(push_reload): Don't use IN as the reload reg in in-out
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* This file contains subroutines used only from the file reload1.c.
22 It knows how to scan one insn for operands and values
23 that need to be copied into registers to make valid code.
24 It also finds other operands and values which are valid
25 but for which equivalent values in registers exist and
26 ought to be used instead.
27
28 Before processing the first insn of the function, call `init_reload'.
29
30 To scan an insn, call `find_reloads'. This does two things:
31 1. sets up tables describing which values must be reloaded
32 for this insn, and what kind of hard regs they must be reloaded into;
33 2. optionally record the locations where those values appear in
34 the data, so they can be replaced properly later.
35 This is done only if the second arg to `find_reloads' is nonzero.
36
37 The third arg to `find_reloads' specifies the number of levels
38 of indirect addressing supported by the machine. If it is zero,
39 indirect addressing is not valid. If it is one, (MEM (REG n))
40 is valid even if (REG n) did not get a hard register; if it is two,
41 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42 hard register, and similarly for higher values.
43
44 Then you must choose the hard regs to reload those pseudo regs into,
45 and generate appropriate load insns before this insn and perhaps
46 also store insns after this insn. Set up the array `reload_reg_rtx'
47 to contain the REG rtx's for the registers you used. In some
48 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49 for certain reloads. Then that tells you which register to use,
50 so you do not need to allocate one. But you still do need to add extra
51 instructions to copy the value into and out of that register.
52
53 Finally you must call `subst_reloads' to substitute the reload reg rtx's
54 into the locations already recorded.
55
56 NOTE SIDE EFFECTS:
57
58 find_reloads can alter the operands of the instruction it is called on.
59
60 1. Two operands of any sort may be interchanged, if they are in a
61 commutative instruction.
62 This happens only if find_reloads thinks the instruction will compile
63 better that way.
64
65 2. Pseudo-registers that are equivalent to constants are replaced
66 with those constants if they are not in hard registers.
67
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
71
72
73 Using a reload register for several reloads in one insn:
74
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
78
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
82
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
86
87 #define REG_OK_STRICT
88
89 #include "config.h"
90 #include "rtl.h"
91 #include "insn-config.h"
92 #include "insn-codes.h"
93 #include "recog.h"
94 #include "reload.h"
95 #include "regs.h"
96 #include "hard-reg-set.h"
97 #include "flags.h"
98 #include "real.h"
99
100 #ifndef REGISTER_MOVE_COST
101 #define REGISTER_MOVE_COST(x, y) 2
102 #endif
103 \f
104 /* The variables set up by `find_reloads' are:
105
106 n_reloads number of distinct reloads needed; max reload # + 1
107 tables indexed by reload number
108 reload_in rtx for value to reload from
109 reload_out rtx for where to store reload-reg afterward if nec
110 (often the same as reload_in)
111 reload_reg_class enum reg_class, saying what regs to reload into
112 reload_inmode enum machine_mode; mode this operand should have
113 when reloaded, on input.
114 reload_outmode enum machine_mode; mode this operand should have
115 when reloaded, on output.
116 reload_optional char, nonzero for an optional reload.
117 Optional reloads are ignored unless the
118 value is already sitting in a register.
119 reload_inc int, positive amount to increment or decrement by if
120 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
121 Ignored otherwise (don't assume it is zero).
122 reload_in_reg rtx. A reg for which reload_in is the equivalent.
123 If reload_in is a symbol_ref which came from
124 reg_equiv_constant, then this is the pseudo
125 which has that symbol_ref as equivalent.
126 reload_reg_rtx rtx. This is the register to reload into.
127 If it is zero when `find_reloads' returns,
128 you must find a suitable register in the class
129 specified by reload_reg_class, and store here
130 an rtx for that register with mode from
131 reload_inmode or reload_outmode.
132 reload_nocombine char, nonzero if this reload shouldn't be
133 combined with another reload.
134 reload_opnum int, operand number being reloaded. This is
135 used to group related reloads and need not always
136 be equal to the actual operand number in the insn,
137 though it current will be; for in-out operands, it
138 is one of the two operand numbers.
139 reload_when_needed enum, classifies reload as needed either for
140 addressing an input reload, addressing an output,
141 for addressing a non-reloaded mem ref,
142 or for unspecified purposes (i.e., more than one
143 of the above).
144 reload_secondary_reload int, gives the reload number of a secondary
145 reload, when needed; otherwise -1
146 reload_secondary_p int, 1 if this is a secondary register for one
147 or more reloads.
148 reload_secondary_icode enum insn_code, if a secondary reload is required,
149 gives the INSN_CODE that uses the secondary
150 reload as a scratch register, or CODE_FOR_nothing
151 if the secondary reload register is to be an
152 intermediate register. */
153 int n_reloads;
154
155 rtx reload_in[MAX_RELOADS];
156 rtx reload_out[MAX_RELOADS];
157 enum reg_class reload_reg_class[MAX_RELOADS];
158 enum machine_mode reload_inmode[MAX_RELOADS];
159 enum machine_mode reload_outmode[MAX_RELOADS];
160 rtx reload_reg_rtx[MAX_RELOADS];
161 char reload_optional[MAX_RELOADS];
162 int reload_inc[MAX_RELOADS];
163 rtx reload_in_reg[MAX_RELOADS];
164 char reload_nocombine[MAX_RELOADS];
165 int reload_opnum[MAX_RELOADS];
166 enum reload_type reload_when_needed[MAX_RELOADS];
167 int reload_secondary_reload[MAX_RELOADS];
168 int reload_secondary_p[MAX_RELOADS];
169 enum insn_code reload_secondary_icode[MAX_RELOADS];
170
171 /* All the "earlyclobber" operands of the current insn
172 are recorded here. */
173 int n_earlyclobbers;
174 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
175
176 int reload_n_operands;
177
178 /* Replacing reloads.
179
180 If `replace_reloads' is nonzero, then as each reload is recorded
181 an entry is made for it in the table `replacements'.
182 Then later `subst_reloads' can look through that table and
183 perform all the replacements needed. */
184
185 /* Nonzero means record the places to replace. */
186 static int replace_reloads;
187
188 /* Each replacement is recorded with a structure like this. */
189 struct replacement
190 {
191 rtx *where; /* Location to store in */
192 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
193 a SUBREG; 0 otherwise. */
194 int what; /* which reload this is for */
195 enum machine_mode mode; /* mode it must have */
196 };
197
198 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
199
200 /* Number of replacements currently recorded. */
201 static int n_replacements;
202
203 /* Used to track what is modified by an operand. */
204 struct decomposition
205 {
206 int reg_flag; /* Nonzero if referencing a register. */
207 int safe; /* Nonzero if this can't conflict with anything. */
208 rtx base; /* Base adddress for MEM. */
209 HOST_WIDE_INT start; /* Starting offset or register number. */
210 HOST_WIDE_INT end; /* Endinf offset or register number. */
211 };
212
213 /* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
214 (see reg_equiv_address). */
215 static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
216 static int n_memlocs;
217
218 #ifdef SECONDARY_MEMORY_NEEDED
219
220 /* Save MEMs needed to copy from one class of registers to another. One MEM
221 is used per mode, but normally only one or two modes are ever used.
222
223 We keep two versions, before and after register elimination. The one
224 after register elimination is record separately for each operand. This
225 is done in case the address is not valid to be sure that we separately
226 reload each. */
227
228 static rtx secondary_memlocs[NUM_MACHINE_MODES];
229 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
230 #endif
231
232 /* The instruction we are doing reloads for;
233 so we can test whether a register dies in it. */
234 static rtx this_insn;
235
236 /* Nonzero if this instruction is a user-specified asm with operands. */
237 static int this_insn_is_asm;
238
239 /* If hard_regs_live_known is nonzero,
240 we can tell which hard regs are currently live,
241 at least enough to succeed in choosing dummy reloads. */
242 static int hard_regs_live_known;
243
244 /* Indexed by hard reg number,
245 element is nonegative if hard reg has been spilled.
246 This vector is passed to `find_reloads' as an argument
247 and is not changed here. */
248 static short *static_reload_reg_p;
249
250 /* Set to 1 in subst_reg_equivs if it changes anything. */
251 static int subst_reg_equivs_changed;
252
253 /* On return from push_reload, holds the reload-number for the OUT
254 operand, which can be different for that from the input operand. */
255 static int output_reloadnum;
256
257 static enum reg_class find_secondary_reload PROTO((rtx, enum reg_class,
258 enum machine_mode, int,
259 enum insn_code *,
260 enum machine_mode *,
261 enum reg_class *,
262 enum insn_code *,
263 enum machine_mode *));
264 static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
265 enum machine_mode, enum machine_mode,
266 int, int, int, enum reload_type));
267 static void push_replacement PROTO((rtx *, int, enum machine_mode));
268 static void combine_reloads PROTO((void));
269 static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
270 enum reg_class, int));
271 static int hard_reg_set_here_p PROTO((int, int, rtx));
272 static struct decomposition decompose PROTO((rtx));
273 static int immune_p PROTO((rtx, rtx, struct decomposition));
274 static int alternative_allows_memconst PROTO((char *, int));
275 static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
276 static rtx make_memloc PROTO((rtx, int));
277 static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
278 int, enum reload_type, int));
279 static rtx subst_reg_equivs PROTO((rtx));
280 static rtx subst_indexed_address PROTO((rtx));
281 static int find_reloads_address_1 PROTO((rtx, int, rtx *, int,
282 enum reload_type,int));
283 static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
284 enum machine_mode, int,
285 enum reload_type, int));
286 static int find_inc_amount PROTO((rtx, rtx));
287 \f
288 #ifdef HAVE_SECONDARY_RELOADS
289
290 /* Determine if any secondary reloads are needed for loading (if IN_P is
291 non-zero) or storing (if IN_P is zero) X to or from a reload register of
292 register class RELOAD_CLASS in mode RELOAD_MODE.
293
294 Return the register class of a secondary reload register, or NO_REGS if
295 none. *PMODE is set to the mode that the register is required in.
296 If the reload register is needed as a scratch register instead of an
297 intermediate register, *PICODE is set to the insn_code of the insn to be
298 used to load or store the primary reload register; otherwise *PICODE
299 is set to CODE_FOR_nothing.
300
301 In some cases (such as storing MQ into an external memory location on
302 the RT), both an intermediate register and a scratch register. In that
303 case, *PICODE is set to CODE_FOR_nothing, the class for the intermediate
304 register is returned, and the *PTERTIARY_... variables are set to describe
305 the scratch register. */
306
307 static enum reg_class
308 find_secondary_reload (x, reload_class, reload_mode, in_p, picode, pmode,
309 ptertiary_class, ptertiary_icode, ptertiary_mode)
310 rtx x;
311 enum reg_class reload_class;
312 enum machine_mode reload_mode;
313 int in_p;
314 enum insn_code *picode;
315 enum machine_mode *pmode;
316 enum reg_class *ptertiary_class;
317 enum insn_code *ptertiary_icode;
318 enum machine_mode *ptertiary_mode;
319 {
320 enum reg_class class = NO_REGS;
321 enum machine_mode mode = reload_mode;
322 enum insn_code icode = CODE_FOR_nothing;
323 enum reg_class t_class = NO_REGS;
324 enum machine_mode t_mode = VOIDmode;
325 enum insn_code t_icode = CODE_FOR_nothing;
326
327 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
328 is still a pseudo-register by now, it *must* have an equivalent MEM
329 but we don't want to assume that), use that equivalent when seeing if
330 a secondary reload is needed since whether or not a reload is needed
331 might be sensitive to the form of the MEM. */
332
333 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
334 && reg_equiv_mem[REGNO (x)] != 0)
335 x = reg_equiv_mem[REGNO (x)];
336
337 #ifdef SECONDARY_INPUT_RELOAD_CLASS
338 if (in_p)
339 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
340 #endif
341
342 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
343 if (! in_p)
344 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
345 #endif
346
347 /* If we don't need any secondary registers, go away; the rest of the
348 values won't be used. */
349 if (class == NO_REGS)
350 return NO_REGS;
351
352 /* Get a possible insn to use. If the predicate doesn't accept X, don't
353 use the insn. */
354
355 icode = (in_p ? reload_in_optab[(int) reload_mode]
356 : reload_out_optab[(int) reload_mode]);
357
358 if (icode != CODE_FOR_nothing
359 && insn_operand_predicate[(int) icode][in_p]
360 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
361 icode = CODE_FOR_nothing;
362
363 /* If we will be using an insn, see if it can directly handle the reload
364 register we will be using. If it can, the secondary reload is for a
365 scratch register. If it can't, we will use the secondary reload for
366 an intermediate register and require a tertiary reload for the scratch
367 register. */
368
369 if (icode != CODE_FOR_nothing)
370 {
371 /* If IN_P is non-zero, the reload register will be the output in
372 operand 0. If IN_P is zero, the reload register will be the input
373 in operand 1. Outputs should have an initial "=", which we must
374 skip. */
375
376 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
377 enum reg_class insn_class
378 = (insn_letter == 'r' ? GENERAL_REGS
379 : REG_CLASS_FROM_LETTER (insn_letter));
380
381 if (insn_class == NO_REGS
382 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
383 /* The scratch register's constraint must start with "=&". */
384 || insn_operand_constraint[(int) icode][2][0] != '='
385 || insn_operand_constraint[(int) icode][2][1] != '&')
386 abort ();
387
388 if (reg_class_subset_p (reload_class, insn_class))
389 mode = insn_operand_mode[(int) icode][2];
390 else
391 {
392 char t_letter = insn_operand_constraint[(int) icode][2][2];
393 class = insn_class;
394 t_mode = insn_operand_mode[(int) icode][2];
395 t_class = (t_letter == 'r' ? GENERAL_REGS
396 : REG_CLASS_FROM_LETTER (t_letter));
397 t_icode = icode;
398 icode = CODE_FOR_nothing;
399 }
400 }
401
402 *pmode = mode;
403 *picode = icode;
404 *ptertiary_class = t_class;
405 *ptertiary_mode = t_mode;
406 *ptertiary_icode = t_icode;
407
408 return class;
409 }
410 #endif /* HAVE_SECONDARY_RELOADS */
411 \f
412 #ifdef SECONDARY_MEMORY_NEEDED
413
414 /* Return a memory location that will be used to copy X in mode MODE.
415 If we haven't already made a location for this mode in this insn,
416 call find_reloads_address on the location being returned. */
417
418 rtx
419 get_secondary_mem (x, mode, opnum, type)
420 rtx x;
421 enum machine_mode mode;
422 int opnum;
423 enum reload_type type;
424 {
425 rtx loc;
426 int mem_valid;
427
428 /* If MODE is narrower than a word, widen it. This is required because
429 most machines that require these memory locations do not support
430 short load and stores from all registers (e.g., FP registers). We could
431 possibly conditionalize this, but we lose nothing by doing the wider
432 mode. */
433
434 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
435 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
436
437 /* If we already have made a MEM for this operand in MODE, return it. */
438 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
439 return secondary_memlocs_elim[(int) mode][opnum];
440
441 /* If this is the first time we've tried to get a MEM for this mode,
442 allocate a new one. `something_changed' in reload will get set
443 by noticing that the frame size has changed. */
444
445 if (secondary_memlocs[(int) mode] == 0)
446 {
447 #ifdef SECONDARY_MEMORY_NEEDED_RTX
448 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
449 #else
450 secondary_memlocs[(int) mode]
451 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
452 #endif
453 }
454
455 /* Get a version of the address doing any eliminations needed. If that
456 didn't give us a new MEM, make a new one if it isn't valid. */
457
458 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
459 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
460
461 if (! mem_valid && loc == secondary_memlocs[(int) mode])
462 loc = copy_rtx (loc);
463
464 /* The only time the call below will do anything is if the stack
465 offset is too large. In that case IND_LEVELS doesn't matter, so we
466 can just pass a zero. Adjust the type to be the address of the
467 corresponding object. If the address was valid, save the eliminated
468 address. If it wasn't valid, we need to make a reload each time, so
469 don't save it. */
470
471 if (! mem_valid)
472 {
473 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
474 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
475 : RELOAD_OTHER);
476
477 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
478 opnum, type, 0);
479 }
480
481 secondary_memlocs_elim[(int) mode][opnum] = loc;
482 return loc;
483 }
484
485 /* Clear any secondary memory locations we've made. */
486
487 void
488 clear_secondary_mem ()
489 {
490 bzero (secondary_memlocs, sizeof secondary_memlocs);
491 }
492 #endif /* SECONDARY_MEMORY_NEEDED */
493 \f
494 /* Record one reload that needs to be performed.
495 IN is an rtx saying where the data are to be found before this instruction.
496 OUT says where they must be stored after the instruction.
497 (IN is zero for data not read, and OUT is zero for data not written.)
498 INLOC and OUTLOC point to the places in the instructions where
499 IN and OUT were found.
500 If IN and OUT are both non-zero, it means the same register must be used
501 to reload both IN and OUT.
502
503 CLASS is a register class required for the reloaded data.
504 INMODE is the machine mode that the instruction requires
505 for the reg that replaces IN and OUTMODE is likewise for OUT.
506
507 If IN is zero, then OUT's location and mode should be passed as
508 INLOC and INMODE.
509
510 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
511
512 OPTIONAL nonzero means this reload does not need to be performed:
513 it can be discarded if that is more convenient.
514
515 OPNUM and TYPE say what the purpose of this reload is.
516
517 The return value is the reload-number for this reload.
518
519 If both IN and OUT are nonzero, in some rare cases we might
520 want to make two separate reloads. (Actually we never do this now.)
521 Therefore, the reload-number for OUT is stored in
522 output_reloadnum when we return; the return value applies to IN.
523 Usually (presently always), when IN and OUT are nonzero,
524 the two reload-numbers are equal, but the caller should be careful to
525 distinguish them. */
526
527 static int
528 push_reload (in, out, inloc, outloc, class,
529 inmode, outmode, strict_low, optional, opnum, type)
530 register rtx in, out;
531 rtx *inloc, *outloc;
532 enum reg_class class;
533 enum machine_mode inmode, outmode;
534 int strict_low;
535 int optional;
536 int opnum;
537 enum reload_type type;
538 {
539 register int i;
540 int dont_share = 0;
541 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
542 int secondary_reload = -1;
543 enum insn_code secondary_icode = CODE_FOR_nothing;
544
545 /* Compare two RTX's. */
546 #define MATCHES(x, y) \
547 (x == y || (x != 0 && (GET_CODE (x) == REG \
548 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
549 : rtx_equal_p (x, y) && ! side_effects_p (x))))
550
551 /* Indicates if two reloads purposes are for similar enough things that we
552 can merge their reloads. */
553 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
554 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
555 || ((when1) == (when2) && (op1) == (op2)) \
556 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
557 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
558 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
559 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
560 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
561
562 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
563 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
564 ((when1) != (when2) \
565 || ! ((op1) == (op2) \
566 || (when1) == RELOAD_FOR_INPUT \
567 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
568 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
569
570 /* INMODE and/or OUTMODE could be VOIDmode if no mode
571 has been specified for the operand. In that case,
572 use the operand's mode as the mode to reload. */
573 if (inmode == VOIDmode && in != 0)
574 inmode = GET_MODE (in);
575 if (outmode == VOIDmode && out != 0)
576 outmode = GET_MODE (out);
577
578 /* If IN is a pseudo register everywhere-equivalent to a constant, and
579 it is not in a hard register, reload straight from the constant,
580 since we want to get rid of such pseudo registers.
581 Often this is done earlier, but not always in find_reloads_address. */
582 if (in != 0 && GET_CODE (in) == REG)
583 {
584 register int regno = REGNO (in);
585
586 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
587 && reg_equiv_constant[regno] != 0)
588 in = reg_equiv_constant[regno];
589 }
590
591 /* Likewise for OUT. Of course, OUT will never be equivalent to
592 an actual constant, but it might be equivalent to a memory location
593 (in the case of a parameter). */
594 if (out != 0 && GET_CODE (out) == REG)
595 {
596 register int regno = REGNO (out);
597
598 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
599 && reg_equiv_constant[regno] != 0)
600 out = reg_equiv_constant[regno];
601 }
602
603 /* If we have a read-write operand with an address side-effect,
604 change either IN or OUT so the side-effect happens only once. */
605 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
606 {
607 if (GET_CODE (XEXP (in, 0)) == POST_INC
608 || GET_CODE (XEXP (in, 0)) == POST_DEC)
609 in = gen_rtx (MEM, GET_MODE (in), XEXP (XEXP (in, 0), 0));
610 if (GET_CODE (XEXP (in, 0)) == PRE_INC
611 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
612 out = gen_rtx (MEM, GET_MODE (out), XEXP (XEXP (out, 0), 0));
613 }
614
615 /* If we are reloading a (SUBREG (MEM ...) ...) or (SUBREG constant ...),
616 really reload just the inside expression in its own mode.
617 If we have (SUBREG:M1 (REG:M2 ...) ...) with M1 wider than M2 and the
618 register is a pseudo, this will become the same as the above case.
619 Do the same for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
620 either M1 is not valid for R or M2 is wider than a word but we only
621 need one word to store an M2-sized quantity in R.
622 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
623 we can't handle it here because CONST_INT does not indicate a mode.
624
625 Similarly, we must reload the inside expression if we have a
626 STRICT_LOW_PART (presumably, in == out in the cas).
627
628 Also reload the inner expression if it does not require a secondary
629 reload but the SUBREG does. */
630
631 if (in != 0 && GET_CODE (in) == SUBREG
632 && (GET_CODE (SUBREG_REG (in)) != REG
633 || strict_low
634 || (GET_CODE (SUBREG_REG (in)) == REG
635 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER
636 && (GET_MODE_SIZE (inmode)
637 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))))
638 || (GET_CODE (SUBREG_REG (in)) == REG
639 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
640 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in)), inmode)
641 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
642 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
643 > UNITS_PER_WORD)
644 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
645 / UNITS_PER_WORD)
646 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
647 GET_MODE (SUBREG_REG (in)))))))
648 #ifdef SECONDARY_INPUT_RELOAD_CLASS
649 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
650 && (SECONDARY_INPUT_RELOAD_CLASS (class,
651 GET_MODE (SUBREG_REG (in)),
652 SUBREG_REG (in))
653 == NO_REGS))
654 #endif
655 ))
656 {
657 in_subreg_loc = inloc;
658 inloc = &SUBREG_REG (in);
659 in = *inloc;
660 #if ! defined(BYTE_LOADS_ZERO_EXTEND) && ! defined(BYTE_LOADS_SIGN_EXTEND)
661 if (GET_CODE (in) == MEM)
662 /* This is supposed to happen only for paradoxical subregs made by
663 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
664 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
665 abort ();
666 #endif
667 inmode = GET_MODE (in);
668 }
669
670 /* Similarly for paradoxical and problematical SUBREGs on the output.
