR_INDEX_P (op1))
5297 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5298 type, ind_levels, insn);
5299 else if (REG_OK_FOR_INDEX_P (op0))
5300 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5301 type, ind_levels, insn);
5302 else
5303 {
5304 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5305 type, ind_levels, insn);
5306 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5307 type, ind_levels, insn);
5308 }
5309 }
5310
5311 else if (code0 == REG)
5312 {
5313 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5314 type, ind_levels, insn);
5315 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5316 type, ind_levels, insn);
5317 }
5318
5319 else if (code1 == REG)
5320 {
5321 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5322 type, ind_levels, insn);
5323 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5324 type, ind_levels, insn);
5325 }
5326 }
5327
5328 return 0;
5329
5330 case POST_MODIFY:
5331 case PRE_MODIFY:
5332 {
5333 rtx op0 = XEXP (x, 0);
5334 rtx op1 = XEXP (x, 1);
5335
5336 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5337 return 0;
5338
5339 /* Currently, we only support {PRE,POST}_MODIFY constructs
5340 where a base register is {inc,dec}remented by the contents
5341 of another register or by a constant value. Thus, these
5342 operands must match. */
5343 if (op0 != XEXP (op1, 0))
5344 abort ();
5345
5346 /* Require index register (or constant). Let's just handle the
5347 register case in the meantime... If the target allows
5348 auto-modify by a constant then we could try replacing a pseudo
5349 register with its equivalent constant where applicable. */
5350 if (REG_P (XEXP (op1, 1)))
5351 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5352 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5353 opnum, type, ind_levels, insn);
5354
5355 if (REG_P (XEXP (op1, 0)))
5356 {
5357 int regno = REGNO (XEXP (op1, 0));
5358 int reloadnum;
5359
5360 /* A register that is incremented cannot be constant! */
5361 if (regno >= FIRST_PSEUDO_REGISTER
5362 && reg_equiv_constant[regno] != 0)
5363 abort ();
5364
5365 /* Handle a register that is equivalent to a memory location
5366 which cannot be addressed directly. */
5367 if (reg_equiv_memory_loc[regno] != 0
5368 && (reg_equiv_address[regno] != 0
5369 || num_not_at_initial_offset))
5370 {
5371 rtx tem = make_memloc (XEXP (x, 0), regno);
5372
5373 if (reg_equiv_address[regno]
5374 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5375 {
5376 /* First reload the memory location's address.
5377 We can't use ADDR_TYPE (type) here, because we need to
5378 write back the value after reading it, hence we actually
5379 need two registers. */
5380 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5381 &XEXP (tem, 0), opnum,
5382 RELOAD_OTHER,
5383 ind_levels, insn);
5384
5385 /* Then reload the memory location into a base
5386 register. */
5387 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5388 &XEXP (op1, 0),
5389 MODE_BASE_REG_CLASS (mode),
5390 GET_MODE (x), GET_MODE (x), 0,
5391 0, opnum, RELOAD_OTHER);
5392
5393 update_auto_inc_notes (this_insn, regno, reloadnum);
5394 return 0;
5395 }
5396 }
5397
5398 if (reg_renumber[regno] >= 0)
5399 regno = reg_renumber[regno];
5400
5401 /* We require a base register here... */
5402 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5403 {
5404 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5405 &XEXP (op1, 0), &XEXP (x, 0),
5406 MODE_BASE_REG_CLASS (mode),
5407 GET_MODE (x), GET_MODE (x), 0, 0,
5408 opnum, RELOAD_OTHER);
5409
5410 update_auto_inc_notes (this_insn, regno, reloadnum);
5411 return 0;
5412 }
5413 }
5414 else
5415 abort ();
5416 }
5417 return 0;
5418
5419 case POST_INC:
5420 case POST_DEC:
5421 case PRE_INC:
5422 case PRE_DEC:
5423 if (GET_CODE (XEXP (x, 0)) == REG)
5424 {
5425 int regno = REGNO (XEXP (x, 0));
5426 int value = 0;
5427 rtx x_orig = x;
5428
5429 /* A register that is incremented cannot be constant! */
5430 if (regno >= FIRST_PSEUDO_REGISTER
5431 && reg_equiv_constant[regno] != 0)
5432 abort ();
5433
5434 /* Handle a register that is equivalent to a memory location
5435 which cannot be addressed directly. */
5436 if (reg_equiv_memory_loc[regno] != 0
5437 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5438 {
5439 rtx tem = make_memloc (XEXP (x, 0), regno);
5440 if (reg_equiv_address[regno]
5441 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5442 {
5443 /* First reload the memory location's address.
5444 We can't use ADDR_TYPE (type) here, because we need to
5445 write back the value after reading it, hence we actually
5446 need two registers. */
5447 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5448 &XEXP (tem, 0), opnum, type,
5449 ind_levels, insn);
5450 /* Put this inside a new increment-expression. */
5451 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5452 /* Proceed to reload that, as if it contained a register. */
5453 }
5454 }
5455
5456 /* If we have a hard register that is ok as an index,
5457 don't make a reload. If an autoincrement of a nice register
5458 isn't "valid", it must be that no autoincrement is "valid".
5459 If that is true and something made an autoincrement anyway,
5460 this must be a special context where one is allowed.
5461 (For example, a "push" instruction.)
5462 We can't improve this address, so leave it alone. */
5463
5464 /* Otherwise, reload the autoincrement into a suitable hard reg
5465 and record how much to increment by. */
5466
5467 if (reg_renumber[regno] >= 0)
5468 regno = reg_renumber[regno];
5469 if ((regno >= FIRST_PSEUDO_REGISTER
5470 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5471 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5472 {
5473 int reloadnum;
5474
5475 /* If we can output the register afterwards, do so, this
5476 saves the extra update.
5477 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5478 CALL_INSN - and it does not set CC0.
5479 But don't do this if we cannot directly address the
5480 memory location, since this will make it harder to
5481 reuse address reloads, and increases register pressure.
