reload.c (find_dummy_reload): Check that an output register is valid for its mode.
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57 NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
72
73 Using a reload register for several reloads in one insn:
74
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
78
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
82
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
86
87 #define REG_OK_STRICT
88
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "expr.h"
95 #include "optabs.h"
96 #include "recog.h"
97 #include "reload.h"
98 #include "regs.h"
99 #include "hard-reg-set.h"
100 #include "flags.h"
101 #include "real.h"
102 #include "output.h"
103 #include "function.h"
104 #include "toplev.h"
105
106 #ifndef REGISTER_MOVE_COST
107 #define REGISTER_MOVE_COST(m, x, y) 2
108 #endif
109
110 #ifndef REGNO_MODE_OK_FOR_BASE_P
111 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112 #endif
113
114 #ifndef REG_MODE_OK_FOR_BASE_P
115 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116 #endif
117 \f
118 /* All reloads of the current insn are recorded here. See reload.h for
119 comments. */
120 int n_reloads;
121 struct reload rld[MAX_RELOADS];
122
123 /* All the "earlyclobber" operands of the current insn
124 are recorded here. */
125 int n_earlyclobbers;
126 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
127
128 int reload_n_operands;
129
130 /* Replacing reloads.
131
132 If `replace_reloads' is nonzero, then as each reload is recorded
133 an entry is made for it in the table `replacements'.
134 Then later `subst_reloads' can look through that table and
135 perform all the replacements needed. */
136
137 /* Nonzero means record the places to replace. */
138 static int replace_reloads;
139
140 /* Each replacement is recorded with a structure like this. */
141 struct replacement
142 {
143 rtx *where; /* Location to store in */
144 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
145 a SUBREG; 0 otherwise. */
146 int what; /* which reload this is for */
147 enum machine_mode mode; /* mode it must have */
148 };
149
150 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
151
152 /* Number of replacements currently recorded. */
153 static int n_replacements;
154
155 /* Used to track what is modified by an operand. */
156 struct decomposition
157 {
158 int reg_flag; /* Nonzero if referencing a register. */
159 int safe; /* Nonzero if this can't conflict with anything. */
160 rtx base; /* Base address for MEM. */
161 HOST_WIDE_INT start; /* Starting offset or register number. */
162 HOST_WIDE_INT end; /* Ending offset or register number. */
163 };
164
165 #ifdef SECONDARY_MEMORY_NEEDED
166
167 /* Save MEMs needed to copy from one class of registers to another. One MEM
168 is used per mode, but normally only one or two modes are ever used.
169
170 We keep two versions, before and after register elimination. The one
171 after register elimination is record separately for each operand. This
172 is done in case the address is not valid to be sure that we separately
173 reload each. */
174
175 static rtx secondary_memlocs[NUM_MACHINE_MODES];
176 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
177 #endif
178
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
182
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
185
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
190
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
196
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
199
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
203
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG \
207 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
209
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
220
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
228
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
237
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *));
242 #endif
243 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int));
244 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
245 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
246 static void combine_reloads PARAMS ((void));
247 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
248 enum reload_type, int, int));
249 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
250 enum machine_mode, enum machine_mode,
251 enum reg_class, int, int));
252 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
253 static struct decomposition decompose PARAMS ((rtx));
254 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
255 static int alternative_allows_memconst PARAMS ((const char *, int));
256 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
257 int, rtx, int *));
258 static rtx make_memloc PARAMS ((rtx, int));
259 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
260 int, enum reload_type, int, rtx));
261 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
262 static rtx subst_indexed_address PARAMS ((rtx));
263 static void update_auto_inc_notes PARAMS ((rtx, int, int));
264 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
265 int, enum reload_type,int, rtx));
266 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
267 enum machine_mode, int,
268 enum reload_type, int));
269 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int, enum reload_type,
270 int, rtx));
271 static int find_inc_amount PARAMS ((rtx, rtx));
272 \f
273 #ifdef HAVE_SECONDARY_RELOADS
274
275 /* Determine if any secondary reloads are needed for loading (if IN_P is
276 non-zero) or storing (if IN_P is zero) X to or from a reload register of
277 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
278 are needed, push them.
279
280 Return the reload number of the secondary reload we made, or -1 if
281 we didn't need one. *PICODE is set to the insn_code to use if we do
282 need a secondary reload. */
283
284 static int
285 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
286 type, picode)
287 int in_p;
288 rtx x;
289 int opnum;
290 int optional;
291 enum reg_class reload_class;
292 enum machine_mode reload_mode;
293 enum reload_type type;
294 enum insn_code *picode;
295 {
296 enum reg_class class = NO_REGS;
297 enum machine_mode mode = reload_mode;
298 enum insn_code icode = CODE_FOR_nothing;
299 enum reg_class t_class = NO_REGS;
300 enum machine_mode t_mode = VOIDmode;
301 enum insn_code t_icode = CODE_FOR_nothing;
302 enum reload_type secondary_type;
303 int s_reload, t_reload = -1;
304
305 if (type == RELOAD_FOR_INPUT_ADDRESS
306 || type == RELOAD_FOR_OUTPUT_ADDRESS
307 || type == RELOAD_FOR_INPADDR_ADDRESS
308 || type == RELOAD_FOR_OUTADDR_ADDRESS)
309 secondary_type = type;
310 else
311 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
312
313 *picode = CODE_FOR_nothing;
314
315 /* If X is a paradoxical SUBREG, use the inner value to determine both the
316 mode and object being reloaded. */
317 if (GET_CODE (x) == SUBREG
318 && (GET_MODE_SIZE (GET_MODE (x))
319 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
320 {
321 x = SUBREG_REG (x);
322 reload_mode = GET_MODE (x);
323 }
324
325 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
326 is still a pseudo-register by now, it *must* have an equivalent MEM
327 but we don't want to assume that), use that equivalent when seeing if
328 a secondary reload is needed since whether or not a reload is needed
329 might be sensitive to the form of the MEM. */
330
331 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
332 && reg_equiv_mem[REGNO (x)] != 0)
333 x = reg_equiv_mem[REGNO (x)];
334
335 #ifdef SECONDARY_INPUT_RELOAD_CLASS
336 if (in_p)
337 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
338 #endif
339
340 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
341 if (! in_p)
342 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
343 #endif
344
345 /* If we don't need any secondary registers, done. */
346 if (class == NO_REGS)
347 return -1;
348
349 /* Get a possible insn to use. If the predicate doesn't accept X, don't
350 use the insn. */
351
352 icode = (in_p ? reload_in_optab[(int) reload_mode]
353 : reload_out_optab[(int) reload_mode]);
354
355 if (icode != CODE_FOR_nothing
356 && insn_data[(int) icode].operand[in_p].predicate
357 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
358 icode = CODE_FOR_nothing;
359
360 /* If we will be using an insn, see if it can directly handle the reload
361 register we will be using. If it can, the secondary reload is for a
362 scratch register. If it can't, we will use the secondary reload for
363 an intermediate register and require a tertiary reload for the scratch
364 register. */
365
366 if (icode != CODE_FOR_nothing)
367 {
368 /* If IN_P is non-zero, the reload register will be the output in
369 operand 0. If IN_P is zero, the reload register will be the input
370 in operand 1. Outputs should have an initial "=", which we must
371 skip. */
372
373 enum reg_class insn_class;
374
375 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
376 insn_class = ALL_REGS;
377 else
378 {
379 char insn_letter
380 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
381 insn_class
382 = (insn_letter == 'r' ? GENERAL_REGS
383 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
384
385 if (insn_class == NO_REGS)
386 abort ();
387 if (in_p
388 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
389 abort ();
390 }
391
392 /* The scratch register's constraint must start with "=&". */
393 if (insn_data[(int) icode].operand[2].constraint[0] != '='
394 || insn_data[(int) icode].operand[2].constraint[1] != '&')
395 abort ();
396
397 if (reg_class_subset_p (reload_class, insn_class))
398 mode = insn_data[(int) icode].operand[2].mode;
399 else
400 {
401 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
402 class = insn_class;
403 t_mode = insn_data[(int) icode].operand[2].mode;
404 t_class = (t_letter == 'r' ? GENERAL_REGS
405 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
406 t_icode = icode;
407 icode = CODE_FOR_nothing;
408 }
409 }
410
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
416
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
421
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
424
425 if (in_p && class == reload_class && icode == CODE_FOR_nothing
426 && t_icode == CODE_FOR_nothing)
427 abort ();
428
429 /* If we need a tertiary reload, see if we have one we can reuse or else
430 make a new one. */
431
432 if (t_class != NO_REGS)
433 {
434 for (t_reload = 0; t_reload < n_reloads; t_reload++)
435 if (rld[t_reload].secondary_p
436 && (reg_class_subset_p (t_class, rld[t_reload].class)
437 || reg_class_subset_p (rld[t_reload].class, t_class))
438 && ((in_p && rld[t_reload].inmode == t_mode)
439 || (! in_p && rld[t_reload].outmode == t_mode))
440 && ((in_p && (rld[t_reload].secondary_in_icode
441 == CODE_FOR_nothing))
442 || (! in_p &&(rld[t_reload].secondary_out_icode
443 == CODE_FOR_nothing)))
444 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
445 && MERGABLE_RELOADS (secondary_type,
446 rld[t_reload].when_needed,
447 opnum, rld[t_reload].opnum))
448 {
449 if (in_p)
450 rld[t_reload].inmode = t_mode;
451 if (! in_p)
452 rld[t_reload].outmode = t_mode;
453
454 if (reg_class_subset_p (t_class, rld[t_reload].class))
455 rld[t_reload].class = t_class;
456
457 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
458 rld[t_reload].optional &= optional;
459 rld[t_reload].secondary_p = 1;
460 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
461 opnum, rld[t_reload].opnum))
462 rld[t_reload].when_needed = RELOAD_OTHER;
463 }
464
465 if (t_reload == n_reloads)
466 {
467 /* We need to make a new tertiary reload for this register class. */
468 rld[t_reload].in = rld[t_reload].out = 0;
469 rld[t_reload].class = t_class;
470 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
471 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
472 rld[t_reload].reg_rtx = 0;
473 rld[t_reload].optional = optional;
474 rld[t_reload].inc = 0;
475 /* Maybe we could combine these, but it seems too tricky. */
476 rld[t_reload].nocombine = 1;
477 rld[t_reload].in_reg = 0;
478 rld[t_reload].out_reg = 0;
479 rld[t_reload].opnum = opnum;
480 rld[t_reload].when_needed = secondary_type;
481 rld[t_reload].secondary_in_reload = -1;
482 rld[t_reload].secondary_out_reload = -1;
483 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
484 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
485 rld[t_reload].secondary_p = 1;
486
487 n_reloads++;
488 }
489 }
490
491 /* See if we can reuse an existing secondary reload. */
492 for (s_reload = 0; s_reload < n_reloads; s_reload++)
493 if (rld[s_reload].secondary_p
494 && (reg_class_subset_p (class, rld[s_reload].class)
495 || reg_class_subset_p (rld[s_reload].class, class))
496 && ((in_p && rld[s_reload].inmode == mode)
497 || (! in_p && rld[s_reload].outmode == mode))
498 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
499 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
500 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
501 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
502 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
503 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
504 opnum, rld[s_reload].opnum))
505 {
506 if (in_p)
507 rld[s_reload].inmode = mode;
508 if (! in_p)
509 rld[s_reload].outmode = mode;
510
511 if (reg_class_subset_p (class, rld[s_reload].class))
512 rld[s_reload].class = class;
513
514 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
515 rld[s_reload].optional &= optional;
516 rld[s_reload].secondary_p = 1;
517 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
518 opnum, rld[s_reload].opnum))
519 rld[s_reload].when_needed = RELOAD_OTHER;
520 }
521
522 if (s_reload == n_reloads)
523 {
524 #ifdef SECONDARY_MEMORY_NEEDED
525 /* If we need a memory location to copy between the two reload regs,
526 set it up now. Note that we do the input case before making
527 the reload and the output case after. This is due to the
528 way reloads are output. */
529
530 if (in_p && icode == CODE_FOR_nothing
531 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
532 {
533 get_secondary_mem (x, reload_mode, opnum, type);
534
535 /* We may have just added new reloads. Make sure we add
536 the new reload at the end. */
537 s_reload = n_reloads;
538 }
539 #endif
540
541 /* We need to make a new secondary reload for this register class. */
542 rld[s_reload].in = rld[s_reload].out = 0;
543 rld[s_reload].class = class;
544
545 rld[s_reload].inmode = in_p ? mode : VOIDmode;
546 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
547 rld[s_reload].reg_rtx = 0;
548 rld[s_reload].optional = optional;
549 rld[s_reload].inc = 0;
550 /* Maybe we could combine these, but it seems too tricky. */
551 rld[s_reload].nocombine = 1;
552 rld[s_reload].in_reg = 0;
553 rld[s_reload].out_reg = 0;
554 rld[s_reload].opnum = opnum;
555 rld[s_reload].when_needed = secondary_type;
556 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
557 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
558 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
559 rld[s_reload].secondary_out_icode
560 = ! in_p ? t_icode : CODE_FOR_nothing;
561 rld[s_reload].secondary_p = 1;
562
563 n_reloads++;
564
565 #ifdef SECONDARY_MEMORY_NEEDED
566 if (! in_p && icode == CODE_FOR_nothing
567 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
568 get_secondary_mem (x, mode, opnum, type);
569 #endif
570 }
571
572 *picode = icode;
573 return s_reload;
574 }
575 #endif /* HAVE_SECONDARY_RELOADS */
576 \f
577 #ifdef SECONDARY_MEMORY_NEEDED
578
579 /* Return a memory location that will be used to copy X in mode MODE.
580 If we haven't already made a location for this mode in this insn,
581 call find_reloads_address on the location being returned. */
582
583 rtx
584 get_secondary_mem (x, mode, opnum, type)
585 rtx x ATTRIBUTE_UNUSED;
586 enum machine_mode mode;
587 int opnum;
588 enum reload_type type;
589 {
590 rtx loc;
591 int mem_valid;
592
593 /* By default, if MODE is narrower than a word, widen it to a word.
594 This is required because most machines that require these memory
595 locations do not support short load and stores from all registers
596 (e.g., FP registers). */
597
598 #ifdef SECONDARY_MEMORY_NEEDED_MODE
599 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
600 #else
601 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
602 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
603 #endif
604
605 /* If we already have made a MEM for this operand in MODE, return it. */
606 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
607 return secondary_memlocs_elim[(int) mode][opnum];
608
609 /* If this is the first time we've tried to get a MEM for this mode,
610 allocate a new one. `something_changed' in reload will get set
611 by noticing that the frame size has changed. */
612
613 if (secondary_memlocs[(int) mode] == 0)
614 {
615 #ifdef SECONDARY_MEMORY_NEEDED_RTX
616 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
617 #else
618 secondary_memlocs[(int) mode]
619 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
620 #endif
621 }
622
623 /* Get a version of the address doing any eliminations needed. If that
624 didn't give us a new MEM, make a new one if it isn't valid. */
625
626 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
627 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
628
629 if (! mem_valid && loc == secondary_memlocs[(int) mode])
630 loc = copy_rtx (loc);
631
632 /* The only time the call below will do anything is if the stack
633 offset is too large. In that case IND_LEVELS doesn't matter, so we
634 can just pass a zero. Adjust the type to be the address of the
635 corresponding object. If the address was valid, save the eliminated
636 address. If it wasn't valid, we need to make a reload each time, so
637 don't save it. */
638
639 if (! mem_valid)
640 {
641 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
642 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
643 : RELOAD_OTHER);
644
645 find_reloads_address (mode, (rtx*) 0, XEXP (loc, 0), &XEXP (loc, 0),
646 opnum, type, 0, 0);
647 }
648
649 secondary_memlocs_elim[(int) mode][opnum] = loc;
650 return loc;
651 }
652
653 /* Clear any secondary memory locations we've made. */
654
655 void
656 clear_secondary_mem ()
657 {
658 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
659 }
660 #endif /* SECONDARY_MEMORY_NEEDED */
661 \f
662 /* Find the largest class for which every register number plus N is valid in
663 M1 (if in range). Abort if no such class exists. */
664
665 static enum reg_class
666 find_valid_class (m1, n)
667 enum machine_mode m1 ATTRIBUTE_UNUSED;
668 int n;
669 {
670 int class;
671 int regno;
672 enum reg_class best_class = NO_REGS;
673 unsigned int best_size = 0;
674
675 for (class = 1; class < N_REG_CLASSES; class++)
676 {
677 int bad = 0;
678 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
679 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
680 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
681 && ! HARD_REGNO_MODE_OK (regno + n, m1))
682 bad = 1;
683
684 if (! bad && reg_class_size[class] > best_size)
685 best_class = class, best_size = reg_class_size[class];
686 }
687
688 if (best_size == 0)
689 abort ();
690
691 return best_class;
692 }
693 \f
694 /* Return the number of a previously made reload that can be combined with
695 a new one, or n_reloads if none of the existing reloads can be used.
696 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
697 push_reload, they determine the kind of the new reload that we try to
698 combine. P_IN points to the corresponding value of IN, which can be
699 modified by this function.
700 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
701
702 static int
703 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
704 rtx *p_in, out;
705 enum reg_class class;
706 enum reload_type type;
707 int opnum, dont_share;
708 {
709 rtx in = *p_in;
710 int i;
711 /* We can't merge two reloads if the output of either one is
712 earlyclobbered. */
713
714 if (earlyclobber_operand_p (out))
715 return n_reloads;
716
717 /* We can use an existing reload if the class is right
718 and at least one of IN and OUT is a match
719 and the other is at worst neutral.
720 (A zero compared against anything is neutral.)
721
722 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
723 for the same thing since that can cause us to need more reload registers
724 than we otherwise would. */
725
726 for (i = 0; i < n_reloads; i++)
727 if ((reg_class_subset_p (class, rld[i].class)
728 || reg_class_subset_p (rld[i].class, class))
729 /* If the existing reload has a register, it must fit our class. */
730 && (rld[i].reg_rtx == 0
731 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
732 true_regnum (rld[i].reg_rtx)))
733 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
734 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
735 || (out != 0 && MATCHES (rld[i].out, out)
736 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
737 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
738 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
739 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
740 return i;
741
742 /* Reloading a plain reg for input can match a reload to postincrement
743 that reg, since the postincrement's value is the right value.
744 Likewise, it can match a preincrement reload, since we regard
745 the preincrementation as happening before any ref in this insn
746 to that register. */
747 for (i = 0; i < n_reloads; i++)
748 if ((reg_class_subset_p (class, rld[i].class)
749 || reg_class_subset_p (rld[i].class, class))
750 /* If the existing reload has a register, it must fit our
751 class. */
752 && (rld[i].reg_rtx == 0
753 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
754 true_regnum (rld[i].reg_rtx)))
755 && out == 0 && rld[i].out == 0 && rld[i].in != 0
756 && ((GET_CODE (in) == REG
757 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
758 && MATCHES (XEXP (rld[i].in, 0), in))
759 || (GET_CODE (rld[i].in) == REG
760 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
761 && MATCHES (XEXP (in, 0), rld[i].in)))
762 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
763 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
764 && MERGABLE_RELOADS (type, rld[i].when_needed,
765 opnum, rld[i].opnum))
766 {
767 /* Make sure reload_in ultimately has the increment,
768 not the plain register. */
769 if (GET_CODE (in) == REG)
770 *p_in = rld[i].in;
771 return i;
772 }
773 return n_reloads;
774 }
775
776 /* Return nonzero if X is a SUBREG which will require reloading of its
777 SUBREG_REG expression. */
778
779 static int
780 reload_inner_reg_of_subreg (x, mode)
781 rtx x;
782 enum machine_mode mode;
783 {
784 rtx inner;
785
786 /* Only SUBREGs are problematical. */
787 if (GET_CODE (x) != SUBREG)
788 return 0;
789
790 inner = SUBREG_REG (x);
791
792 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
793 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
794 return 1;
795
796 /* If INNER is not a hard register, then INNER will not need to
797 be reloaded. */
798 if (GET_CODE (inner) != REG
799 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
800 return 0;
801
802 /* If INNER is not ok for MODE, then INNER will need reloading. */
803 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
804 return 1;
805
806 /* If the outer part is a word or smaller, INNER larger than a
807 word and the number of regs for INNER is not the same as the
808 number of words in INNER, then INNER will need reloading. */
809 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
810 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
811 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
812 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
813 }
814
815 /* Record one reload that needs to be performed.
816 IN is an rtx saying where the data are to be found before this instruction.
817 OUT says where they must be stored after the instruction.
818 (IN is zero for data not read, and OUT is zero for data not written.)
819 INLOC and OUTLOC point to the places in the instructions where
820 IN and OUT were found.
821 If IN and OUT are both non-zero, it means the same register must be used
822 to reload both IN and OUT.
823
824 CLASS is a register class required for the reloaded data.
825 INMODE is the machine mode that the instruction requires
826 for the reg that replaces IN and OUTMODE is likewise for OUT.
827
828 If IN is zero, then OUT's location and mode should be passed as
829 INLOC and INMODE.
830
831 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
832
833 OPTIONAL nonzero means this reload does not need to be performed:
834 it can be discarded if that is more convenient.
835
836 OPNUM and TYPE say what the purpose of this reload is.
837
838 The return value is the reload-number for this reload.
839
840 If both IN and OUT are nonzero, in some rare cases we might
841 want to make two separate reloads. (Actually we never do this now.)
842 Therefore, the reload-number for OUT is stored in
843 output_reloadnum when we return; the return value applies to IN.
844 Usually (presently always), when IN and OUT are nonzero,
845 the two reload-numbers are equal, but the caller should be careful to
846 distinguish them. */
847
848 int
849 push_reload (in, out, inloc, outloc, class,
850 inmode, outmode, strict_low, optional, opnum, type)
851 rtx in, out;
852 rtx *inloc, *outloc;
853 enum reg_class class;
854 enum machine_mode inmode, outmode;
855 int strict_low;
856 int optional;
857 int opnum;
858 enum reload_type type;
859 {
860 int i;
861 int dont_share = 0;
862 int dont_remove_subreg = 0;
863 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
864 int secondary_in_reload = -1, secondary_out_reload = -1;
865 enum insn_code secondary_in_icode = CODE_FOR_nothing;
866 enum insn_code secondary_out_icode = CODE_FOR_nothing;
867
868 /* INMODE and/or OUTMODE could be VOIDmode if no mode
869 has been specified for the operand. In that case,
870 use the operand's mode as the mode to reload. */
871 if (inmode == VOIDmode && in != 0)
872 inmode = GET_MODE (in);
873 if (outmode == VOIDmode && out != 0)
874 outmode = GET_MODE (out);
875
876 /* If IN is a pseudo register everywhere-equivalent to a constant, and
877 it is not in a hard register, reload straight from the constant,
878 since we want to get rid of such pseudo registers.
879 Often this is done earlier, but not always in find_reloads_address. */
880 if (in != 0 && GET_CODE (in) == REG)
881 {
882 int regno = REGNO (in);
883
884 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
885 && reg_equiv_constant[regno] != 0)
886 in = reg_equiv_constant[regno];
887 }
888
889 /* Likewise for OUT. Of course, OUT will never be equivalent to
890 an actual constant, but it might be equivalent to a memory location
891 (in the case of a parameter). */
892 if (out != 0 && GET_CODE (out) == REG)
893 {
894 int regno = REGNO (out);
895
896 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
897 && reg_equiv_constant[regno] != 0)
898 out = reg_equiv_constant[regno];
899 }
900
901 /* If we have a read-write operand with an address side-effect,
902 change either IN or OUT so the side-effect happens only once. */
903 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
904 switch (GET_CODE (XEXP (in, 0)))
905 {
906 case POST_INC: case POST_DEC: case POST_MODIFY:
907 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
908 break;
909
910 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
911 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
912 break;
913
914 default:
915 break;
916 }
917
918 /* If we are reloading a (SUBREG constant ...), really reload just the
919 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
920 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
921 a pseudo and hence will become a MEM) with M1 wider than M2 and the
922 register is a pseudo, also reload the inside expression.
923 For machines that extend byte loads, do this for any SUBREG of a pseudo
924 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
925 M2 is an integral mode that gets extended when loaded.
926 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
927 either M1 is not valid for R or M2 is wider than a word but we only
928 need one word to store an M2-sized quantity in R.
929 (However, if OUT is nonzero, we need to reload the reg *and*
930 the subreg, so do nothing here, and let following statement handle it.)
931
932 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
933 we can't handle it here because CONST_INT does not indicate a mode.
934
935 Similarly, we must reload the inside expression if we have a
936 STRICT_LOW_PART (presumably, in == out in the cas).
937
938 Also reload the inner expression if it does not require a secondary
939 reload but the SUBREG does.
940
941 Finally, reload the inner expression if it is a register that is in
942 the class whose registers cannot be referenced in a different size
943 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
944 cannot reload just the inside since we might end up with the wrong
945 register class. But if it is inside a STRICT_LOW_PART, we have
946 no choice, so we hope we do get the right register class there. */
947
948 if (in != 0 && GET_CODE (in) == SUBREG
949 && (subreg_lowpart_p (in) || strict_low)
950 #ifdef CLASS_CANNOT_CHANGE_MODE
951 && (class != CLASS_CANNOT_CHANGE_MODE
952 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
953 #endif
954 && (CONSTANT_P (SUBREG_REG (in))
955 || GET_CODE (SUBREG_REG (in)) == PLUS
956 || strict_low
957 || (((GET_CODE (SUBREG_REG (in)) == REG
958 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
959 || GET_CODE (SUBREG_REG (in)) == MEM)
960 && ((GET_MODE_SIZE (inmode)
961 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
962 #ifdef LOAD_EXTEND_OP
963 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
964 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
965 <= UNITS_PER_WORD)
966 && (GET_MODE_SIZE (inmode)
967 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
968 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
969 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
970 #endif
971 #ifdef WORD_REGISTER_OPERATIONS
972 || ((GET_MODE_SIZE (inmode)
973 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
974 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
975 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
976 / UNITS_PER_WORD)))
977 #endif
978 ))
979 || (GET_CODE (SUBREG_REG (in)) == REG
980 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
981 /* The case where out is nonzero
982 is handled differently in the following statement. */
983 && (out == 0 || subreg_lowpart_p (in))
984 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
985 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
986 > UNITS_PER_WORD)
987 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
988 / UNITS_PER_WORD)
989 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
990 GET_MODE (SUBREG_REG (in)))))
991 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
992 #ifdef SECONDARY_INPUT_RELOAD_CLASS
993 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
994 && (SECONDARY_INPUT_RELOAD_CLASS (class,
995 GET_MODE (SUBREG_REG (in)),
996 SUBREG_REG (in))
997 == NO_REGS))
998 #endif
999 #ifdef CLASS_CANNOT_CHANGE_MODE
1000 || (GET_CODE (SUBREG_REG (in)) == REG
1001 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1002 && (TEST_HARD_REG_BIT
1003 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1004 REGNO (SUBREG_REG (in))))
1005 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1006 inmode))
1007 #endif
1008 ))
1009 {
1010 in_subreg_loc = inloc;
1011 inloc = &SUBREG_REG (in);
1012 in = *inloc;
1013 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1014 if (GET_CODE (in) == MEM)
1015 /* This is supposed to happen only for paradoxical subregs made by
1016 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1017 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1018 abort ();
1019 #endif
1020 inmode = GET_MODE (in);
1021 }
1022
1023 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1024 either M1 is not valid for R or M2 is wider than a word but we only
1025 need one word to store an M2-sized quantity in R.
