emit-rtl.c (subreg_hard_regno): Check that register is representable.
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57 NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
72
73 Using a reload register for several reloads in one insn:
74
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
78
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
82
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
86
87 #define REG_OK_STRICT
88
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tm_p.h"
95 #include "insn-config.h"
96 #include "expr.h"
97 #include "optabs.h"
98 #include "recog.h"
99 #include "reload.h"
100 #include "regs.h"
101 #include "hard-reg-set.h"
102 #include "flags.h"
103 #include "real.h"
104 #include "output.h"
105 #include "function.h"
106 #include "toplev.h"
107
108 #ifndef REGISTER_MOVE_COST
109 #define REGISTER_MOVE_COST(m, x, y) 2
110 #endif
111
112 #ifndef REGNO_MODE_OK_FOR_BASE_P
113 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
114 #endif
115
116 #ifndef REG_MODE_OK_FOR_BASE_P
117 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
118 #endif
119 \f
120 /* All reloads of the current insn are recorded here. See reload.h for
121 comments. */
122 int n_reloads;
123 struct reload rld[MAX_RELOADS];
124
125 /* All the "earlyclobber" operands of the current insn
126 are recorded here. */
127 int n_earlyclobbers;
128 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
129
130 int reload_n_operands;
131
132 /* Replacing reloads.
133
134 If `replace_reloads' is nonzero, then as each reload is recorded
135 an entry is made for it in the table `replacements'.
136 Then later `subst_reloads' can look through that table and
137 perform all the replacements needed. */
138
139 /* Nonzero means record the places to replace. */
140 static int replace_reloads;
141
142 /* Each replacement is recorded with a structure like this. */
143 struct replacement
144 {
145 rtx *where; /* Location to store in */
146 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
147 a SUBREG; 0 otherwise. */
148 int what; /* which reload this is for */
149 enum machine_mode mode; /* mode it must have */
150 };
151
152 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
153
154 /* Number of replacements currently recorded. */
155 static int n_replacements;
156
157 /* Used to track what is modified by an operand. */
158 struct decomposition
159 {
160 int reg_flag; /* Nonzero if referencing a register. */
161 int safe; /* Nonzero if this can't conflict with anything. */
162 rtx base; /* Base address for MEM. */
163 HOST_WIDE_INT start; /* Starting offset or register number. */
164 HOST_WIDE_INT end; /* Ending offset or register number. */
165 };
166
167 #ifdef SECONDARY_MEMORY_NEEDED
168
169 /* Save MEMs needed to copy from one class of registers to another. One MEM
170 is used per mode, but normally only one or two modes are ever used.
171
172 We keep two versions, before and after register elimination. The one
173 after register elimination is record separately for each operand. This
174 is done in case the address is not valid to be sure that we separately
175 reload each. */
176
177 static rtx secondary_memlocs[NUM_MACHINE_MODES];
178 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
179 #endif
180
181 /* The instruction we are doing reloads for;
182 so we can test whether a register dies in it. */
183 static rtx this_insn;
184
185 /* Nonzero if this instruction is a user-specified asm with operands. */
186 static int this_insn_is_asm;
187
188 /* If hard_regs_live_known is nonzero,
189 we can tell which hard regs are currently live,
190 at least enough to succeed in choosing dummy reloads. */
191 static int hard_regs_live_known;
192
193 /* Indexed by hard reg number,
194 element is nonnegative if hard reg has been spilled.
195 This vector is passed to `find_reloads' as an argument
196 and is not changed here. */
197 static short *static_reload_reg_p;
198
199 /* Set to 1 in subst_reg_equivs if it changes anything. */
200 static int subst_reg_equivs_changed;
201
202 /* On return from push_reload, holds the reload-number for the OUT
203 operand, which can be different for that from the input operand. */
204 static int output_reloadnum;
205
206 /* Compare two RTX's. */
207 #define MATCHES(x, y) \
208 (x == y || (x != 0 && (GET_CODE (x) == REG \
209 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
210 : rtx_equal_p (x, y) && ! side_effects_p (x))))
211
212 /* Indicates if two reloads purposes are for similar enough things that we
213 can merge their reloads. */
214 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
215 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
216 || ((when1) == (when2) && (op1) == (op2)) \
217 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
218 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
219 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
220 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
221 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
222
223 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
224 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
225 ((when1) != (when2) \
226 || ! ((op1) == (op2) \
227 || (when1) == RELOAD_FOR_INPUT \
228 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
230
231 /* If we are going to reload an address, compute the reload type to
232 use. */
233 #define ADDR_TYPE(type) \
234 ((type) == RELOAD_FOR_INPUT_ADDRESS \
235 ? RELOAD_FOR_INPADDR_ADDRESS \
236 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
237 ? RELOAD_FOR_OUTADDR_ADDRESS \
238 : (type)))
239
240 #ifdef HAVE_SECONDARY_RELOADS
241 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
242 enum machine_mode, enum reload_type,
243 enum insn_code *));
244 #endif
245 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int,
246 unsigned int));
247 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode, int));
248 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
249 static void dup_replacements PARAMS ((rtx *, rtx *));
250 static void combine_reloads PARAMS ((void));
251 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
252 enum reload_type, int, int));
253 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
254 enum machine_mode, enum machine_mode,
255 enum reg_class, int, int));
256 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
257 static struct decomposition decompose PARAMS ((rtx));
258 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
259 static int alternative_allows_memconst PARAMS ((const char *, int));
260 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
261 int, rtx, int *));
262 static rtx make_memloc PARAMS ((rtx, int));
263 static int maybe_memory_address_p PARAMS ((enum machine_mode, rtx, rtx *));
264 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
265 int, enum reload_type, int, rtx));
266 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
267 static rtx subst_indexed_address PARAMS ((rtx));
268 static void update_auto_inc_notes PARAMS ((rtx, int, int));
269 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
270 int, enum reload_type,int, rtx));
271 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
272 enum machine_mode, int,
273 enum reload_type, int));
274 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int,
275 enum reload_type, int, rtx));
276 static void copy_replacements_1 PARAMS ((rtx *, rtx *, int));
277 static int find_inc_amount PARAMS ((rtx, rtx));
278 \f
279 #ifdef HAVE_SECONDARY_RELOADS
280
281 /* Determine if any secondary reloads are needed for loading (if IN_P is
282 nonzero) or storing (if IN_P is zero) X to or from a reload register of
283 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
284 are needed, push them.
285
286 Return the reload number of the secondary reload we made, or -1 if
287 we didn't need one. *PICODE is set to the insn_code to use if we do
288 need a secondary reload. */
289
290 static int
291 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
292 type, picode)
293 int in_p;
294 rtx x;
295 int opnum;
296 int optional;
297 enum reg_class reload_class;
298 enum machine_mode reload_mode;
299 enum reload_type type;
300 enum insn_code *picode;
301 {
302 enum reg_class class = NO_REGS;
303 enum machine_mode mode = reload_mode;
304 enum insn_code icode = CODE_FOR_nothing;
305 enum reg_class t_class = NO_REGS;
306 enum machine_mode t_mode = VOIDmode;
307 enum insn_code t_icode = CODE_FOR_nothing;
308 enum reload_type secondary_type;
309 int s_reload, t_reload = -1;
310
311 if (type == RELOAD_FOR_INPUT_ADDRESS
312 || type == RELOAD_FOR_OUTPUT_ADDRESS
313 || type == RELOAD_FOR_INPADDR_ADDRESS
314 || type == RELOAD_FOR_OUTADDR_ADDRESS)
315 secondary_type = type;
316 else
317 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
318
319 *picode = CODE_FOR_nothing;
320
321 /* If X is a paradoxical SUBREG, use the inner value to determine both the
322 mode and object being reloaded. */
323 if (GET_CODE (x) == SUBREG
324 && (GET_MODE_SIZE (GET_MODE (x))
325 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
326 {
327 x = SUBREG_REG (x);
328 reload_mode = GET_MODE (x);
329 }
330
331 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
332 is still a pseudo-register by now, it *must* have an equivalent MEM
333 but we don't want to assume that), use that equivalent when seeing if
334 a secondary reload is needed since whether or not a reload is needed
335 might be sensitive to the form of the MEM. */
336
337 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
338 && reg_equiv_mem[REGNO (x)] != 0)
339 x = reg_equiv_mem[REGNO (x)];
340
341 #ifdef SECONDARY_INPUT_RELOAD_CLASS
342 if (in_p)
343 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
344 #endif
345
346 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
347 if (! in_p)
348 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
349 #endif
350
351 /* If we don't need any secondary registers, done. */
352 if (class == NO_REGS)
353 return -1;
354
355 /* Get a possible insn to use. If the predicate doesn't accept X, don't
356 use the insn. */
357
358 icode = (in_p ? reload_in_optab[(int) reload_mode]
359 : reload_out_optab[(int) reload_mode]);
360
361 if (icode != CODE_FOR_nothing
362 && insn_data[(int) icode].operand[in_p].predicate
363 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
364 icode = CODE_FOR_nothing;
365
366 /* If we will be using an insn, see if it can directly handle the reload
367 register we will be using. If it can, the secondary reload is for a
368 scratch register. If it can't, we will use the secondary reload for
369 an intermediate register and require a tertiary reload for the scratch
370 register. */
371
372 if (icode != CODE_FOR_nothing)
373 {
374 /* If IN_P is nonzero, the reload register will be the output in
375 operand 0. If IN_P is zero, the reload register will be the input
376 in operand 1. Outputs should have an initial "=", which we must
377 skip. */
378
379 enum reg_class insn_class;
380
381 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
382 insn_class = ALL_REGS;
383 else
384 {
385 const char *insn_constraint
386 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
387 char insn_letter = *insn_constraint;
388 insn_class
389 = (insn_letter == 'r' ? GENERAL_REGS
390 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
391 insn_constraint));
392
393 if (insn_class == NO_REGS)
394 abort ();
395 if (in_p
396 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
397 abort ();
398 }
399
400 /* The scratch register's constraint must start with "=&". */
401 if (insn_data[(int) icode].operand[2].constraint[0] != '='
402 || insn_data[(int) icode].operand[2].constraint[1] != '&')
403 abort ();
404
405 if (reg_class_subset_p (reload_class, insn_class))
406 mode = insn_data[(int) icode].operand[2].mode;
407 else
408 {
409 const char *t_constraint
410 = &insn_data[(int) icode].operand[2].constraint[2];
411 char t_letter = *t_constraint;
412 class = insn_class;
413 t_mode = insn_data[(int) icode].operand[2].mode;
414 t_class = (t_letter == 'r' ? GENERAL_REGS
415 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
416 t_constraint));
417 t_icode = icode;
418 icode = CODE_FOR_nothing;
419 }
420 }
421
422 /* This case isn't valid, so fail. Reload is allowed to use the same
423 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
424 in the case of a secondary register, we actually need two different
425 registers for correct code. We fail here to prevent the possibility of
426 silently generating incorrect code later.
427
428 The convention is that secondary input reloads are valid only if the
429 secondary_class is different from class. If you have such a case, you
430 can not use secondary reloads, you must work around the problem some
431 other way.
432
433 Allow this when a reload_in/out pattern is being used. I.e. assume
434 that the generated code handles this case. */
435
436 if (in_p && class == reload_class && icode == CODE_FOR_nothing
437 && t_icode == CODE_FOR_nothing)
438 abort ();
439
440 /* If we need a tertiary reload, see if we have one we can reuse or else
441 make a new one. */
442
443 if (t_class != NO_REGS)
444 {
445 for (t_reload = 0; t_reload < n_reloads; t_reload++)
446 if (rld[t_reload].secondary_p
447 && (reg_class_subset_p (t_class, rld[t_reload].class)
448 || reg_class_subset_p (rld[t_reload].class, t_class))
449 && ((in_p && rld[t_reload].inmode == t_mode)
450 || (! in_p && rld[t_reload].outmode == t_mode))
451 && ((in_p && (rld[t_reload].secondary_in_icode
452 == CODE_FOR_nothing))
453 || (! in_p &&(rld[t_reload].secondary_out_icode
454 == CODE_FOR_nothing)))
455 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
456 && MERGABLE_RELOADS (secondary_type,
457 rld[t_reload].when_needed,
458 opnum, rld[t_reload].opnum))
459 {
460 if (in_p)
461 rld[t_reload].inmode = t_mode;
462 if (! in_p)
463 rld[t_reload].outmode = t_mode;
464
465 if (reg_class_subset_p (t_class, rld[t_reload].class))
466 rld[t_reload].class = t_class;
467
468 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
469 rld[t_reload].optional &= optional;
470 rld[t_reload].secondary_p = 1;
471 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
472 opnum, rld[t_reload].opnum))
473 rld[t_reload].when_needed = RELOAD_OTHER;
474 }
475
476 if (t_reload == n_reloads)
477 {
478 /* We need to make a new tertiary reload for this register class. */
479 rld[t_reload].in = rld[t_reload].out = 0;
480 rld[t_reload].class = t_class;
481 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
482 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
483 rld[t_reload].reg_rtx = 0;
484 rld[t_reload].optional = optional;
485 rld[t_reload].inc = 0;
486 /* Maybe we could combine these, but it seems too tricky. */
487 rld[t_reload].nocombine = 1;
488 rld[t_reload].in_reg = 0;
489 rld[t_reload].out_reg = 0;
490 rld[t_reload].opnum = opnum;
491 rld[t_reload].when_needed = secondary_type;
492 rld[t_reload].secondary_in_reload = -1;
493 rld[t_reload].secondary_out_reload = -1;
494 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
495 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
496 rld[t_reload].secondary_p = 1;
497
498 n_reloads++;
499 }
500 }
501
502 /* See if we can reuse an existing secondary reload. */
503 for (s_reload = 0; s_reload < n_reloads; s_reload++)
504 if (rld[s_reload].secondary_p
505 && (reg_class_subset_p (class, rld[s_reload].class)
506 || reg_class_subset_p (rld[s_reload].class, class))
507 && ((in_p && rld[s_reload].inmode == mode)
508 || (! in_p && rld[s_reload].outmode == mode))
509 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
510 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
511 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
512 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
513 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
514 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
515 opnum, rld[s_reload].opnum))
516 {
517 if (in_p)
518 rld[s_reload].inmode = mode;
519 if (! in_p)
520 rld[s_reload].outmode = mode;
521
522 if (reg_class_subset_p (class, rld[s_reload].class))
523 rld[s_reload].class = class;
524
525 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
526 rld[s_reload].optional &= optional;
527 rld[s_reload].secondary_p = 1;
528 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
529 opnum, rld[s_reload].opnum))
530 rld[s_reload].when_needed = RELOAD_OTHER;
531 }
532
533 if (s_reload == n_reloads)
534 {
535 #ifdef SECONDARY_MEMORY_NEEDED
536 /* If we need a memory location to copy between the two reload regs,
537 set it up now. Note that we do the input case before making
538 the reload and the output case after. This is due to the
539 way reloads are output. */
540
541 if (in_p && icode == CODE_FOR_nothing
542 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
543 {
544 get_secondary_mem (x, reload_mode, opnum, type);
545
546 /* We may have just added new reloads. Make sure we add
547 the new reload at the end. */
548 s_reload = n_reloads;
549 }
550 #endif
551
552 /* We need to make a new secondary reload for this register class. */
553 rld[s_reload].in = rld[s_reload].out = 0;
554 rld[s_reload].class = class;
555
556 rld[s_reload].inmode = in_p ? mode : VOIDmode;
557 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
558 rld[s_reload].reg_rtx = 0;
559 rld[s_reload].optional = optional;
560 rld[s_reload].inc = 0;
561 /* Maybe we could combine these, but it seems too tricky. */
562 rld[s_reload].nocombine = 1;
563 rld[s_reload].in_reg = 0;
564 rld[s_reload].out_reg = 0;
565 rld[s_reload].opnum = opnum;
566 rld[s_reload].when_needed = secondary_type;
567 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
568 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
569 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
570 rld[s_reload].secondary_out_icode
571 = ! in_p ? t_icode : CODE_FOR_nothing;
572 rld[s_reload].secondary_p = 1;
573
574 n_reloads++;
575
576 #ifdef SECONDARY_MEMORY_NEEDED
577 if (! in_p && icode == CODE_FOR_nothing
578 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
579 get_secondary_mem (x, mode, opnum, type);
580 #endif
581 }
582
583 *picode = icode;
584 return s_reload;
585 }
586 #endif /* HAVE_SECONDARY_RELOADS */
587 \f
588 #ifdef SECONDARY_MEMORY_NEEDED
589
590 /* Return a memory location that will be used to copy X in mode MODE.
591 If we haven't already made a location for this mode in this insn,
592 call find_reloads_address on the location being returned. */
593
594 rtx
595 get_secondary_mem (x, mode, opnum, type)
596 rtx x ATTRIBUTE_UNUSED;
597 enum machine_mode mode;
598 int opnum;
599 enum reload_type type;
600 {
601 rtx loc;
602 int mem_valid;
603
604 /* By default, if MODE is narrower than a word, widen it to a word.
605 This is required because most machines that require these memory
606 locations do not support short load and stores from all registers
607 (e.g., FP registers). */
608
609 #ifdef SECONDARY_MEMORY_NEEDED_MODE
610 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
611 #else
612 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
613 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
614 #endif
615
616 /* If we already have made a MEM for this operand in MODE, return it. */
617 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
618 return secondary_memlocs_elim[(int) mode][opnum];
619
620 /* If this is the first time we've tried to get a MEM for this mode,
621 allocate a new one. `something_changed' in reload will get set
622 by noticing that the frame size has changed. */
623
624 if (secondary_memlocs[(int) mode] == 0)
625 {
626 #ifdef SECONDARY_MEMORY_NEEDED_RTX
627 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
628 #else
629 secondary_memlocs[(int) mode]
630 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
631 #endif
632 }
633
634 /* Get a version of the address doing any eliminations needed. If that
635 didn't give us a new MEM, make a new one if it isn't valid. */
636
637 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
638 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
639
640 if (! mem_valid && loc == secondary_memlocs[(int) mode])
641 loc = copy_rtx (loc);
642
643 /* The only time the call below will do anything is if the stack
644 offset is too large. In that case IND_LEVELS doesn't matter, so we
645 can just pass a zero. Adjust the type to be the address of the
646 corresponding object. If the address was valid, save the eliminated
647 address. If it wasn't valid, we need to make a reload each time, so
648 don't save it. */
649
650 if (! mem_valid)
651 {
652 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
653 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
654 : RELOAD_OTHER);
655
656 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
657 opnum, type, 0, 0);
658 }
659
660 secondary_memlocs_elim[(int) mode][opnum] = loc;
661 return loc;
662 }
663
664 /* Clear any secondary memory locations we've made. */
665
666 void
667 clear_secondary_mem ()
668 {
669 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
670 }
671 #endif /* SECONDARY_MEMORY_NEEDED */
672 \f
673 /* Find the largest class for which every register number plus N is valid in
674 M1 (if in range) and is cheap to move into REGNO.
675 Abort if no such class exists. */
676
677 static enum reg_class
678 find_valid_class (m1, n, dest_regno)
679 enum machine_mode m1 ATTRIBUTE_UNUSED;
680 int n;
681 unsigned int dest_regno ATTRIBUTE_UNUSED;
682 {
683 int best_cost = -1;
684 int class;
685 int regno;
686 enum reg_class best_class = NO_REGS;
687 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
688 unsigned int best_size = 0;
689 int cost;
690
691 for (class = 1; class < N_REG_CLASSES; class++)
692 {
693 int bad = 0;
694 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
695 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
696 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
697 && ! HARD_REGNO_MODE_OK (regno + n, m1))
698 bad = 1;
699
700 if (bad)
701 continue;
702 cost = REGISTER_MOVE_COST (m1, class, dest_class);
703
704 if ((reg_class_size[class] > best_size
705 && (best_cost < 0 || best_cost >= cost))
706 || best_cost > cost)
707 {
708 best_class = class;
709 best_size = reg_class_size[class];
710 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
711 }
712 }
713
714 if (best_size == 0)
715 abort ();
716
717 return best_class;
718 }
719 \f
720 /* Return the number of a previously made reload that can be combined with
721 a new one, or n_reloads if none of the existing reloads can be used.
722 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
723 push_reload, they determine the kind of the new reload that we try to
724 combine. P_IN points to the corresponding value of IN, which can be
725 modified by this function.
726 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
727
728 static int
729 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
730 rtx *p_in, out;
731 enum reg_class class;
732 enum reload_type type;
733 int opnum, dont_share;
734 {
735 rtx in = *p_in;
736 int i;
737 /* We can't merge two reloads if the output of either one is
738 earlyclobbered. */
739
740 if (earlyclobber_operand_p (out))
741 return n_reloads;
742
743 /* We can use an existing reload if the class is right
744 and at least one of IN and OUT is a match
745 and the other is at worst neutral.
746 (A zero compared against anything is neutral.)
747
748 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
749 for the same thing since that can cause us to need more reload registers
750 than we otherwise would. */
751
752 for (i = 0; i < n_reloads; i++)
753 if ((reg_class_subset_p (class, rld[i].class)
754 || reg_class_subset_p (rld[i].class, class))
755 /* If the existing reload has a register, it must fit our class. */
756 && (rld[i].reg_rtx == 0
757 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
758 true_regnum (rld[i].reg_rtx)))
759 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
760 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
761 || (out != 0 && MATCHES (rld[i].out, out)
762 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
763 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
764 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
765 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
766 return i;
767
768 /* Reloading a plain reg for input can match a reload to postincrement
769 that reg, since the postincrement's value is the right value.
770 Likewise, it can match a preincrement reload, since we regard
771 the preincrementation as happening before any ref in this insn
772 to that register. */
773 for (i = 0; i < n_reloads; i++)
774 if ((reg_class_subset_p (class, rld[i].class)
775 || reg_class_subset_p (rld[i].class, class))
776 /* If the existing reload has a register, it must fit our
777 class. */
778 && (rld[i].reg_rtx == 0
779 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
780 true_regnum (rld[i].reg_rtx)))
781 && out == 0 && rld[i].out == 0 && rld[i].in != 0
782 && ((GET_CODE (in) == REG
783 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
784 && MATCHES (XEXP (rld[i].in, 0), in))
785 || (GET_CODE (rld[i].in) == REG
786 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
787 && MATCHES (XEXP (in, 0), rld[i].in)))
788 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
789 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
790 && MERGABLE_RELOADS (type, rld[i].when_needed,
791 opnum, rld[i].opnum))
792 {
793 /* Make sure reload_in ultimately has the increment,
794 not the plain register. */
795 if (GET_CODE (in) == REG)
796 *p_in = rld[i].in;
797 return i;
798 }
799 return n_reloads;
800 }
801
802 /* Return nonzero if X is a SUBREG which will require reloading of its
803 SUBREG_REG expression. */
804
805 static int
806 reload_inner_reg_of_subreg (x, mode, output)
807 rtx x;
808 enum machine_mode mode;
809 int output;
810 {
811 rtx inner;
812
813 /* Only SUBREGs are problematical. */
814 if (GET_CODE (x) != SUBREG)
815 return 0;
816
817 inner = SUBREG_REG (x);
818
819 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
820 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
821 return 1;
822
823 /* If INNER is not a hard register, then INNER will not need to
824 be reloaded. */
825 if (GET_CODE (inner) != REG
826 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
827 return 0;
828
829 /* If INNER is not ok for MODE, then INNER will need reloading. */
830 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
831 return 1;
832
833 /* If the outer part is a word or smaller, INNER larger than a
834 word and the number of regs for INNER is not the same as the
835 number of words in INNER, then INNER will need reloading. */
836 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
837 && output
838 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
839 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
840 != (int) HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
841 }
842
843 /* Record one reload that needs to be performed.
844 IN is an rtx saying where the data are to be found before this instruction.
845 OUT says where they must be stored after the instruction.
846 (IN is zero for data not read, and OUT is zero for data not written.)
847 INLOC and OUTLOC point to the places in the instructions where
848 IN and OUT were found.
849 If IN and OUT are both nonzero, it means the same register must be used
850 to reload both IN and OUT.
851
852 CLASS is a register class required for the reloaded data.
853 INMODE is the machine mode that the instruction requires
854 for the reg that replaces IN and OUTMODE is likewise for OUT.
855
856 If IN is zero, then OUT's location and mode should be passed as
857 INLOC and INMODE.
858
859 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
860
861 OPTIONAL nonzero means this reload does not need to be performed:
862 it can be discarded if that is more convenient.
863
864 OPNUM and TYPE say what the purpose of this reload is.
865
866 The return value is the reload-number for this reload.
867
868 If both IN and OUT are nonzero, in some rare cases we might
869 want to make two separate reloads. (Actually we never do this now.)
870 Therefore, the reload-number for OUT is stored in
871 output_reloadnum when we return; the return value applies to IN.
872 Usually (presently always), when IN and OUT are nonzero,
873 the two reload-numbers are equal, but the caller should be careful to
874 distinguish them. */
875
876 int
877 push_reload (in, out, inloc, outloc, class,
878 inmode, outmode, strict_low, optional, opnum, type)
879 rtx in, out;
880 rtx *inloc, *outloc;
881 enum reg_class class;
882 enum machine_mode inmode, outmode;
883 int strict_low;
884 int optional;
885 int opnum;
886 enum reload_type type;
887 {
888 int i;
889 int dont_share = 0;
890 int dont_remove_subreg = 0;
891 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
892 int secondary_in_reload = -1, secondary_out_reload = -1;
893 enum insn_code secondary_in_icode = CODE_FOR_nothing;
894 enum insn_code secondary_out_icode = CODE_FOR_nothing;
895
896 /* INMODE and/or OUTMODE could be VOIDmode if no mode
897 has been specified for the operand. In that case,
898 use the operand's mode as the mode to reload. */
899 if (inmode == VOIDmode && in != 0)
900 inmode = GET_MODE (in);
901 if (outmode == VOIDmode && out != 0)
902 outmode = GET_MODE (out);
903
904 /* If IN is a pseudo register everywhere-equivalent to a constant, and
905 it is not in a hard register, reload straight from the constant,
906 since we want to get rid of such pseudo registers.
907 Often this is done earlier, but not always in find_reloads_address. */
908 if (in != 0 && GET_CODE (in) == REG)
909 {
910 int regno = REGNO (in);
911
912 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
913 && reg_equiv_constant[regno] != 0)
914 in = reg_equiv_constant[regno];
915 }
916
917 /* Likewise for OUT. Of course, OUT will never be equivalent to
918 an actual constant, but it might be equivalent to a memory location
919 (in the case of a parameter). */
920 if (out != 0 && GET_CODE (out) == REG)
921 {
922 int regno = REGNO (out);
923
924 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
925 && reg_equiv_constant[regno] != 0)
926 out = reg_equiv_constant[regno];
927 }
928
929 /* If we have a read-write operand with an address side-effect,
930 change either IN or OUT so the side-effect happens only once. */
931 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
932 switch (GET_CODE (XEXP (in, 0)))
933 {
934 case POST_INC: case POST_DEC: case POST_MODIFY:
935 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
936 break;
937
938 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
939 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
940 break;
941
942 default:
943 break;
944 }
945
946 /* If we are reloading a (SUBREG constant ...), really reload just the
947 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
948 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
949 a pseudo and hence will become a MEM) with M1 wider than M2 and the
950 register is a pseudo, also reload the inside expression.
951 For machines that extend byte loads, do this for any SUBREG of a pseudo
952 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
953 M2 is an integral mode that gets extended when loaded.
954 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
955 either M1 is not valid for R or M2 is wider than a word but we only
956 need one word to store an M2-sized quantity in R.
957 (However, if OUT is nonzero, we need to reload the reg *and*
958 the subreg, so do nothing here, and let following statement handle it.)
959
960 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
961 we can't handle it here because CONST_INT does not indicate a mode.
962
963 Similarly, we must reload the inside expression if we have a
964 STRICT_LOW_PART (presumably, in == out in the cas).
965
966 Also reload the inner expression if it does not require a secondary
967 reload but the SUBREG does.