5482 Also don't do this if we can probably update x directly. */
5483 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5484 ? XEXP (x, 0)
5485 : reg_equiv_mem[regno]);
5486 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5487 if (insn && GET_CODE (insn) == INSN && equiv
5488 && memory_operand (equiv, GET_MODE (equiv))
5489 #ifdef HAVE_cc0
5490 && ! sets_cc0_p (PATTERN (insn))
5491 #endif
5492 && ! (icode != CODE_FOR_nothing
5493 && ((*insn_data[icode].operand[0].predicate)
5494 (equiv, Pmode))
5495 && ((*insn_data[icode].operand[1].predicate)
5496 (equiv, Pmode))))
5497 {
5498 /* We use the original pseudo for loc, so that
5499 emit_reload_insns() knows which pseudo this
5500 reload refers to and updates the pseudo rtx, not
5501 its equivalent memory location, as well as the
5502 corresponding entry in reg_last_reload_reg. */
5503 loc = &XEXP (x_orig, 0);
5504 x = XEXP (x, 0);
5505 reloadnum
5506 = push_reload (x, x, loc, loc,
5507 (context ? INDEX_REG_CLASS :
5508 MODE_BASE_REG_CLASS (mode)),
5509 GET_MODE (x), GET_MODE (x), 0, 0,
5510 opnum, RELOAD_OTHER);
5511 }
5512 else
5513 {
5514 reloadnum
5515 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5516 (context ? INDEX_REG_CLASS :
5517 MODE_BASE_REG_CLASS (mode)),
5518 GET_MODE (x), GET_MODE (x), 0, 0,
5519 opnum, type);
5520 rld[reloadnum].inc
5521 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5522
5523 value = 1;
5524 }
5525
5526 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5527 reloadnum);
5528 }
5529 return value;
5530 }
5531
5532 else if (GET_CODE (XEXP (x, 0)) == MEM)
5533 {
5534 /* This is probably the result of a substitution, by eliminate_regs,
5535 of an equivalent address for a pseudo that was not allocated to a
5536 hard register. Verify that the specified address is valid and
5537 reload it into a register. */
5538 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5539 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5540 rtx link;
5541 int reloadnum;
5542
5543 /* Since we know we are going to reload this item, don't decrement
5544 for the indirection level.
5545
5546 Note that this is actually conservative: it would be slightly
5547 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5548 reload1.c here. */
5549 /* We can't use ADDR_TYPE (type) here, because we need to
5550 write back the value after reading it, hence we actually
5551 need two registers. */
5552 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5553 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5554 opnum, type, ind_levels, insn);
5555
5556 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5557 (context ? INDEX_REG_CLASS :
5558 MODE_BASE_REG_CLASS (mode)),
5559 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5560 rld[reloadnum].inc
5561 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5562
5563 link = FIND_REG_INC_NOTE (this_insn, tem);
5564 if (link != 0)
5565 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5566
5567 return 1;
5568 }
5569 return 0;
5570
5571 case MEM:
5572 /* This is probably the result of a substitution, by eliminate_regs, of
5573 an equivalent address for a pseudo that was not allocated to a hard
5574 register. Verify that the specified address is valid and reload it
5575 into a register.
5576
5577 Since we know we are going to reload this item, don't decrement for
5578 the indirection level.
5579
5580 Note that this is actually conservative: it would be slightly more
5581 efficient to use the value of SPILL_INDIRECT_LEVELS from
5582 reload1.c here. */
5583
5584 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5585 opnum, ADDR_TYPE (type), ind_levels, insn);
5586 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5587 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5588 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5589 return 1;
5590
5591 case REG:
5592 {
5593 int regno = REGNO (x);
5594
5595 if (reg_equiv_constant[regno] != 0)
5596 {
5597 find_reloads_address_part (reg_equiv_constant[regno], loc,
5598 (context ? INDEX_REG_CLASS :
5599 MODE_BASE_REG_CLASS (mode)),
5600 GET_MODE (x), opnum, type, ind_levels);
5601 return 1;
5602 }
5603
5604 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5605 that feeds this insn. */
5606 if (reg_equiv_mem[regno] != 0)
5607 {
5608 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5609 (context ? INDEX_REG_CLASS :
5610 MODE_BASE_REG_CLASS (mode)),
5611 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5612 return 1;
5613 }
5614 #endif
5615
5616 if (reg_equiv_memory_loc[regno]
5617 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5618 {
5619 rtx tem = make_memloc (x, regno);
5620 if (reg_equiv_address[regno] != 0
5621 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5622 {
5623 x = tem;
5624 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5625 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5626 ind_levels, insn);
5627 }
5628 }
5629
5630 if (reg_renumber[regno] >= 0)
5631 regno = reg_renumber[regno];
5632
5633 if ((regno >= FIRST_PSEUDO_REGISTER
5634 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5635 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5636 {
5637 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5638 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5639 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5640 return 1;
5641 }
5642
5643 /* If a register appearing in an address is the subject of a CLOBBER
5644 in this insn, reload it into some other register to be safe.
5645 The CLOBBER is supposed to make the register unavailable
5646 from before this insn to after it. */
5647 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5648 {
5649 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5650 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5651 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5652 return 1;
5653 }
5654 }
5655 return 0;
5656
5657 case SUBREG:
5658 if (GET_CODE (SUBREG_REG (x)) == REG)
5659 {
5660 /* If this is a SUBREG of a hard register and the resulting register
5661 is of the wrong class, reload the whole SUBREG. This avoids
5662 needless copies if SUBREG_REG is multi-word. */
5663 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5664 {
5665 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5666
5667 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5668 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5669 {
5670 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5671 (context ? INDEX_REG_CLASS :
5672 MODE_BASE_REG_CLASS (mode)),
5673 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5674 return 1;
5675 }
5676 }
5677 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5678 is larger than the class size, then reload the whole SUBREG. */
5679 else
5680 {
5681 enum reg_class class = (context ? INDEX_REG_CLASS
5682 : MODE_BASE_REG_CLASS (mode));
5683 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5684 > reg_class_size[class])
5685 {
5686 x = find_reloads_subreg_address (x, 0, opnum, type,
5687 ind_levels, insn);
5688 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5689 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5690 return 1;
5691 }
5692 }
5693 }
5694 break;
5695
5696 default:
5697 break;
5698 }
5699
5700 {
5701 const char *fmt = GET_RTX_FORMAT (code);
5702 int i;
5703
5704 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5705 {
5706 if (fmt[i] == 'e')
5707 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5708 opnum, type, ind_levels, insn);
5709 }
5710 }
5711
5712 return 0;
5713 }
5714 \f
5715 /* X, which is found at *LOC, is a part of an address that needs to be
5716 reloaded into a register of class CLASS. If X is a constant, or if
5717 X is a PLUS that contains a constant, check that the constant is a
5718 legitimate operand and that we are supposed to be able to load
5719 it into the register.