1026
1027 However, we must reload the inner reg *as well as* the subreg in
1028 that case. */
1029
1030 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1031 code above. This can happen if SUBREG_BYTE != 0. */
1032
1033 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1034 {
1035 enum reg_class in_class = class;
1036
1037 if (GET_CODE (SUBREG_REG (in)) == REG)
1038 in_class
1039 = find_valid_class (inmode,
1040 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1041 GET_MODE (SUBREG_REG (in)),
1042 SUBREG_BYTE (in),
1043 GET_MODE (in)));
1044
1045 /* This relies on the fact that emit_reload_insns outputs the
1046 instructions for input reloads of type RELOAD_OTHER in the same
1047 order as the reloads. Thus if the outer reload is also of type
1048 RELOAD_OTHER, we are guaranteed that this inner reload will be
1049 output before the outer reload. */
1050 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1051 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1052 dont_remove_subreg = 1;
1053 }
1054
1055 /* Similarly for paradoxical and problematical SUBREGs on the output.
1056 Note that there is no reason we need worry about the previous value
1057 of SUBREG_REG (out); even if wider than out,
1058 storing in a subreg is entitled to clobber it all
1059 (except in the case of STRICT_LOW_PART,
1060 and in that case the constraint should label it input-output.) */
1061 if (out != 0 && GET_CODE (out) == SUBREG
1062 && (subreg_lowpart_p (out) || strict_low)
1063 #ifdef CLASS_CANNOT_CHANGE_MODE
1064 && (class != CLASS_CANNOT_CHANGE_MODE
1065 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1066 outmode))
1067 #endif
1068 && (CONSTANT_P (SUBREG_REG (out))
1069 || strict_low
1070 || (((GET_CODE (SUBREG_REG (out)) == REG
1071 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1072 || GET_CODE (SUBREG_REG (out)) == MEM)
1073 && ((GET_MODE_SIZE (outmode)
1074 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1075 #ifdef WORD_REGISTER_OPERATIONS
1076 || ((GET_MODE_SIZE (outmode)
1077 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1078 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1079 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1080 / UNITS_PER_WORD)))
1081 #endif
1082 ))
1083 || (GET_CODE (SUBREG_REG (out)) == REG
1084 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1085 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1086 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1087 > UNITS_PER_WORD)
1088 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1089 / UNITS_PER_WORD)
1090 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1091 GET_MODE (SUBREG_REG (out)))))
1092 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1093 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1094 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1095 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1096 GET_MODE (SUBREG_REG (out)),
1097 SUBREG_REG (out))
1098 == NO_REGS))
1099 #endif
1100 #ifdef CLASS_CANNOT_CHANGE_MODE
1101 || (GET_CODE (SUBREG_REG (out)) == REG
1102 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1103 && (TEST_HARD_REG_BIT
1104 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1105 REGNO (SUBREG_REG (out))))
1106 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1107 outmode))
1108 #endif
1109 ))
1110 {
1111 out_subreg_loc = outloc;
1112 outloc = &SUBREG_REG (out);
1113 out = *outloc;
1114 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1115 if (GET_CODE (out) == MEM
1116 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1117 abort ();
1118 #endif
1119 outmode = GET_MODE (out);
1120 }
1121
1122 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1123 either M1 is not valid for R or M2 is wider than a word but we only
1124 need one word to store an M2-sized quantity in R.
1125
1126 However, we must reload the inner reg *as well as* the subreg in
1127 that case. In this case, the inner reg is an in-out reload. */
1128
1129 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1130 {
1131 /* This relies on the fact that emit_reload_insns outputs the
1132 instructions for output reloads of type RELOAD_OTHER in reverse
1133 order of the reloads. Thus if the outer reload is also of type
1134 RELOAD_OTHER, we are guaranteed that this inner reload will be
1135 output after the outer reload. */
1136 dont_remove_subreg = 1;
1137 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1138 &SUBREG_REG (out),
1139 find_valid_class (outmode,
1140 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1141 GET_MODE (SUBREG_REG (out)),
1142 SUBREG_BYTE (out),
1143 GET_MODE (out))),
1144 VOIDmode, VOIDmode, 0, 0,
1145 opnum, RELOAD_OTHER);
1146 }
1147
1148 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1149 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1150 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1151 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1152 dont_share = 1;
1153
1154 /* If IN is a SUBREG of a hard register, make a new REG. This
1155 simplifies some of the cases below. */
1156
1157 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1158 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1159 && ! dont_remove_subreg)
1160 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1161
1162 /* Similarly for OUT. */
1163 if (out != 0 && GET_CODE (out) == SUBREG
1164 && GET_CODE (SUBREG_REG (out)) == REG
1165 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1166 && ! dont_remove_subreg)
1167 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1168
1169 /* Narrow down the class of register wanted if that is
1170 desirable on this machine for efficiency. */
1171 if (in != 0)
1172 class = PREFERRED_RELOAD_CLASS (in, class);
1173
1174 /* Output reloads may need analogous treatment, different in detail. */
1175 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1176 if (out != 0)
1177 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1178 #endif
1179
1180 /* Make sure we use a class that can handle the actual pseudo
1181 inside any subreg. For example, on the 386, QImode regs
1182 can appear within SImode subregs. Although GENERAL_REGS
1183 can handle SImode, QImode needs a smaller class. */
1184 #ifdef LIMIT_RELOAD_CLASS
1185 if (in_subreg_loc)
1186 class = LIMIT_RELOAD_CLASS (inmode, class);
1187 else if (in != 0 && GET_CODE (in) == SUBREG)
1188 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1189
1190 if (out_subreg_loc)
1191 class = LIMIT_RELOAD_CLASS (outmode, class);
1192 if (out != 0 && GET_CODE (out) == SUBREG)
1193 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1194 #endif
1195
1196 /* Verify that this class is at least possible for the mode that
1197 is specified. */
1198 if (this_insn_is_asm)
1199 {
1200 enum machine_mode mode;
1201 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1202 mode = inmode;
1203 else
1204 mode = outmode;
1205 if (mode == VOIDmode)
1206 {
1207 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1208 mode = word_mode;
1209 if (in != 0)
1210 inmode = word_mode;
1211 if (out != 0)
1212 outmode = word_mode;
1213 }
1214 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1215 if (HARD_REGNO_MODE_OK (i, mode)
1216 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1217 {
1218 int nregs = HARD_REGNO_NREGS (i, mode);
1219
1220 int j;
1221 for (j = 1; j < nregs; j++)
1222 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1223 break;
1224 if (j == nregs)
1225 break;
1226 }
1227 if (i == FIRST_PSEUDO_REGISTER)
1228 {
1229 error_for_asm (this_insn, "impossible register constraint in `asm'");
1230 class = ALL_REGS;
1231 }
1232 }
1233
1234 /* Optional output reloads are always OK even if we have no register class,
1235 since the function of these reloads is only to have spill_reg_store etc.
1236 set, so that the storing insn can be deleted later. */
1237 if (class == NO_REGS
1238 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1239 abort ();
1240
1241 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1242
1243 if (i == n_reloads)
1244 {
1245 /* See if we need a secondary reload register to move between CLASS
1246 and IN or CLASS and OUT. Get the icode and push any required reloads
1247 needed for each of them if so. */
1248
1249 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1250 if (in != 0)
1251 secondary_in_reload
1252 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1253 &secondary_in_icode);
1254 #endif
1255
1256 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1257 if (out != 0 && GET_CODE (out) != SCRATCH)
1258 secondary_out_reload
1259 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1260 type, &secondary_out_icode);
1261 #endif
1262
1263 /* We found no existing reload suitable for re-use.
1264 So add an additional reload. */
1265
1266 #ifdef SECONDARY_MEMORY_NEEDED
1267 /* If a memory location is needed for the copy, make one. */
1268 if (in != 0 && GET_CODE (in) == REG
1269 && REGNO (in) < FIRST_PSEUDO_REGISTER
1270 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1271 class, inmode))
1272 get_secondary_mem (in, inmode, opnum, type);
1273 #endif
1274
1275 i = n_reloads;
1276 rld[i].in = in;
1277 rld[i].out = out;
1278 rld[i].class = class;
1279 rld[i].inmode = inmode;
1280 rld[i].outmode = outmode;
1281 rld[i].reg_rtx = 0;
1282 rld[i].optional = optional;
1283 rld[i].inc = 0;
1284 rld[i].nocombine = 0;
1285 rld[i].in_reg = inloc ? *inloc : 0;
1286 rld[i].out_reg = outloc ? *outloc : 0;
1287 rld[i].opnum = opnum;
1288 rld[i].when_needed = type;
1289 rld[i].secondary_in_reload = secondary_in_reload;
1290 rld[i].secondary_out_reload = secondary_out_reload;
1291 rld[i].secondary_in_icode = secondary_in_icode;
1292 rld[i].secondary_out_icode = secondary_out_icode;
1293 rld[i].secondary_p = 0;
1294
1295 n_reloads++;
1296
1297 #ifdef SECONDARY_MEMORY_NEEDED
1298 if (out != 0 && GET_CODE (out) == REG
1299 && REGNO (out) < FIRST_PSEUDO_REGISTER
1300 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1301 outmode))
1302 get_secondary_mem (out, outmode, opnum, type);
1303 #endif
1304 }
1305 else
1306 {
1307 /* We are reusing an existing reload,
1308 but we may have additional information for it.
1309 For example, we may now have both IN and OUT
1310 while the old one may have just one of them. */
1311
1312 /* The modes can be different. If they are, we want to reload in
1313 the larger mode, so that the value is valid for both modes. */
1314 if (inmode != VOIDmode
1315 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1316 rld[i].inmode = inmode;
1317 if (outmode != VOIDmode
1318 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1319 rld[i].outmode = outmode;
1320 if (in != 0)
1321 {
1322 rtx in_reg = inloc ? *inloc : 0;
1323 /* If we merge reloads for two distinct rtl expressions that
1324 are identical in content, there might be duplicate address
1325 reloads. Remove the extra set now, so that if we later find
1326 that we can inherit this reload, we can get rid of the
1327 address reloads altogether.
1328
1329 Do not do this if both reloads are optional since the result
1330 would be an optional reload which could potentially leave
1331 unresolved address replacements.
1332
1333 It is not sufficient to call transfer_replacements since
1334 choose_reload_regs will remove the replacements for address
1335 reloads of inherited reloads which results in the same
1336 problem. */
1337 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1338 && ! (rld[i].optional && optional))
1339 {
1340 /* We must keep the address reload with the lower operand
1341 number alive. */
1342 if (opnum > rld[i].opnum)
1343 {
1344 remove_address_replacements (in);
1345 in = rld[i].in;
1346 in_reg = rld[i].in_reg;
1347 }
1348 else
1349 remove_address_replacements (rld[i].in);
1350 }
1351 rld[i].in = in;
1352 rld[i].in_reg = in_reg;
1353 }
1354 if (out != 0)
1355 {
1356 rld[i].out = out;
1357 rld[i].out_reg = outloc ? *outloc : 0;
1358 }
1359 if (reg_class_subset_p (class, rld[i].class))
1360 rld[i].class = class;
1361 rld[i].optional &= optional;
1362 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1363 opnum, rld[i].opnum))
1364 rld[i].when_needed = RELOAD_OTHER;
1365 rld[i].opnum = MIN (rld[i].opnum, opnum);
1366 }
1367
1368 /* If the ostensible rtx being reloaded differs from the rtx found
1369 in the location to substitute, this reload is not safe to combine
1370 because we cannot reliably tell whether it appears in the insn. */
1371
1372 if (in != 0 && in != *inloc)
1373 rld[i].nocombine = 1;
1374
1375 #if 0
1376 /* This was replaced by changes in find_reloads_address_1 and the new
1377 function inc_for_reload, which go with a new meaning of reload_inc. */
1378
1379 /* If this is an IN/OUT reload in an insn that sets the CC,
1380 it must be for an autoincrement. It doesn't work to store
1381 the incremented value after the insn because that would clobber the CC.
1382 So we must do the increment of the value reloaded from,
1383 increment it, store it back, then decrement again. */
1384 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1385 {
1386 out = 0;
1387 rld[i].out = 0;
1388 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1389 /* If we did not find a nonzero amount-to-increment-by,
1390 that contradicts the belief that IN is being incremented
1391 in an address in this insn. */
1392 if (rld[i].inc == 0)
1393 abort ();
1394 }
1395 #endif
1396
1397 /* If we will replace IN and OUT with the reload-reg,
1398 record where they are located so that substitution need
1399 not do a tree walk. */
1400
1401 if (replace_reloads)
1402 {
1403 if (inloc != 0)
1404 {
1405 struct replacement *r = &replacements[n_replacements++];
1406 r->what = i;
1407 r->subreg_loc = in_subreg_loc;
1408 r->where = inloc;
1409 r->mode = inmode;
1410 }
1411 if (outloc != 0 && outloc != inloc)
1412 {
1413 struct replacement *r = &replacements[n_replacements++];
1414 r->what = i;
1415 r->where = outloc;
1416 r->subreg_loc = out_subreg_loc;
1417 r->mode = outmode;
1418 }
1419 }
1420
1421 /* If this reload is just being introduced and it has both
1422 an incoming quantity and an outgoing quantity that are
1423 supposed to be made to match, see if either one of the two
1424 can serve as the place to reload into.
1425
1426 If one of them is acceptable, set rld[i].reg_rtx
1427 to that one. */
1428
1429 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1430 {
1431 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1432 inmode, outmode,
1433 rld[i].class, i,
1434 earlyclobber_operand_p (out));
1435
1436 /* If the outgoing register already contains the same value
1437 as the incoming one, we can dispense with loading it.
1438 The easiest way to tell the caller that is to give a phony
1439 value for the incoming operand (same as outgoing one). */
1440 if (rld[i].reg_rtx == out
1441 && (GET_CODE (in) == REG || CONSTANT_P (in))
1442 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1443 static_reload_reg_p, i, inmode))
1444 rld[i].in = out;
1445 }
1446
1447 /* If this is an input reload and the operand contains a register that
1448 dies in this insn and is used nowhere else, see if it is the right class
1449 to be used for this reload. Use it if so. (This occurs most commonly
1450 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1451 this if it is also an output reload that mentions the register unless
1452 the output is a SUBREG that clobbers an entire register.
1453
1454 Note that the operand might be one of the spill regs, if it is a
1455 pseudo reg and we are in a block where spilling has not taken place.
1456 But if there is no spilling in this block, that is OK.
1457 An explicitly used hard reg cannot be a spill reg. */
1458
1459 if (rld[i].reg_rtx == 0 && in != 0)
1460 {
1461 rtx note;
1462 int regno;
1463 enum machine_mode rel_mode = inmode;
1464
1465 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1466 rel_mode = outmode;
1467
1468 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1469 if (REG_NOTE_KIND (note) == REG_DEAD
1470 && GET_CODE (XEXP (note, 0)) == REG
1471 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1472 && reg_mentioned_p (XEXP (note, 0), in)
1473 && ! refers_to_regno_for_reload_p (regno,
1474 (regno
1475 + HARD_REGNO_NREGS (regno,
1476 rel_mode)),
1477 PATTERN (this_insn), inloc)
1478 /* If this is also an output reload, IN cannot be used as
1479 the reload register if it is set in this insn unless IN
1480 is also OUT. */
1481 && (out == 0 || in == out
1482 || ! hard_reg_set_here_p (regno,
1483 (regno
1484 + HARD_REGNO_NREGS (regno,
1485 rel_mode)),
1486 PATTERN (this_insn)))
1487 /* ??? Why is this code so different from the previous?
1488 Is there any simple coherent way to describe the two together?
1489 What's going on here. */
1490 && (in != out
1491 || (GET_CODE (in) == SUBREG
1492 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1493 / UNITS_PER_WORD)
1494 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1495 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1496 /* Make sure the operand fits in the reg that dies. */
1497 && (GET_MODE_SIZE (rel_mode)
1498 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1499 && HARD_REGNO_MODE_OK (regno, inmode)
1500 && HARD_REGNO_MODE_OK (regno, outmode))
1501 {
1502 unsigned int offs;
1503 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1504 HARD_REGNO_NREGS (regno, outmode));
1505
1506 for (offs = 0; offs < nregs; offs++)
1507 if (fixed_regs[regno + offs]
1508 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1509 regno + offs))
1510 break;
1511
1512 if (offs == nregs)
1513 {
1514 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1515 break;
1516 }
1517 }
1518 }
1519
1520 if (out)
1521 output_reloadnum = i;
1522
1523 return i;
1524 }
1525
1526 /* Record an additional place we must replace a value
1527 for which we have already recorded a reload.
1528 RELOADNUM is the value returned by push_reload
1529 when the reload was recorded.
1530 This is used in insn patterns that use match_dup. */
1531
1532 static void
1533 push_replacement (loc, reloadnum, mode)
1534 rtx *loc;
1535 int reloadnum;
1536 enum machine_mode mode;
1537 {
1538 if (replace_reloads)
1539 {
1540 struct replacement *r = &replacements[n_replacements++];
1541 r->what = reloadnum;
1542 r->where = loc;
1543 r->subreg_loc = 0;
1544 r->mode = mode;
1545 }
1546 }
1547 \f
1548 /* Transfer all replacements that used to be in reload FROM to be in
1549 reload TO. */
1550
1551 void
1552 transfer_replacements (to, from)
1553 int to, from;
1554 {
1555 int i;
1556
1557 for (i = 0; i < n_replacements; i++)
1558 if (replacements[i].what == from)
1559 replacements[i].what = to;
1560 }
1561 \f
1562 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1563 or a subpart of it. If we have any replacements registered for IN_RTX,
1564 cancel the reloads that were supposed to load them.
1565 Return non-zero if we canceled any reloads. */
1566 int
1567 remove_address_replacements (in_rtx)
1568 rtx in_rtx;
1569 {
1570 int i, j;
1571 char reload_flags[MAX_RELOADS];
1572 int something_changed = 0;
1573
1574 memset (reload_flags, 0, sizeof reload_flags);
1575 for (i = 0, j = 0; i < n_replacements; i++)
1576 {
1577 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1578 reload_flags[replacements[i].what] |= 1;
1579 else
1580 {
1581 replacements[j++] = replacements[i];
1582 reload_flags[replacements[i].what] |= 2;
1583 }
1584 }
1585 /* Note that the following store must be done before the recursive calls. */
1586 n_replacements = j;
1587
1588 for (i = n_reloads - 1; i >= 0; i--)
1589 {
1590 if (reload_flags[i] == 1)
1591 {
1592 deallocate_reload_reg (i);
1593 remove_address_replacements (rld[i].in);
1594 rld[i].in = 0;
1595 something_changed = 1;
1596 }
1597 }
1598 return something_changed;
1599 }
1600 \f
1601 /* If there is only one output reload, and it is not for an earlyclobber
1602 operand, try to combine it with a (logically unrelated) input reload
1603 to reduce the number of reload registers needed.
1604
1605 This is safe if the input reload does not appear in
1606 the value being output-reloaded, because this implies
1607 it is not needed any more once the original insn completes.
1608
1609 If that doesn't work, see we can use any of the registers that
1610 die in this insn as a reload register. We can if it is of the right
1611 class and does not appear in the value being output-reloaded. */
1612
1613 static void
1614 combine_reloads ()
1615 {
1616 int i;
1617 int output_reload = -1;
1618 int secondary_out = -1;
1619 rtx note;
1620
1621 /* Find the output reload; return unless there is exactly one
1622 and that one is mandatory. */
1623
1624 for (i = 0; i < n_reloads; i++)
1625 if (rld[i].out != 0)
1626 {
1627 if (output_reload >= 0)
1628 return;
1629 output_reload = i;
1630 }
1631
1632 if (output_reload < 0 || rld[output_reload].optional)
1633 return;
1634
1635 /* An input-output reload isn't combinable. */
1636
1637 if (rld[output_reload].in != 0)
1638 return;
1639
1640 /* If this reload is for an earlyclobber operand, we can't do anything. */
1641 if (earlyclobber_operand_p (rld[output_reload].out))
1642 return;
1643
1644 /* If there is a reload for part of the address of this operand, we would
1645 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1646 its life to the point where doing this combine would not lower the
1647 number of spill registers needed. */
1648 for (i = 0; i < n_reloads; i++)
1649 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1650 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1651 && rld[i].opnum == rld[output_reload].opnum)
1652 return;
1653
1654 /* Check each input reload; can we combine it? */
1655
1656 for (i = 0; i < n_reloads; i++)
1657 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1658 /* Life span of this reload must not extend past main insn. */
1659 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1660 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1661 && rld[i].when_needed != RELOAD_OTHER
1662 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1663 == CLASS_MAX_NREGS (rld[output_reload].class,
1664 rld[output_reload].outmode))
1665 && rld[i].inc == 0
1666 && rld[i].reg_rtx == 0
1667 #ifdef SECONDARY_MEMORY_NEEDED
1668 /* Don't combine two reloads with different secondary
1669 memory locations. */
1670 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1671 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1672 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1673 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1674 #endif
1675 && (SMALL_REGISTER_CLASSES
1676 ? (rld[i].class == rld[output_reload].class)
1677 : (reg_class_subset_p (rld[i].class,
1678 rld[output_reload].class)
1679 || reg_class_subset_p (rld[output_reload].class,
1680 rld[i].class)))
1681 && (MATCHES (rld[i].in, rld[output_reload].out)
1682 /* Args reversed because the first arg seems to be
1683 the one that we imagine being modified
1684 while the second is the one that might be affected. */
1685 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1686 rld[i].in)
1687 /* However, if the input is a register that appears inside
1688 the output, then we also can't share.
1689 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1690 If the same reload reg is used for both reg 69 and the
1691 result to be stored in memory, then that result
1692 will clobber the address of the memory ref. */
1693 && ! (GET_CODE (rld[i].in) == REG
1694 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1695 rld[output_reload].out))))
1696 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1697 && (reg_class_size[(int) rld[i].class]
1698 || SMALL_REGISTER_CLASSES)
1699 /* We will allow making things slightly worse by combining an
1700 input and an output, but no worse than that. */
1701 && (rld[i].when_needed == RELOAD_FOR_INPUT
1702 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1703 {
1704 int j;
1705
1706 /* We have found a reload to combine with! */
1707 rld[i].out = rld[output_reload].out;
1708 rld[i].out_reg = rld[output_reload].out_reg;
1709 rld[i].outmode = rld[output_reload].outmode;
1710 /* Mark the old output reload as inoperative. */
1711 rld[output_reload].out = 0;
1712 /* The combined reload is needed for the entire insn. */
1713 rld[i].when_needed = RELOAD_OTHER;
1714 /* If the output reload had a secondary reload, copy it. */
1715 if (rld[output_reload].secondary_out_reload != -1)
1716 {
1717 rld[i].secondary_out_reload
1718 = rld[output_reload].secondary_out_reload;
1719 rld[i].secondary_out_icode
1720 = rld[output_reload].secondary_out_icode;
1721 }
1722
1723 #ifdef SECONDARY_MEMORY_NEEDED
1724 /* Copy any secondary MEM. */
1725 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1726 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1727 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1728 #endif
1729 /* If required, minimize the register class. */
1730 if (reg_class_subset_p (rld[output_reload].class,
1731 rld[i].class))
1732 rld[i].class = rld[output_reload].class;
1733
1734 /* Transfer all replacements from the old reload to the combined. */
1735 for (j = 0; j < n_replacements; j++)
1736 if (replacements[j].what == output_reload)
1737 replacements[j].what = i;
1738
1739 return;
1740 }
1741
1742 /* If this insn has only one operand that is modified or written (assumed
1743 to be the first), it must be the one corresponding to this reload. It
1744 is safe to use anything that dies in this insn for that output provided
1745 that it does not occur in the output (we already know it isn't an
1746 earlyclobber. If this is an asm insn, give up. */
1747
1748 if (INSN_CODE (this_insn) == -1)
1749 return;
1750
1751 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1752 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1753 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1754 return;
1755
1756 /* See if some hard register that dies in this insn and is not used in
1757 the output is the right class. Only works if the register we pick
1758 up can fully hold our output reload. */
1759 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1760 if (REG_NOTE_KIND (note) == REG_DEAD
1761 && GET_CODE (XEXP (note, 0)) == REG
1762 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1763 rld[output_reload].out)
1764 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1765 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1766 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1767 REGNO (XEXP (note, 0)))
1768 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1769 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1770 /* Ensure that a secondary or tertiary reload for this output
1771 won't want this register. */
1772 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1773 || (! (TEST_HARD_REG_BIT
1774 (reg_class_contents[(int) rld[secondary_out].class],
1775 REGNO (XEXP (note, 0))))
1776 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1777 || ! (TEST_HARD_REG_BIT
1778 (reg_class_contents[(int) rld[secondary_out].class],
1779 REGNO (XEXP (note, 0)))))))
1780 && ! fixed_regs[REGNO (XEXP (note, 0))])
1781 {
1782 rld[output_reload].reg_rtx
1783 = gen_rtx_REG (rld[output_reload].outmode,
1784 REGNO (XEXP (note, 0)));
1785 return;
1786 }
1787 }
1788 \f
1789 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1790 See if one of IN and OUT is a register that may be used;
1791 this is desirable since a spill-register won't be needed.
1792 If so, return the register rtx that proves acceptable.
1793
1794 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1795 CLASS is the register class required for the reload.
1796
1797 If FOR_REAL is >= 0, it is the number of the reload,
1798 and in some cases when it can be discovered that OUT doesn't need
1799 to be computed, clear out rld[FOR_REAL].out.
1800
1801 If FOR_REAL is -1, this should not be done, because this call
1802 is just to see if a register can be found, not to find and install it.
1803
1804 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1805 puts an additional constraint on being able to use IN for OUT since
1806 IN must not appear elsewhere in the insn (it is assumed that IN itself
1807 is safe from the earlyclobber). */
1808
1809 static rtx
1810 find_dummy_reload (real_in, real_out, inloc, outloc,
1811 inmode, outmode, class, for_real, earlyclobber)
1812 rtx real_in, real_out;
1813 rtx *inloc, *outloc;
1814 enum machine_mode inmode, outmode;
1815 enum reg_class class;
1816 int for_real;
1817 int earlyclobber;
1818 {
1819 rtx in = real_in;
1820 rtx out = real_out;
1821 int in_offset = 0;
1822 int out_offset = 0;
1823 rtx value = 0;
1824
1825 /* If operands exceed a word, we can't use either of them
1826 unless they have the same size. */
1827 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1828 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1829 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1830 return 0;
1831
1832 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1833 respectively refers to a hard register. */
1834
1835 /* Find the inside of any subregs. */
1836 while (GET_CODE (out) == SUBREG)
1837 {
1838 if (GET_CODE (SUBREG_REG (out)) == REG
1839 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1840 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1841 GET_MODE (SUBREG_REG (out)),
1842 SUBREG_BYTE (out),
1843 GET_MODE (out));
1844 out = SUBREG_REG (out);
1845 }
1846 while (GET_CODE (in) == SUBREG)
1847 {
1848 if (GET_CODE (SUBREG_REG (in)) == REG
1849 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1850 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1851 GET_MODE (SUBREG_REG (in)),
1852 SUBREG_BYTE (in),
1853 GET_MODE (in));
1854 in = SUBREG_REG (in);
1855 }
1856
1857 /* Narrow down the reg class, the same way push_reload will;
1858 otherwise we might find a dummy now, but push_reload won't. */
1859 class = PREFERRED_RELOAD_CLASS (in, class);
1860
1861 /* See if OUT will do. */
1862 if (GET_CODE (out) == REG
1863 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1864 {
1865 unsigned int regno = REGNO (out) + out_offset;
1866 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1867 rtx saved_rtx;
1868
1869 /* When we consider whether the insn uses OUT,
1870 ignore references within IN. They don't prevent us
1871 from copying IN into OUT, because those refs would
1872 move into the insn that reloads IN.
