bitmap.c: Change NULL_PTR to NULL or "(rtx*)0".
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57 NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
72
73 Using a reload register for several reloads in one insn:
74
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
78
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
82
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
86
87 #define REG_OK_STRICT
88
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "recog.h"
95 #include "reload.h"
96 #include "regs.h"
97 #include "hard-reg-set.h"
98 #include "flags.h"
99 #include "real.h"
100 #include "output.h"
101 #include "function.h"
102 #include "expr.h"
103 #include "toplev.h"
104
105 #ifndef REGISTER_MOVE_COST
106 #define REGISTER_MOVE_COST(m, x, y) 2
107 #endif
108
109 #ifndef REGNO_MODE_OK_FOR_BASE_P
110 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
111 #endif
112
113 #ifndef REG_MODE_OK_FOR_BASE_P
114 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
115 #endif
116 \f
117 /* All reloads of the current insn are recorded here. See reload.h for
118 comments. */
119 int n_reloads;
120 struct reload rld[MAX_RELOADS];
121
122 /* All the "earlyclobber" operands of the current insn
123 are recorded here. */
124 int n_earlyclobbers;
125 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
126
127 int reload_n_operands;
128
129 /* Replacing reloads.
130
131 If `replace_reloads' is nonzero, then as each reload is recorded
132 an entry is made for it in the table `replacements'.
133 Then later `subst_reloads' can look through that table and
134 perform all the replacements needed. */
135
136 /* Nonzero means record the places to replace. */
137 static int replace_reloads;
138
139 /* Each replacement is recorded with a structure like this. */
140 struct replacement
141 {
142 rtx *where; /* Location to store in */
143 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
144 a SUBREG; 0 otherwise. */
145 int what; /* which reload this is for */
146 enum machine_mode mode; /* mode it must have */
147 };
148
149 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
150
151 /* Number of replacements currently recorded. */
152 static int n_replacements;
153
154 /* Used to track what is modified by an operand. */
155 struct decomposition
156 {
157 int reg_flag; /* Nonzero if referencing a register. */
158 int safe; /* Nonzero if this can't conflict with anything. */
159 rtx base; /* Base address for MEM. */
160 HOST_WIDE_INT start; /* Starting offset or register number. */
161 HOST_WIDE_INT end; /* Ending offset or register number. */
162 };
163
164 #ifdef SECONDARY_MEMORY_NEEDED
165
166 /* Save MEMs needed to copy from one class of registers to another. One MEM
167 is used per mode, but normally only one or two modes are ever used.
168
169 We keep two versions, before and after register elimination. The one
170 after register elimination is record separately for each operand. This
171 is done in case the address is not valid to be sure that we separately
172 reload each. */
173
174 static rtx secondary_memlocs[NUM_MACHINE_MODES];
175 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
176 #endif
177
178 /* The instruction we are doing reloads for;
179 so we can test whether a register dies in it. */
180 static rtx this_insn;
181
182 /* Nonzero if this instruction is a user-specified asm with operands. */
183 static int this_insn_is_asm;
184
185 /* If hard_regs_live_known is nonzero,
186 we can tell which hard regs are currently live,
187 at least enough to succeed in choosing dummy reloads. */
188 static int hard_regs_live_known;
189
190 /* Indexed by hard reg number,
191 element is nonnegative if hard reg has been spilled.
192 This vector is passed to `find_reloads' as an argument
193 and is not changed here. */
194 static short *static_reload_reg_p;
195
196 /* Set to 1 in subst_reg_equivs if it changes anything. */
197 static int subst_reg_equivs_changed;
198
199 /* On return from push_reload, holds the reload-number for the OUT
200 operand, which can be different for that from the input operand. */
201 static int output_reloadnum;
202
203 /* Compare two RTX's. */
204 #define MATCHES(x, y) \
205 (x == y || (x != 0 && (GET_CODE (x) == REG \
206 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
207 : rtx_equal_p (x, y) && ! side_effects_p (x))))
208
209 /* Indicates if two reloads purposes are for similar enough things that we
210 can merge their reloads. */
211 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
212 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
213 || ((when1) == (when2) && (op1) == (op2)) \
214 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
215 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
216 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
217 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
218 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
219
220 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
221 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
222 ((when1) != (when2) \
223 || ! ((op1) == (op2) \
224 || (when1) == RELOAD_FOR_INPUT \
225 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
226 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
227
228 /* If we are going to reload an address, compute the reload type to
229 use. */
230 #define ADDR_TYPE(type) \
231 ((type) == RELOAD_FOR_INPUT_ADDRESS \
232 ? RELOAD_FOR_INPADDR_ADDRESS \
233 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
234 ? RELOAD_FOR_OUTADDR_ADDRESS \
235 : (type)))
236
237 #ifdef HAVE_SECONDARY_RELOADS
238 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
239 enum machine_mode, enum reload_type,
240 enum insn_code *));
241 #endif
242 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int));
243 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
244 static int push_reload PARAMS ((rtx, rtx, rtx *, rtx *, enum reg_class,
245 enum machine_mode, enum machine_mode,
246 int, int, int, enum reload_type));
247 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
248 static void combine_reloads PARAMS ((void));
249 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
250 enum reload_type, int, int));
251 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
252 enum machine_mode, enum machine_mode,
253 enum reg_class, int, int));
254 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
255 static struct decomposition decompose PARAMS ((rtx));
256 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
257 static int alternative_allows_memconst PARAMS ((const char *, int));
258 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
259 int, rtx, int *));
260 static rtx make_memloc PARAMS ((rtx, int));
261 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
262 int, enum reload_type, int, rtx));
263 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
264 static rtx subst_indexed_address PARAMS ((rtx));
265 static void update_auto_inc_notes PARAMS ((rtx, int, int));
266 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
267 int, enum reload_type,int, rtx));
268 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
269 enum machine_mode, int,
270 enum reload_type, int));
271 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int, enum reload_type,
272 int, rtx));
273 static int find_inc_amount PARAMS ((rtx, rtx));
274 \f
275 #ifdef HAVE_SECONDARY_RELOADS
276
277 /* Determine if any secondary reloads are needed for loading (if IN_P is
278 non-zero) or storing (if IN_P is zero) X to or from a reload register of
279 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
280 are needed, push them.
281
282 Return the reload number of the secondary reload we made, or -1 if
283 we didn't need one. *PICODE is set to the insn_code to use if we do
284 need a secondary reload. */
285
286 static int
287 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
288 type, picode)
289 int in_p;
290 rtx x;
291 int opnum;
292 int optional;
293 enum reg_class reload_class;
294 enum machine_mode reload_mode;
295 enum reload_type type;
296 enum insn_code *picode;
297 {
298 enum reg_class class = NO_REGS;
299 enum machine_mode mode = reload_mode;
300 enum insn_code icode = CODE_FOR_nothing;
301 enum reg_class t_class = NO_REGS;
302 enum machine_mode t_mode = VOIDmode;
303 enum insn_code t_icode = CODE_FOR_nothing;
304 enum reload_type secondary_type;
305 int s_reload, t_reload = -1;
306
307 if (type == RELOAD_FOR_INPUT_ADDRESS
308 || type == RELOAD_FOR_OUTPUT_ADDRESS
309 || type == RELOAD_FOR_INPADDR_ADDRESS
310 || type == RELOAD_FOR_OUTADDR_ADDRESS)
311 secondary_type = type;
312 else
313 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
314
315 *picode = CODE_FOR_nothing;
316
317 /* If X is a paradoxical SUBREG, use the inner value to determine both the
318 mode and object being reloaded. */
319 if (GET_CODE (x) == SUBREG
320 && (GET_MODE_SIZE (GET_MODE (x))
321 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
322 {
323 x = SUBREG_REG (x);
324 reload_mode = GET_MODE (x);
325 }
326
327 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
328 is still a pseudo-register by now, it *must* have an equivalent MEM
329 but we don't want to assume that), use that equivalent when seeing if
330 a secondary reload is needed since whether or not a reload is needed
331 might be sensitive to the form of the MEM. */
332
333 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
334 && reg_equiv_mem[REGNO (x)] != 0)
335 x = reg_equiv_mem[REGNO (x)];
336
337 #ifdef SECONDARY_INPUT_RELOAD_CLASS
338 if (in_p)
339 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
340 #endif
341
342 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
343 if (! in_p)
344 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
345 #endif
346
347 /* If we don't need any secondary registers, done. */
348 if (class == NO_REGS)
349 return -1;
350
351 /* Get a possible insn to use. If the predicate doesn't accept X, don't
352 use the insn. */
353
354 icode = (in_p ? reload_in_optab[(int) reload_mode]
355 : reload_out_optab[(int) reload_mode]);
356
357 if (icode != CODE_FOR_nothing
358 && insn_data[(int) icode].operand[in_p].predicate
359 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
360 icode = CODE_FOR_nothing;
361
362 /* If we will be using an insn, see if it can directly handle the reload
363 register we will be using. If it can, the secondary reload is for a
364 scratch register. If it can't, we will use the secondary reload for
365 an intermediate register and require a tertiary reload for the scratch
366 register. */
367
368 if (icode != CODE_FOR_nothing)
369 {
370 /* If IN_P is non-zero, the reload register will be the output in
371 operand 0. If IN_P is zero, the reload register will be the input
372 in operand 1. Outputs should have an initial "=", which we must
373 skip. */
374
375 char insn_letter
376 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
377 enum reg_class insn_class
378 = (insn_letter == 'r' ? GENERAL_REGS
379 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
380
381 if (insn_class == NO_REGS
382 || (in_p
383 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
384 /* The scratch register's constraint must start with "=&". */
385 || insn_data[(int) icode].operand[2].constraint[0] != '='
386 || insn_data[(int) icode].operand[2].constraint[1] != '&')
387 abort ();
388
389 if (reg_class_subset_p (reload_class, insn_class))
390 mode = insn_data[(int) icode].operand[2].mode;
391 else
392 {
393 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
394 class = insn_class;
395 t_mode = insn_data[(int) icode].operand[2].mode;
396 t_class = (t_letter == 'r' ? GENERAL_REGS
397 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
398 t_icode = icode;
399 icode = CODE_FOR_nothing;
400 }
401 }
402
403 /* This case isn't valid, so fail. Reload is allowed to use the same
404 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
405 in the case of a secondary register, we actually need two different
406 registers for correct code. We fail here to prevent the possibility of
407 silently generating incorrect code later.
