sbitmap.c: Fix comment formatting.
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57 NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
72
73 Using a reload register for several reloads in one insn:
74
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
78
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
82
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
86
87 #define REG_OK_STRICT
88
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "expr.h"
95 #include "optabs.h"
96 #include "recog.h"
97 #include "reload.h"
98 #include "regs.h"
99 #include "hard-reg-set.h"
100 #include "flags.h"
101 #include "real.h"
102 #include "output.h"
103 #include "function.h"
104 #include "toplev.h"
105
106 #ifndef REGISTER_MOVE_COST
107 #define REGISTER_MOVE_COST(m, x, y) 2
108 #endif
109
110 #ifndef REGNO_MODE_OK_FOR_BASE_P
111 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112 #endif
113
114 #ifndef REG_MODE_OK_FOR_BASE_P
115 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116 #endif
117 \f
118 /* All reloads of the current insn are recorded here. See reload.h for
119 comments. */
120 int n_reloads;
121 struct reload rld[MAX_RELOADS];
122
123 /* All the "earlyclobber" operands of the current insn
124 are recorded here. */
125 int n_earlyclobbers;
126 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
127
128 int reload_n_operands;
129
130 /* Replacing reloads.
131
132 If `replace_reloads' is nonzero, then as each reload is recorded
133 an entry is made for it in the table `replacements'.
134 Then later `subst_reloads' can look through that table and
135 perform all the replacements needed. */
136
137 /* Nonzero means record the places to replace. */
138 static int replace_reloads;
139
140 /* Each replacement is recorded with a structure like this. */
141 struct replacement
142 {
143 rtx *where; /* Location to store in */
144 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
145 a SUBREG; 0 otherwise. */
146 int what; /* which reload this is for */
147 enum machine_mode mode; /* mode it must have */
148 };
149
150 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
151
152 /* Number of replacements currently recorded. */
153 static int n_replacements;
154
155 /* Used to track what is modified by an operand. */
156 struct decomposition
157 {
158 int reg_flag; /* Nonzero if referencing a register. */
159 int safe; /* Nonzero if this can't conflict with anything. */
160 rtx base; /* Base address for MEM. */
161 HOST_WIDE_INT start; /* Starting offset or register number. */
162 HOST_WIDE_INT end; /* Ending offset or register number. */
163 };
164
165 #ifdef SECONDARY_MEMORY_NEEDED
166
167 /* Save MEMs needed to copy from one class of registers to another. One MEM
168 is used per mode, but normally only one or two modes are ever used.
169
170 We keep two versions, before and after register elimination. The one
171 after register elimination is record separately for each operand. This
172 is done in case the address is not valid to be sure that we separately
173 reload each. */
174
175 static rtx secondary_memlocs[NUM_MACHINE_MODES];
176 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
177 #endif
178
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
182
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
185
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
190
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
196
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
199
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
203
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG \
207 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
209
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
220
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
228
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
237
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *));
242 #endif
243 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int));
244 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
245 static int push_reload PARAMS ((rtx, rtx, rtx *, rtx *, enum reg_class,
246 enum machine_mode, enum machine_mode,
247 int, int, int, enum reload_type));
248 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
249 static void combine_reloads PARAMS ((void));
250 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
251 enum reload_type, int, int));
252 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
253 enum machine_mode, enum machine_mode,
254 enum reg_class, int, int));
255 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
256 static struct decomposition decompose PARAMS ((rtx));
257 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
258 static int alternative_allows_memconst PARAMS ((const char *, int));
259 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
260 int, rtx, int *));
261 static rtx make_memloc PARAMS ((rtx, int));
262 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
263 int, enum reload_type, int, rtx));
264 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
265 static rtx subst_indexed_address PARAMS ((rtx));
266 static void update_auto_inc_notes PARAMS ((rtx, int, int));
267 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
268 int, enum reload_type,int, rtx));
269 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
270 enum machine_mode, int,
271 enum reload_type, int));
272 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int, enum reload_type,
273 int, rtx));
274 static int find_inc_amount PARAMS ((rtx, rtx));
275 \f
276 #ifdef HAVE_SECONDARY_RELOADS
277
278 /* Determine if any secondary reloads are needed for loading (if IN_P is
279 non-zero) or storing (if IN_P is zero) X to or from a reload register of
280 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
281 are needed, push them.
282
283 Return the reload number of the secondary reload we made, or -1 if
284 we didn't need one. *PICODE is set to the insn_code to use if we do
285 need a secondary reload. */
286
287 static int
288 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
289 type, picode)
290 int in_p;
291 rtx x;
292 int opnum;
293 int optional;
294 enum reg_class reload_class;
295 enum machine_mode reload_mode;
296 enum reload_type type;
297 enum insn_code *picode;
298 {
299 enum reg_class class = NO_REGS;
300 enum machine_mode mode = reload_mode;
301 enum insn_code icode = CODE_FOR_nothing;
302 enum reg_class t_class = NO_REGS;
303 enum machine_mode t_mode = VOIDmode;
304 enum insn_code t_icode = CODE_FOR_nothing;
305 enum reload_type secondary_type;
306 int s_reload, t_reload = -1;
307
308 if (type == RELOAD_FOR_INPUT_ADDRESS
309 || type == RELOAD_FOR_OUTPUT_ADDRESS
310 || type == RELOAD_FOR_INPADDR_ADDRESS
311 || type == RELOAD_FOR_OUTADDR_ADDRESS)
312 secondary_type = type;
313 else
314 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
315
316 *picode = CODE_FOR_nothing;
317
318 /* If X is a paradoxical SUBREG, use the inner value to determine both the
319 mode and object being reloaded. */
320 if (GET_CODE (x) == SUBREG
321 && (GET_MODE_SIZE (GET_MODE (x))
322 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
323 {
324 x = SUBREG_REG (x);
325 reload_mode = GET_MODE (x);
326 }
327
328 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
329 is still a pseudo-register by now, it *must* have an equivalent MEM
330 but we don't want to assume that), use that equivalent when seeing if
331 a secondary reload is needed since whether or not a reload is needed
332 might be sensitive to the form of the MEM. */
333
334 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
335 && reg_equiv_mem[REGNO (x)] != 0)
336 x = reg_equiv_mem[REGNO (x)];
337
338 #ifdef SECONDARY_INPUT_RELOAD_CLASS
339 if (in_p)
340 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
341 #endif
342
343 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
344 if (! in_p)
345 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
346 #endif
347
348 /* If we don't need any secondary registers, done. */
349 if (class == NO_REGS)
350 return -1;
351
352 /* Get a possible insn to use. If the predicate doesn't accept X, don't
353 use the insn. */
354
355 icode = (in_p ? reload_in_optab[(int) reload_mode]
356 : reload_out_optab[(int) reload_mode]);
357
358 if (icode != CODE_FOR_nothing
359 && insn_data[(int) icode].operand[in_p].predicate
360 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
361 icode = CODE_FOR_nothing;
362
363 /* If we will be using an insn, see if it can directly handle the reload
364 register we will be using. If it can, the secondary reload is for a
365 scratch register. If it can't, we will use the secondary reload for
366 an intermediate register and require a tertiary reload for the scratch
367 register. */
368
369 if (icode != CODE_FOR_nothing)
370 {
371 /* If IN_P is non-zero, the reload register will be the output in
372 operand 0. If IN_P is zero, the reload register will be the input
373 in operand 1. Outputs should have an initial "=", which we must
374 skip. */
375
376 enum reg_class insn_class;
377
378 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
379 insn_class = ALL_REGS;
380 else
381 {
382 char insn_letter
383 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
384 insn_class
385 = (insn_letter == 'r' ? GENERAL_REGS
386 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
387 }
388
389 if (insn_class == NO_REGS
390 || (in_p
391 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
392 /* The scratch register's constraint must start with "=&". */
393 || insn_data[(int) icode].operand[2].constraint[0] != '='
394 || insn_data[(int) icode].operand[2].constraint[1] != '&')
395 abort ();
396
397 if (reg_class_subset_p (reload_class, insn_class))
398 mode = insn_data[(int) icode].operand[2].mode;
399 else
400 {
401 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
402 class = insn_class;
403 t_mode = insn_data[(int) icode].operand[2].mode;
404 t_class = (t_letter == 'r' ? GENERAL_REGS
405 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
406 t_icode = icode;
407 icode = CODE_FOR_nothing;
408 }
409 }
410
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
416
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
421
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
424
425 if (in_p && class == reload_class && icode == CODE_FOR_nothing
426 && t_icode == CODE_FOR_nothing)
427 abort ();
428
429 /* If we need a tertiary reload, see if we have one we can reuse or else
430 make a new one. */
431
432 if (t_class != NO_REGS)
433 {
434 for (t_reload = 0; t_reload < n_reloads; t_reload++)
435 if (rld[t_reload].secondary_p
436 && (reg_class_subset_p (t_class, rld[t_reload].class)
437 || reg_class_subset_p (rld[t_reload].class, t_class))
438 && ((in_p && rld[t_reload].inmode == t_mode)
439 || (! in_p && rld[t_reload].outmode == t_mode))
440 && ((in_p && (rld[t_reload].secondary_in_icode
441 == CODE_FOR_nothing))
442 || (! in_p &&(rld[t_reload].secondary_out_icode
443 == CODE_FOR_nothing)))
444 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
445 && MERGABLE_RELOADS (secondary_type,
446 rld[t_reload].when_needed,
447 opnum, rld[t_reload].opnum))
448 {
449 if (in_p)
450 rld[t_reload].inmode = t_mode;
451 if (! in_p)
452 rld[t_reload].outmode = t_mode;
453
454 if (reg_class_subset_p (t_class, rld[t_reload].class))
455 rld[t_reload].class = t_class;
456
457 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
458 rld[t_reload].optional &= optional;
459 rld[t_reload].secondary_p = 1;
460 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
461 opnum, rld[t_reload].opnum))
462 rld[t_reload].when_needed = RELOAD_OTHER;
463 }
464
465 if (t_reload == n_reloads)
466 {
467 /* We need to make a new tertiary reload for this register class. */
468 rld[t_reload].in = rld[t_reload].out = 0;
469 rld[t_reload].class = t_class;
470 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
471 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
472 rld[t_reload].reg_rtx = 0;
473 rld[t_reload].optional = optional;
474 rld[t_reload].inc = 0;
475 /* Maybe we could combine these, but it seems too tricky. */
476 rld[t_reload].nocombine = 1;
477 rld[t_reload].in_reg = 0;
478 rld[t_reload].out_reg = 0;
479 rld[t_reload].opnum = opnum;
480 rld[t_reload].when_needed = secondary_type;
481 rld[t_reload].secondary_in_reload = -1;
482 rld[t_reload].secondary_out_reload = -1;
483 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
484 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
485 rld[t_reload].secondary_p = 1;
486
487 n_reloads++;
488 }
489 }
490
491 /* See if we can reuse an existing secondary reload. */
492 for (s_reload = 0; s_reload < n_reloads; s_reload++)
493 if (rld[s_reload].secondary_p
494 && (reg_class_subset_p (class, rld[s_reload].class)
495 || reg_class_subset_p (rld[s_reload].class, class))
496 && ((in_p && rld[s_reload].inmode == mode)
497 || (! in_p && rld[s_reload].outmode == mode))
498 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
499 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
500 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
501 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
502 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
503 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
504 opnum, rld[s_reload].opnum))
505 {
506 if (in_p)
507 rld[s_reload].inmode = mode;
508 if (! in_p)
509 rld[s_reload].outmode = mode;
510
511 if (reg_class_subset_p (class, rld[s_reload].class))
512 rld[s_reload].class = class;
513
514 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
515 rld[s_reload].optional &= optional;
516 rld[s_reload].secondary_p = 1;
517 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
518 opnum, rld[s_reload].opnum))
519 rld[s_reload].when_needed = RELOAD_OTHER;
520 }
521
522 if (s_reload == n_reloads)
523 {
524 #ifdef SECONDARY_MEMORY_NEEDED
525 /* If we need a memory location to copy between the two reload regs,
526 set it up now. Note that we do the input case before making
527 the reload and the output case after. This is due to the
528 way reloads are output. */
529
530 if (in_p && icode == CODE_FOR_nothing
531 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
532 {
533 get_secondary_mem (x, reload_mode, opnum, type);
534
535 /* We may have just added new reloads. Make sure we add
536 the new reload at the end. */
537 s_reload = n_reloads;
538 }
539 #endif
540
541 /* We need to make a new secondary reload for this register class. */
542 rld[s_reload].in = rld[s_reload].out = 0;
543 rld[s_reload].class = class;
544
545 rld[s_reload].inmode = in_p ? mode : VOIDmode;
546 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
547 rld[s_reload].reg_rtx = 0;
548 rld[s_reload].optional = optional;
549 rld[s_reload].inc = 0;
550 /* Maybe we could combine these, but it seems too tricky. */
551 rld[s_reload].nocombine = 1;
552 rld[s_reload].in_reg = 0;
553 rld[s_reload].out_reg = 0;
554 rld[s_reload].opnum = opnum;
555 rld[s_reload].when_needed = secondary_type;
556 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
557 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
558 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
559 rld[s_reload].secondary_out_icode
560 = ! in_p ? t_icode : CODE_FOR_nothing;
561 rld[s_reload].secondary_p = 1;
562
563 n_reloads++;
564
565 #ifdef SECONDARY_MEMORY_NEEDED
566 if (! in_p && icode == CODE_FOR_nothing
567 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
568 get_secondary_mem (x, mode, opnum, type);
569 #endif
570 }
571
572 *picode = icode;
573 return s_reload;
574 }
575 #endif /* HAVE_SECONDARY_RELOADS */
576 \f
577 #ifdef SECONDARY_MEMORY_NEEDED
578
579 /* Return a memory location that will be used to copy X in mode MODE.
580 If we haven't already made a location for this mode in this insn,
581 call find_reloads_address on the location being returned. */
582
583 rtx
584 get_secondary_mem (x, mode, opnum, type)
585 rtx x ATTRIBUTE_UNUSED;
586 enum machine_mode mode;
587 int opnum;
588 enum reload_type type;
589 {
590 rtx loc;
591 int mem_valid;
592
593 /* By default, if MODE is narrower than a word, widen it to a word.
594 This is required because most machines that require these memory
595 locations do not support short load and stores from all registers
596 (e.g., FP registers). */
597
598 #ifdef SECONDARY_MEMORY_NEEDED_MODE
599 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
600 #else
601 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
602 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
603 #endif
604
605 /* If we already have made a MEM for this operand in MODE, return it. */
606 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
607 return secondary_memlocs_elim[(int) mode][opnum];
608
609 /* If this is the first time we've tried to get a MEM for this mode,
610 allocate a new one. `something_changed' in reload will get set
611 by noticing that the frame size has changed. */
612
613 if (secondary_memlocs[(int) mode] == 0)
614 {
615 #ifdef SECONDARY_MEMORY_NEEDED_RTX
616 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
617 #else
618 secondary_memlocs[(int) mode]
619 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
620 #endif
621 }
622
623 /* Get a version of the address doing any eliminations needed. If that
624 didn't give us a new MEM, make a new one if it isn't valid. */
625
626 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
627 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
628
629 if (! mem_valid && loc == secondary_memlocs[(int) mode])
630 loc = copy_rtx (loc);
631
632 /* The only time the call below will do anything is if the stack
633 offset is too large. In that case IND_LEVELS doesn't matter, so we
634 can just pass a zero. Adjust the type to be the address of the
635 corresponding object. If the address was valid, save the eliminated
636 address. If it wasn't valid, we need to make a reload each time, so
637 don't save it. */
638
639 if (! mem_valid)
640 {
641 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
642 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
643 : RELOAD_OTHER);
644
645 find_reloads_address (mode, (rtx*)0, XEXP (loc, 0), &XEXP (loc, 0),
646 opnum, type, 0, 0);
647 }
648
649 secondary_memlocs_elim[(int) mode][opnum] = loc;
650 return loc;
651 }
652
653 /* Clear any secondary memory locations we've made. */
654
655 void
656 clear_secondary_mem ()
657 {
658 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
659 }
660 #endif /* SECONDARY_MEMORY_NEEDED */
661 \f
662 /* Find the largest class for which every register number plus N is valid in
663 M1 (if in range). Abort if no such class exists. */
664
665 static enum reg_class
666 find_valid_class (m1, n)
667 enum machine_mode m1 ATTRIBUTE_UNUSED;
668 int n;
669 {
670 int class;
671 int regno;
672 enum reg_class best_class = NO_REGS;
673 unsigned int best_size = 0;
674
675 for (class = 1; class < N_REG_CLASSES; class++)
676 {
677 int bad = 0;
678 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
679 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
680 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
681 && ! HARD_REGNO_MODE_OK (regno + n, m1))
682 bad = 1;
683
684 if (! bad && reg_class_size[class] > best_size)
685 best_class = class, best_size = reg_class_size[class];
686 }
687
688 if (best_size == 0)
689 abort ();
690
691 return best_class;
692 }
693 \f
694 /* Return the number of a previously made reload that can be combined with
695 a new one, or n_reloads if none of the existing reloads can be used.
696 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
697 push_reload, they determine the kind of the new reload that we try to
698 combine. P_IN points to the corresponding value of IN, which can be
699 modified by this function.
700 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
701
702 static int
703 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
704 rtx *p_in, out;
705 enum reg_class class;
706 enum reload_type type;
707 int opnum, dont_share;
708 {
709 rtx in = *p_in;
710 int i;
711 /* We can't merge two reloads if the output of either one is
712 earlyclobbered. */
713
714 if (earlyclobber_operand_p (out))
715 return n_reloads;
716
717 /* We can use an existing reload if the class is right
718 and at least one of IN and OUT is a match
719 and the other is at worst neutral.
720 (A zero compared against anything is neutral.)
721
722 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
723 for the same thing since that can cause us to need more reload registers
724 than we otherwise would. */
725
726 for (i = 0; i < n_reloads; i++)
727 if ((reg_class_subset_p (class, rld[i].class)
728 || reg_class_subset_p (rld[i].class, class))
729 /* If the existing reload has a register, it must fit our class. */
730 && (rld[i].reg_rtx == 0
731 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
732 true_regnum (rld[i].reg_rtx)))
733 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
734 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
735 || (out != 0 && MATCHES (rld[i].out, out)
736 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
737 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
738 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
739 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
740 return i;
741
742 /* Reloading a plain reg for input can match a reload to postincrement
743 that reg, since the postincrement's value is the right value.
744 Likewise, it can match a preincrement reload, since we regard
745 the preincrementation as happening before any ref in this insn
746 to that register. */
747 for (i = 0; i < n_reloads; i++)
748 if ((reg_class_subset_p (class, rld[i].class)
749 || reg_class_subset_p (rld[i].class, class))
750 /* If the existing reload has a register, it must fit our
751 class. */
752 && (rld[i].reg_rtx == 0
753 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
754 true_regnum (rld[i].reg_rtx)))
755 && out == 0 && rld[i].out == 0 && rld[i].in != 0
756 && ((GET_CODE (in) == REG
757 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
758 && MATCHES (XEXP (rld[i].in, 0), in))
759 || (GET_CODE (rld[i].in) == REG
760 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
761 && MATCHES (XEXP (in, 0), rld[i].in)))
762 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
763 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
764 && MERGABLE_RELOADS (type, rld[i].when_needed,
765 opnum, rld[i].opnum))
766 {
767 /* Make sure reload_in ultimately has the increment,
768 not the plain register. */
769 if (GET_CODE (in) == REG)
770 *p_in = rld[i].in;
771 return i;
772 }
773 return n_reloads;
774 }
775
776 /* Return nonzero if X is a SUBREG which will require reloading of its
777 SUBREG_REG expression. */
778
779 static int
780 reload_inner_reg_of_subreg (x, mode)
781 rtx x;
782 enum machine_mode mode;
783 {
784 rtx inner;
785
786 /* Only SUBREGs are problematical. */
787 if (GET_CODE (x) != SUBREG)
788 return 0;
789
790 inner = SUBREG_REG (x);
791
792 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
793 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
794 return 1;
795
796 /* If INNER is not a hard register, then INNER will not need to
797 be reloaded. */
798 if (GET_CODE (inner) != REG
799 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
800 return 0;
801
802 /* If INNER is not ok for MODE, then INNER will need reloading. */
803 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
804 return 1;
805
806 /* If the outer part is a word or smaller, INNER larger than a
807 word and the number of regs for INNER is not the same as the
808 number of words in INNER, then INNER will need reloading. */
809 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
810 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
811 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
812 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
813 }
814
815 /* Record one reload that needs to be performed.
816 IN is an rtx saying where the data are to be found before this instruction.
817 OUT says where they must be stored after the instruction.
818 (IN is zero for data not read, and OUT is zero for data not written.)
819 INLOC and OUTLOC point to the places in the instructions where
820 IN and OUT were found.
821 If IN and OUT are both non-zero, it means the same register must be used
822 to reload both IN and OUT.
823
824 CLASS is a register class required for the reloaded data.
825 INMODE is the machine mode that the instruction requires
826 for the reg that replaces IN and OUTMODE is likewise for OUT.
827
828 If IN is zero, then OUT's location and mode should be passed as
829 INLOC and INMODE.
830
831 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
832
833 OPTIONAL nonzero means this reload does not need to be performed:
834 it can be discarded if that is more convenient.
835
836 OPNUM and TYPE say what the purpose of this reload is.
837
838 The return value is the reload-number for this reload.
839
840 If both IN and OUT are nonzero, in some rare cases we might
841 want to make two separate reloads. (Actually we never do this now.)
842 Therefore, the reload-number for OUT is stored in
843 output_reloadnum when we return; the return value applies to IN.
844 Usually (presently always), when IN and OUT are nonzero,
845 the two reload-numbers are equal, but the caller should be careful to
846 distinguish them. */
847
848 static int
849 push_reload (in, out, inloc, outloc, class,
850 inmode, outmode, strict_low, optional, opnum, type)
851 rtx in, out;
852 rtx *inloc, *outloc;
853 enum reg_class class;
854 enum machine_mode inmode, outmode;
855 int strict_low;
856 int optional;
857 int opnum;
858 enum reload_type type;
859 {
860 register int i;
861 int dont_share = 0;
862 int dont_remove_subreg = 0;
863 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
864 int secondary_in_reload = -1, secondary_out_reload = -1;
865 enum insn_code secondary_in_icode = CODE_FOR_nothing;
866 enum insn_code secondary_out_icode = CODE_FOR_nothing;
867
868 /* INMODE and/or OUTMODE could be VOIDmode if no mode
869 has been specified for the operand. In that case,
870 use the operand's mode as the mode to reload. */
871 if (inmode == VOIDmode && in != 0)
872 inmode = GET_MODE (in);
873 if (outmode == VOIDmode && out != 0)
874 outmode = GET_MODE (out);
875
876 /* If IN is a pseudo register everywhere-equivalent to a constant, and
877 it is not in a hard register, reload straight from the constant,
878 since we want to get rid of such pseudo registers.
879 Often this is done earlier, but not always in find_reloads_address. */
880 if (in != 0 && GET_CODE (in) == REG)
881 {
882 register int regno = REGNO (in);
883
884 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
885 && reg_equiv_constant[regno] != 0)
886 in = reg_equiv_constant[regno];
887 }
888
889 /* Likewise for OUT. Of course, OUT will never be equivalent to
890 an actual constant, but it might be equivalent to a memory location
891 (in the case of a parameter). */
892 if (out != 0 && GET_CODE (out) == REG)
893 {
894 register int regno = REGNO (out);
895
896 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
897 && reg_equiv_constant[regno] != 0)
898 out = reg_equiv_constant[regno];
899 }
900
901 /* If we have a read-write operand with an address side-effect,
902 change either IN or OUT so the side-effect happens only once. */
903 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
904 switch (GET_CODE (XEXP (in, 0)))
905 {
906 case POST_INC: case POST_DEC: case POST_MODIFY:
907 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
908 break;
909
910 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
911 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
912 break;
913
914 default:
915 break;
916 }
917
918 /* If we are reloading a (SUBREG constant ...), really reload just the
919 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
920 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
921 a pseudo and hence will become a MEM) with M1 wider than M2 and the
922 register is a pseudo, also reload the inside expression.
923 For machines that extend byte loads, do this for any SUBREG of a pseudo
924 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
925 M2 is an integral mode that gets extended when loaded.
926 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
927 either M1 is not valid for R or M2 is wider than a word but we only
928 need one word to store an M2-sized quantity in R.
929 (However, if OUT is nonzero, we need to reload the reg *and*
930 the subreg, so do nothing here, and let following statement handle it.)
931
932 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
933 we can't handle it here because CONST_INT does not indicate a mode.
934
935 Similarly, we must reload the inside expression if we have a
936 STRICT_LOW_PART (presumably, in == out in the cas).
937
938 Also reload the inner expression if it does not require a secondary
939 reload but the SUBREG does.
940
941 Finally, reload the inner expression if it is a register that is in
942 the class whose registers cannot be referenced in a different size
943 and M1 is not the same size as M2. If SUBREG_BYTE is nonzero, we
944 cannot reload just the inside since we might end up with the wrong
945 register class. But if it is inside a STRICT_LOW_PART, we have
946 no choice, so we hope we do get the right register class there. */
947
948 if (in != 0 && GET_CODE (in) == SUBREG
949 && (SUBREG_BYTE (in) == 0 || strict_low)
950 #ifdef CLASS_CANNOT_CHANGE_MODE
951 && (class != CLASS_CANNOT_CHANGE_MODE
952 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
953 #endif
954 && (CONSTANT_P (SUBREG_REG (in))
955 || GET_CODE (SUBREG_REG (in)) == PLUS
956 || strict_low
957 || (((GET_CODE (SUBREG_REG (in)) == REG
958 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
959 || GET_CODE (SUBREG_REG (in)) == MEM)
960 && ((GET_MODE_SIZE (inmode)
961 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
962 #ifdef LOAD_EXTEND_OP
963 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
964 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
965 <= UNITS_PER_WORD)
966 && (GET_MODE_SIZE (inmode)
967 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
968 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
969 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
970 #endif
971 #ifdef WORD_REGISTER_OPERATIONS
972 || ((GET_MODE_SIZE (inmode)
973 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
974 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
975 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
976 / UNITS_PER_WORD)))
977 #endif
978 ))
979 || (GET_CODE (SUBREG_REG (in)) == REG
980 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
981 /* The case where out is nonzero
982 is handled differently in the following statement. */
983 && (out == 0 || SUBREG_BYTE (in) == 0)
984 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
985 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
986 > UNITS_PER_WORD)
987 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
988 / UNITS_PER_WORD)
989 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
990 GET_MODE (SUBREG_REG (in)))))
991 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
992 #ifdef SECONDARY_INPUT_RELOAD_CLASS
993 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
994 && (SECONDARY_INPUT_RELOAD_CLASS (class,
995 GET_MODE (SUBREG_REG (in)),
996 SUBREG_REG (in))
997 == NO_REGS))
998 #endif
999 #ifdef CLASS_CANNOT_CHANGE_MODE
1000 || (GET_CODE (SUBREG_REG (in)) == REG
1001 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1002 && (TEST_HARD_REG_BIT
1003 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1004 REGNO (SUBREG_REG (in))))
1005 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1006 inmode))
1007 #endif
1008 ))
1009 {
1010 in_subreg_loc = inloc;
1011 inloc = &SUBREG_REG (in);
1012 in = *inloc;
1013 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1014 if (GET_CODE (in) == MEM)
1015 /* This is supposed to happen only for paradoxical subregs made by
1016 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1017 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1018 abort ();
1019 #endif
1020 inmode = GET_MODE (in);
1021 }
1022
1023 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1024 either M1 is not valid for R or M2 is wider than a word but we only
1025 need one word to store an M2-sized quantity in R.