1873
1874 However, we only ignore IN in its role as this reload.
1875 If the insn uses IN elsewhere and it contains OUT,
1876 that counts. We can't be sure it's the "same" operand
1877 so it might not go through this reload. */
1878 saved_rtx = *inloc;
1879 *inloc = const0_rtx;
1880
1881 if (regno < FIRST_PSEUDO_REGISTER
1882 && HARD_REGNO_MODE_OK (regno, outmode)
1883 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1884 PATTERN (this_insn), outloc))
1885 {
1886 unsigned int i;
1887
1888 for (i = 0; i < nwords; i++)
1889 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1890 regno + i))
1891 break;
1892
1893 if (i == nwords)
1894 {
1895 if (GET_CODE (real_out) == REG)
1896 value = real_out;
1897 else
1898 value = gen_rtx_REG (outmode, regno);
1899 }
1900 }
1901
1902 *inloc = saved_rtx;
1903 }
1904
1905 /* Consider using IN if OUT was not acceptable
1906 or if OUT dies in this insn (like the quotient in a divmod insn).
1907 We can't use IN unless it is dies in this insn,
1908 which means we must know accurately which hard regs are live.
1909 Also, the result can't go in IN if IN is used within OUT,
1910 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1911 if (hard_regs_live_known
1912 && GET_CODE (in) == REG
1913 && REGNO (in) < FIRST_PSEUDO_REGISTER
1914 && (value == 0
1915 || find_reg_note (this_insn, REG_UNUSED, real_out))
1916 && find_reg_note (this_insn, REG_DEAD, real_in)
1917 && !fixed_regs[REGNO (in)]
1918 && HARD_REGNO_MODE_OK (REGNO (in),
1919 /* The only case where out and real_out might
1920 have different modes is where real_out
1921 is a subreg, and in that case, out
1922 has a real mode. */
1923 (GET_MODE (out) != VOIDmode
1924 ? GET_MODE (out) : outmode)))
1925 {
1926 unsigned int regno = REGNO (in) + in_offset;
1927 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1928
1929 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1930 && ! hard_reg_set_here_p (regno, regno + nwords,
1931 PATTERN (this_insn))
1932 && (! earlyclobber
1933 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1934 PATTERN (this_insn), inloc)))
1935 {
1936 unsigned int i;
1937
1938 for (i = 0; i < nwords; i++)
1939 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1940 regno + i))
1941 break;
1942
1943 if (i == nwords)
1944 {
1945 /* If we were going to use OUT as the reload reg
1946 and changed our mind, it means OUT is a dummy that
1947 dies here. So don't bother copying value to it. */
1948 if (for_real >= 0 && value == real_out)
1949 rld[for_real].out = 0;
1950 if (GET_CODE (real_in) == REG)
1951 value = real_in;
1952 else
1953 value = gen_rtx_REG (inmode, regno);
1954 }
1955 }
1956 }
1957
1958 return value;
1959 }
1960 \f
1961 /* This page contains subroutines used mainly for determining
1962 whether the IN or an OUT of a reload can serve as the
1963 reload register. */
1964
1965 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1966
1967 int
1968 earlyclobber_operand_p (x)
1969 rtx x;
1970 {
1971 int i;
1972
1973 for (i = 0; i < n_earlyclobbers; i++)
1974 if (reload_earlyclobbers[i] == x)
1975 return 1;
1976
1977 return 0;
1978 }
1979
1980 /* Return 1 if expression X alters a hard reg in the range
1981 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1982 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1983 X should be the body of an instruction. */
1984
1985 static int
1986 hard_reg_set_here_p (beg_regno, end_regno, x)
1987 unsigned int beg_regno, end_regno;
1988 rtx x;
1989 {
1990 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1991 {
1992 rtx op0 = SET_DEST (x);
1993
1994 while (GET_CODE (op0) == SUBREG)
1995 op0 = SUBREG_REG (op0);
1996 if (GET_CODE (op0) == REG)
1997 {
1998 unsigned int r = REGNO (op0);
1999
2000 /* See if this reg overlaps range under consideration. */
2001 if (r < end_regno
2002 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2003 return 1;
2004 }
2005 }
2006 else if (GET_CODE (x) == PARALLEL)
2007 {
2008 int i = XVECLEN (x, 0) - 1;
2009
2010 for (; i >= 0; i--)
2011 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2012 return 1;
2013 }
2014
2015 return 0;
2016 }
2017
2018 /* Return 1 if ADDR is a valid memory address for mode MODE,
2019 and check that each pseudo reg has the proper kind of
2020 hard reg. */
2021
2022 int
2023 strict_memory_address_p (mode, addr)
2024 enum machine_mode mode ATTRIBUTE_UNUSED;
2025 rtx addr;
2026 {
2027 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2028 return 0;
2029
2030 win:
2031 return 1;
2032 }
2033 \f
2034 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2035 if they are the same hard reg, and has special hacks for
2036 autoincrement and autodecrement.
2037 This is specifically intended for find_reloads to use
2038 in determining whether two operands match.
2039 X is the operand whose number is the lower of the two.
2040
2041 The value is 2 if Y contains a pre-increment that matches
2042 a non-incrementing address in X. */
2043
2044 /* ??? To be completely correct, we should arrange to pass
2045 for X the output operand and for Y the input operand.
2046 For now, we assume that the output operand has the lower number
2047 because that is natural in (SET output (... input ...)). */
2048
2049 int
2050 operands_match_p (x, y)
2051 rtx x, y;
2052 {
2053 int i;
2054 RTX_CODE code = GET_CODE (x);
2055 const char *fmt;
2056 int success_2;
2057
2058 if (x == y)
2059 return 1;
2060 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2061 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2062 && GET_CODE (SUBREG_REG (y)) == REG)))
2063 {
2064 int j;
2065
2066 if (code == SUBREG)
2067 {
2068 i = REGNO (SUBREG_REG (x));
2069 if (i >= FIRST_PSEUDO_REGISTER)
2070 goto slow;
2071 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2072 GET_MODE (SUBREG_REG (x)),
2073 SUBREG_BYTE (x),
2074 GET_MODE (x));
2075 }
2076 else
2077 i = REGNO (x);
2078
2079 if (GET_CODE (y) == SUBREG)
2080 {
2081 j = REGNO (SUBREG_REG (y));
2082 if (j >= FIRST_PSEUDO_REGISTER)
2083 goto slow;
2084 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2085 GET_MODE (SUBREG_REG (y)),
2086 SUBREG_BYTE (y),
2087 GET_MODE (y));
2088 }
2089 else
2090 j = REGNO (y);
2091
2092 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2093 multiple hard register group, so that for example (reg:DI 0) and
2094 (reg:SI 1) will be considered the same register. */
2095 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2096 && i < FIRST_PSEUDO_REGISTER)
2097 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2098 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2099 && j < FIRST_PSEUDO_REGISTER)
2100 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2101
2102 return i == j;
2103 }
2104 /* If two operands must match, because they are really a single
2105 operand of an assembler insn, then two postincrements are invalid
2106 because the assembler insn would increment only once.
2107 On the other hand, an postincrement matches ordinary indexing
2108 if the postincrement is the output operand. */
2109 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2110 return operands_match_p (XEXP (x, 0), y);
2111 /* Two preincrements are invalid
2112 because the assembler insn would increment only once.
2113 On the other hand, an preincrement matches ordinary indexing
2114 if the preincrement is the input operand.
2115 In this case, return 2, since some callers need to do special
2116 things when this happens. */
2117 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2118 || GET_CODE (y) == PRE_MODIFY)
2119 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2120
2121 slow:
2122
2123 /* Now we have disposed of all the cases
2124 in which different rtx codes can match. */
2125 if (code != GET_CODE (y))
2126 return 0;
2127 if (code == LABEL_REF)
2128 return XEXP (x, 0) == XEXP (y, 0);
2129 if (code == SYMBOL_REF)
2130 return XSTR (x, 0) == XSTR (y, 0);
2131
2132 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2133
2134 if (GET_MODE (x) != GET_MODE (y))
2135 return 0;
2136
2137 /* Compare the elements. If any pair of corresponding elements
2138 fail to match, return 0 for the whole things. */
2139
2140 success_2 = 0;
2141 fmt = GET_RTX_FORMAT (code);
2142 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2143 {
2144 int val, j;
2145 switch (fmt[i])
2146 {
2147 case 'w':
2148 if (XWINT (x, i) != XWINT (y, i))
2149 return 0;
2150 break;
2151
2152 case 'i':
2153 if (XINT (x, i) != XINT (y, i))
2154 return 0;
2155 break;
2156
2157 case 'e':
2158 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2159 if (val == 0)
2160 return 0;
2161 /* If any subexpression returns 2,
2162 we should return 2 if we are successful. */
2163 if (val == 2)
2164 success_2 = 1;
2165 break;
2166
2167 case '0':
2168 break;
2169
2170 case 'E':
2171 if (XVECLEN (x, i) != XVECLEN (y, i))
2172 return 0;
2173 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2174 {
2175 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2176 if (val == 0)
2177 return 0;
2178 if (val == 2)
2179 success_2 = 1;
2180 }
2181 break;
2182
2183 /* It is believed that rtx's at this level will never
2184 contain anything but integers and other rtx's,
2185 except for within LABEL_REFs and SYMBOL_REFs. */
2186 default:
2187 abort ();
2188 }
2189 }
2190 return 1 + success_2;
2191 }
2192 \f
2193 /* Describe the range of registers or memory referenced by X.
2194 If X is a register, set REG_FLAG and put the first register
2195 number into START and the last plus one into END.
2196 If X is a memory reference, put a base address into BASE
2197 and a range of integer offsets into START and END.
2198 If X is pushing on the stack, we can assume it causes no trouble,
2199 so we set the SAFE field. */
2200
2201 static struct decomposition
2202 decompose (x)
2203 rtx x;
2204 {
2205 struct decomposition val;
2206 int all_const = 0;
2207
2208 val.reg_flag = 0;
2209 val.safe = 0;
2210 val.base = 0;
2211 if (GET_CODE (x) == MEM)
2212 {
2213 rtx base = NULL_RTX, offset = 0;
2214 rtx addr = XEXP (x, 0);
2215
2216 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2217 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2218 {
2219 val.base = XEXP (addr, 0);
2220 val.start = -GET_MODE_SIZE (GET_MODE (x));
2221 val.end = GET_MODE_SIZE (GET_MODE (x));
2222 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2223 return val;
2224 }
2225
2226 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2227 {
2228 if (GET_CODE (XEXP (addr, 1)) == PLUS
2229 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2230 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2231 {
2232 val.base = XEXP (addr, 0);
2233 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2234 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2235 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2236 return val;
2237 }
2238 }
2239
2240 if (GET_CODE (addr) == CONST)
2241 {
2242 addr = XEXP (addr, 0);
2243 all_const = 1;
2244 }
2245 if (GET_CODE (addr) == PLUS)
2246 {
2247 if (CONSTANT_P (XEXP (addr, 0)))
2248 {
2249 base = XEXP (addr, 1);
2250 offset = XEXP (addr, 0);
2251 }
2252 else if (CONSTANT_P (XEXP (addr, 1)))
2253 {
2254 base = XEXP (addr, 0);
2255 offset = XEXP (addr, 1);
2256 }
2257 }
2258
2259 if (offset == 0)
2260 {
2261 base = addr;
2262 offset = const0_rtx;
2263 }
2264 if (GET_CODE (offset) == CONST)
2265 offset = XEXP (offset, 0);
2266 if (GET_CODE (offset) == PLUS)
2267 {
2268 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2269 {
2270 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2271 offset = XEXP (offset, 0);
2272 }
2273 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2274 {
2275 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2276 offset = XEXP (offset, 1);
2277 }
2278 else
2279 {
2280 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2281 offset = const0_rtx;
2282 }
2283 }
2284 else if (GET_CODE (offset) != CONST_INT)
2285 {
2286 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2287 offset = const0_rtx;
2288 }
2289
2290 if (all_const && GET_CODE (base) == PLUS)
2291 base = gen_rtx_CONST (GET_MODE (base), base);
2292
2293 if (GET_CODE (offset) != CONST_INT)
2294 abort ();
2295
2296 val.start = INTVAL (offset);
2297 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2298 val.base = base;
2299 return val;
2300 }
2301 else if (GET_CODE (x) == REG)
2302 {
2303 val.reg_flag = 1;
2304 val.start = true_regnum (x);
2305 if (val.start < 0)
2306 {
2307 /* A pseudo with no hard reg. */
2308 val.start = REGNO (x);
2309 val.end = val.start + 1;
2310 }
2311 else
2312 /* A hard reg. */
2313 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2314 }
2315 else if (GET_CODE (x) == SUBREG)
2316 {
2317 if (GET_CODE (SUBREG_REG (x)) != REG)
2318 /* This could be more precise, but it's good enough. */
2319 return decompose (SUBREG_REG (x));
2320 val.reg_flag = 1;
2321 val.start = true_regnum (x);
2322 if (val.start < 0)
2323 return decompose (SUBREG_REG (x));
2324 else
2325 /* A hard reg. */
2326 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2327 }
2328 else if (CONSTANT_P (x)
2329 /* This hasn't been assigned yet, so it can't conflict yet. */
2330 || GET_CODE (x) == SCRATCH)
2331 val.safe = 1;
2332 else
2333 abort ();
2334 return val;
2335 }
2336
2337 /* Return 1 if altering Y will not modify the value of X.
2338 Y is also described by YDATA, which should be decompose (Y). */
2339
2340 static int
2341 immune_p (x, y, ydata)
2342 rtx x, y;
2343 struct decomposition ydata;
2344 {
2345 struct decomposition xdata;
2346
2347 if (ydata.reg_flag)
2348 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2349 if (ydata.safe)
2350 return 1;
2351
2352 if (GET_CODE (y) != MEM)
2353 abort ();
2354 /* If Y is memory and X is not, Y can't affect X. */
2355 if (GET_CODE (x) != MEM)
2356 return 1;
2357
2358 xdata = decompose (x);
2359
2360 if (! rtx_equal_p (xdata.base, ydata.base))
2361 {
2362 /* If bases are distinct symbolic constants, there is no overlap. */
2363 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2364 return 1;
2365 /* Constants and stack slots never overlap. */
2366 if (CONSTANT_P (xdata.base)
2367 && (ydata.base == frame_pointer_rtx
2368 || ydata.base == hard_frame_pointer_rtx
2369 || ydata.base == stack_pointer_rtx))
2370 return 1;
2371 if (CONSTANT_P (ydata.base)
2372 && (xdata.base == frame_pointer_rtx
2373 || xdata.base == hard_frame_pointer_rtx
2374 || xdata.base == stack_pointer_rtx))
2375 return 1;
2376 /* If either base is variable, we don't know anything. */
2377 return 0;
2378 }
2379
2380 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2381 }
2382
2383 /* Similar, but calls decompose. */
2384
2385 int
2386 safe_from_earlyclobber (op, clobber)
2387 rtx op, clobber;
2388 {
2389 struct decomposition early_data;
2390
2391 early_data = decompose (clobber);
2392 return immune_p (op, clobber, early_data);
2393 }
2394 \f
2395 /* Main entry point of this file: search the body of INSN
2396 for values that need reloading and record them with push_reload.
2397 REPLACE nonzero means record also where the values occur
2398 so that subst_reloads can be used.
2399
2400 IND_LEVELS says how many levels of indirection are supported by this
2401 machine; a value of zero means that a memory reference is not a valid
2402 memory address.
2403
2404 LIVE_KNOWN says we have valid information about which hard
2405 regs are live at each point in the program; this is true when
2406 we are called from global_alloc but false when stupid register
2407 allocation has been done.
2408
2409 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2410 which is nonnegative if the reg has been commandeered for reloading into.
2411 It is copied into STATIC_RELOAD_REG_P and referenced from there
2412 by various subroutines.
2413
2414 Return TRUE if some operands need to be changed, because of swapping
2415 commutative operands, reg_equiv_address substitution, or whatever. */
2416
2417 int
2418 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2419 rtx insn;
2420 int replace, ind_levels;
2421 int live_known;
2422 short *reload_reg_p;
2423 {
2424 int insn_code_number;
2425 int i, j;
2426 int noperands;
2427 /* These start out as the constraints for the insn
2428 and they are chewed up as we consider alternatives. */
2429 char *constraints[MAX_RECOG_OPERANDS];
2430 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2431 a register. */
2432 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2433 char pref_or_nothing[MAX_RECOG_OPERANDS];
2434 /* Nonzero for a MEM operand whose entire address needs a reload. */
2435 int address_reloaded[MAX_RECOG_OPERANDS];
2436 /* Value of enum reload_type to use for operand. */
2437 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2438 /* Value of enum reload_type to use within address of operand. */
2439 enum reload_type address_type[MAX_RECOG_OPERANDS];
2440 /* Save the usage of each operand. */
2441 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2442 int no_input_reloads = 0, no_output_reloads = 0;
2443 int n_alternatives;
2444 int this_alternative[MAX_RECOG_OPERANDS];
2445 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2446 char this_alternative_win[MAX_RECOG_OPERANDS];
2447 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2448 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2449 int this_alternative_matches[MAX_RECOG_OPERANDS];
2450 int swapped;
2451 int goal_alternative[MAX_RECOG_OPERANDS];
2452 int this_alternative_number;
2453 int goal_alternative_number = 0;
2454 int operand_reloadnum[MAX_RECOG_OPERANDS];
2455 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2456 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2457 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2458 char goal_alternative_win[MAX_RECOG_OPERANDS];
2459 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2460 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2461 int goal_alternative_swapped;
2462 int best;
2463 int commutative;
2464 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2465 rtx substed_operand[MAX_RECOG_OPERANDS];
2466 rtx body = PATTERN (insn);
2467 rtx set = single_set (insn);
2468 int goal_earlyclobber = 0, this_earlyclobber;
2469 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2470 int retval = 0;
2471
2472 this_insn = insn;
2473 n_reloads = 0;
2474 n_replacements = 0;
2475 n_earlyclobbers = 0;
2476 replace_reloads = replace;
2477 hard_regs_live_known = live_known;
2478 static_reload_reg_p = reload_reg_p;
2479
2480 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2481 neither are insns that SET cc0. Insns that use CC0 are not allowed
2482 to have any input reloads. */
2483 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2484 no_output_reloads = 1;
2485
2486 #ifdef HAVE_cc0
2487 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2488 no_input_reloads = 1;
2489 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2490 no_output_reloads = 1;
2491 #endif
2492
2493 #ifdef SECONDARY_MEMORY_NEEDED
2494 /* The eliminated forms of any secondary memory locations are per-insn, so
2495 clear them out here. */
2496
2497 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2498 #endif
2499
2500 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2501 is cheap to move between them. If it is not, there may not be an insn
2502 to do the copy, so we may need a reload. */
2503 if (GET_CODE (body) == SET
2504 && GET_CODE (SET_DEST (body)) == REG
2505 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2506 && GET_CODE (SET_SRC (body)) == REG
2507 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2508 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2509 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2510 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2511 return 0;
2512
2513 extract_insn (insn);
2514
2515 noperands = reload_n_operands = recog_data.n_operands;
2516 n_alternatives = recog_data.n_alternatives;
2517
2518 /* Just return "no reloads" if insn has no operands with constraints. */
2519 if (noperands == 0 || n_alternatives == 0)
2520 return 0;
2521
2522 insn_code_number = INSN_CODE (insn);
2523 this_insn_is_asm = insn_code_number < 0;
2524
2525 memcpy (operand_mode, recog_data.operand_mode,
2526 noperands * sizeof (enum machine_mode));
2527 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2528
2529 commutative = -1;
2530
2531 /* If we will need to know, later, whether some pair of operands
2532 are the same, we must compare them now and save the result.
2533 Reloading the base and index registers will clobber them
2534 and afterward they will fail to match. */
2535
2536 for (i = 0; i < noperands; i++)
2537 {
2538 char *p;
2539 int c;
2540
2541 substed_operand[i] = recog_data.operand[i];
2542 p = constraints[i];
2543
2544 modified[i] = RELOAD_READ;
2545
2546 /* Scan this operand's constraint to see if it is an output operand,
2547 an in-out operand, is commutative, or should match another. */
2548
2549 while ((c = *p++))
2550 {
2551 if (c == '=')
2552 modified[i] = RELOAD_WRITE;
2553 else if (c == '+')
2554 modified[i] = RELOAD_READ_WRITE;
2555 else if (c == '%')
2556 {
2557 /* The last operand should not be marked commutative. */
2558 if (i == noperands - 1)
2559 abort ();
2560
2561 commutative = i;
2562 }
2563 else if (ISDIGIT (c))
2564 {
2565 c = strtoul (p - 1, &p, 10);
2566
2567 operands_match[c][i]
2568 = operands_match_p (recog_data.operand[c],
2569 recog_data.operand[i]);
2570
2571 /* An operand may not match itself. */
2572 if (c == i)
2573 abort ();
2574
2575 /* If C can be commuted with C+1, and C might need to match I,
2576 then C+1 might also need to match I. */
2577 if (commutative >= 0)
2578 {
2579 if (c == commutative || c == commutative + 1)
2580 {
2581 int other = c + (c == commutative ? 1 : -1);
2582 operands_match[other][i]
2583 = operands_match_p (recog_data.operand[other],
2584 recog_data.operand[i]);
2585 }
2586 if (i == commutative || i == commutative + 1)
2587 {
2588 int other = i + (i == commutative ? 1 : -1);
2589 operands_match[c][other]
2590 = operands_match_p (recog_data.operand[c],
2591 recog_data.operand[other]);
2592 }
2593 /* Note that C is supposed to be less than I.
2594 No need to consider altering both C and I because in
2595 that case we would alter one into the other. */
2596 }
2597 }
2598 }
2599 }
2600
2601 /* Examine each operand that is a memory reference or memory address
2602 and reload parts of the addresses into index registers.
2603 Also here any references to pseudo regs that didn't get hard regs
2604 but are equivalent to constants get replaced in the insn itself
2605 with those constants. Nobody will ever see them again.
2606
2607 Finally, set up the preferred classes of each operand. */
2608
2609 for (i = 0; i < noperands; i++)
2610 {
2611 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2612
2613 address_reloaded[i] = 0;
2614 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2615 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2616 : RELOAD_OTHER);
2617 address_type[i]
2618 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2619 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2620 : RELOAD_OTHER);
2621
2622 if (*constraints[i] == 0)
2623 /* Ignore things like match_operator operands. */
2624 ;
2625 else if (constraints[i][0] == 'p')
2626 {
2627 find_reloads_address (VOIDmode, (rtx*) 0,
2628 recog_data.operand[i],
2629 recog_data.operand_loc[i],
2630 i, operand_type[i], ind_levels, insn);
2631
2632 /* If we now have a simple operand where we used to have a
2633 PLUS or MULT, re-recognize and try again. */
2634 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2635 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2636 && (GET_CODE (recog_data.operand[i]) == MULT
2637 || GET_CODE (recog_data.operand[i]) == PLUS))
2638 {
2639 INSN_CODE (insn) = -1;
2640 retval = find_reloads (insn, replace, ind_levels, live_known,
2641 reload_reg_p);
2642 return retval;
2643 }
2644
2645 recog_data.operand[i] = *recog_data.operand_loc[i];
2646 substed_operand[i] = recog_data.operand[i];
2647 }
2648 else if (code == MEM)
2649 {
2650 address_reloaded[i]
2651 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2652 recog_data.operand_loc[i],
2653 XEXP (recog_data.operand[i], 0),
2654 &XEXP (recog_data.operand[i], 0),
2655 i, address_type[i], ind_levels, insn);
2656 recog_data.operand[i] = *recog_data.operand_loc[i];
2657 substed_operand[i] = recog_data.operand[i];
2658 }
2659 else if (code == SUBREG)
2660 {
2661 rtx reg = SUBREG_REG (recog_data.operand[i]);
2662 rtx op
2663 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2664 ind_levels,
2665 set != 0
2666 && &SET_DEST (set) == recog_data.operand_loc[i],
2667 insn,
2668 &address_reloaded[i]);
2669
2670 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2671 that didn't get a hard register, emit a USE with a REG_EQUAL
2672 note in front so that we might inherit a previous, possibly
2673 wider reload. */
2674
2675 if (replace
2676 && GET_CODE (op) == MEM
2677 && GET_CODE (reg) == REG
2678 && (GET_MODE_SIZE (GET_MODE (reg))
2679 >= GET_MODE_SIZE (GET_MODE (op))))
2680 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2681 insn),
2682 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2683
2684 substed_operand[i] = recog_data.operand[i] = op;
2685 }
2686 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2687 /* We can get a PLUS as an "operand" as a result of register
2688 elimination. See eliminate_regs and gen_reload. We handle
2689 a unary operator by reloading the operand. */
2690 substed_operand[i] = recog_data.operand[i]
2691 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2692 ind_levels, 0, insn,
2693 &address_reloaded[i]);
2694 else if (code == REG)
2695 {
2696 /* This is equivalent to calling find_reloads_toplev.
2697 The code is duplicated for speed.
2698 When we find a pseudo always equivalent to a constant,
2699 we replace it by the constant. We must be sure, however,
2700 that we don't try to replace it in the insn in which it
2701 is being set. */
2702 int regno = REGNO (recog_data.operand[i]);
2703 if (reg_equiv_constant[regno] != 0
2704 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2705 {
2706 /* Record the existing mode so that the check if constants are
2707 allowed will work when operand_mode isn't specified. */
2708
2709 if (operand_mode[i] == VOIDmode)
2710 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2711
2712 substed_operand[i] = recog_data.operand[i]
2713 = reg_equiv_constant[regno];
2714 }
2715 if (reg_equiv_memory_loc[regno] != 0
2716 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2717 /* We need not give a valid is_set_dest argument since the case
2718 of a constant equivalence was checked above. */
2719 substed_operand[i] = recog_data.operand[i]
2720 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2721 ind_levels, 0, insn,
2722 &address_reloaded[i]);
2723 }
2724 /* If the operand is still a register (we didn't replace it with an
2725 equivalent), get the preferred class to reload it into. */
2726 code = GET_CODE (recog_data.operand[i]);
2727 preferred_class[i]
2728 = ((code == REG && REGNO (recog_data.operand[i])
2729 >= FIRST_PSEUDO_REGISTER)
2730 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2731 : NO_REGS);
2732 pref_or_nothing[i]
2733 = (code == REG
2734 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2735 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2736 }
2737
2738 /* If this is simply a copy from operand 1 to operand 0, merge the
2739 preferred classes for the operands. */
2740 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2741 && recog_data.operand[1] == SET_SRC (set))
2742 {
2743 preferred_class[0] = preferred_class[1]
2744 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2745 pref_or_nothing[0] |= pref_or_nothing[1];
2746 pref_or_nothing[1] |= pref_or_nothing[0];
2747 }
2748
2749 /* Now see what we need for pseudo-regs that didn't get hard regs
2750 or got the wrong kind of hard reg. For this, we must consider
2751 all the operands together against the register constraints. */
2752
2753 best = MAX_RECOG_OPERANDS * 2 + 600;
2754
2755 swapped = 0;
2756 goal_alternative_swapped = 0;
2757 try_swapped:
2758
2759 /* The constraints are made of several alternatives.