408
409 The convention is that secondary input reloads are valid only if the
410 secondary_class is different from class. If you have such a case, you
411 can not use secondary reloads, you must work around the problem some
412 other way.
413
414 Allow this when a reload_in/out pattern is being used. I.e. assume
415 that the generated code handles this case. */
416
417 if (in_p && class == reload_class && icode == CODE_FOR_nothing
418 && t_icode == CODE_FOR_nothing)
419 abort ();
420
421 /* If we need a tertiary reload, see if we have one we can reuse or else
422 make a new one. */
423
424 if (t_class != NO_REGS)
425 {
426 for (t_reload = 0; t_reload < n_reloads; t_reload++)
427 if (rld[t_reload].secondary_p
428 && (reg_class_subset_p (t_class, rld[t_reload].class)
429 || reg_class_subset_p (rld[t_reload].class, t_class))
430 && ((in_p && rld[t_reload].inmode == t_mode)
431 || (! in_p && rld[t_reload].outmode == t_mode))
432 && ((in_p && (rld[t_reload].secondary_in_icode
433 == CODE_FOR_nothing))
434 || (! in_p &&(rld[t_reload].secondary_out_icode
435 == CODE_FOR_nothing)))
436 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
437 && MERGABLE_RELOADS (secondary_type,
438 rld[t_reload].when_needed,
439 opnum, rld[t_reload].opnum))
440 {
441 if (in_p)
442 rld[t_reload].inmode = t_mode;
443 if (! in_p)
444 rld[t_reload].outmode = t_mode;
445
446 if (reg_class_subset_p (t_class, rld[t_reload].class))
447 rld[t_reload].class = t_class;
448
449 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
450 rld[t_reload].optional &= optional;
451 rld[t_reload].secondary_p = 1;
452 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
453 opnum, rld[t_reload].opnum))
454 rld[t_reload].when_needed = RELOAD_OTHER;
455 }
456
457 if (t_reload == n_reloads)
458 {
459 /* We need to make a new tertiary reload for this register class. */
460 rld[t_reload].in = rld[t_reload].out = 0;
461 rld[t_reload].class = t_class;
462 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
463 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
464 rld[t_reload].reg_rtx = 0;
465 rld[t_reload].optional = optional;
466 rld[t_reload].inc = 0;
467 /* Maybe we could combine these, but it seems too tricky. */
468 rld[t_reload].nocombine = 1;
469 rld[t_reload].in_reg = 0;
470 rld[t_reload].out_reg = 0;
471 rld[t_reload].opnum = opnum;
472 rld[t_reload].when_needed = secondary_type;
473 rld[t_reload].secondary_in_reload = -1;
474 rld[t_reload].secondary_out_reload = -1;
475 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
476 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
477 rld[t_reload].secondary_p = 1;
478
479 n_reloads++;
480 }
481 }
482
483 /* See if we can reuse an existing secondary reload. */
484 for (s_reload = 0; s_reload < n_reloads; s_reload++)
485 if (rld[s_reload].secondary_p
486 && (reg_class_subset_p (class, rld[s_reload].class)
487 || reg_class_subset_p (rld[s_reload].class, class))
488 && ((in_p && rld[s_reload].inmode == mode)
489 || (! in_p && rld[s_reload].outmode == mode))
490 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
491 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
492 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
493 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
494 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
495 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
496 opnum, rld[s_reload].opnum))
497 {
498 if (in_p)
499 rld[s_reload].inmode = mode;
500 if (! in_p)
501 rld[s_reload].outmode = mode;
502
503 if (reg_class_subset_p (class, rld[s_reload].class))
504 rld[s_reload].class = class;
505
506 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
507 rld[s_reload].optional &= optional;
508 rld[s_reload].secondary_p = 1;
509 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
510 opnum, rld[s_reload].opnum))
511 rld[s_reload].when_needed = RELOAD_OTHER;
512 }
513
514 if (s_reload == n_reloads)
515 {
516 #ifdef SECONDARY_MEMORY_NEEDED
517 /* If we need a memory location to copy between the two reload regs,
518 set it up now. Note that we do the input case before making
519 the reload and the output case after. This is due to the
520 way reloads are output. */
521
522 if (in_p && icode == CODE_FOR_nothing
523 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
524 {
525 get_secondary_mem (x, reload_mode, opnum, type);
526
527 /* We may have just added new reloads. Make sure we add
528 the new reload at the end. */
529 s_reload = n_reloads;
530 }
531 #endif
532
533 /* We need to make a new secondary reload for this register class. */
534 rld[s_reload].in = rld[s_reload].out = 0;
535 rld[s_reload].class = class;
536
537 rld[s_reload].inmode = in_p ? mode : VOIDmode;
538 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
539 rld[s_reload].reg_rtx = 0;
540 rld[s_reload].optional = optional;
541 rld[s_reload].inc = 0;
542 /* Maybe we could combine these, but it seems too tricky. */
543 rld[s_reload].nocombine = 1;
544 rld[s_reload].in_reg = 0;
545 rld[s_reload].out_reg = 0;
546 rld[s_reload].opnum = opnum;
547 rld[s_reload].when_needed = secondary_type;
548 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
549 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
550 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
551 rld[s_reload].secondary_out_icode
552 = ! in_p ? t_icode : CODE_FOR_nothing;
553 rld[s_reload].secondary_p = 1;
554
555 n_reloads++;
556
557 #ifdef SECONDARY_MEMORY_NEEDED
558 if (! in_p && icode == CODE_FOR_nothing
559 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
560 get_secondary_mem (x, mode, opnum, type);
561 #endif
562 }
563
564 *picode = icode;
565 return s_reload;
566 }
567 #endif /* HAVE_SECONDARY_RELOADS */
568 \f
569 #ifdef SECONDARY_MEMORY_NEEDED
570
571 /* Return a memory location that will be used to copy X in mode MODE.
572 If we haven't already made a location for this mode in this insn,
573 call find_reloads_address on the location being returned. */
574
575 rtx
576 get_secondary_mem (x, mode, opnum, type)
577 rtx x ATTRIBUTE_UNUSED;
578 enum machine_mode mode;
579 int opnum;
580 enum reload_type type;
581 {
582 rtx loc;
583 int mem_valid;
584
585 /* By default, if MODE is narrower than a word, widen it to a word.
586 This is required because most machines that require these memory
587 locations do not support short load and stores from all registers
588 (e.g., FP registers). */
589
590 #ifdef SECONDARY_MEMORY_NEEDED_MODE
591 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
592 #else
593 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
594 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
595 #endif
596
597 /* If we already have made a MEM for this operand in MODE, return it. */
598 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
599 return secondary_memlocs_elim[(int) mode][opnum];
600
601 /* If this is the first time we've tried to get a MEM for this mode,
602 allocate a new one. `something_changed' in reload will get set
603 by noticing that the frame size has changed. */
604
605 if (secondary_memlocs[(int) mode] == 0)
606 {
607 #ifdef SECONDARY_MEMORY_NEEDED_RTX
608 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
609 #else
610 secondary_memlocs[(int) mode]
611 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
612 #endif
613 }
614
615 /* Get a version of the address doing any eliminations needed. If that
616 didn't give us a new MEM, make a new one if it isn't valid. */
617
618 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
619 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
620
621 if (! mem_valid && loc == secondary_memlocs[(int) mode])
622 loc = copy_rtx (loc);
623
624 /* The only time the call below will do anything is if the stack
625 offset is too large. In that case IND_LEVELS doesn't matter, so we
626 can just pass a zero. Adjust the type to be the address of the
627 corresponding object. If the address was valid, save the eliminated
628 address. If it wasn't valid, we need to make a reload each time, so
629 don't save it. */
630
631 if (! mem_valid)
632 {
633 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
634 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
635 : RELOAD_OTHER);
636
637 find_reloads_address (mode, (rtx*)0, XEXP (loc, 0), &XEXP (loc, 0),
638 opnum, type, 0, 0);
639 }
640
641 secondary_memlocs_elim[(int) mode][opnum] = loc;
642 return loc;
643 }
644
645 /* Clear any secondary memory locations we've made. */
646
647 void
648 clear_secondary_mem ()
649 {
650 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
651 }
652 #endif /* SECONDARY_MEMORY_NEEDED */
653 \f
654 /* Find the largest class for which every register number plus N is valid in
655 M1 (if in range). Abort if no such class exists. */
656
657 static enum reg_class
658 find_valid_class (m1, n)
659 enum machine_mode m1 ATTRIBUTE_UNUSED;
660 int n;
661 {
662 int class;
663 int regno;
664 enum reg_class best_class = NO_REGS;
665 unsigned int best_size = 0;
666
667 for (class = 1; class < N_REG_CLASSES; class++)
668 {
669 int bad = 0;
670 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
671 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
672 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
673 && ! HARD_REGNO_MODE_OK (regno + n, m1))
674 bad = 1;
675
676 if (! bad && reg_class_size[class] > best_size)
677 best_class = class, best_size = reg_class_size[class];
678 }
679
680 if (best_size == 0)
681 abort ();
682
683 return best_class;
684 }
685 \f
686 /* Return the number of a previously made reload that can be combined with
687 a new one, or n_reloads if none of the existing reloads can be used.