5720
5721 If not, force the constant into memory and reload the MEM instead.
5722
5723 MODE is the mode to use, in case X is an integer constant.
5724
5725 OPNUM and TYPE describe the purpose of any reloads made.
5726
5727 IND_LEVELS says how many levels of indirect addressing this machine
5728 supports. */
5729
5730 static void
5731 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5732 enum machine_mode mode, int opnum,
5733 enum reload_type type, int ind_levels)
5734 {
5735 if (CONSTANT_P (x)
5736 && (! LEGITIMATE_CONSTANT_P (x)
5737 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5738 {
5739 rtx tem;
5740
5741 tem = x = force_const_mem (mode, x);
5742 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5743 opnum, type, ind_levels, 0);
5744 }
5745
5746 else if (GET_CODE (x) == PLUS
5747 && CONSTANT_P (XEXP (x, 1))
5748 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5749 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5750 {
5751 rtx tem;
5752
5753 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5754 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5755 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5756 opnum, type, ind_levels, 0);
5757 }
5758
5759 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5760 mode, VOIDmode, 0, 0, opnum, type);
5761 }
5762 \f
5763 /* X, a subreg of a pseudo, is a part of an address that needs to be
5764 reloaded.
5765
5766 If the pseudo is equivalent to a memory location that cannot be directly
5767 addressed, make the necessary address reloads.
5768
5769 If address reloads have been necessary, or if the address is changed
5770 by register elimination, return the rtx of the memory location;
5771 otherwise, return X.
5772
5773 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5774 memory location.
5775
5776 OPNUM and TYPE identify the purpose of the reload.
5777
5778 IND_LEVELS says how many levels of indirect addressing are
5779 supported at this point in the address.
5780
5781 INSN, if nonzero, is the insn in which we do the reload. It is used
5782 to determine where to put USEs for pseudos that we have to replace with
5783 stack slots. */
5784
5785 static rtx
5786 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5787 enum reload_type type, int ind_levels, rtx insn)
5788 {
5789 int regno = REGNO (SUBREG_REG (x));
5790
5791 if (reg_equiv_memory_loc[regno])
5792 {
5793 /* If the address is not directly addressable, or if the address is not
5794 offsettable, then it must be replaced. */
5795 if (! force_replace
5796 && (reg_equiv_address[regno]
5797 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5798 force_replace = 1;
5799
5800 if (force_replace || num_not_at_initial_offset)
5801 {
5802 rtx tem = make_memloc (SUBREG_REG (x), regno);
5803
5804 /* If the address changes because of register elimination, then
5805 it must be replaced. */
5806 if (force_replace
5807 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5808 {
5809 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5810 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5811 int offset;
5812
5813 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5814 hold the correct (negative) byte offset. */
5815 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5816 offset = inner_size - outer_size;
5817 else
5818 offset = SUBREG_BYTE (x);
5819
5820 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5821 PUT_MODE (tem, GET_MODE (x));
5822
5823 /* If this was a paradoxical subreg that we replaced, the
5824 resulting memory must be sufficiently aligned to allow
5825 us to widen the mode of the memory. */
5826 if (outer_size > inner_size && STRICT_ALIGNMENT)
5827 {
5828 rtx base;
5829
5830 base = XEXP (tem, 0);
5831 if (GET_CODE (base) == PLUS)
5832 {
5833 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5834 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5835 return x;
5836 base = XEXP (base, 0);
5837 }
5838 if (GET_CODE (base) != REG
5839 || (REGNO_POINTER_ALIGN (REGNO (base))
5840 < outer_size * BITS_PER_UNIT))
5841 return x;
5842 }
5843
5844 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5845 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5846 ind_levels, insn);
5847
5848 /* If this is not a toplevel operand, find_reloads doesn't see
5849 this substitution. We have to emit a USE of the pseudo so
5850 that delete_output_reload can see it. */
5851 if (replace_reloads && recog_data.operand[opnum] != x)
5852 /* We mark the USE with QImode so that we recognize it
5853 as one that can be safely deleted at the end of
5854 reload. */
5855 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5856 SUBREG_REG (x)),
5857 insn), QImode);
5858 x = tem;
5859 }
5860 }
5861 }
5862 return x;
5863 }
5864 \f
5865 /* Substitute into the current INSN the registers into which we have reloaded
5866 the things that need reloading. The array `replacements'
5867 contains the locations of all pointers that must be changed
5868 and says what to replace them with.
5869
5870 Return the rtx that X translates into; usually X, but modified. */
5871
5872 void
5873 subst_reloads (rtx insn)
5874 {
5875 int i;
5876
5877 for (i = 0; i < n_replacements; i++)
5878 {
5879 struct replacement *r = &replacements[i];
5880 rtx reloadreg = rld[r->what].reg_rtx;
5881 if (reloadreg)
5882 {
5883 #ifdef ENABLE_CHECKING
5884 /* Internal consistency test. Check that we don't modify
5885 anything in the equivalence arrays. Whenever something from
5886 those arrays needs to be reloaded, it must be unshared before
5887 being substituted into; the equivalence must not be modified.
5888 Otherwise, if the equivalence is used after that, it will
5889 have been modified, and the thing substituted (probably a
5890 register) is likely overwritten and not a usable equivalence. */
5891 int check_regno;
5892
5893 for (check_regno = 0; check_regno < max_regno; check_regno++)
5894 {
5895 #define CHECK_MODF(ARRAY) \
5896 if (ARRAY[check_regno] \
5897 && loc_mentioned_in_p (r->where, \
5898 ARRAY[check_regno])) \
5899 abort ()
5900
5901 CHECK_MODF (reg_equiv_constant);
5902 CHECK_MODF (reg_equiv_memory_loc);
5903 CHECK_MODF (reg_equiv_address);
5904 CHECK_MODF (reg_equiv_mem);
5905 #undef CHECK_MODF
5906 }
5907 #endif /* ENABLE_CHECKING */
5908
5909 /* If we're replacing a LABEL_REF with a register, add a
5910 REG_LABEL note to indicate to flow which label this