2760 Each operand's constraint looks like foo,bar,... with commas
2761 separating the alternatives. The first alternatives for all
2762 operands go together, the second alternatives go together, etc.
2763
2764 First loop over alternatives. */
2765
2766 for (this_alternative_number = 0;
2767 this_alternative_number < n_alternatives;
2768 this_alternative_number++)
2769 {
2770 /* Loop over operands for one constraint alternative. */
2771 /* LOSERS counts those that don't fit this alternative
2772 and would require loading. */
2773 int losers = 0;
2774 /* BAD is set to 1 if it some operand can't fit this alternative
2775 even after reloading. */
2776 int bad = 0;
2777 /* REJECT is a count of how undesirable this alternative says it is
2778 if any reloading is required. If the alternative matches exactly
2779 then REJECT is ignored, but otherwise it gets this much
2780 counted against it in addition to the reloading needed. Each
2781 ? counts three times here since we want the disparaging caused by
2782 a bad register class to only count 1/3 as much. */
2783 int reject = 0;
2784
2785 this_earlyclobber = 0;
2786
2787 for (i = 0; i < noperands; i++)
2788 {
2789 char *p = constraints[i];
2790 int win = 0;
2791 int did_match = 0;
2792 /* 0 => this operand can be reloaded somehow for this alternative. */
2793 int badop = 1;
2794 /* 0 => this operand can be reloaded if the alternative allows regs. */
2795 int winreg = 0;
2796 int c;
2797 rtx operand = recog_data.operand[i];
2798 int offset = 0;
2799 /* Nonzero means this is a MEM that must be reloaded into a reg
2800 regardless of what the constraint says. */
2801 int force_reload = 0;
2802 int offmemok = 0;
2803 /* Nonzero if a constant forced into memory would be OK for this
2804 operand. */
2805 int constmemok = 0;
2806 int earlyclobber = 0;
2807
2808 /* If the predicate accepts a unary operator, it means that
2809 we need to reload the operand, but do not do this for
2810 match_operator and friends. */
2811 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2812 operand = XEXP (operand, 0);
2813
2814 /* If the operand is a SUBREG, extract
2815 the REG or MEM (or maybe even a constant) within.
2816 (Constants can occur as a result of reg_equiv_constant.) */
2817
2818 while (GET_CODE (operand) == SUBREG)
2819 {
2820 /* Offset only matters when operand is a REG and
2821 it is a hard reg. This is because it is passed
2822 to reg_fits_class_p if it is a REG and all pseudos
2823 return 0 from that function. */
2824 if (GET_CODE (SUBREG_REG (operand)) == REG
2825 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2826 {
2827 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2828 GET_MODE (SUBREG_REG (operand)),
2829 SUBREG_BYTE (operand),
2830 GET_MODE (operand));
2831 }
2832 operand = SUBREG_REG (operand);
2833 /* Force reload if this is a constant or PLUS or if there may
2834 be a problem accessing OPERAND in the outer mode. */
2835 if (CONSTANT_P (operand)
2836 || GET_CODE (operand) == PLUS
2837 /* We must force a reload of paradoxical SUBREGs
2838 of a MEM because the alignment of the inner value
2839 may not be enough to do the outer reference. On
2840 big-endian machines, it may also reference outside
2841 the object.
2842
2843 On machines that extend byte operations and we have a
2844 SUBREG where both the inner and outer modes are no wider
2845 than a word and the inner mode is narrower, is integral,
2846 and gets extended when loaded from memory, combine.c has
2847 made assumptions about the behavior of the machine in such
2848 register access. If the data is, in fact, in memory we
2849 must always load using the size assumed to be in the
2850 register and let the insn do the different-sized
2851 accesses.
2852
2853 This is doubly true if WORD_REGISTER_OPERATIONS. In
2854 this case eliminate_regs has left non-paradoxical
2855 subregs for push_reloads to see. Make sure it does
2856 by forcing the reload.
2857
2858 ??? When is it right at this stage to have a subreg
2859 of a mem that is _not_ to be handled specialy? IMO
2860 those should have been reduced to just a mem. */
2861 || ((GET_CODE (operand) == MEM
2862 || (GET_CODE (operand)== REG
2863 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2864 #ifndef WORD_REGISTER_OPERATIONS
2865 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2866 < BIGGEST_ALIGNMENT)
2867 && (GET_MODE_SIZE (operand_mode[i])
2868 > GET_MODE_SIZE (GET_MODE (operand))))
2869 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2870 #ifdef LOAD_EXTEND_OP
2871 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2872 && (GET_MODE_SIZE (GET_MODE (operand))
2873 <= UNITS_PER_WORD)
2874 && (GET_MODE_SIZE (operand_mode[i])
2875 > GET_MODE_SIZE (GET_MODE (operand)))
2876 && INTEGRAL_MODE_P (GET_MODE (operand))
2877 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2878 #endif
2879 )
2880 #endif
2881 )
2882 /* This following hunk of code should no longer be
2883 needed at all with SUBREG_BYTE. If you need this
2884 code back, please explain to me why so I can
2885 fix the real problem. -DaveM */
2886 #if 0
2887 /* Subreg of a hard reg which can't handle the subreg's mode
2888 or which would handle that mode in the wrong number of
2889 registers for subregging to work. */
2890 || (GET_CODE (operand) == REG
2891 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2892 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2893 && (GET_MODE_SIZE (GET_MODE (operand))
2894 > UNITS_PER_WORD)
2895 && ((GET_MODE_SIZE (GET_MODE (operand))
2896 / UNITS_PER_WORD)
2897 != HARD_REGNO_NREGS (REGNO (operand),
2898 GET_MODE (operand))))
2899 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2900 operand_mode[i])))
2901 #endif
2902 )
2903 force_reload = 1;
2904 }
2905
2906 this_alternative[i] = (int) NO_REGS;
2907 this_alternative_win[i] = 0;
2908 this_alternative_match_win[i] = 0;
2909 this_alternative_offmemok[i] = 0;
2910 this_alternative_earlyclobber[i] = 0;
2911 this_alternative_matches[i] = -1;
2912
2913 /* An empty constraint or empty alternative
2914 allows anything which matched the pattern. */
2915 if (*p == 0 || *p == ',')
2916 win = 1, badop = 0;
2917
2918 /* Scan this alternative's specs for this operand;
2919 set WIN if the operand fits any letter in this alternative.
2920 Otherwise, clear BADOP if this operand could
2921 fit some letter after reloads,
2922 or set WINREG if this operand could fit after reloads
2923 provided the constraint allows some registers. */
2924
2925 while (*p && (c = *p++) != ',')
2926 switch (c)
2927 {
2928 case '=': case '+': case '*':
2929 break;
2930
2931 case '%':
2932 /* The last operand should not be marked commutative. */
2933 if (i != noperands - 1)
2934 commutative = i;
2935 break;
2936
2937 case '?':
2938 reject += 6;
2939 break;
2940
2941 case '!':
2942 reject = 600;
2943 break;
2944
2945 case '#':
2946 /* Ignore rest of this alternative as far as
2947 reloading is concerned. */
2948 while (*p && *p != ',')
2949 p++;
2950 break;
2951
2952 case '0': case '1': case '2': case '3': case '4':
2953 case '5': case '6': case '7': case '8': case '9':
2954 c = strtoul (p - 1, &p, 10);
2955
2956 this_alternative_matches[i] = c;
2957 /* We are supposed to match a previous operand.
2958 If we do, we win if that one did.
2959 If we do not, count both of the operands as losers.
2960 (This is too conservative, since most of the time
2961 only a single reload insn will be needed to make
2962 the two operands win. As a result, this alternative
2963 may be rejected when it is actually desirable.) */
2964 if ((swapped && (c != commutative || i != commutative + 1))
2965 /* If we are matching as if two operands were swapped,
2966 also pretend that operands_match had been computed
2967 with swapped.
2968 But if I is the second of those and C is the first,
2969 don't exchange them, because operands_match is valid
2970 only on one side of its diagonal. */
2971 ? (operands_match
2972 [(c == commutative || c == commutative + 1)
2973 ? 2 * commutative + 1 - c : c]
2974 [(i == commutative || i == commutative + 1)
2975 ? 2 * commutative + 1 - i : i])
2976 : operands_match[c][i])
2977 {
2978 /* If we are matching a non-offsettable address where an
2979 offsettable address was expected, then we must reject
2980 this combination, because we can't reload it. */
2981 if (this_alternative_offmemok[c]
2982 && GET_CODE (recog_data.operand[c]) == MEM
2983 && this_alternative[c] == (int) NO_REGS
2984 && ! this_alternative_win[c])
2985 bad = 1;
2986
2987 did_match = this_alternative_win[c];
2988 }
2989 else
2990 {
2991 /* Operands don't match. */
2992 rtx value;
2993 /* Retroactively mark the operand we had to match
2994 as a loser, if it wasn't already. */
2995 if (this_alternative_win[c])
2996 losers++;
2997 this_alternative_win[c] = 0;
2998 if (this_alternative[c] == (int) NO_REGS)
2999 bad = 1;
3000 /* But count the pair only once in the total badness of
3001 this alternative, if the pair can be a dummy reload. */
3002 value
3003 = find_dummy_reload (recog_data.operand[i],
3004 recog_data.operand[c],
3005 recog_data.operand_loc[i],
3006 recog_data.operand_loc[c],
3007 operand_mode[i], operand_mode[c],
3008 this_alternative[c], -1,
3009 this_alternative_earlyclobber[c]);
3010
3011 if (value != 0)
3012 losers--;
3013 }
3014 /* This can be fixed with reloads if the operand
3015 we are supposed to match can be fixed with reloads. */
3016 badop = 0;
3017 this_alternative[i] = this_alternative[c];
3018
3019 /* If we have to reload this operand and some previous
3020 operand also had to match the same thing as this
3021 operand, we don't know how to do that. So reject this
3022 alternative. */
3023 if (! did_match || force_reload)
3024 for (j = 0; j < i; j++)
3025 if (this_alternative_matches[j]
3026 == this_alternative_matches[i])
3027 badop = 1;
3028 break;
3029
3030 case 'p':
3031 /* All necessary reloads for an address_operand
3032 were handled in find_reloads_address. */
3033 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3034 win = 1;
3035 break;
3036
3037 case 'm':
3038 if (force_reload)
3039 break;
3040 if (GET_CODE (operand) == MEM
3041 || (GET_CODE (operand) == REG
3042 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3043 && reg_renumber[REGNO (operand)] < 0))
3044 win = 1;
3045 if (CONSTANT_P (operand)
3046 /* force_const_mem does not accept HIGH. */
3047 && GET_CODE (operand) != HIGH)
3048 badop = 0;
3049 constmemok = 1;
3050 break;
3051
3052 case '<':
3053 if (GET_CODE (operand) == MEM
3054 && ! address_reloaded[i]
3055 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3056 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3057 win = 1;
3058 break;
3059
3060 case '>':
3061 if (GET_CODE (operand) == MEM
3062 && ! address_reloaded[i]
3063 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3064 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3065 win = 1;
3066 break;
3067
3068 /* Memory operand whose address is not offsettable. */
3069 case 'V':
3070 if (force_reload)
3071 break;
3072 if (GET_CODE (operand) == MEM
3073 && ! (ind_levels ? offsettable_memref_p (operand)
3074 : offsettable_nonstrict_memref_p (operand))
3075 /* Certain mem addresses will become offsettable
3076 after they themselves are reloaded. This is important;
3077 we don't want our own handling of unoffsettables
3078 to override the handling of reg_equiv_address. */
3079 && !(GET_CODE (XEXP (operand, 0)) == REG
3080 && (ind_levels == 0
3081 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3082 win = 1;
3083 break;
3084
3085 /* Memory operand whose address is offsettable. */
3086 case 'o':
3087 if (force_reload)
3088 break;
3089 if ((GET_CODE (operand) == MEM
3090 /* If IND_LEVELS, find_reloads_address won't reload a
3091 pseudo that didn't get a hard reg, so we have to
3092 reject that case. */
3093 && ((ind_levels ? offsettable_memref_p (operand)
3094 : offsettable_nonstrict_memref_p (operand))
3095 /* A reloaded address is offsettable because it is now
3096 just a simple register indirect. */
3097 || address_reloaded[i]))
3098 || (GET_CODE (operand) == REG
3099 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3100 && reg_renumber[REGNO (operand)] < 0
3101 /* If reg_equiv_address is nonzero, we will be
3102 loading it into a register; hence it will be
3103 offsettable, but we cannot say that reg_equiv_mem
3104 is offsettable without checking. */
3105 && ((reg_equiv_mem[REGNO (operand)] != 0
3106 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3107 || (reg_equiv_address[REGNO (operand)] != 0))))
3108 win = 1;
3109 /* force_const_mem does not accept HIGH. */
3110 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3111 || GET_CODE (operand) == MEM)
3112 badop = 0;
3113 constmemok = 1;
3114 offmemok = 1;
3115 break;
3116
3117 case '&':
3118 /* Output operand that is stored before the need for the
3119 input operands (and their index registers) is over. */
3120 earlyclobber = 1, this_earlyclobber = 1;
3121 break;
3122
3123 case 'E':
3124 #ifndef REAL_ARITHMETIC
3125 /* Match any floating double constant, but only if
3126 we can examine the bits of it reliably. */
3127 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3128 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3129 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3130 break;
3131 #endif
3132 if (GET_CODE (operand) == CONST_DOUBLE)
3133 win = 1;
3134 break;
3135
3136 case 'F':
3137 if (GET_CODE (operand) == CONST_DOUBLE)
3138 win = 1;
3139 break;
3140
3141 case 'G':
3142 case 'H':
3143 if (GET_CODE (operand) == CONST_DOUBLE
3144 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3145 win = 1;
3146 break;
3147
3148 case 's':
3149 if (GET_CODE (operand) == CONST_INT
3150 || (GET_CODE (operand) == CONST_DOUBLE
3151 && GET_MODE (operand) == VOIDmode))
3152 break;
3153 case 'i':
3154 if (CONSTANT_P (operand)
3155 #ifdef LEGITIMATE_PIC_OPERAND_P
3156 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3157 #endif
3158 )
3159 win = 1;
3160 break;
3161
3162 case 'n':
3163 if (GET_CODE (operand) == CONST_INT
3164 || (GET_CODE (operand) == CONST_DOUBLE
3165 && GET_MODE (operand) == VOIDmode))
3166 win = 1;
3167 break;
3168
3169 case 'I':
3170 case 'J':
3171 case 'K':
3172 case 'L':
3173 case 'M':
3174 case 'N':
3175 case 'O':
3176 case 'P':
3177 if (GET_CODE (operand) == CONST_INT
3178 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3179 win = 1;
3180 break;
3181
3182 case 'X':
3183 win = 1;
3184 break;
3185
3186 case 'g':
3187 if (! force_reload
3188 /* A PLUS is never a valid operand, but reload can make
3189 it from a register when eliminating registers. */
3190 && GET_CODE (operand) != PLUS
3191 /* A SCRATCH is not a valid operand. */
3192 && GET_CODE (operand) != SCRATCH
3193 #ifdef LEGITIMATE_PIC_OPERAND_P
3194 && (! CONSTANT_P (operand)
3195 || ! flag_pic
3196 || LEGITIMATE_PIC_OPERAND_P (operand))
3197 #endif
3198 && (GENERAL_REGS == ALL_REGS
3199 || GET_CODE (operand) != REG
3200 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3201 && reg_renumber[REGNO (operand)] < 0)))
3202 win = 1;
3203 /* Drop through into 'r' case. */
3204
3205 case 'r':
3206 this_alternative[i]
3207 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3208 goto reg;
3209
3210 default:
3211 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3212 {
3213 #ifdef EXTRA_CONSTRAINT
3214 if (EXTRA_CONSTRAINT (operand, c))
3215 win = 1;
3216 #endif
3217 break;
3218 }
3219
3220 this_alternative[i]
3221 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3222 reg:
3223 if (GET_MODE (operand) == BLKmode)
3224 break;
3225 winreg = 1;
3226 if (GET_CODE (operand) == REG
3227 && reg_fits_class_p (operand, this_alternative[i],
3228 offset, GET_MODE (recog_data.operand[i])))
3229 win = 1;
3230 break;
3231 }
3232
3233 constraints[i] = p;
3234
3235 /* If this operand could be handled with a reg,
3236 and some reg is allowed, then this operand can be handled. */
3237 if (winreg && this_alternative[i] != (int) NO_REGS)
3238 badop = 0;
3239
3240 /* Record which operands fit this alternative. */
3241 this_alternative_earlyclobber[i] = earlyclobber;
3242 if (win && ! force_reload)
3243 this_alternative_win[i] = 1;
3244 else if (did_match && ! force_reload)
3245 this_alternative_match_win[i] = 1;
3246 else
3247 {
3248 int const_to_mem = 0;
3249
3250 this_alternative_offmemok[i] = offmemok;
3251 losers++;
3252 if (badop)
3253 bad = 1;
3254 /* Alternative loses if it has no regs for a reg operand. */
3255 if (GET_CODE (operand) == REG
3256 && this_alternative[i] == (int) NO_REGS
3257 && this_alternative_matches[i] < 0)
3258 bad = 1;
3259
3260 /* If this is a constant that is reloaded into the desired
3261 class by copying it to memory first, count that as another
3262 reload. This is consistent with other code and is
3263 required to avoid choosing another alternative when
3264 the constant is moved into memory by this function on
3265 an early reload pass. Note that the test here is
3266 precisely the same as in the code below that calls
3267 force_const_mem. */
3268 if (CONSTANT_P (operand)
3269 /* force_const_mem does not accept HIGH. */
3270 && GET_CODE (operand) != HIGH
3271 && ((PREFERRED_RELOAD_CLASS (operand,
3272 (enum reg_class) this_alternative[i])
3273 == NO_REGS)
3274 || no_input_reloads)
3275 && operand_mode[i] != VOIDmode)
3276 {
3277 const_to_mem = 1;
3278 if (this_alternative[i] != (int) NO_REGS)
3279 losers++;
3280 }
3281
3282 /* If we can't reload this value at all, reject this
3283 alternative. Note that we could also lose due to
3284 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3285 here. */
3286
3287 if (! CONSTANT_P (operand)
3288 && (enum reg_class) this_alternative[i] != NO_REGS
3289 && (PREFERRED_RELOAD_CLASS (operand,
3290 (enum reg_class) this_alternative[i])
3291 == NO_REGS))
3292 bad = 1;
3293
3294 /* Alternative loses if it requires a type of reload not
3295 permitted for this insn. We can always reload SCRATCH
3296 and objects with a REG_UNUSED note. */
3297 else if (GET_CODE (operand) != SCRATCH
3298 && modified[i] != RELOAD_READ && no_output_reloads
3299 && ! find_reg_note (insn, REG_UNUSED, operand))
3300 bad = 1;
3301 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3302 && ! const_to_mem)
3303 bad = 1;
3304
3305 /* We prefer to reload pseudos over reloading other things,
3306 since such reloads may be able to be eliminated later.
3307 If we are reloading a SCRATCH, we won't be generating any
3308 insns, just using a register, so it is also preferred.
3309 So bump REJECT in other cases. Don't do this in the
3310 case where we are forcing a constant into memory and
3311 it will then win since we don't want to have a different
3312 alternative match then. */
3313 if (! (GET_CODE (operand) == REG
3314 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3315 && GET_CODE (operand) != SCRATCH
3316 && ! (const_to_mem && constmemok))
3317 reject += 2;
3318
3319 /* Input reloads can be inherited more often than output
3320 reloads can be removed, so penalize output reloads. */
3321 if (operand_type[i] != RELOAD_FOR_INPUT
3322 && GET_CODE (operand) != SCRATCH)
3323 reject++;
3324 }
3325
3326 /* If this operand is a pseudo register that didn't get a hard
3327 reg and this alternative accepts some register, see if the
3328 class that we want is a subset of the preferred class for this
3329 register. If not, but it intersects that class, use the
3330 preferred class instead. If it does not intersect the preferred
3331 class, show that usage of this alternative should be discouraged;
3332 it will be discouraged more still if the register is `preferred
3333 or nothing'. We do this because it increases the chance of
3334 reusing our spill register in a later insn and avoiding a pair
3335 of memory stores and loads.
3336
3337 Don't bother with this if this alternative will accept this
3338 operand.
3339
3340 Don't do this for a multiword operand, since it is only a
3341 small win and has the risk of requiring more spill registers,
3342 which could cause a large loss.
3343
3344 Don't do this if the preferred class has only one register
3345 because we might otherwise exhaust the class. */
3346
3347 if (! win && ! did_match
3348 && this_alternative[i] != (int) NO_REGS
3349 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3350 && reg_class_size[(int) preferred_class[i]] > 1)
3351 {
3352 if (! reg_class_subset_p (this_alternative[i],
3353 preferred_class[i]))
3354 {
3355 /* Since we don't have a way of forming the intersection,
3356 we just do something special if the preferred class
3357 is a subset of the class we have; that's the most
3358 common case anyway. */
3359 if (reg_class_subset_p (preferred_class[i],
3360 this_alternative[i]))
3361 this_alternative[i] = (int) preferred_class[i];
3362 else
3363 reject += (2 + 2 * pref_or_nothing[i]);
3364 }
3365 }
3366 }
3367
3368 /* Now see if any output operands that are marked "earlyclobber"
3369 in this alternative conflict with any input operands
3370 or any memory addresses. */
3371
3372 for (i = 0; i < noperands; i++)
3373 if (this_alternative_earlyclobber[i]
3374 && (this_alternative_win[i] || this_alternative_match_win[i]))
3375 {
3376 struct decomposition early_data;
3377
3378 early_data = decompose (recog_data.operand[i]);
3379
3380 if (modified[i] == RELOAD_READ)
3381 abort ();
3382
3383 if (this_alternative[i] == NO_REGS)
3384 {
3385 this_alternative_earlyclobber[i] = 0;
3386 if (this_insn_is_asm)
3387 error_for_asm (this_insn,
3388 "`&' constraint used with no register class");
3389 else
3390 abort ();
3391 }
3392
3393 for (j = 0; j < noperands; j++)
3394 /* Is this an input operand or a memory ref? */
3395 if ((GET_CODE (recog_data.operand[j]) == MEM
3396 || modified[j] != RELOAD_WRITE)
3397 && j != i
3398 /* Ignore things like match_operator operands. */
3399 && *recog_data.constraints[j] != 0
3400 /* Don't count an input operand that is constrained to match
3401 the early clobber operand. */
3402 && ! (this_alternative_matches[j] == i
3403 && rtx_equal_p (recog_data.operand[i],
3404 recog_data.operand[j]))
3405 /* Is it altered by storing the earlyclobber operand? */
3406 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3407 early_data))
3408 {
3409 /* If the output is in a single-reg class,
3410 it's costly to reload it, so reload the input instead. */
3411 if (reg_class_size[this_alternative[i]] == 1
3412 && (GET_CODE (recog_data.operand[j]) == REG
3413 || GET_CODE (recog_data.operand[j]) == SUBREG))
3414 {
3415 losers++;
3416 this_alternative_win[j] = 0;
3417 this_alternative_match_win[j] = 0;
3418 }
3419 else
3420 break;
3421 }
3422 /* If an earlyclobber operand conflicts with something,
3423 it must be reloaded, so request this and count the cost. */
3424 if (j != noperands)
3425 {
3426 losers++;
3427 this_alternative_win[i] = 0;
3428 this_alternative_match_win[j] = 0;
3429 for (j = 0; j < noperands; j++)
3430 if (this_alternative_matches[j] == i
3431 && this_alternative_match_win[j])
3432 {
3433 this_alternative_win[j] = 0;
3434 this_alternative_match_win[j] = 0;
3435 losers++;
3436 }
3437 }
3438 }
3439
3440 /* If one alternative accepts all the operands, no reload required,
3441 choose that alternative; don't consider the remaining ones. */
3442 if (losers == 0)
3443 {
3444 /* Unswap these so that they are never swapped at `finish'. */
3445 if (commutative >= 0)
3446 {
3447 recog_data.operand[commutative] = substed_operand[commutative];
3448 recog_data.operand[commutative + 1]
3449 = substed_operand[commutative + 1];
3450 }
3451 for (i = 0; i < noperands; i++)
3452 {
3453 goal_alternative_win[i] = this_alternative_win[i];
3454 goal_alternative_match_win[i] = this_alternative_match_win[i];
3455 goal_alternative[i] = this_alternative[i];
3456 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3457 goal_alternative_matches[i] = this_alternative_matches[i];
3458 goal_alternative_earlyclobber[i]
3459 = this_alternative_earlyclobber[i];
3460 }
3461 goal_alternative_number = this_alternative_number;
3462 goal_alternative_swapped = swapped;
3463 goal_earlyclobber = this_earlyclobber;
3464 goto finish;
3465 }
3466
3467 /* REJECT, set by the ! and ? constraint characters and when a register
3468 would be reloaded into a non-preferred class, discourages the use of
3469 this alternative for a reload goal. REJECT is incremented by six
3470 for each ? and two for each non-preferred class. */
3471 losers = losers * 6 + reject;
3472
3473 /* If this alternative can be made to work by reloading,
3474 and it needs less reloading than the others checked so far,
3475 record it as the chosen goal for reloading. */
3476 if (! bad && best > losers)
3477 {
3478 for (i = 0; i < noperands; i++)
3479 {
3480 goal_alternative[i] = this_alternative[i];
3481 goal_alternative_win[i] = this_alternative_win[i];
3482 goal_alternative_match_win[i] = this_alternative_match_win[i];
3483 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3484 goal_alternative_matches[i] = this_alternative_matches[i];
3485 goal_alternative_earlyclobber[i]
3486 = this_alternative_earlyclobber[i];
3487 }
3488 goal_alternative_swapped = swapped;
3489 best = losers;
3490 goal_alternative_number = this_alternative_number;
3491 goal_earlyclobber = this_earlyclobber;
3492 }
3493 }
3494
3495 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3496 then we need to try each alternative twice,
3497 the second time matching those two operands
3498 as if we had exchanged them.
