combine.c: Fix comment formatting.
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57 NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
72
73 Using a reload register for several reloads in one insn:
74
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
78
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
82
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
86
87 #define REG_OK_STRICT
88
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "expr.h"
95 #include "optabs.h"
96 #include "recog.h"
97 #include "reload.h"
98 #include "regs.h"
99 #include "hard-reg-set.h"
100 #include "flags.h"
101 #include "real.h"
102 #include "output.h"
103 #include "function.h"
104 #include "toplev.h"
105
106 #ifndef REGISTER_MOVE_COST
107 #define REGISTER_MOVE_COST(m, x, y) 2
108 #endif
109
110 #ifndef REGNO_MODE_OK_FOR_BASE_P
111 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112 #endif
113
114 #ifndef REG_MODE_OK_FOR_BASE_P
115 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116 #endif
117 \f
118 /* All reloads of the current insn are recorded here. See reload.h for
119 comments. */
120 int n_reloads;
121 struct reload rld[MAX_RELOADS];
122
123 /* All the "earlyclobber" operands of the current insn
124 are recorded here. */
125 int n_earlyclobbers;
126 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
127
128 int reload_n_operands;
129
130 /* Replacing reloads.
131
132 If `replace_reloads' is nonzero, then as each reload is recorded
133 an entry is made for it in the table `replacements'.
134 Then later `subst_reloads' can look through that table and
135 perform all the replacements needed. */
136
137 /* Nonzero means record the places to replace. */
138 static int replace_reloads;
139
140 /* Each replacement is recorded with a structure like this. */
141 struct replacement
142 {
143 rtx *where; /* Location to store in */
144 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
145 a SUBREG; 0 otherwise. */
146 int what; /* which reload this is for */
147 enum machine_mode mode; /* mode it must have */
148 };
149
150 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
151
152 /* Number of replacements currently recorded. */
153 static int n_replacements;
154
155 /* Used to track what is modified by an operand. */
156 struct decomposition
157 {
158 int reg_flag; /* Nonzero if referencing a register. */
159 int safe; /* Nonzero if this can't conflict with anything. */
160 rtx base; /* Base address for MEM. */
161 HOST_WIDE_INT start; /* Starting offset or register number. */
162 HOST_WIDE_INT end; /* Ending offset or register number. */
163 };
164
165 #ifdef SECONDARY_MEMORY_NEEDED
166
167 /* Save MEMs needed to copy from one class of registers to another. One MEM
168 is used per mode, but normally only one or two modes are ever used.
169
170 We keep two versions, before and after register elimination. The one
171 after register elimination is record separately for each operand. This
172 is done in case the address is not valid to be sure that we separately
173 reload each. */
174
175 static rtx secondary_memlocs[NUM_MACHINE_MODES];
176 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
177 #endif
178
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
182
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
185
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
190
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
196
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
199
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
203
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG \
207 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
209
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
220
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
228
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
237
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *));
242 #endif
243 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int,
244 unsigned int));
245 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode, int));
246 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
247 static void dup_replacements PARAMS ((rtx *, rtx *));
248 static void combine_reloads PARAMS ((void));
249 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
250 enum reload_type, int, int));
251 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
252 enum machine_mode, enum machine_mode,
253 enum reg_class, int, int));
254 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
255 static struct decomposition decompose PARAMS ((rtx));
256 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
257 static int alternative_allows_memconst PARAMS ((const char *, int));
258 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
259 int, rtx, int *));
260 static rtx make_memloc PARAMS ((rtx, int));
261 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
262 int, enum reload_type, int, rtx));
263 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
264 static rtx subst_indexed_address PARAMS ((rtx));
265 static void update_auto_inc_notes PARAMS ((rtx, int, int));
266 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
267 int, enum reload_type,int, rtx));
268 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
269 enum machine_mode, int,
270 enum reload_type, int));
271 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int,
272 enum reload_type, int, rtx));
273 static void copy_replacements_1 PARAMS ((rtx *, rtx *, int));
274 static int find_inc_amount PARAMS ((rtx, rtx));
275 \f
276 #ifdef HAVE_SECONDARY_RELOADS
277
278 /* Determine if any secondary reloads are needed for loading (if IN_P is
279 nonzero) or storing (if IN_P is zero) X to or from a reload register of
280 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
281 are needed, push them.
282
283 Return the reload number of the secondary reload we made, or -1 if
284 we didn't need one. *PICODE is set to the insn_code to use if we do
285 need a secondary reload. */
286
287 static int
288 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
289 type, picode)
290 int in_p;
291 rtx x;
292 int opnum;
293 int optional;
294 enum reg_class reload_class;
295 enum machine_mode reload_mode;
296 enum reload_type type;
297 enum insn_code *picode;
298 {
299 enum reg_class class = NO_REGS;
300 enum machine_mode mode = reload_mode;
301 enum insn_code icode = CODE_FOR_nothing;
302 enum reg_class t_class = NO_REGS;
303 enum machine_mode t_mode = VOIDmode;
304 enum insn_code t_icode = CODE_FOR_nothing;
305 enum reload_type secondary_type;
306 int s_reload, t_reload = -1;
307
308 if (type == RELOAD_FOR_INPUT_ADDRESS
309 || type == RELOAD_FOR_OUTPUT_ADDRESS
310 || type == RELOAD_FOR_INPADDR_ADDRESS
311 || type == RELOAD_FOR_OUTADDR_ADDRESS)
312 secondary_type = type;
313 else
314 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
315
316 *picode = CODE_FOR_nothing;
317
318 /* If X is a paradoxical SUBREG, use the inner value to determine both the
319 mode and object being reloaded. */
320 if (GET_CODE (x) == SUBREG
321 && (GET_MODE_SIZE (GET_MODE (x))
322 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
323 {
324 x = SUBREG_REG (x);
325 reload_mode = GET_MODE (x);
326 }
327
328 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
329 is still a pseudo-register by now, it *must* have an equivalent MEM
330 but we don't want to assume that), use that equivalent when seeing if
331 a secondary reload is needed since whether or not a reload is needed
332 might be sensitive to the form of the MEM. */
333
334 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
335 && reg_equiv_mem[REGNO (x)] != 0)
336 x = reg_equiv_mem[REGNO (x)];
337
338 #ifdef SECONDARY_INPUT_RELOAD_CLASS
339 if (in_p)
340 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
341 #endif
342
343 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
344 if (! in_p)
345 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
346 #endif
347
348 /* If we don't need any secondary registers, done. */
349 if (class == NO_REGS)
350 return -1;
351
352 /* Get a possible insn to use. If the predicate doesn't accept X, don't
353 use the insn. */
354
355 icode = (in_p ? reload_in_optab[(int) reload_mode]
356 : reload_out_optab[(int) reload_mode]);
357
358 if (icode != CODE_FOR_nothing
359 && insn_data[(int) icode].operand[in_p].predicate
360 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
361 icode = CODE_FOR_nothing;
362
363 /* If we will be using an insn, see if it can directly handle the reload
364 register we will be using. If it can, the secondary reload is for a
365 scratch register. If it can't, we will use the secondary reload for
366 an intermediate register and require a tertiary reload for the scratch
367 register. */
368
369 if (icode != CODE_FOR_nothing)
370 {
371 /* If IN_P is nonzero, the reload register will be the output in
372 operand 0. If IN_P is zero, the reload register will be the input
373 in operand 1. Outputs should have an initial "=", which we must
374 skip. */
375
376 enum reg_class insn_class;
377
378 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
379 insn_class = ALL_REGS;
380 else
381 {
382 char insn_letter
383 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
384 insn_class
385 = (insn_letter == 'r' ? GENERAL_REGS
386 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
387
388 if (insn_class == NO_REGS)
389 abort ();
390 if (in_p
391 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
392 abort ();
393 }
394
395 /* The scratch register's constraint must start with "=&". */
396 if (insn_data[(int) icode].operand[2].constraint[0] != '='
397 || insn_data[(int) icode].operand[2].constraint[1] != '&')
398 abort ();
399
400 if (reg_class_subset_p (reload_class, insn_class))
401 mode = insn_data[(int) icode].operand[2].mode;
402 else
403 {
404 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
405 class = insn_class;
406 t_mode = insn_data[(int) icode].operand[2].mode;
407 t_class = (t_letter == 'r' ? GENERAL_REGS
408 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
409 t_icode = icode;
410 icode = CODE_FOR_nothing;
411 }
412 }
413
414 /* This case isn't valid, so fail. Reload is allowed to use the same
415 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
416 in the case of a secondary register, we actually need two different
417 registers for correct code. We fail here to prevent the possibility of
418 silently generating incorrect code later.
419
420 The convention is that secondary input reloads are valid only if the
421 secondary_class is different from class. If you have such a case, you
422 can not use secondary reloads, you must work around the problem some
423 other way.
424
425 Allow this when a reload_in/out pattern is being used. I.e. assume
426 that the generated code handles this case. */
427
428 if (in_p && class == reload_class && icode == CODE_FOR_nothing
429 && t_icode == CODE_FOR_nothing)
430 abort ();
431
432 /* If we need a tertiary reload, see if we have one we can reuse or else
433 make a new one. */
434
435 if (t_class != NO_REGS)
436 {
437 for (t_reload = 0; t_reload < n_reloads; t_reload++)
438 if (rld[t_reload].secondary_p
439 && (reg_class_subset_p (t_class, rld[t_reload].class)
440 || reg_class_subset_p (rld[t_reload].class, t_class))
441 && ((in_p && rld[t_reload].inmode == t_mode)
442 || (! in_p && rld[t_reload].outmode == t_mode))
443 && ((in_p && (rld[t_reload].secondary_in_icode
444 == CODE_FOR_nothing))
445 || (! in_p &&(rld[t_reload].secondary_out_icode
446 == CODE_FOR_nothing)))
447 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
448 && MERGABLE_RELOADS (secondary_type,
449 rld[t_reload].when_needed,
450 opnum, rld[t_reload].opnum))
451 {
452 if (in_p)
453 rld[t_reload].inmode = t_mode;
454 if (! in_p)
455 rld[t_reload].outmode = t_mode;
456
457 if (reg_class_subset_p (t_class, rld[t_reload].class))
458 rld[t_reload].class = t_class;
459
460 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
461 rld[t_reload].optional &= optional;
462 rld[t_reload].secondary_p = 1;
463 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
464 opnum, rld[t_reload].opnum))
465 rld[t_reload].when_needed = RELOAD_OTHER;
466 }
467
468 if (t_reload == n_reloads)
469 {
470 /* We need to make a new tertiary reload for this register class. */
471 rld[t_reload].in = rld[t_reload].out = 0;
472 rld[t_reload].class = t_class;
473 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
474 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
475 rld[t_reload].reg_rtx = 0;
476 rld[t_reload].optional = optional;
477 rld[t_reload].inc = 0;
478 /* Maybe we could combine these, but it seems too tricky. */
479 rld[t_reload].nocombine = 1;
480 rld[t_reload].in_reg = 0;
481 rld[t_reload].out_reg = 0;
482 rld[t_reload].opnum = opnum;
483 rld[t_reload].when_needed = secondary_type;
484 rld[t_reload].secondary_in_reload = -1;
485 rld[t_reload].secondary_out_reload = -1;
486 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
487 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
488 rld[t_reload].secondary_p = 1;
489
490 n_reloads++;
491 }
492 }
493
494 /* See if we can reuse an existing secondary reload. */
495 for (s_reload = 0; s_reload < n_reloads; s_reload++)
496 if (rld[s_reload].secondary_p
497 && (reg_class_subset_p (class, rld[s_reload].class)
498 || reg_class_subset_p (rld[s_reload].class, class))
499 && ((in_p && rld[s_reload].inmode == mode)
500 || (! in_p && rld[s_reload].outmode == mode))
501 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
502 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
503 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
504 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
505 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
506 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
507 opnum, rld[s_reload].opnum))
508 {
509 if (in_p)
510 rld[s_reload].inmode = mode;
511 if (! in_p)
512 rld[s_reload].outmode = mode;
513
514 if (reg_class_subset_p (class, rld[s_reload].class))
515 rld[s_reload].class = class;
516
517 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
518 rld[s_reload].optional &= optional;
519 rld[s_reload].secondary_p = 1;
520 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
521 opnum, rld[s_reload].opnum))
522 rld[s_reload].when_needed = RELOAD_OTHER;
523 }
524
525 if (s_reload == n_reloads)
526 {
527 #ifdef SECONDARY_MEMORY_NEEDED
528 /* If we need a memory location to copy between the two reload regs,
529 set it up now. Note that we do the input case before making
530 the reload and the output case after. This is due to the
531 way reloads are output. */
532
533 if (in_p && icode == CODE_FOR_nothing
534 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
535 {
536 get_secondary_mem (x, reload_mode, opnum, type);
537
538 /* We may have just added new reloads. Make sure we add
539 the new reload at the end. */
540 s_reload = n_reloads;
541 }
542 #endif
543
544 /* We need to make a new secondary reload for this register class. */
545 rld[s_reload].in = rld[s_reload].out = 0;
546 rld[s_reload].class = class;
547
548 rld[s_reload].inmode = in_p ? mode : VOIDmode;
549 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
550 rld[s_reload].reg_rtx = 0;
551 rld[s_reload].optional = optional;
552 rld[s_reload].inc = 0;
553 /* Maybe we could combine these, but it seems too tricky. */
554 rld[s_reload].nocombine = 1;
555 rld[s_reload].in_reg = 0;
556 rld[s_reload].out_reg = 0;
557 rld[s_reload].opnum = opnum;
558 rld[s_reload].when_needed = secondary_type;
559 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
560 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
561 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
562 rld[s_reload].secondary_out_icode
563 = ! in_p ? t_icode : CODE_FOR_nothing;
564 rld[s_reload].secondary_p = 1;
565
566 n_reloads++;
567
568 #ifdef SECONDARY_MEMORY_NEEDED
569 if (! in_p && icode == CODE_FOR_nothing
570 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
571 get_secondary_mem (x, mode, opnum, type);
572 #endif
573 }
574
575 *picode = icode;
576 return s_reload;
577 }
578 #endif /* HAVE_SECONDARY_RELOADS */
579 \f
580 #ifdef SECONDARY_MEMORY_NEEDED
581
582 /* Return a memory location that will be used to copy X in mode MODE.
583 If we haven't already made a location for this mode in this insn,
584 call find_reloads_address on the location being returned. */
585
586 rtx
587 get_secondary_mem (x, mode, opnum, type)
588 rtx x ATTRIBUTE_UNUSED;
589 enum machine_mode mode;
590 int opnum;
591 enum reload_type type;
592 {
593 rtx loc;
594 int mem_valid;
595
596 /* By default, if MODE is narrower than a word, widen it to a word.
597 This is required because most machines that require these memory
598 locations do not support short load and stores from all registers
599 (e.g., FP registers). */
600
601 #ifdef SECONDARY_MEMORY_NEEDED_MODE
602 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
603 #else
604 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
605 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
606 #endif
607
608 /* If we already have made a MEM for this operand in MODE, return it. */
609 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
610 return secondary_memlocs_elim[(int) mode][opnum];
611
612 /* If this is the first time we've tried to get a MEM for this mode,
613 allocate a new one. `something_changed' in reload will get set
614 by noticing that the frame size has changed. */
615
616 if (secondary_memlocs[(int) mode] == 0)
617 {
618 #ifdef SECONDARY_MEMORY_NEEDED_RTX
619 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
620 #else
621 secondary_memlocs[(int) mode]
622 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
623 #endif
624 }
625
626 /* Get a version of the address doing any eliminations needed. If that
627 didn't give us a new MEM, make a new one if it isn't valid. */
628
629 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
630 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
631
632 if (! mem_valid && loc == secondary_memlocs[(int) mode])
633 loc = copy_rtx (loc);
634
635 /* The only time the call below will do anything is if the stack
636 offset is too large. In that case IND_LEVELS doesn't matter, so we
637 can just pass a zero. Adjust the type to be the address of the
638 corresponding object. If the address was valid, save the eliminated
639 address. If it wasn't valid, we need to make a reload each time, so
640 don't save it. */
641
642 if (! mem_valid)
643 {
644 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
645 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
646 : RELOAD_OTHER);
647
648 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
649 opnum, type, 0, 0);
650 }
651
652 secondary_memlocs_elim[(int) mode][opnum] = loc;
653 return loc;
654 }
655
656 /* Clear any secondary memory locations we've made. */
657
658 void
659 clear_secondary_mem ()
660 {
661 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
662 }
663 #endif /* SECONDARY_MEMORY_NEEDED */
664 \f
665 /* Find the largest class for which every register number plus N is valid in
666 M1 (if in range) and is cheap to move into REGNO.
667 Abort if no such class exists. */
668
669 static enum reg_class
670 find_valid_class (m1, n, dest_regno)
671 enum machine_mode m1 ATTRIBUTE_UNUSED;
672 int n;
673 unsigned int dest_regno;
674 {
675 int best_cost = -1;
676 int class;
677 int regno;
678 enum reg_class best_class = NO_REGS;
679 enum reg_class dest_class = REGNO_REG_CLASS (dest_regno);
680 unsigned int best_size = 0;
681 int cost;
682
683 for (class = 1; class < N_REG_CLASSES; class++)
684 {
685 int bad = 0;
686 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
687 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
688 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
689 && ! HARD_REGNO_MODE_OK (regno + n, m1))
690 bad = 1;
691
692 if (bad)
693 continue;
694 cost = REGISTER_MOVE_COST (m1, class, dest_class);
695
696 if ((reg_class_size[class] > best_size
697 && (best_cost < 0 || best_cost >= cost))
698 || best_cost > cost)
699 {
700 best_class = class;
701 best_size = reg_class_size[class];
702 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
703 }
704 }
705
706 if (best_size == 0)
707 abort ();
708
709 return best_class;
710 }
711 \f
712 /* Return the number of a previously made reload that can be combined with
713 a new one, or n_reloads if none of the existing reloads can be used.
714 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
715 push_reload, they determine the kind of the new reload that we try to
716 combine. P_IN points to the corresponding value of IN, which can be
717 modified by this function.
718 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
719
720 static int
721 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
722 rtx *p_in, out;
723 enum reg_class class;
724 enum reload_type type;
725 int opnum, dont_share;
726 {
727 rtx in = *p_in;
728 int i;
729 /* We can't merge two reloads if the output of either one is
730 earlyclobbered. */
731
732 if (earlyclobber_operand_p (out))
733 return n_reloads;
734
735 /* We can use an existing reload if the class is right
736 and at least one of IN and OUT is a match
737 and the other is at worst neutral.
738 (A zero compared against anything is neutral.)
739
740 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
741 for the same thing since that can cause us to need more reload registers
742 than we otherwise would. */
743
744 for (i = 0; i < n_reloads; i++)
745 if ((reg_class_subset_p (class, rld[i].class)
746 || reg_class_subset_p (rld[i].class, class))
747 /* If the existing reload has a register, it must fit our class. */
748 && (rld[i].reg_rtx == 0
749 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
750 true_regnum (rld[i].reg_rtx)))
751 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
752 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
753 || (out != 0 && MATCHES (rld[i].out, out)
754 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
755 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
756 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
757 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
758 return i;
759
760 /* Reloading a plain reg for input can match a reload to postincrement
761 that reg, since the postincrement's value is the right value.
762 Likewise, it can match a preincrement reload, since we regard
763 the preincrementation as happening before any ref in this insn
764 to that register. */
765 for (i = 0; i < n_reloads; i++)
766 if ((reg_class_subset_p (class, rld[i].class)
767 || reg_class_subset_p (rld[i].class, class))
768 /* If the existing reload has a register, it must fit our
769 class. */
770 && (rld[i].reg_rtx == 0
771 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
772 true_regnum (rld[i].reg_rtx)))
773 && out == 0 && rld[i].out == 0 && rld[i].in != 0
774 && ((GET_CODE (in) == REG
775 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
776 && MATCHES (XEXP (rld[i].in, 0), in))
777 || (GET_CODE (rld[i].in) == REG
778 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
779 && MATCHES (XEXP (in, 0), rld[i].in)))
780 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
781 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
782 && MERGABLE_RELOADS (type, rld[i].when_needed,
783 opnum, rld[i].opnum))
784 {
785 /* Make sure reload_in ultimately has the increment,
786 not the plain register. */
787 if (GET_CODE (in) == REG)
788 *p_in = rld[i].in;
789 return i;
790 }
791 return n_reloads;
792 }
793
794 /* Return nonzero if X is a SUBREG which will require reloading of its
795 SUBREG_REG expression. */
796
797 static int
798 reload_inner_reg_of_subreg (x, mode, output)
799 rtx x;
800 enum machine_mode mode;
801 int output;
802 {
803 rtx inner;
804
805 /* Only SUBREGs are problematical. */
806 if (GET_CODE (x) != SUBREG)
807 return 0;
808
809 inner = SUBREG_REG (x);
810
811 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
812 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
813 return 1;
814
815 /* If INNER is not a hard register, then INNER will not need to
816 be reloaded. */
817 if (GET_CODE (inner) != REG
818 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
819 return 0;
820
821 /* If INNER is not ok for MODE, then INNER will need reloading. */
822 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
823 return 1;
824
825 /* If the outer part is a word or smaller, INNER larger than a
826 word and the number of regs for INNER is not the same as the
827 number of words in INNER, then INNER will need reloading. */
828 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
829 && output
830 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
831 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
832 != (int) HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
833 }
834
835 /* Record one reload that needs to be performed.
836 IN is an rtx saying where the data are to be found before this instruction.
837 OUT says where they must be stored after the instruction.
838 (IN is zero for data not read, and OUT is zero for data not written.)
839 INLOC and OUTLOC point to the places in the instructions where
840 IN and OUT were found.
841 If IN and OUT are both nonzero, it means the same register must be used
842 to reload both IN and OUT.
843
844 CLASS is a register class required for the reloaded data.
845 INMODE is the machine mode that the instruction requires
846 for the reg that replaces IN and OUTMODE is likewise for OUT.
847
848 If IN is zero, then OUT's location and mode should be passed as
849 INLOC and INMODE.
850
851 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
852
853 OPTIONAL nonzero means this reload does not need to be performed:
854 it can be discarded if that is more convenient.
855
856 OPNUM and TYPE say what the purpose of this reload is.
857
858 The return value is the reload-number for this reload.
859
860 If both IN and OUT are nonzero, in some rare cases we might
861 want to make two separate reloads. (Actually we never do this now.)
862 Therefore, the reload-number for OUT is stored in
863 output_reloadnum when we return; the return value applies to IN.
864 Usually (presently always), when IN and OUT are nonzero,
865 the two reload-numbers are equal, but the caller should be careful to
866 distinguish them. */
867
868 int
869 push_reload (in, out, inloc, outloc, class,
870 inmode, outmode, strict_low, optional, opnum, type)
871 rtx in, out;
872 rtx *inloc, *outloc;
873 enum reg_class class;
874 enum machine_mode inmode, outmode;
875 int strict_low;
876 int optional;
877 int opnum;
878 enum reload_type type;
879 {
880 int i;
881 int dont_share = 0;
882 int dont_remove_subreg = 0;
883 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
884 int secondary_in_reload = -1, secondary_out_reload = -1;
885 enum insn_code secondary_in_icode = CODE_FOR_nothing;
886 enum insn_code secondary_out_icode = CODE_FOR_nothing;
887
888 /* INMODE and/or OUTMODE could be VOIDmode if no mode
889 has been specified for the operand. In that case,
890 use the operand's mode as the mode to reload. */
891 if (inmode == VOIDmode && in != 0)
892 inmode = GET_MODE (in);
893 if (outmode == VOIDmode && out != 0)
894 outmode = GET_MODE (out);
895
896 /* If IN is a pseudo register everywhere-equivalent to a constant, and
897 it is not in a hard register, reload straight from the constant,
898 since we want to get rid of such pseudo registers.
899 Often this is done earlier, but not always in find_reloads_address. */
900 if (in != 0 && GET_CODE (in) == REG)
901 {
902 int regno = REGNO (in);
903
904 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
905 && reg_equiv_constant[regno] != 0)
906 in = reg_equiv_constant[regno];
907 }
908
909 /* Likewise for OUT. Of course, OUT will never be equivalent to
910 an actual constant, but it might be equivalent to a memory location
911 (in the case of a parameter). */
912 if (out != 0 && GET_CODE (out) == REG)
913 {
914 int regno = REGNO (out);
915
916 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
917 && reg_equiv_constant[regno] != 0)
918 out = reg_equiv_constant[regno];
919 }
920
921 /* If we have a read-write operand with an address side-effect,
922 change either IN or OUT so the side-effect happens only once. */
923 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
924 switch (GET_CODE (XEXP (in, 0)))
925 {
926 case POST_INC: case POST_DEC: case POST_MODIFY:
927 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
928 break;
929
930 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
931 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
932 break;
933
934 default:
935 break;
936 }
937
938 /* If we are reloading a (SUBREG constant ...), really reload just the
939 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
940 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
941 a pseudo and hence will become a MEM) with M1 wider than M2 and the
942 register is a pseudo, also reload the inside expression.
943 For machines that extend byte loads, do this for any SUBREG of a pseudo
944 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
945 M2 is an integral mode that gets extended when loaded.
946 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
947 either M1 is not valid for R or M2 is wider than a word but we only
948 need one word to store an M2-sized quantity in R.
949 (However, if OUT is nonzero, we need to reload the reg *and*
950 the subreg, so do nothing here, and let following statement handle it.)
951
952 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
953 we can't handle it here because CONST_INT does not indicate a mode.
954
955 Similarly, we must reload the inside expression if we have a
956 STRICT_LOW_PART (presumably, in == out in the cas).
957
958 Also reload the inner expression if it does not require a secondary
959 reload but the SUBREG does.
960
961 Finally, reload the inner expression if it is a register that is in
962 the class whose registers cannot be referenced in a different size
963 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
964 cannot reload just the inside since we might end up with the wrong
965 register class. But if it is inside a STRICT_LOW_PART, we have
966 no choice, so we hope we do get the right register class there. */
967
968 if (in != 0 && GET_CODE (in) == SUBREG
969 && (subreg_lowpart_p (in) || strict_low)
970 #ifdef CLASS_CANNOT_CHANGE_MODE
971 && (class != CLASS_CANNOT_CHANGE_MODE
972 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
973 #endif
974 && (CONSTANT_P (SUBREG_REG (in))
975 || GET_CODE (SUBREG_REG (in)) == PLUS
976 || strict_low
977 || (((GET_CODE (SUBREG_REG (in)) == REG
978 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
979 || GET_CODE (SUBREG_REG (in)) == MEM)
980 && ((GET_MODE_SIZE (inmode)
981 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
982 #ifdef LOAD_EXTEND_OP
983 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
984 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
985 <= UNITS_PER_WORD)
986 && (GET_MODE_SIZE (inmode)
987 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
988 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
989 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
990 #endif
991 #ifdef WORD_REGISTER_OPERATIONS
992 || ((GET_MODE_SIZE (inmode)
993 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
994 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
995 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
996 / UNITS_PER_WORD)))
997 #endif
998 ))
999 || (GET_CODE (SUBREG_REG (in)) == REG
1000 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1001 /* The case where out is nonzero
1002 is handled differently in the following statement. */
1003 && (out == 0 || subreg_lowpart_p (in))
1004 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1005 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1006 > UNITS_PER_WORD)
1007 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1008 / UNITS_PER_WORD)
1009 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1010 GET_MODE (SUBREG_REG (in)))))
1011 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1012 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1013 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1014 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1015 GET_MODE (SUBREG_REG (in)),
1016 SUBREG_REG (in))
1017 == NO_REGS))
1018 #endif
1019 #ifdef CLASS_CANNOT_CHANGE_MODE
1020 || (GET_CODE (SUBREG_REG (in)) == REG
1021 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1022 && (TEST_HARD_REG_BIT
1023 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1024 REGNO (SUBREG_REG (in))))
1025 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1026 inmode))
1027 #endif
1028 ))
1029 {
1030 in_subreg_loc = inloc;
1031 inloc = &SUBREG_REG (in);
1032 in = *inloc;
1033 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1034 if (GET_CODE (in) == MEM)
1035 /* This is supposed to happen only for paradoxical subregs made by
1036 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1037 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1038 abort ();
1039 #endif
1040 inmode = GET_MODE (in);
1041 }
1042
1043 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1044 either M1 is not valid for R or M2 is wider than a word but we only
1045 need one word to store an M2-sized quantity in R.