688 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
689 push_reload, they determine the kind of the new reload that we try to
690 combine. P_IN points to the corresponding value of IN, which can be
691 modified by this function.
692 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
693 static int
694 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
695 rtx *p_in, out;
696 enum reg_class class;
697 enum reload_type type;
698 int opnum, dont_share;
699 {
700 rtx in = *p_in;
701 int i;
702 /* We can't merge two reloads if the output of either one is
703 earlyclobbered. */
704
705 if (earlyclobber_operand_p (out))
706 return n_reloads;
707
708 /* We can use an existing reload if the class is right
709 and at least one of IN and OUT is a match
710 and the other is at worst neutral.
711 (A zero compared against anything is neutral.)
712
713 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
714 for the same thing since that can cause us to need more reload registers
715 than we otherwise would. */
716
717 for (i = 0; i < n_reloads; i++)
718 if ((reg_class_subset_p (class, rld[i].class)
719 || reg_class_subset_p (rld[i].class, class))
720 /* If the existing reload has a register, it must fit our class. */
721 && (rld[i].reg_rtx == 0
722 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
723 true_regnum (rld[i].reg_rtx)))
724 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
725 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
726 || (out != 0 && MATCHES (rld[i].out, out)
727 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
728 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
729 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
730 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
731 return i;
732
733 /* Reloading a plain reg for input can match a reload to postincrement
734 that reg, since the postincrement's value is the right value.
735 Likewise, it can match a preincrement reload, since we regard
736 the preincrementation as happening before any ref in this insn
737 to that register. */
738 for (i = 0; i < n_reloads; i++)
739 if ((reg_class_subset_p (class, rld[i].class)
740 || reg_class_subset_p (rld[i].class, class))
741 /* If the existing reload has a register, it must fit our
742 class. */
743 && (rld[i].reg_rtx == 0
744 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
745 true_regnum (rld[i].reg_rtx)))
746 && out == 0 && rld[i].out == 0 && rld[i].in != 0
747 && ((GET_CODE (in) == REG
748 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
749 && MATCHES (XEXP (rld[i].in, 0), in))
750 || (GET_CODE (rld[i].in) == REG
751 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
752 && MATCHES (XEXP (in, 0), rld[i].in)))
753 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
754 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
755 && MERGABLE_RELOADS (type, rld[i].when_needed,
756 opnum, rld[i].opnum))
757 {
758 /* Make sure reload_in ultimately has the increment,
759 not the plain register. */
760 if (GET_CODE (in) == REG)
761 *p_in = rld[i].in;
762 return i;
763 }
764 return n_reloads;
765 }
766
767 /* Return nonzero if X is a SUBREG which will require reloading of its
768 SUBREG_REG expression. */
769
770 static int
771 reload_inner_reg_of_subreg (x, mode)
772 rtx x;
773 enum machine_mode mode;
774 {
775 rtx inner;
776
777 /* Only SUBREGs are problematical. */
778 if (GET_CODE (x) != SUBREG)
779 return 0;
780
781 inner = SUBREG_REG (x);
782
783 /* If INNER is a constant, then INNER must be reloaded. */
784 if (CONSTANT_P (inner))
785 return 1;
786
787 /* If INNER is not a hard register, then INNER will not need to
788 be reloaded. */
789 if (GET_CODE (inner) != REG
790 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
791 return 0;
792
793 /* If INNER is not ok for MODE, then INNER will need reloading. */
794 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
795 return 1;
796
797 /* If the outer part is a word or smaller, INNER larger than a
798 word and the number of regs for INNER is not the same as the
799 number of words in INNER, then INNER will need reloading. */
800 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
801 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
802 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
803 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
804 }
805
806 /* Record one reload that needs to be performed.
807 IN is an rtx saying where the data are to be found before this instruction.
808 OUT says where they must be stored after the instruction.
809 (IN is zero for data not read, and OUT is zero for data not written.)
810 INLOC and OUTLOC point to the places in the instructions where
811 IN and OUT were found.
812 If IN and OUT are both non-zero, it means the same register must be used
813 to reload both IN and OUT.
814
815 CLASS is a register class required for the reloaded data.
816 INMODE is the machine mode that the instruction requires
817 for the reg that replaces IN and OUTMODE is likewise for OUT.
818
819 If IN is zero, then OUT's location and mode should be passed as
820 INLOC and INMODE.
821
822 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
823
824 OPTIONAL nonzero means this reload does not need to be performed:
825 it can be discarded if that is more convenient.
826
827 OPNUM and TYPE say what the purpose of this reload is.
828
829 The return value is the reload-number for this reload.
830
831 If both IN and OUT are nonzero, in some rare cases we might
832 want to make two separate reloads. (Actually we never do this now.)
833 Therefore, the reload-number for OUT is stored in
834 output_reloadnum when we return; the return value applies to IN.
835 Usually (presently always), when IN and OUT are nonzero,
836 the two reload-numbers are equal, but the caller should be careful to
837 distinguish them. */
838
839 static int
840 push_reload (in, out, inloc, outloc, class,
841 inmode, outmode, strict_low, optional, opnum, type)
842 rtx in, out;
843 rtx *inloc, *outloc;
844 enum reg_class class;
845 enum machine_mode inmode, outmode;
846 int strict_low;
847 int optional;
848 int opnum;
849 enum reload_type type;
850 {
851 register int i;
852 int dont_share = 0;
853 int dont_remove_subreg = 0;
854 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
855 int secondary_in_reload = -1, secondary_out_reload = -1;
856 enum insn_code secondary_in_icode = CODE_FOR_nothing;
857 enum insn_code secondary_out_icode = CODE_FOR_nothing;
858
859 /* INMODE and/or OUTMODE could be VOIDmode if no mode
860 has been specified for the operand. In that case,
861 use the operand's mode as the mode to reload. */
862 if (inmode == VOIDmode && in != 0)
863 inmode = GET_MODE (in);
864 if (outmode == VOIDmode && out != 0)
865 outmode = GET_MODE (out);
866
867 /* If IN is a pseudo register everywhere-equivalent to a constant, and
868 it is not in a hard register, reload straight from the constant,
869 since we want to get rid of such pseudo registers.
870 Often this is done earlier, but not always in find_reloads_address. */
871 if (in != 0 && GET_CODE (in) == REG)
872 {
873 register int regno = REGNO (in);
874
875 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
876 && reg_equiv_constant[regno] != 0)
877 in = reg_equiv_constant[regno];
878 }
879
880 /* Likewise for OUT. Of course, OUT will never be equivalent to
881 an actual constant, but it might be equivalent to a memory location
882 (in the case of a parameter). */
883 if (out != 0 && GET_CODE (out) == REG)
884 {
885 register int regno = REGNO (out);
886
887 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
888 && reg_equiv_constant[regno] != 0)
889 out = reg_equiv_constant[regno];
890 }
891
892 /* If we have a read-write operand with an address side-effect,
893 change either IN or OUT so the side-effect happens only once. */
894 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
895 {
896 if (GET_CODE (XEXP (in, 0)) == POST_INC
897 || GET_CODE (XEXP (in, 0)) == POST_DEC
898 || GET_CODE (XEXP (in, 0)) == POST_MODIFY)
899 {
900 rtx new = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
901
902 MEM_COPY_ATTRIBUTES (new, in);
903 in = new;
904 }
905 if (GET_CODE (XEXP (in, 0)) == PRE_INC
906 || GET_CODE (XEXP (in, 0)) == PRE_DEC
907 || GET_CODE (XEXP (in, 0)) == PRE_MODIFY)
908 {
909 rtx new = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
910
911 MEM_COPY_ATTRIBUTES (new, out);
912 out = new;
913 }
914 }
915
916 /* If we are reloading a (SUBREG constant ...), really reload just the
917 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
918 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
919 a pseudo and hence will become a MEM) with M1 wider than M2 and the
920 register is a pseudo, also reload the inside expression.
921 For machines that extend byte loads, do this for any SUBREG of a pseudo
922 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
923 M2 is an integral mode that gets extended when loaded.
924 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
925 either M1 is not valid for R or M2 is wider than a word but we only
926 need one word to store an M2-sized quantity in R.
927 (However, if OUT is nonzero, we need to reload the reg *and*
928 the subreg, so do nothing here, and let following statement handle it.)
929
930 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
931 we can't handle it here because CONST_INT does not indicate a mode.
932
933 Similarly, we must reload the inside expression if we have a
934 STRICT_LOW_PART (presumably, in == out in the cas).
935
936 Also reload the inner expression if it does not require a secondary
937 reload but the SUBREG does.