3499 To do this, really exchange them in operands.
3500
3501 If we have just tried the alternatives the second time,
3502 return operands to normal and drop through. */
3503
3504 if (commutative >= 0)
3505 {
3506 swapped = !swapped;
3507 if (swapped)
3508 {
3509 enum reg_class tclass;
3510 int t;
3511
3512 recog_data.operand[commutative] = substed_operand[commutative + 1];
3513 recog_data.operand[commutative + 1] = substed_operand[commutative];
3514 /* Swap the duplicates too. */
3515 for (i = 0; i < recog_data.n_dups; i++)
3516 if (recog_data.dup_num[i] == commutative
3517 || recog_data.dup_num[i] == commutative + 1)
3518 *recog_data.dup_loc[i]
3519 = recog_data.operand[(int) recog_data.dup_num[i]];
3520
3521 tclass = preferred_class[commutative];
3522 preferred_class[commutative] = preferred_class[commutative + 1];
3523 preferred_class[commutative + 1] = tclass;
3524
3525 t = pref_or_nothing[commutative];
3526 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3527 pref_or_nothing[commutative + 1] = t;
3528
3529 memcpy (constraints, recog_data.constraints,
3530 noperands * sizeof (char *));
3531 goto try_swapped;
3532 }
3533 else
3534 {
3535 recog_data.operand[commutative] = substed_operand[commutative];
3536 recog_data.operand[commutative + 1]
3537 = substed_operand[commutative + 1];
3538 /* Unswap the duplicates too. */
3539 for (i = 0; i < recog_data.n_dups; i++)
3540 if (recog_data.dup_num[i] == commutative
3541 || recog_data.dup_num[i] == commutative + 1)
3542 *recog_data.dup_loc[i]
3543 = recog_data.operand[(int) recog_data.dup_num[i]];
3544 }
3545 }
3546
3547 /* The operands don't meet the constraints.
3548 goal_alternative describes the alternative
3549 that we could reach by reloading the fewest operands.
3550 Reload so as to fit it. */
3551
3552 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3553 {
3554 /* No alternative works with reloads?? */
3555 if (insn_code_number >= 0)
3556 fatal_insn ("unable to generate reloads for:", insn);
3557 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3558 /* Avoid further trouble with this insn. */
3559 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3560 n_reloads = 0;
3561 return 0;
3562 }
3563
3564 /* Jump to `finish' from above if all operands are valid already.
3565 In that case, goal_alternative_win is all 1. */
3566 finish:
3567
3568 /* Right now, for any pair of operands I and J that are required to match,
3569 with I < J,
3570 goal_alternative_matches[J] is I.
3571 Set up goal_alternative_matched as the inverse function:
3572 goal_alternative_matched[I] = J. */
3573
3574 for (i = 0; i < noperands; i++)
3575 goal_alternative_matched[i] = -1;
3576
3577 for (i = 0; i < noperands; i++)
3578 if (! goal_alternative_win[i]
3579 && goal_alternative_matches[i] >= 0)
3580 goal_alternative_matched[goal_alternative_matches[i]] = i;
3581
3582 for (i = 0; i < noperands; i++)
3583 goal_alternative_win[i] |= goal_alternative_match_win[i];
3584
3585 /* If the best alternative is with operands 1 and 2 swapped,
3586 consider them swapped before reporting the reloads. Update the
3587 operand numbers of any reloads already pushed. */
3588
3589 if (goal_alternative_swapped)
3590 {
3591 rtx tem;
3592
3593 tem = substed_operand[commutative];
3594 substed_operand[commutative] = substed_operand[commutative + 1];
3595 substed_operand[commutative + 1] = tem;
3596 tem = recog_data.operand[commutative];
3597 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3598 recog_data.operand[commutative + 1] = tem;
3599 tem = *recog_data.operand_loc[commutative];
3600 *recog_data.operand_loc[commutative]
3601 = *recog_data.operand_loc[commutative + 1];
3602 *recog_data.operand_loc[commutative + 1] = tem;
3603
3604 for (i = 0; i < n_reloads; i++)
3605 {
3606 if (rld[i].opnum == commutative)
3607 rld[i].opnum = commutative + 1;
3608 else if (rld[i].opnum == commutative + 1)
3609 rld[i].opnum = commutative;
3610 }
3611 }
3612
3613 for (i = 0; i < noperands; i++)
3614 {
3615 operand_reloadnum[i] = -1;
3616
3617 /* If this is an earlyclobber operand, we need to widen the scope.
3618 The reload must remain valid from the start of the insn being
3619 reloaded until after the operand is stored into its destination.
3620 We approximate this with RELOAD_OTHER even though we know that we
3621 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3622
3623 One special case that is worth checking is when we have an
3624 output that is earlyclobber but isn't used past the insn (typically
3625 a SCRATCH). In this case, we only need have the reload live
3626 through the insn itself, but not for any of our input or output
3627 reloads.
3628 But we must not accidentally narrow the scope of an existing
3629 RELOAD_OTHER reload - leave these alone.
3630
3631 In any case, anything needed to address this operand can remain
3632 however they were previously categorized. */
3633
3634 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3635 operand_type[i]
3636 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3637 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3638 }
3639
3640 /* Any constants that aren't allowed and can't be reloaded
3641 into registers are here changed into memory references. */
3642 for (i = 0; i < noperands; i++)
3643 if (! goal_alternative_win[i]
3644 && CONSTANT_P (recog_data.operand[i])
3645 /* force_const_mem does not accept HIGH. */
3646 && GET_CODE (recog_data.operand[i]) != HIGH
3647 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3648 (enum reg_class) goal_alternative[i])
3649 == NO_REGS)
3650 || no_input_reloads)
3651 && operand_mode[i] != VOIDmode)
3652 {
3653 substed_operand[i] = recog_data.operand[i]
3654 = find_reloads_toplev (force_const_mem (operand_mode[i],
3655 recog_data.operand[i]),
3656 i, address_type[i], ind_levels, 0, insn,
3657 NULL);
3658 if (alternative_allows_memconst (recog_data.constraints[i],
3659 goal_alternative_number))
3660 goal_alternative_win[i] = 1;
3661 }
3662
3663 /* Record the values of the earlyclobber operands for the caller. */
3664 if (goal_earlyclobber)
3665 for (i = 0; i < noperands; i++)
3666 if (goal_alternative_earlyclobber[i])
3667 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3668
3669 /* Now record reloads for all the operands that need them. */
3670 for (i = 0; i < noperands; i++)
3671 if (! goal_alternative_win[i])
3672 {
3673 /* Operands that match previous ones have already been handled. */
3674 if (goal_alternative_matches[i] >= 0)
3675 ;
3676 /* Handle an operand with a nonoffsettable address
3677 appearing where an offsettable address will do
3678 by reloading the address into a base register.
3679
3680 ??? We can also do this when the operand is a register and
3681 reg_equiv_mem is not offsettable, but this is a bit tricky,
3682 so we don't bother with it. It may not be worth doing. */
3683 else if (goal_alternative_matched[i] == -1
3684 && goal_alternative_offmemok[i]
3685 && GET_CODE (recog_data.operand[i]) == MEM)
3686 {
3687 operand_reloadnum[i]
3688 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3689 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3690 MODE_BASE_REG_CLASS (VOIDmode),
3691 GET_MODE (XEXP (recog_data.operand[i], 0)),
3692 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3693 rld[operand_reloadnum[i]].inc
3694 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3695
3696 /* If this operand is an output, we will have made any
3697 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3698 now we are treating part of the operand as an input, so
3699 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3700
3701 if (modified[i] == RELOAD_WRITE)
3702 {
3703 for (j = 0; j < n_reloads; j++)
3704 {
3705 if (rld[j].opnum == i)
3706 {
3707 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3708 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3709 else if (rld[j].when_needed
3710 == RELOAD_FOR_OUTADDR_ADDRESS)
3711 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3712 }
3713 }
3714 }
3715 }
3716 else if (goal_alternative_matched[i] == -1)
3717 {
3718 operand_reloadnum[i]
3719 = push_reload ((modified[i] != RELOAD_WRITE
3720 ? recog_data.operand[i] : 0),
3721 (modified[i] != RELOAD_READ
3722 ? recog_data.operand[i] : 0),
3723 (modified[i] != RELOAD_WRITE
3724 ? recog_data.operand_loc[i] : 0),
3725 (modified[i] != RELOAD_READ
3726 ? recog_data.operand_loc[i] : 0),
3727 (enum reg_class) goal_alternative[i],
3728 (modified[i] == RELOAD_WRITE
3729 ? VOIDmode : operand_mode[i]),
3730 (modified[i] == RELOAD_READ
3731 ? VOIDmode : operand_mode[i]),
3732 (insn_code_number < 0 ? 0
3733 : insn_data[insn_code_number].operand[i].strict_low),
3734 0, i, operand_type[i]);
3735 }
3736 /* In a matching pair of operands, one must be input only
3737 and the other must be output only.
3738 Pass the input operand as IN and the other as OUT. */
3739 else if (modified[i] == RELOAD_READ
3740 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3741 {
3742 operand_reloadnum[i]
3743 = push_reload (recog_data.operand[i],
3744 recog_data.operand[goal_alternative_matched[i]],
3745 recog_data.operand_loc[i],
3746 recog_data.operand_loc[goal_alternative_matched[i]],
3747 (enum reg_class) goal_alternative[i],
3748 operand_mode[i],
3749 operand_mode[goal_alternative_matched[i]],
3750 0, 0, i, RELOAD_OTHER);
3751 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3752 }
3753 else if (modified[i] == RELOAD_WRITE
3754 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3755 {
3756 operand_reloadnum[goal_alternative_matched[i]]
3757 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3758 recog_data.operand[i],
3759 recog_data.operand_loc[goal_alternative_matched[i]],
3760 recog_data.operand_loc[i],
3761 (enum reg_class) goal_alternative[i],
3762 operand_mode[goal_alternative_matched[i]],
3763 operand_mode[i],
3764 0, 0, i, RELOAD_OTHER);
3765 operand_reloadnum[i] = output_reloadnum;
3766 }
3767 else if (insn_code_number >= 0)
3768 abort ();
3769 else
3770 {
3771 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3772 /* Avoid further trouble with this insn. */
3773 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3774 n_reloads = 0;
3775 return 0;
3776 }
3777 }
3778 else if (goal_alternative_matched[i] < 0
3779 && goal_alternative_matches[i] < 0
3780 && optimize)
3781 {
3782 /* For each non-matching operand that's a MEM or a pseudo-register
3783 that didn't get a hard register, make an optional reload.
3784 This may get done even if the insn needs no reloads otherwise. */
3785
3786 rtx operand = recog_data.operand[i];
3787
3788 while (GET_CODE (operand) == SUBREG)
3789 operand = SUBREG_REG (operand);
3790 if ((GET_CODE (operand) == MEM
3791 || (GET_CODE (operand) == REG
3792 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3793 /* If this is only for an output, the optional reload would not
3794 actually cause us to use a register now, just note that
3795 something is stored here. */
3796 && ((enum reg_class) goal_alternative[i] != NO_REGS
3797 || modified[i] == RELOAD_WRITE)
3798 && ! no_input_reloads
3799 /* An optional output reload might allow to delete INSN later.
3800 We mustn't make in-out reloads on insns that are not permitted
3801 output reloads.
3802 If this is an asm, we can't delete it; we must not even call
3803 push_reload for an optional output reload in this case,
3804 because we can't be sure that the constraint allows a register,
3805 and push_reload verifies the constraints for asms. */
3806 && (modified[i] == RELOAD_READ
3807 || (! no_output_reloads && ! this_insn_is_asm)))
3808 operand_reloadnum[i]
3809 = push_reload ((modified[i] != RELOAD_WRITE
3810 ? recog_data.operand[i] : 0),
3811 (modified[i] != RELOAD_READ
3812 ? recog_data.operand[i] : 0),
3813 (modified[i] != RELOAD_WRITE
3814 ? recog_data.operand_loc[i] : 0),
3815 (modified[i] != RELOAD_READ
3816 ? recog_data.operand_loc[i] : 0),
3817 (enum reg_class) goal_alternative[i],
3818 (modified[i] == RELOAD_WRITE
3819 ? VOIDmode : operand_mode[i]),
3820 (modified[i] == RELOAD_READ
3821 ? VOIDmode : operand_mode[i]),
3822 (insn_code_number < 0 ? 0
3823 : insn_data[insn_code_number].operand[i].strict_low),
3824 1, i, operand_type[i]);
3825 /* If a memory reference remains (either as a MEM or a pseudo that
3826 did not get a hard register), yet we can't make an optional
3827 reload, check if this is actually a pseudo register reference;
3828 we then need to emit a USE and/or a CLOBBER so that reload
3829 inheritance will do the right thing. */
3830 else if (replace
3831 && (GET_CODE (operand) == MEM
3832 || (GET_CODE (operand) == REG
3833 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3834 && reg_renumber [REGNO (operand)] < 0)))
3835 {
3836 operand = *recog_data.operand_loc[i];
3837
3838 while (GET_CODE (operand) == SUBREG)
3839 operand = SUBREG_REG (operand);
3840 if (GET_CODE (operand) == REG)
3841 {
3842 if (modified[i] != RELOAD_WRITE)
3843 /* We mark the USE with QImode so that we recognize
3844 it as one that can be safely deleted at the end
3845 of reload. */
3846 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3847 insn), QImode);
3848 if (modified[i] != RELOAD_READ)
3849 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3850 }
3851 }
3852 }
3853 else if (goal_alternative_matches[i] >= 0
3854 && goal_alternative_win[goal_alternative_matches[i]]
3855 && modified[i] == RELOAD_READ
3856 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3857 && ! no_input_reloads && ! no_output_reloads
3858 && optimize)
3859 {
3860 /* Similarly, make an optional reload for a pair of matching
3861 objects that are in MEM or a pseudo that didn't get a hard reg. */
3862
3863 rtx operand = recog_data.operand[i];
3864
3865 while (GET_CODE (operand) == SUBREG)
3866 operand = SUBREG_REG (operand);
3867 if ((GET_CODE (operand) == MEM
3868 || (GET_CODE (operand) == REG
3869 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3870 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3871 != NO_REGS))
3872 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3873 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3874 recog_data.operand[i],
3875 recog_data.operand_loc[goal_alternative_matches[i]],
3876 recog_data.operand_loc[i],
3877 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3878 operand_mode[goal_alternative_matches[i]],
3879 operand_mode[i],
3880 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3881 }
3882
3883 /* Perform whatever substitutions on the operands we are supposed
3884 to make due to commutativity or replacement of registers
3885 with equivalent constants or memory slots. */
3886
3887 for (i = 0; i < noperands; i++)
3888 {
3889 /* We only do this on the last pass through reload, because it is
3890 possible for some data (like reg_equiv_address) to be changed during
3891 later passes. Moreover, we loose the opportunity to get a useful
3892 reload_{in,out}_reg when we do these replacements. */
3893
3894 if (replace)
3895 {
3896 rtx substitution = substed_operand[i];
3897
3898 *recog_data.operand_loc[i] = substitution;
3899
3900 /* If we're replacing an operand with a LABEL_REF, we need
3901 to make sure that there's a REG_LABEL note attached to
3902 this instruction. */
3903 if (GET_CODE (insn) != JUMP_INSN
3904 && GET_CODE (substitution) == LABEL_REF
3905 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3906 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3907 XEXP (substitution, 0),
3908 REG_NOTES (insn));
3909 }
3910 else
3911 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3912 }
3913
3914 /* If this insn pattern contains any MATCH_DUP's, make sure that
3915 they will be substituted if the operands they match are substituted.
3916 Also do now any substitutions we already did on the operands.
3917
3918 Don't do this if we aren't making replacements because we might be
3919 propagating things allocated by frame pointer elimination into places
3920 it doesn't expect. */
3921
3922 if (insn_code_number >= 0 && replace)
3923 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3924 {
3925 int opno = recog_data.dup_num[i];
3926 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3927 if (operand_reloadnum[opno] >= 0)
3928 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3929 insn_data[insn_code_number].operand[opno].mode);
3930 }
3931
3932 #if 0
3933 /* This loses because reloading of prior insns can invalidate the equivalence
3934 (or at least find_equiv_reg isn't smart enough to find it any more),
3935 causing this insn to need more reload regs than it needed before.
3936 It may be too late to make the reload regs available.
3937 Now this optimization is done safely in choose_reload_regs. */
3938
3939 /* For each reload of a reg into some other class of reg,
3940 search for an existing equivalent reg (same value now) in the right class.
3941 We can use it as long as we don't need to change its contents. */
3942 for (i = 0; i < n_reloads; i++)
3943 if (rld[i].reg_rtx == 0
3944 && rld[i].in != 0
3945 && GET_CODE (rld[i].in) == REG
3946 && rld[i].out == 0)
3947 {
3948 rld[i].reg_rtx
3949 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3950 static_reload_reg_p, 0, rld[i].inmode);
3951 /* Prevent generation of insn to load the value
3952 because the one we found already has the value. */
3953 if (rld[i].reg_rtx)
3954 rld[i].in = rld[i].reg_rtx;
3955 }
3956 #endif
3957
3958 /* Perhaps an output reload can be combined with another
3959 to reduce needs by one. */
3960 if (!goal_earlyclobber)
3961 combine_reloads ();
3962
3963 /* If we have a pair of reloads for parts of an address, they are reloading
3964 the same object, the operands themselves were not reloaded, and they
3965 are for two operands that are supposed to match, merge the reloads and
3966 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3967
3968 for (i = 0; i < n_reloads; i++)
3969 {
3970 int k;
3971
3972 for (j = i + 1; j < n_reloads; j++)
3973 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3974 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3975 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3976 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3977 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3978 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3979 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3980 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3981 && rtx_equal_p (rld[i].in, rld[j].in)
3982 && (operand_reloadnum[rld[i].opnum] < 0
3983 || rld[operand_reloadnum[rld[i].opnum]].optional)
3984 && (operand_reloadnum[rld[j].opnum] < 0
3985 || rld[operand_reloadnum[rld[j].opnum]].optional)
3986 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3987 || (goal_alternative_matches[rld[j].opnum]
3988 == rld[i].opnum)))
3989 {
3990 for (k = 0; k < n_replacements; k++)
3991 if (replacements[k].what == j)
3992 replacements[k].what = i;
3993
3994 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3995 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3996 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3997 else
3998 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3999 rld[j].in = 0;
4000 }
4001 }
4002
4003 /* Scan all the reloads and update their type.
4004 If a reload is for the address of an operand and we didn't reload
4005 that operand, change the type. Similarly, change the operand number
4006 of a reload when two operands match. If a reload is optional, treat it
4007 as though the operand isn't reloaded.
4008
4009 ??? This latter case is somewhat odd because if we do the optional
4010 reload, it means the object is hanging around. Thus we need only
4011 do the address reload if the optional reload was NOT done.
4012
4013 Change secondary reloads to be the address type of their operand, not
4014 the normal type.
4015
4016 If an operand's reload is now RELOAD_OTHER, change any
4017 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4018 RELOAD_FOR_OTHER_ADDRESS. */
4019
4020 for (i = 0; i < n_reloads; i++)
4021 {
4022 if (rld[i].secondary_p
4023 && rld[i].when_needed == operand_type[rld[i].opnum])
4024 rld[i].when_needed = address_type[rld[i].opnum];
4025
4026 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4027 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4028 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4029 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4030 && (operand_reloadnum[rld[i].opnum] < 0
4031 || rld[operand_reloadnum[rld[i].opnum]].optional))
4032 {
4033 /* If we have a secondary reload to go along with this reload,
4034 change its type to RELOAD_FOR_OPADDR_ADDR. */
4035
4036 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4037 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4038 && rld[i].secondary_in_reload != -1)
4039 {
4040 int secondary_in_reload = rld[i].secondary_in_reload;
4041
4042 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4043
4044 /* If there's a tertiary reload we have to change it also. */
4045 if (secondary_in_reload > 0
4046 && rld[secondary_in_reload].secondary_in_reload != -1)
4047 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4048 = RELOAD_FOR_OPADDR_ADDR;
4049 }
4050
4051 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4052 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4053 && rld[i].secondary_out_reload != -1)
4054 {
4055 int secondary_out_reload = rld[i].secondary_out_reload;
4056
4057 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4058
4059 /* If there's a tertiary reload we have to change it also. */
4060 if (secondary_out_reload
4061 && rld[secondary_out_reload].secondary_out_reload != -1)
4062 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4063 = RELOAD_FOR_OPADDR_ADDR;
4064 }
4065
4066 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4067 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4068 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4069 else
4070 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4071 }
4072
4073 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4074 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4075 && operand_reloadnum[rld[i].opnum] >= 0
4076 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4077 == RELOAD_OTHER))
4078 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4079
4080 if (goal_alternative_matches[rld[i].opnum] >= 0)
4081 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4082 }
4083
4084 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4085 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4086 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4087
4088 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4089 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4090 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4091 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4092 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4093 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4094 This is complicated by the fact that a single operand can have more
4095 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4096 choose_reload_regs without affecting code quality, and cases that
4097 actually fail are extremely rare, so it turns out to be better to fix
4098 the problem here by not generating cases that choose_reload_regs will
4099 fail for. */
4100 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4101 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4102 a single operand.
4103 We can reduce the register pressure by exploiting that a
4104 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4105 does not conflict with any of them, if it is only used for the first of
4106 the RELOAD_FOR_X_ADDRESS reloads. */
4107 {
4108 int first_op_addr_num = -2;
4109 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4110 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4111 int need_change = 0;
4112 /* We use last_op_addr_reload and the contents of the above arrays
4113 first as flags - -2 means no instance encountered, -1 means exactly
4114 one instance encountered.
4115 If more than one instance has been encountered, we store the reload
4116 number of the first reload of the kind in question; reload numbers
4117 are known to be non-negative. */
4118 for (i = 0; i < noperands; i++)
4119 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4120 for (i = n_reloads - 1; i >= 0; i--)
4121 {
4122 switch (rld[i].when_needed)
4123 {
4124 case RELOAD_FOR_OPERAND_ADDRESS:
4125 if (++first_op_addr_num >= 0)
4126 {
4127 first_op_addr_num = i;
4128 need_change = 1;
4129 }
4130 break;
4131 case RELOAD_FOR_INPUT_ADDRESS:
4132 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4133 {
4134 first_inpaddr_num[rld[i].opnum] = i;
4135 need_change = 1;
4136 }
4137 break;
4138 case RELOAD_FOR_OUTPUT_ADDRESS:
4139 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4140 {
4141 first_outpaddr_num[rld[i].opnum] = i;
4142 need_change = 1;
4143 }
4144 break;
4145 default:
4146 break;
4147 }
4148 }
4149
4150 if (need_change)
4151 {
4152 for (i = 0; i < n_reloads; i++)
4153 {
4154 int first_num;
4155 enum reload_type type;
4156
4157 switch (rld[i].when_needed)
4158 {
4159 case RELOAD_FOR_OPADDR_ADDR:
4160 first_num = first_op_addr_num;
4161 type = RELOAD_FOR_OPERAND_ADDRESS;
4162 break;
4163 case RELOAD_FOR_INPADDR_ADDRESS:
4164 first_num = first_inpaddr_num[rld[i].opnum];
4165 type = RELOAD_FOR_INPUT_ADDRESS;
4166 break;
4167 case RELOAD_FOR_OUTADDR_ADDRESS:
4168 first_num = first_outpaddr_num[rld[i].opnum];
4169 type = RELOAD_FOR_OUTPUT_ADDRESS;
4170 break;
4171 default:
4172 continue;
4173 }
4174 if (first_num < 0)
4175 continue;
4176 else if (i > first_num)
4177 rld[i].when_needed = type;
4178 else
4179 {
4180 /* Check if the only TYPE reload that uses reload I is
4181 reload FIRST_NUM. */
4182 for (j = n_reloads - 1; j > first_num; j--)
4183 {
4184 if (rld[j].when_needed == type
4185 && (rld[i].secondary_p
4186 ? rld[j].secondary_in_reload == i
4187 : reg_mentioned_p (rld[i].in, rld[j].in)))
4188 {
4189 rld[i].when_needed = type;
4190 break;
4191 }
4192 }
4193 }
4194 }
4195 }
4196 }
4197
4198 /* See if we have any reloads that are now allowed to be merged
4199 because we've changed when the reload is needed to
4200 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4201 check for the most common cases. */
4202
4203 for (i = 0; i < n_reloads; i++)
4204 if (rld[i].in != 0 && rld[i].out == 0
4205 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4206 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4207 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4208 for (j = 0; j < n_reloads; j++)
4209 if (i != j && rld[j].in != 0 && rld[j].out == 0
4210 && rld[j].when_needed == rld[i].when_needed
4211 && MATCHES (rld[i].in, rld[j].in)
4212 && rld[i].class == rld[j].class
4213 && !rld[i].nocombine && !rld[j].nocombine
4214 && rld[i].reg_rtx == rld[j].reg_rtx)
4215 {
4216 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4217 transfer_replacements (i, j);
4218 rld[j].in = 0;
4219 }
4220
4221 #ifdef HAVE_cc0
4222 /* If we made any reloads for addresses, see if they violate a
4223 "no input reloads" requirement for this insn. But loads that we
4224 do after the insn (such as for output addresses) are fine. */
4225 if (no_input_reloads)
4226 for (i = 0; i < n_reloads; i++)
4227 if (rld[i].in != 0
4228 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4229 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4230 abort ();
4231 #endif
4232
4233 /* Compute reload_mode and reload_nregs. */
4234 for (i = 0; i < n_reloads; i++)
4235 {
4236 rld[i].mode
4237 = (rld[i].inmode == VOIDmode
4238 || (GET_MODE_SIZE (rld[i].outmode)
4239 > GET_MODE_SIZE (rld[i].inmode)))
4240 ? rld[i].outmode : rld[i].inmode;
4241
4242 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4243 }
4244
4245 /* Special case a simple move with an input reload and a
4246 destination of a hard reg, if the hard reg is ok, use it. */
4247 for (i = 0; i < n_reloads; i++)
4248 if (rld[i].when_needed == RELOAD_FOR_INPUT
4249 && GET_CODE (PATTERN (insn)) == SET
4250 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4251 && SET_SRC (PATTERN (insn)) == rld[i].in)
4252 {
4253 rtx dest = SET_DEST (PATTERN (insn));
4254 unsigned int regno = REGNO (dest);
4255
4256 if (regno < FIRST_PSEUDO_REGISTER
4257 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4258 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4259 rld[i].reg_rtx = dest;
4260 }
4261
4262 return retval;
4263 }
4264
4265 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4266 accepts a memory operand with constant address. */
4267
4268 static int
4269 alternative_allows_memconst (constraint, altnum)
4270 const char *constraint;
4271 int altnum;
4272 {
4273 int c;
4274 /* Skip alternatives before the one requested. */
4275 while (altnum > 0)
4276 {
4277 while (*constraint++ != ',');
4278 altnum--;
4279 }
4280 /* Scan the requested alternative for 'm' or 'o'.
4281 If one of them is present, this alternative accepts memory constants. */
4282 while ((c = *constraint++) && c != ',' && c != '#')
4283 if (c == 'm' || c == 'o')
4284 return 1;
4285 return 0;
4286 }
4287 \f
4288 /* Scan X for memory references and scan the addresses for reloading.