1026
1027 However, we must reload the inner reg *as well as* the subreg in
1028 that case. */
1029
1030 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1031 code above. This can happen if SUBREG_BYTE != 0. */
1032
1033 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1034 {
1035 enum reg_class in_class = class;
1036
1037 if (GET_CODE (SUBREG_REG (in)) == REG)
1038 in_class
1039 = find_valid_class (inmode,
1040 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1041 GET_MODE (SUBREG_REG (in)),
1042 SUBREG_BYTE (in),
1043 GET_MODE (in)));
1044
1045 /* This relies on the fact that emit_reload_insns outputs the
1046 instructions for input reloads of type RELOAD_OTHER in the same
1047 order as the reloads. Thus if the outer reload is also of type
1048 RELOAD_OTHER, we are guaranteed that this inner reload will be
1049 output before the outer reload. */
1050 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *)0,
1051 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1052 dont_remove_subreg = 1;
1053 }
1054
1055 /* Similarly for paradoxical and problematical SUBREGs on the output.
1056 Note that there is no reason we need worry about the previous value
1057 of SUBREG_REG (out); even if wider than out,
1058 storing in a subreg is entitled to clobber it all
1059 (except in the case of STRICT_LOW_PART,
1060 and in that case the constraint should label it input-output.) */
1061 if (out != 0 && GET_CODE (out) == SUBREG
1062 && (SUBREG_BYTE (out) == 0 || strict_low)
1063 #ifdef CLASS_CANNOT_CHANGE_MODE
1064 && (class != CLASS_CANNOT_CHANGE_MODE
1065 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1066 outmode))
1067 #endif
1068 && (CONSTANT_P (SUBREG_REG (out))
1069 || strict_low
1070 || (((GET_CODE (SUBREG_REG (out)) == REG
1071 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1072 || GET_CODE (SUBREG_REG (out)) == MEM)
1073 && ((GET_MODE_SIZE (outmode)
1074 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1075 #ifdef WORD_REGISTER_OPERATIONS
1076 || ((GET_MODE_SIZE (outmode)
1077 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1078 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1079 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1080 / UNITS_PER_WORD)))
1081 #endif
1082 ))
1083 || (GET_CODE (SUBREG_REG (out)) == REG
1084 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1085 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1086 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1087 > UNITS_PER_WORD)
1088 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1089 / UNITS_PER_WORD)
1090 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1091 GET_MODE (SUBREG_REG (out)))))
1092 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1093 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1094 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1095 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1096 GET_MODE (SUBREG_REG (out)),
1097 SUBREG_REG (out))
1098 == NO_REGS))
1099 #endif
1100 #ifdef CLASS_CANNOT_CHANGE_MODE
1101 || (GET_CODE (SUBREG_REG (out)) == REG
1102 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1103 && (TEST_HARD_REG_BIT
1104 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1105 REGNO (SUBREG_REG (out))))
1106 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1107 outmode))
1108 #endif
1109 ))
1110 {
1111 out_subreg_loc = outloc;
1112 outloc = &SUBREG_REG (out);
1113 out = *outloc;
1114 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1115 if (GET_CODE (out) == MEM
1116 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1117 abort ();
1118 #endif
1119 outmode = GET_MODE (out);
1120 }
1121
1122 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1123 either M1 is not valid for R or M2 is wider than a word but we only
1124 need one word to store an M2-sized quantity in R.
1125
1126 However, we must reload the inner reg *as well as* the subreg in
1127 that case. In this case, the inner reg is an in-out reload. */
1128
1129 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1130 {
1131 /* This relies on the fact that emit_reload_insns outputs the
1132 instructions for output reloads of type RELOAD_OTHER in reverse
1133 order of the reloads. Thus if the outer reload is also of type
1134 RELOAD_OTHER, we are guaranteed that this inner reload will be
1135 output after the outer reload. */
1136 dont_remove_subreg = 1;
1137 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1138 &SUBREG_REG (out),
1139 find_valid_class (outmode,
1140 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1141 GET_MODE (SUBREG_REG (out)),
1142 SUBREG_BYTE (out),
1143 GET_MODE (out))),
1144 VOIDmode, VOIDmode, 0, 0,
1145 opnum, RELOAD_OTHER);
1146 }
1147
1148 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1149 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1150 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1151 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1152 dont_share = 1;
1153
1154 /* If IN is a SUBREG of a hard register, make a new REG. This
1155 simplifies some of the cases below. */
1156
1157 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1158 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1159 && ! dont_remove_subreg)
1160 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1161
1162 /* Similarly for OUT. */
1163 if (out != 0 && GET_CODE (out) == SUBREG
1164 && GET_CODE (SUBREG_REG (out)) == REG
1165 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1166 && ! dont_remove_subreg)
1167 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1168
1169 /* Narrow down the class of register wanted if that is
1170 desirable on this machine for efficiency. */
1171 if (in != 0)
1172 class = PREFERRED_RELOAD_CLASS (in, class);
1173
1174 /* Output reloads may need analogous treatment, different in detail. */
1175 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1176 if (out != 0)
1177 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1178 #endif
1179
1180 /* Make sure we use a class that can handle the actual pseudo
1181 inside any subreg. For example, on the 386, QImode regs
1182 can appear within SImode subregs. Although GENERAL_REGS
1183 can handle SImode, QImode needs a smaller class. */
1184 #ifdef LIMIT_RELOAD_CLASS
1185 if (in_subreg_loc)
1186 class = LIMIT_RELOAD_CLASS (inmode, class);
1187 else if (in != 0 && GET_CODE (in) == SUBREG)
1188 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1189
1190 if (out_subreg_loc)
1191 class = LIMIT_RELOAD_CLASS (outmode, class);
1192 if (out != 0 && GET_CODE (out) == SUBREG)
1193 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1194 #endif
1195
1196 /* Verify that this class is at least possible for the mode that
1197 is specified. */
1198 if (this_insn_is_asm)
1199 {
1200 enum machine_mode mode;
1201 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1202 mode = inmode;
1203 else
1204 mode = outmode;
1205 if (mode == VOIDmode)
1206 {
1207 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1208 mode = word_mode;
1209 if (in != 0)
1210 inmode = word_mode;
1211 if (out != 0)
1212 outmode = word_mode;
1213 }
1214 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1215 if (HARD_REGNO_MODE_OK (i, mode)
1216 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1217 {
1218 int nregs = HARD_REGNO_NREGS (i, mode);
1219
1220 int j;
1221 for (j = 1; j < nregs; j++)
1222 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1223 break;
1224 if (j == nregs)
1225 break;
1226 }
1227 if (i == FIRST_PSEUDO_REGISTER)
1228 {
1229 error_for_asm (this_insn, "impossible register constraint in `asm'");
1230 class = ALL_REGS;
1231 }
1232 }
1233
1234 /* Optional output reloads are always OK even if we have no register class,
1235 since the function of these reloads is only to have spill_reg_store etc.
1236 set, so that the storing insn can be deleted later. */
1237 if (class == NO_REGS
1238 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1239 abort ();
1240
1241 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1242
1243 if (i == n_reloads)
1244 {
1245 /* See if we need a secondary reload register to move between CLASS
1246 and IN or CLASS and OUT. Get the icode and push any required reloads
1247 needed for each of them if so. */
1248
1249 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1250 if (in != 0)
1251 secondary_in_reload
1252 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1253 &secondary_in_icode);
1254 #endif
1255
1256 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1257 if (out != 0 && GET_CODE (out) != SCRATCH)
1258 secondary_out_reload
1259 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1260 type, &secondary_out_icode);
1261 #endif
1262
1263 /* We found no existing reload suitable for re-use.
1264 So add an additional reload. */
1265
1266 #ifdef SECONDARY_MEMORY_NEEDED
1267 /* If a memory location is needed for the copy, make one. */
1268 if (in != 0 && GET_CODE (in) == REG
1269 && REGNO (in) < FIRST_PSEUDO_REGISTER
1270 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1271 class, inmode))
1272 get_secondary_mem (in, inmode, opnum, type);
1273 #endif
1274
1275 i = n_reloads;
1276 rld[i].in = in;
1277 rld[i].out = out;
1278 rld[i].class = class;
1279 rld[i].inmode = inmode;
1280 rld[i].outmode = outmode;
1281 rld[i].reg_rtx = 0;
1282 rld[i].optional = optional;
1283 rld[i].inc = 0;
1284 rld[i].nocombine = 0;
1285 rld[i].in_reg = inloc ? *inloc : 0;
1286 rld[i].out_reg = outloc ? *outloc : 0;
1287 rld[i].opnum = opnum;
1288 rld[i].when_needed = type;
1289 rld[i].secondary_in_reload = secondary_in_reload;
1290 rld[i].secondary_out_reload = secondary_out_reload;
1291 rld[i].secondary_in_icode = secondary_in_icode;
1292 rld[i].secondary_out_icode = secondary_out_icode;
1293 rld[i].secondary_p = 0;
1294
1295 n_reloads++;
1296
1297 #ifdef SECONDARY_MEMORY_NEEDED
1298 if (out != 0 && GET_CODE (out) == REG
1299 && REGNO (out) < FIRST_PSEUDO_REGISTER
1300 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1301 outmode))
1302 get_secondary_mem (out, outmode, opnum, type);
1303 #endif
1304 }
1305 else
1306 {
1307 /* We are reusing an existing reload,
1308 but we may have additional information for it.
1309 For example, we may now have both IN and OUT
1310 while the old one may have just one of them. */
1311
1312 /* The modes can be different. If they are, we want to reload in
1313 the larger mode, so that the value is valid for both modes. */
1314 if (inmode != VOIDmode
1315 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1316 rld[i].inmode = inmode;
1317 if (outmode != VOIDmode
1318 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1319 rld[i].outmode = outmode;
1320 if (in != 0)
1321 {
1322 rtx in_reg = inloc ? *inloc : 0;
1323 /* If we merge reloads for two distinct rtl expressions that
1324 are identical in content, there might be duplicate address
1325 reloads. Remove the extra set now, so that if we later find
1326 that we can inherit this reload, we can get rid of the
1327 address reloads altogether.
1328
1329 Do not do this if both reloads are optional since the result
1330 would be an optional reload which could potentially leave
1331 unresolved address replacements.
1332
1333 It is not sufficient to call transfer_replacements since
1334 choose_reload_regs will remove the replacements for address
1335 reloads of inherited reloads which results in the same
1336 problem. */
1337 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1338 && ! (rld[i].optional && optional))
1339 {
1340 /* We must keep the address reload with the lower operand
1341 number alive. */
1342 if (opnum > rld[i].opnum)
1343 {
1344 remove_address_replacements (in);
1345 in = rld[i].in;
1346 in_reg = rld[i].in_reg;
1347 }
1348 else
1349 remove_address_replacements (rld[i].in);
1350 }
1351 rld[i].in = in;
1352 rld[i].in_reg = in_reg;
1353 }
1354 if (out != 0)
1355 {
1356 rld[i].out = out;
1357 rld[i].out_reg = outloc ? *outloc : 0;
1358 }
1359 if (reg_class_subset_p (class, rld[i].class))
1360 rld[i].class = class;
1361 rld[i].optional &= optional;
1362 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1363 opnum, rld[i].opnum))
1364 rld[i].when_needed = RELOAD_OTHER;
1365 rld[i].opnum = MIN (rld[i].opnum, opnum);
1366 }
1367
1368 /* If the ostensible rtx being reloaded differs from the rtx found
1369 in the location to substitute, this reload is not safe to combine
1370 because we cannot reliably tell whether it appears in the insn. */
1371
1372 if (in != 0 && in != *inloc)
1373 rld[i].nocombine = 1;
1374
1375 #if 0
1376 /* This was replaced by changes in find_reloads_address_1 and the new
1377 function inc_for_reload, which go with a new meaning of reload_inc. */
1378
1379 /* If this is an IN/OUT reload in an insn that sets the CC,
1380 it must be for an autoincrement. It doesn't work to store
1381 the incremented value after the insn because that would clobber the CC.
1382 So we must do the increment of the value reloaded from,
1383 increment it, store it back, then decrement again. */
1384 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1385 {
1386 out = 0;
1387 rld[i].out = 0;
1388 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1389 /* If we did not find a nonzero amount-to-increment-by,
1390 that contradicts the belief that IN is being incremented
1391 in an address in this insn. */
1392 if (rld[i].inc == 0)
1393 abort ();
1394 }
1395 #endif
1396
1397 /* If we will replace IN and OUT with the reload-reg,
1398 record where they are located so that substitution need
1399 not do a tree walk. */
1400
1401 if (replace_reloads)
1402 {
1403 if (inloc != 0)
1404 {
1405 register struct replacement *r = &replacements[n_replacements++];
1406 r->what = i;
1407 r->subreg_loc = in_subreg_loc;
1408 r->where = inloc;
1409 r->mode = inmode;
1410 }
1411 if (outloc != 0 && outloc != inloc)
1412 {
1413 register struct replacement *r = &replacements[n_replacements++];
1414 r->what = i;
1415 r->where = outloc;
1416 r->subreg_loc = out_subreg_loc;
1417 r->mode = outmode;
1418 }
1419 }
1420
1421 /* If this reload is just being introduced and it has both
1422 an incoming quantity and an outgoing quantity that are
1423 supposed to be made to match, see if either one of the two
1424 can serve as the place to reload into.
1425
1426 If one of them is acceptable, set rld[i].reg_rtx
1427 to that one. */
1428
1429 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1430 {
1431 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1432 inmode, outmode,
1433 rld[i].class, i,
1434 earlyclobber_operand_p (out));
1435
1436 /* If the outgoing register already contains the same value
1437 as the incoming one, we can dispense with loading it.
1438 The easiest way to tell the caller that is to give a phony
1439 value for the incoming operand (same as outgoing one). */
1440 if (rld[i].reg_rtx == out
1441 && (GET_CODE (in) == REG || CONSTANT_P (in))
1442 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1443 static_reload_reg_p, i, inmode))
1444 rld[i].in = out;
1445 }
1446
1447 /* If this is an input reload and the operand contains a register that
1448 dies in this insn and is used nowhere else, see if it is the right class
1449 to be used for this reload. Use it if so. (This occurs most commonly
1450 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1451 this if it is also an output reload that mentions the register unless
1452 the output is a SUBREG that clobbers an entire register.
1453
1454 Note that the operand might be one of the spill regs, if it is a
1455 pseudo reg and we are in a block where spilling has not taken place.
1456 But if there is no spilling in this block, that is OK.
1457 An explicitly used hard reg cannot be a spill reg. */
1458
1459 if (rld[i].reg_rtx == 0 && in != 0)
1460 {
1461 rtx note;
1462 int regno;
1463 enum machine_mode rel_mode = inmode;
1464
1465 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1466 rel_mode = outmode;
1467
1468 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1469 if (REG_NOTE_KIND (note) == REG_DEAD
1470 && GET_CODE (XEXP (note, 0)) == REG
1471 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1472 && reg_mentioned_p (XEXP (note, 0), in)
1473 && ! refers_to_regno_for_reload_p (regno,
1474 (regno
1475 + HARD_REGNO_NREGS (regno,
1476 rel_mode)),
1477 PATTERN (this_insn), inloc)
1478 /* If this is also an output reload, IN cannot be used as
1479 the reload register if it is set in this insn unless IN
1480 is also OUT. */
1481 && (out == 0 || in == out
1482 || ! hard_reg_set_here_p (regno,
1483 (regno
1484 + HARD_REGNO_NREGS (regno,
1485 rel_mode)),
1486 PATTERN (this_insn)))
1487 /* ??? Why is this code so different from the previous?
1488 Is there any simple coherent way to describe the two together?
1489 What's going on here. */
1490 && (in != out
1491 || (GET_CODE (in) == SUBREG
1492 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1493 / UNITS_PER_WORD)
1494 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1495 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1496 /* Make sure the operand fits in the reg that dies. */
1497 && (GET_MODE_SIZE (rel_mode)
1498 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1499 && HARD_REGNO_MODE_OK (regno, inmode)
1500 && HARD_REGNO_MODE_OK (regno, outmode))
1501 {
1502 unsigned int offs;
1503 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1504 HARD_REGNO_NREGS (regno, outmode));
1505
1506 for (offs = 0; offs < nregs; offs++)
1507 if (fixed_regs[regno + offs]
1508 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1509 regno + offs))
1510 break;
1511
1512 if (offs == nregs)
1513 {
1514 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1515 break;
1516 }
1517 }
1518 }
1519
1520 if (out)
1521 output_reloadnum = i;
1522
1523 return i;
1524 }
1525
1526 /* Record an additional place we must replace a value
1527 for which we have already recorded a reload.
1528 RELOADNUM is the value returned by push_reload
1529 when the reload was recorded.
1530 This is used in insn patterns that use match_dup. */
1531
1532 static void
1533 push_replacement (loc, reloadnum, mode)
1534 rtx *loc;
1535 int reloadnum;
1536 enum machine_mode mode;
1537 {
1538 if (replace_reloads)
1539 {
1540 register struct replacement *r = &replacements[n_replacements++];
1541 r->what = reloadnum;
1542 r->where = loc;
1543 r->subreg_loc = 0;
1544 r->mode = mode;
1545 }
1546 }
1547 \f
1548 /* Transfer all replacements that used to be in reload FROM to be in
1549 reload TO. */
1550
1551 void
1552 transfer_replacements (to, from)
1553 int to, from;
1554 {
1555 int i;
1556
1557 for (i = 0; i < n_replacements; i++)
1558 if (replacements[i].what == from)
1559 replacements[i].what = to;
1560 }
1561 \f
1562 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1563 or a subpart of it. If we have any replacements registered for IN_RTX,
1564 cancel the reloads that were supposed to load them.
1565 Return non-zero if we canceled any reloads. */
1566 int
1567 remove_address_replacements (in_rtx)
1568 rtx in_rtx;
1569 {
1570 int i, j;
1571 char reload_flags[MAX_RELOADS];
1572 int something_changed = 0;
1573
1574 memset (reload_flags, 0, sizeof reload_flags);
1575 for (i = 0, j = 0; i < n_replacements; i++)
1576 {
1577 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1578 reload_flags[replacements[i].what] |= 1;
1579 else
1580 {
1581 replacements[j++] = replacements[i];
1582 reload_flags[replacements[i].what] |= 2;
1583 }
1584 }
1585 /* Note that the following store must be done before the recursive calls. */
1586 n_replacements = j;
1587
1588 for (i = n_reloads - 1; i >= 0; i--)
1589 {
1590 if (reload_flags[i] == 1)
1591 {
1592 deallocate_reload_reg (i);
1593 remove_address_replacements (rld[i].in);
1594 rld[i].in = 0;
1595 something_changed = 1;
1596 }
1597 }
1598 return something_changed;
1599 }
1600 \f
1601 /* If there is only one output reload, and it is not for an earlyclobber
1602 operand, try to combine it with a (logically unrelated) input reload
1603 to reduce the number of reload registers needed.
1604
1605 This is safe if the input reload does not appear in
1606 the value being output-reloaded, because this implies
1607 it is not needed any more once the original insn completes.
1608
1609 If that doesn't work, see we can use any of the registers that
1610 die in this insn as a reload register. We can if it is of the right
1611 class and does not appear in the value being output-reloaded. */
1612
1613 static void
1614 combine_reloads ()
1615 {
1616 int i;
1617 int output_reload = -1;
1618 int secondary_out = -1;
1619 rtx note;
1620
1621 /* Find the output reload; return unless there is exactly one
1622 and that one is mandatory. */
1623
1624 for (i = 0; i < n_reloads; i++)
1625 if (rld[i].out != 0)
1626 {
1627 if (output_reload >= 0)
1628 return;
1629 output_reload = i;
1630 }
1631
1632 if (output_reload < 0 || rld[output_reload].optional)
1633 return;
1634
1635 /* An input-output reload isn't combinable. */
1636
1637 if (rld[output_reload].in != 0)
1638 return;
1639
1640 /* If this reload is for an earlyclobber operand, we can't do anything. */
1641 if (earlyclobber_operand_p (rld[output_reload].out))
1642 return;
1643
1644 /* Check each input reload; can we combine it? */
1645
1646 for (i = 0; i < n_reloads; i++)
1647 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1648 /* Life span of this reload must not extend past main insn. */
1649 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1650 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1651 && rld[i].when_needed != RELOAD_OTHER
1652 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1653 == CLASS_MAX_NREGS (rld[output_reload].class,
1654 rld[output_reload].outmode))
1655 && rld[i].inc == 0
1656 && rld[i].reg_rtx == 0
1657 #ifdef SECONDARY_MEMORY_NEEDED
1658 /* Don't combine two reloads with different secondary
1659 memory locations. */
1660 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1661 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1662 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1663 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1664 #endif
1665 && (SMALL_REGISTER_CLASSES
1666 ? (rld[i].class == rld[output_reload].class)
1667 : (reg_class_subset_p (rld[i].class,
1668 rld[output_reload].class)
1669 || reg_class_subset_p (rld[output_reload].class,
1670 rld[i].class)))
1671 && (MATCHES (rld[i].in, rld[output_reload].out)
1672 /* Args reversed because the first arg seems to be
1673 the one that we imagine being modified
1674 while the second is the one that might be affected. */
1675 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1676 rld[i].in)
1677 /* However, if the input is a register that appears inside
1678 the output, then we also can't share.
1679 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1680 If the same reload reg is used for both reg 69 and the
1681 result to be stored in memory, then that result
1682 will clobber the address of the memory ref. */
1683 && ! (GET_CODE (rld[i].in) == REG
1684 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1685 rld[output_reload].out))))
1686 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1687 && (reg_class_size[(int) rld[i].class]
1688 || SMALL_REGISTER_CLASSES)
1689 /* We will allow making things slightly worse by combining an
1690 input and an output, but no worse than that. */
1691 && (rld[i].when_needed == RELOAD_FOR_INPUT
1692 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1693 {
1694 int j;
1695
1696 /* We have found a reload to combine with! */
1697 rld[i].out = rld[output_reload].out;
1698 rld[i].out_reg = rld[output_reload].out_reg;
1699 rld[i].outmode = rld[output_reload].outmode;
1700 /* Mark the old output reload as inoperative. */
1701 rld[output_reload].out = 0;
1702 /* The combined reload is needed for the entire insn. */
1703 rld[i].when_needed = RELOAD_OTHER;
1704 /* If the output reload had a secondary reload, copy it. */
1705 if (rld[output_reload].secondary_out_reload != -1)
1706 {
1707 rld[i].secondary_out_reload
1708 = rld[output_reload].secondary_out_reload;
1709 rld[i].secondary_out_icode
1710 = rld[output_reload].secondary_out_icode;
1711 }
1712
1713 #ifdef SECONDARY_MEMORY_NEEDED
1714 /* Copy any secondary MEM. */
1715 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1716 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1717 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1718 #endif
1719 /* If required, minimize the register class. */
1720 if (reg_class_subset_p (rld[output_reload].class,
1721 rld[i].class))
1722 rld[i].class = rld[output_reload].class;
1723
1724 /* Transfer all replacements from the old reload to the combined. */
1725 for (j = 0; j < n_replacements; j++)
1726 if (replacements[j].what == output_reload)
1727 replacements[j].what = i;
1728
1729 return;
1730 }
1731
1732 /* If this insn has only one operand that is modified or written (assumed
1733 to be the first), it must be the one corresponding to this reload. It
1734 is safe to use anything that dies in this insn for that output provided
1735 that it does not occur in the output (we already know it isn't an
1736 earlyclobber. If this is an asm insn, give up. */
1737
1738 if (INSN_CODE (this_insn) == -1)
1739 return;
1740
1741 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1742 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1743 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1744 return;
1745
1746 /* See if some hard register that dies in this insn and is not used in
1747 the output is the right class. Only works if the register we pick
1748 up can fully hold our output reload. */
1749 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1750 if (REG_NOTE_KIND (note) == REG_DEAD
1751 && GET_CODE (XEXP (note, 0)) == REG
1752 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1753 rld[output_reload].out)
1754 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1755 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1756 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1757 REGNO (XEXP (note, 0)))
1758 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1759 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1760 /* Ensure that a secondary or tertiary reload for this output
1761 won't want this register. */
1762 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1763 || (! (TEST_HARD_REG_BIT
1764 (reg_class_contents[(int) rld[secondary_out].class],
1765 REGNO (XEXP (note, 0))))
1766 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1767 || ! (TEST_HARD_REG_BIT
1768 (reg_class_contents[(int) rld[secondary_out].class],
1769 REGNO (XEXP (note, 0)))))))
1770 && ! fixed_regs[REGNO (XEXP (note, 0))])
1771 {
1772 rld[output_reload].reg_rtx
1773 = gen_rtx_REG (rld[output_reload].outmode,
1774 REGNO (XEXP (note, 0)));
1775 return;
1776 }
1777 }
1778 \f
1779 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1780 See if one of IN and OUT is a register that may be used;
1781 this is desirable since a spill-register won't be needed.
1782 If so, return the register rtx that proves acceptable.
1783
1784 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1785 CLASS is the register class required for the reload.
1786
1787 If FOR_REAL is >= 0, it is the number of the reload,
1788 and in some cases when it can be discovered that OUT doesn't need
1789 to be computed, clear out rld[FOR_REAL].out.
1790
1791 If FOR_REAL is -1, this should not be done, because this call
1792 is just to see if a register can be found, not to find and install it.