938
939 Finally, reload the inner expression if it is a register that is in
940 the class whose registers cannot be referenced in a different size
941 and M1 is not the same size as M2. If SUBREG_BYTE is nonzero, we
942 cannot reload just the inside since we might end up with the wrong
943 register class. But if it is inside a STRICT_LOW_PART, we have
944 no choice, so we hope we do get the right register class there. */
945
946 if (in != 0 && GET_CODE (in) == SUBREG
947 && (SUBREG_BYTE (in) == 0 || strict_low)
948 #ifdef CLASS_CANNOT_CHANGE_MODE
949 && (class != CLASS_CANNOT_CHANGE_MODE
950 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
951 #endif
952 && (CONSTANT_P (SUBREG_REG (in))
953 || GET_CODE (SUBREG_REG (in)) == PLUS
954 || strict_low
955 || (((GET_CODE (SUBREG_REG (in)) == REG
956 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
957 || GET_CODE (SUBREG_REG (in)) == MEM)
958 && ((GET_MODE_SIZE (inmode)
959 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
960 #ifdef LOAD_EXTEND_OP
961 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
962 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
963 <= UNITS_PER_WORD)
964 && (GET_MODE_SIZE (inmode)
965 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
966 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
967 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
968 #endif
969 #ifdef WORD_REGISTER_OPERATIONS
970 || ((GET_MODE_SIZE (inmode)
971 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
972 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
973 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
974 / UNITS_PER_WORD)))
975 #endif
976 ))
977 || (GET_CODE (SUBREG_REG (in)) == REG
978 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
979 /* The case where out is nonzero
980 is handled differently in the following statement. */
981 && (out == 0 || SUBREG_BYTE (in) == 0)
982 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
983 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
984 > UNITS_PER_WORD)
985 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
986 / UNITS_PER_WORD)
987 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
988 GET_MODE (SUBREG_REG (in)))))
989 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
990 #ifdef SECONDARY_INPUT_RELOAD_CLASS
991 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
992 && (SECONDARY_INPUT_RELOAD_CLASS (class,
993 GET_MODE (SUBREG_REG (in)),
994 SUBREG_REG (in))
995 == NO_REGS))
996 #endif
997 #ifdef CLASS_CANNOT_CHANGE_MODE
998 || (GET_CODE (SUBREG_REG (in)) == REG
999 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1000 && (TEST_HARD_REG_BIT
1001 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1002 REGNO (SUBREG_REG (in))))
1003 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1004 inmode))
1005 #endif
1006 ))
1007 {
1008 in_subreg_loc = inloc;
1009 inloc = &SUBREG_REG (in);
1010 in = *inloc;
1011 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1012 if (GET_CODE (in) == MEM)
1013 /* This is supposed to happen only for paradoxical subregs made by
1014 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1015 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1016 abort ();
1017 #endif
1018 inmode = GET_MODE (in);
1019 }
1020
1021 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1022 either M1 is not valid for R or M2 is wider than a word but we only
1023 need one word to store an M2-sized quantity in R.
1024
1025 However, we must reload the inner reg *as well as* the subreg in
1026 that case. */
1027
1028 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1029 code above. This can happen if SUBREG_BYTE != 0. */
1030
1031 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1032 {
1033 /* This relies on the fact that emit_reload_insns outputs the
1034 instructions for input reloads of type RELOAD_OTHER in the same
1035 order as the reloads. Thus if the outer reload is also of type
1036 RELOAD_OTHER, we are guaranteed that this inner reload will be
1037 output before the outer reload. */
1038 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx*)0,
1039 find_valid_class (inmode,
1040 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1041 GET_MODE (SUBREG_REG (in)),
1042 SUBREG_BYTE (in),
1043 GET_MODE (in))),
1044 VOIDmode, VOIDmode, 0, 0, opnum, type);
1045 dont_remove_subreg = 1;
1046 }
1047
1048 /* Similarly for paradoxical and problematical SUBREGs on the output.
1049 Note that there is no reason we need worry about the previous value
1050 of SUBREG_REG (out); even if wider than out,
1051 storing in a subreg is entitled to clobber it all
1052 (except in the case of STRICT_LOW_PART,
1053 and in that case the constraint should label it input-output.) */
1054 if (out != 0 && GET_CODE (out) == SUBREG
1055 && (SUBREG_BYTE (out) == 0 || strict_low)
1056 #ifdef CLASS_CANNOT_CHANGE_MODE
1057 && (class != CLASS_CANNOT_CHANGE_MODE
1058 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1059 outmode))
1060 #endif
1061 && (CONSTANT_P (SUBREG_REG (out))
1062 || strict_low
1063 || (((GET_CODE (SUBREG_REG (out)) == REG
1064 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1065 || GET_CODE (SUBREG_REG (out)) == MEM)
1066 && ((GET_MODE_SIZE (outmode)
1067 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1068 #ifdef WORD_REGISTER_OPERATIONS
1069 || ((GET_MODE_SIZE (outmode)
1070 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1071 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1072 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1073 / UNITS_PER_WORD)))
1074 #endif
1075 ))
1076 || (GET_CODE (SUBREG_REG (out)) == REG
1077 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1078 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1079 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1080 > UNITS_PER_WORD)
1081 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1082 / UNITS_PER_WORD)
1083 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1084 GET_MODE (SUBREG_REG (out)))))
1085 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1086 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1087 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1088 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1089 GET_MODE (SUBREG_REG (out)),
1090 SUBREG_REG (out))
1091 == NO_REGS))
1092 #endif
1093 #ifdef CLASS_CANNOT_CHANGE_MODE
1094 || (GET_CODE (SUBREG_REG (out)) == REG
1095 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1096 && (TEST_HARD_REG_BIT
1097 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1098 REGNO (SUBREG_REG (out))))
1099 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1100 outmode))
1101 #endif
1102 ))
1103 {
1104 out_subreg_loc = outloc;
1105 outloc = &SUBREG_REG (out);
1106 out = *outloc;
1107 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1108 if (GET_CODE (out) == MEM
1109 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1110 abort ();
1111 #endif
1112 outmode = GET_MODE (out);
1113 }
1114
1115 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1116 either M1 is not valid for R or M2 is wider than a word but we only
1117 need one word to store an M2-sized quantity in R.
1118
1119 However, we must reload the inner reg *as well as* the subreg in
1120 that case. In this case, the inner reg is an in-out reload. */
1121
1122 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1123 {
1124 /* This relies on the fact that emit_reload_insns outputs the
1125 instructions for output reloads of type RELOAD_OTHER in reverse
1126 order of the reloads. Thus if the outer reload is also of type
1127 RELOAD_OTHER, we are guaranteed that this inner reload will be
1128 output after the outer reload. */
1129 dont_remove_subreg = 1;
1130 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1131 &SUBREG_REG (out),
1132 find_valid_class (outmode,
1133 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1134 GET_MODE (SUBREG_REG (out)),
1135 SUBREG_BYTE (out),
1136 GET_MODE (out))),
1137 VOIDmode, VOIDmode, 0, 0,
1138 opnum, RELOAD_OTHER);
1139 }
1140
1141 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1142 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1143 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1144 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1145 dont_share = 1;
1146
1147 /* If IN is a SUBREG of a hard register, make a new REG. This
1148 simplifies some of the cases below. */
1149
1150 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1151 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1152 && ! dont_remove_subreg)
1153 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1154
1155 /* Similarly for OUT. */
1156 if (out != 0 && GET_CODE (out) == SUBREG
1157 && GET_CODE (SUBREG_REG (out)) == REG
1158 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1159 && ! dont_remove_subreg)
1160 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1161
1162 /* Narrow down the class of register wanted if that is
1163 desirable on this machine for efficiency. */
1164 if (in != 0)
1165 class = PREFERRED_RELOAD_CLASS (in, class);
1166
1167 /* Output reloads may need analogous treatment, different in detail. */
1168 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1169 if (out != 0)
1170 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1171 #endif
1172
1173 /* Make sure we use a class that can handle the actual pseudo
1174 inside any subreg. For example, on the 386, QImode regs
1175 can appear within SImode subregs. Although GENERAL_REGS
1176 can handle SImode, QImode needs a smaller class. */
1177 #ifdef LIMIT_RELOAD_CLASS
1178 if (in_subreg_loc)
1179 class = LIMIT_RELOAD_CLASS (inmode, class);
1180 else if (in != 0 && GET_CODE (in) == SUBREG)
1181 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1182
1183 if (out_subreg_loc)
1184 class = LIMIT_RELOAD_CLASS (outmode, class);
1185 if (out != 0 && GET_CODE (out) == SUBREG)
1186 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1187 #endif
1188
1189 /* Verify that this class is at least possible for the mode that
1190 is specified. */
1191 if (this_insn_is_asm)
1192 {
1193 enum machine_mode mode;
1194 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1195 mode = inmode;
1196 else
1197 mode = outmode;
1198 if (mode == VOIDmode)
1199 {
1200 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1201 mode = word_mode;
1202 if (in != 0)
1203 inmode = word_mode;
1204 if (out != 0)
1205 outmode = word_mode;
1206 }
1207 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1208 if (HARD_REGNO_MODE_OK (i, mode)
1209 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1210 {
1211 int nregs = HARD_REGNO_NREGS (i, mode);
1212
1213 int j;
1214 for (j = 1; j < nregs; j++)
1215 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1216 break;
1217 if (j == nregs)
1218 break;
1219 }
1220 if (i == FIRST_PSEUDO_REGISTER)
1221 {
1222 error_for_asm (this_insn, "impossible register constraint in `asm'");
1223 class = ALL_REGS;
1224 }
1225 }
1226
1227 /* Optional output reloads are always OK even if we have no register class,
1228 since the function of these reloads is only to have spill_reg_store etc.
1229 set, so that the storing insn can be deleted later. */
1230 if (class == NO_REGS
1231 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1232 abort ();
1233
1234 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1235
1236 if (i == n_reloads)
1237 {
1238 /* See if we need a secondary reload register to move between CLASS
1239 and IN or CLASS and OUT. Get the icode and push any required reloads
1240 needed for each of them if so. */
1241
1242 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1243 if (in != 0)
1244 secondary_in_reload
1245 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1246 &secondary_in_icode);
1247 #endif
1248
1249 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1250 if (out != 0 && GET_CODE (out) != SCRATCH)
1251 secondary_out_reload
1252 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1253 type, &secondary_out_icode);
1254 #endif
1255
1256 /* We found no existing reload suitable for re-use.