4289 Also checks for references to "constant" regs that we want to eliminate
4290 and replaces them with the values they stand for.
4291 We may alter X destructively if it contains a reference to such.
4292 If X is just a constant reg, we return the equivalent value
4293 instead of X.
4294
4295 IND_LEVELS says how many levels of indirect addressing this machine
4296 supports.
4297
4298 OPNUM and TYPE identify the purpose of the reload.
4299
4300 IS_SET_DEST is true if X is the destination of a SET, which is not
4301 appropriate to be replaced by a constant.
4302
4303 INSN, if nonzero, is the insn in which we do the reload. It is used
4304 to determine if we may generate output reloads, and where to put USEs
4305 for pseudos that we have to replace with stack slots.
4306
4307 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4308 result of find_reloads_address. */
4309
4310 static rtx
4311 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4312 address_reloaded)
4313 rtx x;
4314 int opnum;
4315 enum reload_type type;
4316 int ind_levels;
4317 int is_set_dest;
4318 rtx insn;
4319 int *address_reloaded;
4320 {
4321 RTX_CODE code = GET_CODE (x);
4322
4323 const char *fmt = GET_RTX_FORMAT (code);
4324 int i;
4325 int copied;
4326
4327 if (code == REG)
4328 {
4329 /* This code is duplicated for speed in find_reloads. */
4330 int regno = REGNO (x);
4331 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4332 x = reg_equiv_constant[regno];
4333 #if 0
4334 /* This creates (subreg (mem...)) which would cause an unnecessary
4335 reload of the mem. */
4336 else if (reg_equiv_mem[regno] != 0)
4337 x = reg_equiv_mem[regno];
4338 #endif
4339 else if (reg_equiv_memory_loc[regno]
4340 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4341 {
4342 rtx mem = make_memloc (x, regno);
4343 if (reg_equiv_address[regno]
4344 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4345 {
4346 /* If this is not a toplevel operand, find_reloads doesn't see
4347 this substitution. We have to emit a USE of the pseudo so
4348 that delete_output_reload can see it. */
4349 if (replace_reloads && recog_data.operand[opnum] != x)
4350 /* We mark the USE with QImode so that we recognize it
4351 as one that can be safely deleted at the end of
4352 reload. */
4353 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4354 QImode);
4355 x = mem;
4356 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4357 opnum, type, ind_levels, insn);
4358 if (address_reloaded)
4359 *address_reloaded = i;
4360 }
4361 }
4362 return x;
4363 }
4364 if (code == MEM)
4365 {
4366 rtx tem = x;
4367
4368 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4369 opnum, type, ind_levels, insn);
4370 if (address_reloaded)
4371 *address_reloaded = i;
4372
4373 return tem;
4374 }
4375
4376 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4377 {
4378 /* Check for SUBREG containing a REG that's equivalent to a constant.
4379 If the constant has a known value, truncate it right now.
4380 Similarly if we are extracting a single-word of a multi-word
4381 constant. If the constant is symbolic, allow it to be substituted
4382 normally. push_reload will strip the subreg later. If the
4383 constant is VOIDmode, abort because we will lose the mode of
4384 the register (this should never happen because one of the cases
4385 above should handle it). */
4386
4387 int regno = REGNO (SUBREG_REG (x));
4388 rtx tem;
4389
4390 if (subreg_lowpart_p (x)
4391 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4392 && reg_equiv_constant[regno] != 0
4393 && (tem = gen_lowpart_common (GET_MODE (x),
4394 reg_equiv_constant[regno])) != 0)
4395 return tem;
4396
4397 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4398 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4399 && reg_equiv_constant[regno] != 0
4400 && (tem = operand_subword (reg_equiv_constant[regno],
4401 SUBREG_BYTE (x) / UNITS_PER_WORD, 0,
4402 GET_MODE (SUBREG_REG (x)))) != 0)
4403 {
4404 /* TEM is now a word sized constant for the bits from X that
4405 we wanted. However, TEM may be the wrong representation.
4406
4407 Use gen_lowpart_common to convert a CONST_INT into a
4408 CONST_DOUBLE and vice versa as needed according to by the mode
4409 of the SUBREG. */
4410 tem = gen_lowpart_common (GET_MODE (x), tem);
4411 if (!tem)
4412 abort ();
4413 return tem;
4414 }
4415
4416 /* If the SUBREG is wider than a word, the above test will fail.
4417 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4418 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4419 a 32 bit target. We still can - and have to - handle this
4420 for non-paradoxical subregs of CONST_INTs. */
4421 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4422 && reg_equiv_constant[regno] != 0
4423 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4424 && (GET_MODE_SIZE (GET_MODE (x))
4425 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4426 {
4427 int shift = SUBREG_BYTE (x) * BITS_PER_UNIT;
4428 if (WORDS_BIG_ENDIAN)
4429 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4430 - GET_MODE_BITSIZE (GET_MODE (x))
4431 - shift);
4432 /* Here we use the knowledge that CONST_INTs have a
4433 HOST_WIDE_INT field. */
4434 if (shift >= HOST_BITS_PER_WIDE_INT)
4435 shift = HOST_BITS_PER_WIDE_INT - 1;
4436 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4437 }
4438
4439 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4440 && reg_equiv_constant[regno] != 0
4441 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4442 abort ();
4443
4444 /* If the subreg contains a reg that will be converted to a mem,
4445 convert the subreg to a narrower memref now.
4446 Otherwise, we would get (subreg (mem ...) ...),
4447 which would force reload of the mem.
4448
4449 We also need to do this if there is an equivalent MEM that is
4450 not offsettable. In that case, alter_subreg would produce an
4451 invalid address on big-endian machines.
4452
4453 For machines that extend byte loads, we must not reload using
4454 a wider mode if we have a paradoxical SUBREG. find_reloads will
4455 force a reload in that case. So we should not do anything here. */
4456
4457 else if (regno >= FIRST_PSEUDO_REGISTER
4458 #ifdef LOAD_EXTEND_OP
4459 && (GET_MODE_SIZE (GET_MODE (x))
4460 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4461 #endif
4462 && (reg_equiv_address[regno] != 0
4463 || (reg_equiv_mem[regno] != 0
4464 && (! strict_memory_address_p (GET_MODE (x),
4465 XEXP (reg_equiv_mem[regno], 0))
4466 || ! offsettable_memref_p (reg_equiv_mem[regno])
4467 || num_not_at_initial_offset))))
4468 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4469 insn);
4470 }
4471
4472 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4473 {
4474 if (fmt[i] == 'e')
4475 {
4476 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4477 ind_levels, is_set_dest, insn,
4478 address_reloaded);
4479 /* If we have replaced a reg with it's equivalent memory loc -
4480 that can still be handled here e.g. if it's in a paradoxical
4481 subreg - we must make the change in a copy, rather than using
4482 a destructive change. This way, find_reloads can still elect
4483 not to do the change. */
4484 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4485 {
4486 x = shallow_copy_rtx (x);
4487 copied = 1;
4488 }
4489 XEXP (x, i) = new_part;
4490 }
4491 }
4492 return x;
4493 }
4494
4495 /* Return a mem ref for the memory equivalent of reg REGNO.
4496 This mem ref is not shared with anything. */
4497
4498 static rtx
4499 make_memloc (ad, regno)
4500 rtx ad;
4501 int regno;
4502 {
4503 /* We must rerun eliminate_regs, in case the elimination
4504 offsets have changed. */
4505 rtx tem
4506 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4507
4508 /* If TEM might contain a pseudo, we must copy it to avoid
4509 modifying it when we do the substitution for the reload. */
4510 if (rtx_varies_p (tem, 0))
4511 tem = copy_rtx (tem);
4512
4513 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4514 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4515
4516 /* Copy the result if it's still the same as the equivalence, to avoid
4517 modifying it when we do the substitution for the reload. */
4518 if (tem == reg_equiv_memory_loc[regno])
4519 tem = copy_rtx (tem);
4520 return tem;
4521 }
4522
4523 /* Record all reloads needed for handling memory address AD
4524 which appears in *LOC in a memory reference to mode MODE
4525 which itself is found in location *MEMREFLOC.
4526 Note that we take shortcuts assuming that no multi-reg machine mode
4527 occurs as part of an address.
4528
4529 OPNUM and TYPE specify the purpose of this reload.
4530
4531 IND_LEVELS says how many levels of indirect addressing this machine
4532 supports.
4533
4534 INSN, if nonzero, is the insn in which we do the reload. It is used
4535 to determine if we may generate output reloads, and where to put USEs
4536 for pseudos that we have to replace with stack slots.
4537
4538 Value is nonzero if this address is reloaded or replaced as a whole.
4539 This is interesting to the caller if the address is an autoincrement.
4540
4541 Note that there is no verification that the address will be valid after
4542 this routine does its work. Instead, we rely on the fact that the address
4543 was valid when reload started. So we need only undo things that reload
4544 could have broken. These are wrong register types, pseudos not allocated
4545 to a hard register, and frame pointer elimination. */
4546
4547 static int
4548 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4549 enum machine_mode mode;
4550 rtx *memrefloc;
4551 rtx ad;
4552 rtx *loc;
4553 int opnum;
4554 enum reload_type type;
4555 int ind_levels;
4556 rtx insn;
4557 {
4558 int regno;
4559 int removed_and = 0;
4560 rtx tem;
4561
4562 /* If the address is a register, see if it is a legitimate address and
4563 reload if not. We first handle the cases where we need not reload
4564 or where we must reload in a non-standard way. */
4565
4566 if (GET_CODE (ad) == REG)
4567 {
4568 regno = REGNO (ad);
4569
4570 /* If the register is equivalent to an invariant expression, substitute
4571 the invariant, and eliminate any eliminable register references. */
4572 tem = reg_equiv_constant[regno];
4573 if (tem != 0
4574 && (tem = eliminate_regs (tem, mode, insn))
4575 && strict_memory_address_p (mode, tem))
4576 {
4577 *loc = ad = tem;
4578 return 0;
4579 }
4580
4581 tem = reg_equiv_memory_loc[regno];
4582 if (tem != 0)
4583 {
4584 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4585 {
4586 tem = make_memloc (ad, regno);
4587 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4588 {
4589 find_reloads_address (GET_MODE (tem), (rtx*) 0, XEXP (tem, 0),
4590 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4591 ind_levels, insn);
4592 }
4593 /* We can avoid a reload if the register's equivalent memory
4594 expression is valid as an indirect memory address.
4595 But not all addresses are valid in a mem used as an indirect
4596 address: only reg or reg+constant. */
4597
4598 if (ind_levels > 0
4599 && strict_memory_address_p (mode, tem)
4600 && (GET_CODE (XEXP (tem, 0)) == REG
4601 || (GET_CODE (XEXP (tem, 0)) == PLUS
4602 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4603 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4604 {
4605 /* TEM is not the same as what we'll be replacing the
4606 pseudo with after reload, put a USE in front of INSN
4607 in the final reload pass. */
4608 if (replace_reloads
4609 && num_not_at_initial_offset
4610 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4611 {
4612 *loc = tem;
4613 /* We mark the USE with QImode so that we
4614 recognize it as one that can be safely
4615 deleted at the end of reload. */
4616 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4617 insn), QImode);
4618
4619 /* This doesn't really count as replacing the address
4620 as a whole, since it is still a memory access. */
4621 }
4622 return 0;
4623 }
4624 ad = tem;
4625 }
4626 }
4627
4628 /* The only remaining case where we can avoid a reload is if this is a
4629 hard register that is valid as a base register and which is not the
4630 subject of a CLOBBER in this insn. */
4631
4632 else if (regno < FIRST_PSEUDO_REGISTER
4633 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4634 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4635 return 0;
4636
4637 /* If we do not have one of the cases above, we must do the reload. */
4638 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4639 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4640 return 1;
4641 }
4642
4643 if (strict_memory_address_p (mode, ad))
4644 {
4645 /* The address appears valid, so reloads are not needed.
4646 But the address may contain an eliminable register.
4647 This can happen because a machine with indirect addressing
4648 may consider a pseudo register by itself a valid address even when
4649 it has failed to get a hard reg.
4650 So do a tree-walk to find and eliminate all such regs. */
4651
4652 /* But first quickly dispose of a common case. */
4653 if (GET_CODE (ad) == PLUS
4654 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4655 && GET_CODE (XEXP (ad, 0)) == REG
4656 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4657 return 0;
4658
4659 subst_reg_equivs_changed = 0;
4660 *loc = subst_reg_equivs (ad, insn);
4661
4662 if (! subst_reg_equivs_changed)
4663 return 0;
4664
4665 /* Check result for validity after substitution. */
4666 if (strict_memory_address_p (mode, ad))
4667 return 0;
4668 }
4669
4670 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4671 do
4672 {
4673 if (memrefloc)
4674 {
4675 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4676 ind_levels, win);
4677 }
4678 break;
4679 win:
4680 *memrefloc = copy_rtx (*memrefloc);
4681 XEXP (*memrefloc, 0) = ad;
4682 move_replacements (&ad, &XEXP (*memrefloc, 0));
4683 return 1;
4684 }
4685 while (0);
4686 #endif
4687
4688 /* The address is not valid. We have to figure out why. First see if
4689 we have an outer AND and remove it if so. Then analyze what's inside. */
4690
4691 if (GET_CODE (ad) == AND)
4692 {
4693 removed_and = 1;
4694 loc = &XEXP (ad, 0);
4695 ad = *loc;
4696 }
4697
4698 /* One possibility for why the address is invalid is that it is itself
4699 a MEM. This can happen when the frame pointer is being eliminated, a
4700 pseudo is not allocated to a hard register, and the offset between the
4701 frame and stack pointers is not its initial value. In that case the
4702 pseudo will have been replaced by a MEM referring to the
4703 stack pointer. */
4704 if (GET_CODE (ad) == MEM)
4705 {
4706 /* First ensure that the address in this MEM is valid. Then, unless
4707 indirect addresses are valid, reload the MEM into a register. */
4708 tem = ad;
4709 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4710 opnum, ADDR_TYPE (type),
4711 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4712
4713 /* If tem was changed, then we must create a new memory reference to
4714 hold it and store it back into memrefloc. */
4715 if (tem != ad && memrefloc)
4716 {
4717 *memrefloc = copy_rtx (*memrefloc);
4718 copy_replacements (tem, XEXP (*memrefloc, 0));
4719 loc = &XEXP (*memrefloc, 0);
4720 if (removed_and)
4721 loc = &XEXP (*loc, 0);
4722 }
4723
4724 /* Check similar cases as for indirect addresses as above except
4725 that we can allow pseudos and a MEM since they should have been
4726 taken care of above. */
4727
4728 if (ind_levels == 0
4729 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4730 || GET_CODE (XEXP (tem, 0)) == MEM
4731 || ! (GET_CODE (XEXP (tem, 0)) == REG
4732 || (GET_CODE (XEXP (tem, 0)) == PLUS
4733 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4734 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4735 {
4736 /* Must use TEM here, not AD, since it is the one that will
4737 have any subexpressions reloaded, if needed. */
4738 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4739 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4740 VOIDmode, 0,
4741 0, opnum, type);
4742 return ! removed_and;
4743 }
4744 else
4745 return 0;
4746 }
4747
4748 /* If we have address of a stack slot but it's not valid because the
4749 displacement is too large, compute the sum in a register.
4750 Handle all base registers here, not just fp/ap/sp, because on some
4751 targets (namely SH) we can also get too large displacements from
4752 big-endian corrections. */
4753 else if (GET_CODE (ad) == PLUS
4754 && GET_CODE (XEXP (ad, 0)) == REG
4755 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4756 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4757 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4758 {
4759 /* Unshare the MEM rtx so we can safely alter it. */
4760 if (memrefloc)
4761 {
4762 *memrefloc = copy_rtx (*memrefloc);
4763 loc = &XEXP (*memrefloc, 0);
4764 if (removed_and)
4765 loc = &XEXP (*loc, 0);
4766 }
4767
4768 if (double_reg_address_ok)
4769 {
4770 /* Unshare the sum as well. */
4771 *loc = ad = copy_rtx (ad);
4772
4773 /* Reload the displacement into an index reg.
4774 We assume the frame pointer or arg pointer is a base reg. */
4775 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4776 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4777 type, ind_levels);
4778 return 0;
4779 }
4780 else
4781 {
4782 /* If the sum of two regs is not necessarily valid,
4783 reload the sum into a base reg.
4784 That will at least work. */
4785 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4786 Pmode, opnum, type, ind_levels);
4787 }
4788 return ! removed_and;
4789 }
4790
4791 /* If we have an indexed stack slot, there are three possible reasons why
4792 it might be invalid: The index might need to be reloaded, the address
4793 might have been made by frame pointer elimination and hence have a
4794 constant out of range, or both reasons might apply.
4795
4796 We can easily check for an index needing reload, but even if that is the
4797 case, we might also have an invalid constant. To avoid making the
4798 conservative assumption and requiring two reloads, we see if this address
4799 is valid when not interpreted strictly. If it is, the only problem is
4800 that the index needs a reload and find_reloads_address_1 will take care
4801 of it.
4802
4803 If we decide to do something here, it must be that
4804 `double_reg_address_ok' is true and that this address rtl was made by
4805 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4806 rework the sum so that the reload register will be added to the index.
4807 This is safe because we know the address isn't shared.
4808
4809 We check for fp/ap/sp as both the first and second operand of the
4810 innermost PLUS. */
4811
4812 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4813 && GET_CODE (XEXP (ad, 0)) == PLUS
4814 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4815 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4816 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4817 #endif
4818 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4819 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4820 #endif
4821 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4822 && ! memory_address_p (mode, ad))
4823 {
4824 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4825 plus_constant (XEXP (XEXP (ad, 0), 0),
4826 INTVAL (XEXP (ad, 1))),
4827 XEXP (XEXP (ad, 0), 1));
4828 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4829 MODE_BASE_REG_CLASS (mode),
4830 GET_MODE (ad), opnum, type, ind_levels);
4831 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4832 type, 0, insn);
4833
4834 return 0;
4835 }
4836
4837 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4838 && GET_CODE (XEXP (ad, 0)) == PLUS
4839 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4840 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4841 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4842 #endif
4843 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4844 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4845 #endif
4846 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4847 && ! memory_address_p (mode, ad))
4848 {
4849 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4850 XEXP (XEXP (ad, 0), 0),
4851 plus_constant (XEXP (XEXP (ad, 0), 1),
4852 INTVAL (XEXP (ad, 1))));
4853 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4854 MODE_BASE_REG_CLASS (mode),
4855 GET_MODE (ad), opnum, type, ind_levels);
4856 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4857 type, 0, insn);
4858
4859 return 0;
4860 }
4861
4862 /* See if address becomes valid when an eliminable register
4863 in a sum is replaced. */
4864
4865 tem = ad;
4866 if (GET_CODE (ad) == PLUS)
4867 tem = subst_indexed_address (ad);
4868 if (tem != ad && strict_memory_address_p (mode, tem))
4869 {
4870 /* Ok, we win that way. Replace any additional eliminable
4871 registers. */
4872
4873 subst_reg_equivs_changed = 0;
4874 tem = subst_reg_equivs (tem, insn);
4875
4876 /* Make sure that didn't make the address invalid again. */
4877
4878 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4879 {
4880 *loc = tem;
4881 return 0;
4882 }
4883 }
4884
4885 /* If constants aren't valid addresses, reload the constant address
4886 into a register. */
4887 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4888 {
4889 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4890 Unshare it so we can safely alter it. */
4891 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4892 && CONSTANT_POOL_ADDRESS_P (ad))
4893 {
4894 *memrefloc = copy_rtx (*memrefloc);
4895 loc = &XEXP (*memrefloc, 0);
4896 if (removed_and)
4897 loc = &XEXP (*loc, 0);
4898 }
4899
4900 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4901 Pmode, opnum, type, ind_levels);
4902 return ! removed_and;
4903 }
4904
4905 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4906 insn);
4907 }
4908 \f
4909 /* Find all pseudo regs appearing in AD
4910 that are eliminable in favor of equivalent values
4911 and do not have hard regs; replace them by their equivalents.
4912 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4913 front of it for pseudos that we have to replace with stack slots. */
4914
4915 static rtx
4916 subst_reg_equivs (ad, insn)
4917 rtx ad;
4918 rtx insn;
4919 {
4920 RTX_CODE code = GET_CODE (ad);
4921 int i;
4922 const char *fmt;
4923
4924 switch (code)
4925 {
4926 case HIGH:
4927 case CONST_INT:
4928 case CONST:
4929 case CONST_DOUBLE:
4930 case SYMBOL_REF:
4931 case LABEL_REF:
4932 case PC:
4933 case CC0:
4934 return ad;
4935
4936 case REG:
4937 {
4938 int regno = REGNO (ad);
4939
4940 if (reg_equiv_constant[regno] != 0)
4941 {
4942 subst_reg_equivs_changed = 1;
4943 return reg_equiv_constant[regno];
4944 }
4945 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4946 {
4947 rtx mem = make_memloc (ad, regno);
4948 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4949 {
4950 subst_reg_equivs_changed = 1;
4951 /* We mark the USE with QImode so that we recognize it
4952 as one that can be safely deleted at the end of
4953 reload. */
4954 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
4955 QImode);
4956 return mem;
4957 }
4958 }
4959 }
4960 return ad;
4961
4962 case PLUS:
4963 /* Quickly dispose of a common case. */
4964 if (XEXP (ad, 0) == frame_pointer_rtx
4965 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4966 return ad;
4967 break;
4968
4969 default:
4970 break;
4971 }
4972
4973 fmt = GET_RTX_FORMAT (code);
4974 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4975 if (fmt[i] == 'e')
4976 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4977 return ad;
4978 }
4979 \f
4980 /* Compute the sum of X and Y, making canonicalizations assumed in an
4981 address, namely: sum constant integers, surround the sum of two
4982 constants with a CONST, put the constant as the second operand, and
4983 group the constant on the outermost sum.
4984
4985 This routine assumes both inputs are already in canonical form. */
4986
4987 rtx
4988 form_sum (x, y)
4989 rtx x, y;
4990 {
4991 rtx tem;
4992 enum machine_mode mode = GET_MODE (x);
4993
4994 if (mode == VOIDmode)
4995 mode = GET_MODE (y);
4996
4997 if (mode == VOIDmode)
4998 mode = Pmode;
4999
5000 if (GET_CODE (x) == CONST_INT)
5001 return plus_constant (y, INTVAL (x));
5002 else if (GET_CODE (y) == CONST_INT)
5003 return plus_constant (x, INTVAL (y));
5004 else if (CONSTANT_P (x))
5005 tem = x, x = y, y = tem;
5006
5007 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5008 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5009
5010 /* Note that if the operands of Y are specified in the opposite
5011 order in the recursive calls below, infinite recursion will occur. */
5012 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5013 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5014
5015 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5016 constant will have been placed second. */
5017 if (CONSTANT_P (x) && CONSTANT_P (y))
5018 {
5019 if (GET_CODE (x) == CONST)
5020 x = XEXP (x, 0);
5021 if (GET_CODE (y) == CONST)
5022 y = XEXP (y, 0);
5023
5024 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5025 }
5026
5027 return gen_rtx_PLUS (mode, x, y);
5028 }
5029 \f
5030 /* If ADDR is a sum containing a pseudo register that should be
5031 replaced with a constant (from reg_equiv_constant),
5032 return the result of doing so, and also apply the associative
5033 law so that the result is more likely to be a valid address.
5034 (But it is not guaranteed to be one.)
5035
5036 Note that at most one register is replaced, even if more are
5037 replaceable. Also, we try to put the result into a canonical form
5038 so it is more likely to be a valid address.
5039
5040 In all other cases, return ADDR. */
5041
5042 static rtx
5043 subst_indexed_address (addr)
5044 rtx addr;
5045 {
5046 rtx op0 = 0, op1 = 0, op2 = 0;
5047 rtx tem;
5048 int regno;
5049
5050 if (GET_CODE (addr) == PLUS)
5051 {
5052 /* Try to find a register to replace. */
5053 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5054 if (GET_CODE (op0) == REG
5055 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5056 && reg_renumber[regno] < 0
5057 && reg_equiv_constant[regno] != 0)
5058 op0 = reg_equiv_constant[regno];
5059 else if (GET_CODE (op1) == REG
5060 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5061 && reg_renumber[regno] < 0
5062 && reg_equiv_constant[regno] != 0)
5063 op1 = reg_equiv_constant[regno];
5064 else if (GET_CODE (op0) == PLUS
5065 && (tem = subst_indexed_address (op0)) != op0)
5066 op0 = tem;
5067 else if (GET_CODE (op1) == PLUS
5068 && (tem = subst_indexed_address (op1)) != op1)
5069 op1 = tem;
5070 else
5071 return addr;
5072
5073 /* Pick out up to three things to add. */
5074 if (GET_CODE (op1) == PLUS)
5075 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5076 else if (GET_CODE (op0) == PLUS)
5077 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5078
5079 /* Compute the sum. */
5080 if (op2 != 0)
5081 op1 = form_sum (op1, op2);
5082 if (op1 != 0)
5083 op0 = form_sum (op0, op1);
5084
5085 return op0;
5086 }
5087 return addr;
5088 }
5089 \f
5090 /* Update the REG_INC notes for an insn. It updates all REG_INC
5091 notes for the instruction which refer to REGNO the to refer
5092 to the reload number.
5093
5094 INSN is the insn for which any REG_INC notes need updating.
5095
5096 REGNO is the register number which has been reloaded.
5097
5098 RELOADNUM is the reload number. */
5099
5100 static void
5101 update_auto_inc_notes (insn, regno, reloadnum)
5102 rtx insn ATTRIBUTE_UNUSED;
5103 int regno ATTRIBUTE_UNUSED;
5104 int reloadnum ATTRIBUTE_UNUSED;
5105 {
5106 #ifdef AUTO_INC_DEC
5107 rtx link;
5108
5109 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5110 if (REG_NOTE_KIND (link) == REG_INC
5111 && REGNO (XEXP (link, 0)) == regno)
5112 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5113 #endif
5114 }
5115 \f
5116 /* Record the pseudo registers we must reload into hard registers in a
5117 subexpression of a would-be memory address, X referring to a value
5118 in mode MODE. (This function is not called if the address we find
5119 is strictly valid.)
5120
5121 CONTEXT = 1 means we are considering regs as index regs,
5122 = 0 means we are considering them as base regs.
5123
5124 OPNUM and TYPE specify the purpose of any reloads made.
5125
5126 IND_LEVELS says how many levels of indirect addressing are
5127 supported at this point in the address.
5128
5129 INSN, if nonzero, is the insn in which we do the reload. It is used
5130 to determine if we may generate output reloads.
5131
5132 We return nonzero if X, as a whole, is reloaded or replaced. */
5133
5134 /* Note that we take shortcuts assuming that no multi-reg machine mode
5135 occurs as part of an address.