968
969 Finally, reload the inner expression if it is a register that is in
970 the class whose registers cannot be referenced in a different size
971 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
972 cannot reload just the inside since we might end up with the wrong
973 register class. But if it is inside a STRICT_LOW_PART, we have
974 no choice, so we hope we do get the right register class there. */
975
976 if (in != 0 && GET_CODE (in) == SUBREG
977 && (subreg_lowpart_p (in) || strict_low)
978 #ifdef CANNOT_CHANGE_MODE_CLASS
979 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
980 #endif
981 && (CONSTANT_P (SUBREG_REG (in))
982 || GET_CODE (SUBREG_REG (in)) == PLUS
983 || strict_low
984 || (((GET_CODE (SUBREG_REG (in)) == REG
985 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
986 || GET_CODE (SUBREG_REG (in)) == MEM)
987 && ((GET_MODE_SIZE (inmode)
988 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
989 #ifdef LOAD_EXTEND_OP
990 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
991 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
992 <= UNITS_PER_WORD)
993 && (GET_MODE_SIZE (inmode)
994 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
995 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
996 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
997 #endif
998 #ifdef WORD_REGISTER_OPERATIONS
999 || ((GET_MODE_SIZE (inmode)
1000 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1001 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1002 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1003 / UNITS_PER_WORD)))
1004 #endif
1005 ))
1006 || (GET_CODE (SUBREG_REG (in)) == REG
1007 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1008 /* The case where out is nonzero
1009 is handled differently in the following statement. */
1010 && (out == 0 || subreg_lowpart_p (in))
1011 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1012 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1013 > UNITS_PER_WORD)
1014 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1015 / UNITS_PER_WORD)
1016 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1017 GET_MODE (SUBREG_REG (in)))))
1018 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1019 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1020 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1021 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1022 GET_MODE (SUBREG_REG (in)),
1023 SUBREG_REG (in))
1024 == NO_REGS))
1025 #endif
1026 #ifdef CANNOT_CHANGE_MODE_CLASS
1027 || (GET_CODE (SUBREG_REG (in)) == REG
1028 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1029 && REG_CANNOT_CHANGE_MODE_P
1030 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1031 #endif
1032 ))
1033 {
1034 in_subreg_loc = inloc;
1035 inloc = &SUBREG_REG (in);
1036 in = *inloc;
1037 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1038 if (GET_CODE (in) == MEM)
1039 /* This is supposed to happen only for paradoxical subregs made by
1040 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1041 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1042 abort ();
1043 #endif
1044 inmode = GET_MODE (in);
1045 }
1046
1047 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1048 either M1 is not valid for R or M2 is wider than a word but we only
1049 need one word to store an M2-sized quantity in R.
1050
1051 However, we must reload the inner reg *as well as* the subreg in
1052 that case. */
1053
1054 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1055 code above. This can happen if SUBREG_BYTE != 0. */
1056
1057 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1058 {
1059 enum reg_class in_class = class;
1060
1061 if (GET_CODE (SUBREG_REG (in)) == REG)
1062 in_class
1063 = find_valid_class (inmode,
1064 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1065 GET_MODE (SUBREG_REG (in)),
1066 SUBREG_BYTE (in),
1067 GET_MODE (in)),
1068 REGNO (SUBREG_REG (in)));
1069
1070 /* This relies on the fact that emit_reload_insns outputs the
1071 instructions for input reloads of type RELOAD_OTHER in the same
1072 order as the reloads. Thus if the outer reload is also of type
1073 RELOAD_OTHER, we are guaranteed that this inner reload will be
1074 output before the outer reload. */
1075 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1076 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1077 dont_remove_subreg = 1;
1078 }
1079
1080 /* Similarly for paradoxical and problematical SUBREGs on the output.
1081 Note that there is no reason we need worry about the previous value
1082 of SUBREG_REG (out); even if wider than out,
1083 storing in a subreg is entitled to clobber it all
1084 (except in the case of STRICT_LOW_PART,
1085 and in that case the constraint should label it input-output.) */
1086 if (out != 0 && GET_CODE (out) == SUBREG
1087 && (subreg_lowpart_p (out) || strict_low)
1088 #ifdef CANNOT_CHANGE_MODE_CLASS
1089 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1090 #endif
1091 && (CONSTANT_P (SUBREG_REG (out))
1092 || strict_low
1093 || (((GET_CODE (SUBREG_REG (out)) == REG
1094 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1095 || GET_CODE (SUBREG_REG (out)) == MEM)
1096 && ((GET_MODE_SIZE (outmode)
1097 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1098 #ifdef WORD_REGISTER_OPERATIONS
1099 || ((GET_MODE_SIZE (outmode)
1100 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1101 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1102 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1103 / UNITS_PER_WORD)))
1104 #endif
1105 ))
1106 || (GET_CODE (SUBREG_REG (out)) == REG
1107 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1108 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1109 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1110 > UNITS_PER_WORD)
1111 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1112 / UNITS_PER_WORD)
1113 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1114 GET_MODE (SUBREG_REG (out)))))
1115 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1116 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1117 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1118 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1119 GET_MODE (SUBREG_REG (out)),
1120 SUBREG_REG (out))
1121 == NO_REGS))
1122 #endif
1123 #ifdef CANNOT_CHANGE_MODE_CLASS
1124 || (GET_CODE (SUBREG_REG (out)) == REG
1125 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1126 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1127 GET_MODE (SUBREG_REG (out)),
1128 outmode))
1129 #endif
1130 ))
1131 {
1132 out_subreg_loc = outloc;
1133 outloc = &SUBREG_REG (out);
1134 out = *outloc;
1135 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1136 if (GET_CODE (out) == MEM
1137 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1138 abort ();
1139 #endif
1140 outmode = GET_MODE (out);
1141 }
1142
1143 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1144 either M1 is not valid for R or M2 is wider than a word but we only
1145 need one word to store an M2-sized quantity in R.
1146
1147 However, we must reload the inner reg *as well as* the subreg in
1148 that case. In this case, the inner reg is an in-out reload. */
1149
1150 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1151 {
1152 /* This relies on the fact that emit_reload_insns outputs the
1153 instructions for output reloads of type RELOAD_OTHER in reverse
1154 order of the reloads. Thus if the outer reload is also of type
1155 RELOAD_OTHER, we are guaranteed that this inner reload will be
1156 output after the outer reload. */
1157 dont_remove_subreg = 1;
1158 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1159 &SUBREG_REG (out),
1160 find_valid_class (outmode,
1161 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1162 GET_MODE (SUBREG_REG (out)),
1163 SUBREG_BYTE (out),
1164 GET_MODE (out)),
1165 REGNO (SUBREG_REG (out))),
1166 VOIDmode, VOIDmode, 0, 0,
1167 opnum, RELOAD_OTHER);
1168 }
1169
1170 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1171 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1172 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1173 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1174 dont_share = 1;
1175
1176 /* If IN is a SUBREG of a hard register, make a new REG. This
1177 simplifies some of the cases below. */
1178
1179 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1180 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1181 && ! dont_remove_subreg)
1182 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1183
1184 /* Similarly for OUT. */
1185 if (out != 0 && GET_CODE (out) == SUBREG
1186 && GET_CODE (SUBREG_REG (out)) == REG
1187 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1188 && ! dont_remove_subreg)
1189 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1190
1191 /* Narrow down the class of register wanted if that is
1192 desirable on this machine for efficiency. */
1193 if (in != 0)
1194 class = PREFERRED_RELOAD_CLASS (in, class);
1195
1196 /* Output reloads may need analogous treatment, different in detail. */
1197 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1198 if (out != 0)
1199 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1200 #endif
1201
1202 /* Make sure we use a class that can handle the actual pseudo
1203 inside any subreg. For example, on the 386, QImode regs
1204 can appear within SImode subregs. Although GENERAL_REGS
1205 can handle SImode, QImode needs a smaller class. */
1206 #ifdef LIMIT_RELOAD_CLASS
1207 if (in_subreg_loc)
1208 class = LIMIT_RELOAD_CLASS (inmode, class);
1209 else if (in != 0 && GET_CODE (in) == SUBREG)
1210 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1211
1212 if (out_subreg_loc)
1213 class = LIMIT_RELOAD_CLASS (outmode, class);
1214 if (out != 0 && GET_CODE (out) == SUBREG)
1215 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1216 #endif
1217
1218 /* Verify that this class is at least possible for the mode that
1219 is specified. */
1220 if (this_insn_is_asm)
1221 {
1222 enum machine_mode mode;
1223 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1224 mode = inmode;
1225 else
1226 mode = outmode;
1227 if (mode == VOIDmode)
1228 {
1229 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1230 mode = word_mode;
1231 if (in != 0)
1232 inmode = word_mode;
1233 if (out != 0)
1234 outmode = word_mode;
1235 }
1236 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1237 if (HARD_REGNO_MODE_OK (i, mode)
1238 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1239 {
1240 int nregs = HARD_REGNO_NREGS (i, mode);
1241
1242 int j;
1243 for (j = 1; j < nregs; j++)
1244 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1245 break;
1246 if (j == nregs)
1247 break;
1248 }
1249 if (i == FIRST_PSEUDO_REGISTER)
1250 {
1251 error_for_asm (this_insn, "impossible register constraint in `asm'");
1252 class = ALL_REGS;
1253 }
1254 }
1255
1256 /* Optional output reloads are always OK even if we have no register class,
1257 since the function of these reloads is only to have spill_reg_store etc.
1258 set, so that the storing insn can be deleted later. */
1259 if (class == NO_REGS
1260 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1261 abort ();
1262
1263 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1264
1265 if (i == n_reloads)
1266 {
1267 /* See if we need a secondary reload register to move between CLASS
1268 and IN or CLASS and OUT. Get the icode and push any required reloads
1269 needed for each of them if so. */
1270
1271 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1272 if (in != 0)
1273 secondary_in_reload
1274 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1275 &secondary_in_icode);
1276 #endif
1277
1278 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1279 if (out != 0 && GET_CODE (out) != SCRATCH)
1280 secondary_out_reload
1281 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1282 type, &secondary_out_icode);
1283 #endif
1284
1285 /* We found no existing reload suitable for re-use.
1286 So add an additional reload. */
1287
1288 #ifdef SECONDARY_MEMORY_NEEDED
1289 /* If a memory location is needed for the copy, make one. */
1290 if (in != 0 && (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
1291 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1292 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1293 class, inmode))
1294 get_secondary_mem (in, inmode, opnum, type);
1295 #endif
1296
1297 i = n_reloads;
1298 rld[i].in = in;
1299 rld[i].out = out;
1300 rld[i].class = class;
1301 rld[i].inmode = inmode;
1302 rld[i].outmode = outmode;
1303 rld[i].reg_rtx = 0;
1304 rld[i].optional = optional;
1305 rld[i].inc = 0;
1306 rld[i].nocombine = 0;
1307 rld[i].in_reg = inloc ? *inloc : 0;
1308 rld[i].out_reg = outloc ? *outloc : 0;
1309 rld[i].opnum = opnum;
1310 rld[i].when_needed = type;
1311 rld[i].secondary_in_reload = secondary_in_reload;
1312 rld[i].secondary_out_reload = secondary_out_reload;
1313 rld[i].secondary_in_icode = secondary_in_icode;
1314 rld[i].secondary_out_icode = secondary_out_icode;
1315 rld[i].secondary_p = 0;
1316
1317 n_reloads++;
1318
1319 #ifdef SECONDARY_MEMORY_NEEDED
1320 if (out != 0 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
1321 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1322 && SECONDARY_MEMORY_NEEDED (class,
1323 REGNO_REG_CLASS (reg_or_subregno (out)),
1324 outmode))
1325 get_secondary_mem (out, outmode, opnum, type);
1326 #endif
1327 }
1328 else
1329 {
1330 /* We are reusing an existing reload,
1331 but we may have additional information for it.
1332 For example, we may now have both IN and OUT
1333 while the old one may have just one of them. */
1334
1335 /* The modes can be different. If they are, we want to reload in
1336 the larger mode, so that the value is valid for both modes. */
1337 if (inmode != VOIDmode
1338 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1339 rld[i].inmode = inmode;
1340 if (outmode != VOIDmode
1341 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1342 rld[i].outmode = outmode;
1343 if (in != 0)
1344 {
1345 rtx in_reg = inloc ? *inloc : 0;
1346 /* If we merge reloads for two distinct rtl expressions that
1347 are identical in content, there might be duplicate address
1348 reloads. Remove the extra set now, so that if we later find
1349 that we can inherit this reload, we can get rid of the
1350 address reloads altogether.
1351
1352 Do not do this if both reloads are optional since the result
1353 would be an optional reload which could potentially leave
1354 unresolved address replacements.
1355
1356 It is not sufficient to call transfer_replacements since
1357 choose_reload_regs will remove the replacements for address
1358 reloads of inherited reloads which results in the same
1359 problem. */
1360 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1361 && ! (rld[i].optional && optional))
1362 {
1363 /* We must keep the address reload with the lower operand
1364 number alive. */
1365 if (opnum > rld[i].opnum)
1366 {
1367 remove_address_replacements (in);
1368 in = rld[i].in;
1369 in_reg = rld[i].in_reg;
1370 }
1371 else
1372 remove_address_replacements (rld[i].in);
1373 }
1374 rld[i].in = in;
1375 rld[i].in_reg = in_reg;
1376 }
1377 if (out != 0)
1378 {
1379 rld[i].out = out;
1380 rld[i].out_reg = outloc ? *outloc : 0;
1381 }
1382 if (reg_class_subset_p (class, rld[i].class))
1383 rld[i].class = class;
1384 rld[i].optional &= optional;
1385 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1386 opnum, rld[i].opnum))
1387 rld[i].when_needed = RELOAD_OTHER;
1388 rld[i].opnum = MIN (rld[i].opnum, opnum);
1389 }
1390
1391 /* If the ostensible rtx being reloaded differs from the rtx found
1392 in the location to substitute, this reload is not safe to combine
1393 because we cannot reliably tell whether it appears in the insn. */
1394
1395 if (in != 0 && in != *inloc)
1396 rld[i].nocombine = 1;
1397
1398 #if 0
1399 /* This was replaced by changes in find_reloads_address_1 and the new
1400 function inc_for_reload, which go with a new meaning of reload_inc. */
1401
1402 /* If this is an IN/OUT reload in an insn that sets the CC,
1403 it must be for an autoincrement. It doesn't work to store
1404 the incremented value after the insn because that would clobber the CC.
1405 So we must do the increment of the value reloaded from,
1406 increment it, store it back, then decrement again. */
1407 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1408 {
1409 out = 0;
1410 rld[i].out = 0;
1411 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1412 /* If we did not find a nonzero amount-to-increment-by,
1413 that contradicts the belief that IN is being incremented
1414 in an address in this insn. */
1415 if (rld[i].inc == 0)
1416 abort ();
1417 }
1418 #endif
1419
1420 /* If we will replace IN and OUT with the reload-reg,
1421 record where they are located so that substitution need
1422 not do a tree walk. */
1423
1424 if (replace_reloads)
1425 {
1426 if (inloc != 0)
1427 {
1428 struct replacement *r = &replacements[n_replacements++];
1429 r->what = i;
1430 r->subreg_loc = in_subreg_loc;
1431 r->where = inloc;
1432 r->mode = inmode;
1433 }
1434 if (outloc != 0 && outloc != inloc)
1435 {
1436 struct replacement *r = &replacements[n_replacements++];
1437 r->what = i;
1438 r->where = outloc;
1439 r->subreg_loc = out_subreg_loc;
1440 r->mode = outmode;
1441 }
1442 }
1443
1444 /* If this reload is just being introduced and it has both
1445 an incoming quantity and an outgoing quantity that are
1446 supposed to be made to match, see if either one of the two
1447 can serve as the place to reload into.
1448
1449 If one of them is acceptable, set rld[i].reg_rtx
1450 to that one. */
1451
1452 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1453 {
1454 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1455 inmode, outmode,
1456 rld[i].class, i,
1457 earlyclobber_operand_p (out));
1458
1459 /* If the outgoing register already contains the same value
1460 as the incoming one, we can dispense with loading it.
1461 The easiest way to tell the caller that is to give a phony
1462 value for the incoming operand (same as outgoing one). */
1463 if (rld[i].reg_rtx == out
1464 && (GET_CODE (in) == REG || CONSTANT_P (in))
1465 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1466 static_reload_reg_p, i, inmode))
1467 rld[i].in = out;
1468 }
1469
1470 /* If this is an input reload and the operand contains a register that
1471 dies in this insn and is used nowhere else, see if it is the right class
1472 to be used for this reload. Use it if so. (This occurs most commonly
1473 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1474 this if it is also an output reload that mentions the register unless
1475 the output is a SUBREG that clobbers an entire register.
1476
1477 Note that the operand might be one of the spill regs, if it is a
1478 pseudo reg and we are in a block where spilling has not taken place.
1479 But if there is no spilling in this block, that is OK.
1480 An explicitly used hard reg cannot be a spill reg. */
1481
1482 if (rld[i].reg_rtx == 0 && in != 0)
1483 {
1484 rtx note;
1485 int regno;
1486 enum machine_mode rel_mode = inmode;
1487
1488 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1489 rel_mode = outmode;
1490
1491 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1492 if (REG_NOTE_KIND (note) == REG_DEAD
1493 && GET_CODE (XEXP (note, 0)) == REG
1494 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1495 && reg_mentioned_p (XEXP (note, 0), in)
1496 && ! refers_to_regno_for_reload_p (regno,
1497 (regno
1498 + HARD_REGNO_NREGS (regno,
1499 rel_mode)),
1500 PATTERN (this_insn), inloc)
1501 /* If this is also an output reload, IN cannot be used as
1502 the reload register if it is set in this insn unless IN
1503 is also OUT. */
1504 && (out == 0 || in == out
1505 || ! hard_reg_set_here_p (regno,
1506 (regno
1507 + HARD_REGNO_NREGS (regno,
1508 rel_mode)),
1509 PATTERN (this_insn)))
1510 /* ??? Why is this code so different from the previous?
1511 Is there any simple coherent way to describe the two together?
1512 What's going on here. */
1513 && (in != out
1514 || (GET_CODE (in) == SUBREG
1515 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1516 / UNITS_PER_WORD)
1517 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1518 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1519 /* Make sure the operand fits in the reg that dies. */
1520 && (GET_MODE_SIZE (rel_mode)
1521 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1522 && HARD_REGNO_MODE_OK (regno, inmode)
1523 && HARD_REGNO_MODE_OK (regno, outmode))
1524 {
1525 unsigned int offs;
1526 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1527 HARD_REGNO_NREGS (regno, outmode));
1528
1529 for (offs = 0; offs < nregs; offs++)
1530 if (fixed_regs[regno + offs]
1531 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1532 regno + offs))
1533 break;
1534
1535 if (offs == nregs)
1536 {
1537 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1538 break;
1539 }
1540 }
1541 }
1542
1543 if (out)
1544 output_reloadnum = i;
1545
1546 return i;
1547 }
1548
1549 /* Record an additional place we must replace a value
1550 for which we have already recorded a reload.
1551 RELOADNUM is the value returned by push_reload
1552 when the reload was recorded.
1553 This is used in insn patterns that use match_dup. */
1554
1555 static void
1556 push_replacement (loc, reloadnum, mode)
1557 rtx *loc;
1558 int reloadnum;
1559 enum machine_mode mode;
1560 {
1561 if (replace_reloads)
1562 {
1563 struct replacement *r = &replacements[n_replacements++];
1564 r->what = reloadnum;
1565 r->where = loc;
1566 r->subreg_loc = 0;
1567 r->mode = mode;
1568 }
1569 }
1570
1571 /* Duplicate any replacement we have recorded to apply at
1572 location ORIG_LOC to also be performed at DUP_LOC.
1573 This is used in insn patterns that use match_dup. */
1574
1575 static void
1576 dup_replacements (dup_loc, orig_loc)
1577 rtx *dup_loc;
1578 rtx *orig_loc;
1579 {
1580 int i, n = n_replacements;
1581
1582 for (i = 0; i < n; i++)
1583 {
1584 struct replacement *r = &replacements[i];
1585 if (r->where == orig_loc)
1586 push_replacement (dup_loc, r->what, r->mode);
1587 }
1588 }
1589 \f
1590 /* Transfer all replacements that used to be in reload FROM to be in
1591 reload TO. */
1592
1593 void
1594 transfer_replacements (to, from)
1595 int to, from;
1596 {
1597 int i;
1598
1599 for (i = 0; i < n_replacements; i++)
1600 if (replacements[i].what == from)
1601 replacements[i].what = to;
1602 }
1603 \f
1604 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1605 or a subpart of it. If we have any replacements registered for IN_RTX,
1606 cancel the reloads that were supposed to load them.
1607 Return nonzero if we canceled any reloads. */
1608 int
1609 remove_address_replacements (in_rtx)
1610 rtx in_rtx;
1611 {
1612 int i, j;
1613 char reload_flags[MAX_RELOADS];
1614 int something_changed = 0;
1615
1616 memset (reload_flags, 0, sizeof reload_flags);
1617 for (i = 0, j = 0; i < n_replacements; i++)
1618 {
1619 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1620 reload_flags[replacements[i].what] |= 1;
1621 else
1622 {
1623 replacements[j++] = replacements[i];
1624 reload_flags[replacements[i].what] |= 2;
1625 }
1626 }
1627 /* Note that the following store must be done before the recursive calls. */
1628 n_replacements = j;
1629
1630 for (i = n_reloads - 1; i >= 0; i--)
1631 {
1632 if (reload_flags[i] == 1)
1633 {
1634 deallocate_reload_reg (i);
1635 remove_address_replacements (rld[i].in);
1636 rld[i].in = 0;
1637 something_changed = 1;
1638 }
1639 }
1640 return something_changed;
1641 }
1642 \f
1643 /* If there is only one output reload, and it is not for an earlyclobber
1644 operand, try to combine it with a (logically unrelated) input reload
1645 to reduce the number of reload registers needed.
1646
1647 This is safe if the input reload does not appear in
1648 the value being output-reloaded, because this implies
1649 it is not needed any more once the original insn completes.
1650
1651 If that doesn't work, see we can use any of the registers that
1652 die in this insn as a reload register. We can if it is of the right
1653 class and does not appear in the value being output-reloaded. */
1654
1655 static void
1656 combine_reloads ()
1657 {
1658 int i;
1659 int output_reload = -1;
1660 int secondary_out = -1;
1661 rtx note;
1662
1663 /* Find the output reload; return unless there is exactly one
1664 and that one is mandatory. */
1665
1666 for (i = 0; i < n_reloads; i++)
1667 if (rld[i].out != 0)
1668 {
1669 if (output_reload >= 0)
1670 return;
1671 output_reload = i;
1672 }
1673
1674 if (output_reload < 0 || rld[output_reload].optional)
1675 return;
1676
1677 /* An input-output reload isn't combinable. */
1678
1679 if (rld[output_reload].in != 0)
1680 return;
1681
1682 /* If this reload is for an earlyclobber operand, we can't do anything. */
1683 if (earlyclobber_operand_p (rld[output_reload].out))
1684 return;
1685
1686 /* If there is a reload for part of the address of this operand, we would
1687 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1688 its life to the point where doing this combine would not lower the
1689 number of spill registers needed. */
1690 for (i = 0; i < n_reloads; i++)
1691 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1692 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1693 && rld[i].opnum == rld[output_reload].opnum)
1694 return;
1695
1696 /* Check each input reload; can we combine it? */
1697
1698 for (i = 0; i < n_reloads; i++)
1699 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1700 /* Life span of this reload must not extend past main insn. */
1701 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1702 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1703 && rld[i].when_needed != RELOAD_OTHER
1704 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1705 == CLASS_MAX_NREGS (rld[output_reload].class,
1706 rld[output_reload].outmode))
1707 && rld[i].inc == 0
1708 && rld[i].reg_rtx == 0
1709 #ifdef SECONDARY_MEMORY_NEEDED
1710 /* Don't combine two reloads with different secondary
1711 memory locations. */
1712 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1713 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1714 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1715 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1716 #endif
1717 && (SMALL_REGISTER_CLASSES
1718 ? (rld[i].class == rld[output_reload].class)
1719 : (reg_class_subset_p (rld[i].class,
1720 rld[output_reload].class)
1721 || reg_class_subset_p (rld[output_reload].class,
1722 rld[i].class)))
1723 && (MATCHES (rld[i].in, rld[output_reload].out)
1724 /* Args reversed because the first arg seems to be
1725 the one that we imagine being modified
1726 while the second is the one that might be affected. */
1727 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1728 rld[i].in)
1729 /* However, if the input is a register that appears inside
1730 the output, then we also can't share.
1731 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1732 If the same reload reg is used for both reg 69 and the
1733 result to be stored in memory, then that result
1734 will clobber the address of the memory ref. */
1735 && ! (GET_CODE (rld[i].in) == REG
1736 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1737 rld[output_reload].out))))
1738 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1739 rld[i].when_needed != RELOAD_FOR_INPUT)
1740 && (reg_class_size[(int) rld[i].class]
1741 || SMALL_REGISTER_CLASSES)
1742 /* We will allow making things slightly worse by combining an
1743 input and an output, but no worse than that. */
1744 && (rld[i].when_needed == RELOAD_FOR_INPUT
1745 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1746 {
1747 int j;
1748
1749 /* We have found a reload to combine with! */
1750 rld[i].out = rld[output_reload].out;
1751 rld[i].out_reg = rld[output_reload].out_reg;
1752 rld[i].outmode = rld[output_reload].outmode;
1753 /* Mark the old output reload as inoperative. */
1754 rld[output_reload].out = 0;
1755 /* The combined reload is needed for the entire insn. */
1756 rld[i].when_needed = RELOAD_OTHER;
1757 /* If the output reload had a secondary reload, copy it. */
1758 if (rld[output_reload].secondary_out_reload != -1)
1759 {
1760 rld[i].secondary_out_reload
1761 = rld[output_reload].secondary_out_reload;
1762 rld[i].secondary_out_icode
1763 = rld[output_reload].secondary_out_icode;
1764 }
1765
1766 #ifdef SECONDARY_MEMORY_NEEDED
1767 /* Copy any secondary MEM. */
1768 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1769 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1770 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1771 #endif
1772 /* If required, minimize the register class. */
1773 if (reg_class_subset_p (rld[output_reload].class,
1774 rld[i].class))
1775 rld[i].class = rld[output_reload].class;
1776
1777 /* Transfer all replacements from the old reload to the combined. */
1778 for (j = 0; j < n_replacements; j++)
1779 if (replacements[j].what == output_reload)
1780 replacements[j].what = i;
1781
1782 return;
1783 }
1784
1785 /* If this insn has only one operand that is modified or written (assumed
1786 to be the first), it must be the one corresponding to this reload. It
1787 is safe to use anything that dies in this insn for that output provided
1788 that it does not occur in the output (we already know it isn't an
1789 earlyclobber. If this is an asm insn, give up. */
1790
1791 if (INSN_CODE (this_insn) == -1)
1792 return;
1793
1794 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1795 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1796 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1797 return;
1798
1799 /* See if some hard register that dies in this insn and is not used in
1800 the output is the right class. Only works if the register we pick
1801 up can fully hold our output reload. */
1802 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1803 if (REG_NOTE_KIND (note) == REG_DEAD
1804 && GET_CODE (XEXP (note, 0)) == REG
1805 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1806 rld[output_reload].out)
1807 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1808 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1809 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1810 REGNO (XEXP (note, 0)))
1811 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1812 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1813 /* Ensure that a secondary or tertiary reload for this output
1814 won't want this register. */
1815 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1816 || (! (TEST_HARD_REG_BIT
1817 (reg_class_contents[(int) rld[secondary_out].class],
1818 REGNO (XEXP (note, 0))))
1819 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1820 || ! (TEST_HARD_REG_BIT
1821 (reg_class_contents[(int) rld[secondary_out].class],
1822 REGNO (XEXP (note, 0)))))))
1823 && ! fixed_regs[REGNO (XEXP (note, 0))])
1824 {
1825 rld[output_reload].reg_rtx
1826 = gen_rtx_REG (rld[output_reload].outmode,
1827 REGNO (XEXP (note, 0)));
1828 return;
1829 }
1830 }
1831 \f
1832 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1833 See if one of IN and OUT is a register that may be used;
1834 this is desirable since a spill-register won't be needed.