1257 So add an additional reload. */
1258
1259 #ifdef SECONDARY_MEMORY_NEEDED
1260 /* If a memory location is needed for the copy, make one. */
1261 if (in != 0 && GET_CODE (in) == REG
1262 && REGNO (in) < FIRST_PSEUDO_REGISTER
1263 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1264 class, inmode))
1265 get_secondary_mem (in, inmode, opnum, type);
1266 #endif
1267
1268 i = n_reloads;
1269 rld[i].in = in;
1270 rld[i].out = out;
1271 rld[i].class = class;
1272 rld[i].inmode = inmode;
1273 rld[i].outmode = outmode;
1274 rld[i].reg_rtx = 0;
1275 rld[i].optional = optional;
1276 rld[i].inc = 0;
1277 rld[i].nocombine = 0;
1278 rld[i].in_reg = inloc ? *inloc : 0;
1279 rld[i].out_reg = outloc ? *outloc : 0;
1280 rld[i].opnum = opnum;
1281 rld[i].when_needed = type;
1282 rld[i].secondary_in_reload = secondary_in_reload;
1283 rld[i].secondary_out_reload = secondary_out_reload;
1284 rld[i].secondary_in_icode = secondary_in_icode;
1285 rld[i].secondary_out_icode = secondary_out_icode;
1286 rld[i].secondary_p = 0;
1287
1288 n_reloads++;
1289
1290 #ifdef SECONDARY_MEMORY_NEEDED
1291 if (out != 0 && GET_CODE (out) == REG
1292 && REGNO (out) < FIRST_PSEUDO_REGISTER
1293 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1294 outmode))
1295 get_secondary_mem (out, outmode, opnum, type);
1296 #endif
1297 }
1298 else
1299 {
1300 /* We are reusing an existing reload,
1301 but we may have additional information for it.
1302 For example, we may now have both IN and OUT
1303 while the old one may have just one of them. */
1304
1305 /* The modes can be different. If they are, we want to reload in
1306 the larger mode, so that the value is valid for both modes. */
1307 if (inmode != VOIDmode
1308 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1309 rld[i].inmode = inmode;
1310 if (outmode != VOIDmode
1311 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1312 rld[i].outmode = outmode;
1313 if (in != 0)
1314 {
1315 rtx in_reg = inloc ? *inloc : 0;
1316 /* If we merge reloads for two distinct rtl expressions that
1317 are identical in content, there might be duplicate address
1318 reloads. Remove the extra set now, so that if we later find
1319 that we can inherit this reload, we can get rid of the
1320 address reloads altogether.
1321
1322 Do not do this if both reloads are optional since the result
1323 would be an optional reload which could potentially leave
1324 unresolved address replacements.
1325
1326 It is not sufficient to call transfer_replacements since
1327 choose_reload_regs will remove the replacements for address
1328 reloads of inherited reloads which results in the same
1329 problem. */
1330 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1331 && ! (rld[i].optional && optional))
1332 {
1333 /* We must keep the address reload with the lower operand
1334 number alive. */
1335 if (opnum > rld[i].opnum)
1336 {
1337 remove_address_replacements (in);
1338 in = rld[i].in;
1339 in_reg = rld[i].in_reg;
1340 }
1341 else
1342 remove_address_replacements (rld[i].in);
1343 }
1344 rld[i].in = in;
1345 rld[i].in_reg = in_reg;
1346 }
1347 if (out != 0)
1348 {
1349 rld[i].out = out;
1350 rld[i].out_reg = outloc ? *outloc : 0;
1351 }
1352 if (reg_class_subset_p (class, rld[i].class))
1353 rld[i].class = class;
1354 rld[i].optional &= optional;
1355 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1356 opnum, rld[i].opnum))
1357 rld[i].when_needed = RELOAD_OTHER;
1358 rld[i].opnum = MIN (rld[i].opnum, opnum);
1359 }
1360
1361 /* If the ostensible rtx being reload differs from the rtx found
1362 in the location to substitute, this reload is not safe to combine
1363 because we cannot reliably tell whether it appears in the insn. */
1364
1365 if (in != 0 && in != *inloc)
1366 rld[i].nocombine = 1;
1367
1368 #if 0
1369 /* This was replaced by changes in find_reloads_address_1 and the new
1370 function inc_for_reload, which go with a new meaning of reload_inc. */
1371
1372 /* If this is an IN/OUT reload in an insn that sets the CC,
1373 it must be for an autoincrement. It doesn't work to store
1374 the incremented value after the insn because that would clobber the CC.
1375 So we must do the increment of the value reloaded from,
1376 increment it, store it back, then decrement again. */
1377 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1378 {
1379 out = 0;
1380 rld[i].out = 0;
1381 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1382 /* If we did not find a nonzero amount-to-increment-by,
1383 that contradicts the belief that IN is being incremented
1384 in an address in this insn. */
1385 if (rld[i].inc == 0)
1386 abort ();
1387 }
1388 #endif
1389
1390 /* If we will replace IN and OUT with the reload-reg,
1391 record where they are located so that substitution need
1392 not do a tree walk. */
1393
1394 if (replace_reloads)
1395 {
1396 if (inloc != 0)
1397 {
1398 register struct replacement *r = &replacements[n_replacements++];
1399 r->what = i;
1400 r->subreg_loc = in_subreg_loc;
1401 r->where = inloc;
1402 r->mode = inmode;
1403 }
1404 if (outloc != 0 && outloc != inloc)
1405 {
1406 register struct replacement *r = &replacements[n_replacements++];
1407 r->what = i;
1408 r->where = outloc;
1409 r->subreg_loc = out_subreg_loc;
1410 r->mode = outmode;
1411 }
1412 }
1413
1414 /* If this reload is just being introduced and it has both
1415 an incoming quantity and an outgoing quantity that are
1416 supposed to be made to match, see if either one of the two
1417 can serve as the place to reload into.
1418
1419 If one of them is acceptable, set rld[i].reg_rtx
1420 to that one. */
1421
1422 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1423 {
1424 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1425 inmode, outmode,
1426 rld[i].class, i,
1427 earlyclobber_operand_p (out));
1428
1429 /* If the outgoing register already contains the same value
1430 as the incoming one, we can dispense with loading it.
1431 The easiest way to tell the caller that is to give a phony
1432 value for the incoming operand (same as outgoing one). */
1433 if (rld[i].reg_rtx == out
1434 && (GET_CODE (in) == REG || CONSTANT_P (in))
1435 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1436 static_reload_reg_p, i, inmode))
1437 rld[i].in = out;
1438 }
1439
1440 /* If this is an input reload and the operand contains a register that
1441 dies in this insn and is used nowhere else, see if it is the right class
1442 to be used for this reload. Use it if so. (This occurs most commonly
1443 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1444 this if it is also an output reload that mentions the register unless
1445 the output is a SUBREG that clobbers an entire register.
1446
1447 Note that the operand might be one of the spill regs, if it is a
1448 pseudo reg and we are in a block where spilling has not taken place.
1449 But if there is no spilling in this block, that is OK.
1450 An explicitly used hard reg cannot be a spill reg. */
1451
1452 if (rld[i].reg_rtx == 0 && in != 0)
1453 {
1454 rtx note;
1455 int regno;
1456 enum machine_mode rel_mode = inmode;
1457
1458 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1459 rel_mode = outmode;
1460
1461 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1462 if (REG_NOTE_KIND (note) == REG_DEAD
1463 && GET_CODE (XEXP (note, 0)) == REG
1464 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1465 && reg_mentioned_p (XEXP (note, 0), in)
1466 && ! refers_to_regno_for_reload_p (regno,
1467 (regno
1468 + HARD_REGNO_NREGS (regno,
1469 rel_mode)),
1470 PATTERN (this_insn), inloc)
1471 /* If this is also an output reload, IN cannot be used as
1472 the reload register if it is set in this insn unless IN
1473 is also OUT. */
1474 && (out == 0 || in == out
1475 || ! hard_reg_set_here_p (regno,
1476 (regno
1477 + HARD_REGNO_NREGS (regno,
1478 rel_mode)),
1479 PATTERN (this_insn)))
1480 /* ??? Why is this code so different from the previous?
1481 Is there any simple coherent way to describe the two together?
1482 What's going on here. */
1483 && (in != out
1484 || (GET_CODE (in) == SUBREG
1485 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1486 / UNITS_PER_WORD)
1487 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1488 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1489 /* Make sure the operand fits in the reg that dies. */
1490 && (GET_MODE_SIZE (rel_mode)
1491 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1492 && HARD_REGNO_MODE_OK (regno, inmode)
1493 && HARD_REGNO_MODE_OK (regno, outmode))
1494 {
1495 unsigned int offs;
1496 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1497 HARD_REGNO_NREGS (regno, outmode));
1498
1499 for (offs = 0; offs < nregs; offs++)
1500 if (fixed_regs[regno + offs]
1501 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1502 regno + offs))
1503 break;
1504
1505 if (offs == nregs)
1506 {
1507 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1508 break;
1509 }
1510 }
1511 }
1512
1513 if (out)
1514 output_reloadnum = i;
1515
1516 return i;
1517 }
1518
1519 /* Record an additional place we must replace a value
1520 for which we have already recorded a reload.
1521 RELOADNUM is the value returned by push_reload
1522 when the reload was recorded.