5136 Also, this is not fully machine-customizable; it works for machines
5137 such as VAXen and 68000's and 32000's, but other possible machines
5138 could have addressing modes that this does not handle right. */
5139
5140 static int
5141 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5142 enum machine_mode mode;
5143 rtx x;
5144 int context;
5145 rtx *loc;
5146 int opnum;
5147 enum reload_type type;
5148 int ind_levels;
5149 rtx insn;
5150 {
5151 RTX_CODE code = GET_CODE (x);
5152
5153 switch (code)
5154 {
5155 case PLUS:
5156 {
5157 rtx orig_op0 = XEXP (x, 0);
5158 rtx orig_op1 = XEXP (x, 1);
5159 RTX_CODE code0 = GET_CODE (orig_op0);
5160 RTX_CODE code1 = GET_CODE (orig_op1);
5161 rtx op0 = orig_op0;
5162 rtx op1 = orig_op1;
5163
5164 if (GET_CODE (op0) == SUBREG)
5165 {
5166 op0 = SUBREG_REG (op0);
5167 code0 = GET_CODE (op0);
5168 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5169 op0 = gen_rtx_REG (word_mode,
5170 (REGNO (op0) +
5171 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5172 GET_MODE (SUBREG_REG (orig_op0)),
5173 SUBREG_BYTE (orig_op0),
5174 GET_MODE (orig_op0))));
5175 }
5176
5177 if (GET_CODE (op1) == SUBREG)
5178 {
5179 op1 = SUBREG_REG (op1);
5180 code1 = GET_CODE (op1);
5181 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5182 /* ??? Why is this given op1's mode and above for
5183 ??? op0 SUBREGs we use word_mode? */
5184 op1 = gen_rtx_REG (GET_MODE (op1),
5185 (REGNO (op1) +
5186 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5187 GET_MODE (SUBREG_REG (orig_op1)),
5188 SUBREG_BYTE (orig_op1),
5189 GET_MODE (orig_op1))));
5190 }
5191
5192 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5193 || code0 == ZERO_EXTEND || code1 == MEM)
5194 {
5195 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5196 type, ind_levels, insn);
5197 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5198 type, ind_levels, insn);
5199 }
5200
5201 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5202 || code1 == ZERO_EXTEND || code0 == MEM)
5203 {
5204 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5205 type, ind_levels, insn);
5206 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5207 type, ind_levels, insn);
5208 }
5209
5210 else if (code0 == CONST_INT || code0 == CONST
5211 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5212 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5213 type, ind_levels, insn);
5214
5215 else if (code1 == CONST_INT || code1 == CONST
5216 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5217 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5218 type, ind_levels, insn);
5219
5220 else if (code0 == REG && code1 == REG)
5221 {
5222 if (REG_OK_FOR_INDEX_P (op0)
5223 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5224 return 0;
5225 else if (REG_OK_FOR_INDEX_P (op1)
5226 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5227 return 0;
5228 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5229 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5230 type, ind_levels, insn);
5231 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5232 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5233 type, ind_levels, insn);
5234 else if (REG_OK_FOR_INDEX_P (op1))
5235 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5236 type, ind_levels, insn);
5237 else if (REG_OK_FOR_INDEX_P (op0))
5238 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5239 type, ind_levels, insn);
5240 else
5241 {
5242 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5243 type, ind_levels, insn);
5244 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5245 type, ind_levels, insn);
5246 }
5247 }
5248
5249 else if (code0 == REG)
5250 {
5251 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5252 type, ind_levels, insn);
5253 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5254 type, ind_levels, insn);
5255 }
5256
5257 else if (code1 == REG)
5258 {
5259 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5260 type, ind_levels, insn);
5261 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5262 type, ind_levels, insn);
5263 }
5264 }
5265
5266 return 0;
5267
5268 case POST_MODIFY:
5269 case PRE_MODIFY:
5270 {
5271 rtx op0 = XEXP (x, 0);
5272 rtx op1 = XEXP (x, 1);
5273
5274 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5275 return 0;
5276
5277 /* Currently, we only support {PRE,POST}_MODIFY constructs
5278 where a base register is {inc,dec}remented by the contents
5279 of another register or by a constant value. Thus, these
5280 operands must match. */
5281 if (op0 != XEXP (op1, 0))
5282 abort ();
5283
5284 /* Require index register (or constant). Let's just handle the
5285 register case in the meantime... If the target allows
5286 auto-modify by a constant then we could try replacing a pseudo
5287 register with its equivalent constant where applicable. */
5288 if (REG_P (XEXP (op1, 1)))
5289 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5290 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5291 opnum, type, ind_levels, insn);
5292
5293 if (REG_P (XEXP (op1, 0)))
5294 {
5295 int regno = REGNO (XEXP (op1, 0));
5296 int reloadnum;
5297
5298 /* A register that is incremented cannot be constant! */
5299 if (regno >= FIRST_PSEUDO_REGISTER
5300 && reg_equiv_constant[regno] != 0)
5301 abort ();
5302
5303 /* Handle a register that is equivalent to a memory location
5304 which cannot be addressed directly. */
5305 if (reg_equiv_memory_loc[regno] != 0
5306 && (reg_equiv_address[regno] != 0
5307 || num_not_at_initial_offset))
5308 {
5309 rtx tem = make_memloc (XEXP (x, 0), regno);
5310
5311 if (reg_equiv_address[regno]
5312 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5313 {
5314 /* First reload the memory location's address.
5315 We can't use ADDR_TYPE (type) here, because we need to
5316 write back the value after reading it, hence we actually
5317 need two registers. */
5318 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5319 &XEXP (tem, 0), opnum,
5320 RELOAD_OTHER,
5321 ind_levels, insn);
5322
5323 /* Then reload the memory location into a base
5324 register. */
5325 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5326 &XEXP (op1, 0),
5327 MODE_BASE_REG_CLASS (mode),
5328 GET_MODE (x), GET_MODE (x), 0,
5329 0, opnum, RELOAD_OTHER);
5330
5331 update_auto_inc_notes (this_insn, regno, reloadnum);
5332 return 0;
5333 }
5334 }
5335
5336 if (reg_renumber[regno] >= 0)
5337 regno = reg_renumber[regno];
5338
5339 /* We require a base register here... */
5340 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5341 {
5342 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5343 &XEXP (op1, 0), &XEXP (x, 0),
5344 MODE_BASE_REG_CLASS (mode),
5345 GET_MODE (x), GET_MODE (x), 0, 0,
5346 opnum, RELOAD_OTHER);
5347
5348 update_auto_inc_notes (this_insn, regno, reloadnum);
5349 return 0;
5350 }
5351 }
5352 else
5353 abort ();
5354 }
5355 return 0;
5356
5357 case POST_INC:
5358 case POST_DEC:
5359 case PRE_INC:
5360 case PRE_DEC:
5361 if (GET_CODE (XEXP (x, 0)) == REG)
5362 {
5363 int regno = REGNO (XEXP (x, 0));
5364 int value = 0;
5365 rtx x_orig = x;
5366
5367 /* A register that is incremented cannot be constant! */
5368 if (regno >= FIRST_PSEUDO_REGISTER
5369 && reg_equiv_constant[regno] != 0)
5370 abort ();
5371
5372 /* Handle a register that is equivalent to a memory location
5373 which cannot be addressed directly. */
5374 if (reg_equiv_memory_loc[regno] != 0
5375 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5376 {
5377 rtx tem = make_memloc (XEXP (x, 0), regno);
5378 if (reg_equiv_address[regno]
5379 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5380 {
5381 /* First reload the memory location's address.
5382 We can't use ADDR_TYPE (type) here, because we need to
5383 write back the value after reading it, hence we actually
5384 need two registers. */
5385 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5386 &XEXP (tem, 0), opnum, type,
5387 ind_levels, insn);
5388 /* Put this inside a new increment-expression. */
5389 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5390 /* Proceed to reload that, as if it contained a register. */
5391 }
5392 }
5393
5394 /* If we have a hard register that is ok as an index,
5395 don't make a reload. If an autoincrement of a nice register
5396 isn't "valid", it must be that no autoincrement is "valid".
5397 If that is true and something made an autoincrement anyway,
5398 this must be a special context where one is allowed.
5399 (For example, a "push" instruction.)
5400 We can't improve this address, so leave it alone. */
5401
5402 /* Otherwise, reload the autoincrement into a suitable hard reg
5403 and record how much to increment by. */
5404
5405 if (reg_renumber[regno] >= 0)
5406 regno = reg_renumber[regno];
5407 if ((regno >= FIRST_PSEUDO_REGISTER
5408 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5409 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5410 {
5411 int reloadnum;
5412
5413 /* If we can output the register afterwards, do so, this
5414 saves the extra update.
5415 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5416 CALL_INSN - and it does not set CC0.
5417 But don't do this if we cannot directly address the
5418 memory location, since this will make it harder to
5419 reuse address reloads, and increases register pressure.
5420 Also don't do this if we can probably update x directly. */
5421 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5422 ? XEXP (x, 0)
5423 : reg_equiv_mem[regno]);
5424 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5425 if (insn && GET_CODE (insn) == INSN && equiv
5426 && memory_operand (equiv, GET_MODE (equiv))
5427 #ifdef HAVE_cc0
5428 && ! sets_cc0_p (PATTERN (insn))
5429 #endif
5430 && ! (icode != CODE_FOR_nothing
5431 && ((*insn_data[icode].operand[0].predicate)
5432 (equiv, Pmode))
5433 && ((*insn_data[icode].operand[1].predicate)
5434 (equiv, Pmode))))
5435 {
5436 /* We use the original pseudo for loc, so that
5437 emit_reload_insns() knows which pseudo this
5438 reload refers to and updates the pseudo rtx, not
5439 its equivalent memory location, as well as the
5440 corresponding entry in reg_last_reload_reg. */
5441 loc = &XEXP (x_orig, 0);
5442 x = XEXP (x, 0);
5443 reloadnum
5444 = push_reload (x, x, loc, loc,
5445 (context ? INDEX_REG_CLASS :
5446 MODE_BASE_REG_CLASS (mode)),
5447 GET_MODE (x), GET_MODE (x), 0, 0,
5448 opnum, RELOAD_OTHER);
5449 }
5450 else
5451 {
5452 reloadnum
5453 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5454 (context ? INDEX_REG_CLASS :
5455 MODE_BASE_REG_CLASS (mode)),
5456 GET_MODE (x), GET_MODE (x), 0, 0,
5457 opnum, type);
5458 rld[reloadnum].inc
5459 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5460
5461 value = 1;
5462 }
5463
5464 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5465 reloadnum);
5466 }
5467 return value;
5468 }
5469
5470 else if (GET_CODE (XEXP (x, 0)) == MEM)
5471 {
5472 /* This is probably the result of a substitution, by eliminate_regs,
5473 of an equivalent address for a pseudo that was not allocated to a
5474 hard register. Verify that the specified address is valid and
5475 reload it into a register. */
5476 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5477 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5478 rtx link;
5479 int reloadnum;
5480
5481 /* Since we know we are going to reload this item, don't decrement
5482 for the indirection level.
5483
5484 Note that this is actually conservative: it would be slightly
5485 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5486 reload1.c here. */
5487 /* We can't use ADDR_TYPE (type) here, because we need to
5488 write back the value after reading it, hence we actually
5489 need two registers. */
5490 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5491 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5492 opnum, type, ind_levels, insn);
5493
5494 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5495 (context ? INDEX_REG_CLASS :
5496 MODE_BASE_REG_CLASS (mode)),
5497 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5498 rld[reloadnum].inc
5499 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5500
5501 link = FIND_REG_INC_NOTE (this_insn, tem);
5502 if (link != 0)
5503 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5504
5505 return 1;
5506 }
5507 return 0;
5508
5509 case MEM:
5510 /* This is probably the result of a substitution, by eliminate_regs, of
5511 an equivalent address for a pseudo that was not allocated to a hard
5512 register. Verify that the specified address is valid and reload it
5513 into a register.
5514
5515 Since we know we are going to reload this item, don't decrement for
5516 the indirection level.
5517
5518 Note that this is actually conservative: it would be slightly more
5519 efficient to use the value of SPILL_INDIRECT_LEVELS from
5520 reload1.c here. */
5521
5522 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5523 opnum, ADDR_TYPE (type), ind_levels, insn);
5524 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5525 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5526 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5527 return 1;
5528
5529 case REG:
5530 {
5531 int regno = REGNO (x);
5532
5533 if (reg_equiv_constant[regno] != 0)
5534 {
5535 find_reloads_address_part (reg_equiv_constant[regno], loc,
5536 (context ? INDEX_REG_CLASS :
5537 MODE_BASE_REG_CLASS (mode)),
5538 GET_MODE (x), opnum, type, ind_levels);
5539 return 1;
5540 }
5541
5542 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5543 that feeds this insn. */
5544 if (reg_equiv_mem[regno] != 0)
5545 {
5546 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5547 (context ? INDEX_REG_CLASS :
5548 MODE_BASE_REG_CLASS (mode)),
5549 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5550 return 1;
5551 }
5552 #endif
5553
5554 if (reg_equiv_memory_loc[regno]
5555 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5556 {
5557 rtx tem = make_memloc (x, regno);
5558 if (reg_equiv_address[regno] != 0
5559 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5560 {
5561 x = tem;
5562 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5563 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5564 ind_levels, insn);
5565 }
5566 }
5567
5568 if (reg_renumber[regno] >= 0)
5569 regno = reg_renumber[regno];
5570
5571 if ((regno >= FIRST_PSEUDO_REGISTER
5572 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5573 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5574 {
5575 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5576 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5577 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5578 return 1;
5579 }
5580
5581 /* If a register appearing in an address is the subject of a CLOBBER
5582 in this insn, reload it into some other register to be safe.
5583 The CLOBBER is supposed to make the register unavailable
5584 from before this insn to after it. */
5585 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5586 {
5587 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5588 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5589 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5590 return 1;
5591 }
5592 }
5593 return 0;
5594
5595 case SUBREG:
5596 if (GET_CODE (SUBREG_REG (x)) == REG)
5597 {
5598 /* If this is a SUBREG of a hard register and the resulting register
5599 is of the wrong class, reload the whole SUBREG. This avoids
5600 needless copies if SUBREG_REG is multi-word. */
5601 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5602 {
5603 int regno = subreg_regno (x);
5604
5605 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5606 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5607 {
5608 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5609 (context ? INDEX_REG_CLASS :
5610 MODE_BASE_REG_CLASS (mode)),
5611 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5612 return 1;
5613 }
5614 }
5615 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5616 is larger than the class size, then reload the whole SUBREG. */
5617 else
5618 {
5619 enum reg_class class = (context ? INDEX_REG_CLASS
5620 : MODE_BASE_REG_CLASS (mode));
5621 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5622 > reg_class_size[class])
5623 {
5624 x = find_reloads_subreg_address (x, 0, opnum, type,
5625 ind_levels, insn);
5626 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5627 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5628 return 1;
5629 }
5630 }
5631 }
5632 break;
5633
5634 default:
5635 break;
5636 }
5637
5638 {
5639 const char *fmt = GET_RTX_FORMAT (code);
5640 int i;
5641
5642 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5643 {
5644 if (fmt[i] == 'e')
5645 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5646 opnum, type, ind_levels, insn);
5647 }
5648 }
5649
5650 return 0;
5651 }
5652 \f
5653 /* X, which is found at *LOC, is a part of an address that needs to be
5654 reloaded into a register of class CLASS. If X is a constant, or if
5655 X is a PLUS that contains a constant, check that the constant is a
5656 legitimate operand and that we are supposed to be able to load
5657 it into the register.
5658
5659 If not, force the constant into memory and reload the MEM instead.
5660
5661 MODE is the mode to use, in case X is an integer constant.
5662
5663 OPNUM and TYPE describe the purpose of any reloads made.
5664
5665 IND_LEVELS says how many levels of indirect addressing this machine
5666 supports. */
5667
5668 static void
5669 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5670 rtx x;
5671 rtx *loc;
5672 enum reg_class class;
5673 enum machine_mode mode;
5674 int opnum;
5675 enum reload_type type;
5676 int ind_levels;
5677 {
5678 if (CONSTANT_P (x)
5679 && (! LEGITIMATE_CONSTANT_P (x)
5680 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5681 {
5682 rtx tem;
5683
5684 tem = x = force_const_mem (mode, x);
5685 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5686 opnum, type, ind_levels, 0);
5687 }
5688
5689 else if (GET_CODE (x) == PLUS
5690 && CONSTANT_P (XEXP (x, 1))
5691 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5692 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5693 {
5694 rtx tem;
5695
5696 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5697 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5698 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5699 opnum, type, ind_levels, 0);
5700 }
5701
5702 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5703 mode, VOIDmode, 0, 0, opnum, type);
5704 }
5705 \f
5706 /* X, a subreg of a pseudo, is a part of an address that needs to be
5707 reloaded.
5708
5709 If the pseudo is equivalent to a memory location that cannot be directly
5710 addressed, make the necessary address reloads.
5711
5712 If address reloads have been necessary, or if the address is changed
5713 by register elimination, return the rtx of the memory location;
5714 otherwise, return X.
5715
5716 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5717 memory location.
5718
5719 OPNUM and TYPE identify the purpose of the reload.
5720
5721 IND_LEVELS says how many levels of indirect addressing are
5722 supported at this point in the address.
5723
5724 INSN, if nonzero, is the insn in which we do the reload. It is used
5725 to determine where to put USEs for pseudos that we have to replace with
5726 stack slots. */
5727
5728 static rtx
5729 find_reloads_subreg_address (x, force_replace, opnum, type,
5730 ind_levels, insn)
5731 rtx x;
5732 int force_replace;
5733 int opnum;
5734 enum reload_type type;
5735 int ind_levels;
5736 rtx insn;
5737 {
5738 int regno = REGNO (SUBREG_REG (x));
5739
5740 if (reg_equiv_memory_loc[regno])
5741 {
5742 /* If the address is not directly addressable, or if the address is not
5743 offsettable, then it must be replaced. */
5744 if (! force_replace
5745 && (reg_equiv_address[regno]
5746 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5747 force_replace = 1;
5748
5749 if (force_replace || num_not_at_initial_offset)
5750 {
5751 rtx tem = make_memloc (SUBREG_REG (x), regno);
5752
5753 /* If the address changes because of register elimination, then
5754 it must be replaced. */
5755 if (force_replace
5756 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5757 {
5758 int offset = SUBREG_BYTE (x);
5759 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5760 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5761
5762 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5763 PUT_MODE (tem, GET_MODE (x));
5764
5765 /* If this was a paradoxical subreg that we replaced, the
5766 resulting memory must be sufficiently aligned to allow
5767 us to widen the mode of the memory. */
5768 if (outer_size > inner_size && STRICT_ALIGNMENT)
5769 {
5770 rtx base;
5771
5772 base = XEXP (tem, 0);
5773 if (GET_CODE (base) == PLUS)
5774 {
5775 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5776 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5777 return x;
5778 base = XEXP (base, 0);
5779 }
5780 if (GET_CODE (base) != REG
5781 || (REGNO_POINTER_ALIGN (REGNO (base))
5782 < outer_size * BITS_PER_UNIT))
5783 return x;
5784 }
5785
5786 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5787 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5788 ind_levels, insn);
5789
5790 /* If this is not a toplevel operand, find_reloads doesn't see
5791 this substitution. We have to emit a USE of the pseudo so
5792 that delete_output_reload can see it. */
5793 if (replace_reloads && recog_data.operand[opnum] != x)
5794 /* We mark the USE with QImode so that we recognize it
5795 as one that can be safely deleted at the end of
5796 reload. */
5797 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5798 SUBREG_REG (x)),
5799 insn), QImode);
5800 x = tem;
5801 }
5802 }
5803 }
5804 return x;
5805 }
5806 \f
5807 /* Substitute into the current INSN the registers into which we have reloaded
5808 the things that need reloading. The array `replacements'
5809 contains the locations of all pointers that must be changed
5810 and says what to replace them with.
5811
5812 Return the rtx that X translates into; usually X, but modified. */
5813
5814 void
5815 subst_reloads (insn)
5816 rtx insn;
5817 {
5818 int i;
5819
5820 for (i = 0; i < n_replacements; i++)
5821 {
5822 struct replacement *r = &replacements[i];
5823 rtx reloadreg = rld[r->what].reg_rtx;
5824 if (reloadreg)
5825 {
5826 #ifdef ENABLE_CHECKING
5827 /* Internal consistency test. Check that we don't modify
5828 anything in the equivalence arrays. Whenever something from
5829 those arrays needs to be reloaded, it must be unshared before
5830 being substituted into; the equivalence must not be modified.
5831 Otherwise, if the equivalence is used after that, it will
5832 have been modified, and the thing substituted (probably a
5833 register) is likely overwritten and not a usable equivalence. */
5834 int check_regno;
5835
5836 for (check_regno = 0; check_regno < max_regno; check_regno++)
5837 {
5838 #define CHECK_MODF(ARRAY) \
5839 if (ARRAY[check_regno] \
5840 && loc_mentioned_in_p (r->where, \
5841 ARRAY[check_regno])) \
5842 abort ()
5843
5844 CHECK_MODF (reg_equiv_constant);
5845 CHECK_MODF (reg_equiv_memory_loc);
5846 CHECK_MODF (reg_equiv_address);
5847 CHECK_MODF (reg_equiv_mem);
5848 #undef CHECK_MODF
5849 }
5850 #endif /* ENABLE_CHECKING */
5851
5852 /* If we're replacing a LABEL_REF with a register, add a
5853 REG_LABEL note to indicate to flow which label this
5854 register refers to. */
5855 if (GET_CODE (*r->where) == LABEL_REF
5856 && GET_CODE (insn) == JUMP_INSN)
5857 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5858 XEXP (*r->where, 0),
5859 REG_NOTES (insn));
5860
5861 /* Encapsulate RELOADREG so its machine mode matches what
5862 used to be there. Note that gen_lowpart_common will
5863 do the wrong thing if RELOADREG is multi-word. RELOADREG
5864 will always be a REG here. */
5865 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5866 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5867
5868 /* If we are putting this into a SUBREG and RELOADREG is a
5869 SUBREG, we would be making nested SUBREGs, so we have to fix
5870 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5871
5872 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5873 {
5874 if (GET_MODE (*r->subreg_loc)
5875 == GET_MODE (SUBREG_REG (reloadreg)))
5876 *r->subreg_loc = SUBREG_REG (reloadreg);
5877 else
5878 {
5879 int final_offset =
5880 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5881
5882 /* When working with SUBREGs the rule is that the byte
5883 offset must be a multiple of the SUBREG's mode. */
5884 final_offset = (final_offset /
5885 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5886 final_offset = (final_offset *
5887 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5888
5889 *r->where = SUBREG_REG (reloadreg);
5890 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5891 }
5892 }
5893 else
5894 *r->where = reloadreg;
5895 }
5896 /* If reload got no reg and isn't optional, something's wrong. */
5897 else if (! rld[r->what].optional)
5898 abort ();
5899 }
5900 }
5901 \f
5902 /* Make a copy of any replacements being done into X and move those copies
5903 to locations in Y, a copy of X. We only look at the highest level of
5904 the RTL. */
5905
5906 void
5907 copy_replacements (x, y)
5908 rtx x;
5909 rtx y;
5910 {
5911 int i, j;
5912 enum rtx_code code = GET_CODE (x);
5913 const char *fmt = GET_RTX_FORMAT (code);
5914 struct replacement *r;
5915
5916 /* We can't support X being a SUBREG because we might then need to know its
5917 location if something inside it was replaced. */
5918 if (code == SUBREG)
5919 abort ();
5920
5921 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5922 if (fmt[i] == 'e')
5923 for (j = 0; j < n_replacements; j++)
5924 {
5925 if (replacements[j].subreg_loc == &XEXP (x, i))
5926 {
5927 r = &replacements[n_replacements++];
5928 r->where = replacements[j].where;
5929 r->subreg_loc = &XEXP (y, i);
5930 r->what = replacements[j].what;
5931 r->mode = replacements[j].mode;
5932 }
5933 else if (replacements[j].where == &XEXP (x, i))
5934 {
5935 r = &replacements[n_replacements++];
5936 r->where = &XEXP (y, i);
5937 r->subreg_loc = 0;
5938 r->what = replacements[j].what;
5939 r->mode = replacements[j].mode;
5940 }
5941 }
5942 }
5943
5944 /* Change any replacements being done to *X to be done to *Y */
5945
5946 void
5947 move_replacements (x, y)
5948 rtx *x;
5949 rtx *y;
5950 {
5951 int i;
5952
5953 for (i = 0; i < n_replacements; i++)
5954 if (replacements[i].subreg_loc == x)
5955 replacements[i].subreg_loc = y;
5956 else if (replacements[i].where == x)
5957 {
5958 replacements[i].where = y;
5959 replacements[i].subreg_loc = 0;
5960 }
5961 }
5962 \f
5963 /* If LOC was scheduled to be replaced by something, return the replacement.
5964 Otherwise, return *LOC. */
5965
5966 rtx
5967 find_replacement (loc)
5968 rtx *loc;
5969 {
5970 struct replacement *r;
5971
5972 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5973 {
5974 rtx reloadreg = rld[r->what].reg_rtx;
5975
5976 if (reloadreg && r->where == loc)
5977 {
5978 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5979 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5980
5981 return reloadreg;
5982 }
5983 else if (reloadreg && r->subreg_loc == loc)
5984 {
5985 /* RELOADREG must be either a REG or a SUBREG.
5986
5987 ??? Is it actually still ever a SUBREG? If so, why? */
5988
5989 if (GET_CODE (reloadreg) == REG)
5990 return gen_rtx_REG (GET_MODE (*loc),
5991 (REGNO (reloadreg) +
5992 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
5993 GET_MODE (SUBREG_REG (*loc)),
5994 SUBREG_BYTE (*loc),
5995 GET_MODE (*loc))));
5996 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5997 return reloadreg;
5998 else
5999 {
6000 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6001
6002 /* When working with SUBREGs the rule is that the byte
6003 offset must be a multiple of the SUBREG's mode. */
6004 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6005 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6006 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6007 final_offset);
6008 }
6009 }
6010 }
6011
6012 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6013 what's inside and make a new rtl if so. */
6014 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6015 || GET_CODE (*loc) == MULT)
6016 {
6017 rtx x = find_replacement (&XEXP (*loc, 0));
6018 rtx y = find_replacement (&XEXP (*loc, 1));
6019
6020 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6021 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6022 }
6023
6024 return *loc;
6025 }
6026 \f
6027 /* Return nonzero if register in range [REGNO, ENDREGNO)
6028 appears either explicitly or implicitly in X
6029 other than being stored into (except for earlyclobber operands).
6030
6031 References contained within the substructure at LOC do not count.
6032 LOC may be zero, meaning don't ignore anything.
6033
6034 This is similar to refers_to_regno_p in rtlanal.c except that we
6035 look at equivalences for pseudos that didn't get hard registers. */
6036
6037 int
6038 refers_to_regno_for_reload_p (regno, endregno, x, loc)
6039 unsigned int regno, endregno;
6040 rtx x;
6041 rtx *loc;
6042 {
6043 int i;
6044 unsigned int r;
6045 RTX_CODE code;
6046 const char *fmt;
6047
6048 if (x == 0)
6049 return 0;
6050
6051 repeat:
6052 code = GET_CODE (x);
6053
6054 switch (code)
6055 {
6056 case REG:
6057 r = REGNO (x);
6058
6059 /* If this is a pseudo, a hard register must not have been allocated.