1835 If so, return the register rtx that proves acceptable.
1836
1837 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1838 CLASS is the register class required for the reload.
1839
1840 If FOR_REAL is >= 0, it is the number of the reload,
1841 and in some cases when it can be discovered that OUT doesn't need
1842 to be computed, clear out rld[FOR_REAL].out.
1843
1844 If FOR_REAL is -1, this should not be done, because this call
1845 is just to see if a register can be found, not to find and install it.
1846
1847 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1848 puts an additional constraint on being able to use IN for OUT since
1849 IN must not appear elsewhere in the insn (it is assumed that IN itself
1850 is safe from the earlyclobber). */
1851
1852 static rtx
1853 find_dummy_reload (real_in, real_out, inloc, outloc,
1854 inmode, outmode, class, for_real, earlyclobber)
1855 rtx real_in, real_out;
1856 rtx *inloc, *outloc;
1857 enum machine_mode inmode, outmode;
1858 enum reg_class class;
1859 int for_real;
1860 int earlyclobber;
1861 {
1862 rtx in = real_in;
1863 rtx out = real_out;
1864 int in_offset = 0;
1865 int out_offset = 0;
1866 rtx value = 0;
1867
1868 /* If operands exceed a word, we can't use either of them
1869 unless they have the same size. */
1870 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1871 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1872 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1873 return 0;
1874
1875 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1876 respectively refers to a hard register. */
1877
1878 /* Find the inside of any subregs. */
1879 while (GET_CODE (out) == SUBREG)
1880 {
1881 if (GET_CODE (SUBREG_REG (out)) == REG
1882 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1883 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1884 GET_MODE (SUBREG_REG (out)),
1885 SUBREG_BYTE (out),
1886 GET_MODE (out));
1887 out = SUBREG_REG (out);
1888 }
1889 while (GET_CODE (in) == SUBREG)
1890 {
1891 if (GET_CODE (SUBREG_REG (in)) == REG
1892 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1893 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1894 GET_MODE (SUBREG_REG (in)),
1895 SUBREG_BYTE (in),
1896 GET_MODE (in));
1897 in = SUBREG_REG (in);
1898 }
1899
1900 /* Narrow down the reg class, the same way push_reload will;
1901 otherwise we might find a dummy now, but push_reload won't. */
1902 class = PREFERRED_RELOAD_CLASS (in, class);
1903
1904 /* See if OUT will do. */
1905 if (GET_CODE (out) == REG
1906 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1907 {
1908 unsigned int regno = REGNO (out) + out_offset;
1909 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1910 rtx saved_rtx;
1911
1912 /* When we consider whether the insn uses OUT,
1913 ignore references within IN. They don't prevent us
1914 from copying IN into OUT, because those refs would
1915 move into the insn that reloads IN.
1916
1917 However, we only ignore IN in its role as this reload.
1918 If the insn uses IN elsewhere and it contains OUT,
1919 that counts. We can't be sure it's the "same" operand
1920 so it might not go through this reload. */
1921 saved_rtx = *inloc;
1922 *inloc = const0_rtx;
1923
1924 if (regno < FIRST_PSEUDO_REGISTER
1925 && HARD_REGNO_MODE_OK (regno, outmode)
1926 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1927 PATTERN (this_insn), outloc))
1928 {
1929 unsigned int i;
1930
1931 for (i = 0; i < nwords; i++)
1932 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1933 regno + i))
1934 break;
1935
1936 if (i == nwords)
1937 {
1938 if (GET_CODE (real_out) == REG)
1939 value = real_out;
1940 else
1941 value = gen_rtx_REG (outmode, regno);
1942 }
1943 }
1944
1945 *inloc = saved_rtx;
1946 }
1947
1948 /* Consider using IN if OUT was not acceptable
1949 or if OUT dies in this insn (like the quotient in a divmod insn).
1950 We can't use IN unless it is dies in this insn,
1951 which means we must know accurately which hard regs are live.
1952 Also, the result can't go in IN if IN is used within OUT,
1953 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1954 if (hard_regs_live_known
1955 && GET_CODE (in) == REG
1956 && REGNO (in) < FIRST_PSEUDO_REGISTER
1957 && (value == 0
1958 || find_reg_note (this_insn, REG_UNUSED, real_out))
1959 && find_reg_note (this_insn, REG_DEAD, real_in)
1960 && !fixed_regs[REGNO (in)]
1961 && HARD_REGNO_MODE_OK (REGNO (in),
1962 /* The only case where out and real_out might
1963 have different modes is where real_out
1964 is a subreg, and in that case, out
1965 has a real mode. */
1966 (GET_MODE (out) != VOIDmode
1967 ? GET_MODE (out) : outmode)))
1968 {
1969 unsigned int regno = REGNO (in) + in_offset;
1970 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1971
1972 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1973 && ! hard_reg_set_here_p (regno, regno + nwords,
1974 PATTERN (this_insn))
1975 && (! earlyclobber
1976 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1977 PATTERN (this_insn), inloc)))
1978 {
1979 unsigned int i;
1980
1981 for (i = 0; i < nwords; i++)
1982 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1983 regno + i))
1984 break;
1985
1986 if (i == nwords)
1987 {
1988 /* If we were going to use OUT as the reload reg
1989 and changed our mind, it means OUT is a dummy that
1990 dies here. So don't bother copying value to it. */
1991 if (for_real >= 0 && value == real_out)
1992 rld[for_real].out = 0;
1993 if (GET_CODE (real_in) == REG)
1994 value = real_in;
1995 else
1996 value = gen_rtx_REG (inmode, regno);
1997 }
1998 }
1999 }
2000
2001 return value;
2002 }
2003 \f
2004 /* This page contains subroutines used mainly for determining
2005 whether the IN or an OUT of a reload can serve as the
2006 reload register. */
2007
2008 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2009
2010 int
2011 earlyclobber_operand_p (x)
2012 rtx x;
2013 {
2014 int i;
2015
2016 for (i = 0; i < n_earlyclobbers; i++)
2017 if (reload_earlyclobbers[i] == x)
2018 return 1;
2019
2020 return 0;
2021 }
2022
2023 /* Return 1 if expression X alters a hard reg in the range
2024 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2025 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2026 X should be the body of an instruction. */
2027
2028 static int
2029 hard_reg_set_here_p (beg_regno, end_regno, x)
2030 unsigned int beg_regno, end_regno;
2031 rtx x;
2032 {
2033 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2034 {
2035 rtx op0 = SET_DEST (x);
2036
2037 while (GET_CODE (op0) == SUBREG)
2038 op0 = SUBREG_REG (op0);
2039 if (GET_CODE (op0) == REG)
2040 {
2041 unsigned int r = REGNO (op0);
2042
2043 /* See if this reg overlaps range under consideration. */
2044 if (r < end_regno
2045 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2046 return 1;
2047 }
2048 }
2049 else if (GET_CODE (x) == PARALLEL)
2050 {
2051 int i = XVECLEN (x, 0) - 1;
2052
2053 for (; i >= 0; i--)
2054 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2055 return 1;
2056 }
2057
2058 return 0;
2059 }
2060
2061 /* Return 1 if ADDR is a valid memory address for mode MODE,
2062 and check that each pseudo reg has the proper kind of
2063 hard reg. */
2064
2065 int
2066 strict_memory_address_p (mode, addr)
2067 enum machine_mode mode ATTRIBUTE_UNUSED;
2068 rtx addr;
2069 {
2070 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2071 return 0;
2072
2073 win:
2074 return 1;
2075 }
2076 \f
2077 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2078 if they are the same hard reg, and has special hacks for
2079 autoincrement and autodecrement.
2080 This is specifically intended for find_reloads to use
2081 in determining whether two operands match.
2082 X is the operand whose number is the lower of the two.
2083
2084 The value is 2 if Y contains a pre-increment that matches
2085 a non-incrementing address in X. */
2086
2087 /* ??? To be completely correct, we should arrange to pass
2088 for X the output operand and for Y the input operand.
2089 For now, we assume that the output operand has the lower number
2090 because that is natural in (SET output (... input ...)). */
2091
2092 int
2093 operands_match_p (x, y)
2094 rtx x, y;
2095 {
2096 int i;
2097 RTX_CODE code = GET_CODE (x);
2098 const char *fmt;
2099 int success_2;
2100
2101 if (x == y)
2102 return 1;
2103 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2104 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2105 && GET_CODE (SUBREG_REG (y)) == REG)))
2106 {
2107 int j;
2108
2109 if (code == SUBREG)
2110 {
2111 i = REGNO (SUBREG_REG (x));
2112 if (i >= FIRST_PSEUDO_REGISTER)
2113 goto slow;
2114 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2115 GET_MODE (SUBREG_REG (x)),
2116 SUBREG_BYTE (x),
2117 GET_MODE (x));
2118 }
2119 else
2120 i = REGNO (x);
2121
2122 if (GET_CODE (y) == SUBREG)
2123 {
2124 j = REGNO (SUBREG_REG (y));
2125 if (j >= FIRST_PSEUDO_REGISTER)
2126 goto slow;
2127 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2128 GET_MODE (SUBREG_REG (y)),
2129 SUBREG_BYTE (y),
2130 GET_MODE (y));
2131 }
2132 else
2133 j = REGNO (y);
2134
2135 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2136 multiple hard register group, so that for example (reg:DI 0) and
2137 (reg:SI 1) will be considered the same register. */
2138 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2139 && i < FIRST_PSEUDO_REGISTER)
2140 i += HARD_REGNO_NREGS (i, GET_MODE (x)) - 1;
2141 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2142 && j < FIRST_PSEUDO_REGISTER)
2143 j += HARD_REGNO_NREGS (j, GET_MODE (y)) - 1;
2144
2145 return i == j;
2146 }
2147 /* If two operands must match, because they are really a single
2148 operand of an assembler insn, then two postincrements are invalid
2149 because the assembler insn would increment only once.
2150 On the other hand, a postincrement matches ordinary indexing
2151 if the postincrement is the output operand. */
2152 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2153 return operands_match_p (XEXP (x, 0), y);
2154 /* Two preincrements are invalid
2155 because the assembler insn would increment only once.
2156 On the other hand, a preincrement matches ordinary indexing
2157 if the preincrement is the input operand.
2158 In this case, return 2, since some callers need to do special
2159 things when this happens. */
2160 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2161 || GET_CODE (y) == PRE_MODIFY)
2162 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2163
2164 slow:
2165
2166 /* Now we have disposed of all the cases
2167 in which different rtx codes can match. */
2168 if (code != GET_CODE (y))
2169 return 0;
2170 if (code == LABEL_REF)
2171 return XEXP (x, 0) == XEXP (y, 0);
2172 if (code == SYMBOL_REF)
2173 return XSTR (x, 0) == XSTR (y, 0);
2174
2175 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2176
2177 if (GET_MODE (x) != GET_MODE (y))
2178 return 0;
2179
2180 /* Compare the elements. If any pair of corresponding elements
2181 fail to match, return 0 for the whole things. */
2182
2183 success_2 = 0;
2184 fmt = GET_RTX_FORMAT (code);
2185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2186 {
2187 int val, j;
2188 switch (fmt[i])
2189 {
2190 case 'w':
2191 if (XWINT (x, i) != XWINT (y, i))
2192 return 0;
2193 break;
2194
2195 case 'i':
2196 if (XINT (x, i) != XINT (y, i))
2197 return 0;
2198 break;
2199
2200 case 'e':
2201 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2202 if (val == 0)
2203 return 0;
2204 /* If any subexpression returns 2,
2205 we should return 2 if we are successful. */
2206 if (val == 2)
2207 success_2 = 1;
2208 break;
2209
2210 case '0':
2211 break;
2212
2213 case 'E':
2214 if (XVECLEN (x, i) != XVECLEN (y, i))
2215 return 0;
2216 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2217 {
2218 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2219 if (val == 0)
2220 return 0;
2221 if (val == 2)
2222 success_2 = 1;
2223 }
2224 break;
2225
2226 /* It is believed that rtx's at this level will never
2227 contain anything but integers and other rtx's,
2228 except for within LABEL_REFs and SYMBOL_REFs. */
2229 default:
2230 abort ();
2231 }
2232 }
2233 return 1 + success_2;
2234 }
2235 \f
2236 /* Describe the range of registers or memory referenced by X.
2237 If X is a register, set REG_FLAG and put the first register
2238 number into START and the last plus one into END.
2239 If X is a memory reference, put a base address into BASE
2240 and a range of integer offsets into START and END.
2241 If X is pushing on the stack, we can assume it causes no trouble,
2242 so we set the SAFE field. */
2243
2244 static struct decomposition
2245 decompose (x)
2246 rtx x;
2247 {
2248 struct decomposition val;
2249 int all_const = 0;
2250
2251 val.reg_flag = 0;
2252 val.safe = 0;
2253 val.base = 0;
2254 if (GET_CODE (x) == MEM)
2255 {
2256 rtx base = NULL_RTX, offset = 0;
2257 rtx addr = XEXP (x, 0);
2258
2259 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2260 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2261 {
2262 val.base = XEXP (addr, 0);
2263 val.start = -GET_MODE_SIZE (GET_MODE (x));
2264 val.end = GET_MODE_SIZE (GET_MODE (x));
2265 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2266 return val;
2267 }
2268
2269 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2270 {
2271 if (GET_CODE (XEXP (addr, 1)) == PLUS
2272 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2273 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2274 {
2275 val.base = XEXP (addr, 0);
2276 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2277 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2278 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2279 return val;
2280 }
2281 }
2282
2283 if (GET_CODE (addr) == CONST)
2284 {
2285 addr = XEXP (addr, 0);
2286 all_const = 1;
2287 }
2288 if (GET_CODE (addr) == PLUS)
2289 {
2290 if (CONSTANT_P (XEXP (addr, 0)))
2291 {
2292 base = XEXP (addr, 1);
2293 offset = XEXP (addr, 0);
2294 }
2295 else if (CONSTANT_P (XEXP (addr, 1)))
2296 {
2297 base = XEXP (addr, 0);
2298 offset = XEXP (addr, 1);
2299 }
2300 }
2301
2302 if (offset == 0)
2303 {
2304 base = addr;
2305 offset = const0_rtx;
2306 }
2307 if (GET_CODE (offset) == CONST)
2308 offset = XEXP (offset, 0);
2309 if (GET_CODE (offset) == PLUS)
2310 {
2311 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2312 {
2313 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2314 offset = XEXP (offset, 0);
2315 }
2316 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2317 {
2318 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2319 offset = XEXP (offset, 1);
2320 }
2321 else
2322 {
2323 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2324 offset = const0_rtx;
2325 }
2326 }
2327 else if (GET_CODE (offset) != CONST_INT)
2328 {
2329 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2330 offset = const0_rtx;
2331 }
2332
2333 if (all_const && GET_CODE (base) == PLUS)
2334 base = gen_rtx_CONST (GET_MODE (base), base);
2335
2336 if (GET_CODE (offset) != CONST_INT)
2337 abort ();
2338
2339 val.start = INTVAL (offset);
2340 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2341 val.base = base;
2342 return val;
2343 }
2344 else if (GET_CODE (x) == REG)
2345 {
2346 val.reg_flag = 1;
2347 val.start = true_regnum (x);
2348 if (val.start < 0)
2349 {
2350 /* A pseudo with no hard reg. */
2351 val.start = REGNO (x);
2352 val.end = val.start + 1;
2353 }
2354 else
2355 /* A hard reg. */
2356 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2357 }
2358 else if (GET_CODE (x) == SUBREG)
2359 {
2360 if (GET_CODE (SUBREG_REG (x)) != REG)
2361 /* This could be more precise, but it's good enough. */
2362 return decompose (SUBREG_REG (x));
2363 val.reg_flag = 1;
2364 val.start = true_regnum (x);
2365 if (val.start < 0)
2366 return decompose (SUBREG_REG (x));
2367 else
2368 /* A hard reg. */
2369 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2370 }
2371 else if (CONSTANT_P (x)
2372 /* This hasn't been assigned yet, so it can't conflict yet. */
2373 || GET_CODE (x) == SCRATCH)
2374 val.safe = 1;
2375 else
2376 abort ();
2377 return val;
2378 }
2379
2380 /* Return 1 if altering Y will not modify the value of X.
2381 Y is also described by YDATA, which should be decompose (Y). */
2382
2383 static int
2384 immune_p (x, y, ydata)
2385 rtx x, y;
2386 struct decomposition ydata;
2387 {
2388 struct decomposition xdata;
2389
2390 if (ydata.reg_flag)
2391 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2392 if (ydata.safe)
2393 return 1;
2394
2395 if (GET_CODE (y) != MEM)
2396 abort ();
2397 /* If Y is memory and X is not, Y can't affect X. */
2398 if (GET_CODE (x) != MEM)
2399 return 1;
2400
2401 xdata = decompose (x);
2402
2403 if (! rtx_equal_p (xdata.base, ydata.base))
2404 {
2405 /* If bases are distinct symbolic constants, there is no overlap. */
2406 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2407 return 1;
2408 /* Constants and stack slots never overlap. */
2409 if (CONSTANT_P (xdata.base)
2410 && (ydata.base == frame_pointer_rtx
2411 || ydata.base == hard_frame_pointer_rtx
2412 || ydata.base == stack_pointer_rtx))
2413 return 1;
2414 if (CONSTANT_P (ydata.base)
2415 && (xdata.base == frame_pointer_rtx
2416 || xdata.base == hard_frame_pointer_rtx
2417 || xdata.base == stack_pointer_rtx))
2418 return 1;
2419 /* If either base is variable, we don't know anything. */
2420 return 0;
2421 }
2422
2423 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2424 }
2425
2426 /* Similar, but calls decompose. */
2427
2428 int
2429 safe_from_earlyclobber (op, clobber)
2430 rtx op, clobber;
2431 {
2432 struct decomposition early_data;
2433
2434 early_data = decompose (clobber);
2435 return immune_p (op, clobber, early_data);
2436 }
2437 \f
2438 /* Main entry point of this file: search the body of INSN
2439 for values that need reloading and record them with push_reload.
2440 REPLACE nonzero means record also where the values occur
2441 so that subst_reloads can be used.
2442
2443 IND_LEVELS says how many levels of indirection are supported by this
2444 machine; a value of zero means that a memory reference is not a valid
2445 memory address.
2446
2447 LIVE_KNOWN says we have valid information about which hard
2448 regs are live at each point in the program; this is true when
2449 we are called from global_alloc but false when stupid register
2450 allocation has been done.
2451
2452 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2453 which is nonnegative if the reg has been commandeered for reloading into.
2454 It is copied into STATIC_RELOAD_REG_P and referenced from there
2455 by various subroutines.
2456
2457 Return TRUE if some operands need to be changed, because of swapping
2458 commutative operands, reg_equiv_address substitution, or whatever. */
2459
2460 int
2461 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2462 rtx insn;
2463 int replace, ind_levels;
2464 int live_known;
2465 short *reload_reg_p;
2466 {
2467 int insn_code_number;
2468 int i, j;
2469 int noperands;
2470 /* These start out as the constraints for the insn
2471 and they are chewed up as we consider alternatives. */
2472 char *constraints[MAX_RECOG_OPERANDS];
2473 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2474 a register. */
2475 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2476 char pref_or_nothing[MAX_RECOG_OPERANDS];
2477 /* Nonzero for a MEM operand whose entire address needs a reload. */
2478 int address_reloaded[MAX_RECOG_OPERANDS];
2479 /* Nonzero for an address operand that needs to be completely reloaded. */
2480 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2481 /* Value of enum reload_type to use for operand. */
2482 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2483 /* Value of enum reload_type to use within address of operand. */
2484 enum reload_type address_type[MAX_RECOG_OPERANDS];
2485 /* Save the usage of each operand. */
2486 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2487 int no_input_reloads = 0, no_output_reloads = 0;
2488 int n_alternatives;
2489 int this_alternative[MAX_RECOG_OPERANDS];
2490 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2491 char this_alternative_win[MAX_RECOG_OPERANDS];
2492 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2493 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2494 int this_alternative_matches[MAX_RECOG_OPERANDS];
2495 int swapped;
2496 int goal_alternative[MAX_RECOG_OPERANDS];
2497 int this_alternative_number;
2498 int goal_alternative_number = 0;
2499 int operand_reloadnum[MAX_RECOG_OPERANDS];
2500 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2501 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2502 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2503 char goal_alternative_win[MAX_RECOG_OPERANDS];
2504 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2505 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2506 int goal_alternative_swapped;
2507 int best;
2508 int commutative;
2509 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2510 rtx substed_operand[MAX_RECOG_OPERANDS];
2511 rtx body = PATTERN (insn);
2512 rtx set = single_set (insn);
2513 int goal_earlyclobber = 0, this_earlyclobber;
2514 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2515 int retval = 0;
2516
2517 this_insn = insn;
2518 n_reloads = 0;
2519 n_replacements = 0;
2520 n_earlyclobbers = 0;
2521 replace_reloads = replace;
2522 hard_regs_live_known = live_known;
2523 static_reload_reg_p = reload_reg_p;
2524
2525 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2526 neither are insns that SET cc0. Insns that use CC0 are not allowed
2527 to have any input reloads. */
2528 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2529 no_output_reloads = 1;
2530
2531 #ifdef HAVE_cc0
2532 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2533 no_input_reloads = 1;
2534 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2535 no_output_reloads = 1;
2536 #endif
2537
2538 #ifdef SECONDARY_MEMORY_NEEDED
2539 /* The eliminated forms of any secondary memory locations are per-insn, so
2540 clear them out here. */
2541
2542 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2543 #endif
2544
2545 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2546 is cheap to move between them. If it is not, there may not be an insn
2547 to do the copy, so we may need a reload. */
2548 if (GET_CODE (body) == SET
2549 && GET_CODE (SET_DEST (body)) == REG
2550 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2551 && GET_CODE (SET_SRC (body)) == REG
2552 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2553 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2554 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2555 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2556 return 0;
2557
2558 extract_insn (insn);
2559
2560 noperands = reload_n_operands = recog_data.n_operands;
2561 n_alternatives = recog_data.n_alternatives;
2562
2563 /* Just return "no reloads" if insn has no operands with constraints. */
2564 if (noperands == 0 || n_alternatives == 0)
2565 return 0;
2566
2567 insn_code_number = INSN_CODE (insn);
2568 this_insn_is_asm = insn_code_number < 0;
2569
2570 memcpy (operand_mode, recog_data.operand_mode,
2571 noperands * sizeof (enum machine_mode));
2572 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2573
2574 commutative = -1;
2575
2576 /* If we will need to know, later, whether some pair of operands
2577 are the same, we must compare them now and save the result.
2578 Reloading the base and index registers will clobber them
2579 and afterward they will fail to match. */
2580
2581 for (i = 0; i < noperands; i++)
2582 {
2583 char *p;
2584 int c;
2585
2586 substed_operand[i] = recog_data.operand[i];
2587 p = constraints[i];
2588
2589 modified[i] = RELOAD_READ;
2590
2591 /* Scan this operand's constraint to see if it is an output operand,
2592 an in-out operand, is commutative, or should match another. */
2593
2594 while ((c = *p))
2595 {
2596 p += CONSTRAINT_LEN (c, p);
2597 if (c == '=')
2598 modified[i] = RELOAD_WRITE;
2599 else if (c == '+')
2600 modified[i] = RELOAD_READ_WRITE;
2601 else if (c == '%')
2602 {
2603 /* The last operand should not be marked commutative. */
2604 if (i == noperands - 1)
2605 abort ();
2606
2607 commutative = i;
2608 }
2609 else if (ISDIGIT (c))
2610 {
2611 c = strtoul (p - 1, &p, 10);
2612
2613 operands_match[c][i]
2614 = operands_match_p (recog_data.operand[c],
2615 recog_data.operand[i]);
2616
2617 /* An operand may not match itself. */
2618 if (c == i)
2619 abort ();
2620
2621 /* If C can be commuted with C+1, and C might need to match I,
2622 then C+1 might also need to match I. */
2623 if (commutative >= 0)
2624 {
2625 if (c == commutative || c == commutative + 1)
2626 {
2627 int other = c + (c == commutative ? 1 : -1);
2628 operands_match[other][i]
2629 = operands_match_p (recog_data.operand[other],
2630 recog_data.operand[i]);
2631 }
2632 if (i == commutative || i == commutative + 1)
2633 {
2634 int other = i + (i == commutative ? 1 : -1);
2635 operands_match[c][other]
2636 = operands_match_p (recog_data.operand[c],
2637 recog_data.operand[other]);
2638 }
2639 /* Note that C is supposed to be less than I.
2640 No need to consider altering both C and I because in
2641 that case we would alter one into the other. */
2642 }
2643 }
2644 }
2645 }
2646
2647 /* Examine each operand that is a memory reference or memory address
2648 and reload parts of the addresses into index registers.
2649 Also here any references to pseudo regs that didn't get hard regs
2650 but are equivalent to constants get replaced in the insn itself
2651 with those constants. Nobody will ever see them again.
2652
2653 Finally, set up the preferred classes of each operand. */
2654
2655 for (i = 0; i < noperands; i++)
2656 {
2657 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2658
2659 address_reloaded[i] = 0;
2660 address_operand_reloaded[i] = 0;
2661 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2662 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2663 : RELOAD_OTHER);
2664 address_type[i]
2665 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2666 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2667 : RELOAD_OTHER);
2668
2669 if (*constraints[i] == 0)
2670 /* Ignore things like match_operator operands. */
2671 ;
2672 else if (constraints[i][0] == 'p'
2673 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2674 {
2675 address_operand_reloaded[i]
2676 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2677 recog_data.operand[i],
2678 recog_data.operand_loc[i],
2679 i, operand_type[i], ind_levels, insn);
2680
2681 /* If we now have a simple operand where we used to have a
2682 PLUS or MULT, re-recognize and try again. */
2683 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2684 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2685 && (GET_CODE (recog_data.operand[i]) == MULT
2686 || GET_CODE (recog_data.operand[i]) == PLUS))
2687 {
2688 INSN_CODE (insn) = -1;
2689 retval = find_reloads (insn, replace, ind_levels, live_known,
2690 reload_reg_p);
2691 return retval;
2692 }
2693
2694 recog_data.operand[i] = *recog_data.operand_loc[i];
2695 substed_operand[i] = recog_data.operand[i];
2696
2697 /* Address operands are reloaded in their existing mode,
2698 no matter what is specified in the machine description. */
2699 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2700 }
2701 else if (code == MEM)
2702 {
2703 address_reloaded[i]
2704 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2705 recog_data.operand_loc[i],
2706 XEXP (recog_data.operand[i], 0),
2707 &XEXP (recog_data.operand[i], 0),
2708 i, address_type[i], ind_levels, insn);
2709 recog_data.operand[i] = *recog_data.operand_loc[i];
2710 substed_operand[i] = recog_data.operand[i];
2711 }
2712 else if (code == SUBREG)
2713 {
2714 rtx reg = SUBREG_REG (recog_data.operand[i]);
2715 rtx op
2716 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2717 ind_levels,
2718 set != 0
2719 && &SET_DEST (set) == recog_data.operand_loc[i],
2720 insn,
2721 &address_reloaded[i]);
2722
2723 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2724 that didn't get a hard register, emit a USE with a REG_EQUAL
2725 note in front so that we might inherit a previous, possibly
2726 wider reload. */
2727
2728 if (replace
2729 && GET_CODE (op) == MEM
2730 && GET_CODE (reg) == REG
2731 && (GET_MODE_SIZE (GET_MODE (reg))
2732 >= GET_MODE_SIZE (GET_MODE (op))))
2733 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2734 insn),
2735 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2736
2737 substed_operand[i] = recog_data.operand[i] = op;
2738 }
2739 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2740 /* We can get a PLUS as an "operand" as a result of register
2741 elimination. See eliminate_regs and gen_reload. We handle
2742 a unary operator by reloading the operand. */
2743 substed_operand[i] = recog_data.operand[i]
2744 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2745 ind_levels, 0, insn,
2746 &address_reloaded[i]);
2747 else if (code == REG)
2748 {
2749 /* This is equivalent to calling find_reloads_toplev.