1523 This is used in insn patterns that use match_dup. */
1524
1525 static void
1526 push_replacement (loc, reloadnum, mode)
1527 rtx *loc;
1528 int reloadnum;
1529 enum machine_mode mode;
1530 {
1531 if (replace_reloads)
1532 {
1533 register struct replacement *r = &replacements[n_replacements++];
1534 r->what = reloadnum;
1535 r->where = loc;
1536 r->subreg_loc = 0;
1537 r->mode = mode;
1538 }
1539 }
1540 \f
1541 /* Transfer all replacements that used to be in reload FROM to be in
1542 reload TO. */
1543
1544 void
1545 transfer_replacements (to, from)
1546 int to, from;
1547 {
1548 int i;
1549
1550 for (i = 0; i < n_replacements; i++)
1551 if (replacements[i].what == from)
1552 replacements[i].what = to;
1553 }
1554 \f
1555 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1556 or a subpart of it. If we have any replacements registered for IN_RTX,
1557 cancel the reloads that were supposed to load them.
1558 Return non-zero if we canceled any reloads. */
1559 int
1560 remove_address_replacements (in_rtx)
1561 rtx in_rtx;
1562 {
1563 int i, j;
1564 char reload_flags[MAX_RELOADS];
1565 int something_changed = 0;
1566
1567 memset (reload_flags, 0, sizeof reload_flags);
1568 for (i = 0, j = 0; i < n_replacements; i++)
1569 {
1570 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1571 reload_flags[replacements[i].what] |= 1;
1572 else
1573 {
1574 replacements[j++] = replacements[i];
1575 reload_flags[replacements[i].what] |= 2;
1576 }
1577 }
1578 /* Note that the following store must be done before the recursive calls. */
1579 n_replacements = j;
1580
1581 for (i = n_reloads - 1; i >= 0; i--)
1582 {
1583 if (reload_flags[i] == 1)
1584 {
1585 deallocate_reload_reg (i);
1586 remove_address_replacements (rld[i].in);
1587 rld[i].in = 0;
1588 something_changed = 1;
1589 }
1590 }
1591 return something_changed;
1592 }
1593 \f
1594 /* If there is only one output reload, and it is not for an earlyclobber
1595 operand, try to combine it with a (logically unrelated) input reload
1596 to reduce the number of reload registers needed.
1597
1598 This is safe if the input reload does not appear in
1599 the value being output-reloaded, because this implies
1600 it is not needed any more once the original insn completes.
1601
1602 If that doesn't work, see we can use any of the registers that
1603 die in this insn as a reload register. We can if it is of the right
1604 class and does not appear in the value being output-reloaded. */
1605
1606 static void
1607 combine_reloads ()
1608 {
1609 int i;
1610 int output_reload = -1;
1611 int secondary_out = -1;
1612 rtx note;
1613
1614 /* Find the output reload; return unless there is exactly one
1615 and that one is mandatory. */
1616
1617 for (i = 0; i < n_reloads; i++)
1618 if (rld[i].out != 0)
1619 {
1620 if (output_reload >= 0)
1621 return;
1622 output_reload = i;
1623 }
1624
1625 if (output_reload < 0 || rld[output_reload].optional)
1626 return;
1627
1628 /* An input-output reload isn't combinable. */
1629
1630 if (rld[output_reload].in != 0)
1631 return;
1632
1633 /* If this reload is for an earlyclobber operand, we can't do anything. */
1634 if (earlyclobber_operand_p (rld[output_reload].out))
1635 return;
1636
1637 /* Check each input reload; can we combine it? */
1638
1639 for (i = 0; i < n_reloads; i++)
1640 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1641 /* Life span of this reload must not extend past main insn. */
1642 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1643 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1644 && rld[i].when_needed != RELOAD_OTHER
1645 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1646 == CLASS_MAX_NREGS (rld[output_reload].class,
1647 rld[output_reload].outmode))
1648 && rld[i].inc == 0
1649 && rld[i].reg_rtx == 0
1650 #ifdef SECONDARY_MEMORY_NEEDED
1651 /* Don't combine two reloads with different secondary
1652 memory locations. */
1653 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1654 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1655 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1656 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1657 #endif
1658 && (SMALL_REGISTER_CLASSES
1659 ? (rld[i].class == rld[output_reload].class)
1660 : (reg_class_subset_p (rld[i].class,
1661 rld[output_reload].class)
1662 || reg_class_subset_p (rld[output_reload].class,
1663 rld[i].class)))
1664 && (MATCHES (rld[i].in, rld[output_reload].out)
1665 /* Args reversed because the first arg seems to be
1666 the one that we imagine being modified
1667 while the second is the one that might be affected. */
1668 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1669 rld[i].in)
1670 /* However, if the input is a register that appears inside
1671 the output, then we also can't share.
1672 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1673 If the same reload reg is used for both reg 69 and the
1674 result to be stored in memory, then that result
1675 will clobber the address of the memory ref. */
1676 && ! (GET_CODE (rld[i].in) == REG
1677 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1678 rld[output_reload].out))))
1679 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1680 && (reg_class_size[(int) rld[i].class]
1681 || SMALL_REGISTER_CLASSES)
1682 /* We will allow making things slightly worse by combining an
1683 input and an output, but no worse than that. */
1684 && (rld[i].when_needed == RELOAD_FOR_INPUT
1685 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1686 {
1687 int j;
1688
1689 /* We have found a reload to combine with! */
1690 rld[i].out = rld[output_reload].out;
1691 rld[i].out_reg = rld[output_reload].out_reg;
1692 rld[i].outmode = rld[output_reload].outmode;
1693 /* Mark the old output reload as inoperative. */
1694 rld[output_reload].out = 0;
1695 /* The combined reload is needed for the entire insn. */
1696 rld[i].when_needed = RELOAD_OTHER;
1697 /* If the output reload had a secondary reload, copy it. */
1698 if (rld[output_reload].secondary_out_reload != -1)
1699 {
1700 rld[i].secondary_out_reload
1701 = rld[output_reload].secondary_out_reload;
1702 rld[i].secondary_out_icode
1703 = rld[output_reload].secondary_out_icode;
1704 }
1705
1706 #ifdef SECONDARY_MEMORY_NEEDED
1707 /* Copy any secondary MEM. */
1708 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1709 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1710 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1711 #endif
1712 /* If required, minimize the register class. */
1713 if (reg_class_subset_p (rld[output_reload].class,
1714 rld[i].class))
1715 rld[i].class = rld[output_reload].class;
1716
1717 /* Transfer all replacements from the old reload to the combined. */
1718 for (j = 0; j < n_replacements; j++)
1719 if (replacements[j].what == output_reload)
1720 replacements[j].what = i;
1721
1722 return;
1723 }
1724
1725 /* If this insn has only one operand that is modified or written (assumed
1726 to be the first), it must be the one corresponding to this reload. It
1727 is safe to use anything that dies in this insn for that output provided
1728 that it does not occur in the output (we already know it isn't an
1729 earlyclobber. If this is an asm insn, give up. */
1730
1731 if (INSN_CODE (this_insn) == -1)
1732 return;
1733
1734 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1735 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1736 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1737 return;
1738
1739 /* See if some hard register that dies in this insn and is not used in
1740 the output is the right class. Only works if the register we pick
1741 up can fully hold our output reload. */
1742 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1743 if (REG_NOTE_KIND (note) == REG_DEAD
1744 && GET_CODE (XEXP (note, 0)) == REG
1745 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1746 rld[output_reload].out)
1747 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1748 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1749 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1750 REGNO (XEXP (note, 0)))
1751 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1752 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1753 /* Ensure that a secondary or tertiary reload for this output
1754 won't want this register. */
1755 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1756 || (! (TEST_HARD_REG_BIT
1757 (reg_class_contents[(int) rld[secondary_out].class],
1758 REGNO (XEXP (note, 0))))
1759 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1760 || ! (TEST_HARD_REG_BIT
1761 (reg_class_contents[(int) rld[secondary_out].class],
1762 REGNO (XEXP (note, 0)))))))
1763 && ! fixed_regs[REGNO (XEXP (note, 0))])
1764 {
1765 rld[output_reload].reg_rtx
1766 = gen_rtx_REG (rld[output_reload].outmode,
1767 REGNO (XEXP (note, 0)));
1768 return;
1769 }
1770 }
1771 \f
1772 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1773 See if one of IN and OUT is a register that may be used;
1774 this is desirable since a spill-register won't be needed.
1775 If so, return the register rtx that proves acceptable.
1776
1777 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1778 CLASS is the register class required for the reload.
1779
1780 If FOR_REAL is >= 0, it is the number of the reload,
1781 and in some cases when it can be discovered that OUT doesn't need
1782 to be computed, clear out rld[FOR_REAL].out.
1783
1784 If FOR_REAL is -1, this should not be done, because this call
1785 is just to see if a register can be found, not to find and install it.