1793
1794 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1795 puts an additional constraint on being able to use IN for OUT since
1796 IN must not appear elsewhere in the insn (it is assumed that IN itself
1797 is safe from the earlyclobber). */
1798
1799 static rtx
1800 find_dummy_reload (real_in, real_out, inloc, outloc,
1801 inmode, outmode, class, for_real, earlyclobber)
1802 rtx real_in, real_out;
1803 rtx *inloc, *outloc;
1804 enum machine_mode inmode, outmode;
1805 enum reg_class class;
1806 int for_real;
1807 int earlyclobber;
1808 {
1809 rtx in = real_in;
1810 rtx out = real_out;
1811 int in_offset = 0;
1812 int out_offset = 0;
1813 rtx value = 0;
1814
1815 /* If operands exceed a word, we can't use either of them
1816 unless they have the same size. */
1817 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1818 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1819 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1820 return 0;
1821
1822 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1823 respectively refers to a hard register. */
1824
1825 /* Find the inside of any subregs. */
1826 while (GET_CODE (out) == SUBREG)
1827 {
1828 if (GET_CODE (SUBREG_REG (out)) == REG
1829 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1830 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1831 GET_MODE (SUBREG_REG (out)),
1832 SUBREG_BYTE (out),
1833 GET_MODE (out));
1834 out = SUBREG_REG (out);
1835 }
1836 while (GET_CODE (in) == SUBREG)
1837 {
1838 if (GET_CODE (SUBREG_REG (in)) == REG
1839 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1840 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1841 GET_MODE (SUBREG_REG (in)),
1842 SUBREG_BYTE (in),
1843 GET_MODE (in));
1844 in = SUBREG_REG (in);
1845 }
1846
1847 /* Narrow down the reg class, the same way push_reload will;
1848 otherwise we might find a dummy now, but push_reload won't. */
1849 class = PREFERRED_RELOAD_CLASS (in, class);
1850
1851 /* See if OUT will do. */
1852 if (GET_CODE (out) == REG
1853 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1854 {
1855 unsigned int regno = REGNO (out) + out_offset;
1856 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1857 rtx saved_rtx;
1858
1859 /* When we consider whether the insn uses OUT,
1860 ignore references within IN. They don't prevent us
1861 from copying IN into OUT, because those refs would
1862 move into the insn that reloads IN.
1863
1864 However, we only ignore IN in its role as this reload.
1865 If the insn uses IN elsewhere and it contains OUT,
1866 that counts. We can't be sure it's the "same" operand
1867 so it might not go through this reload. */
1868 saved_rtx = *inloc;
1869 *inloc = const0_rtx;
1870
1871 if (regno < FIRST_PSEUDO_REGISTER
1872 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1873 PATTERN (this_insn), outloc))
1874 {
1875 unsigned int i;
1876
1877 for (i = 0; i < nwords; i++)
1878 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1879 regno + i))
1880 break;
1881
1882 if (i == nwords)
1883 {
1884 if (GET_CODE (real_out) == REG)
1885 value = real_out;
1886 else
1887 value = gen_rtx_REG (outmode, regno);
1888 }
1889 }
1890
1891 *inloc = saved_rtx;
1892 }
1893
1894 /* Consider using IN if OUT was not acceptable
1895 or if OUT dies in this insn (like the quotient in a divmod insn).
1896 We can't use IN unless it is dies in this insn,
1897 which means we must know accurately which hard regs are live.
1898 Also, the result can't go in IN if IN is used within OUT,
1899 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1900 if (hard_regs_live_known
1901 && GET_CODE (in) == REG
1902 && REGNO (in) < FIRST_PSEUDO_REGISTER
1903 && (value == 0
1904 || find_reg_note (this_insn, REG_UNUSED, real_out))
1905 && find_reg_note (this_insn, REG_DEAD, real_in)
1906 && !fixed_regs[REGNO (in)]
1907 && HARD_REGNO_MODE_OK (REGNO (in),
1908 /* The only case where out and real_out might
1909 have different modes is where real_out
1910 is a subreg, and in that case, out
1911 has a real mode. */
1912 (GET_MODE (out) != VOIDmode
1913 ? GET_MODE (out) : outmode)))
1914 {
1915 unsigned int regno = REGNO (in) + in_offset;
1916 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1917
1918 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*)0)
1919 && ! hard_reg_set_here_p (regno, regno + nwords,
1920 PATTERN (this_insn))
1921 && (! earlyclobber
1922 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1923 PATTERN (this_insn), inloc)))
1924 {
1925 unsigned int i;
1926
1927 for (i = 0; i < nwords; i++)
1928 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1929 regno + i))
1930 break;
1931
1932 if (i == nwords)
1933 {
1934 /* If we were going to use OUT as the reload reg
1935 and changed our mind, it means OUT is a dummy that
1936 dies here. So don't bother copying value to it. */
1937 if (for_real >= 0 && value == real_out)
1938 rld[for_real].out = 0;
1939 if (GET_CODE (real_in) == REG)
1940 value = real_in;
1941 else
1942 value = gen_rtx_REG (inmode, regno);
1943 }
1944 }
1945 }
1946
1947 return value;
1948 }
1949 \f
1950 /* This page contains subroutines used mainly for determining
1951 whether the IN or an OUT of a reload can serve as the
1952 reload register. */
1953
1954 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1955
1956 int
1957 earlyclobber_operand_p (x)
1958 rtx x;
1959 {
1960 int i;
1961
1962 for (i = 0; i < n_earlyclobbers; i++)
1963 if (reload_earlyclobbers[i] == x)
1964 return 1;
1965
1966 return 0;
1967 }
1968
1969 /* Return 1 if expression X alters a hard reg in the range
1970 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1971 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1972 X should be the body of an instruction. */
1973
1974 static int
1975 hard_reg_set_here_p (beg_regno, end_regno, x)
1976 unsigned int beg_regno, end_regno;
1977 rtx x;
1978 {
1979 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1980 {
1981 register rtx op0 = SET_DEST (x);
1982
1983 while (GET_CODE (op0) == SUBREG)
1984 op0 = SUBREG_REG (op0);
1985 if (GET_CODE (op0) == REG)
1986 {
1987 unsigned int r = REGNO (op0);
1988
1989 /* See if this reg overlaps range under consideration. */
1990 if (r < end_regno
1991 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1992 return 1;
1993 }
1994 }
1995 else if (GET_CODE (x) == PARALLEL)
1996 {
1997 register int i = XVECLEN (x, 0) - 1;
1998
1999 for (; i >= 0; i--)
2000 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2001 return 1;
2002 }
2003
2004 return 0;
2005 }
2006
2007 /* Return 1 if ADDR is a valid memory address for mode MODE,
2008 and check that each pseudo reg has the proper kind of
2009 hard reg. */
2010
2011 int
2012 strict_memory_address_p (mode, addr)
2013 enum machine_mode mode ATTRIBUTE_UNUSED;
2014 register rtx addr;
2015 {
2016 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2017 return 0;
2018
2019 win:
2020 return 1;
2021 }
2022 \f
2023 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2024 if they are the same hard reg, and has special hacks for
2025 autoincrement and autodecrement.
2026 This is specifically intended for find_reloads to use
2027 in determining whether two operands match.
2028 X is the operand whose number is the lower of the two.
2029
2030 The value is 2 if Y contains a pre-increment that matches
2031 a non-incrementing address in X. */
2032
2033 /* ??? To be completely correct, we should arrange to pass
2034 for X the output operand and for Y the input operand.
2035 For now, we assume that the output operand has the lower number
2036 because that is natural in (SET output (... input ...)). */
2037
2038 int
2039 operands_match_p (x, y)
2040 register rtx x, y;
2041 {
2042 register int i;
2043 register RTX_CODE code = GET_CODE (x);
2044 register const char *fmt;
2045 int success_2;
2046
2047 if (x == y)
2048 return 1;
2049 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2050 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2051 && GET_CODE (SUBREG_REG (y)) == REG)))
2052 {
2053 register int j;
2054
2055 if (code == SUBREG)
2056 {
2057 i = REGNO (SUBREG_REG (x));
2058 if (i >= FIRST_PSEUDO_REGISTER)
2059 goto slow;
2060 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2061 GET_MODE (SUBREG_REG (x)),
2062 SUBREG_BYTE (x),
2063 GET_MODE (x));
2064 }
2065 else
2066 i = REGNO (x);
2067
2068 if (GET_CODE (y) == SUBREG)
2069 {
2070 j = REGNO (SUBREG_REG (y));
2071 if (j >= FIRST_PSEUDO_REGISTER)
2072 goto slow;
2073 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2074 GET_MODE (SUBREG_REG (y)),
2075 SUBREG_BYTE (y),
2076 GET_MODE (y));
2077 }
2078 else
2079 j = REGNO (y);
2080
2081 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2082 multiple hard register group, so that for example (reg:DI 0) and
2083 (reg:SI 1) will be considered the same register. */
2084 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2085 && i < FIRST_PSEUDO_REGISTER)
2086 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2087 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2088 && j < FIRST_PSEUDO_REGISTER)
2089 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2090
2091 return i == j;
2092 }
2093 /* If two operands must match, because they are really a single
2094 operand of an assembler insn, then two postincrements are invalid
2095 because the assembler insn would increment only once.
2096 On the other hand, an postincrement matches ordinary indexing
2097 if the postincrement is the output operand. */
2098 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2099 return operands_match_p (XEXP (x, 0), y);
2100 /* Two preincrements are invalid
2101 because the assembler insn would increment only once.
2102 On the other hand, an preincrement matches ordinary indexing
2103 if the preincrement is the input operand.
2104 In this case, return 2, since some callers need to do special
2105 things when this happens. */
2106 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2107 || GET_CODE (y) == PRE_MODIFY)
2108 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2109
2110 slow:
2111
2112 /* Now we have disposed of all the cases
2113 in which different rtx codes can match. */
2114 if (code != GET_CODE (y))
2115 return 0;
2116 if (code == LABEL_REF)
2117 return XEXP (x, 0) == XEXP (y, 0);
2118 if (code == SYMBOL_REF)
2119 return XSTR (x, 0) == XSTR (y, 0);
2120
2121 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2122
2123 if (GET_MODE (x) != GET_MODE (y))
2124 return 0;
2125
2126 /* Compare the elements. If any pair of corresponding elements
2127 fail to match, return 0 for the whole things. */
2128
2129 success_2 = 0;
2130 fmt = GET_RTX_FORMAT (code);
2131 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2132 {
2133 int val, j;
2134 switch (fmt[i])
2135 {
2136 case 'w':
2137 if (XWINT (x, i) != XWINT (y, i))
2138 return 0;
2139 break;
2140
2141 case 'i':
2142 if (XINT (x, i) != XINT (y, i))
2143 return 0;
2144 break;
2145
2146 case 'e':
2147 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2148 if (val == 0)
2149 return 0;
2150 /* If any subexpression returns 2,
2151 we should return 2 if we are successful. */
2152 if (val == 2)
2153 success_2 = 1;
2154 break;
2155
2156 case '0':
2157 break;
2158
2159 case 'E':
2160 if (XVECLEN (x, i) != XVECLEN (y, i))
2161 return 0;
2162 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2163 {
2164 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2165 if (val == 0)
2166 return 0;
2167 if (val == 2)
2168 success_2 = 1;
2169 }
2170 break;
2171
2172 /* It is believed that rtx's at this level will never
2173 contain anything but integers and other rtx's,
2174 except for within LABEL_REFs and SYMBOL_REFs. */
2175 default:
2176 abort ();
2177 }
2178 }
2179 return 1 + success_2;
2180 }
2181 \f
2182 /* Describe the range of registers or memory referenced by X.
2183 If X is a register, set REG_FLAG and put the first register
2184 number into START and the last plus one into END.
2185 If X is a memory reference, put a base address into BASE
2186 and a range of integer offsets into START and END.
2187 If X is pushing on the stack, we can assume it causes no trouble,
2188 so we set the SAFE field. */
2189
2190 static struct decomposition
2191 decompose (x)
2192 rtx x;
2193 {
2194 struct decomposition val;
2195 int all_const = 0;
2196
2197 val.reg_flag = 0;
2198 val.safe = 0;
2199 val.base = 0;
2200 if (GET_CODE (x) == MEM)
2201 {
2202 rtx base = NULL_RTX, offset = 0;
2203 rtx addr = XEXP (x, 0);
2204
2205 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2206 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2207 {
2208 val.base = XEXP (addr, 0);
2209 val.start = -GET_MODE_SIZE (GET_MODE (x));
2210 val.end = GET_MODE_SIZE (GET_MODE (x));
2211 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2212 return val;
2213 }
2214
2215 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2216 {
2217 if (GET_CODE (XEXP (addr, 1)) == PLUS
2218 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2219 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2220 {
2221 val.base = XEXP (addr, 0);
2222 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2223 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2224 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2225 return val;
2226 }
2227 }
2228
2229 if (GET_CODE (addr) == CONST)
2230 {
2231 addr = XEXP (addr, 0);
2232 all_const = 1;
2233 }
2234 if (GET_CODE (addr) == PLUS)
2235 {
2236 if (CONSTANT_P (XEXP (addr, 0)))
2237 {
2238 base = XEXP (addr, 1);
2239 offset = XEXP (addr, 0);
2240 }
2241 else if (CONSTANT_P (XEXP (addr, 1)))
2242 {
2243 base = XEXP (addr, 0);
2244 offset = XEXP (addr, 1);
2245 }
2246 }
2247
2248 if (offset == 0)
2249 {
2250 base = addr;
2251 offset = const0_rtx;
2252 }
2253 if (GET_CODE (offset) == CONST)
2254 offset = XEXP (offset, 0);
2255 if (GET_CODE (offset) == PLUS)
2256 {
2257 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2258 {
2259 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2260 offset = XEXP (offset, 0);
2261 }
2262 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2263 {
2264 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2265 offset = XEXP (offset, 1);
2266 }
2267 else
2268 {
2269 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2270 offset = const0_rtx;
2271 }
2272 }
2273 else if (GET_CODE (offset) != CONST_INT)
2274 {
2275 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2276 offset = const0_rtx;
2277 }
2278
2279 if (all_const && GET_CODE (base) == PLUS)
2280 base = gen_rtx_CONST (GET_MODE (base), base);
2281
2282 if (GET_CODE (offset) != CONST_INT)
2283 abort ();
2284
2285 val.start = INTVAL (offset);
2286 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2287 val.base = base;
2288 return val;
2289 }
2290 else if (GET_CODE (x) == REG)
2291 {
2292 val.reg_flag = 1;
2293 val.start = true_regnum (x);
2294 if (val.start < 0)
2295 {
2296 /* A pseudo with no hard reg. */
2297 val.start = REGNO (x);
2298 val.end = val.start + 1;
2299 }
2300 else
2301 /* A hard reg. */
2302 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2303 }
2304 else if (GET_CODE (x) == SUBREG)
2305 {
2306 if (GET_CODE (SUBREG_REG (x)) != REG)
2307 /* This could be more precise, but it's good enough. */
2308 return decompose (SUBREG_REG (x));
2309 val.reg_flag = 1;
2310 val.start = true_regnum (x);
2311 if (val.start < 0)
2312 return decompose (SUBREG_REG (x));
2313 else
2314 /* A hard reg. */
2315 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2316 }
2317 else if (CONSTANT_P (x)
2318 /* This hasn't been assigned yet, so it can't conflict yet. */
2319 || GET_CODE (x) == SCRATCH)
2320 val.safe = 1;
2321 else
2322 abort ();
2323 return val;
2324 }
2325
2326 /* Return 1 if altering Y will not modify the value of X.
2327 Y is also described by YDATA, which should be decompose (Y). */
2328
2329 static int
2330 immune_p (x, y, ydata)
2331 rtx x, y;
2332 struct decomposition ydata;
2333 {
2334 struct decomposition xdata;
2335
2336 if (ydata.reg_flag)
2337 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*)0);
2338 if (ydata.safe)
2339 return 1;
2340
2341 if (GET_CODE (y) != MEM)
2342 abort ();
2343 /* If Y is memory and X is not, Y can't affect X. */
2344 if (GET_CODE (x) != MEM)
2345 return 1;
2346
2347 xdata = decompose (x);
2348
2349 if (! rtx_equal_p (xdata.base, ydata.base))
2350 {
2351 /* If bases are distinct symbolic constants, there is no overlap. */
2352 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2353 return 1;
2354 /* Constants and stack slots never overlap. */
2355 if (CONSTANT_P (xdata.base)
2356 && (ydata.base == frame_pointer_rtx
2357 || ydata.base == hard_frame_pointer_rtx
2358 || ydata.base == stack_pointer_rtx))
2359 return 1;
2360 if (CONSTANT_P (ydata.base)
2361 && (xdata.base == frame_pointer_rtx
2362 || xdata.base == hard_frame_pointer_rtx
2363 || xdata.base == stack_pointer_rtx))
2364 return 1;
2365 /* If either base is variable, we don't know anything. */
2366 return 0;
2367 }
2368
2369 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2370 }
2371
2372 /* Similar, but calls decompose. */
2373
2374 int
2375 safe_from_earlyclobber (op, clobber)
2376 rtx op, clobber;
2377 {
2378 struct decomposition early_data;
2379
2380 early_data = decompose (clobber);
2381 return immune_p (op, clobber, early_data);
2382 }
2383 \f
2384 /* Main entry point of this file: search the body of INSN
2385 for values that need reloading and record them with push_reload.
2386 REPLACE nonzero means record also where the values occur
2387 so that subst_reloads can be used.
2388
2389 IND_LEVELS says how many levels of indirection are supported by this
2390 machine; a value of zero means that a memory reference is not a valid
2391 memory address.
2392
2393 LIVE_KNOWN says we have valid information about which hard
2394 regs are live at each point in the program; this is true when
2395 we are called from global_alloc but false when stupid register
2396 allocation has been done.
2397
2398 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2399 which is nonnegative if the reg has been commandeered for reloading into.
2400 It is copied into STATIC_RELOAD_REG_P and referenced from there
2401 by various subroutines.
2402
2403 Return TRUE if some operands need to be changed, because of swapping
2404 commutative operands, reg_equiv_address substitution, or whatever. */
2405
2406 int
2407 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2408 rtx insn;
2409 int replace, ind_levels;
2410 int live_known;
2411 short *reload_reg_p;
2412 {
2413 register int insn_code_number;
2414 register int i, j;
2415 int noperands;
2416 /* These start out as the constraints for the insn
2417 and they are chewed up as we consider alternatives. */
2418 char *constraints[MAX_RECOG_OPERANDS];
2419 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2420 a register. */
2421 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2422 char pref_or_nothing[MAX_RECOG_OPERANDS];
2423 /* Nonzero for a MEM operand whose entire address needs a reload. */
2424 int address_reloaded[MAX_RECOG_OPERANDS];
2425 /* Value of enum reload_type to use for operand. */
2426 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2427 /* Value of enum reload_type to use within address of operand. */
2428 enum reload_type address_type[MAX_RECOG_OPERANDS];
2429 /* Save the usage of each operand. */
2430 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2431 int no_input_reloads = 0, no_output_reloads = 0;
2432 int n_alternatives;
2433 int this_alternative[MAX_RECOG_OPERANDS];
2434 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2435 char this_alternative_win[MAX_RECOG_OPERANDS];
2436 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2437 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2438 int this_alternative_matches[MAX_RECOG_OPERANDS];
2439 int swapped;
2440 int goal_alternative[MAX_RECOG_OPERANDS];
2441 int this_alternative_number;
2442 int goal_alternative_number = 0;
2443 int operand_reloadnum[MAX_RECOG_OPERANDS];
2444 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2445 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2446 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2447 char goal_alternative_win[MAX_RECOG_OPERANDS];
2448 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2449 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2450 int goal_alternative_swapped;
2451 int best;
2452 int commutative;
2453 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2454 rtx substed_operand[MAX_RECOG_OPERANDS];
2455 rtx body = PATTERN (insn);
2456 rtx set = single_set (insn);
2457 int goal_earlyclobber = 0, this_earlyclobber;
2458 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2459 int retval = 0;
2460
2461 this_insn = insn;
2462 n_reloads = 0;
2463 n_replacements = 0;
2464 n_earlyclobbers = 0;
2465 replace_reloads = replace;
2466 hard_regs_live_known = live_known;
2467 static_reload_reg_p = reload_reg_p;
2468
2469 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2470 neither are insns that SET cc0. Insns that use CC0 are not allowed
2471 to have any input reloads. */
2472 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2473 no_output_reloads = 1;
2474
2475 #ifdef HAVE_cc0
2476 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2477 no_input_reloads = 1;
2478 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2479 no_output_reloads = 1;
2480 #endif
2481
2482 #ifdef SECONDARY_MEMORY_NEEDED
2483 /* The eliminated forms of any secondary memory locations are per-insn, so
2484 clear them out here. */
2485
2486 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2487 #endif
2488
2489 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2490 is cheap to move between them. If it is not, there may not be an insn
2491 to do the copy, so we may need a reload. */
2492 if (GET_CODE (body) == SET
2493 && GET_CODE (SET_DEST (body)) == REG
2494 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2495 && GET_CODE (SET_SRC (body)) == REG
2496 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2497 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2498 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2499 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2500 return 0;
2501
2502 extract_insn (insn);
2503
2504 noperands = reload_n_operands = recog_data.n_operands;
2505 n_alternatives = recog_data.n_alternatives;
2506
2507 /* Just return "no reloads" if insn has no operands with constraints. */
2508 if (noperands == 0 || n_alternatives == 0)
2509 return 0;
2510
2511 insn_code_number = INSN_CODE (insn);
2512 this_insn_is_asm = insn_code_number < 0;
2513
2514 memcpy (operand_mode, recog_data.operand_mode,
2515 noperands * sizeof (enum machine_mode));
2516 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2517
2518 commutative = -1;
2519
2520 /* If we will need to know, later, whether some pair of operands
2521 are the same, we must compare them now and save the result.
2522 Reloading the base and index registers will clobber them
2523 and afterward they will fail to match. */
2524
2525 for (i = 0; i < noperands; i++)
2526 {
2527 register char *p;
2528 register int c;
2529
2530 substed_operand[i] = recog_data.operand[i];
2531 p = constraints[i];
2532
2533 modified[i] = RELOAD_READ;
2534
2535 /* Scan this operand's constraint to see if it is an output operand,
2536 an in-out operand, is commutative, or should match another. */
2537
2538 while ((c = *p++))
2539 {
2540 if (c == '=')
2541 modified[i] = RELOAD_WRITE;
2542 else if (c == '+')
2543 modified[i] = RELOAD_READ_WRITE;
2544 else if (c == '%')
2545 {
2546 /* The last operand should not be marked commutative. */
2547 if (i == noperands - 1)
2548 abort ();
2549
2550 commutative = i;
2551 }
2552 else if (c >= '0' && c <= '9')
2553 {
2554 c -= '0';
2555 operands_match[c][i]
2556 = operands_match_p (recog_data.operand[c],
2557 recog_data.operand[i]);
2558
2559 /* An operand may not match itself. */
2560 if (c == i)
2561 abort ();
2562
2563 /* If C can be commuted with C+1, and C might need to match I,
2564 then C+1 might also need to match I. */
2565 if (commutative >= 0)
2566 {
2567 if (c == commutative || c == commutative + 1)
2568 {
2569 int other = c + (c == commutative ? 1 : -1);
2570 operands_match[other][i]
2571 = operands_match_p (recog_data.operand[other],
2572 recog_data.operand[i]);
2573 }
2574 if (i == commutative || i == commutative + 1)
2575 {
2576 int other = i + (i == commutative ? 1 : -1);
2577 operands_match[c][other]
2578 = operands_match_p (recog_data.operand[c],
2579 recog_data.operand[other]);
2580 }
2581 /* Note that C is supposed to be less than I.
2582 No need to consider altering both C and I because in
2583 that case we would alter one into the other. */
2584 }
2585 }
2586 }
2587 }
2588
2589 /* Examine each operand that is a memory reference or memory address
2590 and reload parts of the addresses into index registers.
2591 Also here any references to pseudo regs that didn't get hard regs
2592 but are equivalent to constants get replaced in the insn itself
2593 with those constants. Nobody will ever see them again.
2594
2595 Finally, set up the preferred classes of each operand. */
2596
2597 for (i = 0; i < noperands; i++)
2598 {
2599 register RTX_CODE code = GET_CODE (recog_data.operand[i]);
2600
2601 address_reloaded[i] = 0;
2602 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2603 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2604 : RELOAD_OTHER);
2605 address_type[i]
2606 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2607 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2608 : RELOAD_OTHER);
2609
2610 if (*constraints[i] == 0)
2611 /* Ignore things like match_operator operands. */
2612 ;
2613 else if (constraints[i][0] == 'p')
2614 {
2615 find_reloads_address (VOIDmode, (rtx*)0,
2616 recog_data.operand[i],
2617 recog_data.operand_loc[i],
2618 i, operand_type[i], ind_levels, insn);
2619
2620 /* If we now have a simple operand where we used to have a
2621 PLUS or MULT, re-recognize and try again. */
2622 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2623 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2624 && (GET_CODE (recog_data.operand[i]) == MULT
2625 || GET_CODE (recog_data.operand[i]) == PLUS))
2626 {
2627 INSN_CODE (insn) = -1;
2628 retval = find_reloads (insn, replace, ind_levels, live_known,
2629 reload_reg_p);
2630 return retval;
2631 }
2632
2633 recog_data.operand[i] = *recog_data.operand_loc[i];
2634 substed_operand[i] = recog_data.operand[i];
2635 }
2636 else if (code == MEM)
2637 {
2638 address_reloaded[i]
2639 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2640 recog_data.operand_loc[i],
2641 XEXP (recog_data.operand[i], 0),
2642 &XEXP (recog_data.operand[i], 0),
2643 i, address_type[i], ind_levels, insn);
2644 recog_data.operand[i] = *recog_data.operand_loc[i];
2645 substed_operand[i] = recog_data.operand[i];
2646 }
2647 else if (code == SUBREG)
2648 {
2649 rtx reg = SUBREG_REG (recog_data.operand[i]);
2650 rtx op
2651 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2652 ind_levels,
2653 set != 0
2654 && &SET_DEST (set) == recog_data.operand_loc[i],
2655 insn,
2656 &address_reloaded[i]);
2657
2658 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2659 that didn't get a hard register, emit a USE with a REG_EQUAL
2660 note in front so that we might inherit a previous, possibly
2661 wider reload. */
2662
2663 if (replace
2664 && GET_CODE (op) == MEM
2665 && GET_CODE (reg) == REG
2666 && (GET_MODE_SIZE (GET_MODE (reg))
2667 >= GET_MODE_SIZE (GET_MODE (op))))
2668 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2669 = gen_rtx_EXPR_LIST (REG_EQUAL,
2670 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2671
2672 substed_operand[i] = recog_data.operand[i] = op;
2673 }
2674 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2675 /* We can get a PLUS as an "operand" as a result of register
2676 elimination. See eliminate_regs and gen_reload. We handle
2677 a unary operator by reloading the operand. */
2678 substed_operand[i] = recog_data.operand[i]
2679 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2680 ind_levels, 0, insn,
2681 &address_reloaded[i]);
2682 else if (code == REG)
2683 {
2684 /* This is equivalent to calling find_reloads_toplev.