5911 register refers to. */
5912 if (GET_CODE (*r->where) == LABEL_REF
5913 && GET_CODE (insn) == JUMP_INSN)
5914 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5915 XEXP (*r->where, 0),
5916 REG_NOTES (insn));
5917
5918 /* Encapsulate RELOADREG so its machine mode matches what
5919 used to be there. Note that gen_lowpart_common will
5920 do the wrong thing if RELOADREG is multi-word. RELOADREG
5921 will always be a REG here. */
5922 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5923 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5924
5925 /* If we are putting this into a SUBREG and RELOADREG is a
5926 SUBREG, we would be making nested SUBREGs, so we have to fix
5927 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5928
5929 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5930 {
5931 if (GET_MODE (*r->subreg_loc)
5932 == GET_MODE (SUBREG_REG (reloadreg)))
5933 *r->subreg_loc = SUBREG_REG (reloadreg);
5934 else
5935 {
5936 int final_offset =
5937 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5938
5939 /* When working with SUBREGs the rule is that the byte
5940 offset must be a multiple of the SUBREG's mode. */
5941 final_offset = (final_offset /
5942 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5943 final_offset = (final_offset *
5944 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5945
5946 *r->where = SUBREG_REG (reloadreg);
5947 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5948 }
5949 }
5950 else
5951 *r->where = reloadreg;
5952 }
5953 /* If reload got no reg and isn't optional, something's wrong. */
5954 else if (! rld[r->what].optional)
5955 abort ();
5956 }
5957 }
5958 \f
5959 /* Make a copy of any replacements being done into X and move those
5960 copies to locations in Y, a copy of X. */
5961
5962 void
5963 copy_replacements (rtx x, rtx y)
5964 {
5965 /* We can't support X being a SUBREG because we might then need to know its
5966 location if something inside it was replaced. */
5967 if (GET_CODE (x) == SUBREG)
5968 abort ();
5969
5970 copy_replacements_1 (&x, &y, n_replacements);
5971 }
5972
5973 static void
5974 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
5975 {
5976 int i, j;
5977 rtx x, y;
5978 struct replacement *r;
5979 enum rtx_code code;
5980 const char *fmt;
5981
5982 for (j = 0; j < orig_replacements; j++)
5983 {
5984 if (replacements[j].subreg_loc == px)
5985 {
5986 r = &replacements[n_replacements++];
5987 r->where = replacements[j].where;
5988 r->subreg_loc = py;
5989 r->what = replacements[j].what;
5990 r->mode = replacements[j].mode;
5991 }
5992 else if (replacements[j].where == px)
5993 {
5994 r = &replacements[n_replacements++];
5995 r->where = py;
5996 r->subreg_loc = 0;
5997 r->what = replacements[j].what;
5998 r->mode = replacements[j].mode;
5999 }
6000 }
6001
6002 x = *px;
6003 y = *py;
6004 code = GET_CODE (x);
6005 fmt = GET_RTX_FORMAT (code);
6006
6007 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6008 {
6009 if (fmt[i] == 'e')
6010 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6011 else if (fmt[i] == 'E')
6012 for (j = XVECLEN (x, i); --j >= 0; )
6013 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6014 orig_replacements);
6015 }
6016 }
6017
6018 /* Change any replacements being done to *X to be done to *Y. */
6019
6020 void
6021 move_replacements (rtx *x, rtx *y)
6022 {
6023 int i;
6024
6025 for (i = 0; i < n_replacements; i++)
6026 if (replacements[i].subreg_loc == x)
6027 replacements[i].subreg_loc = y;
6028 else if (replacements[i].where == x)
6029 {
6030 replacements[i].where = y;
6031 replacements[i].subreg_loc = 0;
6032 }
6033 }
6034 \f
6035 /* If LOC was scheduled to be replaced by something, return the replacement.
6036 Otherwise, return *LOC. */
6037
6038 rtx
6039 find_replacement (rtx *loc)
6040 {
6041 struct replacement *r;
6042
6043 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6044 {
6045 rtx reloadreg = rld[r->what].reg_rtx;
6046
6047 if (reloadreg && r->where == loc)
6048 {
6049 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6050 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6051
6052 return reloadreg;
6053 }
6054 else if (reloadreg && r->subreg_loc == loc)
6055 {
6056 /* RELOADREG must be either a REG or a SUBREG.
6057
6058 ??? Is it actually still ever a SUBREG? If so, why? */
6059
6060 if (GET_CODE (reloadreg) == REG)
6061 return gen_rtx_REG (GET_MODE (*loc),
6062 (REGNO (reloadreg) +
6063 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6064 GET_MODE (SUBREG_REG (*loc)),
6065 SUBREG_BYTE (*loc),
6066 GET_MODE (*loc))));
6067 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6068 return reloadreg;
6069 else
6070 {
6071 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6072
6073 /* When working with SUBREGs the rule is that the byte
6074 offset must be a multiple of the SUBREG's mode. */
6075 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6076 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6077 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6078 final_offset);
6079 }
6080 }
6081 }
6082
6083 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6084 what's inside and make a new rtl if so. */
6085 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6086 || GET_CODE (*loc) == MULT)
6087 {
6088 rtx x = find_replacement (&XEXP (*loc, 0));
6089 rtx y = find_replacement (&XEXP (*loc, 1));
6090
6091 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6092 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6093 }
6094
6095 return *loc;
6096 }
6097 \f
6098 /* Return nonzero if register in range [REGNO, ENDREGNO)
6099 appears either explicitly or implicitly in X
6100 other than being stored into (except for earlyclobber operands).
6101
6102 References contained within the substructure at LOC do not count.
6103 LOC may be zero, meaning don't ignore anything.
6104
6105 This is similar to refers_to_regno_p in rtlanal.c except that we
6106 look at equivalences for pseudos that didn't get hard registers. */
6107
6108 int
6109 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6110 rtx x, rtx *loc)
6111 {
6112 int i;
6113 unsigned int r;
6114 RTX_CODE code;
6115 const char *fmt;
6116
6117 if (x == 0)
6118 return 0;
6119
6120 repeat:
6121 code = GET_CODE (x);
6122
6123 switch (code)
6124 {
6125 case REG:
6126 r = REGNO (x);
6127
6128 /* If this is a pseudo, a hard register must not have been allocated.