1046
1047 However, we must reload the inner reg *as well as* the subreg in
1048 that case. */
1049
1050 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1051 code above. This can happen if SUBREG_BYTE != 0. */
1052
1053 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1054 {
1055 enum reg_class in_class = class;
1056
1057 if (GET_CODE (SUBREG_REG (in)) == REG)
1058 in_class
1059 = find_valid_class (inmode,
1060 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1061 GET_MODE (SUBREG_REG (in)),
1062 SUBREG_BYTE (in),
1063 GET_MODE (in)),
1064 REGNO (SUBREG_REG (in)));
1065
1066 /* This relies on the fact that emit_reload_insns outputs the
1067 instructions for input reloads of type RELOAD_OTHER in the same
1068 order as the reloads. Thus if the outer reload is also of type
1069 RELOAD_OTHER, we are guaranteed that this inner reload will be
1070 output before the outer reload. */
1071 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1072 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1073 dont_remove_subreg = 1;
1074 }
1075
1076 /* Similarly for paradoxical and problematical SUBREGs on the output.
1077 Note that there is no reason we need worry about the previous value
1078 of SUBREG_REG (out); even if wider than out,
1079 storing in a subreg is entitled to clobber it all
1080 (except in the case of STRICT_LOW_PART,
1081 and in that case the constraint should label it input-output.) */
1082 if (out != 0 && GET_CODE (out) == SUBREG
1083 && (subreg_lowpart_p (out) || strict_low)
1084 #ifdef CLASS_CANNOT_CHANGE_MODE
1085 && (class != CLASS_CANNOT_CHANGE_MODE
1086 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1087 outmode))
1088 #endif
1089 && (CONSTANT_P (SUBREG_REG (out))
1090 || strict_low
1091 || (((GET_CODE (SUBREG_REG (out)) == REG
1092 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1093 || GET_CODE (SUBREG_REG (out)) == MEM)
1094 && ((GET_MODE_SIZE (outmode)
1095 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1096 #ifdef WORD_REGISTER_OPERATIONS
1097 || ((GET_MODE_SIZE (outmode)
1098 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1099 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1100 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1101 / UNITS_PER_WORD)))
1102 #endif
1103 ))
1104 || (GET_CODE (SUBREG_REG (out)) == REG
1105 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1106 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1107 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1108 > UNITS_PER_WORD)
1109 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1110 / UNITS_PER_WORD)
1111 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1112 GET_MODE (SUBREG_REG (out)))))
1113 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1114 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1115 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1116 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1117 GET_MODE (SUBREG_REG (out)),
1118 SUBREG_REG (out))
1119 == NO_REGS))
1120 #endif
1121 #ifdef CLASS_CANNOT_CHANGE_MODE
1122 || (GET_CODE (SUBREG_REG (out)) == REG
1123 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1124 && (TEST_HARD_REG_BIT
1125 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1126 REGNO (SUBREG_REG (out))))
1127 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1128 outmode))
1129 #endif
1130 ))
1131 {
1132 out_subreg_loc = outloc;
1133 outloc = &SUBREG_REG (out);
1134 out = *outloc;
1135 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1136 if (GET_CODE (out) == MEM
1137 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1138 abort ();
1139 #endif
1140 outmode = GET_MODE (out);
1141 }
1142
1143 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1144 either M1 is not valid for R or M2 is wider than a word but we only
1145 need one word to store an M2-sized quantity in R.
1146
1147 However, we must reload the inner reg *as well as* the subreg in
1148 that case. In this case, the inner reg is an in-out reload. */
1149
1150 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1151 {
1152 /* This relies on the fact that emit_reload_insns outputs the
1153 instructions for output reloads of type RELOAD_OTHER in reverse
1154 order of the reloads. Thus if the outer reload is also of type
1155 RELOAD_OTHER, we are guaranteed that this inner reload will be
1156 output after the outer reload. */
1157 dont_remove_subreg = 1;
1158 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1159 &SUBREG_REG (out),
1160 find_valid_class (outmode,
1161 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1162 GET_MODE (SUBREG_REG (out)),
1163 SUBREG_BYTE (out),
1164 GET_MODE (out)),
1165 REGNO (SUBREG_REG (out))),
1166 VOIDmode, VOIDmode, 0, 0,
1167 opnum, RELOAD_OTHER);
1168 }
1169
1170 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1171 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1172 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1173 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1174 dont_share = 1;
1175
1176 /* If IN is a SUBREG of a hard register, make a new REG. This
1177 simplifies some of the cases below. */
1178
1179 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1180 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1181 && ! dont_remove_subreg)
1182 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1183
1184 /* Similarly for OUT. */
1185 if (out != 0 && GET_CODE (out) == SUBREG
1186 && GET_CODE (SUBREG_REG (out)) == REG
1187 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1188 && ! dont_remove_subreg)
1189 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1190
1191 /* Narrow down the class of register wanted if that is
1192 desirable on this machine for efficiency. */
1193 if (in != 0)
1194 class = PREFERRED_RELOAD_CLASS (in, class);
1195
1196 /* Output reloads may need analogous treatment, different in detail. */
1197 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1198 if (out != 0)
1199 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1200 #endif
1201
1202 /* Make sure we use a class that can handle the actual pseudo
1203 inside any subreg. For example, on the 386, QImode regs
1204 can appear within SImode subregs. Although GENERAL_REGS
1205 can handle SImode, QImode needs a smaller class. */
1206 #ifdef LIMIT_RELOAD_CLASS
1207 if (in_subreg_loc)
1208 class = LIMIT_RELOAD_CLASS (inmode, class);
1209 else if (in != 0 && GET_CODE (in) == SUBREG)
1210 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1211
1212 if (out_subreg_loc)
1213 class = LIMIT_RELOAD_CLASS (outmode, class);
1214 if (out != 0 && GET_CODE (out) == SUBREG)
1215 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1216 #endif
1217
1218 /* Verify that this class is at least possible for the mode that
1219 is specified. */
1220 if (this_insn_is_asm)
1221 {
1222 enum machine_mode mode;
1223 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1224 mode = inmode;
1225 else
1226 mode = outmode;
1227 if (mode == VOIDmode)
1228 {
1229 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1230 mode = word_mode;
1231 if (in != 0)
1232 inmode = word_mode;
1233 if (out != 0)
1234 outmode = word_mode;
1235 }
1236 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1237 if (HARD_REGNO_MODE_OK (i, mode)
1238 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1239 {
1240 int nregs = HARD_REGNO_NREGS (i, mode);
1241
1242 int j;
1243 for (j = 1; j < nregs; j++)
1244 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1245 break;
1246 if (j == nregs)
1247 break;
1248 }
1249 if (i == FIRST_PSEUDO_REGISTER)
1250 {
1251 error_for_asm (this_insn, "impossible register constraint in `asm'");
1252 class = ALL_REGS;
1253 }
1254 }
1255
1256 /* Optional output reloads are always OK even if we have no register class,
1257 since the function of these reloads is only to have spill_reg_store etc.
1258 set, so that the storing insn can be deleted later. */
1259 if (class == NO_REGS
1260 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1261 abort ();
1262
1263 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1264
1265 if (i == n_reloads)
1266 {
1267 /* See if we need a secondary reload register to move between CLASS
1268 and IN or CLASS and OUT. Get the icode and push any required reloads
1269 needed for each of them if so. */
1270
1271 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1272 if (in != 0)
1273 secondary_in_reload
1274 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1275 &secondary_in_icode);
1276 #endif
1277
1278 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1279 if (out != 0 && GET_CODE (out) != SCRATCH)
1280 secondary_out_reload
1281 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1282 type, &secondary_out_icode);
1283 #endif
1284
1285 /* We found no existing reload suitable for re-use.
1286 So add an additional reload. */
1287
1288 #ifdef SECONDARY_MEMORY_NEEDED
1289 /* If a memory location is needed for the copy, make one. */
1290 if (in != 0 && (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
1291 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1292 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1293 class, inmode))
1294 get_secondary_mem (in, inmode, opnum, type);
1295 #endif
1296
1297 i = n_reloads;
1298 rld[i].in = in;
1299 rld[i].out = out;
1300 rld[i].class = class;
1301 rld[i].inmode = inmode;
1302 rld[i].outmode = outmode;
1303 rld[i].reg_rtx = 0;
1304 rld[i].optional = optional;
1305 rld[i].inc = 0;
1306 rld[i].nocombine = 0;
1307 rld[i].in_reg = inloc ? *inloc : 0;
1308 rld[i].out_reg = outloc ? *outloc : 0;
1309 rld[i].opnum = opnum;
1310 rld[i].when_needed = type;
1311 rld[i].secondary_in_reload = secondary_in_reload;
1312 rld[i].secondary_out_reload = secondary_out_reload;
1313 rld[i].secondary_in_icode = secondary_in_icode;
1314 rld[i].secondary_out_icode = secondary_out_icode;
1315 rld[i].secondary_p = 0;
1316
1317 n_reloads++;
1318
1319 #ifdef SECONDARY_MEMORY_NEEDED
1320 if (out != 0 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
1321 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1322 && SECONDARY_MEMORY_NEEDED (class,
1323 REGNO_REG_CLASS (reg_or_subregno (out)),
1324 outmode))
1325 get_secondary_mem (out, outmode, opnum, type);
1326 #endif
1327 }
1328 else
1329 {
1330 /* We are reusing an existing reload,
1331 but we may have additional information for it.
1332 For example, we may now have both IN and OUT
1333 while the old one may have just one of them. */
1334
1335 /* The modes can be different. If they are, we want to reload in
1336 the larger mode, so that the value is valid for both modes. */
1337 if (inmode != VOIDmode
1338 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1339 rld[i].inmode = inmode;
1340 if (outmode != VOIDmode
1341 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1342 rld[i].outmode = outmode;
1343 if (in != 0)
1344 {
1345 rtx in_reg = inloc ? *inloc : 0;
1346 /* If we merge reloads for two distinct rtl expressions that
1347 are identical in content, there might be duplicate address
1348 reloads. Remove the extra set now, so that if we later find
1349 that we can inherit this reload, we can get rid of the
1350 address reloads altogether.
1351
1352 Do not do this if both reloads are optional since the result
1353 would be an optional reload which could potentially leave
1354 unresolved address replacements.
1355
1356 It is not sufficient to call transfer_replacements since
1357 choose_reload_regs will remove the replacements for address
1358 reloads of inherited reloads which results in the same
1359 problem. */
1360 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1361 && ! (rld[i].optional && optional))
1362 {
1363 /* We must keep the address reload with the lower operand
1364 number alive. */
1365 if (opnum > rld[i].opnum)
1366 {
1367 remove_address_replacements (in);
1368 in = rld[i].in;
1369 in_reg = rld[i].in_reg;
1370 }
1371 else
1372 remove_address_replacements (rld[i].in);
1373 }
1374 rld[i].in = in;
1375 rld[i].in_reg = in_reg;
1376 }
1377 if (out != 0)
1378 {
1379 rld[i].out = out;
1380 rld[i].out_reg = outloc ? *outloc : 0;
1381 }
1382 if (reg_class_subset_p (class, rld[i].class))
1383 rld[i].class = class;
1384 rld[i].optional &= optional;
1385 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1386 opnum, rld[i].opnum))
1387 rld[i].when_needed = RELOAD_OTHER;
1388 rld[i].opnum = MIN (rld[i].opnum, opnum);
1389 }
1390
1391 /* If the ostensible rtx being reloaded differs from the rtx found
1392 in the location to substitute, this reload is not safe to combine
1393 because we cannot reliably tell whether it appears in the insn. */
1394
1395 if (in != 0 && in != *inloc)
1396 rld[i].nocombine = 1;
1397
1398 #if 0
1399 /* This was replaced by changes in find_reloads_address_1 and the new
1400 function inc_for_reload, which go with a new meaning of reload_inc. */
1401
1402 /* If this is an IN/OUT reload in an insn that sets the CC,
1403 it must be for an autoincrement. It doesn't work to store
1404 the incremented value after the insn because that would clobber the CC.
1405 So we must do the increment of the value reloaded from,
1406 increment it, store it back, then decrement again. */
1407 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1408 {
1409 out = 0;
1410 rld[i].out = 0;
1411 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1412 /* If we did not find a nonzero amount-to-increment-by,
1413 that contradicts the belief that IN is being incremented
1414 in an address in this insn. */
1415 if (rld[i].inc == 0)
1416 abort ();
1417 }
1418 #endif
1419
1420 /* If we will replace IN and OUT with the reload-reg,
1421 record where they are located so that substitution need
1422 not do a tree walk. */
1423
1424 if (replace_reloads)
1425 {
1426 if (inloc != 0)
1427 {
1428 struct replacement *r = &replacements[n_replacements++];
1429 r->what = i;
1430 r->subreg_loc = in_subreg_loc;
1431 r->where = inloc;
1432 r->mode = inmode;
1433 }
1434 if (outloc != 0 && outloc != inloc)
1435 {
1436 struct replacement *r = &replacements[n_replacements++];
1437 r->what = i;
1438 r->where = outloc;
1439 r->subreg_loc = out_subreg_loc;
1440 r->mode = outmode;
1441 }
1442 }
1443
1444 /* If this reload is just being introduced and it has both
1445 an incoming quantity and an outgoing quantity that are
1446 supposed to be made to match, see if either one of the two
1447 can serve as the place to reload into.
1448
1449 If one of them is acceptable, set rld[i].reg_rtx
1450 to that one. */
1451
1452 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1453 {
1454 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1455 inmode, outmode,
1456 rld[i].class, i,
1457 earlyclobber_operand_p (out));
1458
1459 /* If the outgoing register already contains the same value
1460 as the incoming one, we can dispense with loading it.
1461 The easiest way to tell the caller that is to give a phony
1462 value for the incoming operand (same as outgoing one). */
1463 if (rld[i].reg_rtx == out
1464 && (GET_CODE (in) == REG || CONSTANT_P (in))
1465 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1466 static_reload_reg_p, i, inmode))
1467 rld[i].in = out;
1468 }
1469
1470 /* If this is an input reload and the operand contains a register that
1471 dies in this insn and is used nowhere else, see if it is the right class
1472 to be used for this reload. Use it if so. (This occurs most commonly
1473 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1474 this if it is also an output reload that mentions the register unless
1475 the output is a SUBREG that clobbers an entire register.
1476
1477 Note that the operand might be one of the spill regs, if it is a
1478 pseudo reg and we are in a block where spilling has not taken place.
1479 But if there is no spilling in this block, that is OK.
1480 An explicitly used hard reg cannot be a spill reg. */
1481
1482 if (rld[i].reg_rtx == 0 && in != 0)
1483 {
1484 rtx note;
1485 int regno;
1486 enum machine_mode rel_mode = inmode;
1487
1488 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1489 rel_mode = outmode;
1490
1491 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1492 if (REG_NOTE_KIND (note) == REG_DEAD
1493 && GET_CODE (XEXP (note, 0)) == REG
1494 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1495 && reg_mentioned_p (XEXP (note, 0), in)
1496 && ! refers_to_regno_for_reload_p (regno,
1497 (regno
1498 + HARD_REGNO_NREGS (regno,
1499 rel_mode)),
1500 PATTERN (this_insn), inloc)
1501 /* If this is also an output reload, IN cannot be used as
1502 the reload register if it is set in this insn unless IN
1503 is also OUT. */
1504 && (out == 0 || in == out
1505 || ! hard_reg_set_here_p (regno,
1506 (regno
1507 + HARD_REGNO_NREGS (regno,
1508 rel_mode)),
1509 PATTERN (this_insn)))
1510 /* ??? Why is this code so different from the previous?
1511 Is there any simple coherent way to describe the two together?
1512 What's going on here. */
1513 && (in != out
1514 || (GET_CODE (in) == SUBREG
1515 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1516 / UNITS_PER_WORD)
1517 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1518 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1519 /* Make sure the operand fits in the reg that dies. */
1520 && (GET_MODE_SIZE (rel_mode)
1521 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1522 && HARD_REGNO_MODE_OK (regno, inmode)
1523 && HARD_REGNO_MODE_OK (regno, outmode))
1524 {
1525 unsigned int offs;
1526 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1527 HARD_REGNO_NREGS (regno, outmode));
1528
1529 for (offs = 0; offs < nregs; offs++)
1530 if (fixed_regs[regno + offs]
1531 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1532 regno + offs))
1533 break;
1534
1535 if (offs == nregs)
1536 {
1537 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1538 break;
1539 }
1540 }
1541 }
1542
1543 if (out)
1544 output_reloadnum = i;
1545
1546 return i;
1547 }
1548
1549 /* Record an additional place we must replace a value
1550 for which we have already recorded a reload.
1551 RELOADNUM is the value returned by push_reload
1552 when the reload was recorded.
1553 This is used in insn patterns that use match_dup. */
1554
1555 static void
1556 push_replacement (loc, reloadnum, mode)
1557 rtx *loc;
1558 int reloadnum;
1559 enum machine_mode mode;
1560 {
1561 if (replace_reloads)
1562 {
1563 struct replacement *r = &replacements[n_replacements++];
1564 r->what = reloadnum;
1565 r->where = loc;
1566 r->subreg_loc = 0;
1567 r->mode = mode;
1568 }
1569 }
1570
1571 /* Duplicate any replacement we have recorded to apply at
1572 location ORIG_LOC to also be performed at DUP_LOC.
1573 This is used in insn patterns that use match_dup. */
1574
1575 static void
1576 dup_replacements (dup_loc, orig_loc)
1577 rtx *dup_loc;
1578 rtx *orig_loc;
1579 {
1580 int i, n = n_replacements;
1581
1582 for (i = 0; i < n; i++)
1583 {
1584 struct replacement *r = &replacements[i];
1585 if (r->where == orig_loc)
1586 push_replacement (dup_loc, r->what, r->mode);
1587 }
1588 }
1589 \f
1590 /* Transfer all replacements that used to be in reload FROM to be in
1591 reload TO. */
1592
1593 void
1594 transfer_replacements (to, from)
1595 int to, from;
1596 {
1597 int i;
1598
1599 for (i = 0; i < n_replacements; i++)
1600 if (replacements[i].what == from)
1601 replacements[i].what = to;
1602 }
1603 \f
1604 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1605 or a subpart of it. If we have any replacements registered for IN_RTX,
1606 cancel the reloads that were supposed to load them.
1607 Return nonzero if we canceled any reloads. */
1608 int
1609 remove_address_replacements (in_rtx)
1610 rtx in_rtx;
1611 {
1612 int i, j;
1613 char reload_flags[MAX_RELOADS];
1614 int something_changed = 0;
1615
1616 memset (reload_flags, 0, sizeof reload_flags);
1617 for (i = 0, j = 0; i < n_replacements; i++)
1618 {
1619 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1620 reload_flags[replacements[i].what] |= 1;
1621 else
1622 {
1623 replacements[j++] = replacements[i];
1624 reload_flags[replacements[i].what] |= 2;
1625 }
1626 }
1627 /* Note that the following store must be done before the recursive calls. */
1628 n_replacements = j;
1629
1630 for (i = n_reloads - 1; i >= 0; i--)
1631 {
1632 if (reload_flags[i] == 1)
1633 {
1634 deallocate_reload_reg (i);
1635 remove_address_replacements (rld[i].in);
1636 rld[i].in = 0;
1637 something_changed = 1;
1638 }
1639 }
1640 return something_changed;
1641 }
1642 \f
1643 /* If there is only one output reload, and it is not for an earlyclobber
1644 operand, try to combine it with a (logically unrelated) input reload
1645 to reduce the number of reload registers needed.
1646
1647 This is safe if the input reload does not appear in
1648 the value being output-reloaded, because this implies
1649 it is not needed any more once the original insn completes.
1650
1651 If that doesn't work, see we can use any of the registers that
1652 die in this insn as a reload register. We can if it is of the right
1653 class and does not appear in the value being output-reloaded. */
1654
1655 static void
1656 combine_reloads ()
1657 {
1658 int i;
1659 int output_reload = -1;
1660 int secondary_out = -1;
1661 rtx note;
1662
1663 /* Find the output reload; return unless there is exactly one
1664 and that one is mandatory. */
1665
1666 for (i = 0; i < n_reloads; i++)
1667 if (rld[i].out != 0)
1668 {
1669 if (output_reload >= 0)
1670 return;
1671 output_reload = i;
1672 }
1673
1674 if (output_reload < 0 || rld[output_reload].optional)
1675 return;
1676
1677 /* An input-output reload isn't combinable. */
1678
1679 if (rld[output_reload].in != 0)
1680 return;
1681
1682 /* If this reload is for an earlyclobber operand, we can't do anything. */
1683 if (earlyclobber_operand_p (rld[output_reload].out))
1684 return;
1685
1686 /* If there is a reload for part of the address of this operand, we would
1687 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1688 its life to the point where doing this combine would not lower the
1689 number of spill registers needed. */
1690 for (i = 0; i < n_reloads; i++)
1691 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1692 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1693 && rld[i].opnum == rld[output_reload].opnum)
1694 return;
1695
1696 /* Check each input reload; can we combine it? */
1697
1698 for (i = 0; i < n_reloads; i++)
1699 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1700 /* Life span of this reload must not extend past main insn. */
1701 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1702 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1703 && rld[i].when_needed != RELOAD_OTHER
1704 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1705 == CLASS_MAX_NREGS (rld[output_reload].class,
1706 rld[output_reload].outmode))
1707 && rld[i].inc == 0
1708 && rld[i].reg_rtx == 0
1709 #ifdef SECONDARY_MEMORY_NEEDED
1710 /* Don't combine two reloads with different secondary
1711 memory locations. */
1712 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1713 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1714 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1715 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1716 #endif
1717 && (SMALL_REGISTER_CLASSES
1718 ? (rld[i].class == rld[output_reload].class)
1719 : (reg_class_subset_p (rld[i].class,
1720 rld[output_reload].class)
1721 || reg_class_subset_p (rld[output_reload].class,
1722 rld[i].class)))
1723 && (MATCHES (rld[i].in, rld[output_reload].out)
1724 /* Args reversed because the first arg seems to be
1725 the one that we imagine being modified
1726 while the second is the one that might be affected. */
1727 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1728 rld[i].in)
1729 /* However, if the input is a register that appears inside
1730 the output, then we also can't share.
1731 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1732 If the same reload reg is used for both reg 69 and the
1733 result to be stored in memory, then that result
1734 will clobber the address of the memory ref. */
1735 && ! (GET_CODE (rld[i].in) == REG
1736 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1737 rld[output_reload].out))))
1738 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1739 rld[i].when_needed != RELOAD_FOR_INPUT)
1740 && (reg_class_size[(int) rld[i].class]
1741 || SMALL_REGISTER_CLASSES)
1742 /* We will allow making things slightly worse by combining an
1743 input and an output, but no worse than that. */
1744 && (rld[i].when_needed == RELOAD_FOR_INPUT
1745 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1746 {
1747 int j;
1748
1749 /* We have found a reload to combine with! */
1750 rld[i].out = rld[output_reload].out;
1751 rld[i].out_reg = rld[output_reload].out_reg;
1752 rld[i].outmode = rld[output_reload].outmode;
1753 /* Mark the old output reload as inoperative. */
1754 rld[output_reload].out = 0;
1755 /* The combined reload is needed for the entire insn. */
1756 rld[i].when_needed = RELOAD_OTHER;
1757 /* If the output reload had a secondary reload, copy it. */
1758 if (rld[output_reload].secondary_out_reload != -1)
1759 {
1760 rld[i].secondary_out_reload
1761 = rld[output_reload].secondary_out_reload;
1762 rld[i].secondary_out_icode
1763 = rld[output_reload].secondary_out_icode;
1764 }
1765
1766 #ifdef SECONDARY_MEMORY_NEEDED
1767 /* Copy any secondary MEM. */
1768 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1769 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1770 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1771 #endif
1772 /* If required, minimize the register class. */
1773 if (reg_class_subset_p (rld[output_reload].class,
1774 rld[i].class))
1775 rld[i].class = rld[output_reload].class;
1776
1777 /* Transfer all replacements from the old reload to the combined. */
1778 for (j = 0; j < n_replacements; j++)
1779 if (replacements[j].what == output_reload)
1780 replacements[j].what = i;
1781
1782 return;
1783 }
1784
1785 /* If this insn has only one operand that is modified or written (assumed
1786 to be the first), it must be the one corresponding to this reload. It
1787 is safe to use anything that dies in this insn for that output provided
1788 that it does not occur in the output (we already know it isn't an
1789 earlyclobber. If this is an asm insn, give up. */
1790
1791 if (INSN_CODE (this_insn) == -1)
1792 return;
1793
1794 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1795 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1796 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1797 return;
1798
1799 /* See if some hard register that dies in this insn and is not used in
1800 the output is the right class. Only works if the register we pick
1801 up can fully hold our output reload. */
1802 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1803 if (REG_NOTE_KIND (note) == REG_DEAD
1804 && GET_CODE (XEXP (note, 0)) == REG
1805 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1806 rld[output_reload].out)
1807 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1808 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1809 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1810 REGNO (XEXP (note, 0)))
1811 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1812 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1813 /* Ensure that a secondary or tertiary reload for this output
1814 won't want this register. */
1815 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1816 || (! (TEST_HARD_REG_BIT
1817 (reg_class_contents[(int) rld[secondary_out].class],
1818 REGNO (XEXP (note, 0))))
1819 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1820 || ! (TEST_HARD_REG_BIT
1821 (reg_class_contents[(int) rld[secondary_out].class],
1822 REGNO (XEXP (note, 0)))))))
1823 && ! fixed_regs[REGNO (XEXP (note, 0))])
1824 {
1825 rld[output_reload].reg_rtx
1826 = gen_rtx_REG (rld[output_reload].outmode,
1827 REGNO (XEXP (note, 0)));
1828 return;
1829 }
1830 }
1831 \f
1832 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1833 See if one of IN and OUT is a register that may be used;
1834 this is desirable since a spill-register won't be needed.
1835 If so, return the register rtx that proves acceptable.
1836
1837 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1838 CLASS is the register class required for the reload.
1839
1840 If FOR_REAL is >= 0, it is the number of the reload,
1841 and in some cases when it can be discovered that OUT doesn't need
1842 to be computed, clear out rld[FOR_REAL].out.
1843
1844 If FOR_REAL is -1, this should not be done, because this call
1845 is just to see if a register can be found, not to find and install it.