2685 The code is duplicated for speed.
2686 When we find a pseudo always equivalent to a constant,
2687 we replace it by the constant. We must be sure, however,
2688 that we don't try to replace it in the insn in which it
2689 is being set. */
2690 register int regno = REGNO (recog_data.operand[i]);
2691 if (reg_equiv_constant[regno] != 0
2692 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2693 {
2694 /* Record the existing mode so that the check if constants are
2695 allowed will work when operand_mode isn't specified. */
2696
2697 if (operand_mode[i] == VOIDmode)
2698 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2699
2700 substed_operand[i] = recog_data.operand[i]
2701 = reg_equiv_constant[regno];
2702 }
2703 if (reg_equiv_memory_loc[regno] != 0
2704 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2705 /* We need not give a valid is_set_dest argument since the case
2706 of a constant equivalence was checked above. */
2707 substed_operand[i] = recog_data.operand[i]
2708 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2709 ind_levels, 0, insn,
2710 &address_reloaded[i]);
2711 }
2712 /* If the operand is still a register (we didn't replace it with an
2713 equivalent), get the preferred class to reload it into. */
2714 code = GET_CODE (recog_data.operand[i]);
2715 preferred_class[i]
2716 = ((code == REG && REGNO (recog_data.operand[i])
2717 >= FIRST_PSEUDO_REGISTER)
2718 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2719 : NO_REGS);
2720 pref_or_nothing[i]
2721 = (code == REG
2722 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2723 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2724 }
2725
2726 /* If this is simply a copy from operand 1 to operand 0, merge the
2727 preferred classes for the operands. */
2728 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2729 && recog_data.operand[1] == SET_SRC (set))
2730 {
2731 preferred_class[0] = preferred_class[1]
2732 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2733 pref_or_nothing[0] |= pref_or_nothing[1];
2734 pref_or_nothing[1] |= pref_or_nothing[0];
2735 }
2736
2737 /* Now see what we need for pseudo-regs that didn't get hard regs
2738 or got the wrong kind of hard reg. For this, we must consider
2739 all the operands together against the register constraints. */
2740
2741 best = MAX_RECOG_OPERANDS * 2 + 600;
2742
2743 swapped = 0;
2744 goal_alternative_swapped = 0;
2745 try_swapped:
2746
2747 /* The constraints are made of several alternatives.
2748 Each operand's constraint looks like foo,bar,... with commas
2749 separating the alternatives. The first alternatives for all
2750 operands go together, the second alternatives go together, etc.
2751
2752 First loop over alternatives. */
2753
2754 for (this_alternative_number = 0;
2755 this_alternative_number < n_alternatives;
2756 this_alternative_number++)
2757 {
2758 /* Loop over operands for one constraint alternative. */
2759 /* LOSERS counts those that don't fit this alternative
2760 and would require loading. */
2761 int losers = 0;
2762 /* BAD is set to 1 if it some operand can't fit this alternative
2763 even after reloading. */
2764 int bad = 0;
2765 /* REJECT is a count of how undesirable this alternative says it is
2766 if any reloading is required. If the alternative matches exactly
2767 then REJECT is ignored, but otherwise it gets this much
2768 counted against it in addition to the reloading needed. Each
2769 ? counts three times here since we want the disparaging caused by
2770 a bad register class to only count 1/3 as much. */
2771 int reject = 0;
2772
2773 this_earlyclobber = 0;
2774
2775 for (i = 0; i < noperands; i++)
2776 {
2777 register char *p = constraints[i];
2778 register int win = 0;
2779 int did_match = 0;
2780 /* 0 => this operand can be reloaded somehow for this alternative. */
2781 int badop = 1;
2782 /* 0 => this operand can be reloaded if the alternative allows regs. */
2783 int winreg = 0;
2784 int c;
2785 register rtx operand = recog_data.operand[i];
2786 int offset = 0;
2787 /* Nonzero means this is a MEM that must be reloaded into a reg
2788 regardless of what the constraint says. */
2789 int force_reload = 0;
2790 int offmemok = 0;
2791 /* Nonzero if a constant forced into memory would be OK for this
2792 operand. */
2793 int constmemok = 0;
2794 int earlyclobber = 0;
2795
2796 /* If the predicate accepts a unary operator, it means that
2797 we need to reload the operand, but do not do this for
2798 match_operator and friends. */
2799 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2800 operand = XEXP (operand, 0);
2801
2802 /* If the operand is a SUBREG, extract
2803 the REG or MEM (or maybe even a constant) within.
2804 (Constants can occur as a result of reg_equiv_constant.) */
2805
2806 while (GET_CODE (operand) == SUBREG)
2807 {
2808 /* Offset only matters when operand is a REG and
2809 it is a hard reg. This is because it is passed
2810 to reg_fits_class_p if it is a REG and all pseudos
2811 return 0 from that function. */
2812 if (GET_CODE (SUBREG_REG (operand)) == REG
2813 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2814 {
2815 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2816 GET_MODE (SUBREG_REG (operand)),
2817 SUBREG_BYTE (operand),
2818 GET_MODE (operand));
2819 }
2820 operand = SUBREG_REG (operand);
2821 /* Force reload if this is a constant or PLUS or if there may
2822 be a problem accessing OPERAND in the outer mode. */
2823 if (CONSTANT_P (operand)
2824 || GET_CODE (operand) == PLUS
2825 /* We must force a reload of paradoxical SUBREGs
2826 of a MEM because the alignment of the inner value
2827 may not be enough to do the outer reference. On
2828 big-endian machines, it may also reference outside
2829 the object.
2830
2831 On machines that extend byte operations and we have a
2832 SUBREG where both the inner and outer modes are no wider
2833 than a word and the inner mode is narrower, is integral,
2834 and gets extended when loaded from memory, combine.c has
2835 made assumptions about the behavior of the machine in such
2836 register access. If the data is, in fact, in memory we
2837 must always load using the size assumed to be in the
2838 register and let the insn do the different-sized
2839 accesses.
2840
2841 This is doubly true if WORD_REGISTER_OPERATIONS. In
2842 this case eliminate_regs has left non-paradoxical
2843 subregs for push_reloads to see. Make sure it does
2844 by forcing the reload.
2845
2846 ??? When is it right at this stage to have a subreg
2847 of a mem that is _not_ to be handled specialy? IMO
2848 those should have been reduced to just a mem. */
2849 || ((GET_CODE (operand) == MEM
2850 || (GET_CODE (operand)== REG
2851 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2852 #ifndef WORD_REGISTER_OPERATIONS
2853 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2854 < BIGGEST_ALIGNMENT)
2855 && (GET_MODE_SIZE (operand_mode[i])
2856 > GET_MODE_SIZE (GET_MODE (operand))))
2857 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2858 #ifdef LOAD_EXTEND_OP
2859 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2860 && (GET_MODE_SIZE (GET_MODE (operand))
2861 <= UNITS_PER_WORD)
2862 && (GET_MODE_SIZE (operand_mode[i])
2863 > GET_MODE_SIZE (GET_MODE (operand)))
2864 && INTEGRAL_MODE_P (GET_MODE (operand))
2865 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2866 #endif
2867 )
2868 #endif
2869 )
2870 /* This following hunk of code should no longer be
2871 needed at all with SUBREG_BYTE. If you need this
2872 code back, please explain to me why so I can
2873 fix the real problem. -DaveM */
2874 #if 0
2875 /* Subreg of a hard reg which can't handle the subreg's mode
2876 or which would handle that mode in the wrong number of
2877 registers for subregging to work. */
2878 || (GET_CODE (operand) == REG
2879 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2880 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2881 && (GET_MODE_SIZE (GET_MODE (operand))
2882 > UNITS_PER_WORD)
2883 && ((GET_MODE_SIZE (GET_MODE (operand))
2884 / UNITS_PER_WORD)
2885 != HARD_REGNO_NREGS (REGNO (operand),
2886 GET_MODE (operand))))
2887 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2888 operand_mode[i])))
2889 #endif
2890 )
2891 force_reload = 1;
2892 }
2893
2894 this_alternative[i] = (int) NO_REGS;
2895 this_alternative_win[i] = 0;
2896 this_alternative_match_win[i] = 0;
2897 this_alternative_offmemok[i] = 0;
2898 this_alternative_earlyclobber[i] = 0;
2899 this_alternative_matches[i] = -1;
2900
2901 /* An empty constraint or empty alternative
2902 allows anything which matched the pattern. */
2903 if (*p == 0 || *p == ',')
2904 win = 1, badop = 0;
2905
2906 /* Scan this alternative's specs for this operand;
2907 set WIN if the operand fits any letter in this alternative.
2908 Otherwise, clear BADOP if this operand could
2909 fit some letter after reloads,
2910 or set WINREG if this operand could fit after reloads
2911 provided the constraint allows some registers. */
2912
2913 while (*p && (c = *p++) != ',')
2914 switch (c)
2915 {
2916 case '=': case '+': case '*':
2917 break;
2918
2919 case '%':
2920 /* The last operand should not be marked commutative. */
2921 if (i != noperands - 1)
2922 commutative = i;
2923 break;
2924
2925 case '?':
2926 reject += 6;
2927 break;
2928
2929 case '!':
2930 reject = 600;
2931 break;
2932
2933 case '#':
2934 /* Ignore rest of this alternative as far as
2935 reloading is concerned. */
2936 while (*p && *p != ',')
2937 p++;
2938 break;
2939
2940 case '0': case '1': case '2': case '3': case '4':
2941 case '5': case '6': case '7': case '8': case '9':
2942
2943 c -= '0';
2944 this_alternative_matches[i] = c;
2945 /* We are supposed to match a previous operand.
2946 If we do, we win if that one did.
2947 If we do not, count both of the operands as losers.
2948 (This is too conservative, since most of the time
2949 only a single reload insn will be needed to make
2950 the two operands win. As a result, this alternative
2951 may be rejected when it is actually desirable.) */
2952 if ((swapped && (c != commutative || i != commutative + 1))
2953 /* If we are matching as if two operands were swapped,
2954 also pretend that operands_match had been computed
2955 with swapped.
2956 But if I is the second of those and C is the first,
2957 don't exchange them, because operands_match is valid
2958 only on one side of its diagonal. */
2959 ? (operands_match
2960 [(c == commutative || c == commutative + 1)
2961 ? 2 * commutative + 1 - c : c]
2962 [(i == commutative || i == commutative + 1)
2963 ? 2 * commutative + 1 - i : i])
2964 : operands_match[c][i])
2965 {
2966 /* If we are matching a non-offsettable address where an
2967 offsettable address was expected, then we must reject
2968 this combination, because we can't reload it. */
2969 if (this_alternative_offmemok[c]
2970 && GET_CODE (recog_data.operand[c]) == MEM
2971 && this_alternative[c] == (int) NO_REGS
2972 && ! this_alternative_win[c])
2973 bad = 1;
2974
2975 did_match = this_alternative_win[c];
2976 }
2977 else
2978 {
2979 /* Operands don't match. */
2980 rtx value;
2981 /* Retroactively mark the operand we had to match
2982 as a loser, if it wasn't already. */
2983 if (this_alternative_win[c])
2984 losers++;
2985 this_alternative_win[c] = 0;
2986 if (this_alternative[c] == (int) NO_REGS)
2987 bad = 1;
2988 /* But count the pair only once in the total badness of
2989 this alternative, if the pair can be a dummy reload. */
2990 value
2991 = find_dummy_reload (recog_data.operand[i],
2992 recog_data.operand[c],
2993 recog_data.operand_loc[i],
2994 recog_data.operand_loc[c],
2995 operand_mode[i], operand_mode[c],
2996 this_alternative[c], -1,
2997 this_alternative_earlyclobber[c]);
2998
2999 if (value != 0)
3000 losers--;
3001 }
3002 /* This can be fixed with reloads if the operand
3003 we are supposed to match can be fixed with reloads. */
3004 badop = 0;
3005 this_alternative[i] = this_alternative[c];
3006
3007 /* If we have to reload this operand and some previous
3008 operand also had to match the same thing as this
3009 operand, we don't know how to do that. So reject this
3010 alternative. */
3011 if (! did_match || force_reload)
3012 for (j = 0; j < i; j++)
3013 if (this_alternative_matches[j]
3014 == this_alternative_matches[i])
3015 badop = 1;
3016 break;
3017
3018 case 'p':
3019 /* All necessary reloads for an address_operand
3020 were handled in find_reloads_address. */
3021 this_alternative[i] = (int) BASE_REG_CLASS;
3022 win = 1;
3023 break;
3024
3025 case 'm':
3026 if (force_reload)
3027 break;
3028 if (GET_CODE (operand) == MEM
3029 || (GET_CODE (operand) == REG
3030 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3031 && reg_renumber[REGNO (operand)] < 0))
3032 win = 1;
3033 if (CONSTANT_P (operand)
3034 /* force_const_mem does not accept HIGH. */
3035 && GET_CODE (operand) != HIGH)
3036 badop = 0;
3037 constmemok = 1;
3038 break;
3039
3040 case '<':
3041 if (GET_CODE (operand) == MEM
3042 && ! address_reloaded[i]
3043 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3044 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3045 win = 1;
3046 break;
3047
3048 case '>':
3049 if (GET_CODE (operand) == MEM
3050 && ! address_reloaded[i]
3051 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3052 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3053 win = 1;
3054 break;
3055
3056 /* Memory operand whose address is not offsettable. */
3057 case 'V':
3058 if (force_reload)
3059 break;
3060 if (GET_CODE (operand) == MEM
3061 && ! (ind_levels ? offsettable_memref_p (operand)
3062 : offsettable_nonstrict_memref_p (operand))
3063 /* Certain mem addresses will become offsettable
3064 after they themselves are reloaded. This is important;
3065 we don't want our own handling of unoffsettables
3066 to override the handling of reg_equiv_address. */
3067 && !(GET_CODE (XEXP (operand, 0)) == REG
3068 && (ind_levels == 0
3069 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3070 win = 1;
3071 break;
3072
3073 /* Memory operand whose address is offsettable. */
3074 case 'o':
3075 if (force_reload)
3076 break;
3077 if ((GET_CODE (operand) == MEM
3078 /* If IND_LEVELS, find_reloads_address won't reload a
3079 pseudo that didn't get a hard reg, so we have to
3080 reject that case. */
3081 && ((ind_levels ? offsettable_memref_p (operand)
3082 : offsettable_nonstrict_memref_p (operand))
3083 /* A reloaded address is offsettable because it is now
3084 just a simple register indirect. */
3085 || address_reloaded[i]))
3086 || (GET_CODE (operand) == REG
3087 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3088 && reg_renumber[REGNO (operand)] < 0
3089 /* If reg_equiv_address is nonzero, we will be
3090 loading it into a register; hence it will be
3091 offsettable, but we cannot say that reg_equiv_mem
3092 is offsettable without checking. */
3093 && ((reg_equiv_mem[REGNO (operand)] != 0
3094 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3095 || (reg_equiv_address[REGNO (operand)] != 0))))
3096 win = 1;
3097 /* force_const_mem does not accept HIGH. */
3098 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3099 || GET_CODE (operand) == MEM)
3100 badop = 0;
3101 constmemok = 1;
3102 offmemok = 1;
3103 break;
3104
3105 case '&':
3106 /* Output operand that is stored before the need for the
3107 input operands (and their index registers) is over. */
3108 earlyclobber = 1, this_earlyclobber = 1;
3109 break;
3110
3111 case 'E':
3112 #ifndef REAL_ARITHMETIC
3113 /* Match any floating double constant, but only if
3114 we can examine the bits of it reliably. */
3115 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3116 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3117 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3118 break;
3119 #endif
3120 if (GET_CODE (operand) == CONST_DOUBLE)
3121 win = 1;
3122 break;
3123
3124 case 'F':
3125 if (GET_CODE (operand) == CONST_DOUBLE)
3126 win = 1;
3127 break;
3128
3129 case 'G':
3130 case 'H':
3131 if (GET_CODE (operand) == CONST_DOUBLE
3132 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3133 win = 1;
3134 break;
3135
3136 case 's':
3137 if (GET_CODE (operand) == CONST_INT
3138 || (GET_CODE (operand) == CONST_DOUBLE
3139 && GET_MODE (operand) == VOIDmode))
3140 break;
3141 case 'i':
3142 if (CONSTANT_P (operand)
3143 #ifdef LEGITIMATE_PIC_OPERAND_P
3144 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3145 #endif
3146 )
3147 win = 1;
3148 break;
3149
3150 case 'n':
3151 if (GET_CODE (operand) == CONST_INT
3152 || (GET_CODE (operand) == CONST_DOUBLE
3153 && GET_MODE (operand) == VOIDmode))
3154 win = 1;
3155 break;
3156
3157 case 'I':
3158 case 'J':
3159 case 'K':
3160 case 'L':
3161 case 'M':
3162 case 'N':
3163 case 'O':
3164 case 'P':
3165 if (GET_CODE (operand) == CONST_INT
3166 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3167 win = 1;
3168 break;
3169
3170 case 'X':
3171 win = 1;
3172 break;
3173
3174 case 'g':
3175 if (! force_reload
3176 /* A PLUS is never a valid operand, but reload can make
3177 it from a register when eliminating registers. */
3178 && GET_CODE (operand) != PLUS
3179 /* A SCRATCH is not a valid operand. */
3180 && GET_CODE (operand) != SCRATCH
3181 #ifdef LEGITIMATE_PIC_OPERAND_P
3182 && (! CONSTANT_P (operand)
3183 || ! flag_pic
3184 || LEGITIMATE_PIC_OPERAND_P (operand))
3185 #endif
3186 && (GENERAL_REGS == ALL_REGS
3187 || GET_CODE (operand) != REG
3188 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3189 && reg_renumber[REGNO (operand)] < 0)))
3190 win = 1;
3191 /* Drop through into 'r' case. */
3192
3193 case 'r':
3194 this_alternative[i]
3195 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3196 goto reg;
3197
3198 default:
3199 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3200 {
3201 #ifdef EXTRA_CONSTRAINT
3202 if (EXTRA_CONSTRAINT (operand, c))
3203 win = 1;
3204 #endif
3205 break;
3206 }
3207
3208 this_alternative[i]
3209 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3210 reg:
3211 if (GET_MODE (operand) == BLKmode)
3212 break;
3213 winreg = 1;
3214 if (GET_CODE (operand) == REG
3215 && reg_fits_class_p (operand, this_alternative[i],
3216 offset, GET_MODE (recog_data.operand[i])))
3217 win = 1;
3218 break;
3219 }
3220
3221 constraints[i] = p;
3222
3223 /* If this operand could be handled with a reg,
3224 and some reg is allowed, then this operand can be handled. */
3225 if (winreg && this_alternative[i] != (int) NO_REGS)
3226 badop = 0;
3227
3228 /* Record which operands fit this alternative. */
3229 this_alternative_earlyclobber[i] = earlyclobber;
3230 if (win && ! force_reload)
3231 this_alternative_win[i] = 1;
3232 else if (did_match && ! force_reload)
3233 this_alternative_match_win[i] = 1;
3234 else
3235 {
3236 int const_to_mem = 0;
3237
3238 this_alternative_offmemok[i] = offmemok;
3239 losers++;
3240 if (badop)
3241 bad = 1;
3242 /* Alternative loses if it has no regs for a reg operand. */
3243 if (GET_CODE (operand) == REG
3244 && this_alternative[i] == (int) NO_REGS
3245 && this_alternative_matches[i] < 0)
3246 bad = 1;
3247
3248 /* If this is a constant that is reloaded into the desired
3249 class by copying it to memory first, count that as another
3250 reload. This is consistent with other code and is
3251 required to avoid choosing another alternative when
3252 the constant is moved into memory by this function on
3253 an early reload pass. Note that the test here is
3254 precisely the same as in the code below that calls
3255 force_const_mem. */
3256 if (CONSTANT_P (operand)
3257 /* force_const_mem does not accept HIGH. */
3258 && GET_CODE (operand) != HIGH
3259 && ((PREFERRED_RELOAD_CLASS (operand,
3260 (enum reg_class) this_alternative[i])
3261 == NO_REGS)
3262 || no_input_reloads)
3263 && operand_mode[i] != VOIDmode)
3264 {
3265 const_to_mem = 1;
3266 if (this_alternative[i] != (int) NO_REGS)
3267 losers++;
3268 }
3269
3270 /* If we can't reload this value at all, reject this
3271 alternative. Note that we could also lose due to
3272 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3273 here. */
3274
3275 if (! CONSTANT_P (operand)
3276 && (enum reg_class) this_alternative[i] != NO_REGS
3277 && (PREFERRED_RELOAD_CLASS (operand,
3278 (enum reg_class) this_alternative[i])
3279 == NO_REGS))
3280 bad = 1;
3281
3282 /* Alternative loses if it requires a type of reload not
3283 permitted for this insn. We can always reload SCRATCH
3284 and objects with a REG_UNUSED note. */
3285 else if (GET_CODE (operand) != SCRATCH
3286 && modified[i] != RELOAD_READ && no_output_reloads
3287 && ! find_reg_note (insn, REG_UNUSED, operand))
3288 bad = 1;
3289 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3290 && ! const_to_mem)
3291 bad = 1;
3292
3293 /* We prefer to reload pseudos over reloading other things,
3294 since such reloads may be able to be eliminated later.
3295 If we are reloading a SCRATCH, we won't be generating any
3296 insns, just using a register, so it is also preferred.
3297 So bump REJECT in other cases. Don't do this in the
3298 case where we are forcing a constant into memory and
3299 it will then win since we don't want to have a different
3300 alternative match then. */
3301 if (! (GET_CODE (operand) == REG
3302 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3303 && GET_CODE (operand) != SCRATCH
3304 && ! (const_to_mem && constmemok))
3305 reject += 2;
3306
3307 /* Input reloads can be inherited more often than output
3308 reloads can be removed, so penalize output reloads. */
3309 if (operand_type[i] != RELOAD_FOR_INPUT
3310 && GET_CODE (operand) != SCRATCH)
3311 reject++;
3312 }
3313
3314 /* If this operand is a pseudo register that didn't get a hard
3315 reg and this alternative accepts some register, see if the
3316 class that we want is a subset of the preferred class for this
3317 register. If not, but it intersects that class, use the
3318 preferred class instead. If it does not intersect the preferred
3319 class, show that usage of this alternative should be discouraged;
3320 it will be discouraged more still if the register is `preferred
3321 or nothing'. We do this because it increases the chance of
3322 reusing our spill register in a later insn and avoiding a pair
3323 of memory stores and loads.
3324
3325 Don't bother with this if this alternative will accept this
3326 operand.
3327
3328 Don't do this for a multiword operand, since it is only a
3329 small win and has the risk of requiring more spill registers,
3330 which could cause a large loss.
3331
3332 Don't do this if the preferred class has only one register
3333 because we might otherwise exhaust the class. */
3334
3335 if (! win && ! did_match
3336 && this_alternative[i] != (int) NO_REGS
3337 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3338 && reg_class_size[(int) preferred_class[i]] > 1)
3339 {
3340 if (! reg_class_subset_p (this_alternative[i],
3341 preferred_class[i]))
3342 {
3343 /* Since we don't have a way of forming the intersection,
3344 we just do something special if the preferred class
3345 is a subset of the class we have; that's the most
3346 common case anyway. */
3347 if (reg_class_subset_p (preferred_class[i],
3348 this_alternative[i]))
3349 this_alternative[i] = (int) preferred_class[i];
3350 else
3351 reject += (2 + 2 * pref_or_nothing[i]);
3352 }
3353 }
3354 }
3355
3356 /* Now see if any output operands that are marked "earlyclobber"
3357 in this alternative conflict with any input operands
3358 or any memory addresses. */
3359
3360 for (i = 0; i < noperands; i++)
3361 if (this_alternative_earlyclobber[i]
3362 && (this_alternative_win[i] || this_alternative_match_win[i]))
3363 {
3364 struct decomposition early_data;
3365
3366 early_data = decompose (recog_data.operand[i]);
3367
3368 if (modified[i] == RELOAD_READ)
3369 abort ();
3370
3371 if (this_alternative[i] == NO_REGS)
3372 {
3373 this_alternative_earlyclobber[i] = 0;
3374 if (this_insn_is_asm)
3375 error_for_asm (this_insn,
3376 "`&' constraint used with no register class");
3377 else
3378 abort ();
3379 }
3380
3381 for (j = 0; j < noperands; j++)
3382 /* Is this an input operand or a memory ref? */
3383 if ((GET_CODE (recog_data.operand[j]) == MEM
3384 || modified[j] != RELOAD_WRITE)
3385 && j != i
3386 /* Ignore things like match_operator operands. */
3387 && *recog_data.constraints[j] != 0
3388 /* Don't count an input operand that is constrained to match
3389 the early clobber operand. */
3390 && ! (this_alternative_matches[j] == i
3391 && rtx_equal_p (recog_data.operand[i],
3392 recog_data.operand[j]))
3393 /* Is it altered by storing the earlyclobber operand? */
3394 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3395 early_data))
3396 {
3397 /* If the output is in a single-reg class,
3398 it's costly to reload it, so reload the input instead. */
3399 if (reg_class_size[this_alternative[i]] == 1
3400 && (GET_CODE (recog_data.operand[j]) == REG
3401 || GET_CODE (recog_data.operand[j]) == SUBREG))
3402 {
3403 losers++;
3404 this_alternative_win[j] = 0;
3405 this_alternative_match_win[j] = 0;
3406 }
3407 else
3408 break;
3409 }
3410 /* If an earlyclobber operand conflicts with something,
3411 it must be reloaded, so request this and count the cost. */
3412 if (j != noperands)
3413 {
3414 losers++;
3415 this_alternative_win[i] = 0;
3416 this_alternative_match_win[j] = 0;
3417 for (j = 0; j < noperands; j++)
3418 if (this_alternative_matches[j] == i
3419 && this_alternative_match_win[j])
3420 {
3421 this_alternative_win[j] = 0;
3422 this_alternative_match_win[j] = 0;
3423 losers++;
3424 }
3425 }
3426 }
3427
3428 /* If one alternative accepts all the operands, no reload required,
3429 choose that alternative; don't consider the remaining ones. */
3430 if (losers == 0)
3431 {
3432 /* Unswap these so that they are never swapped at `finish'. */
3433 if (commutative >= 0)
3434 {
3435 recog_data.operand[commutative] = substed_operand[commutative];
3436 recog_data.operand[commutative + 1]
3437 = substed_operand[commutative + 1];
3438 }
3439 for (i = 0; i < noperands; i++)
3440 {
3441 goal_alternative_win[i] = this_alternative_win[i];
3442 goal_alternative_match_win[i] = this_alternative_match_win[i];
3443 goal_alternative[i] = this_alternative[i];
3444 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3445 goal_alternative_matches[i] = this_alternative_matches[i];
3446 goal_alternative_earlyclobber[i]
3447 = this_alternative_earlyclobber[i];
3448 }
3449 goal_alternative_number = this_alternative_number;
3450 goal_alternative_swapped = swapped;
3451 goal_earlyclobber = this_earlyclobber;
3452 goto finish;
3453 }
3454
3455 /* REJECT, set by the ! and ? constraint characters and when a register
3456 would be reloaded into a non-preferred class, discourages the use of
3457 this alternative for a reload goal. REJECT is incremented by six
3458 for each ? and two for each non-preferred class. */
3459 losers = losers * 6 + reject;
3460
3461 /* If this alternative can be made to work by reloading,
3462 and it needs less reloading than the others checked so far,
3463 record it as the chosen goal for reloading. */
3464 if (! bad && best > losers)
3465 {
3466 for (i = 0; i < noperands; i++)
3467 {
3468 goal_alternative[i] = this_alternative[i];
3469 goal_alternative_win[i] = this_alternative_win[i];
3470 goal_alternative_match_win[i] = this_alternative_match_win[i];
3471 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3472 goal_alternative_matches[i] = this_alternative_matches[i];
3473 goal_alternative_earlyclobber[i]
3474 = this_alternative_earlyclobber[i];
3475 }
3476 goal_alternative_swapped = swapped;
3477 best = losers;
3478 goal_alternative_number = this_alternative_number;
3479 goal_earlyclobber = this_earlyclobber;
3480 }
3481 }
3482
3483 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3484 then we need to try each alternative twice,
3485 the second time matching those two operands
3486 as if we had exchanged them.