671 Note that there is no reason we need worry about the previous value
672 of SUBREG_REG (out); even if wider than out,
673 storing in a subreg is entitled to clobber it all
674 (except in the case of STRICT_LOW_PART,
675 and in that case the constraint should label it input-output.) */
676 if (out != 0 && GET_CODE (out) == SUBREG
677 && (GET_CODE (SUBREG_REG (out)) != REG
678 || strict_low
679 || (GET_CODE (SUBREG_REG (out)) == REG
680 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER
681 && (GET_MODE_SIZE (outmode)
682 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))))
683 || (GET_CODE (SUBREG_REG (out)) == REG
684 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
685 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)), outmode)
686 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
687 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
688 > UNITS_PER_WORD)
689 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
690 / UNITS_PER_WORD)
691 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
692 GET_MODE (SUBREG_REG (out)))))))
693 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
694 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
695 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
696 GET_MODE (SUBREG_REG (out)),
697 SUBREG_REG (out))
698 == NO_REGS))
699 #endif
700 ))
701 {
702 out_subreg_loc = outloc;
703 outloc = &SUBREG_REG (out);
704 out = *outloc;
705 #if ! defined(BYTE_LOADS_ZERO_EXTEND) && ! defined(BYTE_LOADS_SIGN_EXTEND)
706 if (GET_CODE (out) == MEM
707 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
708 abort ();
709 #endif
710 outmode = GET_MODE (out);
711 }
712
713 /* If IN appears in OUT, we can't share any input-only reload for IN. */
714 if (in != 0 && out != 0 && GET_CODE (out) == MEM
715 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
716 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
717 dont_share = 1;
718
719 /* If IN is a SUBREG of a hard register, make a new REG. This
720 simplifies some of the cases below. */
721
722 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
723 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
724 in = gen_rtx (REG, GET_MODE (in),
725 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
726
727 /* Similarly for OUT. */
728 if (out != 0 && GET_CODE (out) == SUBREG
729 && GET_CODE (SUBREG_REG (out)) == REG
730 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
731 out = gen_rtx (REG, GET_MODE (out),
732 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
733
734 /* Narrow down the class of register wanted if that is
735 desirable on this machine for efficiency. */
736 if (in != 0)
737 class = PREFERRED_RELOAD_CLASS (in, class);
738
739 /* Output reloads may need analogous treatment, different in detail. */
740 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
741 if (out != 0)
742 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
743 #endif
744
745 /* Make sure we use a class that can handle the actual pseudo
746 inside any subreg. For example, on the 386, QImode regs
747 can appear within SImode subregs. Although GENERAL_REGS
748 can handle SImode, QImode needs a smaller class. */
749 #ifdef LIMIT_RELOAD_CLASS
750 if (in_subreg_loc)
751 class = LIMIT_RELOAD_CLASS (inmode, class);
752 else if (in != 0 && GET_CODE (in) == SUBREG)
753 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
754
755 if (out_subreg_loc)
756 class = LIMIT_RELOAD_CLASS (outmode, class);
757 if (out != 0 && GET_CODE (out) == SUBREG)
758 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
759 #endif
760
761 /* Verify that this class is at least possible for the mode that
762 is specified. */
763 if (this_insn_is_asm)
764 {
765 enum machine_mode mode;
766 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
767 mode = inmode;
768 else
769 mode = outmode;
770 if (mode == VOIDmode)
771 {
772 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
773 mode = word_mode;
774 if (in != 0)
775 inmode = word_mode;
776 if (out != 0)
777 outmode = word_mode;
778 }
779 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
780 if (HARD_REGNO_MODE_OK (i, mode)
781 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
782 {
783 int nregs = HARD_REGNO_NREGS (i, mode);
784
785 int j;
786 for (j = 1; j < nregs; j++)
787 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
788 break;
789 if (j == nregs)
790 break;
791 }
792 if (i == FIRST_PSEUDO_REGISTER)
793 {
794 error_for_asm (this_insn, "impossible register constraint in `asm'");
795 class = ALL_REGS;
796 }
797 }
798
799 if (class == NO_REGS)
800 abort ();
801
802 /* We can use an existing reload if the class is right
803 and at least one of IN and OUT is a match
804 and the other is at worst neutral.
805 (A zero compared against anything is neutral.)
806
807 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
808 for the same thing since that can cause us to need more reload registers
809 than we otherwise would. */
810
811 for (i = 0; i < n_reloads; i++)
812 if ((reg_class_subset_p (class, reload_reg_class[i])
813 || reg_class_subset_p (reload_reg_class[i], class))
814 /* If the existing reload has a register, it must fit our class. */
815 && (reload_reg_rtx[i] == 0
816 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
817 true_regnum (reload_reg_rtx[i])))
818 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
819 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
820 ||
821 (out != 0 && MATCHES (reload_out[i], out)
822 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
823 && (reg_class_size[(int) class] == 1
824 #ifdef SMALL_REGISTER_CLASSES
825 || 1
826 #endif
827 )
828 && MERGABLE_RELOADS (type, reload_when_needed[i],
829 opnum, reload_opnum[i]))
830 break;
831
832 /* Reloading a plain reg for input can match a reload to postincrement
833 that reg, since the postincrement's value is the right value.
834 Likewise, it can match a preincrement reload, since we regard
835 the preincrementation as happening before any ref in this insn
836 to that register. */
837 if (i == n_reloads)
838 for (i = 0; i < n_reloads; i++)
839 if ((reg_class_subset_p (class, reload_reg_class[i])
840 || reg_class_subset_p (reload_reg_class[i], class))
841 /* If the existing reload has a register, it must fit our class. */
842 && (reload_reg_rtx[i] == 0
843 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
844 true_regnum (reload_reg_rtx[i])))
845 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
846 && ((GET_CODE (in) == REG
847 && (GET_CODE (reload_in[i]) == POST_INC
848 || GET_CODE (reload_in[i]) == POST_DEC
849 || GET_CODE (reload_in[i]) == PRE_INC
850 || GET_CODE (reload_in[i]) == PRE_DEC)
851 && MATCHES (XEXP (reload_in[i], 0), in))
852 ||
853 (GET_CODE (reload_in[i]) == REG
854 && (GET_CODE (in) == POST_INC
855 || GET_CODE (in) == POST_DEC
856 || GET_CODE (in) == PRE_INC
857 || GET_CODE (in) == PRE_DEC)
858 && MATCHES (XEXP (in, 0), reload_in[i])))
859 && (reg_class_size[(int) class] == 1
860 #ifdef SMALL_REGISTER_CLASSES
861 || 1
862 #endif
863 )
864 && MERGABLE_RELOADS (type, reload_when_needed[i],
865 opnum, reload_opnum[i]))
866 {
867 /* Make sure reload_in ultimately has the increment,
868 not the plain register. */
869 if (GET_CODE (in) == REG)
870 in = reload_in[i];
871 break;
872 }
873
874 if (i == n_reloads)
875 {
876 #ifdef HAVE_SECONDARY_RELOADS
877 enum reg_class secondary_class = NO_REGS;
878 enum reg_class secondary_out_class = NO_REGS;
879 enum machine_mode secondary_mode = inmode;
880 enum machine_mode secondary_out_mode = outmode;
881 enum insn_code secondary_icode;
882 enum insn_code secondary_out_icode = CODE_FOR_nothing;
883 enum reg_class tertiary_class = NO_REGS;
884 enum reg_class tertiary_out_class = NO_REGS;
885 enum machine_mode tertiary_mode;
886 enum machine_mode tertiary_out_mode;
887 enum insn_code tertiary_icode;
888 enum insn_code tertiary_out_icode = CODE_FOR_nothing;
889 int tertiary_reload = -1;
890
891 /* See if we need a secondary reload register to move between
892 CLASS and IN or CLASS and OUT. Get the modes and icodes to
893 use for each of them if so. */
894
895 #ifdef SECONDARY_INPUT_RELOAD_CLASS
896 if (in != 0)
897 secondary_class
898 = find_secondary_reload (in, class, inmode, 1, &secondary_icode,
899 &secondary_mode, &tertiary_class,
900 &tertiary_icode, &tertiary_mode);
901 #endif
902
903 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
904 if (out != 0 && GET_CODE (out) != SCRATCH)
905 secondary_out_class
906 = find_secondary_reload (out, class, outmode, 0,
907 &secondary_out_icode, &secondary_out_mode,
908 &tertiary_out_class, &tertiary_out_icode,
909 &tertiary_out_mode);
910 #endif
911
912 /* We can only record one secondary and one tertiary reload. If both
913 IN and OUT need secondary reloads, we can only make an in-out
914 reload if neither need an insn and if the classes are compatible.
915 If they aren't, all we can do is abort since making two separate
916 reloads is invalid. */
917
918 if (secondary_class != NO_REGS && secondary_out_class != NO_REGS
919 && reg_class_subset_p (secondary_out_class, secondary_class))
920 secondary_class = secondary_out_class;
921
922 if (secondary_class != NO_REGS && secondary_out_class != NO_REGS
923 && (! reg_class_subset_p (secondary_class, secondary_out_class)
924 || secondary_icode != CODE_FOR_nothing
925 || secondary_out_icode != CODE_FOR_nothing))
926 abort ();
927
928 /* If we need a secondary reload for OUT but not IN, copy the
929 information. */
930 if (secondary_class == NO_REGS && secondary_out_class != NO_REGS)
931 {
932 secondary_class = secondary_out_class;
933 secondary_icode = secondary_out_icode;
934 tertiary_class = tertiary_out_class;
935 tertiary_icode = tertiary_out_icode;
936 tertiary_mode = tertiary_out_mode;
937 }
938
939 if (secondary_class != NO_REGS)
940 {
941 /* Secondary reloads don't conflict as badly as the primary object
942 being reload. Specifically, we can always treat them as
943 being for an input or output address and hence allowed to be
944 reused in the same manner such address components could be
945 reused. This is used as the reload_type for our secondary
946 reloads. */
947
948 enum reload_type secondary_type
949 = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
950 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
951 : type);
952
953 /* If we need a tertiary reload, see if we have one we can reuse
954 or else make one. */
955
956 if (tertiary_class != NO_REGS)
957 {
958 for (tertiary_reload = 0; tertiary_reload < n_reloads;
959 tertiary_reload++)
960 if (reload_secondary_p[tertiary_reload]
961 && (reg_class_subset_p (tertiary_class,
962 reload_reg_class[tertiary_reload])
963 || reg_class_subset_p (reload_reg_class[tertiary_reload],
964 tertiary_class))
965 && ((reload_inmode[tertiary_reload] == tertiary_mode)
966 || reload_inmode[tertiary_reload] == VOIDmode)
967 && ((reload_outmode[tertiary_reload] == tertiary_mode)
968 || reload_outmode[tertiary_reload] == VOIDmode)
969 && (reload_secondary_icode[tertiary_reload]
970 == CODE_FOR_nothing)
971 && (reg_class_size[(int) tertiary_class] == 1
972 #ifdef SMALL_REGISTER_CLASSES
973 || 1
974 #endif
975 )
976 && MERGABLE_RELOADS (secondary_type,
977 reload_when_needed[tertiary_reload],
978 opnum, reload_opnum[tertiary_reload]))
979 {
980 if (tertiary_mode != VOIDmode)
981 reload_inmode[tertiary_reload] = tertiary_mode;
982 if (tertiary_out_mode != VOIDmode)
983 reload_outmode[tertiary_reload] = tertiary_mode;
984 if (reg_class_subset_p (tertiary_class,
985 reload_reg_class[tertiary_reload]))
986 reload_reg_class[tertiary_reload] = tertiary_class;
987 if (MERGE_TO_OTHER (secondary_type,
988 reload_when_needed[tertiary_reload],
989 opnum,
990 reload_opnum[tertiary_reload]))
991 reload_when_needed[tertiary_reload] = RELOAD_OTHER;
992 reload_opnum[tertiary_reload]
993 = MIN (reload_opnum[tertiary_reload], opnum);
994 reload_optional[tertiary_reload] &= optional;
995 reload_secondary_p[tertiary_reload] = 1;
996 }
997
998 if (tertiary_reload == n_reloads)
999 {
1000 /* We need to make a new tertiary reload for this register
1001 class. */
1002 reload_in[tertiary_reload] = reload_out[tertiary_reload] = 0;
1003 reload_reg_class[tertiary_reload] = tertiary_class;
1004 reload_inmode[tertiary_reload] = tertiary_mode;
1005 reload_outmode[tertiary_reload] = tertiary_mode;
1006 reload_reg_rtx[tertiary_reload] = 0;
1007 reload_optional[tertiary_reload] = optional;
1008 reload_inc[tertiary_reload] = 0;
1009 /* Maybe we could combine these, but it seems too tricky. */
1010 reload_nocombine[tertiary_reload] = 1;
1011 reload_in_reg[tertiary_reload] = 0;
1012 reload_opnum[tertiary_reload] = opnum;
1013 reload_when_needed[tertiary_reload] = secondary_type;
1014 reload_secondary_reload[tertiary_reload] = -1;
1015 reload_secondary_icode[tertiary_reload] = CODE_FOR_nothing;
1016 reload_secondary_p[tertiary_reload] = 1;
1017
1018 n_reloads++;
1019 i = n_reloads;
1020 }
1021 }
1022
1023 /* See if we can reuse an existing secondary reload. */
1024 for (secondary_reload = 0; secondary_reload < n_reloads;
1025 secondary_reload++)
1026 if (reload_secondary_p[secondary_reload]
1027 && (reg_class_subset_p (secondary_class,
1028 reload_reg_class[secondary_reload])
1029 || reg_class_subset_p (reload_reg_class[secondary_reload],
1030 secondary_class))
1031 && ((reload_inmode[secondary_reload] == secondary_mode)
1032 || reload_inmode[secondary_reload] == VOIDmode)
1033 && ((reload_outmode[secondary_reload] == secondary_out_mode)
1034 || reload_outmode[secondary_reload] == VOIDmode)
1035 && reload_secondary_reload[secondary_reload] == tertiary_reload
1036 && reload_secondary_icode[secondary_reload] == tertiary_icode
1037 && (reg_class_size[(int) secondary_class] == 1
1038 #ifdef SMALL_REGISTER_CLASSES
1039 || 1
1040 #endif
1041 )
1042 && MERGABLE_RELOADS (secondary_type,
1043 reload_when_needed[secondary_reload],
1044 opnum, reload_opnum[secondary_reload]))
1045 {
1046 if (secondary_mode != VOIDmode)
1047 reload_inmode[secondary_reload] = secondary_mode;
1048 if (secondary_out_mode != VOIDmode)
1049 reload_outmode[secondary_reload] = secondary_out_mode;
1050 if (reg_class_subset_p (secondary_class,
1051 reload_reg_class[secondary_reload]))
1052 reload_reg_class[secondary_reload] = secondary_class;
1053 if (MERGE_TO_OTHER (secondary_type,
1054 reload_when_needed[secondary_reload],
1055 opnum, reload_opnum[secondary_reload]))
1056 reload_when_needed[secondary_reload] = RELOAD_OTHER;
1057 reload_opnum[secondary_reload]
1058 = MIN (reload_opnum[secondary_reload], opnum);
1059 reload_optional[secondary_reload] &= optional;
1060 reload_secondary_p[secondary_reload] = 1;
1061 }
1062
1063 if (secondary_reload == n_reloads)
1064 {
1065 /* We need to make a new secondary reload for this register
1066 class. */
1067 reload_in[secondary_reload] = reload_out[secondary_reload] = 0;
1068 reload_reg_class[secondary_reload] = secondary_class;
1069 reload_inmode[secondary_reload] = secondary_mode;
1070 reload_outmode[secondary_reload] = secondary_out_mode;
1071 reload_reg_rtx[secondary_reload] = 0;
1072 reload_optional[secondary_reload] = optional;
1073 reload_inc[secondary_reload] = 0;
1074 /* Maybe we could combine these, but it seems too tricky. */
1075 reload_nocombine[secondary_reload] = 1;
1076 reload_in_reg[secondary_reload] = 0;
1077 reload_opnum[secondary_reload] = opnum;
1078 reload_when_needed[secondary_reload] = secondary_type;
1079 reload_secondary_reload[secondary_reload] = tertiary_reload;
1080 reload_secondary_icode[secondary_reload] = tertiary_icode;
1081 reload_secondary_p[secondary_reload] = 1;
1082
1083 n_reloads++;
1084 i = n_reloads;
1085
1086 #ifdef SECONDARY_MEMORY_NEEDED
1087 /* If we need a memory location to copy between the two
1088 reload regs, set it up now. */
1089
1090 if (in != 0 && secondary_icode == CODE_FOR_nothing
1091 && SECONDARY_MEMORY_NEEDED (secondary_class, class, inmode))
1092 get_secondary_mem (in, inmode, opnum, type);
1093
1094 if (out != 0 && secondary_icode == CODE_FOR_nothing
1095 && SECONDARY_MEMORY_NEEDED (class, secondary_class, outmode))
1096 get_secondary_mem (out, outmode, opnum, type);
1097 #endif
1098 }
1099 }
1100 #endif
1101
1102 /* We found no existing reload suitable for re-use.
1103 So add an additional reload. */
1104
1105 reload_in[i] = in;
1106 reload_out[i] = out;
1107 reload_reg_class[i] = class;
1108 reload_inmode[i] = inmode;
1109 reload_outmode[i] = outmode;
1110 reload_reg_rtx[i] = 0;
1111 reload_optional[i] = optional;
1112 reload_inc[i] = 0;
1113 reload_nocombine[i] = 0;
1114 reload_in_reg[i] = inloc ? *inloc : 0;
1115 reload_opnum[i] = opnum;
1116 reload_when_needed[i] = type;
1117 reload_secondary_reload[i] = secondary_reload;
1118 reload_secondary_icode[i] = secondary_icode;
1119 reload_secondary_p[i] = 0;
1120
1121 n_reloads++;
1122
1123 #ifdef SECONDARY_MEMORY_NEEDED
1124 /* If a memory location is needed for the copy, make one. */
1125 if (in != 0 && GET_CODE (in) == REG
1126 && REGNO (in) < FIRST_PSEUDO_REGISTER
1127 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1128 class, inmode))
1129 get_secondary_mem (in, inmode, opnum, type);
1130
1131 if (out != 0 && GET_CODE (out) == REG
1132 && REGNO (out) < FIRST_PSEUDO_REGISTER
1133 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1134 outmode))
1135 get_secondary_mem (out, outmode, opnum, type);
1136 #endif
1137 }
1138 else
1139 {
1140 /* We are reusing an existing reload,
1141 but we may have additional information for it.
1142 For example, we may now have both IN and OUT
1143 while the old one may have just one of them. */
1144
1145 if (inmode != VOIDmode)
1146 reload_inmode[i] = inmode;
1147 if (outmode != VOIDmode)
1148 reload_outmode[i] = outmode;
1149 if (in != 0)
1150 reload_in[i] = in;
1151 if (out != 0)
1152 reload_out[i] = out;
1153 if (reg_class_subset_p (class, reload_reg_class[i]))
1154 reload_reg_class[i] = class;
1155 reload_optional[i] &= optional;
1156 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1157 opnum, reload_opnum[i]))
1158 reload_when_needed[i] = RELOAD_OTHER;
1159 reload_opnum[i] = MIN (reload_opnum[i], opnum);
1160 }
1161
1162 /* If the ostensible rtx being reload differs from the rtx found
1163 in the location to substitute, this reload is not safe to combine
1164 because we cannot reliably tell whether it appears in the insn. */
1165
1166 if (in != 0 && in != *inloc)
1167 reload_nocombine[i] = 1;
1168
1169 #if 0
1170 /* This was replaced by changes in find_reloads_address_1 and the new
1171 function inc_for_reload, which go with a new meaning of reload_inc. */
1172
1173 /* If this is an IN/OUT reload in an insn that sets the CC,
1174 it must be for an autoincrement. It doesn't work to store
1175 the incremented value after the insn because that would clobber the CC.
1176 So we must do the increment of the value reloaded from,
1177 increment it, store it back, then decrement again. */
1178 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1179 {
1180 out = 0;
1181 reload_out[i] = 0;
1182 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1183 /* If we did not find a nonzero amount-to-increment-by,
1184 that contradicts the belief that IN is being incremented
1185 in an address in this insn. */
1186 if (reload_inc[i] == 0)
1187 abort ();
1188 }
1189 #endif
1190
1191 /* If we will replace IN and OUT with the reload-reg,
1192 record where they are located so that substitution need
1193 not do a tree walk. */
1194
1195 if (replace_reloads)
1196 {
1197 if (inloc != 0)
1198 {
1199 register struct replacement *r = &replacements[n_replacements++];
1200 r->what = i;
1201 r->subreg_loc = in_subreg_loc;
1202 r->where = inloc;
1203 r->mode = inmode;
1204 }
1205 if (outloc != 0 && outloc != inloc)
1206 {
1207 register struct replacement *r = &replacements[n_replacements++];
1208 r->what = i;
1209 r->where = outloc;
1210 r->subreg_loc = out_subreg_loc;
1211 r->mode = outmode;
1212 }
1213 }
1214
1215 /* If this reload is just being introduced and it has both
1216 an incoming quantity and an outgoing quantity that are
1217 supposed to be made to match, see if either one of the two
1218 can serve as the place to reload into.
1219
1220 If one of them is acceptable, set reload_reg_rtx[i]
1221 to that one. */
1222
1223 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1224 {
1225 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
1226 reload_reg_class[i], i);
1227
1228 /* If the outgoing register already contains the same value
1229 as the incoming one, we can dispense with loading it.
1230 The easiest way to tell the caller that is to give a phony
1231 value for the incoming operand (same as outgoing one). */
1232 if (reload_reg_rtx[i] == out
1233 && (GET_CODE (in) == REG || CONSTANT_P (in))
1234 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1235 static_reload_reg_p, i, inmode))
1236 reload_in[i] = out;
1237 }
1238
1239 /* If this is an input reload and the operand contains a register that
1240 dies in this insn and is used nowhere else, see if it is the right class
1241 to be used for this reload. Use it if so. (This occurs most commonly
1242 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1243 this if it is also an output reload that mentions the register unless
1244 the output is a SUBREG that clobbers an entire register.
1245
1246 Note that the operand might be one of the spill regs, if it is a
1247 pseudo reg and we are in a block where spilling has not taken place.
1248 But if there is no spilling in this block, that is OK.
1249 An explicitly used hard reg cannot be a spill reg. */
1250
1251 if (reload_reg_rtx[i] == 0 && in != 0)
1252 {
1253 rtx note;
1254 int regno;
1255
1256 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1257 if (REG_NOTE_KIND (note) == REG_DEAD
1258 && GET_CODE (XEXP (note, 0)) == REG
1259 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1260 && reg_mentioned_p (XEXP (note, 0), in)
1261 && ! refers_to_regno_for_reload_p (regno,
1262 (regno
1263 + HARD_REGNO_NREGS (regno,
1264 inmode)),
1265 PATTERN (this_insn), inloc)
1266 /* If this is also an output reload, IN cannot be used as
1267 the reload register if it is set in this insn unless IN
1268 is also OUT. */
1269 && (out == 0 || in == out
1270 || ! hard_reg_set_here_p (regno,
1271 (regno
1272 + HARD_REGNO_NREGS (regno,
1273 inmode)),
1274 PATTERN (this_insn)))
1275 /* ??? Why is this code so different from the previous?