1846
1847 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1848 puts an additional constraint on being able to use IN for OUT since
1849 IN must not appear elsewhere in the insn (it is assumed that IN itself
1850 is safe from the earlyclobber). */
1851
1852 static rtx
1853 find_dummy_reload (real_in, real_out, inloc, outloc,
1854 inmode, outmode, class, for_real, earlyclobber)
1855 rtx real_in, real_out;
1856 rtx *inloc, *outloc;
1857 enum machine_mode inmode, outmode;
1858 enum reg_class class;
1859 int for_real;
1860 int earlyclobber;
1861 {
1862 rtx in = real_in;
1863 rtx out = real_out;
1864 int in_offset = 0;
1865 int out_offset = 0;
1866 rtx value = 0;
1867
1868 /* If operands exceed a word, we can't use either of them
1869 unless they have the same size. */
1870 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1871 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1872 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1873 return 0;
1874
1875 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1876 respectively refers to a hard register. */
1877
1878 /* Find the inside of any subregs. */
1879 while (GET_CODE (out) == SUBREG)
1880 {
1881 if (GET_CODE (SUBREG_REG (out)) == REG
1882 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1883 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1884 GET_MODE (SUBREG_REG (out)),
1885 SUBREG_BYTE (out),
1886 GET_MODE (out));
1887 out = SUBREG_REG (out);
1888 }
1889 while (GET_CODE (in) == SUBREG)
1890 {
1891 if (GET_CODE (SUBREG_REG (in)) == REG
1892 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1893 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1894 GET_MODE (SUBREG_REG (in)),
1895 SUBREG_BYTE (in),
1896 GET_MODE (in));
1897 in = SUBREG_REG (in);
1898 }
1899
1900 /* Narrow down the reg class, the same way push_reload will;
1901 otherwise we might find a dummy now, but push_reload won't. */
1902 class = PREFERRED_RELOAD_CLASS (in, class);
1903
1904 /* See if OUT will do. */
1905 if (GET_CODE (out) == REG
1906 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1907 {
1908 unsigned int regno = REGNO (out) + out_offset;
1909 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1910 rtx saved_rtx;
1911
1912 /* When we consider whether the insn uses OUT,
1913 ignore references within IN. They don't prevent us
1914 from copying IN into OUT, because those refs would
1915 move into the insn that reloads IN.
1916
1917 However, we only ignore IN in its role as this reload.
1918 If the insn uses IN elsewhere and it contains OUT,
1919 that counts. We can't be sure it's the "same" operand
1920 so it might not go through this reload. */
1921 saved_rtx = *inloc;
1922 *inloc = const0_rtx;
1923
1924 if (regno < FIRST_PSEUDO_REGISTER
1925 && HARD_REGNO_MODE_OK (regno, outmode)
1926 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1927 PATTERN (this_insn), outloc))
1928 {
1929 unsigned int i;
1930
1931 for (i = 0; i < nwords; i++)
1932 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1933 regno + i))
1934 break;
1935
1936 if (i == nwords)
1937 {
1938 if (GET_CODE (real_out) == REG)
1939 value = real_out;
1940 else
1941 value = gen_rtx_REG (outmode, regno);
1942 }
1943 }
1944
1945 *inloc = saved_rtx;
1946 }
1947
1948 /* Consider using IN if OUT was not acceptable
1949 or if OUT dies in this insn (like the quotient in a divmod insn).
1950 We can't use IN unless it is dies in this insn,
1951 which means we must know accurately which hard regs are live.
1952 Also, the result can't go in IN if IN is used within OUT,
1953 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1954 if (hard_regs_live_known
1955 && GET_CODE (in) == REG
1956 && REGNO (in) < FIRST_PSEUDO_REGISTER
1957 && (value == 0
1958 || find_reg_note (this_insn, REG_UNUSED, real_out))
1959 && find_reg_note (this_insn, REG_DEAD, real_in)
1960 && !fixed_regs[REGNO (in)]
1961 && HARD_REGNO_MODE_OK (REGNO (in),
1962 /* The only case where out and real_out might
1963 have different modes is where real_out
1964 is a subreg, and in that case, out
1965 has a real mode. */
1966 (GET_MODE (out) != VOIDmode
1967 ? GET_MODE (out) : outmode)))
1968 {
1969 unsigned int regno = REGNO (in) + in_offset;
1970 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1971
1972 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1973 && ! hard_reg_set_here_p (regno, regno + nwords,
1974 PATTERN (this_insn))
1975 && (! earlyclobber
1976 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1977 PATTERN (this_insn), inloc)))
1978 {
1979 unsigned int i;
1980
1981 for (i = 0; i < nwords; i++)
1982 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1983 regno + i))
1984 break;
1985
1986 if (i == nwords)
1987 {
1988 /* If we were going to use OUT as the reload reg
1989 and changed our mind, it means OUT is a dummy that
1990 dies here. So don't bother copying value to it. */
1991 if (for_real >= 0 && value == real_out)
1992 rld[for_real].out = 0;
1993 if (GET_CODE (real_in) == REG)
1994 value = real_in;
1995 else
1996 value = gen_rtx_REG (inmode, regno);
1997 }
1998 }
1999 }
2000
2001 return value;
2002 }
2003 \f
2004 /* This page contains subroutines used mainly for determining
2005 whether the IN or an OUT of a reload can serve as the
2006 reload register. */
2007
2008 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2009
2010 int
2011 earlyclobber_operand_p (x)
2012 rtx x;
2013 {
2014 int i;
2015
2016 for (i = 0; i < n_earlyclobbers; i++)
2017 if (reload_earlyclobbers[i] == x)
2018 return 1;
2019
2020 return 0;
2021 }
2022
2023 /* Return 1 if expression X alters a hard reg in the range
2024 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2025 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2026 X should be the body of an instruction. */
2027
2028 static int
2029 hard_reg_set_here_p (beg_regno, end_regno, x)
2030 unsigned int beg_regno, end_regno;
2031 rtx x;
2032 {
2033 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2034 {
2035 rtx op0 = SET_DEST (x);
2036
2037 while (GET_CODE (op0) == SUBREG)
2038 op0 = SUBREG_REG (op0);
2039 if (GET_CODE (op0) == REG)
2040 {
2041 unsigned int r = REGNO (op0);
2042
2043 /* See if this reg overlaps range under consideration. */
2044 if (r < end_regno
2045 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2046 return 1;
2047 }
2048 }
2049 else if (GET_CODE (x) == PARALLEL)
2050 {
2051 int i = XVECLEN (x, 0) - 1;
2052
2053 for (; i >= 0; i--)
2054 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2055 return 1;
2056 }
2057
2058 return 0;
2059 }
2060
2061 /* Return 1 if ADDR is a valid memory address for mode MODE,
2062 and check that each pseudo reg has the proper kind of
2063 hard reg. */
2064
2065 int
2066 strict_memory_address_p (mode, addr)
2067 enum machine_mode mode ATTRIBUTE_UNUSED;
2068 rtx addr;
2069 {
2070 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2071 return 0;
2072
2073 win:
2074 return 1;
2075 }
2076 \f
2077 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2078 if they are the same hard reg, and has special hacks for
2079 autoincrement and autodecrement.
2080 This is specifically intended for find_reloads to use
2081 in determining whether two operands match.
2082 X is the operand whose number is the lower of the two.
2083
2084 The value is 2 if Y contains a pre-increment that matches
2085 a non-incrementing address in X. */
2086
2087 /* ??? To be completely correct, we should arrange to pass
2088 for X the output operand and for Y the input operand.
2089 For now, we assume that the output operand has the lower number
2090 because that is natural in (SET output (... input ...)). */
2091
2092 int
2093 operands_match_p (x, y)
2094 rtx x, y;
2095 {
2096 int i;
2097 RTX_CODE code = GET_CODE (x);
2098 const char *fmt;
2099 int success_2;
2100
2101 if (x == y)
2102 return 1;
2103 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2104 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2105 && GET_CODE (SUBREG_REG (y)) == REG)))
2106 {
2107 int j;
2108
2109 if (code == SUBREG)
2110 {
2111 i = REGNO (SUBREG_REG (x));
2112 if (i >= FIRST_PSEUDO_REGISTER)
2113 goto slow;
2114 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2115 GET_MODE (SUBREG_REG (x)),
2116 SUBREG_BYTE (x),
2117 GET_MODE (x));
2118 }
2119 else
2120 i = REGNO (x);
2121
2122 if (GET_CODE (y) == SUBREG)
2123 {
2124 j = REGNO (SUBREG_REG (y));
2125 if (j >= FIRST_PSEUDO_REGISTER)
2126 goto slow;
2127 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2128 GET_MODE (SUBREG_REG (y)),
2129 SUBREG_BYTE (y),
2130 GET_MODE (y));
2131 }
2132 else
2133 j = REGNO (y);
2134
2135 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2136 multiple hard register group, so that for example (reg:DI 0) and
2137 (reg:SI 1) will be considered the same register. */
2138 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2139 && i < FIRST_PSEUDO_REGISTER)
2140 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2141 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2142 && j < FIRST_PSEUDO_REGISTER)
2143 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2144
2145 return i == j;
2146 }
2147 /* If two operands must match, because they are really a single
2148 operand of an assembler insn, then two postincrements are invalid
2149 because the assembler insn would increment only once.
2150 On the other hand, an postincrement matches ordinary indexing
2151 if the postincrement is the output operand. */
2152 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2153 return operands_match_p (XEXP (x, 0), y);
2154 /* Two preincrements are invalid
2155 because the assembler insn would increment only once.
2156 On the other hand, an preincrement matches ordinary indexing
2157 if the preincrement is the input operand.
2158 In this case, return 2, since some callers need to do special
2159 things when this happens. */
2160 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2161 || GET_CODE (y) == PRE_MODIFY)
2162 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2163
2164 slow:
2165
2166 /* Now we have disposed of all the cases
2167 in which different rtx codes can match. */
2168 if (code != GET_CODE (y))
2169 return 0;
2170 if (code == LABEL_REF)
2171 return XEXP (x, 0) == XEXP (y, 0);
2172 if (code == SYMBOL_REF)
2173 return XSTR (x, 0) == XSTR (y, 0);
2174
2175 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2176
2177 if (GET_MODE (x) != GET_MODE (y))
2178 return 0;
2179
2180 /* Compare the elements. If any pair of corresponding elements
2181 fail to match, return 0 for the whole things. */
2182
2183 success_2 = 0;
2184 fmt = GET_RTX_FORMAT (code);
2185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2186 {
2187 int val, j;
2188 switch (fmt[i])
2189 {
2190 case 'w':
2191 if (XWINT (x, i) != XWINT (y, i))
2192 return 0;
2193 break;
2194
2195 case 'i':
2196 if (XINT (x, i) != XINT (y, i))
2197 return 0;
2198 break;
2199
2200 case 'e':
2201 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2202 if (val == 0)
2203 return 0;
2204 /* If any subexpression returns 2,
2205 we should return 2 if we are successful. */
2206 if (val == 2)
2207 success_2 = 1;
2208 break;
2209
2210 case '0':
2211 break;
2212
2213 case 'E':
2214 if (XVECLEN (x, i) != XVECLEN (y, i))
2215 return 0;
2216 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2217 {
2218 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2219 if (val == 0)
2220 return 0;
2221 if (val == 2)
2222 success_2 = 1;
2223 }
2224 break;
2225
2226 /* It is believed that rtx's at this level will never
2227 contain anything but integers and other rtx's,
2228 except for within LABEL_REFs and SYMBOL_REFs. */
2229 default:
2230 abort ();
2231 }
2232 }
2233 return 1 + success_2;
2234 }
2235 \f
2236 /* Describe the range of registers or memory referenced by X.
2237 If X is a register, set REG_FLAG and put the first register
2238 number into START and the last plus one into END.
2239 If X is a memory reference, put a base address into BASE
2240 and a range of integer offsets into START and END.
2241 If X is pushing on the stack, we can assume it causes no trouble,
2242 so we set the SAFE field. */
2243
2244 static struct decomposition
2245 decompose (x)
2246 rtx x;
2247 {
2248 struct decomposition val;
2249 int all_const = 0;
2250
2251 val.reg_flag = 0;
2252 val.safe = 0;
2253 val.base = 0;
2254 if (GET_CODE (x) == MEM)
2255 {
2256 rtx base = NULL_RTX, offset = 0;
2257 rtx addr = XEXP (x, 0);
2258
2259 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2260 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2261 {
2262 val.base = XEXP (addr, 0);
2263 val.start = -GET_MODE_SIZE (GET_MODE (x));
2264 val.end = GET_MODE_SIZE (GET_MODE (x));
2265 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2266 return val;
2267 }
2268
2269 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2270 {
2271 if (GET_CODE (XEXP (addr, 1)) == PLUS
2272 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2273 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2274 {
2275 val.base = XEXP (addr, 0);
2276 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2277 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2278 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2279 return val;
2280 }
2281 }
2282
2283 if (GET_CODE (addr) == CONST)
2284 {
2285 addr = XEXP (addr, 0);
2286 all_const = 1;
2287 }
2288 if (GET_CODE (addr) == PLUS)
2289 {
2290 if (CONSTANT_P (XEXP (addr, 0)))
2291 {
2292 base = XEXP (addr, 1);
2293 offset = XEXP (addr, 0);
2294 }
2295 else if (CONSTANT_P (XEXP (addr, 1)))
2296 {
2297 base = XEXP (addr, 0);
2298 offset = XEXP (addr, 1);
2299 }
2300 }
2301
2302 if (offset == 0)
2303 {
2304 base = addr;
2305 offset = const0_rtx;
2306 }
2307 if (GET_CODE (offset) == CONST)
2308 offset = XEXP (offset, 0);
2309 if (GET_CODE (offset) == PLUS)
2310 {
2311 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2312 {
2313 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2314 offset = XEXP (offset, 0);
2315 }
2316 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2317 {
2318 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2319 offset = XEXP (offset, 1);
2320 }
2321 else
2322 {
2323 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2324 offset = const0_rtx;
2325 }
2326 }
2327 else if (GET_CODE (offset) != CONST_INT)
2328 {
2329 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2330 offset = const0_rtx;
2331 }
2332
2333 if (all_const && GET_CODE (base) == PLUS)
2334 base = gen_rtx_CONST (GET_MODE (base), base);
2335
2336 if (GET_CODE (offset) != CONST_INT)
2337 abort ();
2338
2339 val.start = INTVAL (offset);
2340 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2341 val.base = base;
2342 return val;
2343 }
2344 else if (GET_CODE (x) == REG)
2345 {
2346 val.reg_flag = 1;
2347 val.start = true_regnum (x);
2348 if (val.start < 0)
2349 {
2350 /* A pseudo with no hard reg. */
2351 val.start = REGNO (x);
2352 val.end = val.start + 1;
2353 }
2354 else
2355 /* A hard reg. */
2356 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2357 }
2358 else if (GET_CODE (x) == SUBREG)
2359 {
2360 if (GET_CODE (SUBREG_REG (x)) != REG)
2361 /* This could be more precise, but it's good enough. */
2362 return decompose (SUBREG_REG (x));
2363 val.reg_flag = 1;
2364 val.start = true_regnum (x);
2365 if (val.start < 0)
2366 return decompose (SUBREG_REG (x));
2367 else
2368 /* A hard reg. */
2369 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2370 }
2371 else if (CONSTANT_P (x)
2372 /* This hasn't been assigned yet, so it can't conflict yet. */
2373 || GET_CODE (x) == SCRATCH)
2374 val.safe = 1;
2375 else
2376 abort ();
2377 return val;
2378 }
2379
2380 /* Return 1 if altering Y will not modify the value of X.
2381 Y is also described by YDATA, which should be decompose (Y). */
2382
2383 static int
2384 immune_p (x, y, ydata)
2385 rtx x, y;
2386 struct decomposition ydata;
2387 {
2388 struct decomposition xdata;
2389
2390 if (ydata.reg_flag)
2391 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2392 if (ydata.safe)
2393 return 1;
2394
2395 if (GET_CODE (y) != MEM)
2396 abort ();
2397 /* If Y is memory and X is not, Y can't affect X. */
2398 if (GET_CODE (x) != MEM)
2399 return 1;
2400
2401 xdata = decompose (x);
2402
2403 if (! rtx_equal_p (xdata.base, ydata.base))
2404 {
2405 /* If bases are distinct symbolic constants, there is no overlap. */
2406 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2407 return 1;
2408 /* Constants and stack slots never overlap. */
2409 if (CONSTANT_P (xdata.base)
2410 && (ydata.base == frame_pointer_rtx
2411 || ydata.base == hard_frame_pointer_rtx
2412 || ydata.base == stack_pointer_rtx))
2413 return 1;
2414 if (CONSTANT_P (ydata.base)
2415 && (xdata.base == frame_pointer_rtx
2416 || xdata.base == hard_frame_pointer_rtx
2417 || xdata.base == stack_pointer_rtx))
2418 return 1;
2419 /* If either base is variable, we don't know anything. */
2420 return 0;
2421 }
2422
2423 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2424 }
2425
2426 /* Similar, but calls decompose. */
2427
2428 int
2429 safe_from_earlyclobber (op, clobber)
2430 rtx op, clobber;
2431 {
2432 struct decomposition early_data;
2433
2434 early_data = decompose (clobber);
2435 return immune_p (op, clobber, early_data);
2436 }
2437 \f
2438 /* Main entry point of this file: search the body of INSN
2439 for values that need reloading and record them with push_reload.
2440 REPLACE nonzero means record also where the values occur
2441 so that subst_reloads can be used.
2442
2443 IND_LEVELS says how many levels of indirection are supported by this
2444 machine; a value of zero means that a memory reference is not a valid
2445 memory address.
2446
2447 LIVE_KNOWN says we have valid information about which hard
2448 regs are live at each point in the program; this is true when
2449 we are called from global_alloc but false when stupid register
2450 allocation has been done.
2451
2452 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2453 which is nonnegative if the reg has been commandeered for reloading into.
2454 It is copied into STATIC_RELOAD_REG_P and referenced from there
2455 by various subroutines.
2456
2457 Return TRUE if some operands need to be changed, because of swapping
2458 commutative operands, reg_equiv_address substitution, or whatever. */
2459
2460 int
2461 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2462 rtx insn;
2463 int replace, ind_levels;
2464 int live_known;
2465 short *reload_reg_p;
2466 {
2467 int insn_code_number;
2468 int i, j;
2469 int noperands;
2470 /* These start out as the constraints for the insn
2471 and they are chewed up as we consider alternatives. */
2472 char *constraints[MAX_RECOG_OPERANDS];
2473 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2474 a register. */
2475 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2476 char pref_or_nothing[MAX_RECOG_OPERANDS];
2477 /* Nonzero for a MEM operand whose entire address needs a reload. */
2478 int address_reloaded[MAX_RECOG_OPERANDS];
2479 /* Value of enum reload_type to use for operand. */
2480 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2481 /* Value of enum reload_type to use within address of operand. */
2482 enum reload_type address_type[MAX_RECOG_OPERANDS];
2483 /* Save the usage of each operand. */
2484 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2485 int no_input_reloads = 0, no_output_reloads = 0;
2486 int n_alternatives;
2487 int this_alternative[MAX_RECOG_OPERANDS];
2488 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2489 char this_alternative_win[MAX_RECOG_OPERANDS];
2490 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2491 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2492 int this_alternative_matches[MAX_RECOG_OPERANDS];
2493 int swapped;
2494 int goal_alternative[MAX_RECOG_OPERANDS];
2495 int this_alternative_number;
2496 int goal_alternative_number = 0;
2497 int operand_reloadnum[MAX_RECOG_OPERANDS];
2498 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2499 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2500 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2501 char goal_alternative_win[MAX_RECOG_OPERANDS];
2502 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2503 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2504 int goal_alternative_swapped;
2505 int best;
2506 int commutative;
2507 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2508 rtx substed_operand[MAX_RECOG_OPERANDS];
2509 rtx body = PATTERN (insn);
2510 rtx set = single_set (insn);
2511 int goal_earlyclobber = 0, this_earlyclobber;
2512 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2513 int retval = 0;
2514
2515 this_insn = insn;
2516 n_reloads = 0;
2517 n_replacements = 0;
2518 n_earlyclobbers = 0;
2519 replace_reloads = replace;
2520 hard_regs_live_known = live_known;
2521 static_reload_reg_p = reload_reg_p;
2522
2523 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2524 neither are insns that SET cc0. Insns that use CC0 are not allowed
2525 to have any input reloads. */
2526 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2527 no_output_reloads = 1;
2528
2529 #ifdef HAVE_cc0
2530 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2531 no_input_reloads = 1;
2532 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2533 no_output_reloads = 1;
2534 #endif
2535
2536 #ifdef SECONDARY_MEMORY_NEEDED
2537 /* The eliminated forms of any secondary memory locations are per-insn, so
2538 clear them out here. */
2539
2540 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2541 #endif
2542
2543 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2544 is cheap to move between them. If it is not, there may not be an insn
2545 to do the copy, so we may need a reload. */
2546 if (GET_CODE (body) == SET
2547 && GET_CODE (SET_DEST (body)) == REG
2548 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2549 && GET_CODE (SET_SRC (body)) == REG
2550 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2551 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2552 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2553 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2554 return 0;
2555
2556 extract_insn (insn);
2557
2558 noperands = reload_n_operands = recog_data.n_operands;
2559 n_alternatives = recog_data.n_alternatives;
2560
2561 /* Just return "no reloads" if insn has no operands with constraints. */
2562 if (noperands == 0 || n_alternatives == 0)
2563 return 0;
2564
2565 insn_code_number = INSN_CODE (insn);
2566 this_insn_is_asm = insn_code_number < 0;
2567
2568 memcpy (operand_mode, recog_data.operand_mode,
2569 noperands * sizeof (enum machine_mode));
2570 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2571
2572 commutative = -1;
2573
2574 /* If we will need to know, later, whether some pair of operands
2575 are the same, we must compare them now and save the result.
2576 Reloading the base and index registers will clobber them
2577 and afterward they will fail to match. */
2578
2579 for (i = 0; i < noperands; i++)
2580 {
2581 char *p;
2582 int c;
2583
2584 substed_operand[i] = recog_data.operand[i];
2585 p = constraints[i];
2586
2587 modified[i] = RELOAD_READ;
2588
2589 /* Scan this operand's constraint to see if it is an output operand,
2590 an in-out operand, is commutative, or should match another. */
2591
2592 while ((c = *p++))
2593 {
2594 if (c == '=')
2595 modified[i] = RELOAD_WRITE;
2596 else if (c == '+')
2597 modified[i] = RELOAD_READ_WRITE;
2598 else if (c == '%')
2599 {
2600 /* The last operand should not be marked commutative. */
2601 if (i == noperands - 1)
2602 abort ();
2603
2604 commutative = i;
2605 }
2606 else if (ISDIGIT (c))
2607 {
2608 c = strtoul (p - 1, &p, 10);
2609
2610 operands_match[c][i]
2611 = operands_match_p (recog_data.operand[c],
2612 recog_data.operand[i]);
2613
2614 /* An operand may not match itself. */
2615 if (c == i)
2616 abort ();
2617
2618 /* If C can be commuted with C+1, and C might need to match I,
2619 then C+1 might also need to match I. */
2620 if (commutative >= 0)
2621 {
2622 if (c == commutative || c == commutative + 1)
2623 {
2624 int other = c + (c == commutative ? 1 : -1);
2625 operands_match[other][i]
2626 = operands_match_p (recog_data.operand[other],
2627 recog_data.operand[i]);
2628 }
2629 if (i == commutative || i == commutative + 1)
2630 {
2631 int other = i + (i == commutative ? 1 : -1);
2632 operands_match[c][other]
2633 = operands_match_p (recog_data.operand[c],
2634 recog_data.operand[other]);
2635 }
2636 /* Note that C is supposed to be less than I.
2637 No need to consider altering both C and I because in
2638 that case we would alter one into the other. */
2639 }
2640 }
2641 }
2642 }
2643
2644 /* Examine each operand that is a memory reference or memory address
2645 and reload parts of the addresses into index registers.
2646 Also here any references to pseudo regs that didn't get hard regs
2647 but are equivalent to constants get replaced in the insn itself
2648 with those constants. Nobody will ever see them again.
2649
2650 Finally, set up the preferred classes of each operand. */
2651
2652 for (i = 0; i < noperands; i++)
2653 {
2654 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2655
2656 address_reloaded[i] = 0;
2657 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2658 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2659 : RELOAD_OTHER);
2660 address_type[i]
2661 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2662 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2663 : RELOAD_OTHER);
2664
2665 if (*constraints[i] == 0)
2666 /* Ignore things like match_operator operands. */
2667 ;
2668 else if (constraints[i][0] == 'p'
2669 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0]))
2670 {
2671 find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2672 recog_data.operand[i],
2673 recog_data.operand_loc[i],
2674 i, operand_type[i], ind_levels, insn);
2675
2676 /* If we now have a simple operand where we used to have a
2677 PLUS or MULT, re-recognize and try again. */
2678 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2679 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2680 && (GET_CODE (recog_data.operand[i]) == MULT
2681 || GET_CODE (recog_data.operand[i]) == PLUS))
2682 {
2683 INSN_CODE (insn) = -1;
2684 retval = find_reloads (insn, replace, ind_levels, live_known,
2685 reload_reg_p);
2686 return retval;
2687 }
2688
2689 recog_data.operand[i] = *recog_data.operand_loc[i];
2690 substed_operand[i] = recog_data.operand[i];
2691 }
2692 else if (code == MEM)
2693 {
2694 address_reloaded[i]
2695 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2696 recog_data.operand_loc[i],
2697 XEXP (recog_data.operand[i], 0),
2698 &XEXP (recog_data.operand[i], 0),
2699 i, address_type[i], ind_levels, insn);
2700 recog_data.operand[i] = *recog_data.operand_loc[i];
2701 substed_operand[i] = recog_data.operand[i];
2702 }
2703 else if (code == SUBREG)
2704 {
2705 rtx reg = SUBREG_REG (recog_data.operand[i]);
2706 rtx op
2707 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2708 ind_levels,
2709 set != 0
2710 && &SET_DEST (set) == recog_data.operand_loc[i],
2711 insn,
2712 &address_reloaded[i]);
2713
2714 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2715 that didn't get a hard register, emit a USE with a REG_EQUAL
2716 note in front so that we might inherit a previous, possibly
2717 wider reload. */
2718
2719 if (replace
2720 && GET_CODE (op) == MEM
2721 && GET_CODE (reg) == REG
2722 && (GET_MODE_SIZE (GET_MODE (reg))
2723 >= GET_MODE_SIZE (GET_MODE (op))))
2724 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2725 insn),
2726 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2727
2728 substed_operand[i] = recog_data.operand[i] = op;
2729 }
2730 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2731 /* We can get a PLUS as an "operand" as a result of register
2732 elimination. See eliminate_regs and gen_reload. We handle
2733 a unary operator by reloading the operand. */
2734 substed_operand[i] = recog_data.operand[i]
2735 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2736 ind_levels, 0, insn,
2737 &address_reloaded[i]);
2738 else if (code == REG)
2739 {
2740 /* This is equivalent to calling find_reloads_toplev.