3487 To do this, really exchange them in operands.
3488
3489 If we have just tried the alternatives the second time,
3490 return operands to normal and drop through. */
3491
3492 if (commutative >= 0)
3493 {
3494 swapped = !swapped;
3495 if (swapped)
3496 {
3497 register enum reg_class tclass;
3498 register int t;
3499
3500 recog_data.operand[commutative] = substed_operand[commutative + 1];
3501 recog_data.operand[commutative + 1] = substed_operand[commutative];
3502
3503 tclass = preferred_class[commutative];
3504 preferred_class[commutative] = preferred_class[commutative + 1];
3505 preferred_class[commutative + 1] = tclass;
3506
3507 t = pref_or_nothing[commutative];
3508 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3509 pref_or_nothing[commutative + 1] = t;
3510
3511 memcpy (constraints, recog_data.constraints,
3512 noperands * sizeof (char *));
3513 goto try_swapped;
3514 }
3515 else
3516 {
3517 recog_data.operand[commutative] = substed_operand[commutative];
3518 recog_data.operand[commutative + 1]
3519 = substed_operand[commutative + 1];
3520 }
3521 }
3522
3523 /* The operands don't meet the constraints.
3524 goal_alternative describes the alternative
3525 that we could reach by reloading the fewest operands.
3526 Reload so as to fit it. */
3527
3528 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3529 {
3530 /* No alternative works with reloads?? */
3531 if (insn_code_number >= 0)
3532 fatal_insn ("Unable to generate reloads for:", insn);
3533 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3534 /* Avoid further trouble with this insn. */
3535 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3536 n_reloads = 0;
3537 return 0;
3538 }
3539
3540 /* Jump to `finish' from above if all operands are valid already.
3541 In that case, goal_alternative_win is all 1. */
3542 finish:
3543
3544 /* Right now, for any pair of operands I and J that are required to match,
3545 with I < J,
3546 goal_alternative_matches[J] is I.
3547 Set up goal_alternative_matched as the inverse function:
3548 goal_alternative_matched[I] = J. */
3549
3550 for (i = 0; i < noperands; i++)
3551 goal_alternative_matched[i] = -1;
3552
3553 for (i = 0; i < noperands; i++)
3554 if (! goal_alternative_win[i]
3555 && goal_alternative_matches[i] >= 0)
3556 goal_alternative_matched[goal_alternative_matches[i]] = i;
3557
3558 for (i = 0; i < noperands; i++)
3559 goal_alternative_win[i] |= goal_alternative_match_win[i];
3560
3561 /* If the best alternative is with operands 1 and 2 swapped,
3562 consider them swapped before reporting the reloads. Update the
3563 operand numbers of any reloads already pushed. */
3564
3565 if (goal_alternative_swapped)
3566 {
3567 register rtx tem;
3568
3569 tem = substed_operand[commutative];
3570 substed_operand[commutative] = substed_operand[commutative + 1];
3571 substed_operand[commutative + 1] = tem;
3572 tem = recog_data.operand[commutative];
3573 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3574 recog_data.operand[commutative + 1] = tem;
3575 tem = *recog_data.operand_loc[commutative];
3576 *recog_data.operand_loc[commutative]
3577 = *recog_data.operand_loc[commutative + 1];
3578 *recog_data.operand_loc[commutative + 1] = tem;
3579
3580 for (i = 0; i < n_reloads; i++)
3581 {
3582 if (rld[i].opnum == commutative)
3583 rld[i].opnum = commutative + 1;
3584 else if (rld[i].opnum == commutative + 1)
3585 rld[i].opnum = commutative;
3586 }
3587 }
3588
3589 for (i = 0; i < noperands; i++)
3590 {
3591 operand_reloadnum[i] = -1;
3592
3593 /* If this is an earlyclobber operand, we need to widen the scope.
3594 The reload must remain valid from the start of the insn being
3595 reloaded until after the operand is stored into its destination.
3596 We approximate this with RELOAD_OTHER even though we know that we
3597 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3598
3599 One special case that is worth checking is when we have an
3600 output that is earlyclobber but isn't used past the insn (typically
3601 a SCRATCH). In this case, we only need have the reload live
3602 through the insn itself, but not for any of our input or output
3603 reloads.
3604 But we must not accidentally narrow the scope of an existing
3605 RELOAD_OTHER reload - leave these alone.
3606
3607 In any case, anything needed to address this operand can remain
3608 however they were previously categorized. */
3609
3610 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3611 operand_type[i]
3612 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3613 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3614 }
3615
3616 /* Any constants that aren't allowed and can't be reloaded
3617 into registers are here changed into memory references. */
3618 for (i = 0; i < noperands; i++)
3619 if (! goal_alternative_win[i]
3620 && CONSTANT_P (recog_data.operand[i])
3621 /* force_const_mem does not accept HIGH. */
3622 && GET_CODE (recog_data.operand[i]) != HIGH
3623 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3624 (enum reg_class) goal_alternative[i])
3625 == NO_REGS)
3626 || no_input_reloads)
3627 && operand_mode[i] != VOIDmode)
3628 {
3629 substed_operand[i] = recog_data.operand[i]
3630 = find_reloads_toplev (force_const_mem (operand_mode[i],
3631 recog_data.operand[i]),
3632 i, address_type[i], ind_levels, 0, insn,
3633 NULL);
3634 if (alternative_allows_memconst (recog_data.constraints[i],
3635 goal_alternative_number))
3636 goal_alternative_win[i] = 1;
3637 }
3638
3639 /* Record the values of the earlyclobber operands for the caller. */
3640 if (goal_earlyclobber)
3641 for (i = 0; i < noperands; i++)
3642 if (goal_alternative_earlyclobber[i])
3643 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3644
3645 /* Now record reloads for all the operands that need them. */
3646 for (i = 0; i < noperands; i++)
3647 if (! goal_alternative_win[i])
3648 {
3649 /* Operands that match previous ones have already been handled. */
3650 if (goal_alternative_matches[i] >= 0)
3651 ;
3652 /* Handle an operand with a nonoffsettable address
3653 appearing where an offsettable address will do
3654 by reloading the address into a base register.
3655
3656 ??? We can also do this when the operand is a register and
3657 reg_equiv_mem is not offsettable, but this is a bit tricky,
3658 so we don't bother with it. It may not be worth doing. */
3659 else if (goal_alternative_matched[i] == -1
3660 && goal_alternative_offmemok[i]
3661 && GET_CODE (recog_data.operand[i]) == MEM)
3662 {
3663 operand_reloadnum[i]
3664 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3665 &XEXP (recog_data.operand[i], 0), (rtx*)0,
3666 BASE_REG_CLASS,
3667 GET_MODE (XEXP (recog_data.operand[i], 0)),
3668 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3669 rld[operand_reloadnum[i]].inc
3670 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3671
3672 /* If this operand is an output, we will have made any
3673 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3674 now we are treating part of the operand as an input, so
3675 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3676
3677 if (modified[i] == RELOAD_WRITE)
3678 {
3679 for (j = 0; j < n_reloads; j++)
3680 {
3681 if (rld[j].opnum == i)
3682 {
3683 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3684 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3685 else if (rld[j].when_needed
3686 == RELOAD_FOR_OUTADDR_ADDRESS)
3687 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3688 }
3689 }
3690 }
3691 }
3692 else if (goal_alternative_matched[i] == -1)
3693 {
3694 operand_reloadnum[i]
3695 = push_reload ((modified[i] != RELOAD_WRITE
3696 ? recog_data.operand[i] : 0),
3697 (modified[i] != RELOAD_READ
3698 ? recog_data.operand[i] : 0),
3699 (modified[i] != RELOAD_WRITE
3700 ? recog_data.operand_loc[i] : 0),
3701 (modified[i] != RELOAD_READ
3702 ? recog_data.operand_loc[i] : 0),
3703 (enum reg_class) goal_alternative[i],
3704 (modified[i] == RELOAD_WRITE
3705 ? VOIDmode : operand_mode[i]),
3706 (modified[i] == RELOAD_READ
3707 ? VOIDmode : operand_mode[i]),
3708 (insn_code_number < 0 ? 0
3709 : insn_data[insn_code_number].operand[i].strict_low),
3710 0, i, operand_type[i]);
3711 }
3712 /* In a matching pair of operands, one must be input only
3713 and the other must be output only.
3714 Pass the input operand as IN and the other as OUT. */
3715 else if (modified[i] == RELOAD_READ
3716 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3717 {
3718 operand_reloadnum[i]
3719 = push_reload (recog_data.operand[i],
3720 recog_data.operand[goal_alternative_matched[i]],
3721 recog_data.operand_loc[i],
3722 recog_data.operand_loc[goal_alternative_matched[i]],
3723 (enum reg_class) goal_alternative[i],
3724 operand_mode[i],
3725 operand_mode[goal_alternative_matched[i]],
3726 0, 0, i, RELOAD_OTHER);
3727 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3728 }
3729 else if (modified[i] == RELOAD_WRITE
3730 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3731 {
3732 operand_reloadnum[goal_alternative_matched[i]]
3733 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3734 recog_data.operand[i],
3735 recog_data.operand_loc[goal_alternative_matched[i]],
3736 recog_data.operand_loc[i],
3737 (enum reg_class) goal_alternative[i],
3738 operand_mode[goal_alternative_matched[i]],
3739 operand_mode[i],
3740 0, 0, i, RELOAD_OTHER);
3741 operand_reloadnum[i] = output_reloadnum;
3742 }
3743 else if (insn_code_number >= 0)
3744 abort ();
3745 else
3746 {
3747 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3748 /* Avoid further trouble with this insn. */
3749 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3750 n_reloads = 0;
3751 return 0;
3752 }
3753 }
3754 else if (goal_alternative_matched[i] < 0
3755 && goal_alternative_matches[i] < 0
3756 && optimize)
3757 {
3758 /* For each non-matching operand that's a MEM or a pseudo-register
3759 that didn't get a hard register, make an optional reload.
3760 This may get done even if the insn needs no reloads otherwise. */
3761
3762 rtx operand = recog_data.operand[i];
3763
3764 while (GET_CODE (operand) == SUBREG)
3765 operand = SUBREG_REG (operand);
3766 if ((GET_CODE (operand) == MEM
3767 || (GET_CODE (operand) == REG
3768 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3769 /* If this is only for an output, the optional reload would not
3770 actually cause us to use a register now, just note that
3771 something is stored here. */
3772 && ((enum reg_class) goal_alternative[i] != NO_REGS
3773 || modified[i] == RELOAD_WRITE)
3774 && ! no_input_reloads
3775 /* An optional output reload might allow to delete INSN later.
3776 We mustn't make in-out reloads on insns that are not permitted
3777 output reloads.
3778 If this is an asm, we can't delete it; we must not even call
3779 push_reload for an optional output reload in this case,
3780 because we can't be sure that the constraint allows a register,
3781 and push_reload verifies the constraints for asms. */
3782 && (modified[i] == RELOAD_READ
3783 || (! no_output_reloads && ! this_insn_is_asm)))
3784 operand_reloadnum[i]
3785 = push_reload ((modified[i] != RELOAD_WRITE
3786 ? recog_data.operand[i] : 0),
3787 (modified[i] != RELOAD_READ
3788 ? recog_data.operand[i] : 0),
3789 (modified[i] != RELOAD_WRITE
3790 ? recog_data.operand_loc[i] : 0),
3791 (modified[i] != RELOAD_READ
3792 ? recog_data.operand_loc[i] : 0),
3793 (enum reg_class) goal_alternative[i],
3794 (modified[i] == RELOAD_WRITE
3795 ? VOIDmode : operand_mode[i]),
3796 (modified[i] == RELOAD_READ
3797 ? VOIDmode : operand_mode[i]),
3798 (insn_code_number < 0 ? 0
3799 : insn_data[insn_code_number].operand[i].strict_low),
3800 1, i, operand_type[i]);
3801 /* If a memory reference remains (either as a MEM or a pseudo that
3802 did not get a hard register), yet we can't make an optional
3803 reload, check if this is actually a pseudo register reference;
3804 we then need to emit a USE and/or a CLOBBER so that reload
3805 inheritance will do the right thing. */
3806 else if (replace
3807 && (GET_CODE (operand) == MEM
3808 || (GET_CODE (operand) == REG
3809 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3810 && reg_renumber [REGNO (operand)] < 0)))
3811 {
3812 operand = *recog_data.operand_loc[i];
3813
3814 while (GET_CODE (operand) == SUBREG)
3815 operand = SUBREG_REG (operand);
3816 if (GET_CODE (operand) == REG)
3817 {
3818 if (modified[i] != RELOAD_WRITE)
3819 emit_insn_before (gen_rtx_USE (VOIDmode, operand), insn);
3820 if (modified[i] != RELOAD_READ)
3821 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3822 }
3823 }
3824 }
3825 else if (goal_alternative_matches[i] >= 0
3826 && goal_alternative_win[goal_alternative_matches[i]]
3827 && modified[i] == RELOAD_READ
3828 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3829 && ! no_input_reloads && ! no_output_reloads
3830 && optimize)
3831 {
3832 /* Similarly, make an optional reload for a pair of matching
3833 objects that are in MEM or a pseudo that didn't get a hard reg. */
3834
3835 rtx operand = recog_data.operand[i];
3836
3837 while (GET_CODE (operand) == SUBREG)
3838 operand = SUBREG_REG (operand);
3839 if ((GET_CODE (operand) == MEM
3840 || (GET_CODE (operand) == REG
3841 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3842 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3843 != NO_REGS))
3844 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3845 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3846 recog_data.operand[i],
3847 recog_data.operand_loc[goal_alternative_matches[i]],
3848 recog_data.operand_loc[i],
3849 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3850 operand_mode[goal_alternative_matches[i]],
3851 operand_mode[i],
3852 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3853 }
3854
3855 /* Perform whatever substitutions on the operands we are supposed
3856 to make due to commutativity or replacement of registers
3857 with equivalent constants or memory slots. */
3858
3859 for (i = 0; i < noperands; i++)
3860 {
3861 /* We only do this on the last pass through reload, because it is
3862 possible for some data (like reg_equiv_address) to be changed during
3863 later passes. Moreover, we loose the opportunity to get a useful
3864 reload_{in,out}_reg when we do these replacements. */
3865
3866 if (replace)
3867 {
3868 rtx substitution = substed_operand[i];
3869
3870 *recog_data.operand_loc[i] = substitution;
3871
3872 /* If we're replacing an operand with a LABEL_REF, we need
3873 to make sure that there's a REG_LABEL note attached to
3874 this instruction. */
3875 if (GET_CODE (insn) != JUMP_INSN
3876 && GET_CODE (substitution) == LABEL_REF
3877 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3878 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
3879 XEXP (substitution, 0),
3880 REG_NOTES (insn));
3881 }
3882 else
3883 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3884 }
3885
3886 /* If this insn pattern contains any MATCH_DUP's, make sure that
3887 they will be substituted if the operands they match are substituted.
3888 Also do now any substitutions we already did on the operands.
3889
3890 Don't do this if we aren't making replacements because we might be
3891 propagating things allocated by frame pointer elimination into places
3892 it doesn't expect. */
3893
3894 if (insn_code_number >= 0 && replace)
3895 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3896 {
3897 int opno = recog_data.dup_num[i];
3898 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3899 if (operand_reloadnum[opno] >= 0)
3900 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3901 insn_data[insn_code_number].operand[opno].mode);
3902 }
3903
3904 #if 0
3905 /* This loses because reloading of prior insns can invalidate the equivalence
3906 (or at least find_equiv_reg isn't smart enough to find it any more),
3907 causing this insn to need more reload regs than it needed before.
3908 It may be too late to make the reload regs available.
3909 Now this optimization is done safely in choose_reload_regs. */
3910
3911 /* For each reload of a reg into some other class of reg,
3912 search for an existing equivalent reg (same value now) in the right class.
3913 We can use it as long as we don't need to change its contents. */
3914 for (i = 0; i < n_reloads; i++)
3915 if (rld[i].reg_rtx == 0
3916 && rld[i].in != 0
3917 && GET_CODE (rld[i].in) == REG
3918 && rld[i].out == 0)
3919 {
3920 rld[i].reg_rtx
3921 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3922 static_reload_reg_p, 0, rld[i].inmode);
3923 /* Prevent generation of insn to load the value
3924 because the one we found already has the value. */
3925 if (rld[i].reg_rtx)
3926 rld[i].in = rld[i].reg_rtx;
3927 }
3928 #endif
3929
3930 /* Perhaps an output reload can be combined with another
3931 to reduce needs by one. */
3932 if (!goal_earlyclobber)
3933 combine_reloads ();
3934
3935 /* If we have a pair of reloads for parts of an address, they are reloading
3936 the same object, the operands themselves were not reloaded, and they
3937 are for two operands that are supposed to match, merge the reloads and
3938 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3939
3940 for (i = 0; i < n_reloads; i++)
3941 {
3942 int k;
3943
3944 for (j = i + 1; j < n_reloads; j++)
3945 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3946 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3947 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3948 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3949 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3950 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3951 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3952 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3953 && rtx_equal_p (rld[i].in, rld[j].in)
3954 && (operand_reloadnum[rld[i].opnum] < 0
3955 || rld[operand_reloadnum[rld[i].opnum]].optional)
3956 && (operand_reloadnum[rld[j].opnum] < 0
3957 || rld[operand_reloadnum[rld[j].opnum]].optional)
3958 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3959 || (goal_alternative_matches[rld[j].opnum]
3960 == rld[i].opnum)))
3961 {
3962 for (k = 0; k < n_replacements; k++)
3963 if (replacements[k].what == j)
3964 replacements[k].what = i;
3965
3966 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3967 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3968 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3969 else
3970 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3971 rld[j].in = 0;
3972 }
3973 }
3974
3975 /* Scan all the reloads and update their type.
3976 If a reload is for the address of an operand and we didn't reload
3977 that operand, change the type. Similarly, change the operand number
3978 of a reload when two operands match. If a reload is optional, treat it
3979 as though the operand isn't reloaded.
3980
3981 ??? This latter case is somewhat odd because if we do the optional
3982 reload, it means the object is hanging around. Thus we need only
3983 do the address reload if the optional reload was NOT done.
3984
3985 Change secondary reloads to be the address type of their operand, not
3986 the normal type.
3987
3988 If an operand's reload is now RELOAD_OTHER, change any
3989 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3990 RELOAD_FOR_OTHER_ADDRESS. */
3991
3992 for (i = 0; i < n_reloads; i++)
3993 {
3994 if (rld[i].secondary_p
3995 && rld[i].when_needed == operand_type[rld[i].opnum])
3996 rld[i].when_needed = address_type[rld[i].opnum];
3997
3998 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3999 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4000 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4001 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4002 && (operand_reloadnum[rld[i].opnum] < 0
4003 || rld[operand_reloadnum[rld[i].opnum]].optional))
4004 {
4005 /* If we have a secondary reload to go along with this reload,
4006 change its type to RELOAD_FOR_OPADDR_ADDR. */
4007
4008 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4009 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4010 && rld[i].secondary_in_reload != -1)
4011 {
4012 int secondary_in_reload = rld[i].secondary_in_reload;
4013
4014 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4015
4016 /* If there's a tertiary reload we have to change it also. */
4017 if (secondary_in_reload > 0
4018 && rld[secondary_in_reload].secondary_in_reload != -1)
4019 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4020 = RELOAD_FOR_OPADDR_ADDR;
4021 }
4022
4023 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4024 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4025 && rld[i].secondary_out_reload != -1)
4026 {
4027 int secondary_out_reload = rld[i].secondary_out_reload;
4028
4029 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4030
4031 /* If there's a tertiary reload we have to change it also. */
4032 if (secondary_out_reload
4033 && rld[secondary_out_reload].secondary_out_reload != -1)
4034 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4035 = RELOAD_FOR_OPADDR_ADDR;
4036 }
4037
4038 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4039 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4040 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4041 else
4042 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4043 }
4044
4045 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4046 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4047 && operand_reloadnum[rld[i].opnum] >= 0
4048 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4049 == RELOAD_OTHER))
4050 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4051
4052 if (goal_alternative_matches[rld[i].opnum] >= 0)
4053 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4054 }
4055
4056 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4057 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4058 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4059
4060 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4061 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4062 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4063 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4064 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4065 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4066 This is complicated by the fact that a single operand can have more
4067 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4068 choose_reload_regs without affecting code quality, and cases that
4069 actually fail are extremely rare, so it turns out to be better to fix
4070 the problem here by not generating cases that choose_reload_regs will
4071 fail for. */
4072 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4073 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4074 a single operand.
4075 We can reduce the register pressure by exploiting that a
4076 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4077 does not conflict with any of them, if it is only used for the first of
4078 the RELOAD_FOR_X_ADDRESS reloads. */
4079 {
4080 int first_op_addr_num = -2;
4081 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4082 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4083 int need_change = 0;
4084 /* We use last_op_addr_reload and the contents of the above arrays
4085 first as flags - -2 means no instance encountered, -1 means exactly
4086 one instance encountered.
4087 If more than one instance has been encountered, we store the reload
4088 number of the first reload of the kind in question; reload numbers
4089 are known to be non-negative. */
4090 for (i = 0; i < noperands; i++)
4091 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4092 for (i = n_reloads - 1; i >= 0; i--)
4093 {
4094 switch (rld[i].when_needed)
4095 {
4096 case RELOAD_FOR_OPERAND_ADDRESS:
4097 if (++first_op_addr_num >= 0)
4098 {
4099 first_op_addr_num = i;
4100 need_change = 1;
4101 }
4102 break;
4103 case RELOAD_FOR_INPUT_ADDRESS:
4104 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4105 {
4106 first_inpaddr_num[rld[i].opnum] = i;
4107 need_change = 1;
4108 }
4109 break;
4110 case RELOAD_FOR_OUTPUT_ADDRESS:
4111 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4112 {
4113 first_outpaddr_num[rld[i].opnum] = i;
4114 need_change = 1;
4115 }
4116 break;
4117 default:
4118 break;
4119 }
4120 }
4121
4122 if (need_change)
4123 {
4124 for (i = 0; i < n_reloads; i++)
4125 {
4126 int first_num;
4127 enum reload_type type;
4128
4129 switch (rld[i].when_needed)
4130 {
4131 case RELOAD_FOR_OPADDR_ADDR:
4132 first_num = first_op_addr_num;
4133 type = RELOAD_FOR_OPERAND_ADDRESS;
4134 break;
4135 case RELOAD_FOR_INPADDR_ADDRESS:
4136 first_num = first_inpaddr_num[rld[i].opnum];
4137 type = RELOAD_FOR_INPUT_ADDRESS;
4138 break;
4139 case RELOAD_FOR_OUTADDR_ADDRESS:
4140 first_num = first_outpaddr_num[rld[i].opnum];
4141 type = RELOAD_FOR_OUTPUT_ADDRESS;
4142 break;
4143 default:
4144 continue;
4145 }
4146 if (first_num < 0)
4147 continue;
4148 else if (i > first_num)
4149 rld[i].when_needed = type;
4150 else
4151 {
4152 /* Check if the only TYPE reload that uses reload I is
4153 reload FIRST_NUM. */
4154 for (j = n_reloads - 1; j > first_num; j--)
4155 {
4156 if (rld[j].when_needed == type
4157 && (rld[i].secondary_p
4158 ? rld[j].secondary_in_reload == i
4159 : reg_mentioned_p (rld[i].in, rld[j].in)))
4160 {
4161 rld[i].when_needed = type;
4162 break;
4163 }
4164 }
4165 }
4166 }
4167 }
4168 }
4169
4170 /* See if we have any reloads that are now allowed to be merged
4171 because we've changed when the reload is needed to
4172 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4173 check for the most common cases. */
4174
4175 for (i = 0; i < n_reloads; i++)
4176 if (rld[i].in != 0 && rld[i].out == 0
4177 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4178 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4179 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4180 for (j = 0; j < n_reloads; j++)
4181 if (i != j && rld[j].in != 0 && rld[j].out == 0
4182 && rld[j].when_needed == rld[i].when_needed
4183 && MATCHES (rld[i].in, rld[j].in)
4184 && rld[i].class == rld[j].class
4185 && !rld[i].nocombine && !rld[j].nocombine
4186 && rld[i].reg_rtx == rld[j].reg_rtx)
4187 {
4188 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4189 transfer_replacements (i, j);
4190 rld[j].in = 0;
4191 }
4192
4193 #ifdef HAVE_cc0
4194 /* If we made any reloads for addresses, see if they violate a
4195 "no input reloads" requirement for this insn. But loads that we
4196 do after the insn (such as for output addresses) are fine. */
4197 if (no_input_reloads)
4198 for (i = 0; i < n_reloads; i++)
4199 if (rld[i].in != 0
4200 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4201 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4202 abort ();
4203 #endif
4204
4205 /* Compute reload_mode and reload_nregs. */
4206 for (i = 0; i < n_reloads; i++)
4207 {
4208 rld[i].mode
4209 = (rld[i].inmode == VOIDmode
4210 || (GET_MODE_SIZE (rld[i].outmode)
4211 > GET_MODE_SIZE (rld[i].inmode)))
4212 ? rld[i].outmode : rld[i].inmode;
4213
4214 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4215 }
4216
4217 return retval;
4218 }
4219
4220 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4221 accepts a memory operand with constant address. */
4222
4223 static int
4224 alternative_allows_memconst (constraint, altnum)
4225 const char *constraint;
4226 int altnum;
4227 {
4228 register int c;
4229 /* Skip alternatives before the one requested. */
4230 while (altnum > 0)
4231 {
4232 while (*constraint++ != ',');
4233 altnum--;
4234 }
4235 /* Scan the requested alternative for 'm' or 'o'.
4236 If one of them is present, this alternative accepts memory constants. */
4237 while ((c = *constraint++) && c != ',' && c != '#')
4238 if (c == 'm' || c == 'o')
4239 return 1;
4240 return 0;
4241 }
4242 \f
4243 /* Scan X for memory references and scan the addresses for reloading.
4244 Also checks for references to "constant" regs that we want to eliminate
4245 and replaces them with the values they stand for.
4246 We may alter X destructively if it contains a reference to such.
4247 If X is just a constant reg, we return the equivalent value
4248 instead of X.