1276 Is there any simple coherent way to describe the two together?
1277 What's going on here. */
1278 && (in != out
1279 || (GET_CODE (in) == SUBREG
1280 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1281 / UNITS_PER_WORD)
1282 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1283 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1284 /* Make sure the operand fits in the reg that dies. */
1285 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1286 && HARD_REGNO_MODE_OK (regno, inmode)
1287 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1288 && HARD_REGNO_MODE_OK (regno, outmode)
1289 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1290 && !fixed_regs[regno])
1291 {
1292 reload_reg_rtx[i] = gen_rtx (REG, inmode, regno);
1293 break;
1294 }
1295 }
1296
1297 if (out)
1298 output_reloadnum = i;
1299
1300 return i;
1301 }
1302
1303 /* Record an additional place we must replace a value
1304 for which we have already recorded a reload.
1305 RELOADNUM is the value returned by push_reload
1306 when the reload was recorded.
1307 This is used in insn patterns that use match_dup. */
1308
1309 static void
1310 push_replacement (loc, reloadnum, mode)
1311 rtx *loc;
1312 int reloadnum;
1313 enum machine_mode mode;
1314 {
1315 if (replace_reloads)
1316 {
1317 register struct replacement *r = &replacements[n_replacements++];
1318 r->what = reloadnum;
1319 r->where = loc;
1320 r->subreg_loc = 0;
1321 r->mode = mode;
1322 }
1323 }
1324 \f
1325 /* Transfer all replacements that used to be in reload FROM to be in
1326 reload TO. */
1327
1328 void
1329 transfer_replacements (to, from)
1330 int to, from;
1331 {
1332 int i;
1333
1334 for (i = 0; i < n_replacements; i++)
1335 if (replacements[i].what == from)
1336 replacements[i].what = to;
1337 }
1338 \f
1339 /* If there is only one output reload, and it is not for an earlyclobber
1340 operand, try to combine it with a (logically unrelated) input reload
1341 to reduce the number of reload registers needed.
1342
1343 This is safe if the input reload does not appear in
1344 the value being output-reloaded, because this implies
1345 it is not needed any more once the original insn completes.
1346
1347 If that doesn't work, see we can use any of the registers that
1348 die in this insn as a reload register. We can if it is of the right
1349 class and does not appear in the value being output-reloaded. */
1350
1351 static void
1352 combine_reloads ()
1353 {
1354 int i;
1355 int output_reload = -1;
1356 rtx note;
1357
1358 /* Find the output reload; return unless there is exactly one
1359 and that one is mandatory. */
1360
1361 for (i = 0; i < n_reloads; i++)
1362 if (reload_out[i] != 0)
1363 {
1364 if (output_reload >= 0)
1365 return;
1366 output_reload = i;
1367 }
1368
1369 if (output_reload < 0 || reload_optional[output_reload])
1370 return;
1371
1372 /* An input-output reload isn't combinable. */
1373
1374 if (reload_in[output_reload] != 0)
1375 return;
1376
1377 /* If this reload is for an earlyclobber operand, we can't do anything. */
1378
1379 for (i = 0; i < n_earlyclobbers; i++)
1380 if (reload_out[output_reload] == reload_earlyclobbers[i])
1381 return;
1382
1383 /* Check each input reload; can we combine it? */
1384
1385 for (i = 0; i < n_reloads; i++)
1386 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1387 /* Life span of this reload must not extend past main insn. */
1388 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
1389 && reload_when_needed[i] != RELOAD_OTHER
1390 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1391 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1392 reload_outmode[output_reload]))
1393 && reload_inc[i] == 0
1394 && reload_reg_rtx[i] == 0
1395 /* Don't combine two reloads with different secondary reloads. */
1396 && (reload_secondary_reload[i] == reload_secondary_reload[output_reload]
1397 || reload_secondary_reload[i] == -1
1398 || reload_secondary_reload[output_reload] == -1)
1399 #ifdef SECONDARY_MEMORY_NEEDED
1400 /* Likewise for different secondary memory locations. */
1401 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1402 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1403 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1404 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
1405 #endif
1406 #ifdef SMALL_REGISTER_CLASSES
1407 && reload_reg_class[i] == reload_reg_class[output_reload]
1408 #else
1409 && (reg_class_subset_p (reload_reg_class[i],
1410 reload_reg_class[output_reload])
1411 || reg_class_subset_p (reload_reg_class[output_reload],
1412 reload_reg_class[i]))
1413 #endif
1414 && (MATCHES (reload_in[i], reload_out[output_reload])
1415 /* Args reversed because the first arg seems to be
1416 the one that we imagine being modified
1417 while the second is the one that might be affected. */
1418 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1419 reload_in[i])
1420 /* However, if the input is a register that appears inside
1421 the output, then we also can't share.
1422 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1423 If the same reload reg is used for both reg 69 and the
1424 result to be stored in memory, then that result
1425 will clobber the address of the memory ref. */
1426 && ! (GET_CODE (reload_in[i]) == REG
1427 && reg_overlap_mentioned_for_reload_p (reload_in[i],
1428 reload_out[output_reload]))))
1429 && (reg_class_size[(int) reload_reg_class[i]]
1430 #ifdef SMALL_REGISTER_CLASSES
1431 || 1
1432 #endif
1433 )
1434 /* We will allow making things slightly worse by combining an
1435 input and an output, but no worse than that. */
1436 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1437 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
1438 {
1439 int j;
1440
1441 /* We have found a reload to combine with! */
1442 reload_out[i] = reload_out[output_reload];
1443 reload_outmode[i] = reload_outmode[output_reload];
1444 /* Mark the old output reload as inoperative. */
1445 reload_out[output_reload] = 0;
1446 /* The combined reload is needed for the entire insn. */
1447 reload_when_needed[i] = RELOAD_OTHER;
1448 /* If the output reload had a secondary reload, copy it. */
1449 if (reload_secondary_reload[output_reload] != -1)
1450 reload_secondary_reload[i] = reload_secondary_reload[output_reload];
1451 #ifdef SECONDARY_MEMORY_NEEDED
1452 /* Copy any secondary MEM. */
1453 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1454 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1455 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
1456 #endif
1457 /* If required, minimize the register class. */
1458 if (reg_class_subset_p (reload_reg_class[output_reload],
1459 reload_reg_class[i]))
1460 reload_reg_class[i] = reload_reg_class[output_reload];
1461
1462 /* Transfer all replacements from the old reload to the combined. */
1463 for (j = 0; j < n_replacements; j++)
1464 if (replacements[j].what == output_reload)
1465 replacements[j].what = i;
1466
1467 return;
1468 }
1469
1470 /* If this insn has only one operand that is modified or written (assumed
1471 to be the first), it must be the one corresponding to this reload. It
1472 is safe to use anything that dies in this insn for that output provided
1473 that it does not occur in the output (we already know it isn't an
1474 earlyclobber. If this is an asm insn, give up. */
1475
1476 if (INSN_CODE (this_insn) == -1)
1477 return;
1478
1479 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1480 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1481 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1482 return;
1483
1484 /* See if some hard register that dies in this insn and is not used in
1485 the output is the right class. Only works if the register we pick
1486 up can fully hold our output reload. */
1487 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1488 if (REG_NOTE_KIND (note) == REG_DEAD
1489 && GET_CODE (XEXP (note, 0)) == REG
1490 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1491 reload_out[output_reload])
1492 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1493 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1494 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1495 REGNO (XEXP (note, 0)))
1496 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1497 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1498 && ! fixed_regs[REGNO (XEXP (note, 0))])
1499 {
1500 reload_reg_rtx[output_reload] = gen_rtx (REG,
1501 reload_outmode[output_reload],
1502 REGNO (XEXP (note, 0)));
1503 return;
1504 }
1505 }
1506 \f
1507 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1508 See if one of IN and OUT is a register that may be used;
1509 this is desirable since a spill-register won't be needed.
1510 If so, return the register rtx that proves acceptable.
1511
1512 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1513 CLASS is the register class required for the reload.
1514
1515 If FOR_REAL is >= 0, it is the number of the reload,
1516 and in some cases when it can be discovered that OUT doesn't need
1517 to be computed, clear out reload_out[FOR_REAL].
1518
1519 If FOR_REAL is -1, this should not be done, because this call
1520 is just to see if a register can be found, not to find and install it. */
1521
1522 static rtx
1523 find_dummy_reload (real_in, real_out, inloc, outloc, class, for_real)
1524 rtx real_in, real_out;
1525 rtx *inloc, *outloc;
1526 enum reg_class class;
1527 int for_real;
1528 {
1529 rtx in = real_in;
1530 rtx out = real_out;
1531 int in_offset = 0;
1532 int out_offset = 0;
1533 rtx value = 0;
1534
1535 /* If operands exceed a word, we can't use either of them
1536 unless they have the same size. */
1537 if (GET_MODE_SIZE (GET_MODE (real_out)) != GET_MODE_SIZE (GET_MODE (real_in))
1538 && (GET_MODE_SIZE (GET_MODE (real_out)) > UNITS_PER_WORD
1539 || GET_MODE_SIZE (GET_MODE (real_in)) > UNITS_PER_WORD))
1540 return 0;
1541
1542 /* Find the inside of any subregs. */
1543 while (GET_CODE (out) == SUBREG)
1544 {
1545 out_offset = SUBREG_WORD (out);
1546 out = SUBREG_REG (out);
1547 }
1548 while (GET_CODE (in) == SUBREG)
1549 {
1550 in_offset = SUBREG_WORD (in);
1551 in = SUBREG_REG (in);
1552 }
1553
1554 /* Narrow down the reg class, the same way push_reload will;
1555 otherwise we might find a dummy now, but push_reload won't. */
1556 class = PREFERRED_RELOAD_CLASS (in, class);
1557
1558 /* See if OUT will do. */
1559 if (GET_CODE (out) == REG
1560 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1561 {
1562 register int regno = REGNO (out) + out_offset;
1563 int nwords = HARD_REGNO_NREGS (regno, GET_MODE (real_out));
1564 rtx saved_rtx;
1565
1566 /* When we consider whether the insn uses OUT,
1567 ignore references within IN. They don't prevent us
1568 from copying IN into OUT, because those refs would
1569 move into the insn that reloads IN.
1570
1571 However, we only ignore IN in its role as this reload.
1572 If the insn uses IN elsewhere and it contains OUT,
1573 that counts. We can't be sure it's the "same" operand
1574 so it might not go through this reload. */
1575 saved_rtx = *inloc;
1576 *inloc = const0_rtx;
1577
1578 if (regno < FIRST_PSEUDO_REGISTER
1579 /* A fixed reg that can overlap other regs better not be used
1580 for reloading in any way. */
1581 #ifdef OVERLAPPING_REGNO_P
1582 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1583 #endif
1584 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1585 PATTERN (this_insn), outloc))
1586 {
1587 int i;
1588 for (i = 0; i < nwords; i++)
1589 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1590 regno + i))
1591 break;
1592
1593 if (i == nwords)
1594 {
1595 if (GET_CODE (real_out) == REG)
1596 value = real_out;
1597 else
1598 value = gen_rtx (REG, GET_MODE (real_out), regno);
1599 }
1600 }
1601
1602 *inloc = saved_rtx;
1603 }
1604
1605 /* Consider using IN if OUT was not acceptable
1606 or if OUT dies in this insn (like the quotient in a divmod insn).
1607 We can't use IN unless it is dies in this insn,
1608 which means we must know accurately which hard regs are live.
1609 Also, the result can't go in IN if IN is used within OUT. */
1610 if (hard_regs_live_known
1611 && GET_CODE (in) == REG
1612 && REGNO (in) < FIRST_PSEUDO_REGISTER
1613 && (value == 0
1614 || find_reg_note (this_insn, REG_UNUSED, real_out))
1615 && find_reg_note (this_insn, REG_DEAD, real_in)
1616 && !fixed_regs[REGNO (in)]
1617 && HARD_REGNO_MODE_OK (REGNO (in), GET_MODE (out)))
1618 {
1619 register int regno = REGNO (in) + in_offset;
1620 int nwords = HARD_REGNO_NREGS (regno, GET_MODE (real_in));
1621
1622 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1623 && ! hard_reg_set_here_p (regno, regno + nwords,
1624 PATTERN (this_insn)))
1625 {
1626 int i;
1627 for (i = 0; i < nwords; i++)
1628 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1629 regno + i))
1630 break;
1631
1632 if (i == nwords)
1633 {
1634 /* If we were going to use OUT as the reload reg
1635 and changed our mind, it means OUT is a dummy that
1636 dies here. So don't bother copying value to it. */
1637 if (for_real >= 0 && value == real_out)
1638 reload_out[for_real] = 0;
1639 if (GET_CODE (real_in) == REG)
1640 value = real_in;
1641 else
1642 value = gen_rtx (REG, GET_MODE (real_in), regno);
1643 }
1644 }
1645 }
1646
1647 return value;
1648 }
1649 \f
1650 /* This page contains subroutines used mainly for determining
1651 whether the IN or an OUT of a reload can serve as the
1652 reload register. */
1653
1654 /* Return 1 if expression X alters a hard reg in the range
1655 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1656 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1657 X should be the body of an instruction. */
1658
1659 static int
1660 hard_reg_set_here_p (beg_regno, end_regno, x)
1661 register int beg_regno, end_regno;
1662 rtx x;
1663 {
1664 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1665 {
1666 register rtx op0 = SET_DEST (x);
1667 while (GET_CODE (op0) == SUBREG)
1668 op0 = SUBREG_REG (op0);
1669 if (GET_CODE (op0) == REG)
1670 {
1671 register int r = REGNO (op0);
1672 /* See if this reg overlaps range under consideration. */
1673 if (r < end_regno
1674 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1675 return 1;
1676 }
1677 }
1678 else if (GET_CODE (x) == PARALLEL)
1679 {
1680 register int i = XVECLEN (x, 0) - 1;
1681 for (; i >= 0; i--)
1682 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1683 return 1;
1684 }
1685
1686 return 0;
1687 }
1688
1689 /* Return 1 if ADDR is a valid memory address for mode MODE,
1690 and check that each pseudo reg has the proper kind of
1691 hard reg. */
1692
1693 int
1694 strict_memory_address_p (mode, addr)
1695 enum machine_mode mode;
1696 register rtx addr;
1697 {
1698 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1699 return 0;
1700
1701 win:
1702 return 1;
1703 }
1704 \f
1705 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1706 if they are the same hard reg, and has special hacks for
1707 autoincrement and autodecrement.
1708 This is specifically intended for find_reloads to use
1709 in determining whether two operands match.
1710 X is the operand whose number is the lower of the two.
1711
1712 The value is 2 if Y contains a pre-increment that matches
1713 a non-incrementing address in X. */
1714
1715 /* ??? To be completely correct, we should arrange to pass
1716 for X the output operand and for Y the input operand.
1717 For now, we assume that the output operand has the lower number
1718 because that is natural in (SET output (... input ...)). */
1719
1720 int
1721 operands_match_p (x, y)
1722 register rtx x, y;
1723 {
1724 register int i;
1725 register RTX_CODE code = GET_CODE (x);
1726 register char *fmt;
1727 int success_2;
1728
1729 if (x == y)
1730 return 1;
1731 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1732 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1733 && GET_CODE (SUBREG_REG (y)) == REG)))
1734 {
1735 register int j;
1736
1737 if (code == SUBREG)
1738 {
1739 i = REGNO (SUBREG_REG (x));
1740 if (i >= FIRST_PSEUDO_REGISTER)
1741 goto slow;
1742 i += SUBREG_WORD (x);
1743 }
1744 else
1745 i = REGNO (x);
1746
1747 if (GET_CODE (y) == SUBREG)
1748 {
1749 j = REGNO (SUBREG_REG (y));
1750 if (j >= FIRST_PSEUDO_REGISTER)
1751 goto slow;
1752 j += SUBREG_WORD (y);
1753 }
1754 else
1755 j = REGNO (y);
1756
1757 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1758 multiple hard register group, so that for example (reg:DI 0) and
1759 (reg:SI 1) will be considered the same register. */
1760 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1761 && i < FIRST_PSEUDO_REGISTER)
1762 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1763 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1764 && j < FIRST_PSEUDO_REGISTER)
1765 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1766
1767 return i == j;
1768 }
1769 /* If two operands must match, because they are really a single
1770 operand of an assembler insn, then two postincrements are invalid
1771 because the assembler insn would increment only once.
1772 On the other hand, an postincrement matches ordinary indexing
1773 if the postincrement is the output operand. */
1774 if (code == POST_DEC || code == POST_INC)
1775 return operands_match_p (XEXP (x, 0), y);
1776 /* Two preincrements are invalid
1777 because the assembler insn would increment only once.
1778 On the other hand, an preincrement matches ordinary indexing
1779 if the preincrement is the input operand.
1780 In this case, return 2, since some callers need to do special
1781 things when this happens. */
1782 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
1783 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
1784
1785 slow:
1786
1787 /* Now we have disposed of all the cases
1788 in which different rtx codes can match. */
1789 if (code != GET_CODE (y))
1790 return 0;
1791 if (code == LABEL_REF)
1792 return XEXP (x, 0) == XEXP (y, 0);
1793 if (code == SYMBOL_REF)
1794 return XSTR (x, 0) == XSTR (y, 0);
1795
1796 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1797
1798 if (GET_MODE (x) != GET_MODE (y))
1799 return 0;
1800
1801 /* Compare the elements. If any pair of corresponding elements
1802 fail to match, return 0 for the whole things. */
1803
1804 success_2 = 0;
1805 fmt = GET_RTX_FORMAT (code);
1806 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1807 {
1808 int val;
1809 switch (fmt[i])
1810 {
1811 case 'w':
1812 if (XWINT (x, i) != XWINT (y, i))
1813 return 0;
1814 break;
1815
1816 case 'i':
1817 if (XINT (x, i) != XINT (y, i))
1818 return 0;
1819 break;
1820
1821 case 'e':
1822 val = operands_match_p (XEXP (x, i), XEXP (y, i));
1823 if (val == 0)
1824 return 0;
1825 /* If any subexpression returns 2,
1826 we should return 2 if we are successful. */
1827 if (val == 2)
1828 success_2 = 1;
1829 break;
1830
1831 case '0':
1832 break;
1833
1834 /* It is believed that rtx's at this level will never
1835 contain anything but integers and other rtx's,
1836 except for within LABEL_REFs and SYMBOL_REFs. */
1837 default:
1838 abort ();
1839 }
1840 }
1841 return 1 + success_2;
1842 }
1843 \f
1844 /* Return the number of times character C occurs in string S. */
1845
1846 int
1847 n_occurrences (c, s)
1848 char c;
1849 char *s;
1850 {
1851 int n = 0;
1852 while (*s)
1853 n += (*s++ == c);
1854 return n;
1855 }
1856 \f
1857 /* Describe the range of registers or memory referenced by X.
1858 If X is a register, set REG_FLAG and put the first register
1859 number into START and the last plus one into END.
1860 If X is a memory reference, put a base address into BASE
1861 and a range of integer offsets into START and END.
1862 If X is pushing on the stack, we can assume it causes no trouble,
1863 so we set the SAFE field. */
1864
1865 static struct decomposition
1866 decompose (x)
1867 rtx x;
1868 {
1869 struct decomposition val;
1870 int all_const = 0;
1871
1872 val.reg_flag = 0;
1873 val.safe = 0;
1874 if (GET_CODE (x) == MEM)
1875 {
1876 rtx base, offset = 0;
1877 rtx addr = XEXP (x, 0);
1878
1879 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
1880 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
1881 {
1882 val.base = XEXP (addr, 0);
1883 val.start = - GET_MODE_SIZE (GET_MODE (x));
1884 val.end = GET_MODE_SIZE (GET_MODE (x));
1885 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
1886 return val;
1887 }
1888
1889 if (GET_CODE (addr) == CONST)
1890 {
1891 addr = XEXP (addr, 0);
1892 all_const = 1;
1893 }
1894 if (GET_CODE (addr) == PLUS)
1895 {
1896 if (CONSTANT_P (XEXP (addr, 0)))
1897 {
1898 base = XEXP (addr, 1);
1899 offset = XEXP (addr, 0);
1900 }
1901 else if (CONSTANT_P (XEXP (addr, 1)))
1902 {
1903 base = XEXP (addr, 0);
1904 offset = XEXP (addr, 1);
1905 }
1906 }
1907
1908 if (offset == 0)
1909 {
1910 base = addr;
1911 offset = const0_rtx;
1912 }
1913 if (GET_CODE (offset) == CONST)
1914 offset = XEXP (offset, 0);
1915 if (GET_CODE (offset) == PLUS)
1916 {
1917 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
1918 {
1919 base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 1));
1920 offset = XEXP (offset, 0);
1921 }
1922 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
1923 {
1924 base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 0));
1925 offset = XEXP (offset, 1);
1926 }
1927 else
1928 {
1929 base = gen_rtx (PLUS, GET_MODE (base), base, offset);
1930 offset = const0_rtx;
1931 }
1932 }
1933 else if (GET_CODE (offset) != CONST_INT)
1934 {
1935 base = gen_rtx (PLUS, GET_MODE (base), base, offset);
1936 offset = const0_rtx;
1937 }
1938
1939 if (all_const && GET_CODE (base) == PLUS)
1940 base = gen_rtx (CONST, GET_MODE (base), base);
1941
1942 if (GET_CODE (offset) != CONST_INT)
1943 abort ();
1944
1945 val.start = INTVAL (offset);
1946 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
1947 val.base = base;
1948 return val;
1949 }
1950 else if (GET_CODE (x) == REG)
1951 {
1952 val.reg_flag = 1;
1953 val.start = true_regnum (x);
1954 if (val.start < 0)
1955 {
1956 /* A pseudo with no hard reg. */
1957 val.start = REGNO (x);
1958 val.end = val.start + 1;
1959 }
1960 else
1961 /* A hard reg. */
1962 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
1963 }
1964 else if (GET_CODE (x) == SUBREG)
1965 {
1966 if (GET_CODE (SUBREG_REG (x)) != REG)
1967 /* This could be more precise, but it's good enough. */
1968 return decompose (SUBREG_REG (x));
1969 val.reg_flag = 1;
1970 val.start = true_regnum (x);
1971 if (val.start < 0)
1972 return decompose (SUBREG_REG (x));
1973 else
1974 /* A hard reg. */
1975 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
1976 }
1977 else if (CONSTANT_P (x)
1978 /* This hasn't been assigned yet, so it can't conflict yet. */
1979 || GET_CODE (x) == SCRATCH)
1980 val.safe = 1;
1981 else
1982 abort ();
1983 return val;
1984 }
1985
1986 /* Return 1 if altering Y will not modify the value of X.