2741 The code is duplicated for speed.
2742 When we find a pseudo always equivalent to a constant,
2743 we replace it by the constant. We must be sure, however,
2744 that we don't try to replace it in the insn in which it
2745 is being set. */
2746 int regno = REGNO (recog_data.operand[i]);
2747 if (reg_equiv_constant[regno] != 0
2748 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2749 {
2750 /* Record the existing mode so that the check if constants are
2751 allowed will work when operand_mode isn't specified. */
2752
2753 if (operand_mode[i] == VOIDmode)
2754 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2755
2756 substed_operand[i] = recog_data.operand[i]
2757 = reg_equiv_constant[regno];
2758 }
2759 if (reg_equiv_memory_loc[regno] != 0
2760 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2761 /* We need not give a valid is_set_dest argument since the case
2762 of a constant equivalence was checked above. */
2763 substed_operand[i] = recog_data.operand[i]
2764 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2765 ind_levels, 0, insn,
2766 &address_reloaded[i]);
2767 }
2768 /* If the operand is still a register (we didn't replace it with an
2769 equivalent), get the preferred class to reload it into. */
2770 code = GET_CODE (recog_data.operand[i]);
2771 preferred_class[i]
2772 = ((code == REG && REGNO (recog_data.operand[i])
2773 >= FIRST_PSEUDO_REGISTER)
2774 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2775 : NO_REGS);
2776 pref_or_nothing[i]
2777 = (code == REG
2778 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2779 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2780 }
2781
2782 /* If this is simply a copy from operand 1 to operand 0, merge the
2783 preferred classes for the operands. */
2784 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2785 && recog_data.operand[1] == SET_SRC (set))
2786 {
2787 preferred_class[0] = preferred_class[1]
2788 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2789 pref_or_nothing[0] |= pref_or_nothing[1];
2790 pref_or_nothing[1] |= pref_or_nothing[0];
2791 }
2792
2793 /* Now see what we need for pseudo-regs that didn't get hard regs
2794 or got the wrong kind of hard reg. For this, we must consider
2795 all the operands together against the register constraints. */
2796
2797 best = MAX_RECOG_OPERANDS * 2 + 600;
2798
2799 swapped = 0;
2800 goal_alternative_swapped = 0;
2801 try_swapped:
2802
2803 /* The constraints are made of several alternatives.
2804 Each operand's constraint looks like foo,bar,... with commas
2805 separating the alternatives. The first alternatives for all
2806 operands go together, the second alternatives go together, etc.
2807
2808 First loop over alternatives. */
2809
2810 for (this_alternative_number = 0;
2811 this_alternative_number < n_alternatives;
2812 this_alternative_number++)
2813 {
2814 /* Loop over operands for one constraint alternative. */
2815 /* LOSERS counts those that don't fit this alternative
2816 and would require loading. */
2817 int losers = 0;
2818 /* BAD is set to 1 if it some operand can't fit this alternative
2819 even after reloading. */
2820 int bad = 0;
2821 /* REJECT is a count of how undesirable this alternative says it is
2822 if any reloading is required. If the alternative matches exactly
2823 then REJECT is ignored, but otherwise it gets this much
2824 counted against it in addition to the reloading needed. Each
2825 ? counts three times here since we want the disparaging caused by
2826 a bad register class to only count 1/3 as much. */
2827 int reject = 0;
2828
2829 this_earlyclobber = 0;
2830
2831 for (i = 0; i < noperands; i++)
2832 {
2833 char *p = constraints[i];
2834 int win = 0;
2835 int did_match = 0;
2836 /* 0 => this operand can be reloaded somehow for this alternative. */
2837 int badop = 1;
2838 /* 0 => this operand can be reloaded if the alternative allows regs. */
2839 int winreg = 0;
2840 int c;
2841 rtx operand = recog_data.operand[i];
2842 int offset = 0;
2843 /* Nonzero means this is a MEM that must be reloaded into a reg
2844 regardless of what the constraint says. */
2845 int force_reload = 0;
2846 int offmemok = 0;
2847 /* Nonzero if a constant forced into memory would be OK for this
2848 operand. */
2849 int constmemok = 0;
2850 int earlyclobber = 0;
2851
2852 /* If the predicate accepts a unary operator, it means that
2853 we need to reload the operand, but do not do this for
2854 match_operator and friends. */
2855 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2856 operand = XEXP (operand, 0);
2857
2858 /* If the operand is a SUBREG, extract
2859 the REG or MEM (or maybe even a constant) within.
2860 (Constants can occur as a result of reg_equiv_constant.) */
2861
2862 while (GET_CODE (operand) == SUBREG)
2863 {
2864 /* Offset only matters when operand is a REG and
2865 it is a hard reg. This is because it is passed
2866 to reg_fits_class_p if it is a REG and all pseudos
2867 return 0 from that function. */
2868 if (GET_CODE (SUBREG_REG (operand)) == REG
2869 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2870 {
2871 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2872 GET_MODE (SUBREG_REG (operand)),
2873 SUBREG_BYTE (operand),
2874 GET_MODE (operand));
2875 }
2876 operand = SUBREG_REG (operand);
2877 /* Force reload if this is a constant or PLUS or if there may
2878 be a problem accessing OPERAND in the outer mode. */
2879 if (CONSTANT_P (operand)
2880 || GET_CODE (operand) == PLUS
2881 /* We must force a reload of paradoxical SUBREGs
2882 of a MEM because the alignment of the inner value
2883 may not be enough to do the outer reference. On
2884 big-endian machines, it may also reference outside
2885 the object.
2886
2887 On machines that extend byte operations and we have a
2888 SUBREG where both the inner and outer modes are no wider
2889 than a word and the inner mode is narrower, is integral,
2890 and gets extended when loaded from memory, combine.c has
2891 made assumptions about the behavior of the machine in such
2892 register access. If the data is, in fact, in memory we
2893 must always load using the size assumed to be in the
2894 register and let the insn do the different-sized
2895 accesses.
2896
2897 This is doubly true if WORD_REGISTER_OPERATIONS. In
2898 this case eliminate_regs has left non-paradoxical
2899 subregs for push_reloads to see. Make sure it does
2900 by forcing the reload.
2901
2902 ??? When is it right at this stage to have a subreg
2903 of a mem that is _not_ to be handled specialy? IMO
2904 those should have been reduced to just a mem. */
2905 || ((GET_CODE (operand) == MEM
2906 || (GET_CODE (operand)== REG
2907 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2908 #ifndef WORD_REGISTER_OPERATIONS
2909 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2910 < BIGGEST_ALIGNMENT)
2911 && (GET_MODE_SIZE (operand_mode[i])
2912 > GET_MODE_SIZE (GET_MODE (operand))))
2913 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2914 #ifdef LOAD_EXTEND_OP
2915 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2916 && (GET_MODE_SIZE (GET_MODE (operand))
2917 <= UNITS_PER_WORD)
2918 && (GET_MODE_SIZE (operand_mode[i])
2919 > GET_MODE_SIZE (GET_MODE (operand)))
2920 && INTEGRAL_MODE_P (GET_MODE (operand))
2921 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2922 #endif
2923 )
2924 #endif
2925 )
2926 /* This following hunk of code should no longer be
2927 needed at all with SUBREG_BYTE. If you need this
2928 code back, please explain to me why so I can
2929 fix the real problem. -DaveM */
2930 #if 0
2931 /* Subreg of a hard reg which can't handle the subreg's mode
2932 or which would handle that mode in the wrong number of
2933 registers for subregging to work. */
2934 || (GET_CODE (operand) == REG
2935 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2936 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2937 && (GET_MODE_SIZE (GET_MODE (operand))
2938 > UNITS_PER_WORD)
2939 && ((GET_MODE_SIZE (GET_MODE (operand))
2940 / UNITS_PER_WORD)
2941 != HARD_REGNO_NREGS (REGNO (operand),
2942 GET_MODE (operand))))
2943 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2944 operand_mode[i])))
2945 #endif
2946 )
2947 force_reload = 1;
2948 }
2949
2950 this_alternative[i] = (int) NO_REGS;
2951 this_alternative_win[i] = 0;
2952 this_alternative_match_win[i] = 0;
2953 this_alternative_offmemok[i] = 0;
2954 this_alternative_earlyclobber[i] = 0;
2955 this_alternative_matches[i] = -1;
2956
2957 /* An empty constraint or empty alternative
2958 allows anything which matched the pattern. */
2959 if (*p == 0 || *p == ',')
2960 win = 1, badop = 0;
2961
2962 /* Scan this alternative's specs for this operand;
2963 set WIN if the operand fits any letter in this alternative.
2964 Otherwise, clear BADOP if this operand could
2965 fit some letter after reloads,
2966 or set WINREG if this operand could fit after reloads
2967 provided the constraint allows some registers. */
2968
2969 while (*p && (c = *p++) != ',')
2970 switch (c)
2971 {
2972 case '=': case '+': case '*':
2973 break;
2974
2975 case '%':
2976 /* The last operand should not be marked commutative. */
2977 if (i != noperands - 1)
2978 commutative = i;
2979 break;
2980
2981 case '?':
2982 reject += 6;
2983 break;
2984
2985 case '!':
2986 reject = 600;
2987 break;
2988
2989 case '#':
2990 /* Ignore rest of this alternative as far as
2991 reloading is concerned. */
2992 while (*p && *p != ',')
2993 p++;
2994 break;
2995
2996 case '0': case '1': case '2': case '3': case '4':
2997 case '5': case '6': case '7': case '8': case '9':
2998 c = strtoul (p - 1, &p, 10);
2999
3000 this_alternative_matches[i] = c;
3001 /* We are supposed to match a previous operand.
3002 If we do, we win if that one did.
3003 If we do not, count both of the operands as losers.
3004 (This is too conservative, since most of the time
3005 only a single reload insn will be needed to make
3006 the two operands win. As a result, this alternative
3007 may be rejected when it is actually desirable.) */
3008 if ((swapped && (c != commutative || i != commutative + 1))
3009 /* If we are matching as if two operands were swapped,
3010 also pretend that operands_match had been computed
3011 with swapped.
3012 But if I is the second of those and C is the first,
3013 don't exchange them, because operands_match is valid
3014 only on one side of its diagonal. */
3015 ? (operands_match
3016 [(c == commutative || c == commutative + 1)
3017 ? 2 * commutative + 1 - c : c]
3018 [(i == commutative || i == commutative + 1)
3019 ? 2 * commutative + 1 - i : i])
3020 : operands_match[c][i])
3021 {
3022 /* If we are matching a non-offsettable address where an
3023 offsettable address was expected, then we must reject
3024 this combination, because we can't reload it. */
3025 if (this_alternative_offmemok[c]
3026 && GET_CODE (recog_data.operand[c]) == MEM
3027 && this_alternative[c] == (int) NO_REGS
3028 && ! this_alternative_win[c])
3029 bad = 1;
3030
3031 did_match = this_alternative_win[c];
3032 }
3033 else
3034 {
3035 /* Operands don't match. */
3036 rtx value;
3037 /* Retroactively mark the operand we had to match
3038 as a loser, if it wasn't already. */
3039 if (this_alternative_win[c])
3040 losers++;
3041 this_alternative_win[c] = 0;
3042 if (this_alternative[c] == (int) NO_REGS)
3043 bad = 1;
3044 /* But count the pair only once in the total badness of
3045 this alternative, if the pair can be a dummy reload. */
3046 value
3047 = find_dummy_reload (recog_data.operand[i],
3048 recog_data.operand[c],
3049 recog_data.operand_loc[i],
3050 recog_data.operand_loc[c],
3051 operand_mode[i], operand_mode[c],
3052 this_alternative[c], -1,
3053 this_alternative_earlyclobber[c]);
3054
3055 if (value != 0)
3056 losers--;
3057 }
3058 /* This can be fixed with reloads if the operand
3059 we are supposed to match can be fixed with reloads. */
3060 badop = 0;
3061 this_alternative[i] = this_alternative[c];
3062
3063 /* If we have to reload this operand and some previous
3064 operand also had to match the same thing as this
3065 operand, we don't know how to do that. So reject this
3066 alternative. */
3067 if (! did_match || force_reload)
3068 for (j = 0; j < i; j++)
3069 if (this_alternative_matches[j]
3070 == this_alternative_matches[i])
3071 badop = 1;
3072 break;
3073
3074 case 'p':
3075 /* All necessary reloads for an address_operand
3076 were handled in find_reloads_address. */
3077 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3078 win = 1;
3079 badop = 0;
3080 break;
3081
3082 case 'm':
3083 if (force_reload)
3084 break;
3085 if (GET_CODE (operand) == MEM
3086 || (GET_CODE (operand) == REG
3087 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3088 && reg_renumber[REGNO (operand)] < 0))
3089 win = 1;
3090 if (CONSTANT_P (operand)
3091 /* force_const_mem does not accept HIGH. */
3092 && GET_CODE (operand) != HIGH)
3093 badop = 0;
3094 constmemok = 1;
3095 break;
3096
3097 case '<':
3098 if (GET_CODE (operand) == MEM
3099 && ! address_reloaded[i]
3100 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3101 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3102 win = 1;
3103 break;
3104
3105 case '>':
3106 if (GET_CODE (operand) == MEM
3107 && ! address_reloaded[i]
3108 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3109 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3110 win = 1;
3111 break;
3112
3113 /* Memory operand whose address is not offsettable. */
3114 case 'V':
3115 if (force_reload)
3116 break;
3117 if (GET_CODE (operand) == MEM
3118 && ! (ind_levels ? offsettable_memref_p (operand)
3119 : offsettable_nonstrict_memref_p (operand))
3120 /* Certain mem addresses will become offsettable
3121 after they themselves are reloaded. This is important;
3122 we don't want our own handling of unoffsettables
3123 to override the handling of reg_equiv_address. */
3124 && !(GET_CODE (XEXP (operand, 0)) == REG
3125 && (ind_levels == 0
3126 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3127 win = 1;
3128 break;
3129
3130 /* Memory operand whose address is offsettable. */
3131 case 'o':
3132 if (force_reload)
3133 break;
3134 if ((GET_CODE (operand) == MEM
3135 /* If IND_LEVELS, find_reloads_address won't reload a
3136 pseudo that didn't get a hard reg, so we have to
3137 reject that case. */
3138 && ((ind_levels ? offsettable_memref_p (operand)
3139 : offsettable_nonstrict_memref_p (operand))
3140 /* A reloaded address is offsettable because it is now
3141 just a simple register indirect. */
3142 || address_reloaded[i]))
3143 || (GET_CODE (operand) == REG
3144 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3145 && reg_renumber[REGNO (operand)] < 0
3146 /* If reg_equiv_address is nonzero, we will be
3147 loading it into a register; hence it will be
3148 offsettable, but we cannot say that reg_equiv_mem
3149 is offsettable without checking. */
3150 && ((reg_equiv_mem[REGNO (operand)] != 0
3151 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3152 || (reg_equiv_address[REGNO (operand)] != 0))))
3153 win = 1;
3154 /* force_const_mem does not accept HIGH. */
3155 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3156 || GET_CODE (operand) == MEM)
3157 badop = 0;
3158 constmemok = 1;
3159 offmemok = 1;
3160 break;
3161
3162 case '&':
3163 /* Output operand that is stored before the need for the
3164 input operands (and their index registers) is over. */
3165 earlyclobber = 1, this_earlyclobber = 1;
3166 break;
3167
3168 case 'E':
3169 case 'F':
3170 if (GET_CODE (operand) == CONST_DOUBLE
3171 || (GET_CODE (operand) == CONST_VECTOR
3172 && (GET_MODE_CLASS (GET_MODE (operand))
3173 == MODE_VECTOR_FLOAT)))
3174 win = 1;
3175 break;
3176
3177 case 'G':
3178 case 'H':
3179 if (GET_CODE (operand) == CONST_DOUBLE
3180 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3181 win = 1;
3182 break;
3183
3184 case 's':
3185 if (GET_CODE (operand) == CONST_INT
3186 || (GET_CODE (operand) == CONST_DOUBLE
3187 && GET_MODE (operand) == VOIDmode))
3188 break;
3189 case 'i':
3190 if (CONSTANT_P (operand)
3191 #ifdef LEGITIMATE_PIC_OPERAND_P
3192 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3193 #endif
3194 )
3195 win = 1;
3196 break;
3197
3198 case 'n':
3199 if (GET_CODE (operand) == CONST_INT
3200 || (GET_CODE (operand) == CONST_DOUBLE
3201 && GET_MODE (operand) == VOIDmode))
3202 win = 1;
3203 break;
3204
3205 case 'I':
3206 case 'J':
3207 case 'K':
3208 case 'L':
3209 case 'M':
3210 case 'N':
3211 case 'O':
3212 case 'P':
3213 if (GET_CODE (operand) == CONST_INT
3214 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3215 win = 1;
3216 break;
3217
3218 case 'X':
3219 win = 1;
3220 break;
3221
3222 case 'g':
3223 if (! force_reload
3224 /* A PLUS is never a valid operand, but reload can make
3225 it from a register when eliminating registers. */
3226 && GET_CODE (operand) != PLUS
3227 /* A SCRATCH is not a valid operand. */
3228 && GET_CODE (operand) != SCRATCH
3229 #ifdef LEGITIMATE_PIC_OPERAND_P
3230 && (! CONSTANT_P (operand)
3231 || ! flag_pic
3232 || LEGITIMATE_PIC_OPERAND_P (operand))
3233 #endif
3234 && (GENERAL_REGS == ALL_REGS
3235 || GET_CODE (operand) != REG
3236 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3237 && reg_renumber[REGNO (operand)] < 0)))
3238 win = 1;
3239 /* Drop through into 'r' case. */
3240
3241 case 'r':
3242 this_alternative[i]
3243 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3244 goto reg;
3245
3246 default:
3247 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3248 {
3249 #ifdef EXTRA_CONSTRAINT
3250 if (EXTRA_MEMORY_CONSTRAINT (c))
3251 {
3252 if (force_reload)
3253 break;
3254 if (EXTRA_CONSTRAINT (operand, c))
3255 win = 1;
3256 /* If the address was already reloaded,
3257 we win as well. */
3258 if (GET_CODE (operand) == MEM && address_reloaded[i])
3259 win = 1;
3260 /* Likewise if the address will be reloaded because
3261 reg_equiv_address is nonzero. For reg_equiv_mem
3262 we have to check. */
3263 if (GET_CODE (operand) == REG
3264 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3265 && reg_renumber[REGNO (operand)] < 0
3266 && ((reg_equiv_mem[REGNO (operand)] != 0
3267 && EXTRA_CONSTRAINT (reg_equiv_mem[REGNO (operand)], c))
3268 || (reg_equiv_address[REGNO (operand)] != 0)))
3269 win = 1;
3270
3271 /* If we didn't already win, we can reload
3272 constants via force_const_mem, and other
3273 MEMs by reloading the address like for 'o'. */
3274 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3275 || GET_CODE (operand) == MEM)
3276 badop = 0;
3277 constmemok = 1;
3278 offmemok = 1;
3279 break;
3280 }
3281 if (EXTRA_ADDRESS_CONSTRAINT (c))
3282 {
3283 if (EXTRA_CONSTRAINT (operand, c))
3284 win = 1;
3285
3286 /* If we didn't already win, we can reload
3287 the address into a base register. */
3288 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3289 badop = 0;
3290 break;
3291 }
3292
3293 if (EXTRA_CONSTRAINT (operand, c))
3294 win = 1;
3295 #endif
3296 break;
3297 }
3298
3299 this_alternative[i]
3300 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3301 reg:
3302 if (GET_MODE (operand) == BLKmode)
3303 break;
3304 winreg = 1;
3305 if (GET_CODE (operand) == REG
3306 && reg_fits_class_p (operand, this_alternative[i],
3307 offset, GET_MODE (recog_data.operand[i])))
3308 win = 1;
3309 break;
3310 }
3311
3312 constraints[i] = p;
3313
3314 /* If this operand could be handled with a reg,
3315 and some reg is allowed, then this operand can be handled. */
3316 if (winreg && this_alternative[i] != (int) NO_REGS)
3317 badop = 0;
3318
3319 /* Record which operands fit this alternative. */
3320 this_alternative_earlyclobber[i] = earlyclobber;
3321 if (win && ! force_reload)
3322 this_alternative_win[i] = 1;
3323 else if (did_match && ! force_reload)
3324 this_alternative_match_win[i] = 1;
3325 else
3326 {
3327 int const_to_mem = 0;
3328
3329 this_alternative_offmemok[i] = offmemok;
3330 losers++;
3331 if (badop)
3332 bad = 1;
3333 /* Alternative loses if it has no regs for a reg operand. */
3334 if (GET_CODE (operand) == REG
3335 && this_alternative[i] == (int) NO_REGS
3336 && this_alternative_matches[i] < 0)
3337 bad = 1;
3338
3339 /* If this is a constant that is reloaded into the desired
3340 class by copying it to memory first, count that as another
3341 reload. This is consistent with other code and is
3342 required to avoid choosing another alternative when
3343 the constant is moved into memory by this function on
3344 an early reload pass. Note that the test here is
3345 precisely the same as in the code below that calls
3346 force_const_mem. */
3347 if (CONSTANT_P (operand)
3348 /* force_const_mem does not accept HIGH. */
3349 && GET_CODE (operand) != HIGH
3350 && ((PREFERRED_RELOAD_CLASS (operand,
3351 (enum reg_class) this_alternative[i])
3352 == NO_REGS)
3353 || no_input_reloads)
3354 && operand_mode[i] != VOIDmode)
3355 {
3356 const_to_mem = 1;
3357 if (this_alternative[i] != (int) NO_REGS)
3358 losers++;
3359 }
3360
3361 /* If we can't reload this value at all, reject this
3362 alternative. Note that we could also lose due to
3363 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3364 here. */
3365
3366 if (! CONSTANT_P (operand)
3367 && (enum reg_class) this_alternative[i] != NO_REGS
3368 && (PREFERRED_RELOAD_CLASS (operand,
3369 (enum reg_class) this_alternative[i])
3370 == NO_REGS))
3371 bad = 1;
3372
3373 /* Alternative loses if it requires a type of reload not
3374 permitted for this insn. We can always reload SCRATCH
3375 and objects with a REG_UNUSED note. */
3376 else if (GET_CODE (operand) != SCRATCH
3377 && modified[i] != RELOAD_READ && no_output_reloads
3378 && ! find_reg_note (insn, REG_UNUSED, operand))
3379 bad = 1;
3380 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3381 && ! const_to_mem)
3382 bad = 1;
3383
3384 /* We prefer to reload pseudos over reloading other things,
3385 since such reloads may be able to be eliminated later.
3386 If we are reloading a SCRATCH, we won't be generating any
3387 insns, just using a register, so it is also preferred.
3388 So bump REJECT in other cases. Don't do this in the
3389 case where we are forcing a constant into memory and
3390 it will then win since we don't want to have a different
3391 alternative match then. */
3392 if (! (GET_CODE (operand) == REG
3393 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3394 && GET_CODE (operand) != SCRATCH
3395 && ! (const_to_mem && constmemok))
3396 reject += 2;
3397
3398 /* Input reloads can be inherited more often than output
3399 reloads can be removed, so penalize output reloads. */
3400 if (operand_type[i] != RELOAD_FOR_INPUT
3401 && GET_CODE (operand) != SCRATCH)
3402 reject++;
3403 }
3404
3405 /* If this operand is a pseudo register that didn't get a hard
3406 reg and this alternative accepts some register, see if the
3407 class that we want is a subset of the preferred class for this
3408 register. If not, but it intersects that class, use the
3409 preferred class instead. If it does not intersect the preferred
3410 class, show that usage of this alternative should be discouraged;
3411 it will be discouraged more still if the register is `preferred
3412 or nothing'. We do this because it increases the chance of
3413 reusing our spill register in a later insn and avoiding a pair
3414 of memory stores and loads.
3415
3416 Don't bother with this if this alternative will accept this
3417 operand.
3418
3419 Don't do this for a multiword operand, since it is only a
3420 small win and has the risk of requiring more spill registers,
3421 which could cause a large loss.
3422
3423 Don't do this if the preferred class has only one register
3424 because we might otherwise exhaust the class. */
3425
3426 if (! win && ! did_match
3427 && this_alternative[i] != (int) NO_REGS
3428 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3429 && reg_class_size[(int) preferred_class[i]] > 1)
3430 {
3431 if (! reg_class_subset_p (this_alternative[i],
3432 preferred_class[i]))
3433 {
3434 /* Since we don't have a way of forming the intersection,
3435 we just do something special if the preferred class
3436 is a subset of the class we have; that's the most
3437 common case anyway. */
3438 if (reg_class_subset_p (preferred_class[i],
3439 this_alternative[i]))
3440 this_alternative[i] = (int) preferred_class[i];
3441 else
3442 reject += (2 + 2 * pref_or_nothing[i]);
3443 }
3444 }
3445 }
3446
3447 /* Now see if any output operands that are marked "earlyclobber"
3448 in this alternative conflict with any input operands
3449 or any memory addresses. */
3450
3451 for (i = 0; i < noperands; i++)
3452 if (this_alternative_earlyclobber[i]
3453 && (this_alternative_win[i] || this_alternative_match_win[i]))
3454 {
3455 struct decomposition early_data;
3456
3457 early_data = decompose (recog_data.operand[i]);
3458
3459 if (modified[i] == RELOAD_READ)
3460 abort ();
3461
3462 if (this_alternative[i] == NO_REGS)
3463 {
3464 this_alternative_earlyclobber[i] = 0;
3465 if (this_insn_is_asm)
3466 error_for_asm (this_insn,
3467 "`&' constraint used with no register class");
3468 else
3469 abort ();
3470 }
3471
3472 for (j = 0; j < noperands; j++)
3473 /* Is this an input operand or a memory ref? */
3474 if ((GET_CODE (recog_data.operand[j]) == MEM
3475 || modified[j] != RELOAD_WRITE)
3476 && j != i
3477 /* Ignore things like match_operator operands. */
3478 && *recog_data.constraints[j] != 0
3479 /* Don't count an input operand that is constrained to match
3480 the early clobber operand. */
3481 && ! (this_alternative_matches[j] == i
3482 && rtx_equal_p (recog_data.operand[i],
3483 recog_data.operand[j]))
3484 /* Is it altered by storing the earlyclobber operand? */
3485 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3486 early_data))
3487 {
3488 /* If the output is in a single-reg class,
3489 it's costly to reload it, so reload the input instead. */
3490 if (reg_class_size[this_alternative[i]] == 1
3491 && (GET_CODE (recog_data.operand[j]) == REG
3492 || GET_CODE (recog_data.operand[j]) == SUBREG))
3493 {
3494 losers++;
3495 this_alternative_win[j] = 0;
3496 this_alternative_match_win[j] = 0;
3497 }
3498 else
3499 break;
3500 }
3501 /* If an earlyclobber operand conflicts with something,
3502 it must be reloaded, so request this and count the cost. */
3503 if (j != noperands)
3504 {
3505 losers++;
3506 this_alternative_win[i] = 0;
3507 this_alternative_match_win[j] = 0;
3508 for (j = 0; j < noperands; j++)
3509 if (this_alternative_matches[j] == i
3510 && this_alternative_match_win[j])
3511 {
3512 this_alternative_win[j] = 0;
3513 this_alternative_match_win[j] = 0;
3514 losers++;
3515 }
3516 }
3517 }
3518
3519 /* If one alternative accepts all the operands, no reload required,
3520 choose that alternative; don't consider the remaining ones. */
3521 if (losers == 0)
3522 {
3523 /* Unswap these so that they are never swapped at `finish'. */
3524 if (commutative >= 0)
3525 {
3526 recog_data.operand[commutative] = substed_operand[commutative];
3527 recog_data.operand[commutative + 1]
3528 = substed_operand[commutative + 1];
3529 }
3530 for (i = 0; i < noperands; i++)
3531 {
3532 goal_alternative_win[i] = this_alternative_win[i];
3533 goal_alternative_match_win[i] = this_alternative_match_win[i];
3534 goal_alternative[i] = this_alternative[i];
3535 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3536 goal_alternative_matches[i] = this_alternative_matches[i];
3537 goal_alternative_earlyclobber[i]
3538 = this_alternative_earlyclobber[i];
3539 }
3540 goal_alternative_number = this_alternative_number;
3541 goal_alternative_swapped = swapped;
3542 goal_earlyclobber = this_earlyclobber;
3543 goto finish;
3544 }
3545
3546 /* REJECT, set by the ! and ? constraint characters and when a register
3547 would be reloaded into a non-preferred class, discourages the use of
3548 this alternative for a reload goal. REJECT is incremented by six
3549 for each ? and two for each non-preferred class. */
3550 losers = losers * 6 + reject;
3551
3552 /* If this alternative can be made to work by reloading,
3553 and it needs less reloading than the others checked so far,
3554 record it as the chosen goal for reloading. */
3555 if (! bad && best > losers)
3556 {
3557 for (i = 0; i < noperands; i++)
3558 {
3559 goal_alternative[i] = this_alternative[i];
3560 goal_alternative_win[i] = this_alternative_win[i];
3561 goal_alternative_match_win[i] = this_alternative_match_win[i];
3562 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3563 goal_alternative_matches[i] = this_alternative_matches[i];
3564 goal_alternative_earlyclobber[i]
3565 = this_alternative_earlyclobber[i];
3566 }
3567 goal_alternative_swapped = swapped;
3568 best = losers;
3569 goal_alternative_number = this_alternative_number;
3570 goal_earlyclobber = this_earlyclobber;
3571 }
3572 }
3573
3574 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3575 then we need to try each alternative twice,
3576 the second time matching those two operands
3577 as if we had exchanged them.