4249
4250 IND_LEVELS says how many levels of indirect addressing this machine
4251 supports.
4252
4253 OPNUM and TYPE identify the purpose of the reload.
4254
4255 IS_SET_DEST is true if X is the destination of a SET, which is not
4256 appropriate to be replaced by a constant.
4257
4258 INSN, if nonzero, is the insn in which we do the reload. It is used
4259 to determine if we may generate output reloads, and where to put USEs
4260 for pseudos that we have to replace with stack slots.
4261
4262 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4263 result of find_reloads_address. */
4264
4265 static rtx
4266 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4267 address_reloaded)
4268 rtx x;
4269 int opnum;
4270 enum reload_type type;
4271 int ind_levels;
4272 int is_set_dest;
4273 rtx insn;
4274 int *address_reloaded;
4275 {
4276 register RTX_CODE code = GET_CODE (x);
4277
4278 register const char *fmt = GET_RTX_FORMAT (code);
4279 register int i;
4280 int copied;
4281
4282 if (code == REG)
4283 {
4284 /* This code is duplicated for speed in find_reloads. */
4285 register int regno = REGNO (x);
4286 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4287 x = reg_equiv_constant[regno];
4288 #if 0
4289 /* This creates (subreg (mem...)) which would cause an unnecessary
4290 reload of the mem. */
4291 else if (reg_equiv_mem[regno] != 0)
4292 x = reg_equiv_mem[regno];
4293 #endif
4294 else if (reg_equiv_memory_loc[regno]
4295 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4296 {
4297 rtx mem = make_memloc (x, regno);
4298 if (reg_equiv_address[regno]
4299 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4300 {
4301 /* If this is not a toplevel operand, find_reloads doesn't see
4302 this substitution. We have to emit a USE of the pseudo so
4303 that delete_output_reload can see it. */
4304 if (replace_reloads && recog_data.operand[opnum] != x)
4305 emit_insn_before (gen_rtx_USE (VOIDmode, x), insn);
4306 x = mem;
4307 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4308 opnum, type, ind_levels, insn);
4309 if (address_reloaded)
4310 *address_reloaded = i;
4311 }
4312 }
4313 return x;
4314 }
4315 if (code == MEM)
4316 {
4317 rtx tem = x;
4318
4319 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4320 opnum, type, ind_levels, insn);
4321 if (address_reloaded)
4322 *address_reloaded = i;
4323
4324 return tem;
4325 }
4326
4327 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4328 {
4329 /* Check for SUBREG containing a REG that's equivalent to a constant.
4330 If the constant has a known value, truncate it right now.
4331 Similarly if we are extracting a single-word of a multi-word
4332 constant. If the constant is symbolic, allow it to be substituted
4333 normally. push_reload will strip the subreg later. If the
4334 constant is VOIDmode, abort because we will lose the mode of
4335 the register (this should never happen because one of the cases
4336 above should handle it). */
4337
4338 register int regno = REGNO (SUBREG_REG (x));
4339 rtx tem;
4340
4341 if (subreg_lowpart_p (x)
4342 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4343 && reg_equiv_constant[regno] != 0
4344 && (tem = gen_lowpart_common (GET_MODE (x),
4345 reg_equiv_constant[regno])) != 0)
4346 return tem;
4347
4348 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4349 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4350 && reg_equiv_constant[regno] != 0
4351 && (tem = operand_subword (reg_equiv_constant[regno],
4352 SUBREG_BYTE (x) / UNITS_PER_WORD, 0,
4353 GET_MODE (SUBREG_REG (x)))) != 0)
4354 {
4355 /* TEM is now a word sized constant for the bits from X that
4356 we wanted. However, TEM may be the wrong representation.
4357
4358 Use gen_lowpart_common to convert a CONST_INT into a
4359 CONST_DOUBLE and vice versa as needed according to by the mode
4360 of the SUBREG. */
4361 tem = gen_lowpart_common (GET_MODE (x), tem);
4362 if (!tem)
4363 abort ();
4364 return tem;
4365 }
4366
4367 /* If the SUBREG is wider than a word, the above test will fail.
4368 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4369 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4370 a 32 bit target. We still can - and have to - handle this
4371 for non-paradoxical subregs of CONST_INTs. */
4372 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4373 && reg_equiv_constant[regno] != 0
4374 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4375 && (GET_MODE_SIZE (GET_MODE (x))
4376 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4377 {
4378 int shift = SUBREG_BYTE (x) * BITS_PER_UNIT;
4379 if (WORDS_BIG_ENDIAN)
4380 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4381 - GET_MODE_BITSIZE (GET_MODE (x))
4382 - shift);
4383 /* Here we use the knowledge that CONST_INTs have a
4384 HOST_WIDE_INT field. */
4385 if (shift >= HOST_BITS_PER_WIDE_INT)
4386 shift = HOST_BITS_PER_WIDE_INT - 1;
4387 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4388 }
4389
4390 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4391 && reg_equiv_constant[regno] != 0
4392 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4393 abort ();
4394
4395 /* If the subreg contains a reg that will be converted to a mem,
4396 convert the subreg to a narrower memref now.
4397 Otherwise, we would get (subreg (mem ...) ...),
4398 which would force reload of the mem.
4399
4400 We also need to do this if there is an equivalent MEM that is
4401 not offsettable. In that case, alter_subreg would produce an
4402 invalid address on big-endian machines.
4403
4404 For machines that extend byte loads, we must not reload using
4405 a wider mode if we have a paradoxical SUBREG. find_reloads will
4406 force a reload in that case. So we should not do anything here. */
4407
4408 else if (regno >= FIRST_PSEUDO_REGISTER
4409 #ifdef LOAD_EXTEND_OP
4410 && (GET_MODE_SIZE (GET_MODE (x))
4411 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4412 #endif
4413 && (reg_equiv_address[regno] != 0
4414 || (reg_equiv_mem[regno] != 0
4415 && (! strict_memory_address_p (GET_MODE (x),
4416 XEXP (reg_equiv_mem[regno], 0))
4417 || ! offsettable_memref_p (reg_equiv_mem[regno])
4418 || num_not_at_initial_offset))))
4419 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4420 insn);
4421 }
4422 else if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM
4423 && (GET_MODE_SIZE (GET_MODE (x))
4424 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4425 && mode_dependent_address_p (XEXP (SUBREG_REG (x), 0)))
4426 {
4427 /* A paradoxical subreg will simply have the mode of the access
4428 changed, so we need to reload such a memory operand to stabilize
4429 the meaning of the memory access. */
4430 enum machine_mode subreg_mode = GET_MODE (SUBREG_REG (x));
4431
4432 /* SUBREG_REG (x) is a MEM, so we cant take the offset, instead we
4433 calculate the register number as :
4434 SUBREG_BYTE (x) / GET_MODE_SIZE (subreg_mode) */
4435 if (is_set_dest)
4436 push_reload (NULL_RTX, SUBREG_REG (x), (rtx*)0, &SUBREG_REG (x),
4437 find_valid_class (subreg_mode,
4438 SUBREG_BYTE (x) / GET_MODE_SIZE (subreg_mode)),
4439 VOIDmode, subreg_mode, 0, 0, opnum, type);
4440 else
4441 push_reload (SUBREG_REG (x), NULL_RTX, &SUBREG_REG (x), (rtx*)0,
4442 find_valid_class (subreg_mode,
4443 SUBREG_BYTE (x) / GET_MODE_SIZE (subreg_mode)),
4444 subreg_mode, VOIDmode, 0, 0, opnum, type);
4445 }
4446
4447 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4448 {
4449 if (fmt[i] == 'e')
4450 {
4451 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4452 ind_levels, is_set_dest, insn,
4453 address_reloaded);
4454 /* If we have replaced a reg with it's equivalent memory loc -
4455 that can still be handled here e.g. if it's in a paradoxical
4456 subreg - we must make the change in a copy, rather than using
4457 a destructive change. This way, find_reloads can still elect
4458 not to do the change. */
4459 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4460 {
4461 x = shallow_copy_rtx (x);
4462 copied = 1;
4463 }
4464 XEXP (x, i) = new_part;
4465 }
4466 }
4467 return x;
4468 }
4469
4470 /* Return a mem ref for the memory equivalent of reg REGNO.
4471 This mem ref is not shared with anything. */
4472
4473 static rtx
4474 make_memloc (ad, regno)
4475 rtx ad;
4476 int regno;
4477 {
4478 /* We must rerun eliminate_regs, in case the elimination
4479 offsets have changed. */
4480 rtx tem
4481 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4482
4483 /* If TEM might contain a pseudo, we must copy it to avoid
4484 modifying it when we do the substitution for the reload. */
4485 if (rtx_varies_p (tem, 0))
4486 tem = copy_rtx (tem);
4487
4488 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4489 return adjust_address_nv (tem, GET_MODE (ad), 0);
4490 }
4491
4492 /* Record all reloads needed for handling memory address AD
4493 which appears in *LOC in a memory reference to mode MODE
4494 which itself is found in location *MEMREFLOC.
4495 Note that we take shortcuts assuming that no multi-reg machine mode
4496 occurs as part of an address.
4497
4498 OPNUM and TYPE specify the purpose of this reload.
4499
4500 IND_LEVELS says how many levels of indirect addressing this machine
4501 supports.
4502
4503 INSN, if nonzero, is the insn in which we do the reload. It is used
4504 to determine if we may generate output reloads, and where to put USEs
4505 for pseudos that we have to replace with stack slots.
4506
4507 Value is nonzero if this address is reloaded or replaced as a whole.
4508 This is interesting to the caller if the address is an autoincrement.
4509
4510 Note that there is no verification that the address will be valid after
4511 this routine does its work. Instead, we rely on the fact that the address
4512 was valid when reload started. So we need only undo things that reload
4513 could have broken. These are wrong register types, pseudos not allocated
4514 to a hard register, and frame pointer elimination. */
4515
4516 static int
4517 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4518 enum machine_mode mode;
4519 rtx *memrefloc;
4520 rtx ad;
4521 rtx *loc;
4522 int opnum;
4523 enum reload_type type;
4524 int ind_levels;
4525 rtx insn;
4526 {
4527 register int regno;
4528 int removed_and = 0;
4529 rtx tem;
4530
4531 /* If the address is a register, see if it is a legitimate address and
4532 reload if not. We first handle the cases where we need not reload
4533 or where we must reload in a non-standard way. */
4534
4535 if (GET_CODE (ad) == REG)
4536 {
4537 regno = REGNO (ad);
4538
4539 /* If the register is equivalent to an invariant expression, substitute
4540 the invariant, and eliminate any eliminable register references. */
4541 tem = reg_equiv_constant[regno];
4542 if (tem != 0
4543 && (tem = eliminate_regs (tem, mode, insn))
4544 && strict_memory_address_p (mode, tem))
4545 {
4546 *loc = ad = tem;
4547 return 0;
4548 }
4549
4550 tem = reg_equiv_memory_loc[regno];
4551 if (tem != 0)
4552 {
4553 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4554 {
4555 tem = make_memloc (ad, regno);
4556 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4557 {
4558 find_reloads_address (GET_MODE (tem), (rtx*)0, XEXP (tem, 0),
4559 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4560 ind_levels, insn);
4561 }
4562 /* We can avoid a reload if the register's equivalent memory
4563 expression is valid as an indirect memory address.
4564 But not all addresses are valid in a mem used as an indirect
4565 address: only reg or reg+constant. */
4566
4567 if (ind_levels > 0
4568 && strict_memory_address_p (mode, tem)
4569 && (GET_CODE (XEXP (tem, 0)) == REG
4570 || (GET_CODE (XEXP (tem, 0)) == PLUS
4571 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4572 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4573 {
4574 /* TEM is not the same as what we'll be replacing the
4575 pseudo with after reload, put a USE in front of INSN
4576 in the final reload pass. */
4577 if (replace_reloads
4578 && num_not_at_initial_offset
4579 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4580 {
4581 *loc = tem;
4582 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4583 /* This doesn't really count as replacing the address
4584 as a whole, since it is still a memory access. */
4585 }
4586 return 0;
4587 }
4588 ad = tem;
4589 }
4590 }
4591
4592 /* The only remaining case where we can avoid a reload is if this is a
4593 hard register that is valid as a base register and which is not the
4594 subject of a CLOBBER in this insn. */
4595
4596 else if (regno < FIRST_PSEUDO_REGISTER
4597 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4598 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4599 return 0;
4600
4601 /* If we do not have one of the cases above, we must do the reload. */
4602 push_reload (ad, NULL_RTX, loc, (rtx*)0, BASE_REG_CLASS,
4603 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4604 return 1;
4605 }
4606
4607 if (strict_memory_address_p (mode, ad))
4608 {
4609 /* The address appears valid, so reloads are not needed.
4610 But the address may contain an eliminable register.
4611 This can happen because a machine with indirect addressing
4612 may consider a pseudo register by itself a valid address even when
4613 it has failed to get a hard reg.
4614 So do a tree-walk to find and eliminate all such regs. */
4615
4616 /* But first quickly dispose of a common case. */
4617 if (GET_CODE (ad) == PLUS
4618 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4619 && GET_CODE (XEXP (ad, 0)) == REG
4620 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4621 return 0;
4622
4623 subst_reg_equivs_changed = 0;
4624 *loc = subst_reg_equivs (ad, insn);
4625
4626 if (! subst_reg_equivs_changed)
4627 return 0;
4628
4629 /* Check result for validity after substitution. */
4630 if (strict_memory_address_p (mode, ad))
4631 return 0;
4632 }
4633
4634 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4635 do
4636 {
4637 if (memrefloc)
4638 {
4639 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4640 ind_levels, win);
4641 }
4642 break;
4643 win:
4644 *memrefloc = copy_rtx (*memrefloc);
4645 XEXP (*memrefloc, 0) = ad;
4646 move_replacements (&ad, &XEXP (*memrefloc, 0));
4647 return 1;
4648 }
4649 while (0);
4650 #endif
4651
4652 /* The address is not valid. We have to figure out why. First see if
4653 we have an outer AND and remove it if so. Then analyze what's inside. */
4654
4655 if (GET_CODE (ad) == AND)
4656 {
4657 removed_and = 1;
4658 loc = &XEXP (ad, 0);
4659 ad = *loc;
4660 }
4661
4662 /* One possibility for why the address is invalid is that it is itself
4663 a MEM. This can happen when the frame pointer is being eliminated, a
4664 pseudo is not allocated to a hard register, and the offset between the
4665 frame and stack pointers is not its initial value. In that case the
4666 pseudo will have been replaced by a MEM referring to the
4667 stack pointer. */
4668 if (GET_CODE (ad) == MEM)
4669 {
4670 /* First ensure that the address in this MEM is valid. Then, unless
4671 indirect addresses are valid, reload the MEM into a register. */
4672 tem = ad;
4673 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4674 opnum, ADDR_TYPE (type),
4675 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4676
4677 /* If tem was changed, then we must create a new memory reference to
4678 hold it and store it back into memrefloc. */
4679 if (tem != ad && memrefloc)
4680 {
4681 *memrefloc = copy_rtx (*memrefloc);
4682 copy_replacements (tem, XEXP (*memrefloc, 0));
4683 loc = &XEXP (*memrefloc, 0);
4684 if (removed_and)
4685 loc = &XEXP (*loc, 0);
4686 }
4687
4688 /* Check similar cases as for indirect addresses as above except
4689 that we can allow pseudos and a MEM since they should have been
4690 taken care of above. */
4691
4692 if (ind_levels == 0
4693 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4694 || GET_CODE (XEXP (tem, 0)) == MEM
4695 || ! (GET_CODE (XEXP (tem, 0)) == REG
4696 || (GET_CODE (XEXP (tem, 0)) == PLUS
4697 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4698 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4699 {
4700 /* Must use TEM here, not AD, since it is the one that will
4701 have any subexpressions reloaded, if needed. */
4702 push_reload (tem, NULL_RTX, loc, (rtx*)0,
4703 BASE_REG_CLASS, GET_MODE (tem),
4704 VOIDmode, 0,
4705 0, opnum, type);
4706 return ! removed_and;
4707 }
4708 else
4709 return 0;
4710 }
4711
4712 /* If we have address of a stack slot but it's not valid because the
4713 displacement is too large, compute the sum in a register.
4714 Handle all base registers here, not just fp/ap/sp, because on some
4715 targets (namely SH) we can also get too large displacements from
4716 big-endian corrections. */
4717 else if (GET_CODE (ad) == PLUS
4718 && GET_CODE (XEXP (ad, 0)) == REG
4719 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4720 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4721 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4722 {
4723 /* Unshare the MEM rtx so we can safely alter it. */
4724 if (memrefloc)
4725 {
4726 *memrefloc = copy_rtx (*memrefloc);
4727 loc = &XEXP (*memrefloc, 0);
4728 if (removed_and)
4729 loc = &XEXP (*loc, 0);
4730 }
4731
4732 if (double_reg_address_ok)
4733 {
4734 /* Unshare the sum as well. */
4735 *loc = ad = copy_rtx (ad);
4736
4737 /* Reload the displacement into an index reg.
4738 We assume the frame pointer or arg pointer is a base reg. */
4739 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4740 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4741 type, ind_levels);
4742 return 0;
4743 }
4744 else
4745 {
4746 /* If the sum of two regs is not necessarily valid,
4747 reload the sum into a base reg.
4748 That will at least work. */
4749 find_reloads_address_part (ad, loc, BASE_REG_CLASS,
4750 Pmode, opnum, type, ind_levels);
4751 }
4752 return ! removed_and;
4753 }
4754
4755 /* If we have an indexed stack slot, there are three possible reasons why
4756 it might be invalid: The index might need to be reloaded, the address
4757 might have been made by frame pointer elimination and hence have a
4758 constant out of range, or both reasons might apply.
4759
4760 We can easily check for an index needing reload, but even if that is the
4761 case, we might also have an invalid constant. To avoid making the
4762 conservative assumption and requiring two reloads, we see if this address
4763 is valid when not interpreted strictly. If it is, the only problem is
4764 that the index needs a reload and find_reloads_address_1 will take care
4765 of it.
4766
4767 If we decide to do something here, it must be that
4768 `double_reg_address_ok' is true and that this address rtl was made by
4769 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4770 rework the sum so that the reload register will be added to the index.
4771 This is safe because we know the address isn't shared.
4772
4773 We check for fp/ap/sp as both the first and second operand of the
4774 innermost PLUS. */
4775
4776 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4777 && GET_CODE (XEXP (ad, 0)) == PLUS
4778 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4779 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4780 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4781 #endif
4782 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4783 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4784 #endif
4785 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4786 && ! memory_address_p (mode, ad))
4787 {
4788 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4789 plus_constant (XEXP (XEXP (ad, 0), 0),
4790 INTVAL (XEXP (ad, 1))),
4791 XEXP (XEXP (ad, 0), 1));
4792 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4793 GET_MODE (ad), opnum, type, ind_levels);
4794 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4795 type, 0, insn);
4796
4797 return 0;
4798 }
4799
4800 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4801 && GET_CODE (XEXP (ad, 0)) == PLUS
4802 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4803 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4804 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4805 #endif
4806 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4807 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4808 #endif
4809 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4810 && ! memory_address_p (mode, ad))
4811 {
4812 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4813 XEXP (XEXP (ad, 0), 0),
4814 plus_constant (XEXP (XEXP (ad, 0), 1),
4815 INTVAL (XEXP (ad, 1))));
4816 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
4817 GET_MODE (ad), opnum, type, ind_levels);
4818 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4819 type, 0, insn);
4820
4821 return 0;
4822 }
4823
4824 /* See if address becomes valid when an eliminable register
4825 in a sum is replaced. */
4826
4827 tem = ad;
4828 if (GET_CODE (ad) == PLUS)
4829 tem = subst_indexed_address (ad);
4830 if (tem != ad && strict_memory_address_p (mode, tem))
4831 {
4832 /* Ok, we win that way. Replace any additional eliminable
4833 registers. */
4834
4835 subst_reg_equivs_changed = 0;
4836 tem = subst_reg_equivs (tem, insn);
4837
4838 /* Make sure that didn't make the address invalid again. */
4839
4840 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4841 {
4842 *loc = tem;
4843 return 0;
4844 }
4845 }
4846
4847 /* If constants aren't valid addresses, reload the constant address
4848 into a register. */
4849 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4850 {
4851 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4852 Unshare it so we can safely alter it. */
4853 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4854 && CONSTANT_POOL_ADDRESS_P (ad))
4855 {
4856 *memrefloc = copy_rtx (*memrefloc);
4857 loc = &XEXP (*memrefloc, 0);
4858 if (removed_and)
4859 loc = &XEXP (*loc, 0);
4860 }
4861
4862 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
4863 ind_levels);
4864 return ! removed_and;
4865 }
4866
4867 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4868 insn);
4869 }
4870 \f
4871 /* Find all pseudo regs appearing in AD
4872 that are eliminable in favor of equivalent values
4873 and do not have hard regs; replace them by their equivalents.
4874 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4875 front of it for pseudos that we have to replace with stack slots. */
4876
4877 static rtx
4878 subst_reg_equivs (ad, insn)
4879 rtx ad;
4880 rtx insn;
4881 {
4882 register RTX_CODE code = GET_CODE (ad);
4883 register int i;
4884 register const char *fmt;
4885
4886 switch (code)
4887 {
4888 case HIGH:
4889 case CONST_INT:
4890 case CONST:
4891 case CONST_DOUBLE:
4892 case SYMBOL_REF:
4893 case LABEL_REF:
4894 case PC:
4895 case CC0:
4896 return ad;
4897
4898 case REG:
4899 {
4900 register int regno = REGNO (ad);
4901
4902 if (reg_equiv_constant[regno] != 0)
4903 {
4904 subst_reg_equivs_changed = 1;
4905 return reg_equiv_constant[regno];
4906 }
4907 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4908 {
4909 rtx mem = make_memloc (ad, regno);
4910 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4911 {
4912 subst_reg_equivs_changed = 1;
4913 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4914 return mem;
4915 }
4916 }
4917 }
4918 return ad;
4919
4920 case PLUS:
4921 /* Quickly dispose of a common case. */
4922 if (XEXP (ad, 0) == frame_pointer_rtx
4923 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4924 return ad;
4925 break;
4926
4927 default:
4928 break;
4929 }
4930
4931 fmt = GET_RTX_FORMAT (code);
4932 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4933 if (fmt[i] == 'e')
4934 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4935 return ad;
4936 }
4937 \f
4938 /* Compute the sum of X and Y, making canonicalizations assumed in an
4939 address, namely: sum constant integers, surround the sum of two
4940 constants with a CONST, put the constant as the second operand, and
4941 group the constant on the outermost sum.
4942
4943 This routine assumes both inputs are already in canonical form. */
4944
4945 rtx
4946 form_sum (x, y)
4947 rtx x, y;
4948 {
4949 rtx tem;
4950 enum machine_mode mode = GET_MODE (x);
4951
4952 if (mode == VOIDmode)
4953 mode = GET_MODE (y);
4954
4955 if (mode == VOIDmode)
4956 mode = Pmode;
4957
4958 if (GET_CODE (x) == CONST_INT)
4959 return plus_constant (y, INTVAL (x));
4960 else if (GET_CODE (y) == CONST_INT)
4961 return plus_constant (x, INTVAL (y));
4962 else if (CONSTANT_P (x))
4963 tem = x, x = y, y = tem;
4964
4965 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4966 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4967
4968 /* Note that if the operands of Y are specified in the opposite
4969 order in the recursive calls below, infinite recursion will occur. */
4970 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4971 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4972
4973 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4974 constant will have been placed second. */
4975 if (CONSTANT_P (x) && CONSTANT_P (y))
4976 {
4977 if (GET_CODE (x) == CONST)
4978 x = XEXP (x, 0);
4979 if (GET_CODE (y) == CONST)
4980 y = XEXP (y, 0);
4981
4982 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4983 }
4984
4985 return gen_rtx_PLUS (mode, x, y);
4986 }
4987 \f
4988 /* If ADDR is a sum containing a pseudo register that should be
4989 replaced with a constant (from reg_equiv_constant),
4990 return the result of doing so, and also apply the associative
4991 law so that the result is more likely to be a valid address.
4992 (But it is not guaranteed to be one.)
4993
4994 Note that at most one register is replaced, even if more are
4995 replaceable. Also, we try to put the result into a canonical form
4996 so it is more likely to be a valid address.
4997
4998 In all other cases, return ADDR. */
4999
5000 static rtx
5001 subst_indexed_address (addr)
5002 rtx addr;
5003 {
5004 rtx op0 = 0, op1 = 0, op2 = 0;
5005 rtx tem;
5006 int regno;
5007
5008 if (GET_CODE (addr) == PLUS)
5009 {
5010 /* Try to find a register to replace. */
5011 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5012 if (GET_CODE (op0) == REG
5013 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5014 && reg_renumber[regno] < 0
5015 && reg_equiv_constant[regno] != 0)
5016 op0 = reg_equiv_constant[regno];
5017 else if (GET_CODE (op1) == REG
5018 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5019 && reg_renumber[regno] < 0
5020 && reg_equiv_constant[regno] != 0)
5021 op1 = reg_equiv_constant[regno];
5022 else if (GET_CODE (op0) == PLUS
5023 && (tem = subst_indexed_address (op0)) != op0)
5024 op0 = tem;
5025 else if (GET_CODE (op1) == PLUS
5026 && (tem = subst_indexed_address (op1)) != op1)
5027 op1 = tem;
5028 else
5029 return addr;
5030
5031 /* Pick out up to three things to add. */
5032 if (GET_CODE (op1) == PLUS)
5033 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5034 else if (GET_CODE (op0) == PLUS)
5035 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5036
5037 /* Compute the sum. */
5038 if (op2 != 0)
5039 op1 = form_sum (op1, op2);
5040 if (op1 != 0)
5041 op0 = form_sum (op0, op1);
5042
5043 return op0;
5044 }
5045 return addr;
5046 }
5047 \f
5048 /* Update the REG_INC notes for an insn. It updates all REG_INC
5049 notes for the instruction which refer to REGNO the to refer
5050 to the reload number.
5051
5052 INSN is the insn for which any REG_INC notes need updating.
5053
5054 REGNO is the register number which has been reloaded.
5055
5056 RELOADNUM is the reload number. */
5057
5058 static void
5059 update_auto_inc_notes (insn, regno, reloadnum)
5060 rtx insn ATTRIBUTE_UNUSED;
5061 int regno ATTRIBUTE_UNUSED;
5062 int reloadnum ATTRIBUTE_UNUSED;
5063 {
5064 #ifdef AUTO_INC_DEC
5065 rtx link;
5066
5067 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5068 if (REG_NOTE_KIND (link) == REG_INC
5069 && REGNO (XEXP (link, 0)) == regno)
5070 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5071 #endif
5072 }
5073 \f
5074 /* Record the pseudo registers we must reload into hard registers in a
5075 subexpression of a would-be memory address, X referring to a value
5076 in mode MODE. (This function is not called if the address we find
5077 is strictly valid.)