6129 X must therefore either be a constant or be in memory. */
6130 if (r >= FIRST_PSEUDO_REGISTER)
6131 {
6132 if (reg_equiv_memory_loc[r])
6133 return refers_to_regno_for_reload_p (regno, endregno,
6134 reg_equiv_memory_loc[r],
6135 (rtx*) 0);
6136
6137 if (reg_equiv_constant[r])
6138 return 0;
6139
6140 abort ();
6141 }
6142
6143 return (endregno > r
6144 && regno < r + (r < FIRST_PSEUDO_REGISTER
6145 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6146 : 1));
6147
6148 case SUBREG:
6149 /* If this is a SUBREG of a hard reg, we can see exactly which
6150 registers are being modified. Otherwise, handle normally. */
6151 if (GET_CODE (SUBREG_REG (x)) == REG
6152 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6153 {
6154 unsigned int inner_regno = subreg_regno (x);
6155 unsigned int inner_endregno
6156 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6157 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6158
6159 return endregno > inner_regno && regno < inner_endregno;
6160 }
6161 break;
6162
6163 case CLOBBER:
6164 case SET:
6165 if (&SET_DEST (x) != loc
6166 /* Note setting a SUBREG counts as referring to the REG it is in for
6167 a pseudo but not for hard registers since we can
6168 treat each word individually. */
6169 && ((GET_CODE (SET_DEST (x)) == SUBREG
6170 && loc != &SUBREG_REG (SET_DEST (x))
6171 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6172 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6173 && refers_to_regno_for_reload_p (regno, endregno,
6174 SUBREG_REG (SET_DEST (x)),
6175 loc))
6176 /* If the output is an earlyclobber operand, this is
6177 a conflict. */
6178 || ((GET_CODE (SET_DEST (x)) != REG
6179 || earlyclobber_operand_p (SET_DEST (x)))
6180 && refers_to_regno_for_reload_p (regno, endregno,
6181 SET_DEST (x), loc))))
6182 return 1;
6183
6184 if (code == CLOBBER || loc == &SET_SRC (x))
6185 return 0;
6186 x = SET_SRC (x);
6187 goto repeat;
6188
6189 default:
6190 break;
6191 }
6192
6193 /* X does not match, so try its subexpressions. */
6194
6195 fmt = GET_RTX_FORMAT (code);
6196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6197 {
6198 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6199 {
6200 if (i == 0)
6201 {
6202 x = XEXP (x, 0);
6203 goto repeat;
6204 }
6205 else
6206 if (refers_to_regno_for_reload_p (regno, endregno,
6207 XEXP (x, i), loc))
6208 return 1;
6209 }
6210 else if (fmt[i] == 'E')
6211 {
6212 int j;
6213 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6214 if (loc != &XVECEXP (x, i, j)
6215 && refers_to_regno_for_reload_p (regno, endregno,
6216 XVECEXP (x, i, j), loc))
6217 return 1;
6218 }
6219 }
6220 return 0;
6221 }
6222
6223 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6224 we check if any register number in X conflicts with the relevant register
6225 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6226 contains a MEM (we don't bother checking for memory addresses that can't
6227 conflict because we expect this to be a rare case.
6228
6229 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6230 that we look at equivalences for pseudos that didn't get hard registers. */
6231
6232 int
6233 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6234 {
6235 int regno, endregno;
6236
6237 /* Overly conservative. */
6238 if (GET_CODE (x) == STRICT_LOW_PART
6239 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6240 x = XEXP (x, 0);
6241
6242 /* If either argument is a constant, then modifying X can not affect IN. */
6243 if (CONSTANT_P (x) || CONSTANT_P (in))
6244 return 0;
6245 else if (GET_CODE (x) == SUBREG)
6246 {
6247 regno = REGNO (SUBREG_REG (x));
6248 if (regno < FIRST_PSEUDO_REGISTER)
6249 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6250 GET_MODE (SUBREG_REG (x)),
6251 SUBREG_BYTE (x),
6252 GET_MODE (x));
6253 }
6254 else if (GET_CODE (x) == REG)
6255 {
6256 regno = REGNO (x);
6257
6258 /* If this is a pseudo, it must not have been assigned a hard register.
6259 Therefore, it must either be in memory or be a constant. */
6260
6261 if (regno >= FIRST_PSEUDO_REGISTER)
6262 {
6263 if (reg_equiv_memory_loc[regno])
6264 return refers_to_mem_for_reload_p (in);
6265 else if (reg_equiv_constant[regno])
6266 return 0;
6267 abort ();
6268 }
6269 }
6270 else if (GET_CODE (x) == MEM)
6271 return refers_to_mem_for_reload_p (in);
6272 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6273 || GET_CODE (x) == CC0)
6274 return reg_mentioned_p (x, in);
6275 else if (GET_CODE (x) == PLUS)
6276 return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6277 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6278 else
6279 abort ();
6280
6281 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6282 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6283
6284 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6285 }
6286
6287 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6288 registers. */
6289
6290 int
6291 refers_to_mem_for_reload_p (rtx x)
6292 {
6293 const char *fmt;
6294 int i;
6295
6296 if (GET_CODE (x) == MEM)
6297 return 1;
6298
6299 if (GET_CODE (x) == REG)
6300 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6301 && reg_equiv_memory_loc[REGNO (x)]);
6302
6303 fmt = GET_RTX_FORMAT (GET_CODE (x));
6304 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6305 if (fmt[i] == 'e'
6306 && (GET_CODE (XEXP (x, i)) == MEM
6307 || refers_to_mem_for_reload_p (XEXP (x, i))))
6308 return 1;
6309
6310 return 0;
6311 }
6312 \f
6313 /* Check the insns before INSN to see if there is a suitable register
6314 containing the same value as GOAL.
6315 If OTHER is -1, look for a register in class CLASS.
6316 Otherwise, just see if register number OTHER shares GOAL's value.
6317
6318 Return an rtx for the register found, or zero if none is found.
6319
6320 If RELOAD_REG_P is (short *)1,
6321 we reject any hard reg that appears in reload_reg_rtx
6322 because such a hard reg is also needed coming into this insn.
6323
6324 If RELOAD_REG_P is any other nonzero value,
6325 it is a vector indexed by hard reg number
6326 and we reject any hard reg whose element in the vector is nonnegative
6327 as well as any that appears in reload_reg_rtx.
6328
6329 If GOAL is zero, then GOALREG is a register number; we look
6330 for an equivalent for that register.
6331
6332 MODE is the machine mode of the value we want an equivalence for.
6333 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6334
6335 This function is used by jump.c as well as in the reload pass.
6336
6337 If GOAL is the sum of the stack pointer and a constant, we treat it
6338 as if it were a constant except that sp is required to be unchanging. */
6339
6340 rtx
6341 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6342 short *reload_reg_p, int goalreg, enum machine_mode mode)
6343 {
6344 rtx p = insn;
6345 rtx goaltry, valtry, value, where;
6346 rtx pat;
6347 int regno = -1;
6348 int valueno;
6349 int goal_mem = 0;
6350 int goal_const = 0;
6351 int goal_mem_addr_varies = 0;
6352 int need_stable_sp = 0;
6353 int nregs;
6354 int valuenregs;
6355
6356 if (goal == 0)
6357 regno = goalreg;
6358 else if (GET_CODE (goal) == REG)
6359 regno = REGNO (goal);
6360 else if (GET_CODE (goal) == MEM)
6361 {
6362 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6363 if (MEM_VOLATILE_P (goal))
6364 return 0;
6365 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6366 return 0;
6367 /* An address with side effects must be reexecuted. */
6368 switch (code)
6369 {
6370 case POST_INC:
6371 case PRE_INC:
6372 case POST_DEC:
6373 case PRE_DEC:
6374 case POST_MODIFY:
6375 case PRE_MODIFY:
6376 return 0;
6377 default:
6378 break;
6379 }
6380 goal_mem = 1;
6381 }
6382 else if (CONSTANT_P (goal))
6383 goal_const = 1;
6384 else if (GET_CODE (goal) == PLUS
6385 && XEXP (goal, 0) == stack_pointer_rtx
6386 && CONSTANT_P (XEXP (goal, 1)))
6387 goal_const = need_stable_sp = 1;
6388 else if (GET_CODE (goal) == PLUS
6389 && XEXP (goal, 0) == frame_pointer_rtx
6390 && CONSTANT_P (XEXP (goal, 1)))
6391 goal_const = 1;
6392 else
6393 return 0;
6394
6395 /* Scan insns back from INSN, looking for one that copies
6396 a value into or out of GOAL.