3578 To do this, really exchange them in operands.
3579
3580 If we have just tried the alternatives the second time,
3581 return operands to normal and drop through. */
3582
3583 if (commutative >= 0)
3584 {
3585 swapped = !swapped;
3586 if (swapped)
3587 {
3588 enum reg_class tclass;
3589 int t;
3590
3591 recog_data.operand[commutative] = substed_operand[commutative + 1];
3592 recog_data.operand[commutative + 1] = substed_operand[commutative];
3593 /* Swap the duplicates too. */
3594 for (i = 0; i < recog_data.n_dups; i++)
3595 if (recog_data.dup_num[i] == commutative
3596 || recog_data.dup_num[i] == commutative + 1)
3597 *recog_data.dup_loc[i]
3598 = recog_data.operand[(int) recog_data.dup_num[i]];
3599
3600 tclass = preferred_class[commutative];
3601 preferred_class[commutative] = preferred_class[commutative + 1];
3602 preferred_class[commutative + 1] = tclass;
3603
3604 t = pref_or_nothing[commutative];
3605 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3606 pref_or_nothing[commutative + 1] = t;
3607
3608 memcpy (constraints, recog_data.constraints,
3609 noperands * sizeof (char *));
3610 goto try_swapped;
3611 }
3612 else
3613 {
3614 recog_data.operand[commutative] = substed_operand[commutative];
3615 recog_data.operand[commutative + 1]
3616 = substed_operand[commutative + 1];
3617 /* Unswap the duplicates too. */
3618 for (i = 0; i < recog_data.n_dups; i++)
3619 if (recog_data.dup_num[i] == commutative
3620 || recog_data.dup_num[i] == commutative + 1)
3621 *recog_data.dup_loc[i]
3622 = recog_data.operand[(int) recog_data.dup_num[i]];
3623 }
3624 }
3625
3626 /* The operands don't meet the constraints.
3627 goal_alternative describes the alternative
3628 that we could reach by reloading the fewest operands.
3629 Reload so as to fit it. */
3630
3631 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3632 {
3633 /* No alternative works with reloads?? */
3634 if (insn_code_number >= 0)
3635 fatal_insn ("unable to generate reloads for:", insn);
3636 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3637 /* Avoid further trouble with this insn. */
3638 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3639 n_reloads = 0;
3640 return 0;
3641 }
3642
3643 /* Jump to `finish' from above if all operands are valid already.
3644 In that case, goal_alternative_win is all 1. */
3645 finish:
3646
3647 /* Right now, for any pair of operands I and J that are required to match,
3648 with I < J,
3649 goal_alternative_matches[J] is I.
3650 Set up goal_alternative_matched as the inverse function:
3651 goal_alternative_matched[I] = J. */
3652
3653 for (i = 0; i < noperands; i++)
3654 goal_alternative_matched[i] = -1;
3655
3656 for (i = 0; i < noperands; i++)
3657 if (! goal_alternative_win[i]
3658 && goal_alternative_matches[i] >= 0)
3659 goal_alternative_matched[goal_alternative_matches[i]] = i;
3660
3661 for (i = 0; i < noperands; i++)
3662 goal_alternative_win[i] |= goal_alternative_match_win[i];
3663
3664 /* If the best alternative is with operands 1 and 2 swapped,
3665 consider them swapped before reporting the reloads. Update the
3666 operand numbers of any reloads already pushed. */
3667
3668 if (goal_alternative_swapped)
3669 {
3670 rtx tem;
3671
3672 tem = substed_operand[commutative];
3673 substed_operand[commutative] = substed_operand[commutative + 1];
3674 substed_operand[commutative + 1] = tem;
3675 tem = recog_data.operand[commutative];
3676 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3677 recog_data.operand[commutative + 1] = tem;
3678 tem = *recog_data.operand_loc[commutative];
3679 *recog_data.operand_loc[commutative]
3680 = *recog_data.operand_loc[commutative + 1];
3681 *recog_data.operand_loc[commutative + 1] = tem;
3682
3683 for (i = 0; i < n_reloads; i++)
3684 {
3685 if (rld[i].opnum == commutative)
3686 rld[i].opnum = commutative + 1;
3687 else if (rld[i].opnum == commutative + 1)
3688 rld[i].opnum = commutative;
3689 }
3690 }
3691
3692 for (i = 0; i < noperands; i++)
3693 {
3694 operand_reloadnum[i] = -1;
3695
3696 /* If this is an earlyclobber operand, we need to widen the scope.
3697 The reload must remain valid from the start of the insn being
3698 reloaded until after the operand is stored into its destination.
3699 We approximate this with RELOAD_OTHER even though we know that we
3700 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3701
3702 One special case that is worth checking is when we have an
3703 output that is earlyclobber but isn't used past the insn (typically
3704 a SCRATCH). In this case, we only need have the reload live
3705 through the insn itself, but not for any of our input or output
3706 reloads.
3707 But we must not accidentally narrow the scope of an existing
3708 RELOAD_OTHER reload - leave these alone.
3709
3710 In any case, anything needed to address this operand can remain
3711 however they were previously categorized. */
3712
3713 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3714 operand_type[i]
3715 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3716 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3717 }
3718
3719 /* Any constants that aren't allowed and can't be reloaded
3720 into registers are here changed into memory references. */
3721 for (i = 0; i < noperands; i++)
3722 if (! goal_alternative_win[i]
3723 && CONSTANT_P (recog_data.operand[i])
3724 /* force_const_mem does not accept HIGH. */
3725 && GET_CODE (recog_data.operand[i]) != HIGH
3726 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3727 (enum reg_class) goal_alternative[i])
3728 == NO_REGS)
3729 || no_input_reloads)
3730 && operand_mode[i] != VOIDmode)
3731 {
3732 substed_operand[i] = recog_data.operand[i]
3733 = find_reloads_toplev (force_const_mem (operand_mode[i],
3734 recog_data.operand[i]),
3735 i, address_type[i], ind_levels, 0, insn,
3736 NULL);
3737 if (alternative_allows_memconst (recog_data.constraints[i],
3738 goal_alternative_number))
3739 goal_alternative_win[i] = 1;
3740 }
3741
3742 /* Record the values of the earlyclobber operands for the caller. */
3743 if (goal_earlyclobber)
3744 for (i = 0; i < noperands; i++)
3745 if (goal_alternative_earlyclobber[i])
3746 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3747
3748 /* Now record reloads for all the operands that need them. */
3749 for (i = 0; i < noperands; i++)
3750 if (! goal_alternative_win[i])
3751 {
3752 /* Operands that match previous ones have already been handled. */
3753 if (goal_alternative_matches[i] >= 0)
3754 ;
3755 /* Handle an operand with a nonoffsettable address
3756 appearing where an offsettable address will do
3757 by reloading the address into a base register.
3758
3759 ??? We can also do this when the operand is a register and
3760 reg_equiv_mem is not offsettable, but this is a bit tricky,
3761 so we don't bother with it. It may not be worth doing. */
3762 else if (goal_alternative_matched[i] == -1
3763 && goal_alternative_offmemok[i]
3764 && GET_CODE (recog_data.operand[i]) == MEM)
3765 {
3766 operand_reloadnum[i]
3767 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3768 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3769 MODE_BASE_REG_CLASS (VOIDmode),
3770 GET_MODE (XEXP (recog_data.operand[i], 0)),
3771 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3772 rld[operand_reloadnum[i]].inc
3773 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3774
3775 /* If this operand is an output, we will have made any
3776 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3777 now we are treating part of the operand as an input, so
3778 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3779
3780 if (modified[i] == RELOAD_WRITE)
3781 {
3782 for (j = 0; j < n_reloads; j++)
3783 {
3784 if (rld[j].opnum == i)
3785 {
3786 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3787 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3788 else if (rld[j].when_needed
3789 == RELOAD_FOR_OUTADDR_ADDRESS)
3790 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3791 }
3792 }
3793 }
3794 }
3795 else if (goal_alternative_matched[i] == -1)
3796 {
3797 operand_reloadnum[i]
3798 = push_reload ((modified[i] != RELOAD_WRITE
3799 ? recog_data.operand[i] : 0),
3800 (modified[i] != RELOAD_READ
3801 ? recog_data.operand[i] : 0),
3802 (modified[i] != RELOAD_WRITE
3803 ? recog_data.operand_loc[i] : 0),
3804 (modified[i] != RELOAD_READ
3805 ? recog_data.operand_loc[i] : 0),
3806 (enum reg_class) goal_alternative[i],
3807 (modified[i] == RELOAD_WRITE
3808 ? VOIDmode : operand_mode[i]),
3809 (modified[i] == RELOAD_READ
3810 ? VOIDmode : operand_mode[i]),
3811 (insn_code_number < 0 ? 0
3812 : insn_data[insn_code_number].operand[i].strict_low),
3813 0, i, operand_type[i]);
3814 }
3815 /* In a matching pair of operands, one must be input only
3816 and the other must be output only.
3817 Pass the input operand as IN and the other as OUT. */
3818 else if (modified[i] == RELOAD_READ
3819 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3820 {
3821 operand_reloadnum[i]
3822 = push_reload (recog_data.operand[i],
3823 recog_data.operand[goal_alternative_matched[i]],
3824 recog_data.operand_loc[i],
3825 recog_data.operand_loc[goal_alternative_matched[i]],
3826 (enum reg_class) goal_alternative[i],
3827 operand_mode[i],
3828 operand_mode[goal_alternative_matched[i]],
3829 0, 0, i, RELOAD_OTHER);
3830 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3831 }
3832 else if (modified[i] == RELOAD_WRITE
3833 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3834 {
3835 operand_reloadnum[goal_alternative_matched[i]]
3836 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3837 recog_data.operand[i],
3838 recog_data.operand_loc[goal_alternative_matched[i]],
3839 recog_data.operand_loc[i],
3840 (enum reg_class) goal_alternative[i],
3841 operand_mode[goal_alternative_matched[i]],
3842 operand_mode[i],
3843 0, 0, i, RELOAD_OTHER);
3844 operand_reloadnum[i] = output_reloadnum;
3845 }
3846 else if (insn_code_number >= 0)
3847 abort ();
3848 else
3849 {
3850 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3851 /* Avoid further trouble with this insn. */
3852 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3853 n_reloads = 0;
3854 return 0;
3855 }
3856 }
3857 else if (goal_alternative_matched[i] < 0
3858 && goal_alternative_matches[i] < 0
3859 && optimize)
3860 {
3861 /* For each non-matching operand that's a MEM or a pseudo-register
3862 that didn't get a hard register, make an optional reload.
3863 This may get done even if the insn needs no reloads otherwise. */
3864
3865 rtx operand = recog_data.operand[i];
3866
3867 while (GET_CODE (operand) == SUBREG)
3868 operand = SUBREG_REG (operand);
3869 if ((GET_CODE (operand) == MEM
3870 || (GET_CODE (operand) == REG
3871 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3872 /* If this is only for an output, the optional reload would not
3873 actually cause us to use a register now, just note that
3874 something is stored here. */
3875 && ((enum reg_class) goal_alternative[i] != NO_REGS
3876 || modified[i] == RELOAD_WRITE)
3877 && ! no_input_reloads
3878 /* An optional output reload might allow to delete INSN later.
3879 We mustn't make in-out reloads on insns that are not permitted
3880 output reloads.
3881 If this is an asm, we can't delete it; we must not even call
3882 push_reload for an optional output reload in this case,
3883 because we can't be sure that the constraint allows a register,
3884 and push_reload verifies the constraints for asms. */
3885 && (modified[i] == RELOAD_READ
3886 || (! no_output_reloads && ! this_insn_is_asm)))
3887 operand_reloadnum[i]
3888 = push_reload ((modified[i] != RELOAD_WRITE
3889 ? recog_data.operand[i] : 0),
3890 (modified[i] != RELOAD_READ
3891 ? recog_data.operand[i] : 0),
3892 (modified[i] != RELOAD_WRITE
3893 ? recog_data.operand_loc[i] : 0),
3894 (modified[i] != RELOAD_READ
3895 ? recog_data.operand_loc[i] : 0),
3896 (enum reg_class) goal_alternative[i],
3897 (modified[i] == RELOAD_WRITE
3898 ? VOIDmode : operand_mode[i]),
3899 (modified[i] == RELOAD_READ
3900 ? VOIDmode : operand_mode[i]),
3901 (insn_code_number < 0 ? 0
3902 : insn_data[insn_code_number].operand[i].strict_low),
3903 1, i, operand_type[i]);
3904 /* If a memory reference remains (either as a MEM or a pseudo that
3905 did not get a hard register), yet we can't make an optional
3906 reload, check if this is actually a pseudo register reference;
3907 we then need to emit a USE and/or a CLOBBER so that reload
3908 inheritance will do the right thing. */
3909 else if (replace
3910 && (GET_CODE (operand) == MEM
3911 || (GET_CODE (operand) == REG
3912 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3913 && reg_renumber [REGNO (operand)] < 0)))
3914 {
3915 operand = *recog_data.operand_loc[i];
3916
3917 while (GET_CODE (operand) == SUBREG)
3918 operand = SUBREG_REG (operand);
3919 if (GET_CODE (operand) == REG)
3920 {
3921 if (modified[i] != RELOAD_WRITE)
3922 /* We mark the USE with QImode so that we recognize
3923 it as one that can be safely deleted at the end
3924 of reload. */
3925 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3926 insn), QImode);
3927 if (modified[i] != RELOAD_READ)
3928 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3929 }
3930 }
3931 }
3932 else if (goal_alternative_matches[i] >= 0
3933 && goal_alternative_win[goal_alternative_matches[i]]
3934 && modified[i] == RELOAD_READ
3935 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3936 && ! no_input_reloads && ! no_output_reloads
3937 && optimize)
3938 {
3939 /* Similarly, make an optional reload for a pair of matching
3940 objects that are in MEM or a pseudo that didn't get a hard reg. */
3941
3942 rtx operand = recog_data.operand[i];
3943
3944 while (GET_CODE (operand) == SUBREG)
3945 operand = SUBREG_REG (operand);
3946 if ((GET_CODE (operand) == MEM
3947 || (GET_CODE (operand) == REG
3948 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3949 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3950 != NO_REGS))
3951 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3952 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3953 recog_data.operand[i],
3954 recog_data.operand_loc[goal_alternative_matches[i]],
3955 recog_data.operand_loc[i],
3956 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3957 operand_mode[goal_alternative_matches[i]],
3958 operand_mode[i],
3959 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3960 }
3961
3962 /* Perform whatever substitutions on the operands we are supposed
3963 to make due to commutativity or replacement of registers
3964 with equivalent constants or memory slots. */
3965
3966 for (i = 0; i < noperands; i++)
3967 {
3968 /* We only do this on the last pass through reload, because it is
3969 possible for some data (like reg_equiv_address) to be changed during
3970 later passes. Moreover, we loose the opportunity to get a useful
3971 reload_{in,out}_reg when we do these replacements. */
3972
3973 if (replace)
3974 {
3975 rtx substitution = substed_operand[i];
3976
3977 *recog_data.operand_loc[i] = substitution;
3978
3979 /* If we're replacing an operand with a LABEL_REF, we need
3980 to make sure that there's a REG_LABEL note attached to
3981 this instruction. */
3982 if (GET_CODE (insn) != JUMP_INSN
3983 && GET_CODE (substitution) == LABEL_REF
3984 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3985 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3986 XEXP (substitution, 0),
3987 REG_NOTES (insn));
3988 }
3989 else
3990 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3991 }
3992
3993 /* If this insn pattern contains any MATCH_DUP's, make sure that
3994 they will be substituted if the operands they match are substituted.
3995 Also do now any substitutions we already did on the operands.
3996
3997 Don't do this if we aren't making replacements because we might be
3998 propagating things allocated by frame pointer elimination into places
3999 it doesn't expect. */
4000
4001 if (insn_code_number >= 0 && replace)
4002 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4003 {
4004 int opno = recog_data.dup_num[i];
4005 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4006 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4007 }
4008
4009 #if 0
4010 /* This loses because reloading of prior insns can invalidate the equivalence
4011 (or at least find_equiv_reg isn't smart enough to find it any more),
4012 causing this insn to need more reload regs than it needed before.
4013 It may be too late to make the reload regs available.
4014 Now this optimization is done safely in choose_reload_regs. */
4015
4016 /* For each reload of a reg into some other class of reg,
4017 search for an existing equivalent reg (same value now) in the right class.
4018 We can use it as long as we don't need to change its contents. */
4019 for (i = 0; i < n_reloads; i++)
4020 if (rld[i].reg_rtx == 0
4021 && rld[i].in != 0
4022 && GET_CODE (rld[i].in) == REG
4023 && rld[i].out == 0)
4024 {
4025 rld[i].reg_rtx
4026 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4027 static_reload_reg_p, 0, rld[i].inmode);
4028 /* Prevent generation of insn to load the value
4029 because the one we found already has the value. */
4030 if (rld[i].reg_rtx)
4031 rld[i].in = rld[i].reg_rtx;
4032 }
4033 #endif
4034
4035 /* Perhaps an output reload can be combined with another
4036 to reduce needs by one. */
4037 if (!goal_earlyclobber)
4038 combine_reloads ();
4039
4040 /* If we have a pair of reloads for parts of an address, they are reloading
4041 the same object, the operands themselves were not reloaded, and they
4042 are for two operands that are supposed to match, merge the reloads and
4043 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4044
4045 for (i = 0; i < n_reloads; i++)
4046 {
4047 int k;
4048
4049 for (j = i + 1; j < n_reloads; j++)
4050 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4051 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4052 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4053 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4054 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4055 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4056 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4057 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4058 && rtx_equal_p (rld[i].in, rld[j].in)
4059 && (operand_reloadnum[rld[i].opnum] < 0
4060 || rld[operand_reloadnum[rld[i].opnum]].optional)
4061 && (operand_reloadnum[rld[j].opnum] < 0
4062 || rld[operand_reloadnum[rld[j].opnum]].optional)
4063 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4064 || (goal_alternative_matches[rld[j].opnum]
4065 == rld[i].opnum)))
4066 {
4067 for (k = 0; k < n_replacements; k++)
4068 if (replacements[k].what == j)
4069 replacements[k].what = i;
4070
4071 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4072 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4073 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4074 else
4075 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4076 rld[j].in = 0;
4077 }
4078 }
4079
4080 /* Scan all the reloads and update their type.
4081 If a reload is for the address of an operand and we didn't reload
4082 that operand, change the type. Similarly, change the operand number
4083 of a reload when two operands match. If a reload is optional, treat it
4084 as though the operand isn't reloaded.
4085
4086 ??? This latter case is somewhat odd because if we do the optional
4087 reload, it means the object is hanging around. Thus we need only
4088 do the address reload if the optional reload was NOT done.
4089
4090 Change secondary reloads to be the address type of their operand, not
4091 the normal type.
4092
4093 If an operand's reload is now RELOAD_OTHER, change any
4094 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4095 RELOAD_FOR_OTHER_ADDRESS. */
4096
4097 for (i = 0; i < n_reloads; i++)
4098 {
4099 if (rld[i].secondary_p
4100 && rld[i].when_needed == operand_type[rld[i].opnum])
4101 rld[i].when_needed = address_type[rld[i].opnum];
4102
4103 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4104 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4105 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4106 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4107 && (operand_reloadnum[rld[i].opnum] < 0
4108 || rld[operand_reloadnum[rld[i].opnum]].optional))
4109 {
4110 /* If we have a secondary reload to go along with this reload,
4111 change its type to RELOAD_FOR_OPADDR_ADDR. */
4112
4113 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4114 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4115 && rld[i].secondary_in_reload != -1)
4116 {
4117 int secondary_in_reload = rld[i].secondary_in_reload;
4118
4119 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4120
4121 /* If there's a tertiary reload we have to change it also. */
4122 if (secondary_in_reload > 0
4123 && rld[secondary_in_reload].secondary_in_reload != -1)
4124 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4125 = RELOAD_FOR_OPADDR_ADDR;
4126 }
4127
4128 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4129 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4130 && rld[i].secondary_out_reload != -1)
4131 {
4132 int secondary_out_reload = rld[i].secondary_out_reload;
4133
4134 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4135
4136 /* If there's a tertiary reload we have to change it also. */
4137 if (secondary_out_reload
4138 && rld[secondary_out_reload].secondary_out_reload != -1)
4139 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4140 = RELOAD_FOR_OPADDR_ADDR;
4141 }
4142
4143 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4144 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4145 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4146 else
4147 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4148 }
4149
4150 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4151 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4152 && operand_reloadnum[rld[i].opnum] >= 0
4153 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4154 == RELOAD_OTHER))
4155 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4156
4157 if (goal_alternative_matches[rld[i].opnum] >= 0)
4158 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4159 }
4160
4161 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4162 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4163 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4164
4165 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4166 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4167 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4168 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4169 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4170 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4171 This is complicated by the fact that a single operand can have more
4172 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4173 choose_reload_regs without affecting code quality, and cases that
4174 actually fail are extremely rare, so it turns out to be better to fix
4175 the problem here by not generating cases that choose_reload_regs will
4176 fail for. */
4177 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4178 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4179 a single operand.
4180 We can reduce the register pressure by exploiting that a
4181 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4182 does not conflict with any of them, if it is only used for the first of
4183 the RELOAD_FOR_X_ADDRESS reloads. */
4184 {
4185 int first_op_addr_num = -2;
4186 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4187 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4188 int need_change = 0;
4189 /* We use last_op_addr_reload and the contents of the above arrays
4190 first as flags - -2 means no instance encountered, -1 means exactly
4191 one instance encountered.
4192 If more than one instance has been encountered, we store the reload
4193 number of the first reload of the kind in question; reload numbers
4194 are known to be non-negative. */
4195 for (i = 0; i < noperands; i++)
4196 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4197 for (i = n_reloads - 1; i >= 0; i--)
4198 {
4199 switch (rld[i].when_needed)
4200 {
4201 case RELOAD_FOR_OPERAND_ADDRESS:
4202 if (++first_op_addr_num >= 0)
4203 {
4204 first_op_addr_num = i;
4205 need_change = 1;
4206 }
4207 break;
4208 case RELOAD_FOR_INPUT_ADDRESS:
4209 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4210 {
4211 first_inpaddr_num[rld[i].opnum] = i;
4212 need_change = 1;
4213 }
4214 break;
4215 case RELOAD_FOR_OUTPUT_ADDRESS:
4216 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4217 {
4218 first_outpaddr_num[rld[i].opnum] = i;
4219 need_change = 1;
4220 }
4221 break;
4222 default:
4223 break;
4224 }
4225 }
4226
4227 if (need_change)
4228 {
4229 for (i = 0; i < n_reloads; i++)
4230 {
4231 int first_num;
4232 enum reload_type type;
4233
4234 switch (rld[i].when_needed)
4235 {
4236 case RELOAD_FOR_OPADDR_ADDR:
4237 first_num = first_op_addr_num;
4238 type = RELOAD_FOR_OPERAND_ADDRESS;
4239 break;
4240 case RELOAD_FOR_INPADDR_ADDRESS:
4241 first_num = first_inpaddr_num[rld[i].opnum];
4242 type = RELOAD_FOR_INPUT_ADDRESS;
4243 break;
4244 case RELOAD_FOR_OUTADDR_ADDRESS:
4245 first_num = first_outpaddr_num[rld[i].opnum];
4246 type = RELOAD_FOR_OUTPUT_ADDRESS;
4247 break;
4248 default:
4249 continue;
4250 }
4251 if (first_num < 0)
4252 continue;
4253 else if (i > first_num)
4254 rld[i].when_needed = type;
4255 else
4256 {
4257 /* Check if the only TYPE reload that uses reload I is
4258 reload FIRST_NUM. */
4259 for (j = n_reloads - 1; j > first_num; j--)
4260 {
4261 if (rld[j].when_needed == type
4262 && (rld[i].secondary_p
4263 ? rld[j].secondary_in_reload == i
4264 : reg_mentioned_p (rld[i].in, rld[j].in)))
4265 {
4266 rld[i].when_needed = type;
4267 break;
4268 }
4269 }
4270 }
4271 }
4272 }
4273 }
4274
4275 /* See if we have any reloads that are now allowed to be merged
4276 because we've changed when the reload is needed to
4277 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4278 check for the most common cases. */
4279
4280 for (i = 0; i < n_reloads; i++)
4281 if (rld[i].in != 0 && rld[i].out == 0
4282 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4283 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4284 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4285 for (j = 0; j < n_reloads; j++)
4286 if (i != j && rld[j].in != 0 && rld[j].out == 0
4287 && rld[j].when_needed == rld[i].when_needed
4288 && MATCHES (rld[i].in, rld[j].in)
4289 && rld[i].class == rld[j].class
4290 && !rld[i].nocombine && !rld[j].nocombine
4291 && rld[i].reg_rtx == rld[j].reg_rtx)
4292 {
4293 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4294 transfer_replacements (i, j);
4295 rld[j].in = 0;
4296 }
4297
4298 #ifdef HAVE_cc0
4299 /* If we made any reloads for addresses, see if they violate a
4300 "no input reloads" requirement for this insn. But loads that we
4301 do after the insn (such as for output addresses) are fine. */
4302 if (no_input_reloads)
4303 for (i = 0; i < n_reloads; i++)
4304 if (rld[i].in != 0
4305 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4306 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4307 abort ();
4308 #endif
4309
4310 /* Compute reload_mode and reload_nregs. */
4311 for (i = 0; i < n_reloads; i++)
4312 {
4313 rld[i].mode
4314 = (rld[i].inmode == VOIDmode
4315 || (GET_MODE_SIZE (rld[i].outmode)
4316 > GET_MODE_SIZE (rld[i].inmode)))
4317 ? rld[i].outmode : rld[i].inmode;
4318
4319 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4320 }
4321
4322 /* Special case a simple move with an input reload and a
4323 destination of a hard reg, if the hard reg is ok, use it. */
4324 for (i = 0; i < n_reloads; i++)
4325 if (rld[i].when_needed == RELOAD_FOR_INPUT
4326 && GET_CODE (PATTERN (insn)) == SET
4327 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4328 && SET_SRC (PATTERN (insn)) == rld[i].in)
4329 {
4330 rtx dest = SET_DEST (PATTERN (insn));
4331 unsigned int regno = REGNO (dest);
4332
4333 if (regno < FIRST_PSEUDO_REGISTER
4334 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4335 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4336 rld[i].reg_rtx = dest;
4337 }
4338
4339 return retval;
4340 }
4341
4342 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4343 accepts a memory operand with constant address. */
4344
4345 static int
4346 alternative_allows_memconst (constraint, altnum)
4347 const char *constraint;
4348 int altnum;
4349 {
4350 int c;
4351 /* Skip alternatives before the one requested. */
4352 while (altnum > 0)
4353 {
4354 while (*constraint++ != ',');
4355 altnum--;
4356 }
4357 /* Scan the requested alternative for 'm' or 'o'.