5078
5079 CONTEXT = 1 means we are considering regs as index regs,
5080 = 0 means we are considering them as base regs.
5081
5082 OPNUM and TYPE specify the purpose of any reloads made.
5083
5084 IND_LEVELS says how many levels of indirect addressing are
5085 supported at this point in the address.
5086
5087 INSN, if nonzero, is the insn in which we do the reload. It is used
5088 to determine if we may generate output reloads.
5089
5090 We return nonzero if X, as a whole, is reloaded or replaced. */
5091
5092 /* Note that we take shortcuts assuming that no multi-reg machine mode
5093 occurs as part of an address.
5094 Also, this is not fully machine-customizable; it works for machines
5095 such as VAXen and 68000's and 32000's, but other possible machines
5096 could have addressing modes that this does not handle right. */
5097
5098 static int
5099 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5100 enum machine_mode mode;
5101 rtx x;
5102 int context;
5103 rtx *loc;
5104 int opnum;
5105 enum reload_type type;
5106 int ind_levels;
5107 rtx insn;
5108 {
5109 register RTX_CODE code = GET_CODE (x);
5110
5111 switch (code)
5112 {
5113 case PLUS:
5114 {
5115 register rtx orig_op0 = XEXP (x, 0);
5116 register rtx orig_op1 = XEXP (x, 1);
5117 register RTX_CODE code0 = GET_CODE (orig_op0);
5118 register RTX_CODE code1 = GET_CODE (orig_op1);
5119 register rtx op0 = orig_op0;
5120 register rtx op1 = orig_op1;
5121
5122 if (GET_CODE (op0) == SUBREG)
5123 {
5124 op0 = SUBREG_REG (op0);
5125 code0 = GET_CODE (op0);
5126 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5127 op0 = gen_rtx_REG (word_mode,
5128 (REGNO (op0) +
5129 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5130 GET_MODE (SUBREG_REG (orig_op0)),
5131 SUBREG_BYTE (orig_op0),
5132 GET_MODE (orig_op0))));
5133 }
5134
5135 if (GET_CODE (op1) == SUBREG)
5136 {
5137 op1 = SUBREG_REG (op1);
5138 code1 = GET_CODE (op1);
5139 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5140 /* ??? Why is this given op1's mode and above for
5141 ??? op0 SUBREGs we use word_mode? */
5142 op1 = gen_rtx_REG (GET_MODE (op1),
5143 (REGNO (op1) +
5144 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5145 GET_MODE (SUBREG_REG (orig_op1)),
5146 SUBREG_BYTE (orig_op1),
5147 GET_MODE (orig_op1))));
5148 }
5149
5150 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5151 || code0 == ZERO_EXTEND || code1 == MEM)
5152 {
5153 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5154 type, ind_levels, insn);
5155 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5156 type, ind_levels, insn);
5157 }
5158
5159 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5160 || code1 == ZERO_EXTEND || code0 == MEM)
5161 {
5162 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5163 type, ind_levels, insn);
5164 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5165 type, ind_levels, insn);
5166 }
5167
5168 else if (code0 == CONST_INT || code0 == CONST
5169 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5170 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5171 type, ind_levels, insn);
5172
5173 else if (code1 == CONST_INT || code1 == CONST
5174 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5175 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5176 type, ind_levels, insn);
5177
5178 else if (code0 == REG && code1 == REG)
5179 {
5180 if (REG_OK_FOR_INDEX_P (op0)
5181 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5182 return 0;
5183 else if (REG_OK_FOR_INDEX_P (op1)
5184 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5185 return 0;
5186 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5187 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5188 type, ind_levels, insn);
5189 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5190 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5191 type, ind_levels, insn);
5192 else if (REG_OK_FOR_INDEX_P (op1))
5193 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5194 type, ind_levels, insn);
5195 else if (REG_OK_FOR_INDEX_P (op0))
5196 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5197 type, ind_levels, insn);
5198 else
5199 {
5200 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5201 type, ind_levels, insn);
5202 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5203 type, ind_levels, insn);
5204 }
5205 }
5206
5207 else if (code0 == REG)
5208 {
5209 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5210 type, ind_levels, insn);
5211 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5212 type, ind_levels, insn);
5213 }
5214
5215 else if (code1 == REG)
5216 {
5217 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5218 type, ind_levels, insn);
5219 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5220 type, ind_levels, insn);
5221 }
5222 }
5223
5224 return 0;
5225
5226 case POST_MODIFY:
5227 case PRE_MODIFY:
5228 {
5229 rtx op0 = XEXP (x, 0);
5230 rtx op1 = XEXP (x, 1);
5231
5232 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5233 return 0;
5234
5235 /* Currently, we only support {PRE,POST}_MODIFY constructs
5236 where a base register is {inc,dec}remented by the contents
5237 of another register or by a constant value. Thus, these
5238 operands must match. */
5239 if (op0 != XEXP (op1, 0))
5240 abort ();
5241
5242 /* Require index register (or constant). Let's just handle the
5243 register case in the meantime... If the target allows
5244 auto-modify by a constant then we could try replacing a pseudo
5245 register with its equivalent constant where applicable. */
5246 if (REG_P (XEXP (op1, 1)))
5247 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5248 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5249 opnum, type, ind_levels, insn);
5250
5251 if (REG_P (XEXP (op1, 0)))
5252 {
5253 int regno = REGNO (XEXP (op1, 0));
5254 int reloadnum;
5255
5256 /* A register that is incremented cannot be constant! */
5257 if (regno >= FIRST_PSEUDO_REGISTER
5258 && reg_equiv_constant[regno] != 0)
5259 abort ();
5260
5261 /* Handle a register that is equivalent to a memory location
5262 which cannot be addressed directly. */
5263 if (reg_equiv_memory_loc[regno] != 0
5264 && (reg_equiv_address[regno] != 0
5265 || num_not_at_initial_offset))
5266 {
5267 rtx tem = make_memloc (XEXP (x, 0), regno);
5268
5269 if (reg_equiv_address[regno]
5270 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5271 {
5272 /* First reload the memory location's address.
5273 We can't use ADDR_TYPE (type) here, because we need to
5274 write back the value after reading it, hence we actually
5275 need two registers. */
5276 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5277 &XEXP (tem, 0), opnum,
5278 RELOAD_OTHER,
5279 ind_levels, insn);
5280
5281 /* Then reload the memory location into a base
5282 register. */
5283 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5284 &XEXP (op1, 0), BASE_REG_CLASS,
5285 GET_MODE (x), GET_MODE (x), 0,
5286 0, opnum, RELOAD_OTHER);
5287
5288 update_auto_inc_notes (this_insn, regno, reloadnum);
5289 return 0;
5290 }
5291 }
5292
5293 if (reg_renumber[regno] >= 0)
5294 regno = reg_renumber[regno];
5295
5296 /* We require a base register here... */
5297 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5298 {
5299 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5300 &XEXP (op1, 0), &XEXP (x, 0),
5301 BASE_REG_CLASS,
5302 GET_MODE (x), GET_MODE (x), 0, 0,
5303 opnum, RELOAD_OTHER);
5304
5305 update_auto_inc_notes (this_insn, regno, reloadnum);
5306 return 0;
5307 }
5308 }
5309 else
5310 abort ();
5311 }
5312 return 0;
5313
5314 case POST_INC:
5315 case POST_DEC:
5316 case PRE_INC:
5317 case PRE_DEC:
5318 if (GET_CODE (XEXP (x, 0)) == REG)
5319 {
5320 register int regno = REGNO (XEXP (x, 0));
5321 int value = 0;
5322 rtx x_orig = x;
5323
5324 /* A register that is incremented cannot be constant! */
5325 if (regno >= FIRST_PSEUDO_REGISTER
5326 && reg_equiv_constant[regno] != 0)
5327 abort ();
5328
5329 /* Handle a register that is equivalent to a memory location
5330 which cannot be addressed directly. */
5331 if (reg_equiv_memory_loc[regno] != 0
5332 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5333 {
5334 rtx tem = make_memloc (XEXP (x, 0), regno);
5335 if (reg_equiv_address[regno]
5336 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5337 {
5338 /* First reload the memory location's address.
5339 We can't use ADDR_TYPE (type) here, because we need to
5340 write back the value after reading it, hence we actually
5341 need two registers. */
5342 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5343 &XEXP (tem, 0), opnum, type,
5344 ind_levels, insn);
5345 /* Put this inside a new increment-expression. */
5346 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5347 /* Proceed to reload that, as if it contained a register. */
5348 }
5349 }
5350
5351 /* If we have a hard register that is ok as an index,
5352 don't make a reload. If an autoincrement of a nice register
5353 isn't "valid", it must be that no autoincrement is "valid".
5354 If that is true and something made an autoincrement anyway,
5355 this must be a special context where one is allowed.
5356 (For example, a "push" instruction.)
5357 We can't improve this address, so leave it alone. */
5358
5359 /* Otherwise, reload the autoincrement into a suitable hard reg
5360 and record how much to increment by. */
5361
5362 if (reg_renumber[regno] >= 0)
5363 regno = reg_renumber[regno];
5364 if ((regno >= FIRST_PSEUDO_REGISTER
5365 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5366 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5367 {
5368 int reloadnum;
5369
5370 /* If we can output the register afterwards, do so, this
5371 saves the extra update.
5372 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5373 CALL_INSN - and it does not set CC0.
5374 But don't do this if we cannot directly address the
5375 memory location, since this will make it harder to
5376 reuse address reloads, and increases register pressure.
5377 Also don't do this if we can probably update x directly. */
5378 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5379 ? XEXP (x, 0)
5380 : reg_equiv_mem[regno]);
5381 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5382 if (insn && GET_CODE (insn) == INSN && equiv
5383 && memory_operand (equiv, GET_MODE (equiv))
5384 #ifdef HAVE_cc0
5385 && ! sets_cc0_p (PATTERN (insn))
5386 #endif
5387 && ! (icode != CODE_FOR_nothing
5388 && ((*insn_data[icode].operand[0].predicate)
5389 (equiv, Pmode))
5390 && ((*insn_data[icode].operand[1].predicate)
5391 (equiv, Pmode))))
5392 {
5393 /* We use the original pseudo for loc, so that
5394 emit_reload_insns() knows which pseudo this
5395 reload refers to and updates the pseudo rtx, not
5396 its equivalent memory location, as well as the
5397 corresponding entry in reg_last_reload_reg. */
5398 loc = &XEXP (x_orig, 0);
5399 x = XEXP (x, 0);
5400 reloadnum
5401 = push_reload (x, x, loc, loc,
5402 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5403 GET_MODE (x), GET_MODE (x), 0, 0,
5404 opnum, RELOAD_OTHER);
5405 }
5406 else
5407 {
5408 reloadnum
5409 = push_reload (x, NULL_RTX, loc, (rtx*)0,
5410 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5411 GET_MODE (x), GET_MODE (x), 0, 0,
5412 opnum, type);
5413 rld[reloadnum].inc
5414 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5415
5416 value = 1;
5417 }
5418
5419 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5420 reloadnum);
5421 }
5422 return value;
5423 }
5424
5425 else if (GET_CODE (XEXP (x, 0)) == MEM)
5426 {
5427 /* This is probably the result of a substitution, by eliminate_regs,
5428 of an equivalent address for a pseudo that was not allocated to a
5429 hard register. Verify that the specified address is valid and
5430 reload it into a register. */
5431 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5432 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5433 register rtx link;
5434 int reloadnum;
5435
5436 /* Since we know we are going to reload this item, don't decrement
5437 for the indirection level.
5438
5439 Note that this is actually conservative: it would be slightly
5440 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5441 reload1.c here. */
5442 /* We can't use ADDR_TYPE (type) here, because we need to
5443 write back the value after reading it, hence we actually
5444 need two registers. */
5445 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5446 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5447 opnum, type, ind_levels, insn);
5448
5449 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*)0,
5450 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5451 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5452 rld[reloadnum].inc
5453 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5454
5455 link = FIND_REG_INC_NOTE (this_insn, tem);
5456 if (link != 0)
5457 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5458
5459 return 1;
5460 }
5461 return 0;
5462
5463 case MEM:
5464 /* This is probably the result of a substitution, by eliminate_regs, of
5465 an equivalent address for a pseudo that was not allocated to a hard
5466 register. Verify that the specified address is valid and reload it
5467 into a register.
5468
5469 Since we know we are going to reload this item, don't decrement for
5470 the indirection level.
5471
5472 Note that this is actually conservative: it would be slightly more
5473 efficient to use the value of SPILL_INDIRECT_LEVELS from
5474 reload1.c here. */
5475
5476 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5477 opnum, ADDR_TYPE (type), ind_levels, insn);
5478 push_reload (*loc, NULL_RTX, loc, (rtx*)0,
5479 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5480 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5481 return 1;
5482
5483 case REG:
5484 {
5485 register int regno = REGNO (x);
5486
5487 if (reg_equiv_constant[regno] != 0)
5488 {
5489 find_reloads_address_part (reg_equiv_constant[regno], loc,
5490 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5491 GET_MODE (x), opnum, type, ind_levels);
5492 return 1;
5493 }
5494
5495 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5496 that feeds this insn. */
5497 if (reg_equiv_mem[regno] != 0)
5498 {
5499 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*)0,
5500 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5501 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5502 return 1;
5503 }
5504 #endif
5505
5506 if (reg_equiv_memory_loc[regno]
5507 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5508 {
5509 rtx tem = make_memloc (x, regno);
5510 if (reg_equiv_address[regno] != 0
5511 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5512 {
5513 x = tem;
5514 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5515 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5516 ind_levels, insn);
5517 }
5518 }
5519
5520 if (reg_renumber[regno] >= 0)
5521 regno = reg_renumber[regno];
5522
5523 if ((regno >= FIRST_PSEUDO_REGISTER
5524 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5525 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5526 {
5527 push_reload (x, NULL_RTX, loc, (rtx*)0,
5528 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5529 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5530 return 1;
5531 }
5532
5533 /* If a register appearing in an address is the subject of a CLOBBER
5534 in this insn, reload it into some other register to be safe.
5535 The CLOBBER is supposed to make the register unavailable
5536 from before this insn to after it. */
5537 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5538 {
5539 push_reload (x, NULL_RTX, loc, (rtx*)0,
5540 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5541 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5542 return 1;
5543 }
5544 }
5545 return 0;
5546
5547 case SUBREG:
5548 if (GET_CODE (SUBREG_REG (x)) == REG)
5549 {
5550 /* If this is a SUBREG of a hard register and the resulting register
5551 is of the wrong class, reload the whole SUBREG. This avoids
5552 needless copies if SUBREG_REG is multi-word. */
5553 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5554 {
5555 int regno = subreg_regno (x);
5556
5557 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5558 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5559 {
5560 push_reload (x, NULL_RTX, loc, (rtx*)0,
5561 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5562 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5563 return 1;
5564 }
5565 }
5566 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5567 is larger than the class size, then reload the whole SUBREG. */
5568 else
5569 {
5570 enum reg_class class = (context ? INDEX_REG_CLASS
5571 : BASE_REG_CLASS);
5572 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5573 > reg_class_size[class])
5574 {
5575 x = find_reloads_subreg_address (x, 0, opnum, type,
5576 ind_levels, insn);
5577 push_reload (x, NULL_RTX, loc, (rtx*)0, class,
5578 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5579 return 1;
5580 }
5581 }
5582 }
5583 break;
5584
5585 default:
5586 break;
5587 }
5588
5589 {
5590 register const char *fmt = GET_RTX_FORMAT (code);
5591 register int i;
5592
5593 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5594 {
5595 if (fmt[i] == 'e')
5596 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5597 opnum, type, ind_levels, insn);
5598 }
5599 }
5600
5601 return 0;
5602 }
5603 \f
5604 /* X, which is found at *LOC, is a part of an address that needs to be
5605 reloaded into a register of class CLASS. If X is a constant, or if
5606 X is a PLUS that contains a constant, check that the constant is a
5607 legitimate operand and that we are supposed to be able to load
5608 it into the register.
5609
5610 If not, force the constant into memory and reload the MEM instead.
5611
5612 MODE is the mode to use, in case X is an integer constant.
5613
5614 OPNUM and TYPE describe the purpose of any reloads made.
5615
5616 IND_LEVELS says how many levels of indirect addressing this machine
5617 supports. */
5618
5619 static void
5620 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5621 rtx x;
5622 rtx *loc;
5623 enum reg_class class;
5624 enum machine_mode mode;
5625 int opnum;
5626 enum reload_type type;
5627 int ind_levels;
5628 {
5629 if (CONSTANT_P (x)
5630 && (! LEGITIMATE_CONSTANT_P (x)
5631 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5632 {
5633 rtx tem;
5634
5635 tem = x = force_const_mem (mode, x);
5636 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5637 opnum, type, ind_levels, 0);
5638 }
5639
5640 else if (GET_CODE (x) == PLUS
5641 && CONSTANT_P (XEXP (x, 1))
5642 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5643 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5644 {
5645 rtx tem;
5646
5647 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5648 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5649 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5650 opnum, type, ind_levels, 0);
5651 }
5652
5653 push_reload (x, NULL_RTX, loc, (rtx*)0, class,
5654 mode, VOIDmode, 0, 0, opnum, type);
5655 }
5656 \f
5657 /* X, a subreg of a pseudo, is a part of an address that needs to be
5658 reloaded.
5659
5660 If the pseudo is equivalent to a memory location that cannot be directly
5661 addressed, make the necessary address reloads.
5662
5663 If address reloads have been necessary, or if the address is changed
5664 by register elimination, return the rtx of the memory location;
5665 otherwise, return X.
5666
5667 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5668 memory location.
5669
5670 OPNUM and TYPE identify the purpose of the reload.
5671
5672 IND_LEVELS says how many levels of indirect addressing are
5673 supported at this point in the address.
5674
5675 INSN, if nonzero, is the insn in which we do the reload. It is used
5676 to determine where to put USEs for pseudos that we have to replace with
5677 stack slots. */
5678
5679 static rtx
5680 find_reloads_subreg_address (x, force_replace, opnum, type,
5681 ind_levels, insn)
5682 rtx x;
5683 int force_replace;
5684 int opnum;
5685 enum reload_type type;
5686 int ind_levels;
5687 rtx insn;
5688 {
5689 int regno = REGNO (SUBREG_REG (x));
5690
5691 if (reg_equiv_memory_loc[regno])
5692 {
5693 /* If the address is not directly addressable, or if the address is not
5694 offsettable, then it must be replaced. */
5695 if (! force_replace
5696 && (reg_equiv_address[regno]
5697 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5698 force_replace = 1;
5699
5700 if (force_replace || num_not_at_initial_offset)
5701 {
5702 rtx tem = make_memloc (SUBREG_REG (x), regno);
5703
5704 /* If the address changes because of register elimination, then
5705 it must be replaced. */
5706 if (force_replace
5707 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5708 {
5709 int offset = SUBREG_BYTE (x);
5710 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5711 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5712
5713 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5714 PUT_MODE (tem, GET_MODE (x));
5715
5716 /* If this was a paradoxical subreg that we replaced, the
5717 resulting memory must be sufficiently aligned to allow
5718 us to widen the mode of the memory. */
5719 if (outer_size > inner_size && STRICT_ALIGNMENT)
5720 {
5721 rtx base;
5722
5723 base = XEXP (tem, 0);
5724 if (GET_CODE (base) == PLUS)
5725 {
5726 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5727 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5728 return x;
5729 base = XEXP (base, 0);
5730 }
5731 if (GET_CODE (base) != REG
5732 || (REGNO_POINTER_ALIGN (REGNO (base))
5733 < outer_size * BITS_PER_UNIT))
5734 return x;
5735 }
5736
5737 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5738 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5739 ind_levels, insn);
5740
5741 /* If this is not a toplevel operand, find_reloads doesn't see
5742 this substitution. We have to emit a USE of the pseudo so
5743 that delete_output_reload can see it. */
5744 if (replace_reloads && recog_data.operand[opnum] != x)
5745 emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn);
5746 x = tem;
5747 }
5748 }
5749 }
5750 return x;
5751 }
5752 \f
5753 /* Substitute into the current INSN the registers into which we have reloaded
5754 the things that need reloading. The array `replacements'
5755 contains the locations of all pointers that must be changed
5756 and says what to replace them with.
5757
5758 Return the rtx that X translates into; usually X, but modified. */
5759
5760 void
5761 subst_reloads (insn)
5762 rtx insn;
5763 {
5764 register int i;
5765
5766 for (i = 0; i < n_replacements; i++)
5767 {
5768 register struct replacement *r = &replacements[i];
5769 register rtx reloadreg = rld[r->what].reg_rtx;
5770 if (reloadreg)
5771 {
5772 /* If we're replacing a LABEL_REF with a register, add a
5773 REG_LABEL note to indicate to flow which label this
5774 register refers to. */
5775 if (GET_CODE (*r->where) == LABEL_REF
5776 && GET_CODE (insn) == JUMP_INSN)
5777 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
5778 XEXP (*r->where, 0),
5779 REG_NOTES (insn));
5780
5781 /* Encapsulate RELOADREG so its machine mode matches what
5782 used to be there. Note that gen_lowpart_common will
5783 do the wrong thing if RELOADREG is multi-word. RELOADREG
5784 will always be a REG here. */
5785 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5786 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5787
5788 /* If we are putting this into a SUBREG and RELOADREG is a
5789 SUBREG, we would be making nested SUBREGs, so we have to fix
5790 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5791
5792 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5793 {
5794 if (GET_MODE (*r->subreg_loc)
5795 == GET_MODE (SUBREG_REG (reloadreg)))
5796 *r->subreg_loc = SUBREG_REG (reloadreg);
5797 else
5798 {
5799 int final_offset =
5800 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5801
5802 /* When working with SUBREGs the rule is that the byte
5803 offset must be a multiple of the SUBREG's mode. */
5804 final_offset = (final_offset /
5805 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5806 final_offset = (final_offset *
5807 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5808
5809 *r->where = SUBREG_REG (reloadreg);
5810 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5811 }
5812 }
5813 else
5814 *r->where = reloadreg;
5815 }
5816 /* If reload got no reg and isn't optional, something's wrong. */
5817 else if (! rld[r->what].optional)
5818 abort ();
5819 }
5820 }
5821 \f
5822 /* Make a copy of any replacements being done into X and move those copies
5823 to locations in Y, a copy of X. We only look at the highest level of
5824 the RTL. */
5825
5826 void
5827 copy_replacements (x, y)
5828 rtx x;
5829 rtx y;
5830 {
5831 int i, j;
5832 enum rtx_code code = GET_CODE (x);
5833 const char *fmt = GET_RTX_FORMAT (code);
5834 struct replacement *r;
5835
5836 /* We can't support X being a SUBREG because we might then need to know its
5837 location if something inside it was replaced. */
5838 if (code == SUBREG)
5839 abort ();
5840
5841 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5842 if (fmt[i] == 'e')
5843 for (j = 0; j < n_replacements; j++)
5844 {
5845 if (replacements[j].subreg_loc == &XEXP (x, i))
5846 {
5847 r = &replacements[n_replacements++];
5848 r->where = replacements[j].where;
5849 r->subreg_loc = &XEXP (y, i);
5850 r->what = replacements[j].what;
5851 r->mode = replacements[j].mode;
5852 }
5853 else if (replacements[j].where == &XEXP (x, i))
5854 {
5855 r = &replacements[n_replacements++];
5856 r->where = &XEXP (y, i);
5857 r->subreg_loc = 0;
5858 r->what = replacements[j].what;
5859 r->mode = replacements[j].mode;
5860 }
5861 }
5862 }
5863
5864 /* Change any replacements being done to *X to be done to *Y */
5865
5866 void
5867 move_replacements (x, y)
5868 rtx *x;
5869 rtx *y;
5870 {
5871 int i;
5872
5873 for (i = 0; i < n_replacements; i++)
5874 if (replacements[i].subreg_loc == x)
5875 replacements[i].subreg_loc = y;
5876 else if (replacements[i].where == x)
5877 {
5878 replacements[i].where = y;
5879 replacements[i].subreg_loc = 0;
5880 }
5881 }
5882 \f
5883 /* If LOC was scheduled to be replaced by something, return the replacement.
5884 Otherwise, return *LOC. */
5885
5886 rtx
5887 find_replacement (loc)
5888 rtx *loc;
5889 {
5890 struct replacement *r;
5891
5892 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5893 {
5894 rtx reloadreg = rld[r->what].reg_rtx;
5895
5896 if (reloadreg && r->where == loc)
5897 {
5898 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5899 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5900
5901 return reloadreg;
5902 }
5903 else if (reloadreg && r->subreg_loc == loc)
5904 {
5905 /* RELOADREG must be either a REG or a SUBREG.
5906
5907 ??? Is it actually still ever a SUBREG? If so, why? */
5908
5909 if (GET_CODE (reloadreg) == REG)
5910 return gen_rtx_REG (GET_MODE (*loc),
5911 (REGNO (reloadreg) +
5912 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
5913 GET_MODE (SUBREG_REG (*loc)),
5914 SUBREG_BYTE (*loc),
5915 GET_MODE (*loc))));
5916 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5917 return reloadreg;
5918 else
5919 {
5920 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
5921
5922 /* When working with SUBREGs the rule is that the byte
5923 offset must be a multiple of the SUBREG's mode. */
5924 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
5925 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
5926 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5927 final_offset);
5928 }
5929 }
5930 }
5931
5932 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5933 what's inside and make a new rtl if so. */
5934 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5935 || GET_CODE (*loc) == MULT)
5936 {
5937 rtx x = find_replacement (&XEXP (*loc, 0));
5938 rtx y = find_replacement (&XEXP (*loc, 1));
5939
5940 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5941 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5942 }
5943
5944 return *loc;
5945 }
5946 \f
5947 /* Return nonzero if register in range [REGNO, ENDREGNO)
5948 appears either explicitly or implicitly in X
5949 other than being stored into (except for earlyclobber operands).
5950
5951 References contained within the substructure at LOC do not count.
5952 LOC may be zero, meaning don't ignore anything.
5953
5954 This is similar to refers_to_regno_p in rtlanal.c except that we
5955 look at equivalences for pseudos that didn't get hard registers. */
5956
5957 int
5958 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5959 unsigned int regno, endregno;
5960 rtx x;
5961 rtx *loc;
5962 {
5963 int i;
5964 unsigned int r;
5965 RTX_CODE code;
5966 const char *fmt;
5967
5968 if (x == 0)
5969 return 0;
5970
5971 repeat:
5972 code = GET_CODE (x);
5973
5974 switch (code)
5975 {
5976 case REG:
5977 r = REGNO (x);
5978
5979 /* If this is a pseudo, a hard register must not have been allocated.