6397 Stop and give up if we reach a label. */
6398
6399 while (1)
6400 {
6401 p = PREV_INSN (p);
6402 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6403 return 0;
6404
6405 if (GET_CODE (p) == INSN
6406 /* If we don't want spill regs ... */
6407 && (! (reload_reg_p != 0
6408 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6409 /* ... then ignore insns introduced by reload; they aren't
6410 useful and can cause results in reload_as_needed to be
6411 different from what they were when calculating the need for
6412 spills. If we notice an input-reload insn here, we will
6413 reject it below, but it might hide a usable equivalent.
6414 That makes bad code. It may even abort: perhaps no reg was
6415 spilled for this insn because it was assumed we would find
6416 that equivalent. */
6417 || INSN_UID (p) < reload_first_uid))
6418 {
6419 rtx tem;
6420 pat = single_set (p);
6421
6422 /* First check for something that sets some reg equal to GOAL. */
6423 if (pat != 0
6424 && ((regno >= 0
6425 && true_regnum (SET_SRC (pat)) == regno
6426 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6427 ||
6428 (regno >= 0
6429 && true_regnum (SET_DEST (pat)) == regno
6430 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6431 ||
6432 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6433 /* When looking for stack pointer + const,
6434 make sure we don't use a stack adjust. */
6435 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6436 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6437 || (goal_mem
6438 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6439 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6440 || (goal_mem
6441 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6442 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6443 /* If we are looking for a constant,
6444 and something equivalent to that constant was copied
6445 into a reg, we can use that reg. */
6446 || (goal_const && REG_NOTES (p) != 0
6447 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6448 && ((rtx_equal_p (XEXP (tem, 0), goal)
6449 && (valueno
6450 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6451 || (GET_CODE (SET_DEST (pat)) == REG
6452 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6453 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6454 == MODE_FLOAT)
6455 && GET_CODE (goal) == CONST_INT
6456 && 0 != (goaltry
6457 = operand_subword (XEXP (tem, 0), 0, 0,
6458 VOIDmode))
6459 && rtx_equal_p (goal, goaltry)
6460 && (valtry
6461 = operand_subword (SET_DEST (pat), 0, 0,
6462 VOIDmode))
6463 && (valueno = true_regnum (valtry)) >= 0)))
6464 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6465 NULL_RTX))
6466 && GET_CODE (SET_DEST (pat)) == REG
6467 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6468 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6469 == MODE_FLOAT)
6470 && GET_CODE (goal) == CONST_INT
6471 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6472 VOIDmode))
6473 && rtx_equal_p (goal, goaltry)
6474 && (valtry
6475 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6476 && (valueno = true_regnum (valtry)) >= 0)))
6477 {
6478 if (other >= 0)
6479 {
6480 if (valueno != other)
6481 continue;
6482 }
6483 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6484 continue;
6485 else
6486 {
6487 int i;
6488
6489 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6490 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6491 valueno + i))
6492 break;
6493 if (i >= 0)
6494 continue;
6495 }
6496 value = valtry;
6497 where = p;
6498 break;
6499 }
6500 }
6501 }
6502
6503 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6504 (or copying VALUE into GOAL, if GOAL is also a register).
6505 Now verify that VALUE is really valid. */
6506
6507 /* VALUENO is the register number of VALUE; a hard register. */
6508
6509 /* Don't try to re-use something that is killed in this insn. We want
6510 to be able to trust REG_UNUSED notes. */
6511 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6512 return 0;
6513
6514 /* If we propose to get the value from the stack pointer or if GOAL is
6515 a MEM based on the stack pointer, we need a stable SP. */
6516 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6517 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6518 goal)))
6519 need_stable_sp = 1;
6520
6521 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6522 if (GET_MODE (value) != mode)
6523 return 0;
6524
6525 /* Reject VALUE if it was loaded from GOAL
6526 and is also a register that appears in the address of GOAL. */
6527
6528 if (goal_mem && value == SET_DEST (single_set (where))
6529 && refers_to_regno_for_reload_p (valueno,
6530 (valueno
6531 + HARD_REGNO_NREGS (valueno, mode)),
6532 goal, (rtx*) 0))
6533 return 0;
6534
6535 /* Reject registers that overlap GOAL. */
6536
6537 if (!goal_mem && !goal_const
6538 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6539 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6540 return 0;
6541
6542 nregs = HARD_REGNO_NREGS (regno, mode);
6543 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6544
6545 /* Reject VALUE if it is one of the regs reserved for reloads.
6546 Reload1 knows how to reuse them anyway, and it would get
6547 confused if we allocated one without its knowledge.
6548 (Now that insns introduced by reload are ignored above,
6549 this case shouldn't happen, but I'm not positive.) */
6550
6551 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6552 {
6553 int i;
6554 for (i = 0; i < valuenregs; ++i)
6555 if (reload_reg_p[valueno + i] >= 0)
6556 return 0;
6557 }
6558
6559 /* Reject VALUE if it is a register being used for an input reload
6560 even if it is not one of those reserved. */
6561
6562 if (reload_reg_p != 0)
6563 {
6564 int i;
6565 for (i = 0; i < n_reloads; i++)
6566 if (rld[i].reg_rtx != 0 && rld[i].in)
6567 {
6568 int regno1 = REGNO (rld[i].reg_rtx);
6569 int nregs1 = HARD_REGNO_NREGS (regno1,
6570 GET_MODE (rld[i].reg_rtx));
6571 if (regno1 < valueno + valuenregs
6572 && regno1 + nregs1 > valueno)
6573 return 0;
6574 }
6575 }
6576
6577 if (goal_mem)
6578 /* We must treat frame pointer as varying here,
6579 since it can vary--in a nonlocal goto as generated by expand_goto. */
6580 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6581
6582 /* Now verify that the values of GOAL and VALUE remain unaltered
6583 until INSN is reached. */
6584
6585 p = insn;
6586 while (1)
6587 {
6588 p = PREV_INSN (p);
6589 if (p == where)
6590 return value;
6591
6592 /* Don't trust the conversion past a function call
6593 if either of the two is in a call-clobbered register, or memory. */
6594 if (GET_CODE (p) == CALL_INSN)
6595 {
6596 int i;
6597
6598 if (goal_mem || need_stable_sp)
6599 return 0;
6600
6601 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6602 for (i = 0; i < nregs; ++i)
6603 if (call_used_regs[regno + i])
6604 return 0;
6605
6606 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6607 for (i = 0; i < valuenregs; ++i)
6608 if (call_used_regs[valueno + i])
6609 return 0;
6610 #ifdef NON_SAVING_SETJMP
6611 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6612 return 0;
6613 #endif
6614 }
6615
6616 if (INSN_P (p))
6617 {
6618 pat = PATTERN (p);
6619
6620 /* Watch out for unspec_volatile, and volatile asms. */
6621 if (volatile_insn_p (pat))
6622 return 0;
6623
6624 /* If this insn P stores in either GOAL or VALUE, return 0.