4358 If one of them is present, this alternative accepts memory constants. */
4359 while ((c = *constraint++) && c != ',' && c != '#')
4360 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c))
4361 return 1;
4362 return 0;
4363 }
4364 \f
4365 /* Scan X for memory references and scan the addresses for reloading.
4366 Also checks for references to "constant" regs that we want to eliminate
4367 and replaces them with the values they stand for.
4368 We may alter X destructively if it contains a reference to such.
4369 If X is just a constant reg, we return the equivalent value
4370 instead of X.
4371
4372 IND_LEVELS says how many levels of indirect addressing this machine
4373 supports.
4374
4375 OPNUM and TYPE identify the purpose of the reload.
4376
4377 IS_SET_DEST is true if X is the destination of a SET, which is not
4378 appropriate to be replaced by a constant.
4379
4380 INSN, if nonzero, is the insn in which we do the reload. It is used
4381 to determine if we may generate output reloads, and where to put USEs
4382 for pseudos that we have to replace with stack slots.
4383
4384 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4385 result of find_reloads_address. */
4386
4387 static rtx
4388 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4389 address_reloaded)
4390 rtx x;
4391 int opnum;
4392 enum reload_type type;
4393 int ind_levels;
4394 int is_set_dest;
4395 rtx insn;
4396 int *address_reloaded;
4397 {
4398 RTX_CODE code = GET_CODE (x);
4399
4400 const char *fmt = GET_RTX_FORMAT (code);
4401 int i;
4402 int copied;
4403
4404 if (code == REG)
4405 {
4406 /* This code is duplicated for speed in find_reloads. */
4407 int regno = REGNO (x);
4408 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4409 x = reg_equiv_constant[regno];
4410 #if 0
4411 /* This creates (subreg (mem...)) which would cause an unnecessary
4412 reload of the mem. */
4413 else if (reg_equiv_mem[regno] != 0)
4414 x = reg_equiv_mem[regno];
4415 #endif
4416 else if (reg_equiv_memory_loc[regno]
4417 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4418 {
4419 rtx mem = make_memloc (x, regno);
4420 if (reg_equiv_address[regno]
4421 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4422 {
4423 /* If this is not a toplevel operand, find_reloads doesn't see
4424 this substitution. We have to emit a USE of the pseudo so
4425 that delete_output_reload can see it. */
4426 if (replace_reloads && recog_data.operand[opnum] != x)
4427 /* We mark the USE with QImode so that we recognize it
4428 as one that can be safely deleted at the end of
4429 reload. */
4430 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4431 QImode);
4432 x = mem;
4433 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4434 opnum, type, ind_levels, insn);
4435 if (address_reloaded)
4436 *address_reloaded = i;
4437 }
4438 }
4439 return x;
4440 }
4441 if (code == MEM)
4442 {
4443 rtx tem = x;
4444
4445 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4446 opnum, type, ind_levels, insn);
4447 if (address_reloaded)
4448 *address_reloaded = i;
4449
4450 return tem;
4451 }
4452
4453 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4454 {
4455 /* Check for SUBREG containing a REG that's equivalent to a constant.
4456 If the constant has a known value, truncate it right now.
4457 Similarly if we are extracting a single-word of a multi-word
4458 constant. If the constant is symbolic, allow it to be substituted
4459 normally. push_reload will strip the subreg later. If the
4460 constant is VOIDmode, abort because we will lose the mode of
4461 the register (this should never happen because one of the cases
4462 above should handle it). */
4463
4464 int regno = REGNO (SUBREG_REG (x));
4465 rtx tem;
4466
4467 if (subreg_lowpart_p (x)
4468 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4469 && reg_equiv_constant[regno] != 0
4470 && (tem = gen_lowpart_common (GET_MODE (x),
4471 reg_equiv_constant[regno])) != 0)
4472 return tem;
4473
4474 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4475 && reg_equiv_constant[regno] != 0)
4476 {
4477 tem =
4478 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4479 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4480 if (!tem)
4481 abort ();
4482 return tem;
4483 }
4484
4485 /* If the subreg contains a reg that will be converted to a mem,
4486 convert the subreg to a narrower memref now.
4487 Otherwise, we would get (subreg (mem ...) ...),
4488 which would force reload of the mem.
4489
4490 We also need to do this if there is an equivalent MEM that is
4491 not offsettable. In that case, alter_subreg would produce an
4492 invalid address on big-endian machines.
4493
4494 For machines that extend byte loads, we must not reload using
4495 a wider mode if we have a paradoxical SUBREG. find_reloads will
4496 force a reload in that case. So we should not do anything here. */
4497
4498 else if (regno >= FIRST_PSEUDO_REGISTER
4499 #ifdef LOAD_EXTEND_OP
4500 && (GET_MODE_SIZE (GET_MODE (x))
4501 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4502 #endif
4503 && (reg_equiv_address[regno] != 0
4504 || (reg_equiv_mem[regno] != 0
4505 && (! strict_memory_address_p (GET_MODE (x),
4506 XEXP (reg_equiv_mem[regno], 0))
4507 || ! offsettable_memref_p (reg_equiv_mem[regno])
4508 || num_not_at_initial_offset))))
4509 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4510 insn);
4511 }
4512
4513 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4514 {
4515 if (fmt[i] == 'e')
4516 {
4517 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4518 ind_levels, is_set_dest, insn,
4519 address_reloaded);
4520 /* If we have replaced a reg with it's equivalent memory loc -
4521 that can still be handled here e.g. if it's in a paradoxical
4522 subreg - we must make the change in a copy, rather than using
4523 a destructive change. This way, find_reloads can still elect
4524 not to do the change. */
4525 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4526 {
4527 x = shallow_copy_rtx (x);
4528 copied = 1;
4529 }
4530 XEXP (x, i) = new_part;
4531 }
4532 }
4533 return x;
4534 }
4535
4536 /* Return a mem ref for the memory equivalent of reg REGNO.
4537 This mem ref is not shared with anything. */
4538
4539 static rtx
4540 make_memloc (ad, regno)
4541 rtx ad;
4542 int regno;
4543 {
4544 /* We must rerun eliminate_regs, in case the elimination
4545 offsets have changed. */
4546 rtx tem
4547 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4548
4549 /* If TEM might contain a pseudo, we must copy it to avoid
4550 modifying it when we do the substitution for the reload. */
4551 if (rtx_varies_p (tem, 0))
4552 tem = copy_rtx (tem);
4553
4554 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4555 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4556
4557 /* Copy the result if it's still the same as the equivalence, to avoid
4558 modifying it when we do the substitution for the reload. */
4559 if (tem == reg_equiv_memory_loc[regno])
4560 tem = copy_rtx (tem);
4561 return tem;
4562 }
4563
4564 /* Record all reloads needed for handling memory address AD
4565 which appears in *LOC in a memory reference to mode MODE
4566 which itself is found in location *MEMREFLOC.
4567 Note that we take shortcuts assuming that no multi-reg machine mode
4568 occurs as part of an address.
4569
4570 OPNUM and TYPE specify the purpose of this reload.
4571
4572 IND_LEVELS says how many levels of indirect addressing this machine
4573 supports.
4574
4575 INSN, if nonzero, is the insn in which we do the reload. It is used
4576 to determine if we may generate output reloads, and where to put USEs
4577 for pseudos that we have to replace with stack slots.
4578
4579 Value is nonzero if this address is reloaded or replaced as a whole.
4580 This is interesting to the caller if the address is an autoincrement.
4581
4582 Note that there is no verification that the address will be valid after
4583 this routine does its work. Instead, we rely on the fact that the address
4584 was valid when reload started. So we need only undo things that reload
4585 could have broken. These are wrong register types, pseudos not allocated
4586 to a hard register, and frame pointer elimination. */
4587
4588 static int
4589 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4590 enum machine_mode mode;
4591 rtx *memrefloc;
4592 rtx ad;
4593 rtx *loc;
4594 int opnum;
4595 enum reload_type type;
4596 int ind_levels;
4597 rtx insn;
4598 {
4599 int regno;
4600 int removed_and = 0;
4601 rtx tem;
4602
4603 /* If the address is a register, see if it is a legitimate address and
4604 reload if not. We first handle the cases where we need not reload
4605 or where we must reload in a non-standard way. */
4606
4607 if (GET_CODE (ad) == REG)
4608 {
4609 regno = REGNO (ad);
4610
4611 /* If the register is equivalent to an invariant expression, substitute
4612 the invariant, and eliminate any eliminable register references. */
4613 tem = reg_equiv_constant[regno];
4614 if (tem != 0
4615 && (tem = eliminate_regs (tem, mode, insn))
4616 && strict_memory_address_p (mode, tem))
4617 {
4618 *loc = ad = tem;
4619 return 0;
4620 }
4621
4622 tem = reg_equiv_memory_loc[regno];
4623 if (tem != 0)
4624 {
4625 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4626 {
4627 tem = make_memloc (ad, regno);
4628 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4629 {
4630 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4631 &XEXP (tem, 0), opnum,
4632 ADDR_TYPE (type), ind_levels, insn);
4633 }
4634 /* We can avoid a reload if the register's equivalent memory
4635 expression is valid as an indirect memory address.
4636 But not all addresses are valid in a mem used as an indirect
4637 address: only reg or reg+constant. */
4638
4639 if (ind_levels > 0
4640 && strict_memory_address_p (mode, tem)
4641 && (GET_CODE (XEXP (tem, 0)) == REG
4642 || (GET_CODE (XEXP (tem, 0)) == PLUS
4643 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4644 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4645 {
4646 /* TEM is not the same as what we'll be replacing the
4647 pseudo with after reload, put a USE in front of INSN
4648 in the final reload pass. */
4649 if (replace_reloads
4650 && num_not_at_initial_offset
4651 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4652 {
4653 *loc = tem;
4654 /* We mark the USE with QImode so that we
4655 recognize it as one that can be safely
4656 deleted at the end of reload. */
4657 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4658 insn), QImode);
4659
4660 /* This doesn't really count as replacing the address
4661 as a whole, since it is still a memory access. */
4662 }
4663 return 0;
4664 }
4665 ad = tem;
4666 }
4667 }
4668
4669 /* The only remaining case where we can avoid a reload is if this is a
4670 hard register that is valid as a base register and which is not the
4671 subject of a CLOBBER in this insn. */
4672
4673 else if (regno < FIRST_PSEUDO_REGISTER
4674 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4675 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4676 return 0;
4677
4678 /* If we do not have one of the cases above, we must do the reload. */
4679 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4680 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4681 return 1;
4682 }
4683
4684 if (strict_memory_address_p (mode, ad))
4685 {
4686 /* The address appears valid, so reloads are not needed.
4687 But the address may contain an eliminable register.
4688 This can happen because a machine with indirect addressing
4689 may consider a pseudo register by itself a valid address even when
4690 it has failed to get a hard reg.
4691 So do a tree-walk to find and eliminate all such regs. */
4692
4693 /* But first quickly dispose of a common case. */
4694 if (GET_CODE (ad) == PLUS
4695 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4696 && GET_CODE (XEXP (ad, 0)) == REG
4697 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4698 return 0;
4699
4700 subst_reg_equivs_changed = 0;
4701 *loc = subst_reg_equivs (ad, insn);
4702
4703 if (! subst_reg_equivs_changed)
4704 return 0;
4705
4706 /* Check result for validity after substitution. */
4707 if (strict_memory_address_p (mode, ad))
4708 return 0;
4709 }
4710
4711 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4712 do
4713 {
4714 if (memrefloc)
4715 {
4716 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4717 ind_levels, win);
4718 }
4719 break;
4720 win:
4721 *memrefloc = copy_rtx (*memrefloc);
4722 XEXP (*memrefloc, 0) = ad;
4723 move_replacements (&ad, &XEXP (*memrefloc, 0));
4724 return 1;
4725 }
4726 while (0);
4727 #endif
4728
4729 /* The address is not valid. We have to figure out why. First see if
4730 we have an outer AND and remove it if so. Then analyze what's inside. */
4731
4732 if (GET_CODE (ad) == AND)
4733 {
4734 removed_and = 1;
4735 loc = &XEXP (ad, 0);
4736 ad = *loc;
4737 }
4738
4739 /* One possibility for why the address is invalid is that it is itself
4740 a MEM. This can happen when the frame pointer is being eliminated, a
4741 pseudo is not allocated to a hard register, and the offset between the
4742 frame and stack pointers is not its initial value. In that case the
4743 pseudo will have been replaced by a MEM referring to the
4744 stack pointer. */
4745 if (GET_CODE (ad) == MEM)
4746 {
4747 /* First ensure that the address in this MEM is valid. Then, unless
4748 indirect addresses are valid, reload the MEM into a register. */
4749 tem = ad;
4750 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4751 opnum, ADDR_TYPE (type),
4752 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4753
4754 /* If tem was changed, then we must create a new memory reference to
4755 hold it and store it back into memrefloc. */
4756 if (tem != ad && memrefloc)
4757 {
4758 *memrefloc = copy_rtx (*memrefloc);
4759 copy_replacements (tem, XEXP (*memrefloc, 0));
4760 loc = &XEXP (*memrefloc, 0);
4761 if (removed_and)
4762 loc = &XEXP (*loc, 0);
4763 }
4764
4765 /* Check similar cases as for indirect addresses as above except
4766 that we can allow pseudos and a MEM since they should have been
4767 taken care of above. */
4768
4769 if (ind_levels == 0
4770 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4771 || GET_CODE (XEXP (tem, 0)) == MEM
4772 || ! (GET_CODE (XEXP (tem, 0)) == REG
4773 || (GET_CODE (XEXP (tem, 0)) == PLUS
4774 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4775 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4776 {
4777 /* Must use TEM here, not AD, since it is the one that will
4778 have any subexpressions reloaded, if needed. */
4779 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4780 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4781 VOIDmode, 0,
4782 0, opnum, type);
4783 return ! removed_and;
4784 }
4785 else
4786 return 0;
4787 }
4788
4789 /* If we have address of a stack slot but it's not valid because the
4790 displacement is too large, compute the sum in a register.
4791 Handle all base registers here, not just fp/ap/sp, because on some
4792 targets (namely SH) we can also get too large displacements from
4793 big-endian corrections. */
4794 else if (GET_CODE (ad) == PLUS
4795 && GET_CODE (XEXP (ad, 0)) == REG
4796 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4797 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4798 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4799 {
4800 /* Unshare the MEM rtx so we can safely alter it. */
4801 if (memrefloc)
4802 {
4803 *memrefloc = copy_rtx (*memrefloc);
4804 loc = &XEXP (*memrefloc, 0);
4805 if (removed_and)
4806 loc = &XEXP (*loc, 0);
4807 }
4808
4809 if (double_reg_address_ok)
4810 {
4811 /* Unshare the sum as well. */
4812 *loc = ad = copy_rtx (ad);
4813
4814 /* Reload the displacement into an index reg.
4815 We assume the frame pointer or arg pointer is a base reg. */
4816 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4817 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4818 type, ind_levels);
4819 return 0;
4820 }
4821 else
4822 {
4823 /* If the sum of two regs is not necessarily valid,
4824 reload the sum into a base reg.
4825 That will at least work. */
4826 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4827 Pmode, opnum, type, ind_levels);
4828 }
4829 return ! removed_and;
4830 }
4831
4832 /* If we have an indexed stack slot, there are three possible reasons why
4833 it might be invalid: The index might need to be reloaded, the address
4834 might have been made by frame pointer elimination and hence have a
4835 constant out of range, or both reasons might apply.
4836
4837 We can easily check for an index needing reload, but even if that is the
4838 case, we might also have an invalid constant. To avoid making the
4839 conservative assumption and requiring two reloads, we see if this address
4840 is valid when not interpreted strictly. If it is, the only problem is
4841 that the index needs a reload and find_reloads_address_1 will take care
4842 of it.
4843
4844 If we decide to do something here, it must be that
4845 `double_reg_address_ok' is true and that this address rtl was made by
4846 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4847 rework the sum so that the reload register will be added to the index.
4848 This is safe because we know the address isn't shared.
4849
4850 We check for fp/ap/sp as both the first and second operand of the
4851 innermost PLUS. */
4852
4853 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4854 && GET_CODE (XEXP (ad, 0)) == PLUS
4855 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4856 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4857 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4858 #endif
4859 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4860 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4861 #endif
4862 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4863 && ! memory_address_p (mode, ad))
4864 {
4865 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4866 plus_constant (XEXP (XEXP (ad, 0), 0),
4867 INTVAL (XEXP (ad, 1))),
4868 XEXP (XEXP (ad, 0), 1));
4869 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4870 MODE_BASE_REG_CLASS (mode),
4871 GET_MODE (ad), opnum, type, ind_levels);
4872 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4873 type, 0, insn);
4874
4875 return 0;
4876 }
4877
4878 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4879 && GET_CODE (XEXP (ad, 0)) == PLUS
4880 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4881 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4882 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4883 #endif
4884 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4885 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4886 #endif
4887 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4888 && ! memory_address_p (mode, ad))
4889 {
4890 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4891 XEXP (XEXP (ad, 0), 0),
4892 plus_constant (XEXP (XEXP (ad, 0), 1),
4893 INTVAL (XEXP (ad, 1))));
4894 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4895 MODE_BASE_REG_CLASS (mode),
4896 GET_MODE (ad), opnum, type, ind_levels);
4897 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4898 type, 0, insn);
4899
4900 return 0;
4901 }
4902
4903 /* See if address becomes valid when an eliminable register
4904 in a sum is replaced. */
4905
4906 tem = ad;
4907 if (GET_CODE (ad) == PLUS)
4908 tem = subst_indexed_address (ad);
4909 if (tem != ad && strict_memory_address_p (mode, tem))
4910 {
4911 /* Ok, we win that way. Replace any additional eliminable
4912 registers. */
4913
4914 subst_reg_equivs_changed = 0;
4915 tem = subst_reg_equivs (tem, insn);
4916
4917 /* Make sure that didn't make the address invalid again. */
4918
4919 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4920 {
4921 *loc = tem;
4922 return 0;
4923 }
4924 }
4925
4926 /* If constants aren't valid addresses, reload the constant address
4927 into a register. */
4928 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4929 {
4930 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4931 Unshare it so we can safely alter it. */
4932 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4933 && CONSTANT_POOL_ADDRESS_P (ad))
4934 {
4935 *memrefloc = copy_rtx (*memrefloc);
4936 loc = &XEXP (*memrefloc, 0);
4937 if (removed_and)
4938 loc = &XEXP (*loc, 0);
4939 }
4940
4941 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4942 Pmode, opnum, type, ind_levels);
4943 return ! removed_and;
4944 }
4945
4946 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4947 insn);
4948 }
4949 \f
4950 /* Find all pseudo regs appearing in AD
4951 that are eliminable in favor of equivalent values
4952 and do not have hard regs; replace them by their equivalents.
4953 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4954 front of it for pseudos that we have to replace with stack slots. */
4955
4956 static rtx
4957 subst_reg_equivs (ad, insn)
4958 rtx ad;
4959 rtx insn;
4960 {
4961 RTX_CODE code = GET_CODE (ad);
4962 int i;
4963 const char *fmt;
4964
4965 switch (code)
4966 {
4967 case HIGH:
4968 case CONST_INT:
4969 case CONST:
4970 case CONST_DOUBLE:
4971 case CONST_VECTOR:
4972 case SYMBOL_REF:
4973 case LABEL_REF:
4974 case PC:
4975 case CC0:
4976 return ad;
4977
4978 case REG:
4979 {
4980 int regno = REGNO (ad);
4981
4982 if (reg_equiv_constant[regno] != 0)
4983 {
4984 subst_reg_equivs_changed = 1;
4985 return reg_equiv_constant[regno];
4986 }
4987 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4988 {
4989 rtx mem = make_memloc (ad, regno);
4990 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4991 {
4992 subst_reg_equivs_changed = 1;
4993 /* We mark the USE with QImode so that we recognize it
4994 as one that can be safely deleted at the end of
4995 reload. */
4996 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
4997 QImode);
4998 return mem;
4999 }
5000 }
5001 }
5002 return ad;
5003
5004 case PLUS:
5005 /* Quickly dispose of a common case. */
5006 if (XEXP (ad, 0) == frame_pointer_rtx
5007 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5008 return ad;
5009 break;
5010
5011 default:
5012 break;
5013 }
5014
5015 fmt = GET_RTX_FORMAT (code);
5016 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5017 if (fmt[i] == 'e')
5018 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5019 return ad;
5020 }
5021 \f
5022 /* Compute the sum of X and Y, making canonicalizations assumed in an
5023 address, namely: sum constant integers, surround the sum of two
5024 constants with a CONST, put the constant as the second operand, and
5025 group the constant on the outermost sum.
5026
5027 This routine assumes both inputs are already in canonical form. */
5028
5029 rtx
5030 form_sum (x, y)
5031 rtx x, y;
5032 {
5033 rtx tem;
5034 enum machine_mode mode = GET_MODE (x);
5035
5036 if (mode == VOIDmode)
5037 mode = GET_MODE (y);
5038
5039 if (mode == VOIDmode)
5040 mode = Pmode;
5041
5042 if (GET_CODE (x) == CONST_INT)
5043 return plus_constant (y, INTVAL (x));
5044 else if (GET_CODE (y) == CONST_INT)
5045 return plus_constant (x, INTVAL (y));
5046 else if (CONSTANT_P (x))
5047 tem = x, x = y, y = tem;
5048
5049 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5050 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5051
5052 /* Note that if the operands of Y are specified in the opposite
5053 order in the recursive calls below, infinite recursion will occur. */
5054 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5055 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5056
5057 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5058 constant will have been placed second. */
5059 if (CONSTANT_P (x) && CONSTANT_P (y))
5060 {
5061 if (GET_CODE (x) == CONST)
5062 x = XEXP (x, 0);
5063 if (GET_CODE (y) == CONST)
5064 y = XEXP (y, 0);
5065
5066 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5067 }
5068
5069 return gen_rtx_PLUS (mode, x, y);
5070 }
5071 \f
5072 /* If ADDR is a sum containing a pseudo register that should be
5073 replaced with a constant (from reg_equiv_constant),
5074 return the result of doing so, and also apply the associative
5075 law so that the result is more likely to be a valid address.
5076 (But it is not guaranteed to be one.)
5077
5078 Note that at most one register is replaced, even if more are
5079 replaceable. Also, we try to put the result into a canonical form
5080 so it is more likely to be a valid address.
5081
5082 In all other cases, return ADDR. */
5083
5084 static rtx
5085 subst_indexed_address (addr)
5086 rtx addr;
5087 {
5088 rtx op0 = 0, op1 = 0, op2 = 0;
5089 rtx tem;
5090 int regno;
5091
5092 if (GET_CODE (addr) == PLUS)
5093 {
5094 /* Try to find a register to replace. */
5095 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5096 if (GET_CODE (op0) == REG
5097 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5098 && reg_renumber[regno] < 0
5099 && reg_equiv_constant[regno] != 0)
5100 op0 = reg_equiv_constant[regno];
5101 else if (GET_CODE (op1) == REG
5102 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5103 && reg_renumber[regno] < 0
5104 && reg_equiv_constant[regno] != 0)
5105 op1 = reg_equiv_constant[regno];
5106 else if (GET_CODE (op0) == PLUS
5107 && (tem = subst_indexed_address (op0)) != op0)
5108 op0 = tem;
5109 else if (GET_CODE (op1) == PLUS
5110 && (tem = subst_indexed_address (op1)) != op1)
5111 op1 = tem;
5112 else
5113 return addr;
5114
5115 /* Pick out up to three things to add. */
5116 if (GET_CODE (op1) == PLUS)
5117 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5118 else if (GET_CODE (op0) == PLUS)
5119 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5120
5121 /* Compute the sum. */
5122 if (op2 != 0)
5123 op1 = form_sum (op1, op2);
5124 if (op1 != 0)
5125 op0 = form_sum (op0, op1);
5126
5127 return op0;
5128 }
5129 return addr;
5130 }
5131 \f
5132 /* Update the REG_INC notes for an insn. It updates all REG_INC
5133 notes for the instruction which refer to REGNO the to refer
5134 to the reload number.
5135
5136 INSN is the insn for which any REG_INC notes need updating.
5137
5138 REGNO is the register number which has been reloaded.
5139
5140 RELOADNUM is the reload number. */
5141
5142 static void
5143 update_auto_inc_notes (insn, regno, reloadnum)
5144 rtx insn ATTRIBUTE_UNUSED;
5145 int regno ATTRIBUTE_UNUSED;
5146 int reloadnum ATTRIBUTE_UNUSED;
5147 {
5148 #ifdef AUTO_INC_DEC
5149 rtx link;
5150
5151 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5152 if (REG_NOTE_KIND (link) == REG_INC
5153 && REGNO (XEXP (link, 0)) == regno)
5154 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5155 #endif
5156 }
5157 \f
5158 /* Record the pseudo registers we must reload into hard registers in a
5159 subexpression of a would-be memory address, X referring to a value
5160 in mode MODE. (This function is not called if the address we find
5161 is strictly valid.)
5162
5163 CONTEXT = 1 means we are considering regs as index regs,
5164 = 0 means we are considering them as base regs.
5165
5166 OPNUM and TYPE specify the purpose of any reloads made.
5167
5168 IND_LEVELS says how many levels of indirect addressing are
5169 supported at this point in the address.
5170
5171 INSN, if nonzero, is the insn in which we do the reload. It is used
5172 to determine if we may generate output reloads.
5173
5174 We return nonzero if X, as a whole, is reloaded or replaced. */
5175
5176 /* Note that we take shortcuts assuming that no multi-reg machine mode
5177 occurs as part of an address.