1987 Y is also described by YDATA, which should be decompose (Y). */
1988
1989 static int
1990 immune_p (x, y, ydata)
1991 rtx x, y;
1992 struct decomposition ydata;
1993 {
1994 struct decomposition xdata;
1995
1996 if (ydata.reg_flag)
1997 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
1998 if (ydata.safe)
1999 return 1;
2000
2001 if (GET_CODE (y) != MEM)
2002 abort ();
2003 /* If Y is memory and X is not, Y can't affect X. */
2004 if (GET_CODE (x) != MEM)
2005 return 1;
2006
2007 xdata = decompose (x);
2008
2009 if (! rtx_equal_p (xdata.base, ydata.base))
2010 {
2011 /* If bases are distinct symbolic constants, there is no overlap. */
2012 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2013 return 1;
2014 /* Constants and stack slots never overlap. */
2015 if (CONSTANT_P (xdata.base)
2016 && (ydata.base == frame_pointer_rtx
2017 || ydata.base == stack_pointer_rtx))
2018 return 1;
2019 if (CONSTANT_P (ydata.base)
2020 && (xdata.base == frame_pointer_rtx
2021 || xdata.base == stack_pointer_rtx))
2022 return 1;
2023 /* If either base is variable, we don't know anything. */
2024 return 0;
2025 }
2026
2027
2028 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2029 }
2030
2031 /* Similar, but calls decompose. */
2032
2033 int
2034 safe_from_earlyclobber (op, clobber)
2035 rtx op, clobber;
2036 {
2037 struct decomposition early_data;
2038
2039 early_data = decompose (clobber);
2040 return immune_p (op, clobber, early_data);
2041 }
2042 \f
2043 /* Main entry point of this file: search the body of INSN
2044 for values that need reloading and record them with push_reload.
2045 REPLACE nonzero means record also where the values occur
2046 so that subst_reloads can be used.
2047
2048 IND_LEVELS says how many levels of indirection are supported by this
2049 machine; a value of zero means that a memory reference is not a valid
2050 memory address.
2051
2052 LIVE_KNOWN says we have valid information about which hard
2053 regs are live at each point in the program; this is true when
2054 we are called from global_alloc but false when stupid register
2055 allocation has been done.
2056
2057 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2058 which is nonnegative if the reg has been commandeered for reloading into.
2059 It is copied into STATIC_RELOAD_REG_P and referenced from there
2060 by various subroutines. */
2061
2062 void
2063 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2064 rtx insn;
2065 int replace, ind_levels;
2066 int live_known;
2067 short *reload_reg_p;
2068 {
2069 #ifdef REGISTER_CONSTRAINTS
2070
2071 register int insn_code_number;
2072 register int i, j;
2073 int noperands;
2074 /* These are the constraints for the insn. We don't change them. */
2075 char *constraints1[MAX_RECOG_OPERANDS];
2076 /* These start out as the constraints for the insn
2077 and they are chewed up as we consider alternatives. */
2078 char *constraints[MAX_RECOG_OPERANDS];
2079 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2080 a register. */
2081 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2082 char pref_or_nothing[MAX_RECOG_OPERANDS];
2083 /* Nonzero for a MEM operand whose entire address needs a reload. */
2084 int address_reloaded[MAX_RECOG_OPERANDS];
2085 /* Value of enum reload_type to use for operand. */
2086 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2087 /* Value of enum reload_type to use within address of operand. */
2088 enum reload_type address_type[MAX_RECOG_OPERANDS];
2089 /* Save the usage of each operand. */
2090 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2091 int no_input_reloads = 0, no_output_reloads = 0;
2092 int n_alternatives;
2093 int this_alternative[MAX_RECOG_OPERANDS];
2094 char this_alternative_win[MAX_RECOG_OPERANDS];
2095 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2096 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2097 int this_alternative_matches[MAX_RECOG_OPERANDS];
2098 int swapped;
2099 int goal_alternative[MAX_RECOG_OPERANDS];
2100 int this_alternative_number;
2101 int goal_alternative_number;
2102 int operand_reloadnum[MAX_RECOG_OPERANDS];
2103 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2104 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2105 char goal_alternative_win[MAX_RECOG_OPERANDS];
2106 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2107 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2108 int goal_alternative_swapped;
2109 int best;
2110 int commutative;
2111 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2112 rtx substed_operand[MAX_RECOG_OPERANDS];
2113 rtx body = PATTERN (insn);
2114 rtx set = single_set (insn);
2115 int goal_earlyclobber, this_earlyclobber;
2116 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2117
2118 this_insn = insn;
2119 this_insn_is_asm = 0; /* Tentative. */
2120 n_reloads = 0;
2121 n_replacements = 0;
2122 n_memlocs = 0;
2123 n_earlyclobbers = 0;
2124 replace_reloads = replace;
2125 hard_regs_live_known = live_known;
2126 static_reload_reg_p = reload_reg_p;
2127
2128 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2129 neither are insns that SET cc0. Insns that use CC0 are not allowed
2130 to have any input reloads. */
2131 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2132 no_output_reloads = 1;
2133
2134 #ifdef HAVE_cc0
2135 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2136 no_input_reloads = 1;
2137 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2138 no_output_reloads = 1;
2139 #endif
2140
2141 #ifdef SECONDARY_MEMORY_NEEDED
2142 /* The eliminated forms of any secondary memory locations are per-insn, so
2143 clear them out here. */
2144
2145 bzero (secondary_memlocs_elim, sizeof secondary_memlocs_elim);
2146 #endif
2147
2148 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2149 Make OPERANDS point to a vector of operand values.
2150 Make OPERAND_LOCS point to a vector of pointers to
2151 where the operands were found.
2152 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2153 constraint-strings for this insn.
2154 Return if the insn needs no reload processing. */
2155
2156 switch (GET_CODE (body))
2157 {
2158 case USE:
2159 case CLOBBER:
2160 case ASM_INPUT:
2161 case ADDR_VEC:
2162 case ADDR_DIFF_VEC:
2163 return;
2164
2165 case SET:
2166 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2167 is cheap to move between them. If it is not, there may not be an insn
2168 to do the copy, so we may need a reload. */
2169 if (GET_CODE (SET_DEST (body)) == REG
2170 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2171 && GET_CODE (SET_SRC (body)) == REG
2172 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2173 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2174 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2175 return;
2176 case PARALLEL:
2177 case ASM_OPERANDS:
2178 reload_n_operands = noperands = asm_noperands (body);
2179 if (noperands >= 0)
2180 {
2181 /* This insn is an `asm' with operands. */
2182
2183 insn_code_number = -1;
2184 this_insn_is_asm = 1;
2185
2186 /* expand_asm_operands makes sure there aren't too many operands. */
2187 if (noperands > MAX_RECOG_OPERANDS)
2188 abort ();
2189
2190 /* Now get the operand values and constraints out of the insn. */
2191
2192 decode_asm_operands (body, recog_operand, recog_operand_loc,
2193 constraints, operand_mode);
2194 if (noperands > 0)
2195 {
2196 bcopy (constraints, constraints1, noperands * sizeof (char *));
2197 n_alternatives = n_occurrences (',', constraints[0]) + 1;
2198 for (i = 1; i < noperands; i++)
2199 if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
2200 {
2201 error_for_asm (insn, "operand constraints differ in number of alternatives");
2202 /* Avoid further trouble with this insn. */
2203 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
2204 n_reloads = 0;
2205 return;
2206 }
2207 }
2208 break;
2209 }
2210
2211 default:
2212 /* Ordinary insn: recognize it, get the operands via insn_extract
2213 and get the constraints. */
2214
2215 insn_code_number = recog_memoized (insn);
2216 if (insn_code_number < 0)
2217 fatal_insn_not_found (insn);
2218
2219 reload_n_operands = noperands = insn_n_operands[insn_code_number];
2220 n_alternatives = insn_n_alternatives[insn_code_number];
2221 /* Just return "no reloads" if insn has no operands with constraints. */
2222 if (n_alternatives == 0)
2223 return;
2224 insn_extract (insn);
2225 for (i = 0; i < noperands; i++)
2226 {
2227 constraints[i] = constraints1[i]
2228 = insn_operand_constraint[insn_code_number][i];
2229 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2230 }
2231 }
2232
2233 if (noperands == 0)
2234 return;
2235
2236 commutative = -1;
2237
2238 /* If we will need to know, later, whether some pair of operands
2239 are the same, we must compare them now and save the result.
2240 Reloading the base and index registers will clobber them
2241 and afterward they will fail to match. */
2242
2243 for (i = 0; i < noperands; i++)
2244 {
2245 register char *p;
2246 register int c;
2247
2248 substed_operand[i] = recog_operand[i];
2249 p = constraints[i];
2250
2251 modified[i] = RELOAD_READ;
2252
2253 /* Scan this operand's constraint to see if it is an output operand,
2254 an in-out operand, is commutative, or should match another. */
2255
2256 while (c = *p++)
2257 {
2258 if (c == '=')
2259 modified[i] = RELOAD_WRITE;
2260 else if (c == '+')
2261 modified[i] = RELOAD_READ_WRITE;
2262 else if (c == '%')
2263 {
2264 /* The last operand should not be marked commutative. */
2265 if (i == noperands - 1)
2266 {
2267 if (this_insn_is_asm)
2268 warning_for_asm (this_insn,
2269 "`%%' constraint used with last operand");
2270 else
2271 abort ();
2272 }
2273 else
2274 commutative = i;
2275 }
2276 else if (c >= '0' && c <= '9')
2277 {
2278 c -= '0';
2279 operands_match[c][i]
2280 = operands_match_p (recog_operand[c], recog_operand[i]);
2281
2282 /* An operand may not match itself. */
2283 if (c == i)
2284 {
2285 if (this_insn_is_asm)
2286 warning_for_asm (this_insn,
2287 "operand %d has constraint %d", i, c);
2288 else
2289 abort ();
2290 }
2291
2292 /* If C can be commuted with C+1, and C might need to match I,
2293 then C+1 might also need to match I. */
2294 if (commutative >= 0)
2295 {
2296 if (c == commutative || c == commutative + 1)
2297 {
2298 int other = c + (c == commutative ? 1 : -1);
2299 operands_match[other][i]
2300 = operands_match_p (recog_operand[other], recog_operand[i]);
2301 }
2302 if (i == commutative || i == commutative + 1)
2303 {
2304 int other = i + (i == commutative ? 1 : -1);
2305 operands_match[c][other]
2306 = operands_match_p (recog_operand[c], recog_operand[other]);
2307 }
2308 /* Note that C is supposed to be less than I.
2309 No need to consider altering both C and I because in
2310 that case we would alter one into the other. */
2311 }
2312 }
2313 }
2314 }
2315
2316 /* Examine each operand that is a memory reference or memory address
2317 and reload parts of the addresses into index registers.
2318 Also here any references to pseudo regs that didn't get hard regs
2319 but are equivalent to constants get replaced in the insn itself
2320 with those constants. Nobody will ever see them again.
2321
2322 Finally, set up the preferred classes of each operand. */
2323
2324 for (i = 0; i < noperands; i++)
2325 {
2326 register RTX_CODE code = GET_CODE (recog_operand[i]);
2327
2328 address_reloaded[i] = 0;
2329 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2330 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2331 : RELOAD_OTHER);
2332 address_type[i]
2333 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2334 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2335 : RELOAD_OTHER);
2336
2337 if (constraints[i][0] == 'p')
2338 {
2339 find_reloads_address (VOIDmode, NULL_PTR,
2340 recog_operand[i], recog_operand_loc[i],
2341 i, operand_type[i], ind_levels);
2342 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2343 }
2344 else if (code == MEM)
2345 {
2346 if (find_reloads_address (GET_MODE (recog_operand[i]),
2347 recog_operand_loc[i],
2348 XEXP (recog_operand[i], 0),
2349 &XEXP (recog_operand[i], 0),
2350 i, address_type[i], ind_levels))
2351 address_reloaded[i] = 1;
2352 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2353 }
2354 else if (code == SUBREG)
2355 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2356 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2357 ind_levels,
2358 set != 0
2359 && &SET_DEST (set) == recog_operand_loc[i]);
2360 else if (code == REG)
2361 {
2362 /* This is equivalent to calling find_reloads_toplev.
2363 The code is duplicated for speed.
2364 When we find a pseudo always equivalent to a constant,
2365 we replace it by the constant. We must be sure, however,
2366 that we don't try to replace it in the insn in which it
2367 is being set. */
2368 register int regno = REGNO (recog_operand[i]);
2369 if (reg_equiv_constant[regno] != 0
2370 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
2371 substed_operand[i] = recog_operand[i]
2372 = reg_equiv_constant[regno];
2373 #if 0 /* This might screw code in reload1.c to delete prior output-reload
2374 that feeds this insn. */
2375 if (reg_equiv_mem[regno] != 0)
2376 substed_operand[i] = recog_operand[i]
2377 = reg_equiv_mem[regno];
2378 #endif
2379 if (reg_equiv_address[regno] != 0)
2380 {
2381 /* If reg_equiv_address is not a constant address, copy it,
2382 since it may be shared. */
2383 rtx address = reg_equiv_address[regno];
2384
2385 if (rtx_varies_p (address))
2386 address = copy_rtx (address);
2387
2388 /* If this is an output operand, we must output a CLOBBER
2389 after INSN so find_equiv_reg knows REGNO is being written.
2390 Mark this insn specially, do we can put our output reloads
2391 after it. */
2392
2393 if (modified[i] != RELOAD_READ)
2394 PUT_MODE (emit_insn_after (gen_rtx (CLOBBER, VOIDmode,
2395 recog_operand[i]),
2396 insn),
2397 DImode);
2398
2399 *recog_operand_loc[i] = recog_operand[i]
2400 = gen_rtx (MEM, GET_MODE (recog_operand[i]), address);
2401 RTX_UNCHANGING_P (recog_operand[i])
2402 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2403 find_reloads_address (GET_MODE (recog_operand[i]),
2404 recog_operand_loc[i],
2405 XEXP (recog_operand[i], 0),
2406 &XEXP (recog_operand[i], 0),
2407 i, address_type[i], ind_levels);
2408 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2409 }
2410 }
2411 /* If the operand is still a register (we didn't replace it with an
2412 equivalent), get the preferred class to reload it into. */
2413 code = GET_CODE (recog_operand[i]);
2414 preferred_class[i]
2415 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
2416 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2417 pref_or_nothing[i]
2418 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
2419 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
2420 }
2421
2422 /* If this is simply a copy from operand 1 to operand 0, merge the
2423 preferred classes for the operands. */
2424 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2425 && recog_operand[1] == SET_SRC (set))
2426 {
2427 preferred_class[0] = preferred_class[1]
2428 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2429 pref_or_nothing[0] |= pref_or_nothing[1];
2430 pref_or_nothing[1] |= pref_or_nothing[0];
2431 }
2432
2433 /* Now see what we need for pseudo-regs that didn't get hard regs
2434 or got the wrong kind of hard reg. For this, we must consider
2435 all the operands together against the register constraints. */
2436
2437 best = MAX_RECOG_OPERANDS + 300;
2438
2439 swapped = 0;
2440 goal_alternative_swapped = 0;
2441 try_swapped:
2442
2443 /* The constraints are made of several alternatives.
2444 Each operand's constraint looks like foo,bar,... with commas
2445 separating the alternatives. The first alternatives for all
2446 operands go together, the second alternatives go together, etc.
2447
2448 First loop over alternatives. */
2449
2450 for (this_alternative_number = 0;
2451 this_alternative_number < n_alternatives;
2452 this_alternative_number++)
2453 {
2454 /* Loop over operands for one constraint alternative. */
2455 /* LOSERS counts those that don't fit this alternative
2456 and would require loading. */
2457 int losers = 0;
2458 /* BAD is set to 1 if it some operand can't fit this alternative
2459 even after reloading. */
2460 int bad = 0;
2461 /* REJECT is a count of how undesirable this alternative says it is
2462 if any reloading is required. If the alternative matches exactly
2463 then REJECT is ignored, but otherwise it gets this much
2464 counted against it in addition to the reloading needed. Each
2465 ? counts three times here since we want the disparaging caused by
2466 a bad register class to only count 1/3 as much. */
2467 int reject = 0;
2468
2469 this_earlyclobber = 0;
2470
2471 for (i = 0; i < noperands; i++)
2472 {
2473 register char *p = constraints[i];
2474 register int win = 0;
2475 /* 0 => this operand can be reloaded somehow for this alternative */
2476 int badop = 1;
2477 /* 0 => this operand can be reloaded if the alternative allows regs. */
2478 int winreg = 0;
2479 int c;
2480 register rtx operand = recog_operand[i];
2481 int offset = 0;
2482 /* Nonzero means this is a MEM that must be reloaded into a reg
2483 regardless of what the constraint says. */
2484 int force_reload = 0;
2485 int offmemok = 0;
2486 int earlyclobber = 0;
2487
2488 /* If the operand is a SUBREG, extract
2489 the REG or MEM (or maybe even a constant) within.
2490 (Constants can occur as a result of reg_equiv_constant.) */
2491
2492 while (GET_CODE (operand) == SUBREG)
2493 {
2494 offset += SUBREG_WORD (operand);
2495 operand = SUBREG_REG (operand);
2496 /* Force reload if this is not a register or if there may may
2497 be a problem accessing the register in the outer mode. */
2498 if (GET_CODE (operand) != REG
2499 #if defined(BYTE_LOADS_ZERO_EXTEND) || defined(BYTE_LOADS_SIGN_EXTEND)
2500 /* ??? The comment below clearly does not match the code.
2501 What the code below actually does is set force_reload
2502 for a paradoxical subreg of a pseudo. rms and kenner
2503 can't see the point of doing this. */
2504 /* Nonparadoxical subreg of a pseudoreg.
2505 Don't to load the full width if on this machine
2506 we expected the fetch to extend. */
2507 || ((GET_MODE_SIZE (operand_mode[i])
2508 > GET_MODE_SIZE (GET_MODE (operand)))
2509 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
2510 #endif
2511 /* Subreg of a hard reg which can't handle the subreg's mode
2512 or which would handle that mode in the wrong number of
2513 registers for subregging to work. */
2514 || (REGNO (operand) < FIRST_PSEUDO_REGISTER
2515 && (! HARD_REGNO_MODE_OK (REGNO (operand),
2516 operand_mode[i])
2517 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2518 && (GET_MODE_SIZE (GET_MODE (operand))
2519 > UNITS_PER_WORD)
2520 && ((GET_MODE_SIZE (GET_MODE (operand))
2521 / UNITS_PER_WORD)
2522 != HARD_REGNO_NREGS (REGNO (operand),
2523 GET_MODE (operand)))))))
2524 force_reload = 1;
2525 }
2526
2527 this_alternative[i] = (int) NO_REGS;
2528 this_alternative_win[i] = 0;
2529 this_alternative_offmemok[i] = 0;
2530 this_alternative_earlyclobber[i] = 0;
2531 this_alternative_matches[i] = -1;
2532
2533 /* An empty constraint or empty alternative
2534 allows anything which matched the pattern. */
2535 if (*p == 0 || *p == ',')
2536 win = 1, badop = 0;
2537
2538 /* Scan this alternative's specs for this operand;
2539 set WIN if the operand fits any letter in this alternative.
2540 Otherwise, clear BADOP if this operand could
2541 fit some letter after reloads,
2542 or set WINREG if this operand could fit after reloads
2543 provided the constraint allows some registers. */
2544
2545 while (*p && (c = *p++) != ',')
2546 switch (c)
2547 {
2548 case '=':
2549 case '+':
2550 case '*':
2551 break;
2552
2553 case '%':
2554 /* The last operand should not be marked commutative. */
2555 if (i != noperands - 1)
2556 commutative = i;
2557 break;
2558
2559 case '?':
2560 reject += 3;
2561 break;
2562
2563 case '!':
2564 reject = 300;
2565 break;
2566
2567 case '#':
2568 /* Ignore rest of this alternative as far as
2569 reloading is concerned. */
2570 while (*p && *p != ',') p++;
2571 break;
2572
2573 case '0':
2574 case '1':
2575 case '2':
2576 case '3':
2577 case '4':
2578 c -= '0';
2579 this_alternative_matches[i] = c;
2580 /* We are supposed to match a previous operand.
2581 If we do, we win if that one did.
2582 If we do not, count both of the operands as losers.
2583 (This is too conservative, since most of the time
2584 only a single reload insn will be needed to make
2585 the two operands win. As a result, this alternative
2586 may be rejected when it is actually desirable.) */
2587 if ((swapped && (c != commutative || i != commutative + 1))
2588 /* If we are matching as if two operands were swapped,
2589 also pretend that operands_match had been computed
2590 with swapped.