2750 The code is duplicated for speed.
2751 When we find a pseudo always equivalent to a constant,
2752 we replace it by the constant. We must be sure, however,
2753 that we don't try to replace it in the insn in which it
2754 is being set. */
2755 int regno = REGNO (recog_data.operand[i]);
2756 if (reg_equiv_constant[regno] != 0
2757 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2758 {
2759 /* Record the existing mode so that the check if constants are
2760 allowed will work when operand_mode isn't specified. */
2761
2762 if (operand_mode[i] == VOIDmode)
2763 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2764
2765 substed_operand[i] = recog_data.operand[i]
2766 = reg_equiv_constant[regno];
2767 }
2768 if (reg_equiv_memory_loc[regno] != 0
2769 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2770 /* We need not give a valid is_set_dest argument since the case
2771 of a constant equivalence was checked above. */
2772 substed_operand[i] = recog_data.operand[i]
2773 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2774 ind_levels, 0, insn,
2775 &address_reloaded[i]);
2776 }
2777 /* If the operand is still a register (we didn't replace it with an
2778 equivalent), get the preferred class to reload it into. */
2779 code = GET_CODE (recog_data.operand[i]);
2780 preferred_class[i]
2781 = ((code == REG && REGNO (recog_data.operand[i])
2782 >= FIRST_PSEUDO_REGISTER)
2783 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2784 : NO_REGS);
2785 pref_or_nothing[i]
2786 = (code == REG
2787 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2788 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2789 }
2790
2791 /* If this is simply a copy from operand 1 to operand 0, merge the
2792 preferred classes for the operands. */
2793 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2794 && recog_data.operand[1] == SET_SRC (set))
2795 {
2796 preferred_class[0] = preferred_class[1]
2797 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2798 pref_or_nothing[0] |= pref_or_nothing[1];
2799 pref_or_nothing[1] |= pref_or_nothing[0];
2800 }
2801
2802 /* Now see what we need for pseudo-regs that didn't get hard regs
2803 or got the wrong kind of hard reg. For this, we must consider
2804 all the operands together against the register constraints. */
2805
2806 best = MAX_RECOG_OPERANDS * 2 + 600;
2807
2808 swapped = 0;
2809 goal_alternative_swapped = 0;
2810 try_swapped:
2811
2812 /* The constraints are made of several alternatives.
2813 Each operand's constraint looks like foo,bar,... with commas
2814 separating the alternatives. The first alternatives for all
2815 operands go together, the second alternatives go together, etc.
2816
2817 First loop over alternatives. */
2818
2819 for (this_alternative_number = 0;
2820 this_alternative_number < n_alternatives;
2821 this_alternative_number++)
2822 {
2823 /* Loop over operands for one constraint alternative. */
2824 /* LOSERS counts those that don't fit this alternative
2825 and would require loading. */
2826 int losers = 0;
2827 /* BAD is set to 1 if it some operand can't fit this alternative
2828 even after reloading. */
2829 int bad = 0;
2830 /* REJECT is a count of how undesirable this alternative says it is
2831 if any reloading is required. If the alternative matches exactly
2832 then REJECT is ignored, but otherwise it gets this much
2833 counted against it in addition to the reloading needed. Each
2834 ? counts three times here since we want the disparaging caused by
2835 a bad register class to only count 1/3 as much. */
2836 int reject = 0;
2837
2838 this_earlyclobber = 0;
2839
2840 for (i = 0; i < noperands; i++)
2841 {
2842 char *p = constraints[i];
2843 char *end;
2844 int len;
2845 int win = 0;
2846 int did_match = 0;
2847 /* 0 => this operand can be reloaded somehow for this alternative. */
2848 int badop = 1;
2849 /* 0 => this operand can be reloaded if the alternative allows regs. */
2850 int winreg = 0;
2851 int c;
2852 int m;
2853 rtx operand = recog_data.operand[i];
2854 int offset = 0;
2855 /* Nonzero means this is a MEM that must be reloaded into a reg
2856 regardless of what the constraint says. */
2857 int force_reload = 0;
2858 int offmemok = 0;
2859 /* Nonzero if a constant forced into memory would be OK for this
2860 operand. */
2861 int constmemok = 0;
2862 int earlyclobber = 0;
2863
2864 /* If the predicate accepts a unary operator, it means that
2865 we need to reload the operand, but do not do this for
2866 match_operator and friends. */
2867 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2868 operand = XEXP (operand, 0);
2869
2870 /* If the operand is a SUBREG, extract
2871 the REG or MEM (or maybe even a constant) within.
2872 (Constants can occur as a result of reg_equiv_constant.) */
2873
2874 while (GET_CODE (operand) == SUBREG)
2875 {
2876 /* Offset only matters when operand is a REG and
2877 it is a hard reg. This is because it is passed
2878 to reg_fits_class_p if it is a REG and all pseudos
2879 return 0 from that function. */
2880 if (GET_CODE (SUBREG_REG (operand)) == REG
2881 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2882 {
2883 if (!subreg_offset_representable_p
2884 (REGNO (SUBREG_REG (operand)),
2885 GET_MODE (SUBREG_REG (operand)),
2886 SUBREG_BYTE (operand),
2887 GET_MODE (operand)))
2888 force_reload = 1;
2889 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2890 GET_MODE (SUBREG_REG (operand)),
2891 SUBREG_BYTE (operand),
2892 GET_MODE (operand));
2893 }
2894 operand = SUBREG_REG (operand);
2895 /* Force reload if this is a constant or PLUS or if there may
2896 be a problem accessing OPERAND in the outer mode. */
2897 if (CONSTANT_P (operand)
2898 || GET_CODE (operand) == PLUS
2899 /* We must force a reload of paradoxical SUBREGs
2900 of a MEM because the alignment of the inner value
2901 may not be enough to do the outer reference. On
2902 big-endian machines, it may also reference outside
2903 the object.
2904
2905 On machines that extend byte operations and we have a
2906 SUBREG where both the inner and outer modes are no wider
2907 than a word and the inner mode is narrower, is integral,
2908 and gets extended when loaded from memory, combine.c has
2909 made assumptions about the behavior of the machine in such
2910 register access. If the data is, in fact, in memory we
2911 must always load using the size assumed to be in the
2912 register and let the insn do the different-sized
2913 accesses.
2914
2915 This is doubly true if WORD_REGISTER_OPERATIONS. In
2916 this case eliminate_regs has left non-paradoxical
2917 subregs for push_reloads to see. Make sure it does
2918 by forcing the reload.
2919
2920 ??? When is it right at this stage to have a subreg
2921 of a mem that is _not_ to be handled specially? IMO
2922 those should have been reduced to just a mem. */
2923 || ((GET_CODE (operand) == MEM
2924 || (GET_CODE (operand)== REG
2925 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2926 #ifndef WORD_REGISTER_OPERATIONS
2927 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2928 < BIGGEST_ALIGNMENT)
2929 && (GET_MODE_SIZE (operand_mode[i])
2930 > GET_MODE_SIZE (GET_MODE (operand))))
2931 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2932 #ifdef LOAD_EXTEND_OP
2933 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2934 && (GET_MODE_SIZE (GET_MODE (operand))
2935 <= UNITS_PER_WORD)
2936 && (GET_MODE_SIZE (operand_mode[i])
2937 > GET_MODE_SIZE (GET_MODE (operand)))
2938 && INTEGRAL_MODE_P (GET_MODE (operand))
2939 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2940 #endif
2941 )
2942 #endif
2943 )
2944 )
2945 force_reload = 1;
2946 }
2947
2948 this_alternative[i] = (int) NO_REGS;
2949 this_alternative_win[i] = 0;
2950 this_alternative_match_win[i] = 0;
2951 this_alternative_offmemok[i] = 0;
2952 this_alternative_earlyclobber[i] = 0;
2953 this_alternative_matches[i] = -1;
2954
2955 /* An empty constraint or empty alternative
2956 allows anything which matched the pattern. */
2957 if (*p == 0 || *p == ',')
2958 win = 1, badop = 0;
2959
2960 /* Scan this alternative's specs for this operand;
2961 set WIN if the operand fits any letter in this alternative.
2962 Otherwise, clear BADOP if this operand could
2963 fit some letter after reloads,
2964 or set WINREG if this operand could fit after reloads
2965 provided the constraint allows some registers. */
2966
2967 do
2968 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2969 {
2970 case '\0':
2971 len = 0;
2972 break;
2973 case ',':
2974 c = '\0';
2975 break;
2976
2977 case '=': case '+': case '*':
2978 break;
2979
2980 case '%':
2981 /* The last operand should not be marked commutative. */
2982 if (i != noperands - 1)
2983 commutative = i;
2984 break;
2985
2986 case '?':
2987 reject += 6;
2988 break;
2989
2990 case '!':
2991 reject = 600;
2992 break;
2993
2994 case '#':
2995 /* Ignore rest of this alternative as far as
2996 reloading is concerned. */
2997 do
2998 p++;
2999 while (*p && *p != ',');
3000 len = 0;
3001 break;
3002
3003 case '0': case '1': case '2': case '3': case '4':
3004 case '5': case '6': case '7': case '8': case '9':
3005 m = strtoul (p, &end, 10);
3006 p = end;
3007 len = 0;
3008
3009 this_alternative_matches[i] = m;
3010 /* We are supposed to match a previous operand.
3011 If we do, we win if that one did.
3012 If we do not, count both of the operands as losers.
3013 (This is too conservative, since most of the time
3014 only a single reload insn will be needed to make
3015 the two operands win. As a result, this alternative
3016 may be rejected when it is actually desirable.) */
3017 if ((swapped && (m != commutative || i != commutative + 1))
3018 /* If we are matching as if two operands were swapped,
3019 also pretend that operands_match had been computed
3020 with swapped.
3021 But if I is the second of those and C is the first,
3022 don't exchange them, because operands_match is valid
3023 only on one side of its diagonal. */
3024 ? (operands_match
3025 [(m == commutative || m == commutative + 1)
3026 ? 2 * commutative + 1 - m : m]
3027 [(i == commutative || i == commutative + 1)
3028 ? 2 * commutative + 1 - i : i])
3029 : operands_match[m][i])
3030 {
3031 /* If we are matching a non-offsettable address where an
3032 offsettable address was expected, then we must reject
3033 this combination, because we can't reload it. */
3034 if (this_alternative_offmemok[m]
3035 && GET_CODE (recog_data.operand[m]) == MEM
3036 && this_alternative[m] == (int) NO_REGS
3037 && ! this_alternative_win[m])
3038 bad = 1;
3039
3040 did_match = this_alternative_win[m];
3041 }
3042 else
3043 {
3044 /* Operands don't match. */
3045 rtx value;
3046 /* Retroactively mark the operand we had to match
3047 as a loser, if it wasn't already. */
3048 if (this_alternative_win[m])
3049 losers++;
3050 this_alternative_win[m] = 0;
3051 if (this_alternative[m] == (int) NO_REGS)
3052 bad = 1;
3053 /* But count the pair only once in the total badness of
3054 this alternative, if the pair can be a dummy reload. */
3055 value
3056 = find_dummy_reload (recog_data.operand[i],
3057 recog_data.operand[m],
3058 recog_data.operand_loc[i],
3059 recog_data.operand_loc[m],
3060 operand_mode[i], operand_mode[m],
3061 this_alternative[m], -1,
3062 this_alternative_earlyclobber[m]);
3063
3064 if (value != 0)
3065 losers--;
3066 }
3067 /* This can be fixed with reloads if the operand
3068 we are supposed to match can be fixed with reloads. */
3069 badop = 0;
3070 this_alternative[i] = this_alternative[m];
3071
3072 /* If we have to reload this operand and some previous
3073 operand also had to match the same thing as this
3074 operand, we don't know how to do that. So reject this
3075 alternative. */
3076 if (! did_match || force_reload)
3077 for (j = 0; j < i; j++)
3078 if (this_alternative_matches[j]
3079 == this_alternative_matches[i])
3080 badop = 1;
3081 break;
3082
3083 case 'p':
3084 /* All necessary reloads for an address_operand
3085 were handled in find_reloads_address. */
3086 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3087 win = 1;
3088 badop = 0;
3089 break;
3090
3091 case 'm':
3092 if (force_reload)
3093 break;
3094 if (GET_CODE (operand) == MEM
3095 || (GET_CODE (operand) == REG
3096 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3097 && reg_renumber[REGNO (operand)] < 0))
3098 win = 1;
3099 if (CONSTANT_P (operand)
3100 /* force_const_mem does not accept HIGH. */
3101 && GET_CODE (operand) != HIGH)
3102 badop = 0;
3103 constmemok = 1;
3104 break;
3105
3106 case '<':
3107 if (GET_CODE (operand) == MEM
3108 && ! address_reloaded[i]
3109 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3110 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3111 win = 1;
3112 break;
3113
3114 case '>':
3115 if (GET_CODE (operand) == MEM
3116 && ! address_reloaded[i]
3117 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3118 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3119 win = 1;
3120 break;
3121
3122 /* Memory operand whose address is not offsettable. */
3123 case 'V':
3124 if (force_reload)
3125 break;
3126 if (GET_CODE (operand) == MEM
3127 && ! (ind_levels ? offsettable_memref_p (operand)
3128 : offsettable_nonstrict_memref_p (operand))
3129 /* Certain mem addresses will become offsettable
3130 after they themselves are reloaded. This is important;
3131 we don't want our own handling of unoffsettables
3132 to override the handling of reg_equiv_address. */
3133 && !(GET_CODE (XEXP (operand, 0)) == REG
3134 && (ind_levels == 0
3135 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3136 win = 1;
3137 break;
3138
3139 /* Memory operand whose address is offsettable. */
3140 case 'o':
3141 if (force_reload)
3142 break;
3143 if ((GET_CODE (operand) == MEM
3144 /* If IND_LEVELS, find_reloads_address won't reload a
3145 pseudo that didn't get a hard reg, so we have to
3146 reject that case. */
3147 && ((ind_levels ? offsettable_memref_p (operand)
3148 : offsettable_nonstrict_memref_p (operand))
3149 /* A reloaded address is offsettable because it is now
3150 just a simple register indirect. */
3151 || address_reloaded[i]))
3152 || (GET_CODE (operand) == REG
3153 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3154 && reg_renumber[REGNO (operand)] < 0
3155 /* If reg_equiv_address is nonzero, we will be
3156 loading it into a register; hence it will be
3157 offsettable, but we cannot say that reg_equiv_mem
3158 is offsettable without checking. */
3159 && ((reg_equiv_mem[REGNO (operand)] != 0
3160 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3161 || (reg_equiv_address[REGNO (operand)] != 0))))
3162 win = 1;
3163 /* force_const_mem does not accept HIGH. */
3164 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3165 || GET_CODE (operand) == MEM)
3166 badop = 0;
3167 constmemok = 1;
3168 offmemok = 1;
3169 break;
3170
3171 case '&':
3172 /* Output operand that is stored before the need for the
3173 input operands (and their index registers) is over. */
3174 earlyclobber = 1, this_earlyclobber = 1;
3175 break;
3176
3177 case 'E':
3178 case 'F':
3179 if (GET_CODE (operand) == CONST_DOUBLE
3180 || (GET_CODE (operand) == CONST_VECTOR
3181 && (GET_MODE_CLASS (GET_MODE (operand))
3182 == MODE_VECTOR_FLOAT)))
3183 win = 1;
3184 break;
3185
3186 case 'G':
3187 case 'H':
3188 if (GET_CODE (operand) == CONST_DOUBLE
3189 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3190 win = 1;
3191 break;
3192
3193 case 's':
3194 if (GET_CODE (operand) == CONST_INT
3195 || (GET_CODE (operand) == CONST_DOUBLE
3196 && GET_MODE (operand) == VOIDmode))
3197 break;
3198 case 'i':
3199 if (CONSTANT_P (operand)
3200 #ifdef LEGITIMATE_PIC_OPERAND_P
3201 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3202 #endif
3203 )
3204 win = 1;
3205 break;
3206
3207 case 'n':
3208 if (GET_CODE (operand) == CONST_INT
3209 || (GET_CODE (operand) == CONST_DOUBLE
3210 && GET_MODE (operand) == VOIDmode))
3211 win = 1;
3212 break;
3213
3214 case 'I':
3215 case 'J':
3216 case 'K':
3217 case 'L':
3218 case 'M':
3219 case 'N':
3220 case 'O':
3221 case 'P':
3222 if (GET_CODE (operand) == CONST_INT
3223 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3224 win = 1;
3225 break;
3226
3227 case 'X':
3228 win = 1;
3229 break;
3230
3231 case 'g':
3232 if (! force_reload
3233 /* A PLUS is never a valid operand, but reload can make
3234 it from a register when eliminating registers. */
3235 && GET_CODE (operand) != PLUS
3236 /* A SCRATCH is not a valid operand. */
3237 && GET_CODE (operand) != SCRATCH
3238 #ifdef LEGITIMATE_PIC_OPERAND_P
3239 && (! CONSTANT_P (operand)
3240 || ! flag_pic
3241 || LEGITIMATE_PIC_OPERAND_P (operand))
3242 #endif
3243 && (GENERAL_REGS == ALL_REGS
3244 || GET_CODE (operand) != REG
3245 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3246 && reg_renumber[REGNO (operand)] < 0)))
3247 win = 1;
3248 /* Drop through into 'r' case. */
3249
3250 case 'r':
3251 this_alternative[i]
3252 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3253 goto reg;
3254
3255 default:
3256 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3257 {
3258 #ifdef EXTRA_CONSTRAINT_STR
3259 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3260 {
3261 if (force_reload)
3262 break;
3263 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3264 win = 1;
3265 /* If the address was already reloaded,
3266 we win as well. */
3267 if (GET_CODE (operand) == MEM && address_reloaded[i])
3268 win = 1;
3269 /* Likewise if the address will be reloaded because
3270 reg_equiv_address is nonzero. For reg_equiv_mem
3271 we have to check. */
3272 if (GET_CODE (operand) == REG
3273 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3274 && reg_renumber[REGNO (operand)] < 0
3275 && ((reg_equiv_mem[REGNO (operand)] != 0
3276 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3277 || (reg_equiv_address[REGNO (operand)] != 0)))
3278 win = 1;
3279
3280 /* If we didn't already win, we can reload
3281 constants via force_const_mem, and other
3282 MEMs by reloading the address like for 'o'. */
3283 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3284 || GET_CODE (operand) == MEM)
3285 badop = 0;
3286 constmemok = 1;
3287 offmemok = 1;
3288 break;
3289 }
3290 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3291 {
3292 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3293 win = 1;
3294
3295 /* If we didn't already win, we can reload
3296 the address into a base register. */
3297 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3298 badop = 0;
3299 break;
3300 }
3301
3302 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3303 win = 1;
3304 #endif
3305 break;
3306 }
3307
3308 this_alternative[i]
3309 = (int) (reg_class_subunion
3310 [this_alternative[i]]
3311 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3312 reg:
3313 if (GET_MODE (operand) == BLKmode)
3314 break;
3315 winreg = 1;
3316 if (GET_CODE (operand) == REG
3317 && reg_fits_class_p (operand, this_alternative[i],
3318 offset, GET_MODE (recog_data.operand[i])))
3319 win = 1;
3320 break;
3321 }
3322 while ((p += len), c);
3323
3324 constraints[i] = p;
3325
3326 /* If this operand could be handled with a reg,
3327 and some reg is allowed, then this operand can be handled. */
3328 if (winreg && this_alternative[i] != (int) NO_REGS)
3329 badop = 0;
3330
3331 /* Record which operands fit this alternative. */
3332 this_alternative_earlyclobber[i] = earlyclobber;
3333 if (win && ! force_reload)
3334 this_alternative_win[i] = 1;
3335 else if (did_match && ! force_reload)
3336 this_alternative_match_win[i] = 1;
3337 else
3338 {
3339 int const_to_mem = 0;
3340
3341 this_alternative_offmemok[i] = offmemok;
3342 losers++;
3343 if (badop)
3344 bad = 1;
3345 /* Alternative loses if it has no regs for a reg operand. */
3346 if (GET_CODE (operand) == REG
3347 && this_alternative[i] == (int) NO_REGS
3348 && this_alternative_matches[i] < 0)
3349 bad = 1;
3350
3351 /* If this is a constant that is reloaded into the desired
3352 class by copying it to memory first, count that as another
3353 reload. This is consistent with other code and is
3354 required to avoid choosing another alternative when
3355 the constant is moved into memory by this function on
3356 an early reload pass. Note that the test here is
3357 precisely the same as in the code below that calls
3358 force_const_mem. */
3359 if (CONSTANT_P (operand)
3360 /* force_const_mem does not accept HIGH. */
3361 && GET_CODE (operand) != HIGH
3362 && ((PREFERRED_RELOAD_CLASS (operand,
3363 (enum reg_class) this_alternative[i])
3364 == NO_REGS)
3365 || no_input_reloads)
3366 && operand_mode[i] != VOIDmode)
3367 {
3368 const_to_mem = 1;
3369 if (this_alternative[i] != (int) NO_REGS)
3370 losers++;
3371 }
3372
3373 /* If we can't reload this value at all, reject this
3374 alternative. Note that we could also lose due to
3375 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3376 here. */
3377
3378 if (! CONSTANT_P (operand)
3379 && (enum reg_class) this_alternative[i] != NO_REGS
3380 && (PREFERRED_RELOAD_CLASS (operand,
3381 (enum reg_class) this_alternative[i])
3382 == NO_REGS))
3383 bad = 1;
3384
3385 /* Alternative loses if it requires a type of reload not
3386 permitted for this insn. We can always reload SCRATCH
3387 and objects with a REG_UNUSED note. */
3388 else if (GET_CODE (operand) != SCRATCH
3389 && modified[i] != RELOAD_READ && no_output_reloads
3390 && ! find_reg_note (insn, REG_UNUSED, operand))
3391 bad = 1;
3392 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3393 && ! const_to_mem)
3394 bad = 1;
3395
3396 /* We prefer to reload pseudos over reloading other things,
3397 since such reloads may be able to be eliminated later.
3398 If we are reloading a SCRATCH, we won't be generating any
3399 insns, just using a register, so it is also preferred.
3400 So bump REJECT in other cases. Don't do this in the
3401 case where we are forcing a constant into memory and
3402 it will then win since we don't want to have a different
3403 alternative match then. */
3404 if (! (GET_CODE (operand) == REG
3405 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3406 && GET_CODE (operand) != SCRATCH
3407 && ! (const_to_mem && constmemok))
3408 reject += 2;
3409
3410 /* Input reloads can be inherited more often than output
3411 reloads can be removed, so penalize output reloads. */
3412 if (operand_type[i] != RELOAD_FOR_INPUT
3413 && GET_CODE (operand) != SCRATCH)
3414 reject++;
3415 }
3416
3417 /* If this operand is a pseudo register that didn't get a hard
3418 reg and this alternative accepts some register, see if the
3419 class that we want is a subset of the preferred class for this
3420 register. If not, but it intersects that class, use the
3421 preferred class instead. If it does not intersect the preferred
3422 class, show that usage of this alternative should be discouraged;
3423 it will be discouraged more still if the register is `preferred
3424 or nothing'. We do this because it increases the chance of
3425 reusing our spill register in a later insn and avoiding a pair
3426 of memory stores and loads.
3427
3428 Don't bother with this if this alternative will accept this
3429 operand.
3430
3431 Don't do this for a multiword operand, since it is only a
3432 small win and has the risk of requiring more spill registers,
3433 which could cause a large loss.
3434
3435 Don't do this if the preferred class has only one register
3436 because we might otherwise exhaust the class. */
3437
3438 if (! win && ! did_match
3439 && this_alternative[i] != (int) NO_REGS
3440 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3441 && reg_class_size[(int) preferred_class[i]] > 1)
3442 {
3443 if (! reg_class_subset_p (this_alternative[i],
3444 preferred_class[i]))
3445 {
3446 /* Since we don't have a way of forming the intersection,
3447 we just do something special if the preferred class
3448 is a subset of the class we have; that's the most
3449 common case anyway. */
3450 if (reg_class_subset_p (preferred_class[i],
3451 this_alternative[i]))
3452 this_alternative[i] = (int) preferred_class[i];
3453 else
3454 reject += (2 + 2 * pref_or_nothing[i]);
3455 }
3456 }
3457 }
3458
3459 /* Now see if any output operands that are marked "earlyclobber"
3460 in this alternative conflict with any input operands
3461 or any memory addresses. */
3462
3463 for (i = 0; i < noperands; i++)
3464 if (this_alternative_earlyclobber[i]
3465 && (this_alternative_win[i] || this_alternative_match_win[i]))
3466 {
3467 struct decomposition early_data;
3468
3469 early_data = decompose (recog_data.operand[i]);
3470
3471 if (modified[i] == RELOAD_READ)
3472 abort ();
3473
3474 if (this_alternative[i] == NO_REGS)
3475 {
3476 this_alternative_earlyclobber[i] = 0;
3477 if (this_insn_is_asm)
3478 error_for_asm (this_insn,
3479 "`&' constraint used with no register class");
3480 else
3481 abort ();
3482 }
3483
3484 for (j = 0; j < noperands; j++)
3485 /* Is this an input operand or a memory ref? */
3486 if ((GET_CODE (recog_data.operand[j]) == MEM
3487 || modified[j] != RELOAD_WRITE)
3488 && j != i
3489 /* Ignore things like match_operator operands. */
3490 && *recog_data.constraints[j] != 0
3491 /* Don't count an input operand that is constrained to match
3492 the early clobber operand. */
3493 && ! (this_alternative_matches[j] == i
3494 && rtx_equal_p (recog_data.operand[i],
3495 recog_data.operand[j]))
3496 /* Is it altered by storing the earlyclobber operand? */
3497 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3498 early_data))
3499 {
3500 /* If the output is in a single-reg class,
3501 it's costly to reload it, so reload the input instead. */
3502 if (reg_class_size[this_alternative[i]] == 1
3503 && (GET_CODE (recog_data.operand[j]) == REG
3504 || GET_CODE (recog_data.operand[j]) == SUBREG))
3505 {
3506 losers++;
3507 this_alternative_win[j] = 0;
3508 this_alternative_match_win[j] = 0;
3509 }
3510 else
3511 break;
3512 }
3513 /* If an earlyclobber operand conflicts with something,
3514 it must be reloaded, so request this and count the cost. */
3515 if (j != noperands)
3516 {
3517 losers++;
3518 this_alternative_win[i] = 0;
3519 this_alternative_match_win[j] = 0;
3520 for (j = 0; j < noperands; j++)
3521 if (this_alternative_matches[j] == i
3522 && this_alternative_match_win[j])
3523 {
3524 this_alternative_win[j] = 0;
3525 this_alternative_match_win[j] = 0;
3526 losers++;
3527 }
3528 }
3529 }
3530
3531 /* If one alternative accepts all the operands, no reload required,
3532 choose that alternative; don't consider the remaining ones. */
3533 if (losers == 0)
3534 {
3535 /* Unswap these so that they are never swapped at `finish'. */
3536 if (commutative >= 0)
3537 {
3538 recog_data.operand[commutative] = substed_operand[commutative];
3539 recog_data.operand[commutative + 1]
3540 = substed_operand[commutative + 1];
3541 }
3542 for (i = 0; i < noperands; i++)
3543 {
3544 goal_alternative_win[i] = this_alternative_win[i];
3545 goal_alternative_match_win[i] = this_alternative_match_win[i];
3546 goal_alternative[i] = this_alternative[i];
3547 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3548 goal_alternative_matches[i] = this_alternative_matches[i];
3549 goal_alternative_earlyclobber[i]
3550 = this_alternative_earlyclobber[i];
3551 }
3552 goal_alternative_number = this_alternative_number;
3553 goal_alternative_swapped = swapped;
3554 goal_earlyclobber = this_earlyclobber;
3555 goto finish;
3556 }
3557
3558 /* REJECT, set by the ! and ? constraint characters and when a register
3559 would be reloaded into a non-preferred class, discourages the use of
3560 this alternative for a reload goal. REJECT is incremented by six
3561 for each ? and two for each non-preferred class. */
3562 losers = losers * 6 + reject;
3563
3564 /* If this alternative can be made to work by reloading,
3565 and it needs less reloading than the others checked so far,
3566 record it as the chosen goal for reloading. */
3567 if (! bad && best > losers)
3568 {
3569 for (i = 0; i < noperands; i++)
3570 {
3571 goal_alternative[i] = this_alternative[i];
3572 goal_alternative_win[i] = this_alternative_win[i];
3573 goal_alternative_match_win[i] = this_alternative_match_win[i];
3574 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3575 goal_alternative_matches[i] = this_alternative_matches[i];
3576 goal_alternative_earlyclobber[i]
3577 = this_alternative_earlyclobber[i];
3578 }
3579 goal_alternative_swapped = swapped;
3580 best = losers;
3581 goal_alternative_number = this_alternative_number;
3582 goal_earlyclobber = this_earlyclobber;
3583 }
3584 }
3585
3586 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3587 then we need to try each alternative twice,
3588 the second time matching those two operands
3589 as if we had exchanged them.