5178 Also, this is not fully machine-customizable; it works for machines
5179 such as VAXen and 68000's and 32000's, but other possible machines
5180 could have addressing modes that this does not handle right. */
5181
5182 static int
5183 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5184 enum machine_mode mode;
5185 rtx x;
5186 int context;
5187 rtx *loc;
5188 int opnum;
5189 enum reload_type type;
5190 int ind_levels;
5191 rtx insn;
5192 {
5193 RTX_CODE code = GET_CODE (x);
5194
5195 switch (code)
5196 {
5197 case PLUS:
5198 {
5199 rtx orig_op0 = XEXP (x, 0);
5200 rtx orig_op1 = XEXP (x, 1);
5201 RTX_CODE code0 = GET_CODE (orig_op0);
5202 RTX_CODE code1 = GET_CODE (orig_op1);
5203 rtx op0 = orig_op0;
5204 rtx op1 = orig_op1;
5205
5206 if (GET_CODE (op0) == SUBREG)
5207 {
5208 op0 = SUBREG_REG (op0);
5209 code0 = GET_CODE (op0);
5210 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5211 op0 = gen_rtx_REG (word_mode,
5212 (REGNO (op0) +
5213 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5214 GET_MODE (SUBREG_REG (orig_op0)),
5215 SUBREG_BYTE (orig_op0),
5216 GET_MODE (orig_op0))));
5217 }
5218
5219 if (GET_CODE (op1) == SUBREG)
5220 {
5221 op1 = SUBREG_REG (op1);
5222 code1 = GET_CODE (op1);
5223 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5224 /* ??? Why is this given op1's mode and above for
5225 ??? op0 SUBREGs we use word_mode? */
5226 op1 = gen_rtx_REG (GET_MODE (op1),
5227 (REGNO (op1) +
5228 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5229 GET_MODE (SUBREG_REG (orig_op1)),
5230 SUBREG_BYTE (orig_op1),
5231 GET_MODE (orig_op1))));
5232 }
5233
5234 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5235 || code0 == ZERO_EXTEND || code1 == MEM)
5236 {
5237 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5238 type, ind_levels, insn);
5239 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5240 type, ind_levels, insn);
5241 }
5242
5243 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5244 || code1 == ZERO_EXTEND || code0 == MEM)
5245 {
5246 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5247 type, ind_levels, insn);
5248 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5249 type, ind_levels, insn);
5250 }
5251
5252 else if (code0 == CONST_INT || code0 == CONST
5253 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5254 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5255 type, ind_levels, insn);
5256
5257 else if (code1 == CONST_INT || code1 == CONST
5258 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5259 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5260 type, ind_levels, insn);
5261
5262 else if (code0 == REG && code1 == REG)
5263 {
5264 if (REG_OK_FOR_INDEX_P (op0)
5265 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5266 return 0;
5267 else if (REG_OK_FOR_INDEX_P (op1)
5268 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5269 return 0;
5270 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5271 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5272 type, ind_levels, insn);
5273 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5274 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5275 type, ind_levels, insn);
5276 else if (REG_OK_FOR_INDEX_P (op1))
5277 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5278 type, ind_levels, insn);
5279 else if (REG_OK_FOR_INDEX_P (op0))
5280 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5281 type, ind_levels, insn);
5282 else
5283 {
5284 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5285 type, ind_levels, insn);
5286 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5287 type, ind_levels, insn);
5288 }
5289 }
5290
5291 else if (code0 == REG)
5292 {
5293 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5294 type, ind_levels, insn);
5295 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5296 type, ind_levels, insn);
5297 }
5298
5299 else if (code1 == REG)
5300 {
5301 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5302 type, ind_levels, insn);
5303 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5304 type, ind_levels, insn);
5305 }
5306 }
5307
5308 return 0;
5309
5310 case POST_MODIFY:
5311 case PRE_MODIFY:
5312 {
5313 rtx op0 = XEXP (x, 0);
5314 rtx op1 = XEXP (x, 1);
5315
5316 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5317 return 0;
5318
5319 /* Currently, we only support {PRE,POST}_MODIFY constructs
5320 where a base register is {inc,dec}remented by the contents
5321 of another register or by a constant value. Thus, these
5322 operands must match. */
5323 if (op0 != XEXP (op1, 0))
5324 abort ();
5325
5326 /* Require index register (or constant). Let's just handle the
5327 register case in the meantime... If the target allows
5328 auto-modify by a constant then we could try replacing a pseudo
5329 register with its equivalent constant where applicable. */
5330 if (REG_P (XEXP (op1, 1)))
5331 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5332 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5333 opnum, type, ind_levels, insn);
5334
5335 if (REG_P (XEXP (op1, 0)))
5336 {
5337 int regno = REGNO (XEXP (op1, 0));
5338 int reloadnum;
5339
5340 /* A register that is incremented cannot be constant! */
5341 if (regno >= FIRST_PSEUDO_REGISTER
5342 && reg_equiv_constant[regno] != 0)
5343 abort ();
5344
5345 /* Handle a register that is equivalent to a memory location
5346 which cannot be addressed directly. */
5347 if (reg_equiv_memory_loc[regno] != 0
5348 && (reg_equiv_address[regno] != 0
5349 || num_not_at_initial_offset))
5350 {
5351 rtx tem = make_memloc (XEXP (x, 0), regno);
5352
5353 if (reg_equiv_address[regno]
5354 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5355 {
5356 /* First reload the memory location's address.
5357 We can't use ADDR_TYPE (type) here, because we need to
5358 write back the value after reading it, hence we actually
5359 need two registers. */
5360 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5361 &XEXP (tem, 0), opnum,
5362 RELOAD_OTHER,
5363 ind_levels, insn);
5364
5365 /* Then reload the memory location into a base
5366 register. */
5367 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5368 &XEXP (op1, 0),
5369 MODE_BASE_REG_CLASS (mode),
5370 GET_MODE (x), GET_MODE (x), 0,
5371 0, opnum, RELOAD_OTHER);
5372
5373 update_auto_inc_notes (this_insn, regno, reloadnum);
5374 return 0;
5375 }
5376 }
5377
5378 if (reg_renumber[regno] >= 0)
5379 regno = reg_renumber[regno];
5380
5381 /* We require a base register here... */
5382 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5383 {
5384 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5385 &XEXP (op1, 0), &XEXP (x, 0),
5386 MODE_BASE_REG_CLASS (mode),
5387 GET_MODE (x), GET_MODE (x), 0, 0,
5388 opnum, RELOAD_OTHER);
5389
5390 update_auto_inc_notes (this_insn, regno, reloadnum);
5391 return 0;
5392 }
5393 }
5394 else
5395 abort ();
5396 }
5397 return 0;
5398
5399 case POST_INC:
5400 case POST_DEC:
5401 case PRE_INC:
5402 case PRE_DEC:
5403 if (GET_CODE (XEXP (x, 0)) == REG)
5404 {
5405 int regno = REGNO (XEXP (x, 0));
5406 int value = 0;
5407 rtx x_orig = x;
5408
5409 /* A register that is incremented cannot be constant! */
5410 if (regno >= FIRST_PSEUDO_REGISTER
5411 && reg_equiv_constant[regno] != 0)
5412 abort ();
5413
5414 /* Handle a register that is equivalent to a memory location
5415 which cannot be addressed directly. */
5416 if (reg_equiv_memory_loc[regno] != 0
5417 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5418 {
5419 rtx tem = make_memloc (XEXP (x, 0), regno);
5420 if (reg_equiv_address[regno]
5421 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5422 {
5423 /* First reload the memory location's address.
5424 We can't use ADDR_TYPE (type) here, because we need to
5425 write back the value after reading it, hence we actually
5426 need two registers. */
5427 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5428 &XEXP (tem, 0), opnum, type,
5429 ind_levels, insn);
5430 /* Put this inside a new increment-expression. */
5431 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5432 /* Proceed to reload that, as if it contained a register. */
5433 }
5434 }
5435
5436 /* If we have a hard register that is ok as an index,
5437 don't make a reload. If an autoincrement of a nice register
5438 isn't "valid", it must be that no autoincrement is "valid".
5439 If that is true and something made an autoincrement anyway,
5440 this must be a special context where one is allowed.
5441 (For example, a "push" instruction.)
5442 We can't improve this address, so leave it alone. */
5443
5444 /* Otherwise, reload the autoincrement into a suitable hard reg
5445 and record how much to increment by. */
5446
5447 if (reg_renumber[regno] >= 0)
5448 regno = reg_renumber[regno];
5449 if ((regno >= FIRST_PSEUDO_REGISTER
5450 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5451 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5452 {
5453 int reloadnum;
5454
5455 /* If we can output the register afterwards, do so, this
5456 saves the extra update.
5457 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5458 CALL_INSN - and it does not set CC0.
5459 But don't do this if we cannot directly address the
5460 memory location, since this will make it harder to
5461 reuse address reloads, and increases register pressure.
5462 Also don't do this if we can probably update x directly. */
5463 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5464 ? XEXP (x, 0)
5465 : reg_equiv_mem[regno]);
5466 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5467 if (insn && GET_CODE (insn) == INSN && equiv
5468 && memory_operand (equiv, GET_MODE (equiv))
5469 #ifdef HAVE_cc0
5470 && ! sets_cc0_p (PATTERN (insn))
5471 #endif
5472 && ! (icode != CODE_FOR_nothing
5473 && ((*insn_data[icode].operand[0].predicate)
5474 (equiv, Pmode))
5475 && ((*insn_data[icode].operand[1].predicate)
5476 (equiv, Pmode))))
5477 {
5478 /* We use the original pseudo for loc, so that
5479 emit_reload_insns() knows which pseudo this
5480 reload refers to and updates the pseudo rtx, not
5481 its equivalent memory location, as well as the
5482 corresponding entry in reg_last_reload_reg. */
5483 loc = &XEXP (x_orig, 0);
5484 x = XEXP (x, 0);
5485 reloadnum
5486 = push_reload (x, x, loc, loc,
5487 (context ? INDEX_REG_CLASS :
5488 MODE_BASE_REG_CLASS (mode)),
5489 GET_MODE (x), GET_MODE (x), 0, 0,
5490 opnum, RELOAD_OTHER);
5491 }
5492 else
5493 {
5494 reloadnum
5495 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5496 (context ? INDEX_REG_CLASS :
5497 MODE_BASE_REG_CLASS (mode)),
5498 GET_MODE (x), GET_MODE (x), 0, 0,
5499 opnum, type);
5500 rld[reloadnum].inc
5501 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5502
5503 value = 1;
5504 }
5505
5506 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5507 reloadnum);
5508 }
5509 return value;
5510 }
5511
5512 else if (GET_CODE (XEXP (x, 0)) == MEM)
5513 {
5514 /* This is probably the result of a substitution, by eliminate_regs,
5515 of an equivalent address for a pseudo that was not allocated to a
5516 hard register. Verify that the specified address is valid and
5517 reload it into a register. */
5518 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5519 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5520 rtx link;
5521 int reloadnum;
5522
5523 /* Since we know we are going to reload this item, don't decrement
5524 for the indirection level.
5525
5526 Note that this is actually conservative: it would be slightly
5527 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5528 reload1.c here. */
5529 /* We can't use ADDR_TYPE (type) here, because we need to
5530 write back the value after reading it, hence we actually
5531 need two registers. */
5532 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5533 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5534 opnum, type, ind_levels, insn);
5535
5536 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5537 (context ? INDEX_REG_CLASS :
5538 MODE_BASE_REG_CLASS (mode)),
5539 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5540 rld[reloadnum].inc
5541 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5542
5543 link = FIND_REG_INC_NOTE (this_insn, tem);
5544 if (link != 0)
5545 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5546
5547 return 1;
5548 }
5549 return 0;
5550
5551 case MEM:
5552 /* This is probably the result of a substitution, by eliminate_regs, of
5553 an equivalent address for a pseudo that was not allocated to a hard
5554 register. Verify that the specified address is valid and reload it
5555 into a register.
5556
5557 Since we know we are going to reload this item, don't decrement for
5558 the indirection level.
5559
5560 Note that this is actually conservative: it would be slightly more
5561 efficient to use the value of SPILL_INDIRECT_LEVELS from
5562 reload1.c here. */
5563
5564 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5565 opnum, ADDR_TYPE (type), ind_levels, insn);
5566 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5567 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5568 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5569 return 1;
5570
5571 case REG:
5572 {
5573 int regno = REGNO (x);
5574
5575 if (reg_equiv_constant[regno] != 0)
5576 {
5577 find_reloads_address_part (reg_equiv_constant[regno], loc,
5578 (context ? INDEX_REG_CLASS :
5579 MODE_BASE_REG_CLASS (mode)),
5580 GET_MODE (x), opnum, type, ind_levels);
5581 return 1;
5582 }
5583
5584 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5585 that feeds this insn. */
5586 if (reg_equiv_mem[regno] != 0)
5587 {
5588 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5589 (context ? INDEX_REG_CLASS :
5590 MODE_BASE_REG_CLASS (mode)),
5591 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5592 return 1;
5593 }
5594 #endif
5595
5596 if (reg_equiv_memory_loc[regno]
5597 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5598 {
5599 rtx tem = make_memloc (x, regno);
5600 if (reg_equiv_address[regno] != 0
5601 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5602 {
5603 x = tem;
5604 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5605 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5606 ind_levels, insn);
5607 }
5608 }
5609
5610 if (reg_renumber[regno] >= 0)
5611 regno = reg_renumber[regno];
5612
5613 if ((regno >= FIRST_PSEUDO_REGISTER
5614 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5615 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5616 {
5617 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5618 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5619 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5620 return 1;
5621 }
5622
5623 /* If a register appearing in an address is the subject of a CLOBBER
5624 in this insn, reload it into some other register to be safe.
5625 The CLOBBER is supposed to make the register unavailable
5626 from before this insn to after it. */
5627 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5628 {
5629 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5630 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5631 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5632 return 1;
5633 }
5634 }
5635 return 0;
5636
5637 case SUBREG:
5638 if (GET_CODE (SUBREG_REG (x)) == REG)
5639 {
5640 /* If this is a SUBREG of a hard register and the resulting register
5641 is of the wrong class, reload the whole SUBREG. This avoids
5642 needless copies if SUBREG_REG is multi-word. */
5643 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5644 {
5645 int regno = subreg_regno (x);
5646
5647 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5648 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5649 {
5650 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5651 (context ? INDEX_REG_CLASS :
5652 MODE_BASE_REG_CLASS (mode)),
5653 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5654 return 1;
5655 }
5656 }
5657 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5658 is larger than the class size, then reload the whole SUBREG. */
5659 else
5660 {
5661 enum reg_class class = (context ? INDEX_REG_CLASS
5662 : MODE_BASE_REG_CLASS (mode));
5663 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5664 > reg_class_size[class])
5665 {
5666 x = find_reloads_subreg_address (x, 0, opnum, type,
5667 ind_levels, insn);
5668 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5669 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5670 return 1;
5671 }
5672 }
5673 }
5674 break;
5675
5676 default:
5677 break;
5678 }
5679
5680 {
5681 const char *fmt = GET_RTX_FORMAT (code);
5682 int i;
5683
5684 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5685 {
5686 if (fmt[i] == 'e')
5687 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5688 opnum, type, ind_levels, insn);
5689 }
5690 }
5691
5692 return 0;
5693 }
5694 \f
5695 /* X, which is found at *LOC, is a part of an address that needs to be
5696 reloaded into a register of class CLASS. If X is a constant, or if
5697 X is a PLUS that contains a constant, check that the constant is a
5698 legitimate operand and that we are supposed to be able to load
5699 it into the register.
5700
5701 If not, force the constant into memory and reload the MEM instead.
5702
5703 MODE is the mode to use, in case X is an integer constant.
5704
5705 OPNUM and TYPE describe the purpose of any reloads made.
5706
5707 IND_LEVELS says how many levels of indirect addressing this machine
5708 supports. */
5709
5710 static void
5711 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5712 rtx x;
5713 rtx *loc;
5714 enum reg_class class;
5715 enum machine_mode mode;
5716 int opnum;
5717 enum reload_type type;
5718 int ind_levels;
5719 {
5720 if (CONSTANT_P (x)
5721 && (! LEGITIMATE_CONSTANT_P (x)
5722 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5723 {
5724 rtx tem;
5725
5726 tem = x = force_const_mem (mode, x);
5727 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5728 opnum, type, ind_levels, 0);
5729 }
5730
5731 else if (GET_CODE (x) == PLUS
5732 && CONSTANT_P (XEXP (x, 1))
5733 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5734 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5735 {
5736 rtx tem;
5737
5738 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5739 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5740 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5741 opnum, type, ind_levels, 0);
5742 }
5743
5744 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5745 mode, VOIDmode, 0, 0, opnum, type);
5746 }
5747 \f
5748 /* X, a subreg of a pseudo, is a part of an address that needs to be
5749 reloaded.
5750
5751 If the pseudo is equivalent to a memory location that cannot be directly
5752 addressed, make the necessary address reloads.
5753
5754 If address reloads have been necessary, or if the address is changed
5755 by register elimination, return the rtx of the memory location;
5756 otherwise, return X.
5757
5758 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5759 memory location.
5760
5761 OPNUM and TYPE identify the purpose of the reload.
5762
5763 IND_LEVELS says how many levels of indirect addressing are
5764 supported at this point in the address.
5765
5766 INSN, if nonzero, is the insn in which we do the reload. It is used
5767 to determine where to put USEs for pseudos that we have to replace with
5768 stack slots. */
5769
5770 static rtx
5771 find_reloads_subreg_address (x, force_replace, opnum, type,
5772 ind_levels, insn)
5773 rtx x;
5774 int force_replace;
5775 int opnum;
5776 enum reload_type type;
5777 int ind_levels;
5778 rtx insn;
5779 {
5780 int regno = REGNO (SUBREG_REG (x));
5781
5782 if (reg_equiv_memory_loc[regno])
5783 {
5784 /* If the address is not directly addressable, or if the address is not
5785 offsettable, then it must be replaced. */
5786 if (! force_replace
5787 && (reg_equiv_address[regno]
5788 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5789 force_replace = 1;
5790
5791 if (force_replace || num_not_at_initial_offset)
5792 {
5793 rtx tem = make_memloc (SUBREG_REG (x), regno);
5794
5795 /* If the address changes because of register elimination, then
5796 it must be replaced. */
5797 if (force_replace
5798 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5799 {
5800 int offset = SUBREG_BYTE (x);
5801 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5802 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5803
5804 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5805 PUT_MODE (tem, GET_MODE (x));
5806
5807 /* If this was a paradoxical subreg that we replaced, the
5808 resulting memory must be sufficiently aligned to allow
5809 us to widen the mode of the memory. */
5810 if (outer_size > inner_size && STRICT_ALIGNMENT)
5811 {
5812 rtx base;
5813
5814 base = XEXP (tem, 0);
5815 if (GET_CODE (base) == PLUS)
5816 {
5817 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5818 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5819 return x;
5820 base = XEXP (base, 0);
5821 }
5822 if (GET_CODE (base) != REG
5823 || (REGNO_POINTER_ALIGN (REGNO (base))
5824 < outer_size * BITS_PER_UNIT))
5825 return x;
5826 }
5827
5828 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5829 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5830 ind_levels, insn);
5831
5832 /* If this is not a toplevel operand, find_reloads doesn't see
5833 this substitution. We have to emit a USE of the pseudo so
5834 that delete_output_reload can see it. */
5835 if (replace_reloads && recog_data.operand[opnum] != x)
5836 /* We mark the USE with QImode so that we recognize it
5837 as one that can be safely deleted at the end of
5838 reload. */
5839 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5840 SUBREG_REG (x)),
5841 insn), QImode);
5842 x = tem;
5843 }
5844 }
5845 }
5846 return x;
5847 }
5848 \f
5849 /* Substitute into the current INSN the registers into which we have reloaded
5850 the things that need reloading. The array `replacements'
5851 contains the locations of all pointers that must be changed
5852 and says what to replace them with.
5853
5854 Return the rtx that X translates into; usually X, but modified. */
5855
5856 void
5857 subst_reloads (insn)
5858 rtx insn;
5859 {
5860 int i;
5861
5862 for (i = 0; i < n_replacements; i++)
5863 {
5864 struct replacement *r = &replacements[i];
5865 rtx reloadreg = rld[r->what].reg_rtx;
5866 if (reloadreg)
5867 {
5868 #ifdef ENABLE_CHECKING
5869 /* Internal consistency test. Check that we don't modify
5870 anything in the equivalence arrays. Whenever something from
5871 those arrays needs to be reloaded, it must be unshared before
5872 being substituted into; the equivalence must not be modified.
5873 Otherwise, if the equivalence is used after that, it will
5874 have been modified, and the thing substituted (probably a
5875 register) is likely overwritten and not a usable equivalence. */
5876 int check_regno;
5877
5878 for (check_regno = 0; check_regno < max_regno; check_regno++)
5879 {
5880 #define CHECK_MODF(ARRAY) \
5881 if (ARRAY[check_regno] \
5882 && loc_mentioned_in_p (r->where, \
5883 ARRAY[check_regno])) \
5884 abort ()
5885
5886 CHECK_MODF (reg_equiv_constant);
5887 CHECK_MODF (reg_equiv_memory_loc);
5888 CHECK_MODF (reg_equiv_address);
5889 CHECK_MODF (reg_equiv_mem);
5890 #undef CHECK_MODF
5891 }
5892 #endif /* ENABLE_CHECKING */
5893
5894 /* If we're replacing a LABEL_REF with a register, add a
5895 REG_LABEL note to indicate to flow which label this
5896 register refers to. */
5897 if (GET_CODE (*r->where) == LABEL_REF
5898 && GET_CODE (insn) == JUMP_INSN)
5899 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5900 XEXP (*r->where, 0),
5901 REG_NOTES (insn));
5902
5903 /* Encapsulate RELOADREG so its machine mode matches what
5904 used to be there. Note that gen_lowpart_common will
5905 do the wrong thing if RELOADREG is multi-word. RELOADREG
5906 will always be a REG here. */
5907 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5908 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5909
5910 /* If we are putting this into a SUBREG and RELOADREG is a
5911 SUBREG, we would be making nested SUBREGs, so we have to fix
5912 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5913
5914 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5915 {
5916 if (GET_MODE (*r->subreg_loc)
5917 == GET_MODE (SUBREG_REG (reloadreg)))
5918 *r->subreg_loc = SUBREG_REG (reloadreg);
5919 else
5920 {
5921 int final_offset =
5922 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5923
5924 /* When working with SUBREGs the rule is that the byte
5925 offset must be a multiple of the SUBREG's mode. */
5926 final_offset = (final_offset /
5927 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5928 final_offset = (final_offset *
5929 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5930
5931 *r->where = SUBREG_REG (reloadreg);
5932 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5933 }
5934 }
5935 else
5936 *r->where = reloadreg;
5937 }
5938 /* If reload got no reg and isn't optional, something's wrong. */
5939 else if (! rld[r->what].optional)
5940 abort ();
5941 }
5942 }
5943 \f
5944 /* Make a copy of any replacements being done into X and move those
5945 copies to locations in Y, a copy of X. */
5946
5947 void
5948 copy_replacements (x, y)
5949 rtx x, y;
5950 {
5951 /* We can't support X being a SUBREG because we might then need to know its
5952 location if something inside it was replaced. */
5953 if (GET_CODE (x) == SUBREG)
5954 abort ();
5955
5956 copy_replacements_1 (&x, &y, n_replacements);
5957 }
5958
5959 static void
5960 copy_replacements_1 (px, py, orig_replacements)
5961 rtx *px;
5962 rtx *py;
5963 int orig_replacements;
5964 {
5965 int i, j;
5966 rtx x, y;
5967 struct replacement *r;
5968 enum rtx_code code;
5969 const char *fmt;
5970
5971 for (j = 0; j < orig_replacements; j++)
5972 {
5973 if (replacements[j].subreg_loc == px)
5974 {
5975 r = &replacements[n_replacements++];
5976 r->where = replacements[j].where;
5977 r->subreg_loc = py;
5978 r->what = replacements[j].what;
5979 r->mode = replacements[j].mode;
5980 }
5981 else if (replacements[j].where == px)
5982 {
5983 r = &replacements[n_replacements++];
5984 r->where = py;
5985 r->subreg_loc = 0;
5986 r->what = replacements[j].what;
5987 r->mode = replacements[j].mode;
5988 }
5989 }
5990
5991 x = *px;
5992 y = *py;
5993 code = GET_CODE (x);
5994 fmt = GET_RTX_FORMAT (code);
5995
5996 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5997 {
5998 if (fmt[i] == 'e')
5999 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6000 else if (fmt[i] == 'E')
6001 for (j = XVECLEN (x, i); --j >= 0; )
6002 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6003 orig_replacements);
6004 }
6005 }
6006
6007 /* Change any replacements being done to *X to be done to *Y. */
6008
6009 void
6010 move_replacements (x, y)
6011 rtx *x;
6012 rtx *y;
6013 {
6014 int i;
6015
6016 for (i = 0; i < n_replacements; i++)
6017 if (replacements[i].subreg_loc == x)
6018 replacements[i].subreg_loc = y;
6019 else if (replacements[i].where == x)
6020 {
6021 replacements[i].where = y;
6022 replacements[i].subreg_loc = 0;
6023 }
6024 }
6025 \f
6026 /* If LOC was scheduled to be replaced by something, return the replacement.
6027 Otherwise, return *LOC. */
6028
6029 rtx
6030 find_replacement (loc)
6031 rtx *loc;
6032 {
6033 struct replacement *r;
6034
6035 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6036 {
6037 rtx reloadreg = rld[r->what].reg_rtx;
6038
6039 if (reloadreg && r->where == loc)
6040 {
6041 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6042 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6043
6044 return reloadreg;
6045 }
6046 else if (reloadreg && r->subreg_loc == loc)
6047 {
6048 /* RELOADREG must be either a REG or a SUBREG.
6049
6050 ??? Is it actually still ever a SUBREG? If so, why? */
6051
6052 if (GET_CODE (reloadreg) == REG)
6053 return gen_rtx_REG (GET_MODE (*loc),
6054 (REGNO (reloadreg) +
6055 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6056 GET_MODE (SUBREG_REG (*loc)),
6057 SUBREG_BYTE (*loc),
6058 GET_MODE (*loc))));
6059 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6060 return reloadreg;
6061 else
6062 {
6063 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6064
6065 /* When working with SUBREGs the rule is that the byte
6066 offset must be a multiple of the SUBREG's mode. */
6067 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6068 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6069 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6070 final_offset);
6071 }
6072 }
6073 }
6074
6075 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6076 what's inside and make a new rtl if so. */
6077 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6078 || GET_CODE (*loc) == MULT)
6079 {
6080 rtx x = find_replacement (&XEXP (*loc, 0));
6081 rtx y = find_replacement (&XEXP (*loc, 1));
6082
6083 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6084 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6085 }
6086
6087 return *loc;
6088 }
6089 \f
6090 /* Return nonzero if register in range [REGNO, ENDREGNO)
6091 appears either explicitly or implicitly in X
6092 other than being stored into (except for earlyclobber operands).
6093
6094 References contained within the substructure at LOC do not count.
6095 LOC may be zero, meaning don't ignore anything.
6096
6097 This is similar to refers_to_regno_p in rtlanal.c except that we
6098 look at equivalences for pseudos that didn't get hard registers. */
6099
6100 int
6101 refers_to_regno_for_reload_p (regno, endregno, x, loc)
6102 unsigned int regno, endregno;
6103 rtx x;
6104 rtx *loc;
6105 {
6106 int i;
6107 unsigned int r;
6108 RTX_CODE code;
6109 const char *fmt;
6110
6111 if (x == 0)
6112 return 0;
6113
6114 repeat:
6115 code = GET_CODE (x);
6116
6117 switch (code)
6118 {
6119 case REG:
6120 r = REGNO (x);
6121
6122 /* If this is a pseudo, a hard register must not have been allocated.