1786
1787 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1788 puts an additional constraint on being able to use IN for OUT since
1789 IN must not appear elsewhere in the insn (it is assumed that IN itself
1790 is safe from the earlyclobber). */
1791
1792 static rtx
1793 find_dummy_reload (real_in, real_out, inloc, outloc,
1794 inmode, outmode, class, for_real, earlyclobber)
1795 rtx real_in, real_out;
1796 rtx *inloc, *outloc;
1797 enum machine_mode inmode, outmode;
1798 enum reg_class class;
1799 int for_real;
1800 int earlyclobber;
1801 {
1802 rtx in = real_in;
1803 rtx out = real_out;
1804 int in_offset = 0;
1805 int out_offset = 0;
1806 rtx value = 0;
1807
1808 /* If operands exceed a word, we can't use either of them
1809 unless they have the same size. */
1810 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1811 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1812 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1813 return 0;
1814
1815 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1816 respectively refers to a hard register. */
1817
1818 /* Find the inside of any subregs. */
1819 while (GET_CODE (out) == SUBREG)
1820 {
1821 if (GET_CODE (SUBREG_REG (out)) == REG
1822 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1823 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1824 GET_MODE (SUBREG_REG (out)),
1825 SUBREG_BYTE (out),
1826 GET_MODE (out));
1827 out = SUBREG_REG (out);
1828 }
1829 while (GET_CODE (in) == SUBREG)
1830 {
1831 if (GET_CODE (SUBREG_REG (in)) == REG
1832 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1833 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1834 GET_MODE (SUBREG_REG (in)),
1835 SUBREG_BYTE (in),
1836 GET_MODE (in));
1837 in = SUBREG_REG (in);
1838 }
1839
1840 /* Narrow down the reg class, the same way push_reload will;
1841 otherwise we might find a dummy now, but push_reload won't. */
1842 class = PREFERRED_RELOAD_CLASS (in, class);
1843
1844 /* See if OUT will do. */
1845 if (GET_CODE (out) == REG
1846 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1847 {
1848 unsigned int regno = REGNO (out) + out_offset;
1849 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1850 rtx saved_rtx;
1851
1852 /* When we consider whether the insn uses OUT,
1853 ignore references within IN. They don't prevent us
1854 from copying IN into OUT, because those refs would
1855 move into the insn that reloads IN.
1856
1857 However, we only ignore IN in its role as this reload.
1858 If the insn uses IN elsewhere and it contains OUT,
1859 that counts. We can't be sure it's the "same" operand
1860 so it might not go through this reload. */
1861 saved_rtx = *inloc;
1862 *inloc = const0_rtx;
1863
1864 if (regno < FIRST_PSEUDO_REGISTER
1865 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1866 PATTERN (this_insn), outloc))
1867 {
1868 unsigned int i;
1869
1870 for (i = 0; i < nwords; i++)
1871 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1872 regno + i))
1873 break;
1874
1875 if (i == nwords)
1876 {
1877 if (GET_CODE (real_out) == REG)
1878 value = real_out;
1879 else
1880 value = gen_rtx_REG (outmode, regno);
1881 }
1882 }
1883
1884 *inloc = saved_rtx;
1885 }
1886
1887 /* Consider using IN if OUT was not acceptable
1888 or if OUT dies in this insn (like the quotient in a divmod insn).
1889 We can't use IN unless it is dies in this insn,
1890 which means we must know accurately which hard regs are live.
1891 Also, the result can't go in IN if IN is used within OUT,
1892 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1893 if (hard_regs_live_known
1894 && GET_CODE (in) == REG
1895 && REGNO (in) < FIRST_PSEUDO_REGISTER
1896 && (value == 0
1897 || find_reg_note (this_insn, REG_UNUSED, real_out))
1898 && find_reg_note (this_insn, REG_DEAD, real_in)
1899 && !fixed_regs[REGNO (in)]
1900 && HARD_REGNO_MODE_OK (REGNO (in),
1901 /* The only case where out and real_out might
1902 have different modes is where real_out
1903 is a subreg, and in that case, out
1904 has a real mode. */
1905 (GET_MODE (out) != VOIDmode
1906 ? GET_MODE (out) : outmode)))
1907 {
1908 unsigned int regno = REGNO (in) + in_offset;
1909 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1910
1911 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*)0)
1912 && ! hard_reg_set_here_p (regno, regno + nwords,
1913 PATTERN (this_insn))
1914 && (! earlyclobber
1915 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1916 PATTERN (this_insn), inloc)))
1917 {
1918 unsigned int i;
1919
1920 for (i = 0; i < nwords; i++)
1921 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1922 regno + i))
1923 break;
1924
1925 if (i == nwords)
1926 {
1927 /* If we were going to use OUT as the reload reg
1928 and changed our mind, it means OUT is a dummy that
1929 dies here. So don't bother copying value to it. */
1930 if (for_real >= 0 && value == real_out)
1931 rld[for_real].out = 0;
1932 if (GET_CODE (real_in) == REG)
1933 value = real_in;
1934 else
1935 value = gen_rtx_REG (inmode, regno);
1936 }
1937 }
1938 }
1939
1940 return value;
1941 }
1942 \f
1943 /* This page contains subroutines used mainly for determining
1944 whether the IN or an OUT of a reload can serve as the
1945 reload register. */
1946
1947 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1948
1949 int
1950 earlyclobber_operand_p (x)
1951 rtx x;
1952 {
1953 int i;
1954
1955 for (i = 0; i < n_earlyclobbers; i++)
1956 if (reload_earlyclobbers[i] == x)
1957 return 1;
1958
1959 return 0;
1960 }
1961
1962 /* Return 1 if expression X alters a hard reg in the range
1963 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1964 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1965 X should be the body of an instruction. */
1966
1967 static int
1968 hard_reg_set_here_p (beg_regno, end_regno, x)
1969 unsigned int beg_regno, end_regno;
1970 rtx x;
1971 {
1972 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1973 {
1974 register rtx op0 = SET_DEST (x);
1975
1976 while (GET_CODE (op0) == SUBREG)
1977 op0 = SUBREG_REG (op0);
1978 if (GET_CODE (op0) == REG)
1979 {
1980 unsigned int r = REGNO (op0);
1981
1982 /* See if this reg overlaps range under consideration. */
1983 if (r < end_regno
1984 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1985 return 1;
1986 }
1987 }
1988 else if (GET_CODE (x) == PARALLEL)
1989 {
1990 register int i = XVECLEN (x, 0) - 1;
1991
1992 for (; i >= 0; i--)
1993 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1994 return 1;
1995 }
1996
1997 return 0;
1998 }
1999
2000 /* Return 1 if ADDR is a valid memory address for mode MODE,
2001 and check that each pseudo reg has the proper kind of
2002 hard reg. */
2003
2004 int
2005 strict_memory_address_p (mode, addr)
2006 enum machine_mode mode ATTRIBUTE_UNUSED;
2007 register rtx addr;
2008 {
2009 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2010 return 0;
2011
2012 win:
2013 return 1;
2014 }
2015 \f
2016 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2017 if they are the same hard reg, and has special hacks for
2018 autoincrement and autodecrement.
2019 This is specifically intended for find_reloads to use
2020 in determining whether two operands match.
2021 X is the operand whose number is the lower of the two.
2022
2023 The value is 2 if Y contains a pre-increment that matches
2024 a non-incrementing address in X. */
2025
2026 /* ??? To be completely correct, we should arrange to pass
2027 for X the output operand and for Y the input operand.
2028 For now, we assume that the output operand has the lower number
2029 because that is natural in (SET output (... input ...)). */
2030
2031 int
2032 operands_match_p (x, y)
2033 register rtx x, y;
2034 {
2035 register int i;
2036 register RTX_CODE code = GET_CODE (x);
2037 register const char *fmt;
2038 int success_2;
2039
2040 if (x == y)
2041 return 1;
2042 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2043 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2044 && GET_CODE (SUBREG_REG (y)) == REG)))
2045 {
2046 register int j;
2047
2048 if (code == SUBREG)
2049 {
2050 i = REGNO (SUBREG_REG (x));
2051 if (i >= FIRST_PSEUDO_REGISTER)
2052 goto slow;
2053 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2054 GET_MODE (SUBREG_REG (x)),
2055 SUBREG_BYTE (x),
2056 GET_MODE (x));
2057 }
2058 else
2059 i = REGNO (x);
2060
2061 if (GET_CODE (y) == SUBREG)
2062 {
2063 j = REGNO (SUBREG_REG (y));
2064 if (j >= FIRST_PSEUDO_REGISTER)
2065 goto slow;
2066 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2067 GET_MODE (SUBREG_REG (y)),
2068 SUBREG_BYTE (y),
2069 GET_MODE (y));
2070 }
2071 else
2072 j = REGNO (y);
2073
2074 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2075 multiple hard register group, so that for example (reg:DI 0) and
2076 (reg:SI 1) will be considered the same register. */
2077 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2078 && i < FIRST_PSEUDO_REGISTER)
2079 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2080 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2081 && j < FIRST_PSEUDO_REGISTER)
2082 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2083
2084 return i == j;
2085 }
2086 /* If two operands must match, because they are really a single
2087 operand of an assembler insn, then two postincrements are invalid
2088 because the assembler insn would increment only once.
2089 On the other hand, an postincrement matches ordinary indexing
2090 if the postincrement is the output operand. */
2091 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2092 return operands_match_p (XEXP (x, 0), y);
2093 /* Two preincrements are invalid
2094 because the assembler insn would increment only once.
2095 On the other hand, an preincrement matches ordinary indexing
2096 if the preincrement is the input operand.
2097 In this case, return 2, since some callers need to do special
2098 things when this happens. */
2099 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2100 || GET_CODE (y) == PRE_MODIFY)
2101 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2102
2103 slow:
2104
2105 /* Now we have disposed of all the cases
2106 in which different rtx codes can match. */
2107 if (code != GET_CODE (y))
2108 return 0;
2109 if (code == LABEL_REF)
2110 return XEXP (x, 0) == XEXP (y, 0);
2111 if (code == SYMBOL_REF)
2112 return XSTR (x, 0) == XSTR (y, 0);
2113
2114 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2115
2116 if (GET_MODE (x) != GET_MODE (y))
2117 return 0;
2118
2119 /* Compare the elements. If any pair of corresponding elements
2120 fail to match, return 0 for the whole things. */
2121
2122 success_2 = 0;
2123 fmt = GET_RTX_FORMAT (code);
2124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2125 {
2126 int val, j;
2127 switch (fmt[i])
2128 {
2129 case 'w':
2130 if (XWINT (x, i) != XWINT (y, i))
2131 return 0;
2132 break;
2133
2134 case 'i':
2135 if (XINT (x, i) != XINT (y, i))
2136 return 0;
2137 break;
2138
2139 case 'e':
2140 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2141 if (val == 0)
2142 return 0;
2143 /* If any subexpression returns 2,
2144 we should return 2 if we are successful. */
2145 if (val == 2)
2146 success_2 = 1;
2147 break;
2148
2149 case '0':
2150 break;
2151
2152 case 'E':
2153 if (XVECLEN (x, i) != XVECLEN (y, i))
2154 return 0;
2155 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2156 {
2157 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2158 if (val == 0)
2159 return 0;
2160 if (val == 2)
2161 success_2 = 1;
2162 }
2163 break;
2164
2165 /* It is believed that rtx's at this level will never
2166 contain anything but integers and other rtx's,
2167 except for within LABEL_REFs and SYMBOL_REFs. */
2168 default:
2169 abort ();
2170 }
2171 }
2172 return 1 + success_2;
2173 }
2174 \f
2175 /* Describe the range of registers or memory referenced by X.