3590 To do this, really exchange them in operands.
3591
3592 If we have just tried the alternatives the second time,
3593 return operands to normal and drop through. */
3594
3595 if (commutative >= 0)
3596 {
3597 swapped = !swapped;
3598 if (swapped)
3599 {
3600 enum reg_class tclass;
3601 int t;
3602
3603 recog_data.operand[commutative] = substed_operand[commutative + 1];
3604 recog_data.operand[commutative + 1] = substed_operand[commutative];
3605 /* Swap the duplicates too. */
3606 for (i = 0; i < recog_data.n_dups; i++)
3607 if (recog_data.dup_num[i] == commutative
3608 || recog_data.dup_num[i] == commutative + 1)
3609 *recog_data.dup_loc[i]
3610 = recog_data.operand[(int) recog_data.dup_num[i]];
3611
3612 tclass = preferred_class[commutative];
3613 preferred_class[commutative] = preferred_class[commutative + 1];
3614 preferred_class[commutative + 1] = tclass;
3615
3616 t = pref_or_nothing[commutative];
3617 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3618 pref_or_nothing[commutative + 1] = t;
3619
3620 memcpy (constraints, recog_data.constraints,
3621 noperands * sizeof (char *));
3622 goto try_swapped;
3623 }
3624 else
3625 {
3626 recog_data.operand[commutative] = substed_operand[commutative];
3627 recog_data.operand[commutative + 1]
3628 = substed_operand[commutative + 1];
3629 /* Unswap the duplicates too. */
3630 for (i = 0; i < recog_data.n_dups; i++)
3631 if (recog_data.dup_num[i] == commutative
3632 || recog_data.dup_num[i] == commutative + 1)
3633 *recog_data.dup_loc[i]
3634 = recog_data.operand[(int) recog_data.dup_num[i]];
3635 }
3636 }
3637
3638 /* The operands don't meet the constraints.
3639 goal_alternative describes the alternative
3640 that we could reach by reloading the fewest operands.
3641 Reload so as to fit it. */
3642
3643 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3644 {
3645 /* No alternative works with reloads?? */
3646 if (insn_code_number >= 0)
3647 fatal_insn ("unable to generate reloads for:", insn);
3648 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3649 /* Avoid further trouble with this insn. */
3650 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3651 n_reloads = 0;
3652 return 0;
3653 }
3654
3655 /* Jump to `finish' from above if all operands are valid already.
3656 In that case, goal_alternative_win is all 1. */
3657 finish:
3658
3659 /* Right now, for any pair of operands I and J that are required to match,
3660 with I < J,
3661 goal_alternative_matches[J] is I.
3662 Set up goal_alternative_matched as the inverse function:
3663 goal_alternative_matched[I] = J. */
3664
3665 for (i = 0; i < noperands; i++)
3666 goal_alternative_matched[i] = -1;
3667
3668 for (i = 0; i < noperands; i++)
3669 if (! goal_alternative_win[i]
3670 && goal_alternative_matches[i] >= 0)
3671 goal_alternative_matched[goal_alternative_matches[i]] = i;
3672
3673 for (i = 0; i < noperands; i++)
3674 goal_alternative_win[i] |= goal_alternative_match_win[i];
3675
3676 /* If the best alternative is with operands 1 and 2 swapped,
3677 consider them swapped before reporting the reloads. Update the
3678 operand numbers of any reloads already pushed. */
3679
3680 if (goal_alternative_swapped)
3681 {
3682 rtx tem;
3683
3684 tem = substed_operand[commutative];
3685 substed_operand[commutative] = substed_operand[commutative + 1];
3686 substed_operand[commutative + 1] = tem;
3687 tem = recog_data.operand[commutative];
3688 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3689 recog_data.operand[commutative + 1] = tem;
3690 tem = *recog_data.operand_loc[commutative];
3691 *recog_data.operand_loc[commutative]
3692 = *recog_data.operand_loc[commutative + 1];
3693 *recog_data.operand_loc[commutative + 1] = tem;
3694
3695 for (i = 0; i < n_reloads; i++)
3696 {
3697 if (rld[i].opnum == commutative)
3698 rld[i].opnum = commutative + 1;
3699 else if (rld[i].opnum == commutative + 1)
3700 rld[i].opnum = commutative;
3701 }
3702 }
3703
3704 for (i = 0; i < noperands; i++)
3705 {
3706 operand_reloadnum[i] = -1;
3707
3708 /* If this is an earlyclobber operand, we need to widen the scope.
3709 The reload must remain valid from the start of the insn being
3710 reloaded until after the operand is stored into its destination.
3711 We approximate this with RELOAD_OTHER even though we know that we
3712 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3713
3714 One special case that is worth checking is when we have an
3715 output that is earlyclobber but isn't used past the insn (typically
3716 a SCRATCH). In this case, we only need have the reload live
3717 through the insn itself, but not for any of our input or output
3718 reloads.
3719 But we must not accidentally narrow the scope of an existing
3720 RELOAD_OTHER reload - leave these alone.
3721
3722 In any case, anything needed to address this operand can remain
3723 however they were previously categorized. */
3724
3725 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3726 operand_type[i]
3727 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3728 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3729 }
3730
3731 /* Any constants that aren't allowed and can't be reloaded
3732 into registers are here changed into memory references. */
3733 for (i = 0; i < noperands; i++)
3734 if (! goal_alternative_win[i]
3735 && CONSTANT_P (recog_data.operand[i])
3736 /* force_const_mem does not accept HIGH. */
3737 && GET_CODE (recog_data.operand[i]) != HIGH
3738 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3739 (enum reg_class) goal_alternative[i])
3740 == NO_REGS)
3741 || no_input_reloads)
3742 && operand_mode[i] != VOIDmode)
3743 {
3744 substed_operand[i] = recog_data.operand[i]
3745 = find_reloads_toplev (force_const_mem (operand_mode[i],
3746 recog_data.operand[i]),
3747 i, address_type[i], ind_levels, 0, insn,
3748 NULL);
3749 if (alternative_allows_memconst (recog_data.constraints[i],
3750 goal_alternative_number))
3751 goal_alternative_win[i] = 1;
3752 }
3753
3754 /* Record the values of the earlyclobber operands for the caller. */
3755 if (goal_earlyclobber)
3756 for (i = 0; i < noperands; i++)
3757 if (goal_alternative_earlyclobber[i])
3758 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3759
3760 /* Now record reloads for all the operands that need them. */
3761 for (i = 0; i < noperands; i++)
3762 if (! goal_alternative_win[i])
3763 {
3764 /* Operands that match previous ones have already been handled. */
3765 if (goal_alternative_matches[i] >= 0)
3766 ;
3767 /* Handle an operand with a nonoffsettable address
3768 appearing where an offsettable address will do
3769 by reloading the address into a base register.
3770
3771 ??? We can also do this when the operand is a register and
3772 reg_equiv_mem is not offsettable, but this is a bit tricky,
3773 so we don't bother with it. It may not be worth doing. */
3774 else if (goal_alternative_matched[i] == -1
3775 && goal_alternative_offmemok[i]
3776 && GET_CODE (recog_data.operand[i]) == MEM)
3777 {
3778 operand_reloadnum[i]
3779 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3780 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3781 MODE_BASE_REG_CLASS (VOIDmode),
3782 GET_MODE (XEXP (recog_data.operand[i], 0)),
3783 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3784 rld[operand_reloadnum[i]].inc
3785 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3786
3787 /* If this operand is an output, we will have made any
3788 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3789 now we are treating part of the operand as an input, so
3790 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3791
3792 if (modified[i] == RELOAD_WRITE)
3793 {
3794 for (j = 0; j < n_reloads; j++)
3795 {
3796 if (rld[j].opnum == i)
3797 {
3798 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3799 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3800 else if (rld[j].when_needed
3801 == RELOAD_FOR_OUTADDR_ADDRESS)
3802 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3803 }
3804 }
3805 }
3806 }
3807 else if (goal_alternative_matched[i] == -1)
3808 {
3809 operand_reloadnum[i]
3810 = push_reload ((modified[i] != RELOAD_WRITE
3811 ? recog_data.operand[i] : 0),
3812 (modified[i] != RELOAD_READ
3813 ? recog_data.operand[i] : 0),
3814 (modified[i] != RELOAD_WRITE
3815 ? recog_data.operand_loc[i] : 0),
3816 (modified[i] != RELOAD_READ
3817 ? recog_data.operand_loc[i] : 0),
3818 (enum reg_class) goal_alternative[i],
3819 (modified[i] == RELOAD_WRITE
3820 ? VOIDmode : operand_mode[i]),
3821 (modified[i] == RELOAD_READ
3822 ? VOIDmode : operand_mode[i]),
3823 (insn_code_number < 0 ? 0
3824 : insn_data[insn_code_number].operand[i].strict_low),
3825 0, i, operand_type[i]);
3826 }
3827 /* In a matching pair of operands, one must be input only
3828 and the other must be output only.
3829 Pass the input operand as IN and the other as OUT. */
3830 else if (modified[i] == RELOAD_READ
3831 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3832 {
3833 operand_reloadnum[i]
3834 = push_reload (recog_data.operand[i],
3835 recog_data.operand[goal_alternative_matched[i]],
3836 recog_data.operand_loc[i],
3837 recog_data.operand_loc[goal_alternative_matched[i]],
3838 (enum reg_class) goal_alternative[i],
3839 operand_mode[i],
3840 operand_mode[goal_alternative_matched[i]],
3841 0, 0, i, RELOAD_OTHER);
3842 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3843 }
3844 else if (modified[i] == RELOAD_WRITE
3845 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3846 {
3847 operand_reloadnum[goal_alternative_matched[i]]
3848 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3849 recog_data.operand[i],
3850 recog_data.operand_loc[goal_alternative_matched[i]],
3851 recog_data.operand_loc[i],
3852 (enum reg_class) goal_alternative[i],
3853 operand_mode[goal_alternative_matched[i]],
3854 operand_mode[i],
3855 0, 0, i, RELOAD_OTHER);
3856 operand_reloadnum[i] = output_reloadnum;
3857 }
3858 else if (insn_code_number >= 0)
3859 abort ();
3860 else
3861 {
3862 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3863 /* Avoid further trouble with this insn. */
3864 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3865 n_reloads = 0;
3866 return 0;
3867 }
3868 }
3869 else if (goal_alternative_matched[i] < 0
3870 && goal_alternative_matches[i] < 0
3871 && !address_operand_reloaded[i]
3872 && optimize)
3873 {
3874 /* For each non-matching operand that's a MEM or a pseudo-register
3875 that didn't get a hard register, make an optional reload.
3876 This may get done even if the insn needs no reloads otherwise. */
3877
3878 rtx operand = recog_data.operand[i];
3879
3880 while (GET_CODE (operand) == SUBREG)
3881 operand = SUBREG_REG (operand);
3882 if ((GET_CODE (operand) == MEM
3883 || (GET_CODE (operand) == REG
3884 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3885 /* If this is only for an output, the optional reload would not
3886 actually cause us to use a register now, just note that
3887 something is stored here. */
3888 && ((enum reg_class) goal_alternative[i] != NO_REGS
3889 || modified[i] == RELOAD_WRITE)
3890 && ! no_input_reloads
3891 /* An optional output reload might allow to delete INSN later.
3892 We mustn't make in-out reloads on insns that are not permitted
3893 output reloads.
3894 If this is an asm, we can't delete it; we must not even call
3895 push_reload for an optional output reload in this case,
3896 because we can't be sure that the constraint allows a register,
3897 and push_reload verifies the constraints for asms. */
3898 && (modified[i] == RELOAD_READ
3899 || (! no_output_reloads && ! this_insn_is_asm)))
3900 operand_reloadnum[i]
3901 = push_reload ((modified[i] != RELOAD_WRITE
3902 ? recog_data.operand[i] : 0),
3903 (modified[i] != RELOAD_READ
3904 ? recog_data.operand[i] : 0),
3905 (modified[i] != RELOAD_WRITE
3906 ? recog_data.operand_loc[i] : 0),
3907 (modified[i] != RELOAD_READ
3908 ? recog_data.operand_loc[i] : 0),
3909 (enum reg_class) goal_alternative[i],
3910 (modified[i] == RELOAD_WRITE
3911 ? VOIDmode : operand_mode[i]),
3912 (modified[i] == RELOAD_READ
3913 ? VOIDmode : operand_mode[i]),
3914 (insn_code_number < 0 ? 0
3915 : insn_data[insn_code_number].operand[i].strict_low),
3916 1, i, operand_type[i]);
3917 /* If a memory reference remains (either as a MEM or a pseudo that
3918 did not get a hard register), yet we can't make an optional
3919 reload, check if this is actually a pseudo register reference;
3920 we then need to emit a USE and/or a CLOBBER so that reload
3921 inheritance will do the right thing. */
3922 else if (replace
3923 && (GET_CODE (operand) == MEM
3924 || (GET_CODE (operand) == REG
3925 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3926 && reg_renumber [REGNO (operand)] < 0)))
3927 {
3928 operand = *recog_data.operand_loc[i];
3929
3930 while (GET_CODE (operand) == SUBREG)
3931 operand = SUBREG_REG (operand);
3932 if (GET_CODE (operand) == REG)
3933 {
3934 if (modified[i] != RELOAD_WRITE)
3935 /* We mark the USE with QImode so that we recognize
3936 it as one that can be safely deleted at the end
3937 of reload. */
3938 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3939 insn), QImode);
3940 if (modified[i] != RELOAD_READ)
3941 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3942 }
3943 }
3944 }
3945 else if (goal_alternative_matches[i] >= 0
3946 && goal_alternative_win[goal_alternative_matches[i]]
3947 && modified[i] == RELOAD_READ
3948 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3949 && ! no_input_reloads && ! no_output_reloads
3950 && optimize)
3951 {
3952 /* Similarly, make an optional reload for a pair of matching
3953 objects that are in MEM or a pseudo that didn't get a hard reg. */
3954
3955 rtx operand = recog_data.operand[i];
3956
3957 while (GET_CODE (operand) == SUBREG)
3958 operand = SUBREG_REG (operand);
3959 if ((GET_CODE (operand) == MEM
3960 || (GET_CODE (operand) == REG
3961 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3962 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3963 != NO_REGS))
3964 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3965 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3966 recog_data.operand[i],
3967 recog_data.operand_loc[goal_alternative_matches[i]],
3968 recog_data.operand_loc[i],
3969 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3970 operand_mode[goal_alternative_matches[i]],
3971 operand_mode[i],
3972 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3973 }
3974
3975 /* Perform whatever substitutions on the operands we are supposed
3976 to make due to commutativity or replacement of registers
3977 with equivalent constants or memory slots. */
3978
3979 for (i = 0; i < noperands; i++)
3980 {
3981 /* We only do this on the last pass through reload, because it is
3982 possible for some data (like reg_equiv_address) to be changed during
3983 later passes. Moreover, we loose the opportunity to get a useful
3984 reload_{in,out}_reg when we do these replacements. */
3985
3986 if (replace)
3987 {
3988 rtx substitution = substed_operand[i];
3989
3990 *recog_data.operand_loc[i] = substitution;
3991
3992 /* If we're replacing an operand with a LABEL_REF, we need
3993 to make sure that there's a REG_LABEL note attached to
3994 this instruction. */
3995 if (GET_CODE (insn) != JUMP_INSN
3996 && GET_CODE (substitution) == LABEL_REF
3997 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3998 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3999 XEXP (substitution, 0),
4000 REG_NOTES (insn));
4001 }
4002 else
4003 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4004 }
4005
4006 /* If this insn pattern contains any MATCH_DUP's, make sure that
4007 they will be substituted if the operands they match are substituted.
4008 Also do now any substitutions we already did on the operands.
4009
4010 Don't do this if we aren't making replacements because we might be
4011 propagating things allocated by frame pointer elimination into places
4012 it doesn't expect. */
4013
4014 if (insn_code_number >= 0 && replace)
4015 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4016 {
4017 int opno = recog_data.dup_num[i];
4018 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4019 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4020 }
4021
4022 #if 0
4023 /* This loses because reloading of prior insns can invalidate the equivalence
4024 (or at least find_equiv_reg isn't smart enough to find it any more),
4025 causing this insn to need more reload regs than it needed before.
4026 It may be too late to make the reload regs available.
4027 Now this optimization is done safely in choose_reload_regs. */
4028
4029 /* For each reload of a reg into some other class of reg,
4030 search for an existing equivalent reg (same value now) in the right class.
4031 We can use it as long as we don't need to change its contents. */
4032 for (i = 0; i < n_reloads; i++)
4033 if (rld[i].reg_rtx == 0
4034 && rld[i].in != 0
4035 && GET_CODE (rld[i].in) == REG
4036 && rld[i].out == 0)
4037 {
4038 rld[i].reg_rtx
4039 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4040 static_reload_reg_p, 0, rld[i].inmode);
4041 /* Prevent generation of insn to load the value
4042 because the one we found already has the value. */
4043 if (rld[i].reg_rtx)
4044 rld[i].in = rld[i].reg_rtx;
4045 }
4046 #endif
4047
4048 /* Perhaps an output reload can be combined with another
4049 to reduce needs by one. */
4050 if (!goal_earlyclobber)
4051 combine_reloads ();
4052
4053 /* If we have a pair of reloads for parts of an address, they are reloading
4054 the same object, the operands themselves were not reloaded, and they
4055 are for two operands that are supposed to match, merge the reloads and
4056 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4057
4058 for (i = 0; i < n_reloads; i++)
4059 {
4060 int k;
4061
4062 for (j = i + 1; j < n_reloads; j++)
4063 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4064 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4065 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4066 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4067 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4068 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4069 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4070 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4071 && rtx_equal_p (rld[i].in, rld[j].in)
4072 && (operand_reloadnum[rld[i].opnum] < 0
4073 || rld[operand_reloadnum[rld[i].opnum]].optional)
4074 && (operand_reloadnum[rld[j].opnum] < 0
4075 || rld[operand_reloadnum[rld[j].opnum]].optional)
4076 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4077 || (goal_alternative_matches[rld[j].opnum]
4078 == rld[i].opnum)))
4079 {
4080 for (k = 0; k < n_replacements; k++)
4081 if (replacements[k].what == j)
4082 replacements[k].what = i;
4083
4084 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4085 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4086 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4087 else
4088 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4089 rld[j].in = 0;
4090 }
4091 }
4092
4093 /* Scan all the reloads and update their type.
4094 If a reload is for the address of an operand and we didn't reload
4095 that operand, change the type. Similarly, change the operand number
4096 of a reload when two operands match. If a reload is optional, treat it
4097 as though the operand isn't reloaded.
4098
4099 ??? This latter case is somewhat odd because if we do the optional
4100 reload, it means the object is hanging around. Thus we need only
4101 do the address reload if the optional reload was NOT done.
4102
4103 Change secondary reloads to be the address type of their operand, not
4104 the normal type.
4105
4106 If an operand's reload is now RELOAD_OTHER, change any
4107 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4108 RELOAD_FOR_OTHER_ADDRESS. */
4109
4110 for (i = 0; i < n_reloads; i++)
4111 {
4112 if (rld[i].secondary_p
4113 && rld[i].when_needed == operand_type[rld[i].opnum])
4114 rld[i].when_needed = address_type[rld[i].opnum];
4115
4116 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4117 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4118 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4119 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4120 && (operand_reloadnum[rld[i].opnum] < 0
4121 || rld[operand_reloadnum[rld[i].opnum]].optional))
4122 {
4123 /* If we have a secondary reload to go along with this reload,
4124 change its type to RELOAD_FOR_OPADDR_ADDR. */
4125
4126 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4127 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4128 && rld[i].secondary_in_reload != -1)
4129 {
4130 int secondary_in_reload = rld[i].secondary_in_reload;
4131
4132 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4133
4134 /* If there's a tertiary reload we have to change it also. */
4135 if (secondary_in_reload > 0
4136 && rld[secondary_in_reload].secondary_in_reload != -1)
4137 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4138 = RELOAD_FOR_OPADDR_ADDR;
4139 }
4140
4141 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4142 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4143 && rld[i].secondary_out_reload != -1)
4144 {
4145 int secondary_out_reload = rld[i].secondary_out_reload;
4146
4147 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4148
4149 /* If there's a tertiary reload we have to change it also. */
4150 if (secondary_out_reload
4151 && rld[secondary_out_reload].secondary_out_reload != -1)
4152 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4153 = RELOAD_FOR_OPADDR_ADDR;
4154 }
4155
4156 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4157 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4158 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4159 else
4160 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4161 }
4162
4163 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4164 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4165 && operand_reloadnum[rld[i].opnum] >= 0
4166 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4167 == RELOAD_OTHER))
4168 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4169
4170 if (goal_alternative_matches[rld[i].opnum] >= 0)
4171 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4172 }
4173
4174 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4175 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4176 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4177
4178 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4179 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4180 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4181 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4182 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4183 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4184 This is complicated by the fact that a single operand can have more
4185 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4186 choose_reload_regs without affecting code quality, and cases that
4187 actually fail are extremely rare, so it turns out to be better to fix
4188 the problem here by not generating cases that choose_reload_regs will
4189 fail for. */
4190 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4191 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4192 a single operand.
4193 We can reduce the register pressure by exploiting that a
4194 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4195 does not conflict with any of them, if it is only used for the first of
4196 the RELOAD_FOR_X_ADDRESS reloads. */
4197 {
4198 int first_op_addr_num = -2;
4199 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4200 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4201 int need_change = 0;
4202 /* We use last_op_addr_reload and the contents of the above arrays
4203 first as flags - -2 means no instance encountered, -1 means exactly
4204 one instance encountered.
4205 If more than one instance has been encountered, we store the reload
4206 number of the first reload of the kind in question; reload numbers
4207 are known to be non-negative. */
4208 for (i = 0; i < noperands; i++)
4209 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4210 for (i = n_reloads - 1; i >= 0; i--)
4211 {
4212 switch (rld[i].when_needed)
4213 {
4214 case RELOAD_FOR_OPERAND_ADDRESS:
4215 if (++first_op_addr_num >= 0)
4216 {
4217 first_op_addr_num = i;
4218 need_change = 1;
4219 }
4220 break;
4221 case RELOAD_FOR_INPUT_ADDRESS:
4222 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4223 {
4224 first_inpaddr_num[rld[i].opnum] = i;
4225 need_change = 1;
4226 }
4227 break;
4228 case RELOAD_FOR_OUTPUT_ADDRESS:
4229 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4230 {
4231 first_outpaddr_num[rld[i].opnum] = i;
4232 need_change = 1;
4233 }
4234 break;
4235 default:
4236 break;
4237 }
4238 }
4239
4240 if (need_change)
4241 {
4242 for (i = 0; i < n_reloads; i++)
4243 {
4244 int first_num;
4245 enum reload_type type;
4246
4247 switch (rld[i].when_needed)
4248 {
4249 case RELOAD_FOR_OPADDR_ADDR:
4250 first_num = first_op_addr_num;
4251 type = RELOAD_FOR_OPERAND_ADDRESS;
4252 break;
4253 case RELOAD_FOR_INPADDR_ADDRESS:
4254 first_num = first_inpaddr_num[rld[i].opnum];
4255 type = RELOAD_FOR_INPUT_ADDRESS;
4256 break;
4257 case RELOAD_FOR_OUTADDR_ADDRESS:
4258 first_num = first_outpaddr_num[rld[i].opnum];
4259 type = RELOAD_FOR_OUTPUT_ADDRESS;
4260 break;
4261 default:
4262 continue;
4263 }
4264 if (first_num < 0)
4265 continue;
4266 else if (i > first_num)
4267 rld[i].when_needed = type;
4268 else
4269 {
4270 /* Check if the only TYPE reload that uses reload I is
4271 reload FIRST_NUM. */
4272 for (j = n_reloads - 1; j > first_num; j--)
4273 {
4274 if (rld[j].when_needed == type
4275 && (rld[i].secondary_p
4276 ? rld[j].secondary_in_reload == i
4277 : reg_mentioned_p (rld[i].in, rld[j].in)))
4278 {
4279 rld[i].when_needed = type;
4280 break;
4281 }
4282 }
4283 }
4284 }
4285 }
4286 }
4287
4288 /* See if we have any reloads that are now allowed to be merged
4289 because we've changed when the reload is needed to
4290 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4291 check for the most common cases. */
4292
4293 for (i = 0; i < n_reloads; i++)
4294 if (rld[i].in != 0 && rld[i].out == 0
4295 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4296 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4297 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4298 for (j = 0; j < n_reloads; j++)
4299 if (i != j && rld[j].in != 0 && rld[j].out == 0
4300 && rld[j].when_needed == rld[i].when_needed
4301 && MATCHES (rld[i].in, rld[j].in)
4302 && rld[i].class == rld[j].class
4303 && !rld[i].nocombine && !rld[j].nocombine
4304 && rld[i].reg_rtx == rld[j].reg_rtx)
4305 {
4306 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4307 transfer_replacements (i, j);
4308 rld[j].in = 0;
4309 }
4310
4311 #ifdef HAVE_cc0
4312 /* If we made any reloads for addresses, see if they violate a
4313 "no input reloads" requirement for this insn. But loads that we
4314 do after the insn (such as for output addresses) are fine. */
4315 if (no_input_reloads)
4316 for (i = 0; i < n_reloads; i++)
4317 if (rld[i].in != 0
4318 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4319 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4320 abort ();
4321 #endif
4322
4323 /* Compute reload_mode and reload_nregs. */
4324 for (i = 0; i < n_reloads; i++)
4325 {
4326 rld[i].mode
4327 = (rld[i].inmode == VOIDmode
4328 || (GET_MODE_SIZE (rld[i].outmode)
4329 > GET_MODE_SIZE (rld[i].inmode)))
4330 ? rld[i].outmode : rld[i].inmode;
4331
4332 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4333 }
4334
4335 /* Special case a simple move with an input reload and a
4336 destination of a hard reg, if the hard reg is ok, use it. */
4337 for (i = 0; i < n_reloads; i++)
4338 if (rld[i].when_needed == RELOAD_FOR_INPUT
4339 && GET_CODE (PATTERN (insn)) == SET
4340 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4341 && SET_SRC (PATTERN (insn)) == rld[i].in)
4342 {
4343 rtx dest = SET_DEST (PATTERN (insn));
4344 unsigned int regno = REGNO (dest);
4345
4346 if (regno < FIRST_PSEUDO_REGISTER
4347 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4348 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4349 rld[i].reg_rtx = dest;
4350 }
4351
4352 return retval;
4353 }
4354
4355 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4356 accepts a memory operand with constant address. */
4357
4358 static int
4359 alternative_allows_memconst (constraint, altnum)
4360 const char *constraint;
4361 int altnum;
4362 {
4363 int c;
4364 /* Skip alternatives before the one requested. */
4365 while (altnum > 0)
4366 {
4367 while (*constraint++ != ',');
4368 altnum--;
4369 }
4370 /* Scan the requested alternative for 'm' or 'o'.