6123 X must therefore either be a constant or be in memory. */
6124 if (r >= FIRST_PSEUDO_REGISTER)
6125 {
6126 if (reg_equiv_memory_loc[r])
6127 return refers_to_regno_for_reload_p (regno, endregno,
6128 reg_equiv_memory_loc[r],
6129 (rtx*) 0);
6130
6131 if (reg_equiv_constant[r])
6132 return 0;
6133
6134 abort ();
6135 }
6136
6137 return (endregno > r
6138 && regno < r + (r < FIRST_PSEUDO_REGISTER
6139 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6140 : 1));
6141
6142 case SUBREG:
6143 /* If this is a SUBREG of a hard reg, we can see exactly which
6144 registers are being modified. Otherwise, handle normally. */
6145 if (GET_CODE (SUBREG_REG (x)) == REG
6146 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6147 {
6148 unsigned int inner_regno = subreg_regno (x);
6149 unsigned int inner_endregno
6150 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6151 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6152
6153 return endregno > inner_regno && regno < inner_endregno;
6154 }
6155 break;
6156
6157 case CLOBBER:
6158 case SET:
6159 if (&SET_DEST (x) != loc
6160 /* Note setting a SUBREG counts as referring to the REG it is in for
6161 a pseudo but not for hard registers since we can
6162 treat each word individually. */
6163 && ((GET_CODE (SET_DEST (x)) == SUBREG
6164 && loc != &SUBREG_REG (SET_DEST (x))
6165 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6166 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6167 && refers_to_regno_for_reload_p (regno, endregno,
6168 SUBREG_REG (SET_DEST (x)),
6169 loc))
6170 /* If the output is an earlyclobber operand, this is
6171 a conflict. */
6172 || ((GET_CODE (SET_DEST (x)) != REG
6173 || earlyclobber_operand_p (SET_DEST (x)))
6174 && refers_to_regno_for_reload_p (regno, endregno,
6175 SET_DEST (x), loc))))
6176 return 1;
6177
6178 if (code == CLOBBER || loc == &SET_SRC (x))
6179 return 0;
6180 x = SET_SRC (x);
6181 goto repeat;
6182
6183 default:
6184 break;
6185 }
6186
6187 /* X does not match, so try its subexpressions. */
6188
6189 fmt = GET_RTX_FORMAT (code);
6190 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6191 {
6192 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6193 {
6194 if (i == 0)
6195 {
6196 x = XEXP (x, 0);
6197 goto repeat;
6198 }
6199 else
6200 if (refers_to_regno_for_reload_p (regno, endregno,
6201 XEXP (x, i), loc))
6202 return 1;
6203 }
6204 else if (fmt[i] == 'E')
6205 {
6206 int j;
6207 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6208 if (loc != &XVECEXP (x, i, j)
6209 && refers_to_regno_for_reload_p (regno, endregno,
6210 XVECEXP (x, i, j), loc))
6211 return 1;
6212 }
6213 }
6214 return 0;
6215 }
6216
6217 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6218 we check if any register number in X conflicts with the relevant register
6219 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6220 contains a MEM (we don't bother checking for memory addresses that can't
6221 conflict because we expect this to be a rare case.
6222
6223 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6224 that we look at equivalences for pseudos that didn't get hard registers. */
6225
6226 int
6227 reg_overlap_mentioned_for_reload_p (x, in)
6228 rtx x, in;
6229 {
6230 int regno, endregno;
6231
6232 /* Overly conservative. */
6233 if (GET_CODE (x) == STRICT_LOW_PART
6234 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6235 x = XEXP (x, 0);
6236
6237 /* If either argument is a constant, then modifying X can not affect IN. */
6238 if (CONSTANT_P (x) || CONSTANT_P (in))
6239 return 0;
6240 else if (GET_CODE (x) == SUBREG)
6241 {
6242 regno = REGNO (SUBREG_REG (x));
6243 if (regno < FIRST_PSEUDO_REGISTER)
6244 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6245 GET_MODE (SUBREG_REG (x)),
6246 SUBREG_BYTE (x),
6247 GET_MODE (x));
6248 }
6249 else if (GET_CODE (x) == REG)
6250 {
6251 regno = REGNO (x);
6252
6253 /* If this is a pseudo, it must not have been assigned a hard register.
6254 Therefore, it must either be in memory or be a constant. */
6255
6256 if (regno >= FIRST_PSEUDO_REGISTER)
6257 {
6258 if (reg_equiv_memory_loc[regno])
6259 return refers_to_mem_for_reload_p (in);
6260 else if (reg_equiv_constant[regno])
6261 return 0;
6262 abort ();
6263 }
6264 }
6265 else if (GET_CODE (x) == MEM)
6266 return refers_to_mem_for_reload_p (in);
6267 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6268 || GET_CODE (x) == CC0)
6269 return reg_mentioned_p (x, in);
6270 else if (GET_CODE (x) == PLUS)
6271 return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6272 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6273 else
6274 abort ();
6275
6276 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6277 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6278
6279 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6280 }
6281
6282 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6283 registers. */
6284
6285 int
6286 refers_to_mem_for_reload_p (x)
6287 rtx x;
6288 {
6289 const char *fmt;
6290 int i;
6291
6292 if (GET_CODE (x) == MEM)
6293 return 1;
6294
6295 if (GET_CODE (x) == REG)
6296 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6297 && reg_equiv_memory_loc[REGNO (x)]);
6298
6299 fmt = GET_RTX_FORMAT (GET_CODE (x));
6300 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6301 if (fmt[i] == 'e'
6302 && (GET_CODE (XEXP (x, i)) == MEM
6303 || refers_to_mem_for_reload_p (XEXP (x, i))))
6304 return 1;
6305
6306 return 0;
6307 }
6308 \f
6309 /* Check the insns before INSN to see if there is a suitable register
6310 containing the same value as GOAL.
6311 If OTHER is -1, look for a register in class CLASS.
6312 Otherwise, just see if register number OTHER shares GOAL's value.
6313
6314 Return an rtx for the register found, or zero if none is found.
6315
6316 If RELOAD_REG_P is (short *)1,
6317 we reject any hard reg that appears in reload_reg_rtx
6318 because such a hard reg is also needed coming into this insn.
6319
6320 If RELOAD_REG_P is any other nonzero value,
6321 it is a vector indexed by hard reg number
6322 and we reject any hard reg whose element in the vector is nonnegative
6323 as well as any that appears in reload_reg_rtx.
6324
6325 If GOAL is zero, then GOALREG is a register number; we look
6326 for an equivalent for that register.
6327
6328 MODE is the machine mode of the value we want an equivalence for.
6329 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6330
6331 This function is used by jump.c as well as in the reload pass.
6332
6333 If GOAL is the sum of the stack pointer and a constant, we treat it
6334 as if it were a constant except that sp is required to be unchanging. */
6335
6336 rtx
6337 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6338 rtx goal;
6339 rtx insn;
6340 enum reg_class class;
6341 int other;
6342 short *reload_reg_p;
6343 int goalreg;
6344 enum machine_mode mode;
6345 {
6346 rtx p = insn;
6347 rtx goaltry, valtry, value, where;
6348 rtx pat;
6349 int regno = -1;
6350 int valueno;
6351 int goal_mem = 0;
6352 int goal_const = 0;
6353 int goal_mem_addr_varies = 0;
6354 int need_stable_sp = 0;
6355 int nregs;
6356 int valuenregs;
6357
6358 if (goal == 0)
6359 regno = goalreg;
6360 else if (GET_CODE (goal) == REG)
6361 regno = REGNO (goal);
6362 else if (GET_CODE (goal) == MEM)
6363 {
6364 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6365 if (MEM_VOLATILE_P (goal))
6366 return 0;
6367 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6368 return 0;
6369 /* An address with side effects must be reexecuted. */
6370 switch (code)
6371 {
6372 case POST_INC:
6373 case PRE_INC:
6374 case POST_DEC:
6375 case PRE_DEC:
6376 case POST_MODIFY:
6377 case PRE_MODIFY:
6378 return 0;
6379 default:
6380 break;
6381 }
6382 goal_mem = 1;
6383 }
6384 else if (CONSTANT_P (goal))
6385 goal_const = 1;
6386 else if (GET_CODE (goal) == PLUS
6387 && XEXP (goal, 0) == stack_pointer_rtx
6388 && CONSTANT_P (XEXP (goal, 1)))
6389 goal_const = need_stable_sp = 1;
6390 else if (GET_CODE (goal) == PLUS
6391 && XEXP (goal, 0) == frame_pointer_rtx
6392 && CONSTANT_P (XEXP (goal, 1)))
6393 goal_const = 1;
6394 else
6395 return 0;
6396
6397 /* Scan insns back from INSN, looking for one that copies
6398 a value into or out of GOAL.
6399 Stop and give up if we reach a label. */
6400
6401 while (1)
6402 {
6403 p = PREV_INSN (p);
6404 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6405 return 0;
6406
6407 if (GET_CODE (p) == INSN
6408 /* If we don't want spill regs ... */
6409 && (! (reload_reg_p != 0
6410 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6411 /* ... then ignore insns introduced by reload; they aren't
6412 useful and can cause results in reload_as_needed to be
6413 different from what they were when calculating the need for
6414 spills. If we notice an input-reload insn here, we will
6415 reject it below, but it might hide a usable equivalent.
6416 That makes bad code. It may even abort: perhaps no reg was
6417 spilled for this insn because it was assumed we would find
6418 that equivalent. */
6419 || INSN_UID (p) < reload_first_uid))
6420 {
6421 rtx tem;
6422 pat = single_set (p);
6423
6424 /* First check for something that sets some reg equal to GOAL. */
6425 if (pat != 0
6426 && ((regno >= 0
6427 && true_regnum (SET_SRC (pat)) == regno
6428 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6429 ||
6430 (regno >= 0
6431 && true_regnum (SET_DEST (pat)) == regno
6432 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6433 ||
6434 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6435 /* When looking for stack pointer + const,
6436 make sure we don't use a stack adjust. */
6437 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6438 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6439 || (goal_mem
6440 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6441 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6442 || (goal_mem
6443 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6444 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6445 /* If we are looking for a constant,
6446 and something equivalent to that constant was copied
6447 into a reg, we can use that reg. */
6448 || (goal_const && REG_NOTES (p) != 0
6449 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6450 && ((rtx_equal_p (XEXP (tem, 0), goal)
6451 && (valueno
6452 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6453 || (GET_CODE (SET_DEST (pat)) == REG
6454 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6455 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6456 == MODE_FLOAT)
6457 && GET_CODE (goal) == CONST_INT
6458 && 0 != (goaltry
6459 = operand_subword (XEXP (tem, 0), 0, 0,
6460 VOIDmode))
6461 && rtx_equal_p (goal, goaltry)
6462 && (valtry
6463 = operand_subword (SET_DEST (pat), 0, 0,
6464 VOIDmode))
6465 && (valueno = true_regnum (valtry)) >= 0)))
6466 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6467 NULL_RTX))
6468 && GET_CODE (SET_DEST (pat)) == REG
6469 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6470 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6471 == MODE_FLOAT)
6472 && GET_CODE (goal) == CONST_INT
6473 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6474 VOIDmode))
6475 && rtx_equal_p (goal, goaltry)
6476 && (valtry
6477 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6478 && (valueno = true_regnum (valtry)) >= 0)))
6479 {
6480 if (other >= 0)
6481 {
6482 if (valueno != other)
6483 continue;
6484 }
6485 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6486 continue;
6487 else
6488 {
6489 int i;
6490
6491 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6492 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6493 valueno + i))
6494 break;
6495 if (i >= 0)
6496 continue;
6497 }
6498 value = valtry;
6499 where = p;
6500 break;
6501 }
6502 }
6503 }
6504
6505 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6506 (or copying VALUE into GOAL, if GOAL is also a register).
6507 Now verify that VALUE is really valid. */
6508
6509 /* VALUENO is the register number of VALUE; a hard register. */
6510
6511 /* Don't try to re-use something that is killed in this insn. We want
6512 to be able to trust REG_UNUSED notes. */
6513 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6514 return 0;
6515
6516 /* If we propose to get the value from the stack pointer or if GOAL is
6517 a MEM based on the stack pointer, we need a stable SP. */
6518 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6519 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6520 goal)))
6521 need_stable_sp = 1;
6522
6523 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6524 if (GET_MODE (value) != mode)
6525 return 0;
6526
6527 /* Reject VALUE if it was loaded from GOAL
6528 and is also a register that appears in the address of GOAL. */
6529
6530 if (goal_mem && value == SET_DEST (single_set (where))
6531 && refers_to_regno_for_reload_p (valueno,
6532 (valueno
6533 + HARD_REGNO_NREGS (valueno, mode)),
6534 goal, (rtx*) 0))
6535 return 0;
6536
6537 /* Reject registers that overlap GOAL. */
6538
6539 if (!goal_mem && !goal_const
6540 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6541 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6542 return 0;
6543
6544 nregs = HARD_REGNO_NREGS (regno, mode);
6545 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6546
6547 /* Reject VALUE if it is one of the regs reserved for reloads.
6548 Reload1 knows how to reuse them anyway, and it would get
6549 confused if we allocated one without its knowledge.
6550 (Now that insns introduced by reload are ignored above,
6551 this case shouldn't happen, but I'm not positive.) */
6552
6553 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6554 {
6555 int i;
6556 for (i = 0; i < valuenregs; ++i)
6557 if (reload_reg_p[valueno + i] >= 0)
6558 return 0;
6559 }
6560
6561 /* Reject VALUE if it is a register being used for an input reload
6562 even if it is not one of those reserved. */
6563
6564 if (reload_reg_p != 0)
6565 {
6566 int i;
6567 for (i = 0; i < n_reloads; i++)
6568 if (rld[i].reg_rtx != 0 && rld[i].in)
6569 {
6570 int regno1 = REGNO (rld[i].reg_rtx);
6571 int nregs1 = HARD_REGNO_NREGS (regno1,
6572 GET_MODE (rld[i].reg_rtx));
6573 if (regno1 < valueno + valuenregs
6574 && regno1 + nregs1 > valueno)
6575 return 0;
6576 }
6577 }
6578
6579 if (goal_mem)
6580 /* We must treat frame pointer as varying here,
6581 since it can vary--in a nonlocal goto as generated by expand_goto. */
6582 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6583
6584 /* Now verify that the values of GOAL and VALUE remain unaltered
6585 until INSN is reached. */
6586
6587 p = insn;
6588 while (1)
6589 {
6590 p = PREV_INSN (p);
6591 if (p == where)
6592 return value;
6593
6594 /* Don't trust the conversion past a function call
6595 if either of the two is in a call-clobbered register, or memory. */
6596 if (GET_CODE (p) == CALL_INSN)
6597 {
6598 int i;
6599
6600 if (goal_mem || need_stable_sp)
6601 return 0;
6602
6603 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6604 for (i = 0; i < nregs; ++i)
6605 if (call_used_regs[regno + i])
6606 return 0;
6607
6608 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6609 for (i = 0; i < valuenregs; ++i)
6610 if (call_used_regs[valueno + i])
6611 return 0;
6612 #ifdef NON_SAVING_SETJMP
6613 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6614 return 0;
6615 #endif
6616 }
6617
6618 if (INSN_P (p))
6619 {
6620 pat = PATTERN (p);
6621
6622 /* Watch out for unspec_volatile, and volatile asms. */
6623 if (volatile_insn_p (pat))
6624 return 0;
6625
6626 /* If this insn P stores in either GOAL or VALUE, return 0.
6627 If GOAL is a memory ref and this insn writes memory, return 0.
6628 If GOAL is a memory ref and its address is not constant,
6629 and this insn P changes a register used in GOAL, return 0. */
6630
6631 if (GET_CODE (pat) == COND_EXEC)
6632 pat = COND_EXEC_CODE (pat);
6633 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6634 {
6635 rtx dest = SET_DEST (pat);
6636 while (GET_CODE (dest) == SUBREG
6637 || GET_CODE (dest) == ZERO_EXTRACT
6638 || GET_CODE (dest) == SIGN_EXTRACT
6639 || GET_CODE (dest) == STRICT_LOW_PART)
6640 dest = XEXP (dest, 0);
6641 if (GET_CODE (dest) == REG)
6642 {
6643 int xregno = REGNO (dest);
6644 int xnregs;
6645 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6646 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6647 else
6648 xnregs = 1;
6649 if (xregno < regno + nregs && xregno + xnregs > regno)
6650 return 0;
6651 if (xregno < valueno + valuenregs
6652 && xregno + xnregs > valueno)
6653 return 0;
6654 if (goal_mem_addr_varies
6655 && reg_overlap_mentioned_for_reload_p (dest, goal))
6656 return 0;
6657 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6658 return 0;
6659 }
6660 else if (goal_mem && GET_CODE (dest) == MEM
6661 && ! push_operand (dest, GET_MODE (dest)))
6662 return 0;
6663 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6664 && reg_equiv_memory_loc[regno] != 0)
6665 return 0;
6666 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6667 return 0;
6668 }
6669 else if (GET_CODE (pat) == PARALLEL)
6670 {
6671 int i;
6672 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6673 {
6674 rtx v1 = XVECEXP (pat, 0, i);
6675 if (GET_CODE (v1) == COND_EXEC)
6676 v1 = COND_EXEC_CODE (v1);
6677 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6678 {
6679 rtx dest = SET_DEST (v1);
6680 while (GET_CODE (dest) == SUBREG
6681 || GET_CODE (dest) == ZERO_EXTRACT
6682 || GET_CODE (dest) == SIGN_EXTRACT
6683 || GET_CODE (dest) == STRICT_LOW_PART)
6684 dest = XEXP (dest, 0);
6685 if (GET_CODE (dest) == REG)
6686 {
6687 int xregno = REGNO (dest);
6688 int xnregs;
6689 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6690 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6691 else
6692 xnregs = 1;
6693 if (xregno < regno + nregs
6694 && xregno + xnregs > regno)
6695 return 0;
6696 if (xregno < valueno + valuenregs
6697 && xregno + xnregs > valueno)
6698 return 0;
6699 if (goal_mem_addr_varies
6700 && reg_overlap_mentioned_for_reload_p (dest,
6701 goal))
6702 return 0;
6703 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6704 return 0;
6705 }
6706 else if (goal_mem && GET_CODE (dest) == MEM
6707 && ! push_operand (dest, GET_MODE (dest)))
6708 return 0;
6709 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6710 && reg_equiv_memory_loc[regno] != 0)
6711 return 0;
6712 else if (need_stable_sp
6713 && push_operand (dest, GET_MODE (dest)))
6714 return 0;
6715 }
6716 }
6717 }
6718
6719 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6720 {
6721 rtx link;
6722
6723 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6724 link = XEXP (link, 1))
6725 {
6726 pat = XEXP (link, 0);
6727 if (GET_CODE (pat) == CLOBBER)
6728 {
6729 rtx dest = SET_DEST (pat);
6730
6731 if (GET_CODE (dest) == REG)
6732 {
6733 int xregno = REGNO (dest);
6734 int xnregs
6735 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6736
6737 if (xregno < regno + nregs
6738 && xregno + xnregs > regno)
6739 return 0;
6740 else if (xregno < valueno + valuenregs
6741 && xregno + xnregs > valueno)
6742 return 0;
6743 else if (goal_mem_addr_varies
6744 && reg_overlap_mentioned_for_reload_p (dest,
6745 goal))
6746 return 0;
6747 }
6748
6749 else if (goal_mem && GET_CODE (dest) == MEM
6750 && ! push_operand (dest, GET_MODE (dest)))
6751 return 0;
6752 else if (need_stable_sp
6753 && push_operand (dest, GET_MODE (dest)))
6754 return 0;
6755 }
6756 }
6757 }
6758
6759 #ifdef AUTO_INC_DEC
6760 /* If this insn auto-increments or auto-decrements
6761 either regno or valueno, return 0 now.
6762 If GOAL is a memory ref and its address is not constant,
6763 and this insn P increments a register used in GOAL, return 0. */
6764 {
6765 rtx link;
6766
6767 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6768 if (REG_NOTE_KIND (link) == REG_INC
6769 && GET_CODE (XEXP (link, 0)) == REG)
6770 {
6771 int incno = REGNO (XEXP (link, 0));
6772 if (incno < regno + nregs && incno >= regno)
6773 return 0;
6774 if (incno < valueno + valuenregs && incno >= valueno)
6775 return 0;
6776 if (goal_mem_addr_varies
6777 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6778 goal))
6779 return 0;
6780 }
6781 }
6782 #endif
6783 }
6784 }
6785 }
6786 \f
6787 /* Find a place where INCED appears in an increment or decrement operator
6788 within X, and return the amount INCED is incremented or decremented by.
6789 The value is always positive. */
6790
6791 static int
6792 find_inc_amount (x, inced)
6793 rtx x, inced;
6794 {
6795 enum rtx_code code = GET_CODE (x);
6796 const char *fmt;
6797 int i;
6798
6799 if (code == MEM)
6800 {
6801 rtx addr = XEXP (x, 0);
6802 if ((GET_CODE (addr) == PRE_DEC
6803 || GET_CODE (addr) == POST_DEC
6804 || GET_CODE (addr) == PRE_INC
6805 || GET_CODE (addr) == POST_INC)
6806 && XEXP (addr, 0) == inced)
6807 return GET_MODE_SIZE (GET_MODE (x));
6808 else if ((GET_CODE (addr) == PRE_MODIFY
6809 || GET_CODE (addr) == POST_MODIFY)
6810 && GET_CODE (XEXP (addr, 1)) == PLUS
6811 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6812 && XEXP (addr, 0) == inced
6813 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6814 {
6815 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6816 return i < 0 ? -i : i;
6817 }
6818 }
6819
6820 fmt = GET_RTX_FORMAT (code);
6821 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6822 {
6823 if (fmt[i] == 'e')
6824 {
6825 int tem = find_inc_amount (XEXP (x, i), inced);
6826 if (tem != 0)
6827 return tem;
6828 }
6829 if (fmt[i] == 'E')
6830 {
6831 int j;
6832 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6833 {
6834 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6835 if (tem != 0)
6836 return tem;
6837 }
6838 }
6839 }
6840
6841 return 0;
6842 }
6843 \f
6844 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6845 If SETS is nonzero, also consider SETs. */
6846
6847 int
6848 regno_clobbered_p (regno, insn, mode, sets)
6849 unsigned int regno;
6850 rtx insn;
6851 enum machine_mode mode;
6852 int sets;
6853 {
6854 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6855 unsigned int endregno = regno + nregs;
6856
6857 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6858 || (sets && GET_CODE (PATTERN (insn)) == SET))
6859 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6860 {
6861 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6862
6863 return test >= regno && test < endregno;
6864 }
6865
6866 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6867 {
6868 int i = XVECLEN (PATTERN (insn), 0) - 1;
6869
6870 for (; i >= 0; i--)
6871 {
6872 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6873 if ((GET_CODE (elt) == CLOBBER
6874 || (sets && GET_CODE (PATTERN (insn)) == SET))
6875 && GET_CODE (XEXP (elt, 0)) == REG)
6876 {
6877 unsigned int test = REGNO (XEXP (elt, 0));
6878
6879 if (test >= regno && test < endregno)
6880 return 1;
6881 }
6882 }
6883 }
6884
6885 return 0;
6886 }
6887
6888 static const char *const reload_when_needed_name[] =
6889 {
6890 "RELOAD_FOR_INPUT",
6891 "RELOAD_FOR_OUTPUT",
6892 "RELOAD_FOR_INSN",
6893 "RELOAD_FOR_INPUT_ADDRESS",
6894 "RELOAD_FOR_INPADDR_ADDRESS",
6895 "RELOAD_FOR_OUTPUT_ADDRESS",
6896 "RELOAD_FOR_OUTADDR_ADDRESS",
6897 "RELOAD_FOR_OPERAND_ADDRESS",
6898 "RELOAD_FOR_OPADDR_ADDR",
6899 "RELOAD_OTHER",
6900 "RELOAD_FOR_OTHER_ADDRESS"
6901 };
6902
6903 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6904
6905 /* These functions are used to print the variables set by 'find_reloads' */
6906
6907 void
6908 debug_reload_to_stream (f)
6909 FILE *f;
6910 {
6911 int r;
6912 const char *prefix;
6913
6914 if (! f)
6915 f = stderr;
6916 for (r = 0; r < n_reloads; r++)
6917 {
6918 fprintf (f, "Reload %d: ", r);
6919
6920 if (rld[r].in != 0)
6921 {
6922 fprintf (f, "reload_in (%s) = ",
6923 GET_MODE_NAME (rld[r].inmode));
6924 print_inline_rtx (f, rld[r].in, 24);
6925 fprintf (f, "\n\t");
6926 }
6927
6928 if (rld[r].out != 0)
6929 {
6930 fprintf (f, "reload_out (%s) = ",
6931 GET_MODE_NAME (rld[r].outmode));
6932 print_inline_rtx (f, rld[r].out, 24);
6933 fprintf (f, "\n\t");
6934 }
6935
6936 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6937
6938 fprintf (f, "%s (opnum = %d)",
6939 reload_when_needed_name[(int) rld[r].when_needed],
6940 rld[r].opnum);
6941
6942 if (rld[r].optional)
6943 fprintf (f, ", optional");
6944
6945 if (rld[r].nongroup)
6946 fprintf (f, ", nongroup");
6947
6948 if (rld[r].inc != 0)
6949 fprintf (f, ", inc by %d", rld[r].inc);
6950
6951 if (rld[r].nocombine)
6952 fprintf (f, ", can't combine");
6953
6954 if (rld[r].secondary_p)
6955 fprintf (f, ", secondary_reload_p");
6956
6957 if (rld[r].in_reg != 0)
6958 {
6959 fprintf (f, "\n\treload_in_reg: ");
6960 print_inline_rtx (f, rld[r].in_reg, 24);
6961 }
6962
6963 if (rld[r].out_reg != 0)
6964 {
6965 fprintf (f, "\n\treload_out_reg: ");
6966 print_inline_rtx (f, rld[r].out_reg, 24);
6967 }
6968
6969 if (rld[r].reg_rtx != 0)
6970 {
6971 fprintf (f, "\n\treload_reg_rtx: ");
6972 print_inline_rtx (f, rld[r].reg_rtx, 24);
6973 }
6974
6975 prefix = "\n\t";
6976 if (rld[r].secondary_in_reload != -1)
6977 {
6978 fprintf (f, "%ssecondary_in_reload = %d",
6979 prefix, rld[r].secondary_in_reload);
6980 prefix = ", ";
6981 }
6982
6983 if (rld[r].secondary_out_reload != -1)
6984 fprintf (f, "%ssecondary_out_reload = %d\n",
6985 prefix, rld[r].secondary_out_reload);
6986
6987 prefix = "\n\t";
6988 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6989 {
6990 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6991 insn_data[rld[r].secondary_in_icode].name);
6992 prefix = ", ";
6993 }
6994
6995 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6996 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6997 insn_data[rld[r].secondary_out_icode].name);
6998
6999 fprintf (f, "\n");
7000 }
7001 }
7002
7003 void
7004 debug_reload ()
7005 {
7006 debug_reload_to_stream (stderr);
7007 }