5980 X must therefore either be a constant or be in memory. */
5981 if (r >= FIRST_PSEUDO_REGISTER)
5982 {
5983 if (reg_equiv_memory_loc[r])
5984 return refers_to_regno_for_reload_p (regno, endregno,
5985 reg_equiv_memory_loc[r],
5986 (rtx*)0);
5987
5988 if (reg_equiv_constant[r])
5989 return 0;
5990
5991 abort ();
5992 }
5993
5994 return (endregno > r
5995 && regno < r + (r < FIRST_PSEUDO_REGISTER
5996 ? HARD_REGNO_NREGS (r, GET_MODE (x))
5997 : 1));
5998
5999 case SUBREG:
6000 /* If this is a SUBREG of a hard reg, we can see exactly which
6001 registers are being modified. Otherwise, handle normally. */
6002 if (GET_CODE (SUBREG_REG (x)) == REG
6003 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6004 {
6005 unsigned int inner_regno = subreg_regno (x);
6006 unsigned int inner_endregno
6007 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6008 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6009
6010 return endregno > inner_regno && regno < inner_endregno;
6011 }
6012 break;
6013
6014 case CLOBBER:
6015 case SET:
6016 if (&SET_DEST (x) != loc
6017 /* Note setting a SUBREG counts as referring to the REG it is in for
6018 a pseudo but not for hard registers since we can
6019 treat each word individually. */
6020 && ((GET_CODE (SET_DEST (x)) == SUBREG
6021 && loc != &SUBREG_REG (SET_DEST (x))
6022 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6023 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6024 && refers_to_regno_for_reload_p (regno, endregno,
6025 SUBREG_REG (SET_DEST (x)),
6026 loc))
6027 /* If the output is an earlyclobber operand, this is
6028 a conflict. */
6029 || ((GET_CODE (SET_DEST (x)) != REG
6030 || earlyclobber_operand_p (SET_DEST (x)))
6031 && refers_to_regno_for_reload_p (regno, endregno,
6032 SET_DEST (x), loc))))
6033 return 1;
6034
6035 if (code == CLOBBER || loc == &SET_SRC (x))
6036 return 0;
6037 x = SET_SRC (x);
6038 goto repeat;
6039
6040 default:
6041 break;
6042 }
6043
6044 /* X does not match, so try its subexpressions. */
6045
6046 fmt = GET_RTX_FORMAT (code);
6047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6048 {
6049 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6050 {
6051 if (i == 0)
6052 {
6053 x = XEXP (x, 0);
6054 goto repeat;
6055 }
6056 else
6057 if (refers_to_regno_for_reload_p (regno, endregno,
6058 XEXP (x, i), loc))
6059 return 1;
6060 }
6061 else if (fmt[i] == 'E')
6062 {
6063 register int j;
6064 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6065 if (loc != &XVECEXP (x, i, j)
6066 && refers_to_regno_for_reload_p (regno, endregno,
6067 XVECEXP (x, i, j), loc))
6068 return 1;
6069 }
6070 }
6071 return 0;
6072 }
6073
6074 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6075 we check if any register number in X conflicts with the relevant register
6076 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6077 contains a MEM (we don't bother checking for memory addresses that can't
6078 conflict because we expect this to be a rare case.
6079
6080 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6081 that we look at equivalences for pseudos that didn't get hard registers. */
6082
6083 int
6084 reg_overlap_mentioned_for_reload_p (x, in)
6085 rtx x, in;
6086 {
6087 int regno, endregno;
6088
6089 /* Overly conservative. */
6090 if (GET_CODE (x) == STRICT_LOW_PART)
6091 x = XEXP (x, 0);
6092
6093 /* If either argument is a constant, then modifying X can not affect IN. */
6094 if (CONSTANT_P (x) || CONSTANT_P (in))
6095 return 0;
6096 else if (GET_CODE (x) == SUBREG)
6097 {
6098 regno = REGNO (SUBREG_REG (x));
6099 if (regno < FIRST_PSEUDO_REGISTER)
6100 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6101 GET_MODE (SUBREG_REG (x)),
6102 SUBREG_BYTE (x),
6103 GET_MODE (x));
6104 }
6105 else if (GET_CODE (x) == REG)
6106 {
6107 regno = REGNO (x);
6108
6109 /* If this is a pseudo, it must not have been assigned a hard register.
6110 Therefore, it must either be in memory or be a constant. */
6111
6112 if (regno >= FIRST_PSEUDO_REGISTER)
6113 {
6114 if (reg_equiv_memory_loc[regno])
6115 return refers_to_mem_for_reload_p (in);
6116 else if (reg_equiv_constant[regno])
6117 return 0;
6118 abort ();
6119 }
6120 }
6121 else if (GET_CODE (x) == MEM)
6122 return refers_to_mem_for_reload_p (in);
6123 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6124 || GET_CODE (x) == CC0)
6125 return reg_mentioned_p (x, in);
6126 else
6127 abort ();
6128
6129 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6130 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6131
6132 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*)0);
6133 }
6134
6135 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6136 registers. */
6137
6138 int
6139 refers_to_mem_for_reload_p (x)
6140 rtx x;
6141 {
6142 const char *fmt;
6143 int i;
6144
6145 if (GET_CODE (x) == MEM)
6146 return 1;
6147
6148 if (GET_CODE (x) == REG)
6149 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6150 && reg_equiv_memory_loc[REGNO (x)]);
6151
6152 fmt = GET_RTX_FORMAT (GET_CODE (x));
6153 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6154 if (fmt[i] == 'e'
6155 && (GET_CODE (XEXP (x, i)) == MEM
6156 || refers_to_mem_for_reload_p (XEXP (x, i))))
6157 return 1;
6158
6159 return 0;
6160 }
6161 \f
6162 /* Check the insns before INSN to see if there is a suitable register
6163 containing the same value as GOAL.
6164 If OTHER is -1, look for a register in class CLASS.
6165 Otherwise, just see if register number OTHER shares GOAL's value.
6166
6167 Return an rtx for the register found, or zero if none is found.
6168
6169 If RELOAD_REG_P is (short *)1,
6170 we reject any hard reg that appears in reload_reg_rtx
6171 because such a hard reg is also needed coming into this insn.
6172
6173 If RELOAD_REG_P is any other nonzero value,
6174 it is a vector indexed by hard reg number
6175 and we reject any hard reg whose element in the vector is nonnegative
6176 as well as any that appears in reload_reg_rtx.
6177
6178 If GOAL is zero, then GOALREG is a register number; we look
6179 for an equivalent for that register.
6180
6181 MODE is the machine mode of the value we want an equivalence for.
6182 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6183
6184 This function is used by jump.c as well as in the reload pass.
6185
6186 If GOAL is the sum of the stack pointer and a constant, we treat it
6187 as if it were a constant except that sp is required to be unchanging. */
6188
6189 rtx
6190 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6191 register rtx goal;
6192 rtx insn;
6193 enum reg_class class;
6194 register int other;
6195 short *reload_reg_p;
6196 int goalreg;
6197 enum machine_mode mode;
6198 {
6199 register rtx p = insn;
6200 rtx goaltry, valtry, value, where;
6201 register rtx pat;
6202 register int regno = -1;
6203 int valueno;
6204 int goal_mem = 0;
6205 int goal_const = 0;
6206 int goal_mem_addr_varies = 0;
6207 int need_stable_sp = 0;
6208 int nregs;
6209 int valuenregs;
6210
6211 if (goal == 0)
6212 regno = goalreg;
6213 else if (GET_CODE (goal) == REG)
6214 regno = REGNO (goal);
6215 else if (GET_CODE (goal) == MEM)
6216 {
6217 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6218 if (MEM_VOLATILE_P (goal))
6219 return 0;
6220 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6221 return 0;
6222 /* An address with side effects must be reexecuted. */
6223 switch (code)
6224 {
6225 case POST_INC:
6226 case PRE_INC:
6227 case POST_DEC:
6228 case PRE_DEC:
6229 case POST_MODIFY:
6230 case PRE_MODIFY:
6231 return 0;
6232 default:
6233 break;
6234 }
6235 goal_mem = 1;
6236 }
6237 else if (CONSTANT_P (goal))
6238 goal_const = 1;
6239 else if (GET_CODE (goal) == PLUS
6240 && XEXP (goal, 0) == stack_pointer_rtx
6241 && CONSTANT_P (XEXP (goal, 1)))
6242 goal_const = need_stable_sp = 1;
6243 else if (GET_CODE (goal) == PLUS
6244 && XEXP (goal, 0) == frame_pointer_rtx
6245 && CONSTANT_P (XEXP (goal, 1)))
6246 goal_const = 1;
6247 else
6248 return 0;
6249
6250 /* Scan insns back from INSN, looking for one that copies
6251 a value into or out of GOAL.
6252 Stop and give up if we reach a label. */
6253
6254 while (1)
6255 {
6256 p = PREV_INSN (p);
6257 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6258 return 0;
6259
6260 if (GET_CODE (p) == INSN
6261 /* If we don't want spill regs ... */
6262 && (! (reload_reg_p != 0
6263 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6264 /* ... then ignore insns introduced by reload; they aren't
6265 useful and can cause results in reload_as_needed to be
6266 different from what they were when calculating the need for
6267 spills. If we notice an input-reload insn here, we will
6268 reject it below, but it might hide a usable equivalent.
6269 That makes bad code. It may even abort: perhaps no reg was
6270 spilled for this insn because it was assumed we would find
6271 that equivalent. */
6272 || INSN_UID (p) < reload_first_uid))
6273 {
6274 rtx tem;
6275 pat = single_set (p);
6276
6277 /* First check for something that sets some reg equal to GOAL. */
6278 if (pat != 0
6279 && ((regno >= 0
6280 && true_regnum (SET_SRC (pat)) == regno
6281 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6282 ||
6283 (regno >= 0
6284 && true_regnum (SET_DEST (pat)) == regno
6285 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6286 ||
6287 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6288 /* When looking for stack pointer + const,
6289 make sure we don't use a stack adjust. */
6290 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6291 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6292 || (goal_mem
6293 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6294 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6295 || (goal_mem
6296 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6297 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6298 /* If we are looking for a constant,
6299 and something equivalent to that constant was copied
6300 into a reg, we can use that reg. */
6301 || (goal_const && REG_NOTES (p) != 0
6302 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6303 && ((rtx_equal_p (XEXP (tem, 0), goal)
6304 && (valueno
6305 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6306 || (GET_CODE (SET_DEST (pat)) == REG
6307 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6308 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6309 == MODE_FLOAT)
6310 && GET_CODE (goal) == CONST_INT
6311 && 0 != (goaltry
6312 = operand_subword (XEXP (tem, 0), 0, 0,
6313 VOIDmode))
6314 && rtx_equal_p (goal, goaltry)
6315 && (valtry
6316 = operand_subword (SET_DEST (pat), 0, 0,
6317 VOIDmode))
6318 && (valueno = true_regnum (valtry)) >= 0)))
6319 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6320 NULL_RTX))
6321 && GET_CODE (SET_DEST (pat)) == REG
6322 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6323 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6324 == MODE_FLOAT)
6325 && GET_CODE (goal) == CONST_INT
6326 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6327 VOIDmode))
6328 && rtx_equal_p (goal, goaltry)
6329 && (valtry
6330 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6331 && (valueno = true_regnum (valtry)) >= 0)))
6332 {
6333 if (other >= 0)
6334 {
6335 if (valueno != other)
6336 continue;
6337 }
6338 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6339 continue;
6340 else
6341 {
6342 int i;
6343
6344 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6345 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6346 valueno + i))
6347 break;
6348 if (i >= 0)
6349 continue;
6350 }
6351 value = valtry;
6352 where = p;
6353 break;
6354 }
6355 }
6356 }
6357
6358 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6359 (or copying VALUE into GOAL, if GOAL is also a register).
6360 Now verify that VALUE is really valid. */
6361
6362 /* VALUENO is the register number of VALUE; a hard register. */
6363
6364 /* Don't try to re-use something that is killed in this insn. We want
6365 to be able to trust REG_UNUSED notes. */
6366 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6367 return 0;
6368
6369 /* If we propose to get the value from the stack pointer or if GOAL is
6370 a MEM based on the stack pointer, we need a stable SP. */
6371 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6372 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6373 goal)))
6374 need_stable_sp = 1;
6375
6376 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6377 if (GET_MODE (value) != mode)
6378 return 0;
6379
6380 /* Reject VALUE if it was loaded from GOAL
6381 and is also a register that appears in the address of GOAL. */
6382
6383 if (goal_mem && value == SET_DEST (single_set (where))
6384 && refers_to_regno_for_reload_p (valueno,
6385 (valueno
6386 + HARD_REGNO_NREGS (valueno, mode)),
6387 goal, (rtx*)0))
6388 return 0;
6389
6390 /* Reject registers that overlap GOAL. */
6391
6392 if (!goal_mem && !goal_const
6393 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6394 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6395 return 0;
6396
6397 nregs = HARD_REGNO_NREGS (regno, mode);
6398 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6399
6400 /* Reject VALUE if it is one of the regs reserved for reloads.
6401 Reload1 knows how to reuse them anyway, and it would get
6402 confused if we allocated one without its knowledge.
6403 (Now that insns introduced by reload are ignored above,
6404 this case shouldn't happen, but I'm not positive.) */
6405
6406 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6407 {
6408 int i;
6409 for (i = 0; i < valuenregs; ++i)
6410 if (reload_reg_p[valueno + i] >= 0)
6411 return 0;
6412 }
6413
6414 /* Reject VALUE if it is a register being used for an input reload
6415 even if it is not one of those reserved. */
6416
6417 if (reload_reg_p != 0)
6418 {
6419 int i;
6420 for (i = 0; i < n_reloads; i++)
6421 if (rld[i].reg_rtx != 0 && rld[i].in)
6422 {
6423 int regno1 = REGNO (rld[i].reg_rtx);
6424 int nregs1 = HARD_REGNO_NREGS (regno1,
6425 GET_MODE (rld[i].reg_rtx));
6426 if (regno1 < valueno + valuenregs
6427 && regno1 + nregs1 > valueno)
6428 return 0;
6429 }
6430 }
6431
6432 if (goal_mem)
6433 /* We must treat frame pointer as varying here,
6434 since it can vary--in a nonlocal goto as generated by expand_goto. */
6435 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6436
6437 /* Now verify that the values of GOAL and VALUE remain unaltered
6438 until INSN is reached. */
6439
6440 p = insn;
6441 while (1)
6442 {
6443 p = PREV_INSN (p);
6444 if (p == where)
6445 return value;
6446
6447 /* Don't trust the conversion past a function call
6448 if either of the two is in a call-clobbered register, or memory. */
6449 if (GET_CODE (p) == CALL_INSN)
6450 {
6451 int i;
6452
6453 if (goal_mem || need_stable_sp)
6454 return 0;
6455
6456 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6457 for (i = 0; i < nregs; ++i)
6458 if (call_used_regs[regno + i])
6459 return 0;
6460
6461 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6462 for (i = 0; i < valuenregs; ++i)
6463 if (call_used_regs[valueno + i])
6464 return 0;
6465 #ifdef NON_SAVING_SETJMP
6466 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6467 return 0;
6468 #endif
6469 }
6470
6471 if (INSN_P (p))
6472 {
6473 pat = PATTERN (p);
6474
6475 /* Watch out for unspec_volatile, and volatile asms. */
6476 if (volatile_insn_p (pat))
6477 return 0;
6478
6479 /* If this insn P stores in either GOAL or VALUE, return 0.
6480 If GOAL is a memory ref and this insn writes memory, return 0.
6481 If GOAL is a memory ref and its address is not constant,
6482 and this insn P changes a register used in GOAL, return 0. */
6483
6484 if (GET_CODE (pat) == COND_EXEC)
6485 pat = COND_EXEC_CODE (pat);
6486 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6487 {
6488 register rtx dest = SET_DEST (pat);
6489 while (GET_CODE (dest) == SUBREG
6490 || GET_CODE (dest) == ZERO_EXTRACT
6491 || GET_CODE (dest) == SIGN_EXTRACT
6492 || GET_CODE (dest) == STRICT_LOW_PART)
6493 dest = XEXP (dest, 0);
6494 if (GET_CODE (dest) == REG)
6495 {
6496 register int xregno = REGNO (dest);
6497 int xnregs;
6498 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6499 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6500 else
6501 xnregs = 1;
6502 if (xregno < regno + nregs && xregno + xnregs > regno)
6503 return 0;
6504 if (xregno < valueno + valuenregs
6505 && xregno + xnregs > valueno)
6506 return 0;
6507 if (goal_mem_addr_varies
6508 && reg_overlap_mentioned_for_reload_p (dest, goal))
6509 return 0;
6510 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6511 return 0;
6512 }
6513 else if (goal_mem && GET_CODE (dest) == MEM
6514 && ! push_operand (dest, GET_MODE (dest)))
6515 return 0;
6516 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6517 && reg_equiv_memory_loc[regno] != 0)
6518 return 0;
6519 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6520 return 0;
6521 }
6522 else if (GET_CODE (pat) == PARALLEL)
6523 {
6524 register int i;
6525 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6526 {
6527 register rtx v1 = XVECEXP (pat, 0, i);
6528 if (GET_CODE (v1) == COND_EXEC)
6529 v1 = COND_EXEC_CODE (v1);
6530 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6531 {
6532 register rtx dest = SET_DEST (v1);
6533 while (GET_CODE (dest) == SUBREG
6534 || GET_CODE (dest) == ZERO_EXTRACT
6535 || GET_CODE (dest) == SIGN_EXTRACT
6536 || GET_CODE (dest) == STRICT_LOW_PART)
6537 dest = XEXP (dest, 0);
6538 if (GET_CODE (dest) == REG)
6539 {
6540 register int xregno = REGNO (dest);
6541 int xnregs;
6542 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6543 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6544 else
6545 xnregs = 1;
6546 if (xregno < regno + nregs
6547 && xregno + xnregs > regno)
6548 return 0;
6549 if (xregno < valueno + valuenregs
6550 && xregno + xnregs > valueno)
6551 return 0;
6552 if (goal_mem_addr_varies
6553 && reg_overlap_mentioned_for_reload_p (dest,
6554 goal))
6555 return 0;
6556 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6557 return 0;
6558 }
6559 else if (goal_mem && GET_CODE (dest) == MEM
6560 && ! push_operand (dest, GET_MODE (dest)))
6561 return 0;
6562 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6563 && reg_equiv_memory_loc[regno] != 0)
6564 return 0;
6565 else if (need_stable_sp
6566 && push_operand (dest, GET_MODE (dest)))
6567 return 0;
6568 }
6569 }
6570 }
6571
6572 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6573 {
6574 rtx link;
6575
6576 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6577 link = XEXP (link, 1))
6578 {
6579 pat = XEXP (link, 0);
6580 if (GET_CODE (pat) == CLOBBER)
6581 {
6582 register rtx dest = SET_DEST (pat);
6583
6584 if (GET_CODE (dest) == REG)
6585 {
6586 register int xregno = REGNO (dest);
6587 int xnregs
6588 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6589
6590 if (xregno < regno + nregs
6591 && xregno + xnregs > regno)
6592 return 0;
6593 else if (xregno < valueno + valuenregs
6594 && xregno + xnregs > valueno)
6595 return 0;
6596 else if (goal_mem_addr_varies
6597 && reg_overlap_mentioned_for_reload_p (dest,
6598 goal))
6599 return 0;
6600 }
6601
6602 else if (goal_mem && GET_CODE (dest) == MEM
6603 && ! push_operand (dest, GET_MODE (dest)))
6604 return 0;
6605 else if (need_stable_sp
6606 && push_operand (dest, GET_MODE (dest)))
6607 return 0;
6608 }
6609 }
6610 }
6611
6612 #ifdef AUTO_INC_DEC
6613 /* If this insn auto-increments or auto-decrements
6614 either regno or valueno, return 0 now.
6615 If GOAL is a memory ref and its address is not constant,
6616 and this insn P increments a register used in GOAL, return 0. */
6617 {
6618 register rtx link;
6619
6620 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6621 if (REG_NOTE_KIND (link) == REG_INC
6622 && GET_CODE (XEXP (link, 0)) == REG)
6623 {
6624 register int incno = REGNO (XEXP (link, 0));
6625 if (incno < regno + nregs && incno >= regno)
6626 return 0;
6627 if (incno < valueno + valuenregs && incno >= valueno)
6628 return 0;
6629 if (goal_mem_addr_varies
6630 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6631 goal))
6632 return 0;
6633 }
6634 }
6635 #endif
6636 }
6637 }
6638 }
6639 \f
6640 /* Find a place where INCED appears in an increment or decrement operator
6641 within X, and return the amount INCED is incremented or decremented by.
6642 The value is always positive. */
6643
6644 static int
6645 find_inc_amount (x, inced)
6646 rtx x, inced;
6647 {
6648 register enum rtx_code code = GET_CODE (x);
6649 register const char *fmt;
6650 register int i;
6651
6652 if (code == MEM)
6653 {
6654 register rtx addr = XEXP (x, 0);
6655 if ((GET_CODE (addr) == PRE_DEC
6656 || GET_CODE (addr) == POST_DEC
6657 || GET_CODE (addr) == PRE_INC
6658 || GET_CODE (addr) == POST_INC)
6659 && XEXP (addr, 0) == inced)
6660 return GET_MODE_SIZE (GET_MODE (x));
6661 else if ((GET_CODE (addr) == PRE_MODIFY
6662 || GET_CODE (addr) == POST_MODIFY)
6663 && GET_CODE (XEXP (addr, 1)) == PLUS
6664 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6665 && XEXP (addr, 0) == inced
6666 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6667 {
6668 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6669 return i < 0 ? -i : i;
6670 }
6671 }
6672
6673 fmt = GET_RTX_FORMAT (code);
6674 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6675 {
6676 if (fmt[i] == 'e')
6677 {
6678 register int tem = find_inc_amount (XEXP (x, i), inced);
6679 if (tem != 0)
6680 return tem;
6681 }
6682 if (fmt[i] == 'E')
6683 {
6684 register int j;
6685 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6686 {
6687 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6688 if (tem != 0)
6689 return tem;
6690 }
6691 }
6692 }
6693
6694 return 0;
6695 }
6696 \f
6697 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6698 If SETS is nonzero, also consider SETs. */
6699
6700 int
6701 regno_clobbered_p (regno, insn, mode, sets)
6702 unsigned int regno;
6703 rtx insn;
6704 enum machine_mode mode;
6705 int sets;
6706 {
6707 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6708 unsigned int endregno = regno + nregs;
6709
6710 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6711 || (sets && GET_CODE (PATTERN (insn)) == SET))
6712 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6713 {
6714 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6715
6716 return test >= regno && test < endregno;
6717 }
6718
6719 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6720 {
6721 int i = XVECLEN (PATTERN (insn), 0) - 1;
6722
6723 for (; i >= 0; i--)
6724 {
6725 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6726 if ((GET_CODE (elt) == CLOBBER
6727 || (sets && GET_CODE (PATTERN (insn)) == SET))
6728 && GET_CODE (XEXP (elt, 0)) == REG)
6729 {
6730 unsigned int test = REGNO (XEXP (elt, 0));
6731
6732 if (test >= regno && test < endregno)
6733 return 1;
6734 }
6735 }
6736 }
6737
6738 return 0;
6739 }
6740
6741 static const char *reload_when_needed_name[] =
6742 {
6743 "RELOAD_FOR_INPUT",
6744 "RELOAD_FOR_OUTPUT",
6745 "RELOAD_FOR_INSN",
6746 "RELOAD_FOR_INPUT_ADDRESS",
6747 "RELOAD_FOR_INPADDR_ADDRESS",
6748 "RELOAD_FOR_OUTPUT_ADDRESS",
6749 "RELOAD_FOR_OUTADDR_ADDRESS",
6750 "RELOAD_FOR_OPERAND_ADDRESS",
6751 "RELOAD_FOR_OPADDR_ADDR",
6752 "RELOAD_OTHER",
6753 "RELOAD_FOR_OTHER_ADDRESS"
6754 };
6755
6756 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6757
6758 /* These functions are used to print the variables set by 'find_reloads' */
6759
6760 void
6761 debug_reload_to_stream (f)
6762 FILE *f;
6763 {
6764 int r;
6765 const char *prefix;
6766
6767 if (! f)
6768 f = stderr;
6769 for (r = 0; r < n_reloads; r++)
6770 {
6771 fprintf (f, "Reload %d: ", r);
6772
6773 if (rld[r].in != 0)
6774 {
6775 fprintf (f, "reload_in (%s) = ",
6776 GET_MODE_NAME (rld[r].inmode));
6777 print_inline_rtx (f, rld[r].in, 24);
6778 fprintf (f, "\n\t");
6779 }
6780
6781 if (rld[r].out != 0)
6782 {
6783 fprintf (f, "reload_out (%s) = ",
6784 GET_MODE_NAME (rld[r].outmode));
6785 print_inline_rtx (f, rld[r].out, 24);
6786 fprintf (f, "\n\t");
6787 }
6788
6789 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6790
6791 fprintf (f, "%s (opnum = %d)",
6792 reload_when_needed_name[(int) rld[r].when_needed],
6793 rld[r].opnum);
6794
6795 if (rld[r].optional)
6796 fprintf (f, ", optional");
6797
6798 if (rld[r].nongroup)
6799 fprintf (f, ", nongroup");
6800
6801 if (rld[r].inc != 0)
6802 fprintf (f, ", inc by %d", rld[r].inc);
6803
6804 if (rld[r].nocombine)
6805 fprintf (f, ", can't combine");
6806
6807 if (rld[r].secondary_p)
6808 fprintf (f, ", secondary_reload_p");
6809
6810 if (rld[r].in_reg != 0)
6811 {
6812 fprintf (f, "\n\treload_in_reg: ");
6813 print_inline_rtx (f, rld[r].in_reg, 24);
6814 }
6815
6816 if (rld[r].out_reg != 0)
6817 {
6818 fprintf (f, "\n\treload_out_reg: ");
6819 print_inline_rtx (f, rld[r].out_reg, 24);
6820 }
6821
6822 if (rld[r].reg_rtx != 0)
6823 {
6824 fprintf (f, "\n\treload_reg_rtx: ");
6825 print_inline_rtx (f, rld[r].reg_rtx, 24);
6826 }
6827
6828 prefix = "\n\t";
6829 if (rld[r].secondary_in_reload != -1)
6830 {
6831 fprintf (f, "%ssecondary_in_reload = %d",
6832 prefix, rld[r].secondary_in_reload);
6833 prefix = ", ";
6834 }
6835
6836 if (rld[r].secondary_out_reload != -1)
6837 fprintf (f, "%ssecondary_out_reload = %d\n",
6838 prefix, rld[r].secondary_out_reload);
6839
6840 prefix = "\n\t";
6841 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6842 {
6843 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6844 insn_data[rld[r].secondary_in_icode].name);
6845 prefix = ", ";
6846 }
6847
6848 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6849 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6850 insn_data[rld[r].secondary_out_icode].name);
6851
6852 fprintf (f, "\n");
6853 }
6854 }
6855
6856 void
6857 debug_reload ()
6858 {
6859 debug_reload_to_stream (stderr);
6860 }