4371 If one of them is present, this alternative accepts memory constants. */
4372 for (; (c = *constraint) && c != ',' && c != '#';
4373 constraint += CONSTRAINT_LEN (c, constraint))
4374 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4375 return 1;
4376 return 0;
4377 }
4378 \f
4379 /* Scan X for memory references and scan the addresses for reloading.
4380 Also checks for references to "constant" regs that we want to eliminate
4381 and replaces them with the values they stand for.
4382 We may alter X destructively if it contains a reference to such.
4383 If X is just a constant reg, we return the equivalent value
4384 instead of X.
4385
4386 IND_LEVELS says how many levels of indirect addressing this machine
4387 supports.
4388
4389 OPNUM and TYPE identify the purpose of the reload.
4390
4391 IS_SET_DEST is true if X is the destination of a SET, which is not
4392 appropriate to be replaced by a constant.
4393
4394 INSN, if nonzero, is the insn in which we do the reload. It is used
4395 to determine if we may generate output reloads, and where to put USEs
4396 for pseudos that we have to replace with stack slots.
4397
4398 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4399 result of find_reloads_address. */
4400
4401 static rtx
4402 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4403 address_reloaded)
4404 rtx x;
4405 int opnum;
4406 enum reload_type type;
4407 int ind_levels;
4408 int is_set_dest;
4409 rtx insn;
4410 int *address_reloaded;
4411 {
4412 RTX_CODE code = GET_CODE (x);
4413
4414 const char *fmt = GET_RTX_FORMAT (code);
4415 int i;
4416 int copied;
4417
4418 if (code == REG)
4419 {
4420 /* This code is duplicated for speed in find_reloads. */
4421 int regno = REGNO (x);
4422 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4423 x = reg_equiv_constant[regno];
4424 #if 0
4425 /* This creates (subreg (mem...)) which would cause an unnecessary
4426 reload of the mem. */
4427 else if (reg_equiv_mem[regno] != 0)
4428 x = reg_equiv_mem[regno];
4429 #endif
4430 else if (reg_equiv_memory_loc[regno]
4431 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4432 {
4433 rtx mem = make_memloc (x, regno);
4434 if (reg_equiv_address[regno]
4435 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4436 {
4437 /* If this is not a toplevel operand, find_reloads doesn't see
4438 this substitution. We have to emit a USE of the pseudo so
4439 that delete_output_reload can see it. */
4440 if (replace_reloads && recog_data.operand[opnum] != x)
4441 /* We mark the USE with QImode so that we recognize it
4442 as one that can be safely deleted at the end of
4443 reload. */
4444 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4445 QImode);
4446 x = mem;
4447 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4448 opnum, type, ind_levels, insn);
4449 if (address_reloaded)
4450 *address_reloaded = i;
4451 }
4452 }
4453 return x;
4454 }
4455 if (code == MEM)
4456 {
4457 rtx tem = x;
4458
4459 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4460 opnum, type, ind_levels, insn);
4461 if (address_reloaded)
4462 *address_reloaded = i;
4463
4464 return tem;
4465 }
4466
4467 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4468 {
4469 /* Check for SUBREG containing a REG that's equivalent to a constant.
4470 If the constant has a known value, truncate it right now.
4471 Similarly if we are extracting a single-word of a multi-word
4472 constant. If the constant is symbolic, allow it to be substituted
4473 normally. push_reload will strip the subreg later. If the
4474 constant is VOIDmode, abort because we will lose the mode of
4475 the register (this should never happen because one of the cases
4476 above should handle it). */
4477
4478 int regno = REGNO (SUBREG_REG (x));
4479 rtx tem;
4480
4481 if (subreg_lowpart_p (x)
4482 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4483 && reg_equiv_constant[regno] != 0
4484 && (tem = gen_lowpart_common (GET_MODE (x),
4485 reg_equiv_constant[regno])) != 0)
4486 return tem;
4487
4488 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4489 && reg_equiv_constant[regno] != 0)
4490 {
4491 tem =
4492 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4493 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4494 if (!tem)
4495 abort ();
4496 return tem;
4497 }
4498
4499 /* If the subreg contains a reg that will be converted to a mem,
4500 convert the subreg to a narrower memref now.
4501 Otherwise, we would get (subreg (mem ...) ...),
4502 which would force reload of the mem.
4503
4504 We also need to do this if there is an equivalent MEM that is
4505 not offsettable. In that case, alter_subreg would produce an
4506 invalid address on big-endian machines.
4507
4508 For machines that extend byte loads, we must not reload using
4509 a wider mode if we have a paradoxical SUBREG. find_reloads will
4510 force a reload in that case. So we should not do anything here. */
4511
4512 else if (regno >= FIRST_PSEUDO_REGISTER
4513 #ifdef LOAD_EXTEND_OP
4514 && (GET_MODE_SIZE (GET_MODE (x))
4515 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4516 #endif
4517 && (reg_equiv_address[regno] != 0
4518 || (reg_equiv_mem[regno] != 0
4519 && (! strict_memory_address_p (GET_MODE (x),
4520 XEXP (reg_equiv_mem[regno], 0))
4521 || ! offsettable_memref_p (reg_equiv_mem[regno])
4522 || num_not_at_initial_offset))))
4523 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4524 insn);
4525 }
4526
4527 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4528 {
4529 if (fmt[i] == 'e')
4530 {
4531 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4532 ind_levels, is_set_dest, insn,
4533 address_reloaded);
4534 /* If we have replaced a reg with it's equivalent memory loc -
4535 that can still be handled here e.g. if it's in a paradoxical
4536 subreg - we must make the change in a copy, rather than using
4537 a destructive change. This way, find_reloads can still elect
4538 not to do the change. */
4539 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4540 {
4541 x = shallow_copy_rtx (x);
4542 copied = 1;
4543 }
4544 XEXP (x, i) = new_part;
4545 }
4546 }
4547 return x;
4548 }
4549
4550 /* Return a mem ref for the memory equivalent of reg REGNO.
4551 This mem ref is not shared with anything. */
4552
4553 static rtx
4554 make_memloc (ad, regno)
4555 rtx ad;
4556 int regno;
4557 {
4558 /* We must rerun eliminate_regs, in case the elimination
4559 offsets have changed. */
4560 rtx tem
4561 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4562
4563 /* If TEM might contain a pseudo, we must copy it to avoid
4564 modifying it when we do the substitution for the reload. */
4565 if (rtx_varies_p (tem, 0))
4566 tem = copy_rtx (tem);
4567
4568 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4569 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4570
4571 /* Copy the result if it's still the same as the equivalence, to avoid
4572 modifying it when we do the substitution for the reload. */
4573 if (tem == reg_equiv_memory_loc[regno])
4574 tem = copy_rtx (tem);
4575 return tem;
4576 }
4577
4578 /* Returns true if AD could be turned into a valid memory reference
4579 to mode MODE by reloading the part pointed to by PART into a
4580 register. */
4581
4582 static int
4583 maybe_memory_address_p (mode, ad, part)
4584 enum machine_mode mode;
4585 rtx ad;
4586 rtx *part;
4587 {
4588 int retv;
4589 rtx tem = *part;
4590 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4591
4592 *part = reg;
4593 retv = memory_address_p (mode, ad);
4594 *part = tem;
4595
4596 return retv;
4597 }
4598
4599 /* Record all reloads needed for handling memory address AD
4600 which appears in *LOC in a memory reference to mode MODE
4601 which itself is found in location *MEMREFLOC.
4602 Note that we take shortcuts assuming that no multi-reg machine mode
4603 occurs as part of an address.
4604
4605 OPNUM and TYPE specify the purpose of this reload.
4606
4607 IND_LEVELS says how many levels of indirect addressing this machine
4608 supports.
4609
4610 INSN, if nonzero, is the insn in which we do the reload. It is used
4611 to determine if we may generate output reloads, and where to put USEs
4612 for pseudos that we have to replace with stack slots.
4613
4614 Value is nonzero if this address is reloaded or replaced as a whole.
4615 This is interesting to the caller if the address is an autoincrement.
4616
4617 Note that there is no verification that the address will be valid after
4618 this routine does its work. Instead, we rely on the fact that the address
4619 was valid when reload started. So we need only undo things that reload
4620 could have broken. These are wrong register types, pseudos not allocated
4621 to a hard register, and frame pointer elimination. */
4622
4623 static int
4624 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4625 enum machine_mode mode;
4626 rtx *memrefloc;
4627 rtx ad;
4628 rtx *loc;
4629 int opnum;
4630 enum reload_type type;
4631 int ind_levels;
4632 rtx insn;
4633 {
4634 int regno;
4635 int removed_and = 0;
4636 rtx tem;
4637
4638 /* If the address is a register, see if it is a legitimate address and
4639 reload if not. We first handle the cases where we need not reload
4640 or where we must reload in a non-standard way. */
4641
4642 if (GET_CODE (ad) == REG)
4643 {
4644 regno = REGNO (ad);
4645
4646 /* If the register is equivalent to an invariant expression, substitute
4647 the invariant, and eliminate any eliminable register references. */
4648 tem = reg_equiv_constant[regno];
4649 if (tem != 0
4650 && (tem = eliminate_regs (tem, mode, insn))
4651 && strict_memory_address_p (mode, tem))
4652 {
4653 *loc = ad = tem;
4654 return 0;
4655 }
4656
4657 tem = reg_equiv_memory_loc[regno];
4658 if (tem != 0)
4659 {
4660 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4661 {
4662 tem = make_memloc (ad, regno);
4663 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4664 {
4665 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4666 &XEXP (tem, 0), opnum,
4667 ADDR_TYPE (type), ind_levels, insn);
4668 }
4669 /* We can avoid a reload if the register's equivalent memory
4670 expression is valid as an indirect memory address.
4671 But not all addresses are valid in a mem used as an indirect
4672 address: only reg or reg+constant. */
4673
4674 if (ind_levels > 0
4675 && strict_memory_address_p (mode, tem)
4676 && (GET_CODE (XEXP (tem, 0)) == REG
4677 || (GET_CODE (XEXP (tem, 0)) == PLUS
4678 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4679 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4680 {
4681 /* TEM is not the same as what we'll be replacing the
4682 pseudo with after reload, put a USE in front of INSN
4683 in the final reload pass. */
4684 if (replace_reloads
4685 && num_not_at_initial_offset
4686 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4687 {
4688 *loc = tem;
4689 /* We mark the USE with QImode so that we
4690 recognize it as one that can be safely
4691 deleted at the end of reload. */
4692 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4693 insn), QImode);
4694
4695 /* This doesn't really count as replacing the address
4696 as a whole, since it is still a memory access. */
4697 }
4698 return 0;
4699 }
4700 ad = tem;
4701 }
4702 }
4703
4704 /* The only remaining case where we can avoid a reload is if this is a
4705 hard register that is valid as a base register and which is not the
4706 subject of a CLOBBER in this insn. */
4707
4708 else if (regno < FIRST_PSEUDO_REGISTER
4709 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4710 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4711 return 0;
4712
4713 /* If we do not have one of the cases above, we must do the reload. */
4714 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4715 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4716 return 1;
4717 }
4718
4719 if (strict_memory_address_p (mode, ad))
4720 {
4721 /* The address appears valid, so reloads are not needed.
4722 But the address may contain an eliminable register.
4723 This can happen because a machine with indirect addressing
4724 may consider a pseudo register by itself a valid address even when
4725 it has failed to get a hard reg.
4726 So do a tree-walk to find and eliminate all such regs. */
4727
4728 /* But first quickly dispose of a common case. */
4729 if (GET_CODE (ad) == PLUS
4730 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4731 && GET_CODE (XEXP (ad, 0)) == REG
4732 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4733 return 0;
4734
4735 subst_reg_equivs_changed = 0;
4736 *loc = subst_reg_equivs (ad, insn);
4737
4738 if (! subst_reg_equivs_changed)
4739 return 0;
4740
4741 /* Check result for validity after substitution. */
4742 if (strict_memory_address_p (mode, ad))
4743 return 0;
4744 }
4745
4746 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4747 do
4748 {
4749 if (memrefloc)
4750 {
4751 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4752 ind_levels, win);
4753 }
4754 break;
4755 win:
4756 *memrefloc = copy_rtx (*memrefloc);
4757 XEXP (*memrefloc, 0) = ad;
4758 move_replacements (&ad, &XEXP (*memrefloc, 0));
4759 return 1;
4760 }
4761 while (0);
4762 #endif
4763
4764 /* The address is not valid. We have to figure out why. First see if
4765 we have an outer AND and remove it if so. Then analyze what's inside. */
4766
4767 if (GET_CODE (ad) == AND)
4768 {
4769 removed_and = 1;
4770 loc = &XEXP (ad, 0);
4771 ad = *loc;
4772 }
4773
4774 /* One possibility for why the address is invalid is that it is itself
4775 a MEM. This can happen when the frame pointer is being eliminated, a
4776 pseudo is not allocated to a hard register, and the offset between the
4777 frame and stack pointers is not its initial value. In that case the
4778 pseudo will have been replaced by a MEM referring to the
4779 stack pointer. */
4780 if (GET_CODE (ad) == MEM)
4781 {
4782 /* First ensure that the address in this MEM is valid. Then, unless
4783 indirect addresses are valid, reload the MEM into a register. */
4784 tem = ad;
4785 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4786 opnum, ADDR_TYPE (type),
4787 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4788
4789 /* If tem was changed, then we must create a new memory reference to
4790 hold it and store it back into memrefloc. */
4791 if (tem != ad && memrefloc)
4792 {
4793 *memrefloc = copy_rtx (*memrefloc);
4794 copy_replacements (tem, XEXP (*memrefloc, 0));
4795 loc = &XEXP (*memrefloc, 0);
4796 if (removed_and)
4797 loc = &XEXP (*loc, 0);
4798 }
4799
4800 /* Check similar cases as for indirect addresses as above except
4801 that we can allow pseudos and a MEM since they should have been
4802 taken care of above. */
4803
4804 if (ind_levels == 0
4805 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4806 || GET_CODE (XEXP (tem, 0)) == MEM
4807 || ! (GET_CODE (XEXP (tem, 0)) == REG
4808 || (GET_CODE (XEXP (tem, 0)) == PLUS
4809 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4810 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4811 {
4812 /* Must use TEM here, not AD, since it is the one that will
4813 have any subexpressions reloaded, if needed. */
4814 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4815 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4816 VOIDmode, 0,
4817 0, opnum, type);
4818 return ! removed_and;
4819 }
4820 else
4821 return 0;
4822 }
4823
4824 /* If we have address of a stack slot but it's not valid because the
4825 displacement is too large, compute the sum in a register.
4826 Handle all base registers here, not just fp/ap/sp, because on some
4827 targets (namely SH) we can also get too large displacements from
4828 big-endian corrections. */
4829 else if (GET_CODE (ad) == PLUS
4830 && GET_CODE (XEXP (ad, 0)) == REG
4831 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4832 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4833 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4834 {
4835 /* Unshare the MEM rtx so we can safely alter it. */
4836 if (memrefloc)
4837 {
4838 *memrefloc = copy_rtx (*memrefloc);
4839 loc = &XEXP (*memrefloc, 0);
4840 if (removed_and)
4841 loc = &XEXP (*loc, 0);
4842 }
4843
4844 if (double_reg_address_ok)
4845 {
4846 /* Unshare the sum as well. */
4847 *loc = ad = copy_rtx (ad);
4848
4849 /* Reload the displacement into an index reg.
4850 We assume the frame pointer or arg pointer is a base reg. */
4851 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4852 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4853 type, ind_levels);
4854 return 0;
4855 }
4856 else
4857 {
4858 /* If the sum of two regs is not necessarily valid,
4859 reload the sum into a base reg.
4860 That will at least work. */
4861 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4862 Pmode, opnum, type, ind_levels);
4863 }
4864 return ! removed_and;
4865 }
4866
4867 /* If we have an indexed stack slot, there are three possible reasons why
4868 it might be invalid: The index might need to be reloaded, the address
4869 might have been made by frame pointer elimination and hence have a
4870 constant out of range, or both reasons might apply.
4871
4872 We can easily check for an index needing reload, but even if that is the
4873 case, we might also have an invalid constant. To avoid making the
4874 conservative assumption and requiring two reloads, we see if this address
4875 is valid when not interpreted strictly. If it is, the only problem is
4876 that the index needs a reload and find_reloads_address_1 will take care
4877 of it.
4878
4879 Handle all base registers here, not just fp/ap/sp, because on some
4880 targets (namely Sparc) we can also get invalid addresses from preventive
4881 subreg big-endian corrections made by find_reloads_toplev.
4882
4883 If we decide to do something, it must be that `double_reg_address_ok'
4884 is true. We generate a reload of the base register + constant and
4885 rework the sum so that the reload register will be added to the index.
4886 This is safe because we know the address isn't shared.
4887
4888 We check for the base register as both the first and second operand of
4889 the innermost PLUS. */
4890
4891 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4892 && GET_CODE (XEXP (ad, 0)) == PLUS
4893 && GET_CODE (XEXP (XEXP (ad, 0), 0)) == REG
4894 && REGNO (XEXP (XEXP (ad, 0), 0)) < FIRST_PSEUDO_REGISTER
4895 && REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 0), mode)
4896 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 1)))
4897 {
4898 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4899 plus_constant (XEXP (XEXP (ad, 0), 0),
4900 INTVAL (XEXP (ad, 1))),
4901 XEXP (XEXP (ad, 0), 1));
4902 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4903 MODE_BASE_REG_CLASS (mode),
4904 GET_MODE (ad), opnum, type, ind_levels);
4905 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4906 type, 0, insn);
4907
4908 return 0;
4909 }
4910
4911 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4912 && GET_CODE (XEXP (ad, 0)) == PLUS
4913 && GET_CODE (XEXP (XEXP (ad, 0), 1)) == REG
4914 && REGNO (XEXP (XEXP (ad, 0), 1)) < FIRST_PSEUDO_REGISTER
4915 && REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 1), mode)
4916 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 0)))
4917 {
4918 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4919 XEXP (XEXP (ad, 0), 0),
4920 plus_constant (XEXP (XEXP (ad, 0), 1),
4921 INTVAL (XEXP (ad, 1))));
4922 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4923 MODE_BASE_REG_CLASS (mode),
4924 GET_MODE (ad), opnum, type, ind_levels);
4925 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4926 type, 0, insn);
4927
4928 return 0;
4929 }
4930
4931 /* See if address becomes valid when an eliminable register
4932 in a sum is replaced. */
4933
4934 tem = ad;
4935 if (GET_CODE (ad) == PLUS)
4936 tem = subst_indexed_address (ad);
4937 if (tem != ad && strict_memory_address_p (mode, tem))
4938 {
4939 /* Ok, we win that way. Replace any additional eliminable
4940 registers. */
4941
4942 subst_reg_equivs_changed = 0;
4943 tem = subst_reg_equivs (tem, insn);
4944
4945 /* Make sure that didn't make the address invalid again. */
4946
4947 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4948 {
4949 *loc = tem;
4950 return 0;
4951 }
4952 }
4953
4954 /* If constants aren't valid addresses, reload the constant address
4955 into a register. */
4956 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4957 {
4958 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4959 Unshare it so we can safely alter it. */
4960 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4961 && CONSTANT_POOL_ADDRESS_P (ad))
4962 {
4963 *memrefloc = copy_rtx (*memrefloc);
4964 loc = &XEXP (*memrefloc, 0);
4965 if (removed_and)
4966 loc = &XEXP (*loc, 0);
4967 }
4968
4969 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4970 Pmode, opnum, type, ind_levels);
4971 return ! removed_and;
4972 }
4973
4974 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4975 insn);
4976 }
4977 \f
4978 /* Find all pseudo regs appearing in AD
4979 that are eliminable in favor of equivalent values
4980 and do not have hard regs; replace them by their equivalents.
4981 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4982 front of it for pseudos that we have to replace with stack slots. */
4983
4984 static rtx
4985 subst_reg_equivs (ad, insn)
4986 rtx ad;
4987 rtx insn;
4988 {
4989 RTX_CODE code = GET_CODE (ad);
4990 int i;
4991 const char *fmt;
4992
4993 switch (code)
4994 {
4995 case HIGH:
4996 case CONST_INT:
4997 case CONST:
4998 case CONST_DOUBLE:
4999 case CONST_VECTOR:
5000 case SYMBOL_REF:
5001 case LABEL_REF:
5002 case PC:
5003 case CC0:
5004 return ad;
5005
5006 case REG:
5007 {
5008 int regno = REGNO (ad);
5009
5010 if (reg_equiv_constant[regno] != 0)
5011 {
5012 subst_reg_equivs_changed = 1;
5013 return reg_equiv_constant[regno];
5014 }
5015 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5016 {
5017 rtx mem = make_memloc (ad, regno);
5018 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5019 {
5020 subst_reg_equivs_changed = 1;
5021 /* We mark the USE with QImode so that we recognize it
5022 as one that can be safely deleted at the end of
5023 reload. */
5024 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5025 QImode);
5026 return mem;
5027 }
5028 }
5029 }
5030 return ad;
5031
5032 case PLUS:
5033 /* Quickly dispose of a common case. */
5034 if (XEXP (ad, 0) == frame_pointer_rtx
5035 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5036 return ad;
5037 break;
5038
5039 default:
5040 break;
5041 }
5042
5043 fmt = GET_RTX_FORMAT (code);
5044 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5045 if (fmt[i] == 'e')
5046 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5047 return ad;
5048 }
5049 \f
5050 /* Compute the sum of X and Y, making canonicalizations assumed in an
5051 address, namely: sum constant integers, surround the sum of two
5052 constants with a CONST, put the constant as the second operand, and
5053 group the constant on the outermost sum.
5054
5055 This routine assumes both inputs are already in canonical form. */
5056
5057 rtx
5058 form_sum (x, y)
5059 rtx x, y;
5060 {
5061 rtx tem;
5062 enum machine_mode mode = GET_MODE (x);
5063
5064 if (mode == VOIDmode)
5065 mode = GET_MODE (y);
5066
5067 if (mode == VOIDmode)
5068 mode = Pmode;
5069
5070 if (GET_CODE (x) == CONST_INT)
5071 return plus_constant (y, INTVAL (x));
5072 else if (GET_CODE (y) == CONST_INT)
5073 return plus_constant (x, INTVAL (y));
5074 else if (CONSTANT_P (x))
5075 tem = x, x = y, y = tem;
5076
5077 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5078 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5079
5080 /* Note that if the operands of Y are specified in the opposite
5081 order in the recursive calls below, infinite recursion will occur. */
5082 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5083 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5084
5085 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5086 constant will have been placed second. */
5087 if (CONSTANT_P (x) && CONSTANT_P (y))
5088 {
5089 if (GET_CODE (x) == CONST)
5090 x = XEXP (x, 0);
5091 if (GET_CODE (y) == CONST)
5092 y = XEXP (y, 0);
5093
5094 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5095 }
5096
5097 return gen_rtx_PLUS (mode, x, y);
5098 }
5099 \f
5100 /* If ADDR is a sum containing a pseudo register that should be
5101 replaced with a constant (from reg_equiv_constant),
5102 return the result of doing so, and also apply the associative
5103 law so that the result is more likely to be a valid address.
5104 (But it is not guaranteed to be one.)
5105
5106 Note that at most one register is replaced, even if more are
5107 replaceable. Also, we try to put the result into a canonical form
5108 so it is more likely to be a valid address.
5109
5110 In all other cases, return ADDR. */
5111
5112 static rtx
5113 subst_indexed_address (addr)
5114 rtx addr;
5115 {
5116 rtx op0 = 0, op1 = 0, op2 = 0;
5117 rtx tem;
5118 int regno;
5119
5120 if (GET_CODE (addr) == PLUS)
5121 {
5122 /* Try to find a register to replace. */
5123 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5124 if (GET_CODE (op0) == REG
5125 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5126 && reg_renumber[regno] < 0
5127 && reg_equiv_constant[regno] != 0)
5128 op0 = reg_equiv_constant[regno];
5129 else if (GET_CODE (op1) == REG
5130 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5131 && reg_renumber[regno] < 0
5132 && reg_equiv_constant[regno] != 0)
5133 op1 = reg_equiv_constant[regno];
5134 else if (GET_CODE (op0) == PLUS
5135 && (tem = subst_indexed_address (op0)) != op0)
5136 op0 = tem;
5137 else if (GET_CODE (op1) == PLUS
5138 && (tem = subst_indexed_address (op1)) != op1)
5139 op1 = tem;
5140 else
5141 return addr;
5142
5143 /* Pick out up to three things to add. */
5144 if (GET_CODE (op1) == PLUS)
5145 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5146 else if (GET_CODE (op0) == PLUS)
5147 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5148
5149 /* Compute the sum. */
5150 if (op2 != 0)
5151 op1 = form_sum (op1, op2);
5152 if (op1 != 0)
5153 op0 = form_sum (op0, op1);
5154
5155 return op0;
5156 }
5157 return addr;
5158 }
5159 \f
5160 /* Update the REG_INC notes for an insn. It updates all REG_INC
5161 notes for the instruction which refer to REGNO the to refer
5162 to the reload number.
5163
5164 INSN is the insn for which any REG_INC notes need updating.
5165
5166 REGNO is the register number which has been reloaded.
5167
5168 RELOADNUM is the reload number. */
5169
5170 static void
5171 update_auto_inc_notes (insn, regno, reloadnum)
5172 rtx insn ATTRIBUTE_UNUSED;
5173 int regno ATTRIBUTE_UNUSED;
5174 int reloadnum ATTRIBUTE_UNUSED;
5175 {
5176 #ifdef AUTO_INC_DEC
5177 rtx link;
5178
5179 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5180 if (REG_NOTE_KIND (link) == REG_INC
5181 && (int) REGNO (XEXP (link, 0)) == regno)
5182 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5183 #endif
5184 }
5185 \f
5186 /* Record the pseudo registers we must reload into hard registers in a
5187 subexpression of a would-be memory address, X referring to a value
5188 in mode MODE. (This function is not called if the address we find
5189 is strictly valid.)
5190
5191 CONTEXT = 1 means we are considering regs as index regs,
5192 = 0 means we are considering them as base regs.
5193
5194 OPNUM and TYPE specify the purpose of any reloads made.
5195
5196 IND_LEVELS says how many levels of indirect addressing are
5197 supported at this point in the address.
5198
5199 INSN, if nonzero, is the insn in which we do the reload. It is used
5200 to determine if we may generate output reloads.
5201
5202 We return nonzero if X, as a whole, is reloaded or replaced. */
5203
5204 /* Note that we take shortcuts assuming that no multi-reg machine mode
5205 occurs as part of an address.