2591 But if I is the second of those and C is the first,
2592 don't exchange them, because operands_match is valid
2593 only on one side of its diagonal. */
2594 ? (operands_match
2595 [(c == commutative || c == commutative + 1)
2596 ? 2*commutative + 1 - c : c]
2597 [(i == commutative || i == commutative + 1)
2598 ? 2*commutative + 1 - i : i])
2599 : operands_match[c][i])
2600 win = this_alternative_win[c];
2601 else
2602 {
2603 /* Operands don't match. */
2604 rtx value;
2605 /* Retroactively mark the operand we had to match
2606 as a loser, if it wasn't already. */
2607 if (this_alternative_win[c])
2608 losers++;
2609 this_alternative_win[c] = 0;
2610 if (this_alternative[c] == (int) NO_REGS)
2611 bad = 1;
2612 /* But count the pair only once in the total badness of
2613 this alternative, if the pair can be a dummy reload. */
2614 value
2615 = find_dummy_reload (recog_operand[i], recog_operand[c],
2616 recog_operand_loc[i], recog_operand_loc[c],
2617 this_alternative[c], -1);
2618
2619 if (value != 0)
2620 losers--;
2621 }
2622 /* This can be fixed with reloads if the operand
2623 we are supposed to match can be fixed with reloads. */
2624 badop = 0;
2625 this_alternative[i] = this_alternative[c];
2626 break;
2627
2628 case 'p':
2629 /* All necessary reloads for an address_operand
2630 were handled in find_reloads_address. */
2631 this_alternative[i] = (int) ALL_REGS;
2632 win = 1;
2633 break;
2634
2635 case 'm':
2636 if (force_reload)
2637 break;
2638 if (GET_CODE (operand) == MEM
2639 || (GET_CODE (operand) == REG
2640 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2641 && reg_renumber[REGNO (operand)] < 0))
2642 win = 1;
2643 if (CONSTANT_P (operand))
2644 badop = 0;
2645 break;
2646
2647 case '<':
2648 if (GET_CODE (operand) == MEM
2649 && ! address_reloaded[i]
2650 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2651 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2652 win = 1;
2653 break;
2654
2655 case '>':
2656 if (GET_CODE (operand) == MEM
2657 && ! address_reloaded[i]
2658 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2659 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2660 win = 1;
2661 break;
2662
2663 /* Memory operand whose address is not offsettable. */
2664 case 'V':
2665 if (force_reload)
2666 break;
2667 if (GET_CODE (operand) == MEM
2668 && ! (ind_levels ? offsettable_memref_p (operand)
2669 : offsettable_nonstrict_memref_p (operand))
2670 /* Certain mem addresses will become offsettable
2671 after they themselves are reloaded. This is important;
2672 we don't want our own handling of unoffsettables
2673 to override the handling of reg_equiv_address. */
2674 && !(GET_CODE (XEXP (operand, 0)) == REG
2675 && (ind_levels == 0
2676 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
2677 win = 1;
2678 break;
2679
2680 /* Memory operand whose address is offsettable. */
2681 case 'o':
2682 if (force_reload)
2683 break;
2684 if ((GET_CODE (operand) == MEM
2685 /* If IND_LEVELS, find_reloads_address won't reload a
2686 pseudo that didn't get a hard reg, so we have to
2687 reject that case. */
2688 && (ind_levels ? offsettable_memref_p (operand)
2689 : offsettable_nonstrict_memref_p (operand)))
2690 /* Certain mem addresses will become offsettable
2691 after they themselves are reloaded. This is important;
2692 we don't want our own handling of unoffsettables
2693 to override the handling of reg_equiv_address. */
2694 || (GET_CODE (operand) == MEM
2695 && GET_CODE (XEXP (operand, 0)) == REG
2696 && (ind_levels == 0
2697 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
2698 || (GET_CODE (operand) == REG
2699 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2700 && reg_renumber[REGNO (operand)] < 0))
2701 win = 1;
2702 if (CONSTANT_P (operand) || GET_CODE (operand) == MEM)
2703 badop = 0;
2704 offmemok = 1;
2705 break;
2706
2707 case '&':
2708 /* Output operand that is stored before the need for the
2709 input operands (and their index registers) is over. */
2710 earlyclobber = 1, this_earlyclobber = 1;
2711 break;
2712
2713 case 'E':
2714 /* Match any floating double constant, but only if
2715 we can examine the bits of it reliably. */
2716 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
2717 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
2718 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
2719 break;
2720 if (GET_CODE (operand) == CONST_DOUBLE)
2721 win = 1;
2722 break;
2723
2724 case 'F':
2725 if (GET_CODE (operand) == CONST_DOUBLE)
2726 win = 1;
2727 break;
2728
2729 case 'G':
2730 case 'H':
2731 if (GET_CODE (operand) == CONST_DOUBLE
2732 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
2733 win = 1;
2734 break;
2735
2736 case 's':
2737 if (GET_CODE (operand) == CONST_INT
2738 || (GET_CODE (operand) == CONST_DOUBLE
2739 && GET_MODE (operand) == VOIDmode))
2740 break;
2741 case 'i':
2742 if (CONSTANT_P (operand)
2743 #ifdef LEGITIMATE_PIC_OPERAND_P
2744 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
2745 #endif
2746 )
2747 win = 1;
2748 break;
2749
2750 case 'n':
2751 if (GET_CODE (operand) == CONST_INT
2752 || (GET_CODE (operand) == CONST_DOUBLE
2753 && GET_MODE (operand) == VOIDmode))
2754 win = 1;
2755 break;
2756
2757 case 'I':
2758 case 'J':
2759 case 'K':
2760 case 'L':
2761 case 'M':
2762 case 'N':
2763 case 'O':
2764 case 'P':
2765 if (GET_CODE (operand) == CONST_INT
2766 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
2767 win = 1;
2768 break;
2769
2770 case 'X':
2771 win = 1;
2772 break;
2773
2774 case 'g':
2775 if (! force_reload
2776 /* A PLUS is never a valid operand, but reload can make
2777 it from a register when eliminating registers. */
2778 && GET_CODE (operand) != PLUS
2779 /* A SCRATCH is not a valid operand. */
2780 && GET_CODE (operand) != SCRATCH
2781 #ifdef LEGITIMATE_PIC_OPERAND_P
2782 && (! CONSTANT_P (operand)
2783 || ! flag_pic
2784 || LEGITIMATE_PIC_OPERAND_P (operand))
2785 #endif
2786 && (GENERAL_REGS == ALL_REGS
2787 || GET_CODE (operand) != REG
2788 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
2789 && reg_renumber[REGNO (operand)] < 0)))
2790 win = 1;
2791 /* Drop through into 'r' case */
2792
2793 case 'r':
2794 this_alternative[i]
2795 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
2796 goto reg;
2797
2798 #ifdef EXTRA_CONSTRAINT
2799 case 'Q':
2800 case 'R':
2801 case 'S':
2802 case 'T':
2803 case 'U':
2804 if (EXTRA_CONSTRAINT (operand, c))
2805 win = 1;
2806 break;
2807 #endif
2808
2809 default:
2810 this_alternative[i]
2811 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
2812
2813 reg:
2814 if (GET_MODE (operand) == BLKmode)
2815 break;
2816 winreg = 1;
2817 if (GET_CODE (operand) == REG
2818 && reg_fits_class_p (operand, this_alternative[i],
2819 offset, GET_MODE (recog_operand[i])))
2820 win = 1;
2821 break;
2822 }
2823
2824 constraints[i] = p;
2825
2826 /* If this operand could be handled with a reg,
2827 and some reg is allowed, then this operand can be handled. */
2828 if (winreg && this_alternative[i] != (int) NO_REGS)
2829 badop = 0;
2830
2831 /* Record which operands fit this alternative. */
2832 this_alternative_earlyclobber[i] = earlyclobber;
2833 if (win && ! force_reload)
2834 this_alternative_win[i] = 1;
2835 else
2836 {
2837 this_alternative_offmemok[i] = offmemok;
2838 losers++;
2839 if (badop)
2840 bad = 1;
2841 /* Alternative loses if it has no regs for a reg operand. */
2842 if (GET_CODE (operand) == REG
2843 && this_alternative[i] == (int) NO_REGS
2844 && this_alternative_matches[i] < 0)
2845 bad = 1;
2846
2847 /* Alternative loses if it requires a type of reload not
2848 permitted for this insn. We can always reload SCRATCH
2849 and objects with a REG_UNUSED note. */
2850 if (GET_CODE (operand) != SCRATCH
2851 && modified[i] != RELOAD_READ && no_output_reloads
2852 && ! find_reg_note (insn, REG_UNUSED, operand))
2853 bad = 1;
2854 else if (modified[i] != RELOAD_WRITE && no_input_reloads)
2855 bad = 1;
2856
2857 /* We prefer to reload pseudos over reloading other things,
2858 since such reloads may be able to be eliminated later.
2859 If we are reloading a SCRATCH, we won't be generating any
2860 insns, just using a register, so it is also preferred.
2861 So bump REJECT in other cases. */
2862 if (GET_CODE (operand) != REG && GET_CODE (operand) != SCRATCH)
2863 reject++;
2864 }
2865
2866 /* If this operand is a pseudo register that didn't get a hard
2867 reg and this alternative accepts some register, see if the
2868 class that we want is a subset of the preferred class for this
2869 register. If not, but it intersects that class, use the
2870 preferred class instead. If it does not intersect the preferred
2871 class, show that usage of this alternative should be discouraged;
2872 it will be discouraged more still if the register is `preferred
2873 or nothing'. We do this because it increases the chance of
2874 reusing our spill register in a later insn and avoiding a pair
2875 of memory stores and loads.
2876
2877 Don't bother with this if this alternative will accept this
2878 operand.
2879
2880 Don't do this for a multiword operand, if
2881 we have to worry about small classes, because making reg groups
2882 harder to allocate is asking for trouble.
2883
2884 Don't do this if the preferred class has only one register
2885 because we might otherwise exhaust the class. */
2886
2887
2888 if (! win && this_alternative[i] != (int) NO_REGS
2889 #ifdef SMALL_REGISTER_CLASSES
2890 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2891 #endif
2892 && reg_class_size[(int) preferred_class[i]] > 1)
2893 {
2894 if (! reg_class_subset_p (this_alternative[i],
2895 preferred_class[i]))
2896 {
2897 /* Since we don't have a way of forming the intersection,
2898 we just do something special if the preferred class
2899 is a subset of the class we have; that's the most
2900 common case anyway. */
2901 if (reg_class_subset_p (preferred_class[i],
2902 this_alternative[i]))
2903 this_alternative[i] = (int) preferred_class[i];
2904 else
2905 reject += (1 + pref_or_nothing[i]);
2906 }
2907 }
2908 }
2909
2910 /* Now see if any output operands that are marked "earlyclobber"
2911 in this alternative conflict with any input operands
2912 or any memory addresses. */
2913
2914 for (i = 0; i < noperands; i++)
2915 if (this_alternative_earlyclobber[i]
2916 && this_alternative_win[i])
2917 {
2918 struct decomposition early_data;
2919
2920 early_data = decompose (recog_operand[i]);
2921
2922 if (modified[i] == RELOAD_READ)
2923 {
2924 if (this_insn_is_asm)
2925 warning_for_asm (this_insn,
2926 "`&' constraint used with input operand");
2927 else
2928 abort ();
2929 continue;
2930 }
2931
2932 if (this_alternative[i] == NO_REGS)
2933 {
2934 this_alternative_earlyclobber[i] = 0;
2935 if (this_insn_is_asm)
2936 error_for_asm (this_insn,
2937 "`&' constraint used with no register class");
2938 else
2939 abort ();
2940 }
2941
2942 for (j = 0; j < noperands; j++)
2943 /* Is this an input operand or a memory ref? */
2944 if ((GET_CODE (recog_operand[j]) == MEM
2945 || modified[j] != RELOAD_WRITE)
2946 && j != i
2947 /* Ignore things like match_operator operands. */
2948 && *constraints1[j] != 0
2949 /* Don't count an input operand that is constrained to match
2950 the early clobber operand. */
2951 && ! (this_alternative_matches[j] == i
2952 && rtx_equal_p (recog_operand[i], recog_operand[j]))
2953 /* Is it altered by storing the earlyclobber operand? */
2954 && !immune_p (recog_operand[j], recog_operand[i], early_data))
2955 {
2956 /* If the output is in a single-reg class,
2957 it's costly to reload it, so reload the input instead. */
2958 if (reg_class_size[this_alternative[i]] == 1
2959 && (GET_CODE (recog_operand[j]) == REG
2960 || GET_CODE (recog_operand[j]) == SUBREG))
2961 {
2962 losers++;
2963 this_alternative_win[j] = 0;
2964 }
2965 else
2966 break;
2967 }
2968 /* If an earlyclobber operand conflicts with something,
2969 it must be reloaded, so request this and count the cost. */
2970 if (j != noperands)
2971 {
2972 losers++;
2973 this_alternative_win[i] = 0;
2974 for (j = 0; j < noperands; j++)
2975 if (this_alternative_matches[j] == i
2976 && this_alternative_win[j])
2977 {
2978 this_alternative_win[j] = 0;
2979 losers++;
2980 }
2981 }
2982 }
2983
2984 /* If one alternative accepts all the operands, no reload required,
2985 choose that alternative; don't consider the remaining ones. */
2986 if (losers == 0)
2987 {
2988 /* Unswap these so that they are never swapped at `finish'. */
2989 if (commutative >= 0)
2990 {
2991 recog_operand[commutative] = substed_operand[commutative];
2992 recog_operand[commutative + 1]
2993 = substed_operand[commutative + 1];
2994 }
2995 for (i = 0; i < noperands; i++)
2996 {
2997 goal_alternative_win[i] = 1;
2998 goal_alternative[i] = this_alternative[i];
2999 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3000 goal_alternative_matches[i] = this_alternative_matches[i];
3001 goal_alternative_earlyclobber[i]
3002 = this_alternative_earlyclobber[i];
3003 }
3004 goal_alternative_number = this_alternative_number;
3005 goal_alternative_swapped = swapped;
3006 goal_earlyclobber = this_earlyclobber;
3007 goto finish;
3008 }
3009
3010 /* REJECT, set by the ! and ? constraint characters and when a register
3011 would be reloaded into a non-preferred class, discourages the use of
3012 this alternative for a reload goal. REJECT is incremented by three
3013 for each ? and one for each non-preferred class. */
3014 losers = losers * 3 + reject;
3015
3016 /* If this alternative can be made to work by reloading,
3017 and it needs less reloading than the others checked so far,
3018 record it as the chosen goal for reloading. */
3019 if (! bad && best > losers)
3020 {
3021 for (i = 0; i < noperands; i++)
3022 {
3023 goal_alternative[i] = this_alternative[i];
3024 goal_alternative_win[i] = this_alternative_win[i];
3025 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3026 goal_alternative_matches[i] = this_alternative_matches[i];
3027 goal_alternative_earlyclobber[i]
3028 = this_alternative_earlyclobber[i];
3029 }
3030 goal_alternative_swapped = swapped;
3031 best = losers;
3032 goal_alternative_number = this_alternative_number;
3033 goal_earlyclobber = this_earlyclobber;
3034 }
3035 }
3036
3037 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3038 then we need to try each alternative twice,
3039 the second time matching those two operands
3040 as if we had exchanged them.
3041 To do this, really exchange them in operands.
3042
3043 If we have just tried the alternatives the second time,
3044 return operands to normal and drop through. */
3045
3046 if (commutative >= 0)
3047 {
3048 swapped = !swapped;
3049 if (swapped)
3050 {
3051 register enum reg_class tclass;
3052 register int t;
3053
3054 recog_operand[commutative] = substed_operand[commutative + 1];
3055 recog_operand[commutative + 1] = substed_operand[commutative];
3056
3057 tclass = preferred_class[commutative];
3058 preferred_class[commutative] = preferred_class[commutative + 1];
3059 preferred_class[commutative + 1] = tclass;
3060
3061 t = pref_or_nothing[commutative];
3062 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3063 pref_or_nothing[commutative + 1] = t;
3064
3065 bcopy (constraints1, constraints, noperands * sizeof (char *));
3066 goto try_swapped;
3067 }
3068 else
3069 {
3070 recog_operand[commutative] = substed_operand[commutative];
3071 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3072 }
3073 }
3074
3075 /* The operands don't meet the constraints.
3076 goal_alternative describes the alternative
3077 that we could reach by reloading the fewest operands.
3078 Reload so as to fit it. */
3079
3080 if (best == MAX_RECOG_OPERANDS + 300)
3081 {
3082 /* No alternative works with reloads?? */
3083 if (insn_code_number >= 0)
3084 abort ();
3085 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3086 /* Avoid further trouble with this insn. */
3087 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
3088 n_reloads = 0;
3089 return;
3090 }
3091
3092 /* Jump to `finish' from above if all operands are valid already.
3093 In that case, goal_alternative_win is all 1. */
3094 finish:
3095
3096 /* Right now, for any pair of operands I and J that are required to match,
3097 with I < J,
3098 goal_alternative_matches[J] is I.
3099 Set up goal_alternative_matched as the inverse function:
3100 goal_alternative_matched[I] = J. */
3101
3102 for (i = 0; i < noperands; i++)
3103 goal_alternative_matched[i] = -1;
3104
3105 for (i = 0; i < noperands; i++)
3106 if (! goal_alternative_win[i]
3107 && goal_alternative_matches[i] >= 0)
3108 goal_alternative_matched[goal_alternative_matches[i]] = i;
3109
3110 /* If the best alternative is with operands 1 and 2 swapped,
3111 consider them swapped before reporting the reloads. Update the
3112 operand numbers of any reloads already pushed. */
3113
3114 if (goal_alternative_swapped)
3115 {
3116 register rtx tem;
3117
3118 tem = substed_operand[commutative];
3119 substed_operand[commutative] = substed_operand[commutative + 1];
3120 substed_operand[commutative + 1] = tem;
3121 tem = recog_operand[commutative];
3122 recog_operand[commutative] = recog_operand[commutative + 1];
3123 recog_operand[commutative + 1] = tem;
3124
3125 for (i = 0; i < n_reloads; i++)
3126 {
3127 if (reload_opnum[i] == commutative)
3128 reload_opnum[i] = commutative + 1;
3129 else if (reload_opnum[i] == commutative + 1)
3130 reload_opnum[i] = commutative;
3131 }
3132 }
3133
3134 /* Perform whatever substitutions on the operands we are supposed
3135 to make due to commutativity or replacement of registers
3136 with equivalent constants or memory slots. */
3137
3138 for (i = 0; i < noperands; i++)
3139 {
3140 *recog_operand_loc[i] = substed_operand[i];
3141 /* While we are looping on operands, initialize this. */
3142 operand_reloadnum[i] = -1;
3143
3144 /* If this is an earlyclobber operand, we need to widen the scope.
3145 The reload must remain valid from the start of the insn being
3146 reloaded until after the operand is stored into its destination.
3147 We approximate this with RELOAD_OTHER even though we know that we
3148 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3149
3150 One special case that is worth checking is when we have an
3151 output that is earlyclobber but isn't used past the insn (typically
3152 a SCRATCH). In this case, we only need have the reload live
3153 through the insn itself, but not for any of our input or output
3154 reloads.
3155
3156 In any case, anything needed to address this operand can remain
3157 however they were previously categorized. */
3158
3159 if (goal_alternative_earlyclobber[i])
3160 operand_type[i]
3161 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3162 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3163 }
3164
3165 /* Any constants that aren't allowed and can't be reloaded
3166 into registers are here changed into memory references. */
3167 for (i = 0; i < noperands; i++)
3168 if (! goal_alternative_win[i]
3169 && CONSTANT_P (recog_operand[i])
3170 && (PREFERRED_RELOAD_CLASS (recog_operand[i],
3171 (enum reg_class) goal_alternative[i])
3172 == NO_REGS)
3173 && operand_mode[i] != VOIDmode)
3174 {
3175 *recog_operand_loc[i] = recog_operand[i]
3176 = find_reloads_toplev (force_const_mem (operand_mode[i],
3177 recog_operand[i]),
3178 i, address_type[i], ind_levels, 0);
3179 if (alternative_allows_memconst (constraints1[i],
3180 goal_alternative_number))
3181 goal_alternative_win[i] = 1;
3182 }
3183
3184 /* Now record reloads for all the operands that need them. */
3185 for (i = 0; i < noperands; i++)
3186 if (! goal_alternative_win[i])
3187 {
3188 /* Operands that match previous ones have already been handled. */
3189 if (goal_alternative_matches[i] >= 0)
3190 ;
3191 /* Handle an operand with a nonoffsettable address
3192 appearing where an offsettable address will do
3193 by reloading the address into a base register. */
3194 else if (goal_alternative_matched[i] == -1
3195 && goal_alternative_offmemok[i]
3196 && GET_CODE (recog_operand[i]) == MEM)
3197 {
3198 operand_reloadnum[i]
3199 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3200 &XEXP (recog_operand[i], 0), NULL_PTR,
3201 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
3202 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3203 reload_inc[operand_reloadnum[i]]
3204 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
3205
3206 /* If this operand is an output, we will have made any
3207 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3208 now we are treating part of the operand as an input, so
3209 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3210
3211 if (operand_type[i] == RELOAD_FOR_OUTPUT)
3212 for (j = 0; j < n_reloads; j++)
3213 if (reload_opnum[j] == i
3214 && reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3215 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
3216 }
3217 else if (goal_alternative_matched[i] == -1)
3218 operand_reloadnum[i] =
3219 push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3220 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3221 (modified[i] != RELOAD_WRITE ?
3222 recog_operand_loc[i] : 0),
3223 modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
3224 (enum reg_class) goal_alternative[i],
3225 (modified[i] == RELOAD_WRITE
3226 ? VOIDmode : operand_mode[i]),
3227 (modified[i] == RELOAD_READ
3228 ? VOIDmode : operand_mode[i]),
3229 (insn_code_number < 0 ? 0
3230 : insn_operand_strict_low[insn_code_number][i]),
3231 0, i, operand_type[i]);
3232 /* In a matching pair of operands, one must be input only
3233 and the other must be output only.
3234 Pass the input operand as IN and the other as OUT. */
3235 else if (modified[i] == RELOAD_READ
3236 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3237 {
3238 operand_reloadnum[i]
3239 = push_reload (recog_operand[i],
3240 recog_operand[goal_alternative_matched[i]],
3241 recog_operand_loc[i],
3242 recog_operand_loc[goal_alternative_matched[i]],
3243 (enum reg_class) goal_alternative[i],
3244 operand_mode[i],
3245 operand_mode[goal_alternative_matched[i]],
3246 0, 0, i, RELOAD_OTHER);
3247 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3248 }
3249 else if (modified[i] == RELOAD_WRITE
3250 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3251 {
3252 operand_reloadnum[goal_alternative_matched[i]]
3253 = push_reload (recog_operand[goal_alternative_matched[i]],
3254 recog_operand[i],
3255 recog_operand_loc[goal_alternative_matched[i]],
3256 recog_operand_loc[i],
3257 (enum reg_class) goal_alternative[i],
3258 operand_mode[goal_alternative_matched[i]],
3259 operand_mode[i],
3260 0, 0, i, RELOAD_OTHER);
3261 operand_reloadnum[i] = output_reloadnum;
3262 }
3263 else if (insn_code_number >= 0)
3264 abort ();
3265 else
3266 {
3267 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3268 /* Avoid further trouble with this insn. */
3269 PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
3270 n_reloads = 0;
3271 return;
3272 }
3273 }
3274 else if (goal_alternative_matched[i] < 0
3275 && goal_alternative_matches[i] < 0
3276 && optimize)
3277 {
3278 /* For each non-matching operand that's a MEM or a pseudo-register
3279 that didn't get a hard register, make an optional reload.
3280 This may get done even if the insn needs no reloads otherwise. */
3281
3282 rtx operand = recog_operand[i];
3283
3284 while (GET_CODE (operand) == SUBREG)
3285 operand = XEXP (operand, 0);
3286 if ((GET_CODE (operand) == MEM
3287 || (GET_CODE (operand) == REG
3288 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3289 && (enum reg_class) goal_alternative[i] != NO_REGS
3290 && ! no_input_reloads
3291 /* Optional output reloads don't do anything and we mustn't
3292 make in-out reloads on insns that are not permitted output
3293 reloads. */
3294 && (modified[i] == RELOAD_READ
3295 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
3296 operand_reloadnum[i]
3297 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3298 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3299 (modified[i] != RELOAD_WRITE
3300 ? recog_operand_loc[i] : 0),
3301 (modified[i] != RELOAD_READ
3302 ? recog_operand_loc[i] : 0),
3303 (enum reg_class) goal_alternative[i],
3304 (modified[i] == RELOAD_WRITE
3305 ? VOIDmode : operand_mode[i]),
3306 (modified[i] == RELOAD_READ
3307 ? VOIDmode : operand_mode[i]),
3308 (insn_code_number < 0 ? 0
3309 : insn_operand_strict_low[insn_code_number][i]),
3310 1, i, operand_type[i]);
3311 }
3312 else if (goal_alternative_matches[i] >= 0
3313 && goal_alternative_win[goal_alternative_matches[i]]
3314 && modified[i] == RELOAD_READ
3315 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3316 && ! no_input_reloads && ! no_output_reloads
3317 && optimize)
3318 {
3319 /* Similarly, make an optional reload for a pair of matching
3320 objects that are in MEM or a pseudo that didn't get a hard reg. */
3321
3322 rtx operand = recog_operand[i];
3323
3324 while (GET_CODE (operand) == SUBREG)
3325 operand = XEXP (operand, 0);
3326 if ((GET_CODE (operand) == MEM
3327 || (GET_CODE (operand) == REG
3328 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3329 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3330 != NO_REGS))
3331 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3332 = push_reload (recog_operand[goal_alternative_matches[i]],
3333 recog_operand[i],
3334 recog_operand_loc[goal_alternative_matches[i]],
3335 recog_operand_loc[i],
3336 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3337 operand_mode[goal_alternative_matches[i]],
3338 operand_mode[i],
3339 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3340 }
3341
3342 /* Record the values of the earlyclobber operands for the caller. */
3343 if (goal_earlyclobber)
3344 for (i = 0; i < noperands; i++)
3345 if (goal_alternative_earlyclobber[i])
3346 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3347
3348 /* If this insn pattern contains any MATCH_DUP's, make sure that
3349 they will be substituted if the operands they match are substituted.