6625 If GOAL is a memory ref and this insn writes memory, return 0.
6626 If GOAL is a memory ref and its address is not constant,
6627 and this insn P changes a register used in GOAL, return 0. */
6628
6629 if (GET_CODE (pat) == COND_EXEC)
6630 pat = COND_EXEC_CODE (pat);
6631 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6632 {
6633 rtx dest = SET_DEST (pat);
6634 while (GET_CODE (dest) == SUBREG
6635 || GET_CODE (dest) == ZERO_EXTRACT
6636 || GET_CODE (dest) == SIGN_EXTRACT
6637 || GET_CODE (dest) == STRICT_LOW_PART)
6638 dest = XEXP (dest, 0);
6639 if (GET_CODE (dest) == REG)
6640 {
6641 int xregno = REGNO (dest);
6642 int xnregs;
6643 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6644 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6645 else
6646 xnregs = 1;
6647 if (xregno < regno + nregs && xregno + xnregs > regno)
6648 return 0;
6649 if (xregno < valueno + valuenregs
6650 && xregno + xnregs > valueno)
6651 return 0;
6652 if (goal_mem_addr_varies
6653 && reg_overlap_mentioned_for_reload_p (dest, goal))
6654 return 0;
6655 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6656 return 0;
6657 }
6658 else if (goal_mem && GET_CODE (dest) == MEM
6659 && ! push_operand (dest, GET_MODE (dest)))
6660 return 0;
6661 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6662 && reg_equiv_memory_loc[regno] != 0)
6663 return 0;
6664 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6665 return 0;
6666 }
6667 else if (GET_CODE (pat) == PARALLEL)
6668 {
6669 int i;
6670 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6671 {
6672 rtx v1 = XVECEXP (pat, 0, i);
6673 if (GET_CODE (v1) == COND_EXEC)
6674 v1 = COND_EXEC_CODE (v1);
6675 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6676 {
6677 rtx dest = SET_DEST (v1);
6678 while (GET_CODE (dest) == SUBREG
6679 || GET_CODE (dest) == ZERO_EXTRACT
6680 || GET_CODE (dest) == SIGN_EXTRACT
6681 || GET_CODE (dest) == STRICT_LOW_PART)
6682 dest = XEXP (dest, 0);
6683 if (GET_CODE (dest) == REG)
6684 {
6685 int xregno = REGNO (dest);
6686 int xnregs;
6687 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6688 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6689 else
6690 xnregs = 1;
6691 if (xregno < regno + nregs
6692 && xregno + xnregs > regno)
6693 return 0;
6694 if (xregno < valueno + valuenregs
6695 && xregno + xnregs > valueno)
6696 return 0;
6697 if (goal_mem_addr_varies
6698 && reg_overlap_mentioned_for_reload_p (dest,
6699 goal))
6700 return 0;
6701 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6702 return 0;
6703 }
6704 else if (goal_mem && GET_CODE (dest) == MEM
6705 && ! push_operand (dest, GET_MODE (dest)))
6706 return 0;
6707 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6708 && reg_equiv_memory_loc[regno] != 0)
6709 return 0;
6710 else if (need_stable_sp
6711 && push_operand (dest, GET_MODE (dest)))
6712 return 0;
6713 }
6714 }
6715 }
6716
6717 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6718 {
6719 rtx link;
6720
6721 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6722 link = XEXP (link, 1))
6723 {
6724 pat = XEXP (link, 0);
6725 if (GET_CODE (pat) == CLOBBER)
6726 {
6727 rtx dest = SET_DEST (pat);
6728
6729 if (GET_CODE (dest) == REG)
6730 {
6731 int xregno = REGNO (dest);
6732 int xnregs
6733 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6734
6735 if (xregno < regno + nregs
6736 && xregno + xnregs > regno)
6737 return 0;
6738 else if (xregno < valueno + valuenregs
6739 && xregno + xnregs > valueno)
6740 return 0;
6741 else if (goal_mem_addr_varies
6742 && reg_overlap_mentioned_for_reload_p (dest,
6743 goal))
6744 return 0;
6745 }
6746
6747 else if (goal_mem && GET_CODE (dest) == MEM
6748 && ! push_operand (dest, GET_MODE (dest)))
6749 return 0;
6750 else if (need_stable_sp
6751 && push_operand (dest, GET_MODE (dest)))
6752 return 0;
6753 }
6754 }
6755 }
6756
6757 #ifdef AUTO_INC_DEC
6758 /* If this insn auto-increments or auto-decrements
6759 either regno or valueno, return 0 now.
6760 If GOAL is a memory ref and its address is not constant,
6761 and this insn P increments a register used in GOAL, return 0. */
6762 {
6763 rtx link;
6764
6765 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6766 if (REG_NOTE_KIND (link) == REG_INC
6767 && GET_CODE (XEXP (link, 0)) == REG)
6768 {
6769 int incno = REGNO (XEXP (link, 0));
6770 if (incno < regno + nregs && incno >= regno)
6771 return 0;
6772 if (incno < valueno + valuenregs && incno >= valueno)
6773 return 0;
6774 if (goal_mem_addr_varies
6775 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6776 goal))
6777 return 0;
6778 }
6779 }
6780 #endif
6781 }
6782 }
6783 }
6784 \f
6785 /* Find a place where INCED appears in an increment or decrement operator
6786 within X, and return the amount INCED is incremented or decremented by.