5206 Also, this is not fully machine-customizable; it works for machines
5207 such as VAXen and 68000's and 32000's, but other possible machines
5208 could have addressing modes that this does not handle right. */
5209
5210 static int
5211 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5212 enum machine_mode mode;
5213 rtx x;
5214 int context;
5215 rtx *loc;
5216 int opnum;
5217 enum reload_type type;
5218 int ind_levels;
5219 rtx insn;
5220 {
5221 RTX_CODE code = GET_CODE (x);
5222
5223 switch (code)
5224 {
5225 case PLUS:
5226 {
5227 rtx orig_op0 = XEXP (x, 0);
5228 rtx orig_op1 = XEXP (x, 1);
5229 RTX_CODE code0 = GET_CODE (orig_op0);
5230 RTX_CODE code1 = GET_CODE (orig_op1);
5231 rtx op0 = orig_op0;
5232 rtx op1 = orig_op1;
5233
5234 if (GET_CODE (op0) == SUBREG)
5235 {
5236 op0 = SUBREG_REG (op0);
5237 code0 = GET_CODE (op0);
5238 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5239 op0 = gen_rtx_REG (word_mode,
5240 (REGNO (op0) +
5241 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5242 GET_MODE (SUBREG_REG (orig_op0)),
5243 SUBREG_BYTE (orig_op0),
5244 GET_MODE (orig_op0))));
5245 }
5246
5247 if (GET_CODE (op1) == SUBREG)
5248 {
5249 op1 = SUBREG_REG (op1);
5250 code1 = GET_CODE (op1);
5251 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5252 /* ??? Why is this given op1's mode and above for
5253 ??? op0 SUBREGs we use word_mode? */
5254 op1 = gen_rtx_REG (GET_MODE (op1),
5255 (REGNO (op1) +
5256 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5257 GET_MODE (SUBREG_REG (orig_op1)),
5258 SUBREG_BYTE (orig_op1),
5259 GET_MODE (orig_op1))));
5260 }
5261 /* Plus in the index register may be created only as a result of
5262 register remateralization for expresion like &localvar*4. Reload it.
5263 It may be possible to combine the displacement on the outer level,
5264 but it is probably not worthwhile to do so. */
5265 if (context)
5266 {
5267 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5268 opnum, ADDR_TYPE (type), ind_levels, insn);
5269 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5270 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5271 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5272 return 1;
5273 }
5274
5275 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5276 || code0 == ZERO_EXTEND || code1 == MEM)
5277 {
5278 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5279 type, ind_levels, insn);
5280 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5281 type, ind_levels, insn);
5282 }
5283
5284 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5285 || code1 == ZERO_EXTEND || code0 == MEM)
5286 {
5287 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5288 type, ind_levels, insn);
5289 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5290 type, ind_levels, insn);
5291 }
5292
5293 else if (code0 == CONST_INT || code0 == CONST
5294 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5295 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5296 type, ind_levels, insn);
5297
5298 else if (code1 == CONST_INT || code1 == CONST
5299 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5300 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5301 type, ind_levels, insn);
5302
5303 else if (code0 == REG && code1 == REG)
5304 {
5305 if (REG_OK_FOR_INDEX_P (op0)
5306 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5307 return 0;
5308 else if (REG_OK_FOR_INDEX_P (op1)
5309 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5310 return 0;
5311 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5312 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5313 type, ind_levels, insn);
5314 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5315 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5316 type, ind_levels, insn);
5317 else if (REG_OK_FOR_INDEX_P (op1))
5318 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5319 type, ind_levels, insn);
5320 else if (REG_OK_FOR_INDEX_P (op0))
5321 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5322 type, ind_levels, insn);
5323 else
5324 {
5325 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5326 type, ind_levels, insn);
5327 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5328 type, ind_levels, insn);
5329 }
5330 }
5331
5332 else if (code0 == REG)
5333 {
5334 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5335 type, ind_levels, insn);
5336 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5337 type, ind_levels, insn);
5338 }
5339
5340 else if (code1 == REG)
5341 {
5342 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5343 type, ind_levels, insn);
5344 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5345 type, ind_levels, insn);
5346 }
5347 }
5348
5349 return 0;
5350
5351 case POST_MODIFY:
5352 case PRE_MODIFY:
5353 {
5354 rtx op0 = XEXP (x, 0);
5355 rtx op1 = XEXP (x, 1);
5356
5357 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5358 return 0;
5359
5360 /* Currently, we only support {PRE,POST}_MODIFY constructs
5361 where a base register is {inc,dec}remented by the contents
5362 of another register or by a constant value. Thus, these
5363 operands must match. */
5364 if (op0 != XEXP (op1, 0))
5365 abort ();
5366
5367 /* Require index register (or constant). Let's just handle the
5368 register case in the meantime... If the target allows
5369 auto-modify by a constant then we could try replacing a pseudo
5370 register with its equivalent constant where applicable. */
5371 if (REG_P (XEXP (op1, 1)))
5372 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5373 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5374 opnum, type, ind_levels, insn);
5375
5376 if (REG_P (XEXP (op1, 0)))
5377 {
5378 int regno = REGNO (XEXP (op1, 0));
5379 int reloadnum;
5380
5381 /* A register that is incremented cannot be constant! */
5382 if (regno >= FIRST_PSEUDO_REGISTER
5383 && reg_equiv_constant[regno] != 0)
5384 abort ();
5385
5386 /* Handle a register that is equivalent to a memory location
5387 which cannot be addressed directly. */
5388 if (reg_equiv_memory_loc[regno] != 0
5389 && (reg_equiv_address[regno] != 0
5390 || num_not_at_initial_offset))
5391 {
5392 rtx tem = make_memloc (XEXP (x, 0), regno);
5393
5394 if (reg_equiv_address[regno]
5395 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5396 {
5397 /* First reload the memory location's address.
5398 We can't use ADDR_TYPE (type) here, because we need to
5399 write back the value after reading it, hence we actually
5400 need two registers. */
5401 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5402 &XEXP (tem, 0), opnum,
5403 RELOAD_OTHER,
5404 ind_levels, insn);
5405
5406 /* Then reload the memory location into a base
5407 register. */
5408 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5409 &XEXP (op1, 0),
5410 MODE_BASE_REG_CLASS (mode),
5411 GET_MODE (x), GET_MODE (x), 0,
5412 0, opnum, RELOAD_OTHER);
5413
5414 update_auto_inc_notes (this_insn, regno, reloadnum);
5415 return 0;
5416 }
5417 }
5418
5419 if (reg_renumber[regno] >= 0)
5420 regno = reg_renumber[regno];
5421
5422 /* We require a base register here... */
5423 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5424 {
5425 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5426 &XEXP (op1, 0), &XEXP (x, 0),
5427 MODE_BASE_REG_CLASS (mode),
5428 GET_MODE (x), GET_MODE (x), 0, 0,
5429 opnum, RELOAD_OTHER);
5430
5431 update_auto_inc_notes (this_insn, regno, reloadnum);
5432 return 0;
5433 }
5434 }
5435 else
5436 abort ();
5437 }
5438 return 0;
5439
5440 case POST_INC:
5441 case POST_DEC:
5442 case PRE_INC:
5443 case PRE_DEC:
5444 if (GET_CODE (XEXP (x, 0)) == REG)
5445 {
5446 int regno = REGNO (XEXP (x, 0));
5447 int value = 0;
5448 rtx x_orig = x;
5449
5450 /* A register that is incremented cannot be constant! */
5451 if (regno >= FIRST_PSEUDO_REGISTER
5452 && reg_equiv_constant[regno] != 0)
5453 abort ();
5454
5455 /* Handle a register that is equivalent to a memory location
5456 which cannot be addressed directly. */
5457 if (reg_equiv_memory_loc[regno] != 0
5458 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5459 {
5460 rtx tem = make_memloc (XEXP (x, 0), regno);
5461 if (reg_equiv_address[regno]
5462 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5463 {
5464 /* First reload the memory location's address.
5465 We can't use ADDR_TYPE (type) here, because we need to
5466 write back the value after reading it, hence we actually
5467 need two registers. */
5468 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5469 &XEXP (tem, 0), opnum, type,
5470 ind_levels, insn);
5471 /* Put this inside a new increment-expression. */
5472 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5473 /* Proceed to reload that, as if it contained a register. */
5474 }
5475 }
5476
5477 /* If we have a hard register that is ok as an index,
5478 don't make a reload. If an autoincrement of a nice register
5479 isn't "valid", it must be that no autoincrement is "valid".
5480 If that is true and something made an autoincrement anyway,
5481 this must be a special context where one is allowed.
5482 (For example, a "push" instruction.)
5483 We can't improve this address, so leave it alone. */
5484
5485 /* Otherwise, reload the autoincrement into a suitable hard reg
5486 and record how much to increment by. */
5487
5488 if (reg_renumber[regno] >= 0)
5489 regno = reg_renumber[regno];
5490 if ((regno >= FIRST_PSEUDO_REGISTER
5491 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5492 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5493 {
5494 int reloadnum;
5495
5496 /* If we can output the register afterwards, do so, this
5497 saves the extra update.
5498 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5499 CALL_INSN - and it does not set CC0.
5500 But don't do this if we cannot directly address the
5501 memory location, since this will make it harder to
5502 reuse address reloads, and increases register pressure.
5503 Also don't do this if we can probably update x directly. */
5504 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5505 ? XEXP (x, 0)
5506 : reg_equiv_mem[regno]);
5507 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5508 if (insn && GET_CODE (insn) == INSN && equiv
5509 && memory_operand (equiv, GET_MODE (equiv))
5510 #ifdef HAVE_cc0
5511 && ! sets_cc0_p (PATTERN (insn))
5512 #endif
5513 && ! (icode != CODE_FOR_nothing
5514 && ((*insn_data[icode].operand[0].predicate)
5515 (equiv, Pmode))
5516 && ((*insn_data[icode].operand[1].predicate)
5517 (equiv, Pmode))))
5518 {
5519 /* We use the original pseudo for loc, so that
5520 emit_reload_insns() knows which pseudo this
5521 reload refers to and updates the pseudo rtx, not
5522 its equivalent memory location, as well as the
5523 corresponding entry in reg_last_reload_reg. */
5524 loc = &XEXP (x_orig, 0);
5525 x = XEXP (x, 0);
5526 reloadnum
5527 = push_reload (x, x, loc, loc,
5528 (context ? INDEX_REG_CLASS :
5529 MODE_BASE_REG_CLASS (mode)),
5530 GET_MODE (x), GET_MODE (x), 0, 0,
5531 opnum, RELOAD_OTHER);
5532 }
5533 else
5534 {
5535 reloadnum
5536 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5537 (context ? INDEX_REG_CLASS :
5538 MODE_BASE_REG_CLASS (mode)),
5539 GET_MODE (x), GET_MODE (x), 0, 0,
5540 opnum, type);
5541 rld[reloadnum].inc
5542 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5543
5544 value = 1;
5545 }
5546
5547 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5548 reloadnum);
5549 }
5550 return value;
5551 }
5552
5553 else if (GET_CODE (XEXP (x, 0)) == MEM)
5554 {
5555 /* This is probably the result of a substitution, by eliminate_regs,
5556 of an equivalent address for a pseudo that was not allocated to a
5557 hard register. Verify that the specified address is valid and
5558 reload it into a register. */
5559 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5560 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5561 rtx link;
5562 int reloadnum;
5563
5564 /* Since we know we are going to reload this item, don't decrement
5565 for the indirection level.
5566
5567 Note that this is actually conservative: it would be slightly
5568 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5569 reload1.c here. */
5570 /* We can't use ADDR_TYPE (type) here, because we need to
5571 write back the value after reading it, hence we actually
5572 need two registers. */
5573 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5574 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5575 opnum, type, ind_levels, insn);
5576
5577 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5578 (context ? INDEX_REG_CLASS :
5579 MODE_BASE_REG_CLASS (mode)),
5580 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5581 rld[reloadnum].inc
5582 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5583
5584 link = FIND_REG_INC_NOTE (this_insn, tem);
5585 if (link != 0)
5586 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5587
5588 return 1;
5589 }
5590 return 0;
5591
5592 case MEM:
5593 /* This is probably the result of a substitution, by eliminate_regs, of
5594 an equivalent address for a pseudo that was not allocated to a hard
5595 register. Verify that the specified address is valid and reload it
5596 into a register.
5597
5598 Since we know we are going to reload this item, don't decrement for
5599 the indirection level.
5600
5601 Note that this is actually conservative: it would be slightly more
5602 efficient to use the value of SPILL_INDIRECT_LEVELS from
5603 reload1.c here. */
5604
5605 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5606 opnum, ADDR_TYPE (type), ind_levels, insn);
5607 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5608 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5609 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5610 return 1;
5611
5612 case REG:
5613 {
5614 int regno = REGNO (x);
5615
5616 if (reg_equiv_constant[regno] != 0)
5617 {
5618 find_reloads_address_part (reg_equiv_constant[regno], loc,
5619 (context ? INDEX_REG_CLASS :
5620 MODE_BASE_REG_CLASS (mode)),
5621 GET_MODE (x), opnum, type, ind_levels);
5622 return 1;
5623 }
5624
5625 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5626 that feeds this insn. */
5627 if (reg_equiv_mem[regno] != 0)
5628 {
5629 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5630 (context ? INDEX_REG_CLASS :
5631 MODE_BASE_REG_CLASS (mode)),
5632 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5633 return 1;
5634 }
5635 #endif
5636
5637 if (reg_equiv_memory_loc[regno]
5638 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5639 {
5640 rtx tem = make_memloc (x, regno);
5641 if (reg_equiv_address[regno] != 0
5642 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5643 {
5644 x = tem;
5645 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5646 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5647 ind_levels, insn);
5648 }
5649 }
5650
5651 if (reg_renumber[regno] >= 0)
5652 regno = reg_renumber[regno];
5653
5654 if ((regno >= FIRST_PSEUDO_REGISTER
5655 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5656 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5657 {
5658 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5659 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5660 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5661 return 1;
5662 }
5663
5664 /* If a register appearing in an address is the subject of a CLOBBER
5665 in this insn, reload it into some other register to be safe.
5666 The CLOBBER is supposed to make the register unavailable
5667 from before this insn to after it. */
5668 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5669 {
5670 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5671 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5672 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5673 return 1;
5674 }
5675 }
5676 return 0;
5677
5678 case SUBREG:
5679 if (GET_CODE (SUBREG_REG (x)) == REG)
5680 {
5681 /* If this is a SUBREG of a hard register and the resulting register
5682 is of the wrong class, reload the whole SUBREG. This avoids
5683 needless copies if SUBREG_REG is multi-word. */
5684 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5685 {
5686 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5687
5688 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5689 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5690 {
5691 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5692 (context ? INDEX_REG_CLASS :
5693 MODE_BASE_REG_CLASS (mode)),
5694 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5695 return 1;
5696 }
5697 }
5698 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5699 is larger than the class size, then reload the whole SUBREG. */
5700 else
5701 {
5702 enum reg_class class = (context ? INDEX_REG_CLASS
5703 : MODE_BASE_REG_CLASS (mode));
5704 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5705 > reg_class_size[class])
5706 {
5707 x = find_reloads_subreg_address (x, 0, opnum, type,
5708 ind_levels, insn);
5709 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5710 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5711 return 1;
5712 }
5713 }
5714 }
5715 break;
5716
5717 default:
5718 break;
5719 }
5720
5721 {
5722 const char *fmt = GET_RTX_FORMAT (code);
5723 int i;
5724
5725 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5726 {
5727 if (fmt[i] == 'e')
5728 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5729 opnum, type, ind_levels, insn);
5730 }
5731 }
5732
5733 return 0;
5734 }
5735 \f
5736 /* X, which is found at *LOC, is a part of an address that needs to be
5737 reloaded into a register of class CLASS. If X is a constant, or if
5738 X is a PLUS that contains a constant, check that the constant is a
5739 legitimate operand and that we are supposed to be able to load
5740 it into the register.
5741
5742 If not, force the constant into memory and reload the MEM instead.
5743
5744 MODE is the mode to use, in case X is an integer constant.
5745
5746 OPNUM and TYPE describe the purpose of any reloads made.
5747
5748 IND_LEVELS says how many levels of indirect addressing this machine
5749 supports. */
5750
5751 static void
5752 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5753 rtx x;
5754 rtx *loc;
5755 enum reg_class class;
5756 enum machine_mode mode;
5757 int opnum;
5758 enum reload_type type;
5759 int ind_levels;
5760 {
5761 if (CONSTANT_P (x)
5762 && (! LEGITIMATE_CONSTANT_P (x)
5763 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5764 {
5765 rtx tem;
5766
5767 tem = x = force_const_mem (mode, x);
5768 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5769 opnum, type, ind_levels, 0);
5770 }
5771
5772 else if (GET_CODE (x) == PLUS
5773 && CONSTANT_P (XEXP (x, 1))
5774 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5775 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5776 {
5777 rtx tem;
5778
5779 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5780 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5781 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5782 opnum, type, ind_levels, 0);
5783 }
5784
5785 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5786 mode, VOIDmode, 0, 0, opnum, type);
5787 }
5788 \f
5789 /* X, a subreg of a pseudo, is a part of an address that needs to be
5790 reloaded.
5791
5792 If the pseudo is equivalent to a memory location that cannot be directly
5793 addressed, make the necessary address reloads.
5794
5795 If address reloads have been necessary, or if the address is changed
5796 by register elimination, return the rtx of the memory location;
5797 otherwise, return X.
5798
5799 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5800 memory location.
5801
5802 OPNUM and TYPE identify the purpose of the reload.
5803
5804 IND_LEVELS says how many levels of indirect addressing are
5805 supported at this point in the address.
5806
5807 INSN, if nonzero, is the insn in which we do the reload. It is used
5808 to determine where to put USEs for pseudos that we have to replace with
5809 stack slots. */
5810
5811 static rtx
5812 find_reloads_subreg_address (x, force_replace, opnum, type,
5813 ind_levels, insn)
5814 rtx x;
5815 int force_replace;
5816 int opnum;
5817 enum reload_type type;
5818 int ind_levels;
5819 rtx insn;
5820 {
5821 int regno = REGNO (SUBREG_REG (x));
5822
5823 if (reg_equiv_memory_loc[regno])
5824 {
5825 /* If the address is not directly addressable, or if the address is not
5826 offsettable, then it must be replaced. */
5827 if (! force_replace
5828 && (reg_equiv_address[regno]
5829 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5830 force_replace = 1;
5831
5832 if (force_replace || num_not_at_initial_offset)
5833 {
5834 rtx tem = make_memloc (SUBREG_REG (x), regno);
5835
5836 /* If the address changes because of register elimination, then
5837 it must be replaced. */
5838 if (force_replace
5839 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5840 {
5841 int offset = SUBREG_BYTE (x);
5842 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5843 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5844
5845 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5846 PUT_MODE (tem, GET_MODE (x));
5847
5848 /* If this was a paradoxical subreg that we replaced, the
5849 resulting memory must be sufficiently aligned to allow
5850 us to widen the mode of the memory. */
5851 if (outer_size > inner_size && STRICT_ALIGNMENT)
5852 {
5853 rtx base;
5854
5855 base = XEXP (tem, 0);
5856 if (GET_CODE (base) == PLUS)
5857 {
5858 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5859 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5860 return x;
5861 base = XEXP (base, 0);
5862 }
5863 if (GET_CODE (base) != REG
5864 || (REGNO_POINTER_ALIGN (REGNO (base))
5865 < outer_size * BITS_PER_UNIT))
5866 return x;
5867 }
5868
5869 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5870 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5871 ind_levels, insn);
5872
5873 /* If this is not a toplevel operand, find_reloads doesn't see
5874 this substitution. We have to emit a USE of the pseudo so
5875 that delete_output_reload can see it. */
5876 if (replace_reloads && recog_data.operand[opnum] != x)
5877 /* We mark the USE with QImode so that we recognize it
5878 as one that can be safely deleted at the end of
5879 reload. */
5880 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5881 SUBREG_REG (x)),
5882 insn), QImode);
5883 x = tem;
5884 }
5885 }
5886 }
5887 return x;
5888 }
5889 \f
5890 /* Substitute into the current INSN the registers into which we have reloaded
5891 the things that need reloading. The array `replacements'
5892 contains the locations of all pointers that must be changed
5893 and says what to replace them with.
5894
5895 Return the rtx that X translates into; usually X, but modified. */
5896
5897 void
5898 subst_reloads (insn)
5899 rtx insn;
5900 {
5901 int i;
5902
5903 for (i = 0; i < n_replacements; i++)
5904 {
5905 struct replacement *r = &replacements[i];
5906 rtx reloadreg = rld[r->what].reg_rtx;
5907 if (reloadreg)
5908 {
5909 #ifdef ENABLE_CHECKING
5910 /* Internal consistency test. Check that we don't modify
5911 anything in the equivalence arrays. Whenever something from
5912 those arrays needs to be reloaded, it must be unshared before
5913 being substituted into; the equivalence must not be modified.
5914 Otherwise, if the equivalence is used after that, it will
5915 have been modified, and the thing substituted (probably a
5916 register) is likely overwritten and not a usable equivalence. */
5917 int check_regno;
5918
5919 for (check_regno = 0; check_regno < max_regno; check_regno++)
5920 {
5921 #define CHECK_MODF(ARRAY) \
5922 if (ARRAY[check_regno] \
5923 && loc_mentioned_in_p (r->where, \
5924 ARRAY[check_regno])) \
5925 abort ()
5926
5927 CHECK_MODF (reg_equiv_constant);
5928 CHECK_MODF (reg_equiv_memory_loc);
5929 CHECK_MODF (reg_equiv_address);
5930 CHECK_MODF (reg_equiv_mem);
5931 #undef CHECK_MODF
5932 }
5933 #endif /* ENABLE_CHECKING */
5934
5935 /* If we're replacing a LABEL_REF with a register, add a
5936 REG_LABEL note to indicate to flow which label this
5937 register refers to. */
5938 if (GET_CODE (*r->where) == LABEL_REF
5939 && GET_CODE (insn) == JUMP_INSN)
5940 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5941 XEXP (*r->where, 0),
5942 REG_NOTES (insn));
5943
5944 /* Encapsulate RELOADREG so its machine mode matches what
5945 used to be there. Note that gen_lowpart_common will
5946 do the wrong thing if RELOADREG is multi-word. RELOADREG
5947 will always be a REG here. */
5948 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5949 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5950
5951 /* If we are putting this into a SUBREG and RELOADREG is a
5952 SUBREG, we would be making nested SUBREGs, so we have to fix
5953 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5954
5955 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5956 {
5957 if (GET_MODE (*r->subreg_loc)
5958 == GET_MODE (SUBREG_REG (reloadreg)))
5959 *r->subreg_loc = SUBREG_REG (reloadreg);
5960 else
5961 {
5962 int final_offset =
5963 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5964
5965 /* When working with SUBREGs the rule is that the byte
5966 offset must be a multiple of the SUBREG's mode. */
5967 final_offset = (final_offset /
5968 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5969 final_offset = (final_offset *
5970 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5971
5972 *r->where = SUBREG_REG (reloadreg);
5973 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5974 }
5975 }
5976 else
5977 *r->where = reloadreg;
5978 }
5979 /* If reload got no reg and isn't optional, something's wrong. */
5980 else if (! rld[r->what].optional)
5981 abort ();
5982 }
5983 }
5984 \f
5985 /* Make a copy of any replacements being done into X and move those
5986 copies to locations in Y, a copy of X. */
5987
5988 void
5989 copy_replacements (x, y)
5990 rtx x, y;
5991 {
5992 /* We can't support X being a SUBREG because we might then need to know its
5993 location if something inside it was replaced. */
5994 if (GET_CODE (x) == SUBREG)
5995 abort ();
5996
5997 copy_replacements_1 (&x, &y, n_replacements);
5998 }
5999
6000 static void
6001 copy_replacements_1 (px, py, orig_replacements)
6002 rtx *px;
6003 rtx *py;
6004 int orig_replacements;
6005 {
6006 int i, j;
6007 rtx x, y;
6008 struct replacement *r;
6009 enum rtx_code code;
6010 const char *fmt;
6011
6012 for (j = 0; j < orig_replacements; j++)
6013 {
6014 if (replacements[j].subreg_loc == px)
6015 {
6016 r = &replacements[n_replacements++];
6017 r->where = replacements[j].where;
6018 r->subreg_loc = py;
6019 r->what = replacements[j].what;
6020 r->mode = replacements[j].mode;
6021 }
6022 else if (replacements[j].where == px)
6023 {
6024 r = &replacements[n_replacements++];
6025 r->where = py;
6026 r->subreg_loc = 0;
6027 r->what = replacements[j].what;
6028 r->mode = replacements[j].mode;
6029 }
6030 }
6031
6032 x = *px;
6033 y = *py;
6034 code = GET_CODE (x);
6035 fmt = GET_RTX_FORMAT (code);
6036
6037 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6038 {
6039 if (fmt[i] == 'e')
6040 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6041 else if (fmt[i] == 'E')
6042 for (j = XVECLEN (x, i); --j >= 0; )
6043 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6044 orig_replacements);
6045 }
6046 }
6047
6048 /* Change any replacements being done to *X to be done to *Y. */
6049
6050 void
6051 move_replacements (x, y)
6052 rtx *x;
6053 rtx *y;
6054 {
6055 int i;
6056
6057 for (i = 0; i < n_replacements; i++)
6058 if (replacements[i].subreg_loc == x)
6059 replacements[i].subreg_loc = y;
6060 else if (replacements[i].where == x)
6061 {
6062 replacements[i].where = y;
6063 replacements[i].subreg_loc = 0;
6064 }
6065 }
6066 \f
6067 /* If LOC was scheduled to be replaced by something, return the replacement.
6068 Otherwise, return *LOC. */
6069
6070 rtx
6071 find_replacement (loc)
6072 rtx *loc;
6073 {
6074 struct replacement *r;
6075
6076 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6077 {
6078 rtx reloadreg = rld[r->what].reg_rtx;
6079
6080 if (reloadreg && r->where == loc)
6081 {
6082 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6083 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6084
6085 return reloadreg;
6086 }
6087 else if (reloadreg && r->subreg_loc == loc)
6088 {
6089 /* RELOADREG must be either a REG or a SUBREG.
6090
6091 ??? Is it actually still ever a SUBREG? If so, why? */
6092
6093 if (GET_CODE (reloadreg) == REG)
6094 return gen_rtx_REG (GET_MODE (*loc),
6095 (REGNO (reloadreg) +
6096 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6097 GET_MODE (SUBREG_REG (*loc)),
6098 SUBREG_BYTE (*loc),
6099 GET_MODE (*loc))));
6100 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6101 return reloadreg;
6102 else
6103 {
6104 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6105
6106 /* When working with SUBREGs the rule is that the byte
6107 offset must be a multiple of the SUBREG's mode. */
6108 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6109 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6110 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6111 final_offset);
6112 }
6113 }
6114 }
6115
6116 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6117 what's inside and make a new rtl if so. */
6118 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6119 || GET_CODE (*loc) == MULT)
6120 {
6121 rtx x = find_replacement (&XEXP (*loc, 0));
6122 rtx y = find_replacement (&XEXP (*loc, 1));
6123
6124 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6125 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6126 }
6127
6128 return *loc;
6129 }
6130 \f
6131 /* Return nonzero if register in range [REGNO, ENDREGNO)
6132 appears either explicitly or implicitly in X
6133 other than being stored into (except for earlyclobber operands).
6134
6135 References contained within the substructure at LOC do not count.
6136 LOC may be zero, meaning don't ignore anything.
6137
6138 This is similar to refers_to_regno_p in rtlanal.c except that we
6139 look at equivalences for pseudos that didn't get hard registers. */
6140
6141 int
6142 refers_to_regno_for_reload_p (regno, endregno, x, loc)
6143 unsigned int regno, endregno;
6144 rtx x;
6145 rtx *loc;
6146 {
6147 int i;
6148 unsigned int r;
6149 RTX_CODE code;
6150 const char *fmt;
6151
6152 if (x == 0)
6153 return 0;
6154
6155 repeat:
6156 code = GET_CODE (x);
6157
6158 switch (code)
6159 {
6160 case REG:
6161 r = REGNO (x);
6162
6163 /* If this is a pseudo, a hard register must not have been allocated.