3350 Also do now any substitutions we already did on the operands.
3351
3352 Don't do this if we aren't making replacements because we might be
3353 propagating things allocated by frame pointer elimination into places
3354 it doesn't expect. */
3355
3356 if (insn_code_number >= 0 && replace)
3357 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3358 {
3359 int opno = recog_dup_num[i];
3360 *recog_dup_loc[i] = *recog_operand_loc[opno];
3361 if (operand_reloadnum[opno] >= 0)
3362 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3363 insn_operand_mode[insn_code_number][opno]);
3364 }
3365
3366 #if 0
3367 /* This loses because reloading of prior insns can invalidate the equivalence
3368 (or at least find_equiv_reg isn't smart enough to find it any more),
3369 causing this insn to need more reload regs than it needed before.
3370 It may be too late to make the reload regs available.
3371 Now this optimization is done safely in choose_reload_regs. */
3372
3373 /* For each reload of a reg into some other class of reg,
3374 search for an existing equivalent reg (same value now) in the right class.
3375 We can use it as long as we don't need to change its contents. */
3376 for (i = 0; i < n_reloads; i++)
3377 if (reload_reg_rtx[i] == 0
3378 && reload_in[i] != 0
3379 && GET_CODE (reload_in[i]) == REG
3380 && reload_out[i] == 0)
3381 {
3382 reload_reg_rtx[i]
3383 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3384 static_reload_reg_p, 0, reload_inmode[i]);
3385 /* Prevent generation of insn to load the value
3386 because the one we found already has the value. */
3387 if (reload_reg_rtx[i])
3388 reload_in[i] = reload_reg_rtx[i];
3389 }
3390 #endif
3391
3392 /* Perhaps an output reload can be combined with another
3393 to reduce needs by one. */
3394 if (!goal_earlyclobber)
3395 combine_reloads ();
3396
3397 /* If we have a pair of reloads for parts of an address, they are reloading
3398 the same object, the operands themselves were not reloaded, and they
3399 are for two operands that are supposed to match, merge the reloads and
3400 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3401
3402 for (i = 0; i < n_reloads; i++)
3403 {
3404 int k;
3405
3406 for (j = i + 1; j < n_reloads; j++)
3407 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3408 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS)
3409 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
3410 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3411 && rtx_equal_p (reload_in[i], reload_in[j])
3412 && (operand_reloadnum[reload_opnum[i]] < 0
3413 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3414 && (operand_reloadnum[reload_opnum[j]] < 0
3415 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3416 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3417 || (goal_alternative_matches[reload_opnum[j]]
3418 == reload_opnum[i])))
3419 {
3420 for (k = 0; k < n_replacements; k++)
3421 if (replacements[k].what == j)
3422 replacements[k].what = i;
3423
3424 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3425 reload_in[j] = 0;
3426 }
3427 }
3428
3429 /* Scan all the reloads and update their type.
3430 If a reload is for the address of an operand and we didn't reload
3431 that operand, change the type. Similarly, change the operand number
3432 of a reload when two operands match. If a reload is optional, treat it
3433 as though the operand isn't reloaded.
3434
3435 ??? This latter case is somewhat odd because if we do the optional
3436 reload, it means the object is hanging around. Thus we need only
3437 do the address reload if the optional reload was NOT done.
3438
3439 Change secondary reloads to be the address type of their operand, not
3440 the normal type.
3441
3442 If an operand's reload is now RELOAD_OTHER, change any
3443 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3444 RELOAD_FOR_OTHER_ADDRESS. */
3445
3446 for (i = 0; i < n_reloads; i++)
3447 {
3448 if (reload_secondary_p[i]
3449 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3450 reload_when_needed[i] = address_type[reload_opnum[i]];
3451
3452 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3453 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS)
3454 && (operand_reloadnum[reload_opnum[i]] < 0
3455 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
3456 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3457
3458 if (reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3459 && operand_reloadnum[reload_opnum[i]] >= 0
3460 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3461 == RELOAD_OTHER))
3462 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3463
3464 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3465 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3466 }
3467
3468 /* See if we have any reloads that are now allowed to be merged
3469 because we've changed when the reload is needed to
3470 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
3471 check for the most common cases. */
3472
3473 for (i = 0; i < n_reloads; i++)
3474 if (reload_in[i] != 0 && reload_out[i] == 0
3475 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
3476 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
3477 for (j = 0; j < n_reloads; j++)
3478 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
3479 && reload_when_needed[j] == reload_when_needed[i]
3480 && MATCHES (reload_in[i], reload_in[j]))
3481 {
3482 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
3483 transfer_replacements (i, j);
3484 reload_in[j] = 0;
3485 }
3486
3487 #else /* no REGISTER_CONSTRAINTS */
3488 int noperands;
3489 int insn_code_number;
3490 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
3491 register int i;
3492 rtx body = PATTERN (insn);
3493
3494 n_reloads = 0;
3495 n_replacements = 0;
3496 n_earlyclobbers = 0;
3497 replace_reloads = replace;
3498 this_insn = insn;
3499
3500 /* Find what kind of insn this is. NOPERANDS gets number of operands.
3501 Store the operand values in RECOG_OPERAND and the locations
3502 of the words in the insn that point to them in RECOG_OPERAND_LOC.
3503 Return if the insn needs no reload processing. */
3504
3505 switch (GET_CODE (body))
3506 {
3507 case USE:
3508 case CLOBBER:
3509 case ASM_INPUT:
3510 case ADDR_VEC:
3511 case ADDR_DIFF_VEC:
3512 return;
3513
3514 case PARALLEL:
3515 case SET:
3516 noperands = asm_noperands (body);
3517 if (noperands >= 0)
3518 {
3519 /* This insn is an `asm' with operands.
3520 First, find out how many operands, and allocate space. */
3521
3522 insn_code_number = -1;
3523 /* ??? This is a bug! ???
3524 Give up and delete this insn if it has too many operands. */
3525 if (noperands > MAX_RECOG_OPERANDS)
3526 abort ();
3527
3528 /* Now get the operand values out of the insn. */
3529
3530 decode_asm_operands (body, recog_operand, recog_operand_loc,
3531 NULL_PTR, NULL_PTR);
3532 break;
3533 }
3534
3535 default:
3536 /* Ordinary insn: recognize it, allocate space for operands and
3537 constraints, and get them out via insn_extract. */
3538
3539 insn_code_number = recog_memoized (insn);
3540 noperands = insn_n_operands[insn_code_number];
3541 insn_extract (insn);
3542 }
3543
3544 if (noperands == 0)
3545 return;
3546
3547 for (i = 0; i < noperands; i++)
3548 {
3549 register RTX_CODE code = GET_CODE (recog_operand[i]);
3550 int is_set_dest = GET_CODE (body) == SET && (i == 0);
3551
3552 if (insn_code_number >= 0)
3553 if (insn_operand_address_p[insn_code_number][i])
3554 find_reloads_address (VOIDmode, NULL_PTR,
3555 recog_operand[i], recog_operand_loc[i],
3556 i, RELOAD_FOR_INPUT, ind_levels);
3557
3558 /* In these cases, we can't tell if the operand is an input
3559 or an output, so be conservative. In practice it won't be
3560 problem. */
3561
3562 if (code == MEM)
3563 find_reloads_address (GET_MODE (recog_operand[i]),
3564 recog_operand_loc[i],
3565 XEXP (recog_operand[i], 0),
3566 &XEXP (recog_operand[i], 0),
3567 i, RELOAD_OTHER, ind_levels);
3568 if (code == SUBREG)
3569 recog_operand[i] = *recog_operand_loc[i]
3570 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
3571 ind_levels, is_set_dest);
3572 if (code == REG)
3573 {
3574 register int regno = REGNO (recog_operand[i]);
3575 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
3576 recog_operand[i] = *recog_operand_loc[i]
3577 = reg_equiv_constant[regno];
3578 #if 0 /* This might screw code in reload1.c to delete prior output-reload
3579 that feeds this insn. */
3580 if (reg_equiv_mem[regno] != 0)
3581 recog_operand[i] = *recog_operand_loc[i]
3582 = reg_equiv_mem[regno];
3583 #endif
3584 }
3585 }
3586
3587 /* Perhaps an output reload can be combined with another
3588 to reduce needs by one. */
3589 if (!goal_earlyclobber)
3590 combine_reloads ();
3591 #endif /* no REGISTER_CONSTRAINTS */
3592 }
3593
3594 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
3595 accepts a memory operand with constant address. */
3596
3597 static int
3598 alternative_allows_memconst (constraint, altnum)
3599 char *constraint;
3600 int altnum;
3601 {
3602 register int c;
3603 /* Skip alternatives before the one requested. */
3604 while (altnum > 0)
3605 {
3606 while (*constraint++ != ',');
3607 altnum--;
3608 }
3609 /* Scan the requested alternative for 'm' or 'o'.
3610 If one of them is present, this alternative accepts memory constants. */
3611 while ((c = *constraint++) && c != ',' && c != '#')
3612 if (c == 'm' || c == 'o')
3613 return 1;
3614 return 0;
3615 }
3616 \f
3617 /* Scan X for memory references and scan the addresses for reloading.
3618 Also checks for references to "constant" regs that we want to eliminate
3619 and replaces them with the values they stand for.
3620 We may alter X destructively if it contains a reference to such.
3621 If X is just a constant reg, we return the equivalent value
3622 instead of X.
3623
3624 IND_LEVELS says how many levels of indirect addressing this machine
3625 supports.
3626
3627 OPNUM and TYPE identify the purpose of the reload.
3628
3629 IS_SET_DEST is true if X is the destination of a SET, which is not
3630 appropriate to be replaced by a constant. */
3631
3632 static rtx
3633 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
3634 rtx x;
3635 int opnum;
3636 enum reload_type type;
3637 int ind_levels;
3638 int is_set_dest;
3639 {
3640 register RTX_CODE code = GET_CODE (x);
3641
3642 register char *fmt = GET_RTX_FORMAT (code);
3643 register int i;
3644
3645 if (code == REG)
3646 {
3647 /* This code is duplicated for speed in find_reloads. */
3648 register int regno = REGNO (x);
3649 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
3650 x = reg_equiv_constant[regno];
3651 #if 0
3652 /* This creates (subreg (mem...)) which would cause an unnecessary
3653 reload of the mem. */
3654 else if (reg_equiv_mem[regno] != 0)
3655 x = reg_equiv_mem[regno];
3656 #endif
3657 else if (reg_equiv_address[regno] != 0)
3658 {
3659 /* If reg_equiv_address varies, it may be shared, so copy it. */
3660 rtx addr = reg_equiv_address[regno];
3661
3662 if (rtx_varies_p (addr))
3663 addr = copy_rtx (addr);
3664
3665 x = gen_rtx (MEM, GET_MODE (x), addr);
3666 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
3667 find_reloads_address (GET_MODE (x), NULL_PTR,
3668 XEXP (x, 0),
3669 &XEXP (x, 0), opnum, type, ind_levels);
3670 }
3671 return x;
3672 }
3673 if (code == MEM)
3674 {
3675 rtx tem = x;
3676 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
3677 opnum, type, ind_levels);
3678 return tem;
3679 }
3680
3681 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
3682 {
3683 /* Check for SUBREG containing a REG that's equivalent to a constant.
3684 If the constant has a known value, truncate it right now.
3685 Similarly if we are extracting a single-word of a multi-word
3686 constant. If the constant is symbolic, allow it to be substituted
3687 normally. push_reload will strip the subreg later. If the
3688 constant is VOIDmode, abort because we will lose the mode of
3689 the register (this should never happen because one of the cases
3690 above should handle it). */
3691
3692 register int regno = REGNO (SUBREG_REG (x));
3693 rtx tem;
3694
3695 if (subreg_lowpart_p (x)
3696 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
3697 && reg_equiv_constant[regno] != 0
3698 && (tem = gen_lowpart_common (GET_MODE (x),
3699 reg_equiv_constant[regno])) != 0)
3700 return tem;
3701
3702 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
3703 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
3704 && reg_equiv_constant[regno] != 0
3705 && (tem = operand_subword (reg_equiv_constant[regno],
3706 SUBREG_WORD (x), 0,
3707 GET_MODE (SUBREG_REG (x)))) != 0)
3708 return tem;
3709
3710 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
3711 && reg_equiv_constant[regno] != 0
3712 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
3713 abort ();
3714
3715 /* If the subreg contains a reg that will be converted to a mem,
3716 convert the subreg to a narrower memref now.
3717 Otherwise, we would get (subreg (mem ...) ...),
3718 which would force reload of the mem.
3719
3720 We also need to do this if there is an equivalent MEM that is
3721 not offsettable. In that case, alter_subreg would produce an
3722 invalid address on big-endian machines.
3723
3724 For machines that extend byte loads, we must not reload using
3725 a wider mode if we have a paradoxical SUBREG. find_reloads will
3726 force a reload in that case. So we should not do anything here. */
3727
3728 else if (regno >= FIRST_PSEUDO_REGISTER
3729 #if defined(BYTE_LOADS_ZERO_EXTEND) || defined(BYTE_LOADS_SIGN_EXTEND)
3730 && (GET_MODE_SIZE (GET_MODE (x))
3731 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3732 #endif
3733 && (reg_equiv_address[regno] != 0
3734 || (reg_equiv_mem[regno] != 0
3735 && (! strict_memory_address_p (GET_MODE (x),
3736 XEXP (reg_equiv_mem[regno], 0))
3737 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
3738 {
3739 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
3740 rtx addr = (reg_equiv_address[regno] ? reg_equiv_address[regno]
3741 : XEXP (reg_equiv_mem[regno], 0));
3742 #if BYTES_BIG_ENDIAN
3743 int size;
3744 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
3745 offset += MIN (size, UNITS_PER_WORD);
3746 size = GET_MODE_SIZE (GET_MODE (x));
3747 offset -= MIN (size, UNITS_PER_WORD);
3748 #endif
3749 addr = plus_constant (addr, offset);
3750 x = gen_rtx (MEM, GET_MODE (x), addr);
3751 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
3752 find_reloads_address (GET_MODE (x), NULL_PTR,
3753 XEXP (x, 0),
3754 &XEXP (x, 0), opnum, type, ind_levels);
3755 }
3756
3757 }
3758
3759 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3760 {
3761 if (fmt[i] == 'e')
3762 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
3763 ind_levels, is_set_dest);
3764 }
3765 return x;
3766 }
3767
3768 static rtx
3769 make_memloc (ad, regno)
3770 rtx ad;
3771 int regno;
3772 {
3773 register int i;
3774 rtx tem = reg_equiv_address[regno];
3775 for (i = 0; i < n_memlocs; i++)
3776 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
3777 return memlocs[i];
3778
3779 /* If TEM might contain a pseudo, we must copy it to avoid
3780 modifying it when we do the substitution for the reload. */
3781 if (rtx_varies_p (tem))
3782 tem = copy_rtx (tem);
3783
3784 tem = gen_rtx (MEM, GET_MODE (ad), tem);
3785 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
3786 memlocs[n_memlocs++] = tem;
3787 return tem;
3788 }
3789
3790 /* Record all reloads needed for handling memory address AD
3791 which appears in *LOC in a memory reference to mode MODE
3792 which itself is found in location *MEMREFLOC.
3793 Note that we take shortcuts assuming that no multi-reg machine mode
3794 occurs as part of an address.
3795
3796 OPNUM and TYPE specify the purpose of this reload.
3797
3798 IND_LEVELS says how many levels of indirect addressing this machine
3799 supports.
3800
3801 Value is nonzero if this address is reloaded or replaced as a whole.
3802 This is interesting to the caller if the address is an autoincrement.
3803
3804 Note that there is no verification that the address will be valid after
3805 this routine does its work. Instead, we rely on the fact that the address
3806 was valid when reload started. So we need only undo things that reload
3807 could have broken. These are wrong register types, pseudos not allocated
3808 to a hard register, and frame pointer elimination. */
3809
3810 static int
3811 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels)
3812 enum machine_mode mode;
3813 rtx *memrefloc;
3814 rtx ad;
3815 rtx *loc;
3816 int opnum;
3817 enum reload_type type;
3818 int ind_levels;
3819 {
3820 register int regno;
3821 rtx tem;
3822
3823 /* If the address is a register, see if it is a legitimate address and
3824 reload if not. We first handle the cases where we need not reload
3825 or where we must reload in a non-standard way. */
3826
3827 if (GET_CODE (ad) == REG)
3828 {
3829 regno = REGNO (ad);
3830
3831 if (reg_equiv_constant[regno] != 0
3832 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
3833 {
3834 *loc = ad = reg_equiv_constant[regno];
3835 return 1;
3836 }
3837
3838 else if (reg_equiv_address[regno] != 0)
3839 {
3840 tem = make_memloc (ad, regno);
3841 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
3842 &XEXP (tem, 0), opnum, type, ind_levels);
3843 push_reload (tem, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
3844 GET_MODE (ad), VOIDmode, 0, 0,
3845 opnum, type);
3846 return 1;
3847 }
3848
3849 /* We can avoid a reload if the register's equivalent memory expression
3850 is valid as an indirect memory address. */
3851
3852 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
3853 && strict_memory_address_p (mode, reg_equiv_mem[regno]))
3854 return 0;
3855
3856 /* The only remaining case where we can avoid a reload is if this is a
3857 hard register that is valid as a base register and which is not the
3858 subject of a CLOBBER in this insn. */
3859
3860 else if (regno < FIRST_PSEUDO_REGISTER && REGNO_OK_FOR_BASE_P (regno)
3861 && ! regno_clobbered_p (regno, this_insn))
3862 return 0;
3863
3864 /* If we do not have one of the cases above, we must do the reload. */
3865 push_reload (ad, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
3866 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
3867 return 1;
3868 }
3869
3870 if (strict_memory_address_p (mode, ad))
3871 {
3872 /* The address appears valid, so reloads are not needed.
3873 But the address may contain an eliminable register.
3874 This can happen because a machine with indirect addressing
3875 may consider a pseudo register by itself a valid address even when
3876 it has failed to get a hard reg.
3877 So do a tree-walk to find and eliminate all such regs. */
3878
3879 /* But first quickly dispose of a common case. */
3880 if (GET_CODE (ad) == PLUS
3881 && GET_CODE (XEXP (ad, 1)) == CONST_INT
3882 && GET_CODE (XEXP (ad, 0)) == REG
3883 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
3884 return 0;
3885
3886 subst_reg_equivs_changed = 0;
3887 *loc = subst_reg_equivs (ad);
3888
3889 if (! subst_reg_equivs_changed)
3890 return 0;
3891
3892 /* Check result for validity after substitution. */
3893 if (strict_memory_address_p (mode, ad))
3894 return 0;
3895 }
3896
3897 /* The address is not valid. We have to figure out why. One possibility
3898 is that it is itself a MEM. This can happen when the frame pointer is
3899 being eliminated, a pseudo is not allocated to a hard register, and the
3900 offset between the frame and stack pointers is not its initial value.
3901 In that case the pseudo will have been replaced by a MEM referring to
3902 the stack pointer. */
3903 if (GET_CODE (ad) == MEM)
3904 {
3905 /* First ensure that the address in this MEM is valid. Then, unless
3906 indirect addresses are valid, reload the MEM into a register. */
3907 tem = ad;
3908 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
3909 opnum, type, ind_levels == 0 ? 0 : ind_levels - 1);
3910
3911 /* If tem was changed, then we must create a new memory reference to
3912 hold it and store it back into memrefloc. */
3913 if (tem != ad && memrefloc)
3914 {
3915 *memrefloc = copy_rtx (*memrefloc);
3916 copy_replacements (tem, XEXP (*memrefloc, 0));
3917 loc = &XEXP (*memrefloc, 0);
3918 }
3919
3920 /* Check similar cases as for indirect addresses as above except
3921 that we can allow pseudos and a MEM since they should have been
3922 taken care of above. */
3923
3924 if (ind_levels == 0
3925 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
3926 || GET_CODE (XEXP (tem, 0)) == MEM
3927 || ! (GET_CODE (XEXP (tem, 0)) == REG
3928 || (GET_CODE (XEXP (tem, 0)) == PLUS
3929 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
3930 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
3931 {
3932 /* Must use TEM here, not AD, since it is the one that will
3933 have any subexpressions reloaded, if needed. */
3934 push_reload (tem, NULL_RTX, loc, NULL_PTR,
3935 BASE_REG_CLASS, GET_MODE (tem), VOIDmode, 0,
3936 0, opnum, type);
3937 return 1;
3938 }
3939 else
3940 return 0;
3941 }
3942
3943 /* If we have address of a stack slot but it's not valid
3944 (displacement is too large), compute the sum in a register. */
3945 else if (GET_CODE (ad) == PLUS
3946 && (XEXP (ad, 0) == frame_pointer_rtx
3947 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3948 || XEXP (ad, 0) == arg_pointer_rtx
3949 #endif
3950 || XEXP (ad, 0) == stack_pointer_rtx)
3951 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
3952 {
3953 /* Unshare the MEM rtx so we can safely alter it. */
3954 if (memrefloc)
3955 {
3956 rtx oldref = *memrefloc;
3957 *memrefloc = copy_rtx (*memrefloc);
3958 loc = &XEXP (*memrefloc, 0);
3959 }
3960 if (double_reg_address_ok)
3961 {
3962 /* Unshare the sum as well. */
3963 *loc = ad = copy_rtx (ad);
3964 /* Reload the displacement into an index reg.
3965 We assume the frame pointer or arg pointer is a base reg. */
3966 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
3967 INDEX_REG_CLASS, GET_MODE (ad), opnum,
3968 type, ind_levels);
3969 }
3970 else
3971 {
3972 /* If the sum of two regs is not necessarily valid,
3973 reload the sum into a base reg.
3974 That will at least work. */
3975 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode,
3976 opnum, type, ind_levels);
3977 }
3978 return 1;
3979 }
3980
3981 /* If we have an indexed stack slot, there are three possible reasons why
3982 it might be invalid: The index might need to be reloaded, the address
3983 might have been made by frame pointer elimination and hence have a
3984 constant out of range, or both reasons might apply.