6060 X must therefore either be a constant or be in memory. */
6061 if (r >= FIRST_PSEUDO_REGISTER)
6062 {
6063 if (reg_equiv_memory_loc[r])
6064 return refers_to_regno_for_reload_p (regno, endregno,
6065 reg_equiv_memory_loc[r],
6066 (rtx*) 0);
6067
6068 if (reg_equiv_constant[r])
6069 return 0;
6070
6071 abort ();
6072 }
6073
6074 return (endregno > r
6075 && regno < r + (r < FIRST_PSEUDO_REGISTER
6076 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6077 : 1));
6078
6079 case SUBREG:
6080 /* If this is a SUBREG of a hard reg, we can see exactly which
6081 registers are being modified. Otherwise, handle normally. */
6082 if (GET_CODE (SUBREG_REG (x)) == REG
6083 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6084 {
6085 unsigned int inner_regno = subreg_regno (x);
6086 unsigned int inner_endregno
6087 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6088 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6089
6090 return endregno > inner_regno && regno < inner_endregno;
6091 }
6092 break;
6093
6094 case CLOBBER:
6095 case SET:
6096 if (&SET_DEST (x) != loc
6097 /* Note setting a SUBREG counts as referring to the REG it is in for
6098 a pseudo but not for hard registers since we can
6099 treat each word individually. */
6100 && ((GET_CODE (SET_DEST (x)) == SUBREG
6101 && loc != &SUBREG_REG (SET_DEST (x))
6102 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6103 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6104 && refers_to_regno_for_reload_p (regno, endregno,
6105 SUBREG_REG (SET_DEST (x)),
6106 loc))
6107 /* If the output is an earlyclobber operand, this is
6108 a conflict. */
6109 || ((GET_CODE (SET_DEST (x)) != REG
6110 || earlyclobber_operand_p (SET_DEST (x)))
6111 && refers_to_regno_for_reload_p (regno, endregno,
6112 SET_DEST (x), loc))))
6113 return 1;
6114
6115 if (code == CLOBBER || loc == &SET_SRC (x))
6116 return 0;
6117 x = SET_SRC (x);
6118 goto repeat;
6119
6120 default:
6121 break;
6122 }
6123
6124 /* X does not match, so try its subexpressions. */
6125
6126 fmt = GET_RTX_FORMAT (code);
6127 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6128 {
6129 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6130 {
6131 if (i == 0)
6132 {
6133 x = XEXP (x, 0);
6134 goto repeat;
6135 }
6136 else
6137 if (refers_to_regno_for_reload_p (regno, endregno,
6138 XEXP (x, i), loc))
6139 return 1;
6140 }
6141 else if (fmt[i] == 'E')
6142 {
6143 int j;
6144 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6145 if (loc != &XVECEXP (x, i, j)
6146 && refers_to_regno_for_reload_p (regno, endregno,
6147 XVECEXP (x, i, j), loc))
6148 return 1;
6149 }
6150 }
6151 return 0;
6152 }
6153
6154 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6155 we check if any register number in X conflicts with the relevant register
6156 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6157 contains a MEM (we don't bother checking for memory addresses that can't
6158 conflict because we expect this to be a rare case.
6159
6160 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6161 that we look at equivalences for pseudos that didn't get hard registers. */
6162
6163 int
6164 reg_overlap_mentioned_for_reload_p (x, in)
6165 rtx x, in;
6166 {
6167 int regno, endregno;
6168
6169 /* Overly conservative. */
6170 if (GET_CODE (x) == STRICT_LOW_PART
6171 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6172 x = XEXP (x, 0);
6173
6174 /* If either argument is a constant, then modifying X can not affect IN. */
6175 if (CONSTANT_P (x) || CONSTANT_P (in))
6176 return 0;
6177 else if (GET_CODE (x) == SUBREG)
6178 {
6179 regno = REGNO (SUBREG_REG (x));
6180 if (regno < FIRST_PSEUDO_REGISTER)
6181 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6182 GET_MODE (SUBREG_REG (x)),
6183 SUBREG_BYTE (x),
6184 GET_MODE (x));
6185 }
6186 else if (GET_CODE (x) == REG)
6187 {
6188 regno = REGNO (x);
6189
6190 /* If this is a pseudo, it must not have been assigned a hard register.
6191 Therefore, it must either be in memory or be a constant. */
6192
6193 if (regno >= FIRST_PSEUDO_REGISTER)
6194 {
6195 if (reg_equiv_memory_loc[regno])
6196 return refers_to_mem_for_reload_p (in);
6197 else if (reg_equiv_constant[regno])
6198 return 0;
6199 abort ();
6200 }
6201 }
6202 else if (GET_CODE (x) == MEM)
6203 return refers_to_mem_for_reload_p (in);
6204 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6205 || GET_CODE (x) == CC0)
6206 return reg_mentioned_p (x, in);
6207 else if (GET_CODE (x) == PLUS)
6208 return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6209 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6210 else
6211 abort ();
6212
6213 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6214 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6215
6216 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6217 }
6218
6219 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6220 registers. */
6221
6222 int
6223 refers_to_mem_for_reload_p (x)
6224 rtx x;
6225 {
6226 const char *fmt;
6227 int i;
6228
6229 if (GET_CODE (x) == MEM)
6230 return 1;
6231
6232 if (GET_CODE (x) == REG)
6233 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6234 && reg_equiv_memory_loc[REGNO (x)]);
6235
6236 fmt = GET_RTX_FORMAT (GET_CODE (x));
6237 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6238 if (fmt[i] == 'e'
6239 && (GET_CODE (XEXP (x, i)) == MEM
6240 || refers_to_mem_for_reload_p (XEXP (x, i))))
6241 return 1;
6242
6243 return 0;
6244 }
6245 \f
6246 /* Check the insns before INSN to see if there is a suitable register
6247 containing the same value as GOAL.
6248 If OTHER is -1, look for a register in class CLASS.
6249 Otherwise, just see if register number OTHER shares GOAL's value.
6250
6251 Return an rtx for the register found, or zero if none is found.
6252
6253 If RELOAD_REG_P is (short *)1,
6254 we reject any hard reg that appears in reload_reg_rtx
6255 because such a hard reg is also needed coming into this insn.
6256
6257 If RELOAD_REG_P is any other nonzero value,
6258 it is a vector indexed by hard reg number
6259 and we reject any hard reg whose element in the vector is nonnegative
6260 as well as any that appears in reload_reg_rtx.
6261
6262 If GOAL is zero, then GOALREG is a register number; we look
6263 for an equivalent for that register.
6264
6265 MODE is the machine mode of the value we want an equivalence for.
6266 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6267
6268 This function is used by jump.c as well as in the reload pass.
6269
6270 If GOAL is the sum of the stack pointer and a constant, we treat it
6271 as if it were a constant except that sp is required to be unchanging. */
6272
6273 rtx
6274 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6275 rtx goal;
6276 rtx insn;
6277 enum reg_class class;
6278 int other;
6279 short *reload_reg_p;
6280 int goalreg;
6281 enum machine_mode mode;
6282 {
6283 rtx p = insn;
6284 rtx goaltry, valtry, value, where;
6285 rtx pat;
6286 int regno = -1;
6287 int valueno;
6288 int goal_mem = 0;
6289 int goal_const = 0;
6290 int goal_mem_addr_varies = 0;
6291 int need_stable_sp = 0;
6292 int nregs;
6293 int valuenregs;
6294
6295 if (goal == 0)
6296 regno = goalreg;
6297 else if (GET_CODE (goal) == REG)
6298 regno = REGNO (goal);
6299 else if (GET_CODE (goal) == MEM)
6300 {
6301 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6302 if (MEM_VOLATILE_P (goal))
6303 return 0;
6304 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6305 return 0;
6306 /* An address with side effects must be reexecuted. */
6307 switch (code)
6308 {
6309 case POST_INC:
6310 case PRE_INC:
6311 case POST_DEC:
6312 case PRE_DEC:
6313 case POST_MODIFY:
6314 case PRE_MODIFY:
6315 return 0;
6316 default:
6317 break;
6318 }
6319 goal_mem = 1;
6320 }
6321 else if (CONSTANT_P (goal))
6322 goal_const = 1;
6323 else if (GET_CODE (goal) == PLUS
6324 && XEXP (goal, 0) == stack_pointer_rtx
6325 && CONSTANT_P (XEXP (goal, 1)))
6326 goal_const = need_stable_sp = 1;
6327 else if (GET_CODE (goal) == PLUS
6328 && XEXP (goal, 0) == frame_pointer_rtx
6329 && CONSTANT_P (XEXP (goal, 1)))
6330 goal_const = 1;
6331 else
6332 return 0;
6333
6334 /* Scan insns back from INSN, looking for one that copies
6335 a value into or out of GOAL.
6336 Stop and give up if we reach a label. */
6337
6338 while (1)
6339 {
6340 p = PREV_INSN (p);
6341 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6342 return 0;
6343
6344 if (GET_CODE (p) == INSN
6345 /* If we don't want spill regs ... */
6346 && (! (reload_reg_p != 0
6347 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6348 /* ... then ignore insns introduced by reload; they aren't
6349 useful and can cause results in reload_as_needed to be
6350 different from what they were when calculating the need for
6351 spills. If we notice an input-reload insn here, we will
6352 reject it below, but it might hide a usable equivalent.
6353 That makes bad code. It may even abort: perhaps no reg was
6354 spilled for this insn because it was assumed we would find
6355 that equivalent. */
6356 || INSN_UID (p) < reload_first_uid))
6357 {
6358 rtx tem;
6359 pat = single_set (p);
6360
6361 /* First check for something that sets some reg equal to GOAL. */
6362 if (pat != 0
6363 && ((regno >= 0
6364 && true_regnum (SET_SRC (pat)) == regno
6365 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6366 ||
6367 (regno >= 0
6368 && true_regnum (SET_DEST (pat)) == regno
6369 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6370 ||
6371 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6372 /* When looking for stack pointer + const,
6373 make sure we don't use a stack adjust. */
6374 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6375 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6376 || (goal_mem
6377 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6378 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6379 || (goal_mem
6380 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6381 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6382 /* If we are looking for a constant,
6383 and something equivalent to that constant was copied
6384 into a reg, we can use that reg. */
6385 || (goal_const && REG_NOTES (p) != 0
6386 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6387 && ((rtx_equal_p (XEXP (tem, 0), goal)
6388 && (valueno
6389 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6390 || (GET_CODE (SET_DEST (pat)) == REG
6391 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6392 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6393 == MODE_FLOAT)
6394 && GET_CODE (goal) == CONST_INT
6395 && 0 != (goaltry
6396 = operand_subword (XEXP (tem, 0), 0, 0,
6397 VOIDmode))
6398 && rtx_equal_p (goal, goaltry)
6399 && (valtry
6400 = operand_subword (SET_DEST (pat), 0, 0,
6401 VOIDmode))
6402 && (valueno = true_regnum (valtry)) >= 0)))
6403 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6404 NULL_RTX))
6405 && GET_CODE (SET_DEST (pat)) == REG
6406 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6407 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6408 == MODE_FLOAT)
6409 && GET_CODE (goal) == CONST_INT
6410 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6411 VOIDmode))
6412 && rtx_equal_p (goal, goaltry)
6413 && (valtry
6414 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6415 && (valueno = true_regnum (valtry)) >= 0)))
6416 {
6417 if (other >= 0)
6418 {
6419 if (valueno != other)
6420 continue;
6421 }
6422 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6423 continue;
6424 else
6425 {
6426 int i;
6427
6428 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6429 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6430 valueno + i))
6431 break;
6432 if (i >= 0)
6433 continue;
6434 }
6435 value = valtry;
6436 where = p;
6437 break;
6438 }
6439 }
6440 }
6441
6442 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6443 (or copying VALUE into GOAL, if GOAL is also a register).
6444 Now verify that VALUE is really valid. */
6445
6446 /* VALUENO is the register number of VALUE; a hard register. */
6447
6448 /* Don't try to re-use something that is killed in this insn. We want
6449 to be able to trust REG_UNUSED notes. */
6450 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6451 return 0;
6452
6453 /* If we propose to get the value from the stack pointer or if GOAL is
6454 a MEM based on the stack pointer, we need a stable SP. */
6455 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6456 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6457 goal)))
6458 need_stable_sp = 1;
6459
6460 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6461 if (GET_MODE (value) != mode)
6462 return 0;
6463
6464 /* Reject VALUE if it was loaded from GOAL
6465 and is also a register that appears in the address of GOAL. */
6466
6467 if (goal_mem && value == SET_DEST (single_set (where))
6468 && refers_to_regno_for_reload_p (valueno,
6469 (valueno
6470 + HARD_REGNO_NREGS (valueno, mode)),
6471 goal, (rtx*) 0))
6472 return 0;
6473
6474 /* Reject registers that overlap GOAL. */
6475
6476 if (!goal_mem && !goal_const
6477 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6478 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6479 return 0;
6480
6481 nregs = HARD_REGNO_NREGS (regno, mode);
6482 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6483
6484 /* Reject VALUE if it is one of the regs reserved for reloads.
6485 Reload1 knows how to reuse them anyway, and it would get
6486 confused if we allocated one without its knowledge.
6487 (Now that insns introduced by reload are ignored above,
6488 this case shouldn't happen, but I'm not positive.) */
6489
6490 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6491 {
6492 int i;
6493 for (i = 0; i < valuenregs; ++i)
6494 if (reload_reg_p[valueno + i] >= 0)
6495 return 0;
6496 }
6497
6498 /* Reject VALUE if it is a register being used for an input reload
6499 even if it is not one of those reserved. */
6500
6501 if (reload_reg_p != 0)
6502 {
6503 int i;
6504 for (i = 0; i < n_reloads; i++)
6505 if (rld[i].reg_rtx != 0 && rld[i].in)
6506 {
6507 int regno1 = REGNO (rld[i].reg_rtx);
6508 int nregs1 = HARD_REGNO_NREGS (regno1,
6509 GET_MODE (rld[i].reg_rtx));
6510 if (regno1 < valueno + valuenregs
6511 && regno1 + nregs1 > valueno)
6512 return 0;
6513 }
6514 }
6515
6516 if (goal_mem)
6517 /* We must treat frame pointer as varying here,
6518 since it can vary--in a nonlocal goto as generated by expand_goto. */
6519 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6520
6521 /* Now verify that the values of GOAL and VALUE remain unaltered
6522 until INSN is reached. */
6523
6524 p = insn;
6525 while (1)
6526 {
6527 p = PREV_INSN (p);
6528 if (p == where)
6529 return value;
6530
6531 /* Don't trust the conversion past a function call
6532 if either of the two is in a call-clobbered register, or memory. */
6533 if (GET_CODE (p) == CALL_INSN)
6534 {
6535 int i;
6536
6537 if (goal_mem || need_stable_sp)
6538 return 0;
6539
6540 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6541 for (i = 0; i < nregs; ++i)
6542 if (call_used_regs[regno + i])
6543 return 0;
6544
6545 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6546 for (i = 0; i < valuenregs; ++i)
6547 if (call_used_regs[valueno + i])
6548 return 0;
6549 #ifdef NON_SAVING_SETJMP
6550 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6551 return 0;
6552 #endif
6553 }
6554
6555 if (INSN_P (p))
6556 {
6557 pat = PATTERN (p);
6558
6559 /* Watch out for unspec_volatile, and volatile asms. */
6560 if (volatile_insn_p (pat))
6561 return 0;
6562
6563 /* If this insn P stores in either GOAL or VALUE, return 0.
6564 If GOAL is a memory ref and this insn writes memory, return 0.
6565 If GOAL is a memory ref and its address is not constant,
6566 and this insn P changes a register used in GOAL, return 0. */
6567
6568 if (GET_CODE (pat) == COND_EXEC)
6569 pat = COND_EXEC_CODE (pat);
6570 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6571 {
6572 rtx dest = SET_DEST (pat);
6573 while (GET_CODE (dest) == SUBREG
6574 || GET_CODE (dest) == ZERO_EXTRACT
6575 || GET_CODE (dest) == SIGN_EXTRACT
6576 || GET_CODE (dest) == STRICT_LOW_PART)
6577 dest = XEXP (dest, 0);
6578 if (GET_CODE (dest) == REG)
6579 {
6580 int xregno = REGNO (dest);
6581 int xnregs;
6582 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6583 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6584 else
6585 xnregs = 1;
6586 if (xregno < regno + nregs && xregno + xnregs > regno)
6587 return 0;
6588 if (xregno < valueno + valuenregs
6589 && xregno + xnregs > valueno)
6590 return 0;
6591 if (goal_mem_addr_varies
6592 && reg_overlap_mentioned_for_reload_p (dest, goal))
6593 return 0;
6594 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6595 return 0;
6596 }
6597 else if (goal_mem && GET_CODE (dest) == MEM
6598 && ! push_operand (dest, GET_MODE (dest)))
6599 return 0;
6600 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6601 && reg_equiv_memory_loc[regno] != 0)
6602 return 0;
6603 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6604 return 0;
6605 }
6606 else if (GET_CODE (pat) == PARALLEL)
6607 {
6608 int i;
6609 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6610 {
6611 rtx v1 = XVECEXP (pat, 0, i);
6612 if (GET_CODE (v1) == COND_EXEC)
6613 v1 = COND_EXEC_CODE (v1);
6614 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6615 {
6616 rtx dest = SET_DEST (v1);
6617 while (GET_CODE (dest) == SUBREG
6618 || GET_CODE (dest) == ZERO_EXTRACT
6619 || GET_CODE (dest) == SIGN_EXTRACT
6620 || GET_CODE (dest) == STRICT_LOW_PART)
6621 dest = XEXP (dest, 0);
6622 if (GET_CODE (dest) == REG)
6623 {
6624 int xregno = REGNO (dest);
6625 int xnregs;
6626 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6627 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6628 else
6629 xnregs = 1;
6630 if (xregno < regno + nregs
6631 && xregno + xnregs > regno)
6632 return 0;
6633 if (xregno < valueno + valuenregs
6634 && xregno + xnregs > valueno)
6635 return 0;
6636 if (goal_mem_addr_varies
6637 && reg_overlap_mentioned_for_reload_p (dest,
6638 goal))
6639 return 0;
6640 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6641 return 0;
6642 }
6643 else if (goal_mem && GET_CODE (dest) == MEM
6644 && ! push_operand (dest, GET_MODE (dest)))
6645 return 0;
6646 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6647 && reg_equiv_memory_loc[regno] != 0)
6648 return 0;
6649 else if (need_stable_sp
6650 && push_operand (dest, GET_MODE (dest)))
6651 return 0;
6652 }
6653 }
6654 }
6655
6656 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6657 {
6658 rtx link;
6659
6660 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6661 link = XEXP (link, 1))
6662 {
6663 pat = XEXP (link, 0);
6664 if (GET_CODE (pat) == CLOBBER)
6665 {
6666 rtx dest = SET_DEST (pat);
6667
6668 if (GET_CODE (dest) == REG)
6669 {
6670 int xregno = REGNO (dest);
6671 int xnregs
6672 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6673
6674 if (xregno < regno + nregs
6675 && xregno + xnregs > regno)
6676 return 0;
6677 else if (xregno < valueno + valuenregs
6678 && xregno + xnregs > valueno)
6679 return 0;
6680 else if (goal_mem_addr_varies
6681 && reg_overlap_mentioned_for_reload_p (dest,
6682 goal))
6683 return 0;
6684 }
6685
6686 else if (goal_mem && GET_CODE (dest) == MEM
6687 && ! push_operand (dest, GET_MODE (dest)))
6688 return 0;
6689 else if (need_stable_sp
6690 && push_operand (dest, GET_MODE (dest)))
6691 return 0;
6692 }
6693 }
6694 }
6695
6696 #ifdef AUTO_INC_DEC
6697 /* If this insn auto-increments or auto-decrements
6698 either regno or valueno, return 0 now.
6699 If GOAL is a memory ref and its address is not constant,
6700 and this insn P increments a register used in GOAL, return 0. */
6701 {
6702 rtx link;
6703
6704 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6705 if (REG_NOTE_KIND (link) == REG_INC
6706 && GET_CODE (XEXP (link, 0)) == REG)
6707 {
6708 int incno = REGNO (XEXP (link, 0));
6709 if (incno < regno + nregs && incno >= regno)
6710 return 0;
6711 if (incno < valueno + valuenregs && incno >= valueno)
6712 return 0;
6713 if (goal_mem_addr_varies
6714 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6715 goal))
6716 return 0;
6717 }
6718 }
6719 #endif
6720 }
6721 }
6722 }
6723 \f
6724 /* Find a place where INCED appears in an increment or decrement operator
6725 within X, and return the amount INCED is incremented or decremented by.
6726 The value is always positive. */
6727
6728 static int
6729 find_inc_amount (x, inced)
6730 rtx x, inced;
6731 {
6732 enum rtx_code code = GET_CODE (x);
6733 const char *fmt;
6734 int i;
6735
6736 if (code == MEM)
6737 {
6738 rtx addr = XEXP (x, 0);
6739 if ((GET_CODE (addr) == PRE_DEC
6740 || GET_CODE (addr) == POST_DEC
6741 || GET_CODE (addr) == PRE_INC
6742 || GET_CODE (addr) == POST_INC)
6743 && XEXP (addr, 0) == inced)
6744 return GET_MODE_SIZE (GET_MODE (x));
6745 else if ((GET_CODE (addr) == PRE_MODIFY
6746 || GET_CODE (addr) == POST_MODIFY)
6747 && GET_CODE (XEXP (addr, 1)) == PLUS
6748 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6749 && XEXP (addr, 0) == inced
6750 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6751 {
6752 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6753 return i < 0 ? -i : i;
6754 }
6755 }
6756
6757 fmt = GET_RTX_FORMAT (code);
6758 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6759 {
6760 if (fmt[i] == 'e')
6761 {
6762 int tem = find_inc_amount (XEXP (x, i), inced);
6763 if (tem != 0)
6764 return tem;
6765 }
6766 if (fmt[i] == 'E')
6767 {
6768 int j;
6769 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6770 {
6771 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6772 if (tem != 0)
6773 return tem;
6774 }
6775 }
6776 }
6777
6778 return 0;
6779 }
6780 \f
6781 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6782 If SETS is nonzero, also consider SETs. */
6783
6784 int
6785 regno_clobbered_p (regno, insn, mode, sets)
6786 unsigned int regno;
6787 rtx insn;
6788 enum machine_mode mode;
6789 int sets;
6790 {
6791 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6792 unsigned int endregno = regno + nregs;
6793
6794 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6795 || (sets && GET_CODE (PATTERN (insn)) == SET))
6796 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6797 {
6798 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6799
6800 return test >= regno && test < endregno;
6801 }
6802
6803 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6804 {
6805 int i = XVECLEN (PATTERN (insn), 0) - 1;
6806
6807 for (; i >= 0; i--)
6808 {
6809 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6810 if ((GET_CODE (elt) == CLOBBER
6811 || (sets && GET_CODE (PATTERN (insn)) == SET))
6812 && GET_CODE (XEXP (elt, 0)) == REG)
6813 {
6814 unsigned int test = REGNO (XEXP (elt, 0));
6815
6816 if (test >= regno && test < endregno)
6817 return 1;
6818 }
6819 }
6820 }
6821
6822 return 0;
6823 }
6824
6825 static const char *const reload_when_needed_name[] =
6826 {
6827 "RELOAD_FOR_INPUT",
6828 "RELOAD_FOR_OUTPUT",
6829 "RELOAD_FOR_INSN",
6830 "RELOAD_FOR_INPUT_ADDRESS",
6831 "RELOAD_FOR_INPADDR_ADDRESS",
6832 "RELOAD_FOR_OUTPUT_ADDRESS",
6833 "RELOAD_FOR_OUTADDR_ADDRESS",
6834 "RELOAD_FOR_OPERAND_ADDRESS",
6835 "RELOAD_FOR_OPADDR_ADDR",
6836 "RELOAD_OTHER",
6837 "RELOAD_FOR_OTHER_ADDRESS"
6838 };
6839
6840 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6841
6842 /* These functions are used to print the variables set by 'find_reloads' */
6843
6844 void
6845 debug_reload_to_stream (f)
6846 FILE *f;
6847 {
6848 int r;
6849 const char *prefix;
6850
6851 if (! f)
6852 f = stderr;
6853 for (r = 0; r < n_reloads; r++)
6854 {
6855 fprintf (f, "Reload %d: ", r);
6856
6857 if (rld[r].in != 0)
6858 {
6859 fprintf (f, "reload_in (%s) = ",
6860 GET_MODE_NAME (rld[r].inmode));
6861 print_inline_rtx (f, rld[r].in, 24);
6862 fprintf (f, "\n\t");
6863 }
6864
6865 if (rld[r].out != 0)
6866 {
6867 fprintf (f, "reload_out (%s) = ",
6868 GET_MODE_NAME (rld[r].outmode));
6869 print_inline_rtx (f, rld[r].out, 24);
6870 fprintf (f, "\n\t");
6871 }
6872
6873 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6874
6875 fprintf (f, "%s (opnum = %d)",
6876 reload_when_needed_name[(int) rld[r].when_needed],
6877 rld[r].opnum);
6878
6879 if (rld[r].optional)
6880 fprintf (f, ", optional");
6881
6882 if (rld[r].nongroup)
6883 fprintf (f, ", nongroup");
6884
6885 if (rld[r].inc != 0)
6886 fprintf (f, ", inc by %d", rld[r].inc);
6887
6888 if (rld[r].nocombine)
6889 fprintf (f, ", can't combine");
6890
6891 if (rld[r].secondary_p)
6892 fprintf (f, ", secondary_reload_p");
6893
6894 if (rld[r].in_reg != 0)
6895 {
6896 fprintf (f, "\n\treload_in_reg: ");
6897 print_inline_rtx (f, rld[r].in_reg, 24);
6898 }
6899
6900 if (rld[r].out_reg != 0)
6901 {
6902 fprintf (f, "\n\treload_out_reg: ");
6903 print_inline_rtx (f, rld[r].out_reg, 24);
6904 }
6905
6906 if (rld[r].reg_rtx != 0)
6907 {
6908 fprintf (f, "\n\treload_reg_rtx: ");
6909 print_inline_rtx (f, rld[r].reg_rtx, 24);
6910 }
6911
6912 prefix = "\n\t";
6913 if (rld[r].secondary_in_reload != -1)
6914 {
6915 fprintf (f, "%ssecondary_in_reload = %d",
6916 prefix, rld[r].secondary_in_reload);
6917 prefix = ", ";
6918 }
6919
6920 if (rld[r].secondary_out_reload != -1)
6921 fprintf (f, "%ssecondary_out_reload = %d\n",
6922 prefix, rld[r].secondary_out_reload);
6923
6924 prefix = "\n\t";
6925 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6926 {
6927 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6928 insn_data[rld[r].secondary_in_icode].name);
6929 prefix = ", ";
6930 }
6931
6932 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6933 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6934 insn_data[rld[r].secondary_out_icode].name);
6935
6936 fprintf (f, "\n");
6937 }
6938 }
6939
6940 void
6941 debug_reload ()
6942 {
6943 debug_reload_to_stream (stderr);
6944 }