6164 X must therefore either be a constant or be in memory. */
6165 if (r >= FIRST_PSEUDO_REGISTER)
6166 {
6167 if (reg_equiv_memory_loc[r])
6168 return refers_to_regno_for_reload_p (regno, endregno,
6169 reg_equiv_memory_loc[r],
6170 (rtx*) 0);
6171
6172 if (reg_equiv_constant[r])
6173 return 0;
6174
6175 abort ();
6176 }
6177
6178 return (endregno > r
6179 && regno < r + (r < FIRST_PSEUDO_REGISTER
6180 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6181 : 1));
6182
6183 case SUBREG:
6184 /* If this is a SUBREG of a hard reg, we can see exactly which
6185 registers are being modified. Otherwise, handle normally. */
6186 if (GET_CODE (SUBREG_REG (x)) == REG
6187 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6188 {
6189 unsigned int inner_regno = subreg_regno (x);
6190 unsigned int inner_endregno
6191 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6192 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6193
6194 return endregno > inner_regno && regno < inner_endregno;
6195 }
6196 break;
6197
6198 case CLOBBER:
6199 case SET:
6200 if (&SET_DEST (x) != loc
6201 /* Note setting a SUBREG counts as referring to the REG it is in for
6202 a pseudo but not for hard registers since we can
6203 treat each word individually. */
6204 && ((GET_CODE (SET_DEST (x)) == SUBREG
6205 && loc != &SUBREG_REG (SET_DEST (x))
6206 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6207 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6208 && refers_to_regno_for_reload_p (regno, endregno,
6209 SUBREG_REG (SET_DEST (x)),
6210 loc))
6211 /* If the output is an earlyclobber operand, this is
6212 a conflict. */
6213 || ((GET_CODE (SET_DEST (x)) != REG
6214 || earlyclobber_operand_p (SET_DEST (x)))
6215 && refers_to_regno_for_reload_p (regno, endregno,
6216 SET_DEST (x), loc))))
6217 return 1;
6218
6219 if (code == CLOBBER || loc == &SET_SRC (x))
6220 return 0;
6221 x = SET_SRC (x);
6222 goto repeat;
6223
6224 default:
6225 break;
6226 }
6227
6228 /* X does not match, so try its subexpressions. */
6229
6230 fmt = GET_RTX_FORMAT (code);
6231 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6232 {
6233 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6234 {
6235 if (i == 0)
6236 {
6237 x = XEXP (x, 0);
6238 goto repeat;
6239 }
6240 else
6241 if (refers_to_regno_for_reload_p (regno, endregno,
6242 XEXP (x, i), loc))
6243 return 1;
6244 }
6245 else if (fmt[i] == 'E')
6246 {
6247 int j;
6248 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6249 if (loc != &XVECEXP (x, i, j)
6250 && refers_to_regno_for_reload_p (regno, endregno,
6251 XVECEXP (x, i, j), loc))
6252 return 1;
6253 }
6254 }
6255 return 0;
6256 }
6257
6258 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6259 we check if any register number in X conflicts with the relevant register
6260 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6261 contains a MEM (we don't bother checking for memory addresses that can't
6262 conflict because we expect this to be a rare case.
6263
6264 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6265 that we look at equivalences for pseudos that didn't get hard registers. */
6266
6267 int
6268 reg_overlap_mentioned_for_reload_p (x, in)
6269 rtx x, in;
6270 {
6271 int regno, endregno;
6272
6273 /* Overly conservative. */
6274 if (GET_CODE (x) == STRICT_LOW_PART
6275 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6276 x = XEXP (x, 0);
6277
6278 /* If either argument is a constant, then modifying X can not affect IN. */
6279 if (CONSTANT_P (x) || CONSTANT_P (in))
6280 return 0;
6281 else if (GET_CODE (x) == SUBREG)
6282 {
6283 regno = REGNO (SUBREG_REG (x));
6284 if (regno < FIRST_PSEUDO_REGISTER)
6285 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6286 GET_MODE (SUBREG_REG (x)),
6287 SUBREG_BYTE (x),
6288 GET_MODE (x));
6289 }
6290 else if (GET_CODE (x) == REG)
6291 {
6292 regno = REGNO (x);
6293
6294 /* If this is a pseudo, it must not have been assigned a hard register.
6295 Therefore, it must either be in memory or be a constant. */
6296
6297 if (regno >= FIRST_PSEUDO_REGISTER)
6298 {
6299 if (reg_equiv_memory_loc[regno])
6300 return refers_to_mem_for_reload_p (in);
6301 else if (reg_equiv_constant[regno])
6302 return 0;
6303 abort ();
6304 }
6305 }
6306 else if (GET_CODE (x) == MEM)
6307 return refers_to_mem_for_reload_p (in);
6308 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6309 || GET_CODE (x) == CC0)
6310 return reg_mentioned_p (x, in);
6311 else if (GET_CODE (x) == PLUS)
6312 return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6313 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6314 else
6315 abort ();
6316
6317 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6318 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6319
6320 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6321 }
6322
6323 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6324 registers. */
6325
6326 int
6327 refers_to_mem_for_reload_p (x)
6328 rtx x;
6329 {
6330 const char *fmt;
6331 int i;
6332
6333 if (GET_CODE (x) == MEM)
6334 return 1;
6335
6336 if (GET_CODE (x) == REG)
6337 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6338 && reg_equiv_memory_loc[REGNO (x)]);
6339
6340 fmt = GET_RTX_FORMAT (GET_CODE (x));
6341 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6342 if (fmt[i] == 'e'
6343 && (GET_CODE (XEXP (x, i)) == MEM
6344 || refers_to_mem_for_reload_p (XEXP (x, i))))
6345 return 1;
6346
6347 return 0;
6348 }
6349 \f
6350 /* Check the insns before INSN to see if there is a suitable register
6351 containing the same value as GOAL.
6352 If OTHER is -1, look for a register in class CLASS.
6353 Otherwise, just see if register number OTHER shares GOAL's value.
6354
6355 Return an rtx for the register found, or zero if none is found.
6356
6357 If RELOAD_REG_P is (short *)1,
6358 we reject any hard reg that appears in reload_reg_rtx
6359 because such a hard reg is also needed coming into this insn.
6360
6361 If RELOAD_REG_P is any other nonzero value,
6362 it is a vector indexed by hard reg number
6363 and we reject any hard reg whose element in the vector is nonnegative
6364 as well as any that appears in reload_reg_rtx.
6365
6366 If GOAL is zero, then GOALREG is a register number; we look
6367 for an equivalent for that register.
6368
6369 MODE is the machine mode of the value we want an equivalence for.
6370 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6371
6372 This function is used by jump.c as well as in the reload pass.
6373
6374 If GOAL is the sum of the stack pointer and a constant, we treat it
6375 as if it were a constant except that sp is required to be unchanging. */
6376
6377 rtx
6378 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6379 rtx goal;
6380 rtx insn;
6381 enum reg_class class;
6382 int other;
6383 short *reload_reg_p;
6384 int goalreg;
6385 enum machine_mode mode;
6386 {
6387 rtx p = insn;
6388 rtx goaltry, valtry, value, where;
6389 rtx pat;
6390 int regno = -1;
6391 int valueno;
6392 int goal_mem = 0;
6393 int goal_const = 0;
6394 int goal_mem_addr_varies = 0;
6395 int need_stable_sp = 0;
6396 int nregs;
6397 int valuenregs;
6398
6399 if (goal == 0)
6400 regno = goalreg;
6401 else if (GET_CODE (goal) == REG)
6402 regno = REGNO (goal);
6403 else if (GET_CODE (goal) == MEM)
6404 {
6405 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6406 if (MEM_VOLATILE_P (goal))
6407 return 0;
6408 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6409 return 0;
6410 /* An address with side effects must be reexecuted. */
6411 switch (code)
6412 {
6413 case POST_INC:
6414 case PRE_INC:
6415 case POST_DEC:
6416 case PRE_DEC:
6417 case POST_MODIFY:
6418 case PRE_MODIFY:
6419 return 0;
6420 default:
6421 break;
6422 }
6423 goal_mem = 1;
6424 }
6425 else if (CONSTANT_P (goal))
6426 goal_const = 1;
6427 else if (GET_CODE (goal) == PLUS
6428 && XEXP (goal, 0) == stack_pointer_rtx
6429 && CONSTANT_P (XEXP (goal, 1)))
6430 goal_const = need_stable_sp = 1;
6431 else if (GET_CODE (goal) == PLUS
6432 && XEXP (goal, 0) == frame_pointer_rtx
6433 && CONSTANT_P (XEXP (goal, 1)))
6434 goal_const = 1;
6435 else
6436 return 0;
6437
6438 /* Scan insns back from INSN, looking for one that copies
6439 a value into or out of GOAL.
6440 Stop and give up if we reach a label. */
6441
6442 while (1)
6443 {
6444 p = PREV_INSN (p);
6445 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6446 return 0;
6447
6448 if (GET_CODE (p) == INSN
6449 /* If we don't want spill regs ... */
6450 && (! (reload_reg_p != 0
6451 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6452 /* ... then ignore insns introduced by reload; they aren't
6453 useful and can cause results in reload_as_needed to be
6454 different from what they were when calculating the need for
6455 spills. If we notice an input-reload insn here, we will
6456 reject it below, but it might hide a usable equivalent.
6457 That makes bad code. It may even abort: perhaps no reg was
6458 spilled for this insn because it was assumed we would find
6459 that equivalent. */
6460 || INSN_UID (p) < reload_first_uid))
6461 {
6462 rtx tem;
6463 pat = single_set (p);
6464
6465 /* First check for something that sets some reg equal to GOAL. */
6466 if (pat != 0
6467 && ((regno >= 0
6468 && true_regnum (SET_SRC (pat)) == regno
6469 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6470 ||
6471 (regno >= 0
6472 && true_regnum (SET_DEST (pat)) == regno
6473 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6474 ||
6475 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6476 /* When looking for stack pointer + const,
6477 make sure we don't use a stack adjust. */
6478 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6479 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6480 || (goal_mem
6481 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6482 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6483 || (goal_mem
6484 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6485 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6486 /* If we are looking for a constant,
6487 and something equivalent to that constant was copied
6488 into a reg, we can use that reg. */
6489 || (goal_const && REG_NOTES (p) != 0
6490 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6491 && ((rtx_equal_p (XEXP (tem, 0), goal)
6492 && (valueno
6493 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6494 || (GET_CODE (SET_DEST (pat)) == REG
6495 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6496 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6497 == MODE_FLOAT)
6498 && GET_CODE (goal) == CONST_INT
6499 && 0 != (goaltry
6500 = operand_subword (XEXP (tem, 0), 0, 0,
6501 VOIDmode))
6502 && rtx_equal_p (goal, goaltry)
6503 && (valtry
6504 = operand_subword (SET_DEST (pat), 0, 0,
6505 VOIDmode))
6506 && (valueno = true_regnum (valtry)) >= 0)))
6507 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6508 NULL_RTX))
6509 && GET_CODE (SET_DEST (pat)) == REG
6510 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6511 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6512 == MODE_FLOAT)
6513 && GET_CODE (goal) == CONST_INT
6514 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6515 VOIDmode))
6516 && rtx_equal_p (goal, goaltry)
6517 && (valtry
6518 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6519 && (valueno = true_regnum (valtry)) >= 0)))
6520 {
6521 if (other >= 0)
6522 {
6523 if (valueno != other)
6524 continue;
6525 }
6526 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6527 continue;
6528 else
6529 {
6530 int i;
6531
6532 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6533 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6534 valueno + i))
6535 break;
6536 if (i >= 0)
6537 continue;
6538 }
6539 value = valtry;
6540 where = p;
6541 break;
6542 }
6543 }
6544 }
6545
6546 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6547 (or copying VALUE into GOAL, if GOAL is also a register).
6548 Now verify that VALUE is really valid. */
6549
6550 /* VALUENO is the register number of VALUE; a hard register. */
6551
6552 /* Don't try to re-use something that is killed in this insn. We want
6553 to be able to trust REG_UNUSED notes. */
6554 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6555 return 0;
6556
6557 /* If we propose to get the value from the stack pointer or if GOAL is
6558 a MEM based on the stack pointer, we need a stable SP. */
6559 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6560 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6561 goal)))
6562 need_stable_sp = 1;
6563
6564 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6565 if (GET_MODE (value) != mode)
6566 return 0;
6567
6568 /* Reject VALUE if it was loaded from GOAL
6569 and is also a register that appears in the address of GOAL. */
6570
6571 if (goal_mem && value == SET_DEST (single_set (where))
6572 && refers_to_regno_for_reload_p (valueno,
6573 (valueno
6574 + HARD_REGNO_NREGS (valueno, mode)),
6575 goal, (rtx*) 0))
6576 return 0;
6577
6578 /* Reject registers that overlap GOAL. */
6579
6580 if (!goal_mem && !goal_const
6581 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6582 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6583 return 0;
6584
6585 nregs = HARD_REGNO_NREGS (regno, mode);
6586 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6587
6588 /* Reject VALUE if it is one of the regs reserved for reloads.
6589 Reload1 knows how to reuse them anyway, and it would get
6590 confused if we allocated one without its knowledge.
6591 (Now that insns introduced by reload are ignored above,
6592 this case shouldn't happen, but I'm not positive.) */
6593
6594 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6595 {
6596 int i;
6597 for (i = 0; i < valuenregs; ++i)
6598 if (reload_reg_p[valueno + i] >= 0)
6599 return 0;
6600 }
6601
6602 /* Reject VALUE if it is a register being used for an input reload
6603 even if it is not one of those reserved. */
6604
6605 if (reload_reg_p != 0)
6606 {
6607 int i;
6608 for (i = 0; i < n_reloads; i++)
6609 if (rld[i].reg_rtx != 0 && rld[i].in)
6610 {
6611 int regno1 = REGNO (rld[i].reg_rtx);
6612 int nregs1 = HARD_REGNO_NREGS (regno1,
6613 GET_MODE (rld[i].reg_rtx));
6614 if (regno1 < valueno + valuenregs
6615 && regno1 + nregs1 > valueno)
6616 return 0;
6617 }
6618 }
6619
6620 if (goal_mem)
6621 /* We must treat frame pointer as varying here,
6622 since it can vary--in a nonlocal goto as generated by expand_goto. */
6623 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6624
6625 /* Now verify that the values of GOAL and VALUE remain unaltered
6626 until INSN is reached. */
6627
6628 p = insn;
6629 while (1)
6630 {
6631 p = PREV_INSN (p);
6632 if (p == where)
6633 return value;
6634
6635 /* Don't trust the conversion past a function call
6636 if either of the two is in a call-clobbered register, or memory. */
6637 if (GET_CODE (p) == CALL_INSN)
6638 {
6639 int i;
6640
6641 if (goal_mem || need_stable_sp)
6642 return 0;
6643
6644 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6645 for (i = 0; i < nregs; ++i)
6646 if (call_used_regs[regno + i])
6647 return 0;
6648
6649 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6650 for (i = 0; i < valuenregs; ++i)
6651 if (call_used_regs[valueno + i])
6652 return 0;
6653 #ifdef NON_SAVING_SETJMP
6654 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6655 return 0;
6656 #endif
6657 }
6658
6659 if (INSN_P (p))
6660 {
6661 pat = PATTERN (p);
6662
6663 /* Watch out for unspec_volatile, and volatile asms. */
6664 if (volatile_insn_p (pat))
6665 return 0;
6666
6667 /* If this insn P stores in either GOAL or VALUE, return 0.
6668 If GOAL is a memory ref and this insn writes memory, return 0.
6669 If GOAL is a memory ref and its address is not constant,
6670 and this insn P changes a register used in GOAL, return 0. */
6671
6672 if (GET_CODE (pat) == COND_EXEC)
6673 pat = COND_EXEC_CODE (pat);
6674 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6675 {
6676 rtx dest = SET_DEST (pat);
6677 while (GET_CODE (dest) == SUBREG
6678 || GET_CODE (dest) == ZERO_EXTRACT
6679 || GET_CODE (dest) == SIGN_EXTRACT
6680 || GET_CODE (dest) == STRICT_LOW_PART)
6681 dest = XEXP (dest, 0);
6682 if (GET_CODE (dest) == REG)
6683 {
6684 int xregno = REGNO (dest);
6685 int xnregs;
6686 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6687 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6688 else
6689 xnregs = 1;
6690 if (xregno < regno + nregs && xregno + xnregs > regno)
6691 return 0;
6692 if (xregno < valueno + valuenregs
6693 && xregno + xnregs > valueno)
6694 return 0;
6695 if (goal_mem_addr_varies
6696 && reg_overlap_mentioned_for_reload_p (dest, goal))
6697 return 0;
6698 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6699 return 0;
6700 }
6701 else if (goal_mem && GET_CODE (dest) == MEM
6702 && ! push_operand (dest, GET_MODE (dest)))
6703 return 0;
6704 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6705 && reg_equiv_memory_loc[regno] != 0)
6706 return 0;
6707 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6708 return 0;
6709 }
6710 else if (GET_CODE (pat) == PARALLEL)
6711 {
6712 int i;
6713 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6714 {
6715 rtx v1 = XVECEXP (pat, 0, i);
6716 if (GET_CODE (v1) == COND_EXEC)
6717 v1 = COND_EXEC_CODE (v1);
6718 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6719 {
6720 rtx dest = SET_DEST (v1);
6721 while (GET_CODE (dest) == SUBREG
6722 || GET_CODE (dest) == ZERO_EXTRACT
6723 || GET_CODE (dest) == SIGN_EXTRACT
6724 || GET_CODE (dest) == STRICT_LOW_PART)
6725 dest = XEXP (dest, 0);
6726 if (GET_CODE (dest) == REG)
6727 {
6728 int xregno = REGNO (dest);
6729 int xnregs;
6730 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6731 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6732 else
6733 xnregs = 1;
6734 if (xregno < regno + nregs
6735 && xregno + xnregs > regno)
6736 return 0;
6737 if (xregno < valueno + valuenregs
6738 && xregno + xnregs > valueno)
6739 return 0;
6740 if (goal_mem_addr_varies
6741 && reg_overlap_mentioned_for_reload_p (dest,
6742 goal))
6743 return 0;
6744 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6745 return 0;
6746 }
6747 else if (goal_mem && GET_CODE (dest) == MEM
6748 && ! push_operand (dest, GET_MODE (dest)))
6749 return 0;
6750 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6751 && reg_equiv_memory_loc[regno] != 0)
6752 return 0;
6753 else if (need_stable_sp
6754 && push_operand (dest, GET_MODE (dest)))
6755 return 0;
6756 }
6757 }
6758 }
6759
6760 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6761 {
6762 rtx link;
6763
6764 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6765 link = XEXP (link, 1))
6766 {
6767 pat = XEXP (link, 0);
6768 if (GET_CODE (pat) == CLOBBER)
6769 {
6770 rtx dest = SET_DEST (pat);
6771
6772 if (GET_CODE (dest) == REG)
6773 {
6774 int xregno = REGNO (dest);
6775 int xnregs
6776 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6777
6778 if (xregno < regno + nregs
6779 && xregno + xnregs > regno)
6780 return 0;
6781 else if (xregno < valueno + valuenregs
6782 && xregno + xnregs > valueno)
6783 return 0;
6784 else if (goal_mem_addr_varies
6785 && reg_overlap_mentioned_for_reload_p (dest,
6786 goal))
6787 return 0;
6788 }
6789
6790 else if (goal_mem && GET_CODE (dest) == MEM
6791 && ! push_operand (dest, GET_MODE (dest)))
6792 return 0;
6793 else if (need_stable_sp
6794 && push_operand (dest, GET_MODE (dest)))
6795 return 0;
6796 }
6797 }
6798 }
6799
6800 #ifdef AUTO_INC_DEC
6801 /* If this insn auto-increments or auto-decrements
6802 either regno or valueno, return 0 now.
6803 If GOAL is a memory ref and its address is not constant,
6804 and this insn P increments a register used in GOAL, return 0. */
6805 {
6806 rtx link;
6807
6808 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6809 if (REG_NOTE_KIND (link) == REG_INC
6810 && GET_CODE (XEXP (link, 0)) == REG)
6811 {
6812 int incno = REGNO (XEXP (link, 0));
6813 if (incno < regno + nregs && incno >= regno)
6814 return 0;
6815 if (incno < valueno + valuenregs && incno >= valueno)
6816 return 0;
6817 if (goal_mem_addr_varies
6818 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6819 goal))
6820 return 0;
6821 }
6822 }
6823 #endif
6824 }
6825 }
6826 }
6827 \f
6828 /* Find a place where INCED appears in an increment or decrement operator
6829 within X, and return the amount INCED is incremented or decremented by.
6830 The value is always positive. */
6831
6832 static int
6833 find_inc_amount (x, inced)
6834 rtx x, inced;
6835 {
6836 enum rtx_code code = GET_CODE (x);
6837 const char *fmt;
6838 int i;
6839
6840 if (code == MEM)
6841 {
6842 rtx addr = XEXP (x, 0);
6843 if ((GET_CODE (addr) == PRE_DEC
6844 || GET_CODE (addr) == POST_DEC
6845 || GET_CODE (addr) == PRE_INC
6846 || GET_CODE (addr) == POST_INC)
6847 && XEXP (addr, 0) == inced)
6848 return GET_MODE_SIZE (GET_MODE (x));
6849 else if ((GET_CODE (addr) == PRE_MODIFY
6850 || GET_CODE (addr) == POST_MODIFY)
6851 && GET_CODE (XEXP (addr, 1)) == PLUS
6852 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6853 && XEXP (addr, 0) == inced
6854 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6855 {
6856 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6857 return i < 0 ? -i : i;
6858 }
6859 }
6860
6861 fmt = GET_RTX_FORMAT (code);
6862 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6863 {
6864 if (fmt[i] == 'e')
6865 {
6866 int tem = find_inc_amount (XEXP (x, i), inced);
6867 if (tem != 0)
6868 return tem;
6869 }
6870 if (fmt[i] == 'E')
6871 {
6872 int j;
6873 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6874 {
6875 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6876 if (tem != 0)
6877 return tem;
6878 }
6879 }
6880 }
6881
6882 return 0;
6883 }
6884 \f
6885 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6886 If SETS is nonzero, also consider SETs. */
6887
6888 int
6889 regno_clobbered_p (regno, insn, mode, sets)
6890 unsigned int regno;
6891 rtx insn;
6892 enum machine_mode mode;
6893 int sets;
6894 {
6895 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6896 unsigned int endregno = regno + nregs;
6897
6898 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6899 || (sets && GET_CODE (PATTERN (insn)) == SET))
6900 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6901 {
6902 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6903
6904 return test >= regno && test < endregno;
6905 }
6906
6907 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6908 {
6909 int i = XVECLEN (PATTERN (insn), 0) - 1;
6910
6911 for (; i >= 0; i--)
6912 {
6913 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6914 if ((GET_CODE (elt) == CLOBBER
6915 || (sets && GET_CODE (PATTERN (insn)) == SET))
6916 && GET_CODE (XEXP (elt, 0)) == REG)
6917 {
6918 unsigned int test = REGNO (XEXP (elt, 0));
6919
6920 if (test >= regno && test < endregno)
6921 return 1;
6922 }
6923 }
6924 }
6925
6926 return 0;
6927 }
6928
6929 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6930 rtx
6931 reload_adjust_reg_for_mode (reloadreg, mode)
6932 rtx reloadreg;
6933 enum machine_mode mode;
6934 {
6935 int regno;
6936
6937 if (GET_MODE (reloadreg) == mode)
6938 return reloadreg;
6939
6940 regno = REGNO (reloadreg);
6941
6942 if (WORDS_BIG_ENDIAN)
6943 regno += HARD_REGNO_NREGS (regno, GET_MODE (reloadreg))
6944 - HARD_REGNO_NREGS (regno, mode);
6945
6946 return gen_rtx_REG (mode, regno);
6947 }
6948
6949 static const char *const reload_when_needed_name[] =
6950 {
6951 "RELOAD_FOR_INPUT",
6952 "RELOAD_FOR_OUTPUT",
6953 "RELOAD_FOR_INSN",
6954 "RELOAD_FOR_INPUT_ADDRESS",
6955 "RELOAD_FOR_INPADDR_ADDRESS",
6956 "RELOAD_FOR_OUTPUT_ADDRESS",
6957 "RELOAD_FOR_OUTADDR_ADDRESS",
6958 "RELOAD_FOR_OPERAND_ADDRESS",
6959 "RELOAD_FOR_OPADDR_ADDR",
6960 "RELOAD_OTHER",
6961 "RELOAD_FOR_OTHER_ADDRESS"
6962 };
6963
6964 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6965
6966 /* These functions are used to print the variables set by 'find_reloads' */
6967
6968 void
6969 debug_reload_to_stream (f)
6970 FILE *f;
6971 {
6972 int r;
6973 const char *prefix;
6974
6975 if (! f)
6976 f = stderr;
6977 for (r = 0; r < n_reloads; r++)
6978 {
6979 fprintf (f, "Reload %d: ", r);
6980
6981 if (rld[r].in != 0)
6982 {
6983 fprintf (f, "reload_in (%s) = ",
6984 GET_MODE_NAME (rld[r].inmode));
6985 print_inline_rtx (f, rld[r].in, 24);
6986 fprintf (f, "\n\t");
6987 }
6988
6989 if (rld[r].out != 0)
6990 {
6991 fprintf (f, "reload_out (%s) = ",
6992 GET_MODE_NAME (rld[r].outmode));
6993 print_inline_rtx (f, rld[r].out, 24);
6994 fprintf (f, "\n\t");
6995 }
6996
6997 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6998
6999 fprintf (f, "%s (opnum = %d)",
7000 reload_when_needed_name[(int) rld[r].when_needed],
7001 rld[r].opnum);
7002
7003 if (rld[r].optional)
7004 fprintf (f, ", optional");
7005
7006 if (rld[r].nongroup)
7007 fprintf (f, ", nongroup");
7008
7009 if (rld[r].inc != 0)
7010 fprintf (f, ", inc by %d", rld[r].inc);
7011
7012 if (rld[r].nocombine)
7013 fprintf (f, ", can't combine");
7014
7015 if (rld[r].secondary_p)
7016 fprintf (f, ", secondary_reload_p");
7017
7018 if (rld[r].in_reg != 0)
7019 {
7020 fprintf (f, "\n\treload_in_reg: ");
7021 print_inline_rtx (f, rld[r].in_reg, 24);
7022 }
7023
7024 if (rld[r].out_reg != 0)
7025 {
7026 fprintf (f, "\n\treload_out_reg: ");
7027 print_inline_rtx (f, rld[r].out_reg, 24);
7028 }
7029
7030 if (rld[r].reg_rtx != 0)
7031 {
7032 fprintf (f, "\n\treload_reg_rtx: ");
7033 print_inline_rtx (f, rld[r].reg_rtx, 24);
7034 }
7035
7036 prefix = "\n\t";
7037 if (rld[r].secondary_in_reload != -1)
7038 {
7039 fprintf (f, "%ssecondary_in_reload = %d",
7040 prefix, rld[r].secondary_in_reload);
7041 prefix = ", ";
7042 }
7043
7044 if (rld[r].secondary_out_reload != -1)
7045 fprintf (f, "%ssecondary_out_reload = %d\n",
7046 prefix, rld[r].secondary_out_reload);
7047
7048 prefix = "\n\t";
7049 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7050 {
7051 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7052 insn_data[rld[r].secondary_in_icode].name);
7053 prefix = ", ";
7054 }
7055
7056 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7057 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7058 insn_data[rld[r].secondary_out_icode].name);
7059
7060 fprintf (f, "\n");
7061 }
7062 }
7063
7064 void
7065 debug_reload ()
7066 {
7067 debug_reload_to_stream (stderr);
7068 }