3985
3986 We can easily check for an index needing reload, but even if that is the
3987 case, we might also have an invalid constant. To avoid making the
3988 conservative assumption and requiring two reloads, we see if this address
3989 is valid when not interpreted strictly. If it is, the only problem is
3990 that the index needs a reload and find_reloads_address_1 will take care
3991 of it.
3992
3993 There is still a case when we might generate an extra reload,
3994 however. In certain cases eliminate_regs will return a MEM for a REG
3995 (see the code there for details). In those cases, memory_address_p
3996 applied to our address will return 0 so we will think that our offset
3997 must be too large. But it might indeed be valid and the only problem
3998 is that a MEM is present where a REG should be. This case should be
3999 very rare and there doesn't seem to be any way to avoid it.
4000
4001 If we decide to do something here, it must be that
4002 `double_reg_address_ok' is true and that this address rtl was made by
4003 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4004 rework the sum so that the reload register will be added to the index.
4005 This is safe because we know the address isn't shared.
4006
4007 We check for fp/ap/sp as both the first and second operand of the
4008 innermost PLUS. */
4009
4010 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4011 && GET_CODE (XEXP (ad, 0)) == PLUS
4012 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4013 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4014 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4015 #endif
4016 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4017 && ! memory_address_p (mode, ad))
4018 {
4019 *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
4020 plus_constant (XEXP (XEXP (ad, 0), 0),
4021 INTVAL (XEXP (ad, 1))),
4022 XEXP (XEXP (ad, 0), 1));
4023 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4024 GET_MODE (ad), opnum, type, ind_levels);
4025 find_reloads_address_1 (XEXP (ad, 1), 1, &XEXP (ad, 1), opnum, type, 0);
4026
4027 return 1;
4028 }
4029
4030 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4031 && GET_CODE (XEXP (ad, 0)) == PLUS
4032 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4033 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4034 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4035 #endif
4036 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4037 && ! memory_address_p (mode, ad))
4038 {
4039 *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
4040 plus_constant (XEXP (XEXP (ad, 0), 1),
4041 INTVAL (XEXP (ad, 1))),
4042 XEXP (XEXP (ad, 0), 0));
4043 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4044 GET_MODE (ad), opnum, type, ind_levels);
4045 find_reloads_address_1 (XEXP (ad, 1), 1, &XEXP (ad, 1), opnum, type, 0);
4046
4047 return 1;
4048 }
4049
4050 /* See if address becomes valid when an eliminable register
4051 in a sum is replaced. */
4052
4053 tem = ad;
4054 if (GET_CODE (ad) == PLUS)
4055 tem = subst_indexed_address (ad);
4056 if (tem != ad && strict_memory_address_p (mode, tem))
4057 {
4058 /* Ok, we win that way. Replace any additional eliminable
4059 registers. */
4060
4061 subst_reg_equivs_changed = 0;
4062 tem = subst_reg_equivs (tem);
4063
4064 /* Make sure that didn't make the address invalid again. */
4065
4066 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4067 {
4068 *loc = tem;
4069 return 0;
4070 }
4071 }
4072
4073 /* If constants aren't valid addresses, reload the constant address
4074 into a register. */
4075 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4076 {
4077 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4078 Unshare it so we can safely alter it. */
4079 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4080 && CONSTANT_POOL_ADDRESS_P (ad))
4081 {
4082 rtx oldref = *memrefloc;
4083 *memrefloc = copy_rtx (*memrefloc);
4084 loc = &XEXP (*memrefloc, 0);
4085 }
4086
4087 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
4088 ind_levels);
4089 return 1;
4090 }
4091
4092 return find_reloads_address_1 (ad, 0, loc, opnum, type, ind_levels);
4093 }
4094 \f
4095 /* Find all pseudo regs appearing in AD
4096 that are eliminable in favor of equivalent values
4097 and do not have hard regs; replace them by their equivalents. */
4098
4099 static rtx
4100 subst_reg_equivs (ad)
4101 rtx ad;
4102 {
4103 register RTX_CODE code = GET_CODE (ad);
4104 register int i;
4105 register char *fmt;
4106
4107 switch (code)
4108 {
4109 case HIGH:
4110 case CONST_INT:
4111 case CONST:
4112 case CONST_DOUBLE:
4113 case SYMBOL_REF:
4114 case LABEL_REF:
4115 case PC:
4116 case CC0:
4117 return ad;
4118
4119 case REG:
4120 {
4121 register int regno = REGNO (ad);
4122
4123 if (reg_equiv_constant[regno] != 0)
4124 {
4125 subst_reg_equivs_changed = 1;
4126 return reg_equiv_constant[regno];
4127 }
4128 }
4129 return ad;
4130
4131 case PLUS:
4132 /* Quickly dispose of a common case. */
4133 if (XEXP (ad, 0) == frame_pointer_rtx
4134 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4135 return ad;
4136 }
4137
4138 fmt = GET_RTX_FORMAT (code);
4139 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4140 if (fmt[i] == 'e')
4141 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4142 return ad;
4143 }
4144 \f
4145 /* Compute the sum of X and Y, making canonicalizations assumed in an
4146 address, namely: sum constant integers, surround the sum of two
4147 constants with a CONST, put the constant as the second operand, and
4148 group the constant on the outermost sum.
4149
4150 This routine assumes both inputs are already in canonical form. */
4151
4152 rtx
4153 form_sum (x, y)
4154 rtx x, y;
4155 {
4156 rtx tem;
4157 enum machine_mode mode = GET_MODE (x);
4158
4159 if (mode == VOIDmode)
4160 mode = GET_MODE (y);
4161
4162 if (mode == VOIDmode)
4163 mode = Pmode;
4164
4165 if (GET_CODE (x) == CONST_INT)
4166 return plus_constant (y, INTVAL (x));
4167 else if (GET_CODE (y) == CONST_INT)
4168 return plus_constant (x, INTVAL (y));
4169 else if (CONSTANT_P (x))
4170 tem = x, x = y, y = tem;
4171
4172 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4173 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4174
4175 /* Note that if the operands of Y are specified in the opposite
4176 order in the recursive calls below, infinite recursion will occur. */
4177 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4178 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4179
4180 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4181 constant will have been placed second. */
4182 if (CONSTANT_P (x) && CONSTANT_P (y))
4183 {
4184 if (GET_CODE (x) == CONST)
4185 x = XEXP (x, 0);
4186 if (GET_CODE (y) == CONST)
4187 y = XEXP (y, 0);
4188
4189 return gen_rtx (CONST, VOIDmode, gen_rtx (PLUS, mode, x, y));
4190 }
4191
4192 return gen_rtx (PLUS, mode, x, y);
4193 }
4194 \f
4195 /* If ADDR is a sum containing a pseudo register that should be
4196 replaced with a constant (from reg_equiv_constant),
4197 return the result of doing so, and also apply the associative
4198 law so that the result is more likely to be a valid address.
4199 (But it is not guaranteed to be one.)
4200
4201 Note that at most one register is replaced, even if more are
4202 replaceable. Also, we try to put the result into a canonical form
4203 so it is more likely to be a valid address.
4204
4205 In all other cases, return ADDR. */
4206
4207 static rtx
4208 subst_indexed_address (addr)
4209 rtx addr;
4210 {
4211 rtx op0 = 0, op1 = 0, op2 = 0;
4212 rtx tem;
4213 int regno;
4214
4215 if (GET_CODE (addr) == PLUS)
4216 {
4217 /* Try to find a register to replace. */
4218 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4219 if (GET_CODE (op0) == REG
4220 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4221 && reg_renumber[regno] < 0
4222 && reg_equiv_constant[regno] != 0)
4223 op0 = reg_equiv_constant[regno];
4224 else if (GET_CODE (op1) == REG
4225 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4226 && reg_renumber[regno] < 0
4227 && reg_equiv_constant[regno] != 0)
4228 op1 = reg_equiv_constant[regno];
4229 else if (GET_CODE (op0) == PLUS
4230 && (tem = subst_indexed_address (op0)) != op0)
4231 op0 = tem;
4232 else if (GET_CODE (op1) == PLUS
4233 && (tem = subst_indexed_address (op1)) != op1)
4234 op1 = tem;
4235 else
4236 return addr;
4237
4238 /* Pick out up to three things to add. */
4239 if (GET_CODE (op1) == PLUS)
4240 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4241 else if (GET_CODE (op0) == PLUS)
4242 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4243
4244 /* Compute the sum. */
4245 if (op2 != 0)
4246 op1 = form_sum (op1, op2);
4247 if (op1 != 0)
4248 op0 = form_sum (op0, op1);
4249
4250 return op0;
4251 }
4252 return addr;
4253 }
4254 \f
4255 /* Record the pseudo registers we must reload into hard registers
4256 in a subexpression of a would-be memory address, X.
4257 (This function is not called if the address we find is strictly valid.)
4258 CONTEXT = 1 means we are considering regs as index regs,
4259 = 0 means we are considering them as base regs.
4260
4261 OPNUM and TYPE specify the purpose of any reloads made.
4262
4263 IND_LEVELS says how many levels of indirect addressing are
4264 supported at this point in the address.
4265
4266 We return nonzero if X, as a whole, is reloaded or replaced. */
4267
4268 /* Note that we take shortcuts assuming that no multi-reg machine mode
4269 occurs as part of an address.
4270 Also, this is not fully machine-customizable; it works for machines
4271 such as vaxes and 68000's and 32000's, but other possible machines
4272 could have addressing modes that this does not handle right. */
4273
4274 static int
4275 find_reloads_address_1 (x, context, loc, opnum, type, ind_levels)
4276 rtx x;
4277 int context;
4278 rtx *loc;
4279 int opnum;
4280 enum reload_type type;
4281 int ind_levels;
4282 {
4283 register RTX_CODE code = GET_CODE (x);
4284
4285 if (code == PLUS)
4286 {
4287 register rtx op0 = XEXP (x, 0);
4288 register rtx op1 = XEXP (x, 1);
4289 register RTX_CODE code0 = GET_CODE (op0);
4290 register RTX_CODE code1 = GET_CODE (op1);
4291 if (code0 == MULT || code0 == SIGN_EXTEND || code1 == MEM)
4292 {
4293 find_reloads_address_1 (op0, 1, &XEXP (x, 0), opnum, type,
4294 ind_levels);
4295 find_reloads_address_1 (op1, 0, &XEXP (x, 1), opnum, type,
4296 ind_levels);
4297 }
4298 else if (code1 == MULT || code1 == SIGN_EXTEND || code0 == MEM)
4299 {
4300 find_reloads_address_1 (op0, 0, &XEXP (x, 0), opnum, type,
4301 ind_levels);
4302 find_reloads_address_1 (op1, 1, &XEXP (x, 1), opnum, type,
4303 ind_levels);
4304 }
4305 else if (code0 == CONST_INT || code0 == CONST
4306 || code0 == SYMBOL_REF || code0 == LABEL_REF)
4307 find_reloads_address_1 (op1, 0, &XEXP (x, 1), opnum, type, ind_levels);
4308 else if (code1 == CONST_INT || code1 == CONST
4309 || code1 == SYMBOL_REF || code1 == LABEL_REF)
4310 find_reloads_address_1 (op0, 0, &XEXP (x, 0), opnum, type, ind_levels);
4311 else if (code0 == REG && code1 == REG)
4312 {
4313 if (REG_OK_FOR_INDEX_P (op0)
4314 && REG_OK_FOR_BASE_P (op1))
4315 return 0;
4316 else if (REG_OK_FOR_INDEX_P (op1)
4317 && REG_OK_FOR_BASE_P (op0))
4318 return 0;
4319 else if (REG_OK_FOR_BASE_P (op1))
4320 find_reloads_address_1 (op0, 1, &XEXP (x, 0), opnum, type,
4321 ind_levels);
4322 else if (REG_OK_FOR_BASE_P (op0))
4323 find_reloads_address_1 (op1, 1, &XEXP (x, 1), opnum, type,
4324 ind_levels);
4325 else if (REG_OK_FOR_INDEX_P (op1))
4326 find_reloads_address_1 (op0, 0, &XEXP (x, 0), opnum, type,
4327 ind_levels);
4328 else if (REG_OK_FOR_INDEX_P (op0))
4329 find_reloads_address_1 (op1, 0, &XEXP (x, 1), opnum, type,
4330 ind_levels);
4331 else
4332 {
4333 find_reloads_address_1 (op0, 1, &XEXP (x, 0), opnum, type,
4334 ind_levels);
4335 find_reloads_address_1 (op1, 0, &XEXP (x, 1), opnum, type,
4336 ind_levels);
4337 }
4338 }
4339 else if (code0 == REG)
4340 {
4341 find_reloads_address_1 (op0, 1, &XEXP (x, 0), opnum, type,
4342 ind_levels);
4343 find_reloads_address_1 (op1, 0, &XEXP (x, 1), opnum, type,
4344 ind_levels);
4345 }
4346 else if (code1 == REG)
4347 {
4348 find_reloads_address_1 (op1, 1, &XEXP (x, 1), opnum, type,
4349 ind_levels);
4350 find_reloads_address_1 (op0, 0, &XEXP (x, 0), opnum, type,
4351 ind_levels);
4352 }
4353 }
4354 else if (code == POST_INC || code == POST_DEC
4355 || code == PRE_INC || code == PRE_DEC)
4356 {
4357 if (GET_CODE (XEXP (x, 0)) == REG)
4358 {
4359 register int regno = REGNO (XEXP (x, 0));
4360 int value = 0;
4361 rtx x_orig = x;
4362
4363 /* A register that is incremented cannot be constant! */
4364 if (regno >= FIRST_PSEUDO_REGISTER
4365 && reg_equiv_constant[regno] != 0)
4366 abort ();
4367
4368 /* Handle a register that is equivalent to a memory location
4369 which cannot be addressed directly. */
4370 if (reg_equiv_address[regno] != 0)
4371 {
4372 rtx tem = make_memloc (XEXP (x, 0), regno);
4373 /* First reload the memory location's address. */
4374 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
4375 &XEXP (tem, 0), opnum, type, ind_levels);
4376 /* Put this inside a new increment-expression. */
4377 x = gen_rtx (GET_CODE (x), GET_MODE (x), tem);
4378 /* Proceed to reload that, as if it contained a register. */
4379 }
4380
4381 /* If we have a hard register that is ok as an index,
4382 don't make a reload. If an autoincrement of a nice register
4383 isn't "valid", it must be that no autoincrement is "valid".
4384 If that is true and something made an autoincrement anyway,
4385 this must be a special context where one is allowed.
4386 (For example, a "push" instruction.)
4387 We can't improve this address, so leave it alone. */
4388
4389 /* Otherwise, reload the autoincrement into a suitable hard reg
4390 and record how much to increment by. */
4391
4392 if (reg_renumber[regno] >= 0)
4393 regno = reg_renumber[regno];
4394 if ((regno >= FIRST_PSEUDO_REGISTER
4395 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
4396 : REGNO_OK_FOR_BASE_P (regno))))
4397 {
4398 register rtx link;
4399
4400 int reloadnum
4401 = push_reload (x, NULL_RTX, loc, NULL_PTR,
4402 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
4403 GET_MODE (x), GET_MODE (x), VOIDmode, 0,
4404 opnum, type);
4405 reload_inc[reloadnum]
4406 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
4407
4408 value = 1;
4409
4410 #ifdef AUTO_INC_DEC
4411 /* Update the REG_INC notes. */
4412
4413 for (link = REG_NOTES (this_insn);
4414 link; link = XEXP (link, 1))
4415 if (REG_NOTE_KIND (link) == REG_INC
4416 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
4417 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
4418 #endif
4419 }
4420 return value;
4421 }
4422 else if (GET_CODE (XEXP (x, 0)) == MEM)
4423 {
4424 /* This is probably the result of a substitution, by eliminate_regs,
4425 of an equivalent address for a pseudo that was not allocated to a
4426 hard register. Verify that the specified address is valid and
4427 reload it into a register. */
4428 rtx tem = XEXP (x, 0);
4429 register rtx link;
4430 int reloadnum;
4431
4432 /* Since we know we are going to reload this item, don't decrement
4433 for the indirection level.
4434
4435 Note that this is actually conservative: it would be slightly
4436 more efficient to use the value of SPILL_INDIRECT_LEVELS from
4437 reload1.c here. */
4438 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
4439 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
4440 opnum, type, ind_levels);
4441
4442 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
4443 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
4444 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
4445 reload_inc[reloadnum]
4446 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
4447
4448 link = FIND_REG_INC_NOTE (this_insn, tem);
4449 if (link != 0)
4450 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
4451
4452 return 1;
4453 }
4454 }
4455 else if (code == MEM)
4456 {
4457 /* This is probably the result of a substitution, by eliminate_regs,
4458 of an equivalent address for a pseudo that was not allocated to a
4459 hard register. Verify that the specified address is valid and reload
4460 it into a register.
4461
4462 Since we know we are going to reload this item, don't decrement
4463 for the indirection level.
4464
4465 Note that this is actually conservative: it would be slightly more
4466 efficient to use the value of SPILL_INDIRECT_LEVELS from
4467 reload1.c here. */
4468
4469 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
4470 opnum, type, ind_levels);
4471
4472 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
4473 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
4474 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
4475 return 1;
4476 }
4477 else if (code == REG)
4478 {
4479 register int regno = REGNO (x);
4480
4481 if (reg_equiv_constant[regno] != 0)
4482 {
4483 find_reloads_address_part (reg_equiv_constant[regno], loc,
4484 (context ? INDEX_REG_CLASS
4485 : BASE_REG_CLASS),
4486 GET_MODE (x), opnum, type, ind_levels);
4487 return 1;
4488 }
4489
4490 #if 0 /* This might screw code in reload1.c to delete prior output-reload
4491 that feeds this insn. */
4492 if (reg_equiv_mem[regno] != 0)
4493 {
4494 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
4495 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
4496 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
4497 return 1;
4498 }
4499 #endif
4500 if (reg_equiv_address[regno] != 0)
4501 {
4502 x = make_memloc (x, regno);
4503 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
4504 opnum, type, ind_levels);
4505 }
4506
4507 if (reg_renumber[regno] >= 0)
4508 regno = reg_renumber[regno];
4509 if ((regno >= FIRST_PSEUDO_REGISTER
4510 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
4511 : REGNO_OK_FOR_BASE_P (regno))))
4512 {
4513 push_reload (x, NULL_RTX, loc, NULL_PTR,
4514 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
4515 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
4516 return 1;
4517 }
4518
4519 /* If a register appearing in an address is the subject of a CLOBBER
4520 in this insn, reload it into some other register to be safe.
4521 The CLOBBER is supposed to make the register unavailable
4522 from before this insn to after it. */
4523 if (regno_clobbered_p (regno, this_insn))
4524 {
4525 push_reload (x, NULL_RTX, loc, NULL_PTR,
4526 context ? INDEX_REG_CLASS : BASE_REG_CLASS,
4527 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
4528 return 1;
4529 }
4530 }
4531 else
4532 {
4533 register char *fmt = GET_RTX_FORMAT (code);
4534 register int i;
4535 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4536 {
4537 if (fmt[i] == 'e')
4538 find_reloads_address_1 (XEXP (x, i), context, &XEXP (x, i),
4539 opnum, type, ind_levels);
4540 }
4541 }
4542
4543 return 0;
4544 }
4545 \f
4546 /* X, which is found at *LOC, is a part of an address that needs to be
4547 reloaded into a register of class CLASS. If X is a constant, or if
4548 X is a PLUS that contains a constant, check that the constant is a
4549 legitimate operand and that we are supposed to be able to load
4550 it into the register.
4551
4552 If not, force the constant into memory and reload the MEM instead.
4553
4554 MODE is the mode to use, in case X is an integer constant.
4555
4556 OPNUM and TYPE describe the purpose of any reloads made.
4557
4558 IND_LEVELS says how many levels of indirect addressing this machine
4559 supports. */
4560
4561 static void
4562 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
4563 rtx x;
4564 rtx *loc;
4565 enum reg_class class;
4566 enum machine_mode mode;
4567 int opnum;
4568 enum reload_type type;
4569 int ind_levels;
4570 {
4571 if (CONSTANT_P (x)
4572 && (! LEGITIMATE_CONSTANT_P (x)
4573 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
4574 {
4575 rtx tem = x = force_const_mem (mode, x);
4576 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
4577 opnum, type, ind_levels);
4578 }
4579
4580 else if (GET_CODE (x) == PLUS
4581 && CONSTANT_P (XEXP (x, 1))
4582 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
4583 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
4584 {
4585 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
4586
4587 x = gen_rtx (PLUS, GET_MODE (x), XEXP (x, 0), tem);
4588 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
4589 opnum, type, ind_levels);
4590 }
4591
4592 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
4593 mode, VOIDmode, 0, 0, opnum, type);
4594 }
4595 \f
4596 /* Substitute into the current INSN the registers into which we have reloaded
4597 the things that need reloading. The array `replacements'
4598 says contains the locations of all pointers that must be changed
4599 and says what to replace them with.
4600
4601 Return the rtx that X translates into; usually X, but modified. */
4602
4603 void
4604 subst_reloads ()
4605 {
4606 register int i;
4607
4608 for (i = 0; i < n_replacements; i++)
4609 {
4610 register struct replacement *r = &replacements[i];
4611 register rtx reloadreg = reload_reg_rtx[r->what];
4612 if (reloadreg)
4613 {
4614 /* Encapsulate RELOADREG so its machine mode matches what
4615 used to be there. */
4616 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
4617 reloadreg = gen_lowpart_common (r->mode, reloadreg);
4618
4619 /* If we are putting this into a SUBREG and RELOADREG is a
4620 SUBREG, we would be making nested SUBREGs, so we have to fix
4621 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
4622
4623 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
4624 {
4625 if (GET_MODE (*r->subreg_loc)
4626 == GET_MODE (SUBREG_REG (reloadreg)))
4627 *r->subreg_loc = SUBREG_REG (reloadreg);
4628 else
4629 {
4630 *r->where = SUBREG_REG (reloadreg);
4631 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
4632 }
4633 }
4634 else
4635 *r->where = reloadreg;
4636 }
4637 /* If reload got no reg and isn't optional, something's wrong. */
4638 else if (! reload_optional[r->what])
4639 abort ();
4640 }
4641 }
4642 \f
4643 /* Make a copy of any replacements being done into X and move those copies
4644 to locations in Y, a copy of X. We only look at the highest level of
4645 the RTL. */
4646
4647 void
4648 copy_replacements (x, y)
4649 rtx x;
4650 rtx y;
4651 {
4652 int i, j;
4653 enum rtx_code code = GET_CODE (x);
4654 char *fmt = GET_RTX_FORMAT (code);
4655 struct replacement *r;
4656
4657 /* We can't support X being a SUBREG because we might then need to know its
4658 location if something inside it was replaced. */
4659 if (code == SUBREG)
4660 abort ();
4661
4662 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4663 if (fmt[i] == 'e')
4664 for (j = 0; j < n_replacements; j++)
4665 {
4666 if (replacements[j].subreg_loc == &XEXP (x, i))
4667 {
4668 r = &replacements[n_replacements++];
4669 r->where = replacements[j].where;
4670 r->subreg_loc = &XEXP (y, i);
4671 r->what = replacements[j].what;
4672 r->mode = replacements[j].mode;
4673 }
4674 else if (replacements[j].where == &XEXP (x, i))
4675 {
4676 r = &replacements[n_replacements++];
4677 r->where = &XEXP (y, i);
4678 r->subreg_loc = 0;
4679 r->what = replacements[j].what;
4680 r->mode = replacements[j].mode;
4681 }
4682 }
4683 }
4684 \f
4685 /* If LOC was scheduled to be replaced by something, return the replacement.