6787 The value is always positive. */
6788
6789 static int
6790 find_inc_amount (rtx x, rtx inced)
6791 {
6792 enum rtx_code code = GET_CODE (x);
6793 const char *fmt;
6794 int i;
6795
6796 if (code == MEM)
6797 {
6798 rtx addr = XEXP (x, 0);
6799 if ((GET_CODE (addr) == PRE_DEC
6800 || GET_CODE (addr) == POST_DEC
6801 || GET_CODE (addr) == PRE_INC
6802 || GET_CODE (addr) == POST_INC)
6803 && XEXP (addr, 0) == inced)
6804 return GET_MODE_SIZE (GET_MODE (x));
6805 else if ((GET_CODE (addr) == PRE_MODIFY
6806 || GET_CODE (addr) == POST_MODIFY)
6807 && GET_CODE (XEXP (addr, 1)) == PLUS
6808 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6809 && XEXP (addr, 0) == inced
6810 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6811 {
6812 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6813 return i < 0 ? -i : i;
6814 }
6815 }
6816
6817 fmt = GET_RTX_FORMAT (code);
6818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6819 {
6820 if (fmt[i] == 'e')
6821 {
6822 int tem = find_inc_amount (XEXP (x, i), inced);
6823 if (tem != 0)
6824 return tem;
6825 }
6826 if (fmt[i] == 'E')
6827 {
6828 int j;
6829 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6830 {
6831 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6832 if (tem != 0)
6833 return tem;
6834 }
6835 }
6836 }
6837
6838 return 0;
6839 }
6840 \f
6841 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6842 If SETS is nonzero, also consider SETs. */
6843
6844 int
6845 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6846 int sets)
6847 {
6848 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6849 unsigned int endregno = regno + nregs;
6850
6851 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6852 || (sets && GET_CODE (PATTERN (insn)) == SET))
6853 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6854 {
6855 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6856
6857 return test >= regno && test < endregno;
6858 }
6859
6860 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6861 {
6862 int i = XVECLEN (PATTERN (insn), 0) - 1;
6863
6864 for (; i >= 0; i--)
6865 {
6866 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6867 if ((GET_CODE (elt) == CLOBBER
6868 || (sets && GET_CODE (PATTERN (insn)) == SET))
6869 && GET_CODE (XEXP (elt, 0)) == REG)
6870 {
6871 unsigned int test = REGNO (XEXP (elt, 0));
6872
6873 if (test >= regno && test < endregno)
6874 return 1;
6875 }
6876 }
6877 }
6878
6879 return 0;
6880 }
6881
6882 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6883 rtx
6884 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6885 {
6886 int regno;
6887
6888 if (GET_MODE (reloadreg) == mode)
6889 return reloadreg;
6890
6891 regno = REGNO (reloadreg);
6892
6893 if (WORDS_BIG_ENDIAN)
6894 regno += HARD_REGNO_NREGS (regno, GET_MODE (reloadreg))
6895 - HARD_REGNO_NREGS (regno, mode);
6896
6897 return gen_rtx_REG (mode, regno);
6898 }
6899
6900 static const char *const reload_when_needed_name[] =
6901 {
6902 "RELOAD_FOR_INPUT",
6903 "RELOAD_FOR_OUTPUT",
6904 "RELOAD_FOR_INSN",
6905 "RELOAD_FOR_INPUT_ADDRESS",
6906 "RELOAD_FOR_INPADDR_ADDRESS",
6907 "RELOAD_FOR_OUTPUT_ADDRESS",
6908 "RELOAD_FOR_OUTADDR_ADDRESS",
6909 "RELOAD_FOR_OPERAND_ADDRESS",
6910 "RELOAD_FOR_OPADDR_ADDR",
6911 "RELOAD_OTHER",
6912 "RELOAD_FOR_OTHER_ADDRESS"
6913 };
6914
6915 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6916
6917 /* These functions are used to print the variables set by 'find_reloads' */
6918
6919 void
6920 debug_reload_to_stream (FILE *f)
6921 {
6922 int r;
6923 const char *prefix;
6924
6925 if (! f)
6926 f = stderr;
6927 for (r = 0; r < n_reloads; r++)
6928 {
6929 fprintf (f, "Reload %d: ", r);
6930
6931 if (rld[r].in != 0)
6932 {
6933 fprintf (f, "reload_in (%s) = ",
6934 GET_MODE_NAME (rld[r].inmode));
6935 print_inline_rtx (f, rld[r].in, 24);
6936 fprintf (f, "\n\t");
6937 }
6938
6939 if (rld[r].out != 0)
6940 {
6941 fprintf (f, "reload_out (%s) = ",
6942 GET_MODE_NAME (rld[r].outmode));
6943 print_inline_rtx (f, rld[r].out, 24);
6944 fprintf (f, "\n\t");
6945 }
6946
6947 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6948
6949 fprintf (f, "%s (opnum = %d)",
6950 reload_when_needed_name[(int) rld[r].when_needed],
6951 rld[r].opnum);
6952
6953 if (rld[r].optional)
6954 fprintf (f, ", optional");
6955
6956 if (rld[r].nongroup)
6957 fprintf (f, ", nongroup");
6958
6959 if (rld[r].inc != 0)
6960 fprintf (f, ", inc by %d", rld[r].inc);
6961
6962 if (rld[r].nocombine)
6963 fprintf (f, ", can't combine");
6964
6965 if (rld[r].secondary_p)
6966 fprintf (f, ", secondary_reload_p");
6967
6968 if (rld[r].in_reg != 0)
6969 {
6970 fprintf (f, "\n\treload_in_reg: ");
6971 print_inline_rtx (f, rld[r].in_reg, 24);
6972 }
6973
6974 if (rld[r].out_reg != 0)
6975 {
6976 fprintf (f, "\n\treload_out_reg: ");
6977 print_inline_rtx (f, rld[r].out_reg, 24);
6978 }
6979
6980 if (rld[r].reg_rtx != 0)
6981 {
6982 fprintf (f, "\n\treload_reg_rtx: ");
6983 print_inline_rtx (f, rld[r].reg_rtx, 24);
6984 }
6985
6986 prefix = "\n\t";
6987 if (rld[r].secondary_in_reload != -1)
6988 {
6989 fprintf (f, "%ssecondary_in_reload = %d",
6990 prefix, rld[r].secondary_in_reload);
6991 prefix = ", ";
6992 }
6993
6994 if (rld[r].secondary_out_reload != -1)
6995 fprintf (f, "%ssecondary_out_reload = %d\n",
6996 prefix, rld[r].secondary_out_reload);
6997
6998 prefix = "\n\t";
6999 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7000 {
7001 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7002 insn_data[rld[r].secondary_in_icode].name);
7003 prefix = ", ";
7004 }
7005
7006 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7007 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7008 insn_data[rld[r].secondary_out_icode].name);
7009
7010 fprintf (f, "\n");
7011 }
7012 }
7013
7014 void
7015 debug_reload (void)
7016 {
7017 debug_reload_to_stream (stderr);
7018 }