4686 Otherwise, return *LOC. */
4687
4688 rtx
4689 find_replacement (loc)
4690 rtx *loc;
4691 {
4692 struct replacement *r;
4693
4694 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
4695 {
4696 rtx reloadreg = reload_reg_rtx[r->what];
4697
4698 if (reloadreg && r->where == loc)
4699 {
4700 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
4701 reloadreg = gen_rtx (REG, r->mode, REGNO (reloadreg));
4702
4703 return reloadreg;
4704 }
4705 else if (reloadreg && r->subreg_loc == loc)
4706 {
4707 /* RELOADREG must be either a REG or a SUBREG.
4708
4709 ??? Is it actually still ever a SUBREG? If so, why? */
4710
4711 if (GET_CODE (reloadreg) == REG)
4712 return gen_rtx (REG, GET_MODE (*loc),
4713 REGNO (reloadreg) + SUBREG_WORD (*loc));
4714 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
4715 return reloadreg;
4716 else
4717 return gen_rtx (SUBREG, GET_MODE (*loc), SUBREG_REG (reloadreg),
4718 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
4719 }
4720 }
4721
4722 return *loc;
4723 }
4724 \f
4725 /* Return nonzero if register in range [REGNO, ENDREGNO)
4726 appears either explicitly or implicitly in X
4727 other than being stored into.
4728
4729 References contained within the substructure at LOC do not count.
4730 LOC may be zero, meaning don't ignore anything.
4731
4732 This is similar to refers_to_regno_p in rtlanal.c except that we
4733 look at equivalences for pseudos that didn't get hard registers. */
4734
4735 int
4736 refers_to_regno_for_reload_p (regno, endregno, x, loc)
4737 int regno, endregno;
4738 rtx x;
4739 rtx *loc;
4740 {
4741 register int i;
4742 register RTX_CODE code;
4743 register char *fmt;
4744
4745 if (x == 0)
4746 return 0;
4747
4748 repeat:
4749 code = GET_CODE (x);
4750
4751 switch (code)
4752 {
4753 case REG:
4754 i = REGNO (x);
4755
4756 /* If this is a pseudo, a hard register must not have been allocated.
4757 X must therefore either be a constant or be in memory. */
4758 if (i >= FIRST_PSEUDO_REGISTER)
4759 {
4760 if (reg_equiv_memory_loc[i])
4761 return refers_to_regno_for_reload_p (regno, endregno,
4762 reg_equiv_memory_loc[i],
4763 NULL_PTR);
4764
4765 if (reg_equiv_constant[i])
4766 return 0;
4767
4768 abort ();
4769 }
4770
4771 return (endregno > i
4772 && regno < i + (i < FIRST_PSEUDO_REGISTER
4773 ? HARD_REGNO_NREGS (i, GET_MODE (x))
4774 : 1));
4775
4776 case SUBREG:
4777 /* If this is a SUBREG of a hard reg, we can see exactly which
4778 registers are being modified. Otherwise, handle normally. */
4779 if (GET_CODE (SUBREG_REG (x)) == REG
4780 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
4781 {
4782 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
4783 int inner_endregno
4784 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
4785 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
4786
4787 return endregno > inner_regno && regno < inner_endregno;
4788 }
4789 break;
4790
4791 case CLOBBER:
4792 case SET:
4793 if (&SET_DEST (x) != loc
4794 /* Note setting a SUBREG counts as referring to the REG it is in for
4795 a pseudo but not for hard registers since we can
4796 treat each word individually. */
4797 && ((GET_CODE (SET_DEST (x)) == SUBREG
4798 && loc != &SUBREG_REG (SET_DEST (x))
4799 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
4800 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
4801 && refers_to_regno_for_reload_p (regno, endregno,
4802 SUBREG_REG (SET_DEST (x)),
4803 loc))
4804 || (GET_CODE (SET_DEST (x)) != REG
4805 && refers_to_regno_for_reload_p (regno, endregno,
4806 SET_DEST (x), loc))))
4807 return 1;
4808
4809 if (code == CLOBBER || loc == &SET_SRC (x))
4810 return 0;
4811 x = SET_SRC (x);
4812 goto repeat;
4813 }
4814
4815 /* X does not match, so try its subexpressions. */
4816
4817 fmt = GET_RTX_FORMAT (code);
4818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4819 {
4820 if (fmt[i] == 'e' && loc != &XEXP (x, i))
4821 {
4822 if (i == 0)
4823 {
4824 x = XEXP (x, 0);
4825 goto repeat;
4826 }
4827 else
4828 if (refers_to_regno_for_reload_p (regno, endregno,
4829 XEXP (x, i), loc))
4830 return 1;
4831 }
4832 else if (fmt[i] == 'E')
4833 {
4834 register int j;
4835 for (j = XVECLEN (x, i) - 1; j >=0; j--)
4836 if (loc != &XVECEXP (x, i, j)
4837 && refers_to_regno_for_reload_p (regno, endregno,
4838 XVECEXP (x, i, j), loc))
4839 return 1;
4840 }
4841 }
4842 return 0;
4843 }
4844
4845 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
4846 we check if any register number in X conflicts with the relevant register
4847 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
4848 contains a MEM (we don't bother checking for memory addresses that can't
4849 conflict because we expect this to be a rare case.
4850
4851 This function is similar to reg_overlap_mention_p in rtlanal.c except
4852 that we look at equivalences for pseudos that didn't get hard registers. */
4853
4854 int
4855 reg_overlap_mentioned_for_reload_p (x, in)
4856 rtx x, in;
4857 {
4858 int regno, endregno;
4859
4860 if (GET_CODE (x) == SUBREG)
4861 {
4862 regno = REGNO (SUBREG_REG (x));
4863 if (regno < FIRST_PSEUDO_REGISTER)
4864 regno += SUBREG_WORD (x);
4865 }
4866 else if (GET_CODE (x) == REG)
4867 {
4868 regno = REGNO (x);
4869
4870 /* If this is a pseudo, it must not have been assigned a hard register.
4871 Therefore, it must either be in memory or be a constant. */
4872
4873 if (regno >= FIRST_PSEUDO_REGISTER)
4874 {
4875 if (reg_equiv_memory_loc[regno])
4876 return refers_to_mem_for_reload_p (in);
4877 else if (reg_equiv_constant[regno])
4878 return 0;
4879 abort ();
4880 }
4881 }
4882 else if (CONSTANT_P (x))
4883 return 0;
4884 else if (GET_CODE (x) == MEM)
4885 return refers_to_mem_for_reload_p (in);
4886 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
4887 || GET_CODE (x) == CC0)
4888 return reg_mentioned_p (x, in);
4889 else
4890 abort ();
4891
4892 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
4893 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
4894
4895 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
4896 }
4897
4898 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
4899 registers. */
4900
4901 int
4902 refers_to_mem_for_reload_p (x)
4903 rtx x;
4904 {
4905 char *fmt;
4906 int i;
4907
4908 if (GET_CODE (x) == MEM)
4909 return 1;
4910
4911 if (GET_CODE (x) == REG)
4912 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
4913 && reg_equiv_memory_loc[REGNO (x)]);
4914
4915 fmt = GET_RTX_FORMAT (GET_CODE (x));
4916 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
4917 if (fmt[i] == 'e'
4918 && (GET_CODE (XEXP (x, i)) == MEM
4919 || refers_to_mem_for_reload_p (XEXP (x, i))))
4920 return 1;
4921
4922 return 0;
4923 }
4924 \f
4925 /* Check the insns before INSN to see if there is a suitable register
4926 containing the same value as GOAL.
4927 If OTHER is -1, look for a register in class CLASS.
4928 Otherwise, just see if register number OTHER shares GOAL's value.
4929
4930 Return an rtx for the register found, or zero if none is found.
4931
4932 If RELOAD_REG_P is (short *)1,
4933 we reject any hard reg that appears in reload_reg_rtx
4934 because such a hard reg is also needed coming into this insn.
4935
4936 If RELOAD_REG_P is any other nonzero value,
4937 it is a vector indexed by hard reg number
4938 and we reject any hard reg whose element in the vector is nonnegative
4939 as well as any that appears in reload_reg_rtx.
4940
4941 If GOAL is zero, then GOALREG is a register number; we look
4942 for an equivalent for that register.
4943
4944 MODE is the machine mode of the value we want an equivalence for.
4945 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
4946
4947 This function is used by jump.c as well as in the reload pass.
4948
4949 If GOAL is the sum of the stack pointer and a constant, we treat it
4950 as if it were a constant except that sp is required to be unchanging. */
4951
4952 rtx
4953 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
4954 register rtx goal;
4955 rtx insn;
4956 enum reg_class class;
4957 register int other;
4958 short *reload_reg_p;
4959 int goalreg;
4960 enum machine_mode mode;
4961 {
4962 register rtx p = insn;
4963 rtx goaltry, valtry, value, where;
4964 register rtx pat;
4965 register int regno = -1;
4966 int valueno;
4967 int goal_mem = 0;
4968 int goal_const = 0;
4969 int goal_mem_addr_varies = 0;
4970 int need_stable_sp = 0;
4971 int nregs;
4972 int valuenregs;
4973
4974 if (goal == 0)
4975 regno = goalreg;
4976 else if (GET_CODE (goal) == REG)
4977 regno = REGNO (goal);
4978 else if (GET_CODE (goal) == MEM)
4979 {
4980 enum rtx_code code = GET_CODE (XEXP (goal, 0));
4981 if (MEM_VOLATILE_P (goal))
4982 return 0;
4983 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
4984 return 0;
4985 /* An address with side effects must be reexecuted. */
4986 switch (code)
4987 {
4988 case POST_INC:
4989 case PRE_INC:
4990 case POST_DEC:
4991 case PRE_DEC:
4992 return 0;
4993 }
4994 goal_mem = 1;
4995 }
4996 else if (CONSTANT_P (goal))
4997 goal_const = 1;
4998 else if (GET_CODE (goal) == PLUS
4999 && XEXP (goal, 0) == stack_pointer_rtx
5000 && CONSTANT_P (XEXP (goal, 1)))
5001 goal_const = need_stable_sp = 1;
5002 else
5003 return 0;
5004
5005 /* On some machines, certain regs must always be rejected
5006 because they don't behave the way ordinary registers do. */
5007
5008 #ifdef OVERLAPPING_REGNO_P
5009 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5010 && OVERLAPPING_REGNO_P (regno))
5011 return 0;
5012 #endif
5013
5014 /* Scan insns back from INSN, looking for one that copies
5015 a value into or out of GOAL.
5016 Stop and give up if we reach a label. */
5017
5018 while (1)
5019 {
5020 p = PREV_INSN (p);
5021 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5022 return 0;
5023 if (GET_CODE (p) == INSN
5024 /* If we don't want spill regs ... */
5025 && (! (reload_reg_p != 0
5026 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
5027 /* ... then ignore insns introduced by reload; they aren't useful
5028 and can cause results in reload_as_needed to be different
5029 from what they were when calculating the need for spills.
5030 If we notice an input-reload insn here, we will reject it below,
5031 but it might hide a usable equivalent. That makes bad code.
5032 It may even abort: perhaps no reg was spilled for this insn
5033 because it was assumed we would find that equivalent. */
5034 || INSN_UID (p) < reload_first_uid))
5035 {
5036 rtx tem;
5037 pat = single_set (p);
5038 /* First check for something that sets some reg equal to GOAL. */
5039 if (pat != 0
5040 && ((regno >= 0
5041 && true_regnum (SET_SRC (pat)) == regno
5042 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5043 ||
5044 (regno >= 0
5045 && true_regnum (SET_DEST (pat)) == regno
5046 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
5047 ||
5048 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
5049 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5050 || (goal_mem
5051 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
5052 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
5053 || (goal_mem
5054 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
5055 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
5056 /* If we are looking for a constant,
5057 and something equivalent to that constant was copied
5058 into a reg, we can use that reg. */
5059 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5060 NULL_RTX))
5061 && rtx_equal_p (XEXP (tem, 0), goal)
5062 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5063 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5064 NULL_RTX))
5065 && GET_CODE (SET_DEST (pat)) == REG
5066 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5067 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5068 && GET_CODE (goal) == CONST_INT
5069 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
5070 VOIDmode))
5071 && rtx_equal_p (goal, goaltry)
5072 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
5073 VOIDmode))
5074 && (valueno = true_regnum (valtry)) >= 0)
5075 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5076 NULL_RTX))
5077 && GET_CODE (SET_DEST (pat)) == REG
5078 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5079 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5080 && GET_CODE (goal) == CONST_INT
5081 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
5082 VOIDmode))
5083 && rtx_equal_p (goal, goaltry)
5084 && (valtry
5085 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
5086 && (valueno = true_regnum (valtry)) >= 0)))
5087 if (other >= 0
5088 ? valueno == other
5089 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
5090 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
5091 valueno)))
5092 {
5093 value = valtry;
5094 where = p;
5095 break;
5096 }
5097 }
5098 }
5099
5100 /* We found a previous insn copying GOAL into a suitable other reg VALUE
5101 (or copying VALUE into GOAL, if GOAL is also a register).
5102 Now verify that VALUE is really valid. */
5103
5104 /* VALUENO is the register number of VALUE; a hard register. */
5105
5106 /* Don't try to re-use something that is killed in this insn. We want
5107 to be able to trust REG_UNUSED notes. */
5108 if (find_reg_note (where, REG_UNUSED, value))
5109 return 0;
5110
5111 /* If we propose to get the value from the stack pointer or if GOAL is
5112 a MEM based on the stack pointer, we need a stable SP. */
5113 if (valueno == STACK_POINTER_REGNUM
5114 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
5115 goal)))
5116 need_stable_sp = 1;
5117
5118 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
5119 if (GET_MODE (value) != mode)
5120 return 0;
5121
5122 /* Reject VALUE if it was loaded from GOAL
5123 and is also a register that appears in the address of GOAL. */
5124
5125 if (goal_mem && value == SET_DEST (PATTERN (where))
5126 && refers_to_regno_for_reload_p (valueno,
5127 (valueno
5128 + HARD_REGNO_NREGS (valueno, mode)),
5129 goal, NULL_PTR))
5130 return 0;
5131
5132 /* Reject registers that overlap GOAL. */
5133
5134 if (!goal_mem && !goal_const
5135 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
5136 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
5137 return 0;
5138
5139 /* Reject VALUE if it is one of the regs reserved for reloads.
5140 Reload1 knows how to reuse them anyway, and it would get
5141 confused if we allocated one without its knowledge.
5142 (Now that insns introduced by reload are ignored above,
5143 this case shouldn't happen, but I'm not positive.) */
5144
5145 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
5146 && reload_reg_p[valueno] >= 0)
5147 return 0;
5148
5149 /* On some machines, certain regs must always be rejected
5150 because they don't behave the way ordinary registers do. */
5151
5152 #ifdef OVERLAPPING_REGNO_P
5153 if (OVERLAPPING_REGNO_P (valueno))
5154 return 0;
5155 #endif
5156
5157 nregs = HARD_REGNO_NREGS (regno, mode);
5158 valuenregs = HARD_REGNO_NREGS (valueno, mode);
5159
5160 /* Reject VALUE if it is a register being used for an input reload
5161 even if it is not one of those reserved. */
5162
5163 if (reload_reg_p != 0)
5164 {
5165 int i;
5166 for (i = 0; i < n_reloads; i++)
5167 if (reload_reg_rtx[i] != 0 && reload_in[i])
5168 {
5169 int regno1 = REGNO (reload_reg_rtx[i]);
5170 int nregs1 = HARD_REGNO_NREGS (regno1,
5171 GET_MODE (reload_reg_rtx[i]));
5172 if (regno1 < valueno + valuenregs
5173 && regno1 + nregs1 > valueno)
5174 return 0;
5175 }
5176 }
5177
5178 if (goal_mem)
5179 goal_mem_addr_varies = rtx_addr_varies_p (goal);
5180
5181 /* Now verify that the values of GOAL and VALUE remain unaltered
5182 until INSN is reached. */
5183
5184 p = insn;
5185 while (1)
5186 {
5187 p = PREV_INSN (p);
5188 if (p == where)
5189 return value;
5190
5191 /* Don't trust the conversion past a function call
5192 if either of the two is in a call-clobbered register, or memory. */
5193 if (GET_CODE (p) == CALL_INSN
5194 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5195 && call_used_regs[regno])
5196 ||
5197 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5198 && call_used_regs[valueno])
5199 ||
5200 goal_mem
5201 || need_stable_sp))
5202 return 0;
5203
5204 #ifdef INSN_CLOBBERS_REGNO_P
5205 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5206 && INSN_CLOBBERS_REGNO_P (p, valueno))
5207 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5208 && INSN_CLOBBERS_REGNO_P (p, regno)))
5209 return 0;
5210 #endif
5211
5212 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5213 {
5214 /* If this insn P stores in either GOAL or VALUE, return 0.
5215 If GOAL is a memory ref and this insn writes memory, return 0.
5216 If GOAL is a memory ref and its address is not constant,
5217 and this insn P changes a register used in GOAL, return 0. */
5218
5219 pat = PATTERN (p);
5220 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
5221 {
5222 register rtx dest = SET_DEST (pat);
5223 while (GET_CODE (dest) == SUBREG
5224 || GET_CODE (dest) == ZERO_EXTRACT
5225 || GET_CODE (dest) == SIGN_EXTRACT
5226 || GET_CODE (dest) == STRICT_LOW_PART)
5227 dest = XEXP (dest, 0);
5228 if (GET_CODE (dest) == REG)
5229 {
5230 register int xregno = REGNO (dest);
5231 int xnregs;
5232 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5233 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5234 else
5235 xnregs = 1;
5236 if (xregno < regno + nregs && xregno + xnregs > regno)
5237 return 0;
5238 if (xregno < valueno + valuenregs
5239 && xregno + xnregs > valueno)
5240 return 0;
5241 if (goal_mem_addr_varies
5242 && reg_overlap_mentioned_for_reload_p (dest, goal))
5243 return 0;
5244 }
5245 else if (goal_mem && GET_CODE (dest) == MEM
5246 && ! push_operand (dest, GET_MODE (dest)))
5247 return 0;
5248 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
5249 return 0;
5250 }
5251 else if (GET_CODE (pat) == PARALLEL)
5252 {
5253 register int i;
5254 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
5255 {
5256 register rtx v1 = XVECEXP (pat, 0, i);
5257 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
5258 {
5259 register rtx dest = SET_DEST (v1);
5260 while (GET_CODE (dest) == SUBREG
5261 || GET_CODE (dest) == ZERO_EXTRACT
5262 || GET_CODE (dest) == SIGN_EXTRACT
5263 || GET_CODE (dest) == STRICT_LOW_PART)
5264 dest = XEXP (dest, 0);
5265 if (GET_CODE (dest) == REG)
5266 {
5267 register int xregno = REGNO (dest);
5268 int xnregs;
5269 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5270 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5271 else
5272 xnregs = 1;
5273 if (xregno < regno + nregs
5274 && xregno + xnregs > regno)
5275 return 0;
5276 if (xregno < valueno + valuenregs
5277 && xregno + xnregs > valueno)
5278 return 0;
5279 if (goal_mem_addr_varies
5280 && reg_overlap_mentioned_for_reload_p (dest,
5281 goal))
5282 return 0;
5283 }
5284 else if (goal_mem && GET_CODE (dest) == MEM
5285 && ! push_operand (dest, GET_MODE (dest)))
5286 return 0;
5287 else if (need_stable_sp
5288 && push_operand (dest, GET_MODE (dest)))
5289 return 0;
5290 }
5291 }
5292 }
5293
5294 #ifdef AUTO_INC_DEC
5295 /* If this insn auto-increments or auto-decrements
5296 either regno or valueno, return 0 now.
5297 If GOAL is a memory ref and its address is not constant,
5298 and this insn P increments a register used in GOAL, return 0. */
5299 {
5300 register rtx link;
5301
5302 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
5303 if (REG_NOTE_KIND (link) == REG_INC
5304 && GET_CODE (XEXP (link, 0)) == REG)
5305 {
5306 register int incno = REGNO (XEXP (link, 0));
5307 if (incno < regno + nregs && incno >= regno)
5308 return 0;
5309 if (incno < valueno + valuenregs && incno >= valueno)
5310 return 0;
5311 if (goal_mem_addr_varies
5312 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
5313 goal))
5314 return 0;
5315 }
5316 }
5317 #endif
5318 }
5319 }
5320 }
5321 \f
5322 /* Find a place where INCED appears in an increment or decrement operator
5323 within X, and return the amount INCED is incremented or decremented by.
5324 The value is always positive. */
5325
5326 static int
5327 find_inc_amount (x, inced)
5328 rtx x, inced;
5329 {
5330 register enum rtx_code code = GET_CODE (x);
5331 register char *fmt;
5332 register int i;
5333
5334 if (code == MEM)
5335 {
5336 register rtx addr = XEXP (x, 0);
5337 if ((GET_CODE (addr) == PRE_DEC
5338 || GET_CODE (addr) == POST_DEC
5339 || GET_CODE (addr) == PRE_INC
5340 || GET_CODE (addr) == POST_INC)
5341 && XEXP (addr, 0) == inced)
5342 return GET_MODE_SIZE (GET_MODE (x));
5343 }
5344
5345 fmt = GET_RTX_FORMAT (code);
5346 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5347 {
5348 if (fmt[i] == 'e')
5349 {
5350 register int tem = find_inc_amount (XEXP (x, i), inced);
5351 if (tem != 0)
5352 return tem;
5353 }
5354 if (fmt[i] == 'E')
5355 {
5356 register int j;
5357 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5358 {
5359 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
5360 if (tem != 0)
5361 return tem;
5362 }
5363 }
5364 }
5365
5366 return 0;
5367 }
5368 \f
5369 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
5370
5371 int
5372 regno_clobbered_p (regno, insn)
5373 int regno;
5374 rtx insn;
5375 {
5376 if (GET_CODE (PATTERN (insn)) == CLOBBER
5377 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
5378 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
5379
5380 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5381 {
5382 int i = XVECLEN (PATTERN (insn), 0) - 1;
5383
5384 for (; i >= 0; i--)
5385 {
5386 rtx elt = XVECEXP (PATTERN (insn), 0, i);
5387 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
5388 && REGNO (XEXP (elt, 0)) == regno)
5389 return 1;
5390 }
5391 }
5392
5393 return 0;
5394 }