2176 If X is a register, set REG_FLAG and put the first register
2177 number into START and the last plus one into END.
2178 If X is a memory reference, put a base address into BASE
2179 and a range of integer offsets into START and END.
2180 If X is pushing on the stack, we can assume it causes no trouble,
2181 so we set the SAFE field. */
2182
2183 static struct decomposition
2184 decompose (x)
2185 rtx x;
2186 {
2187 struct decomposition val;
2188 int all_const = 0;
2189
2190 val.reg_flag = 0;
2191 val.safe = 0;
2192 val.base = 0;
2193 if (GET_CODE (x) == MEM)
2194 {
2195 rtx base = NULL_RTX, offset = 0;
2196 rtx addr = XEXP (x, 0);
2197
2198 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2199 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2200 {
2201 val.base = XEXP (addr, 0);
2202 val.start = -GET_MODE_SIZE (GET_MODE (x));
2203 val.end = GET_MODE_SIZE (GET_MODE (x));
2204 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2205 return val;
2206 }
2207
2208 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2209 {
2210 if (GET_CODE (XEXP (addr, 1)) == PLUS
2211 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2212 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2213 {
2214 val.base = XEXP (addr, 0);
2215 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2216 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2217 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2218 return val;
2219 }
2220 }
2221
2222 if (GET_CODE (addr) == CONST)
2223 {
2224 addr = XEXP (addr, 0);
2225 all_const = 1;
2226 }
2227 if (GET_CODE (addr) == PLUS)
2228 {
2229 if (CONSTANT_P (XEXP (addr, 0)))
2230 {
2231 base = XEXP (addr, 1);
2232 offset = XEXP (addr, 0);
2233 }
2234 else if (CONSTANT_P (XEXP (addr, 1)))
2235 {
2236 base = XEXP (addr, 0);
2237 offset = XEXP (addr, 1);
2238 }
2239 }
2240
2241 if (offset == 0)
2242 {
2243 base = addr;
2244 offset = const0_rtx;
2245 }
2246 if (GET_CODE (offset) == CONST)
2247 offset = XEXP (offset, 0);
2248 if (GET_CODE (offset) == PLUS)
2249 {
2250 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2251 {
2252 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2253 offset = XEXP (offset, 0);
2254 }
2255 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2256 {
2257 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2258 offset = XEXP (offset, 1);
2259 }
2260 else
2261 {
2262 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2263 offset = const0_rtx;
2264 }
2265 }
2266 else if (GET_CODE (offset) != CONST_INT)
2267 {
2268 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2269 offset = const0_rtx;
2270 }
2271
2272 if (all_const && GET_CODE (base) == PLUS)
2273 base = gen_rtx_CONST (GET_MODE (base), base);
2274
2275 if (GET_CODE (offset) != CONST_INT)
2276 abort ();
2277
2278 val.start = INTVAL (offset);
2279 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2280 val.base = base;
2281 return val;
2282 }
2283 else if (GET_CODE (x) == REG)
2284 {
2285 val.reg_flag = 1;
2286 val.start = true_regnum (x);
2287 if (val.start < 0)
2288 {
2289 /* A pseudo with no hard reg. */
2290 val.start = REGNO (x);
2291 val.end = val.start + 1;
2292 }
2293 else
2294 /* A hard reg. */
2295 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2296 }
2297 else if (GET_CODE (x) == SUBREG)
2298 {
2299 if (GET_CODE (SUBREG_REG (x)) != REG)
2300 /* This could be more precise, but it's good enough. */
2301 return decompose (SUBREG_REG (x));
2302 val.reg_flag = 1;
2303 val.start = true_regnum (x);
2304 if (val.start < 0)
2305 return decompose (SUBREG_REG (x));
2306 else
2307 /* A hard reg. */
2308 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2309 }
2310 else if (CONSTANT_P (x)
2311 /* This hasn't been assigned yet, so it can't conflict yet. */
2312 || GET_CODE (x) == SCRATCH)
2313 val.safe = 1;
2314 else
2315 abort ();
2316 return val;
2317 }
2318
2319 /* Return 1 if altering Y will not modify the value of X.
2320 Y is also described by YDATA, which should be decompose (Y). */
2321
2322 static int
2323 immune_p (x, y, ydata)
2324 rtx x, y;
2325 struct decomposition ydata;
2326 {
2327 struct decomposition xdata;
2328
2329 if (ydata.reg_flag)
2330 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*)0);
2331 if (ydata.safe)
2332 return 1;
2333
2334 if (GET_CODE (y) != MEM)
2335 abort ();
2336 /* If Y is memory and X is not, Y can't affect X. */
2337 if (GET_CODE (x) != MEM)
2338 return 1;
2339
2340 xdata = decompose (x);
2341
2342 if (! rtx_equal_p (xdata.base, ydata.base))
2343 {
2344 /* If bases are distinct symbolic constants, there is no overlap. */
2345 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2346 return 1;
2347 /* Constants and stack slots never overlap. */
2348 if (CONSTANT_P (xdata.base)
2349 && (ydata.base == frame_pointer_rtx
2350 || ydata.base == hard_frame_pointer_rtx
2351 || ydata.base == stack_pointer_rtx))
2352 return 1;
2353 if (CONSTANT_P (ydata.base)
2354 && (xdata.base == frame_pointer_rtx
2355 || xdata.base == hard_frame_pointer_rtx
2356 || xdata.base == stack_pointer_rtx))
2357 return 1;
2358 /* If either base is variable, we don't know anything. */
2359 return 0;
2360 }
2361
2362 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2363 }
2364
2365 /* Similar, but calls decompose. */
2366
2367 int
2368 safe_from_earlyclobber (op, clobber)
2369 rtx op, clobber;
2370 {
2371 struct decomposition early_data;
2372
2373 early_data = decompose (clobber);
2374 return immune_p (op, clobber, early_data);
2375 }
2376 \f
2377 /* Main entry point of this file: search the body of INSN
2378 for values that need reloading and record them with push_reload.
2379 REPLACE nonzero means record also where the values occur
2380 so that subst_reloads can be used.
2381
2382 IND_LEVELS says how many levels of indirection are supported by this
2383 machine; a value of zero means that a memory reference is not a valid
2384 memory address.
2385
2386 LIVE_KNOWN says we have valid information about which hard
2387 regs are live at each point in the program; this is true when
2388 we are called from global_alloc but false when stupid register
2389 allocation has been done.
2390
2391 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2392 which is nonnegative if the reg has been commandeered for reloading into.
2393 It is copied into STATIC_RELOAD_REG_P and referenced from there
2394 by various subroutines.
2395
2396 Return TRUE if some operands need to be changed, because of swapping
2397 commutative operands, reg_equiv_address substitution, or whatever. */
2398
2399 int
2400 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2401 rtx insn;
2402 int replace, ind_levels;
2403 int live_known;
2404 short *reload_reg_p;
2405 {
2406 register int insn_code_number;
2407 register int i, j;
2408 int noperands;
2409 /* These start out as the constraints for the insn
2410 and they are chewed up as we consider alternatives. */
2411 char *constraints[MAX_RECOG_OPERANDS];
2412 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2413 a register. */
2414 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2415 char pref_or_nothing[MAX_RECOG_OPERANDS];
2416 /* Nonzero for a MEM operand whose entire address needs a reload. */
2417 int address_reloaded[MAX_RECOG_OPERANDS];
2418 /* Value of enum reload_type to use for operand. */
2419 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2420 /* Value of enum reload_type to use within address of operand. */
2421 enum reload_type address_type[MAX_RECOG_OPERANDS];
2422 /* Save the usage of each operand. */
2423 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2424 int no_input_reloads = 0, no_output_reloads = 0;
2425 int n_alternatives;
2426 int this_alternative[MAX_RECOG_OPERANDS];
2427 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2428 char this_alternative_win[MAX_RECOG_OPERANDS];
2429 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2430 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2431 int this_alternative_matches[MAX_RECOG_OPERANDS];
2432 int swapped;
2433 int goal_alternative[MAX_RECOG_OPERANDS];
2434 int this_alternative_number;
2435 int goal_alternative_number = 0;
2436 int operand_reloadnum[MAX_RECOG_OPERANDS];
2437 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2438 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2439 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2440 char goal_alternative_win[MAX_RECOG_OPERANDS];
2441 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2442 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2443 int goal_alternative_swapped;
2444 int best;
2445 int commutative;
2446 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2447 rtx substed_operand[MAX_RECOG_OPERANDS];
2448 rtx body = PATTERN (insn);
2449 rtx set = single_set (insn);
2450 int goal_earlyclobber = 0, this_earlyclobber;
2451 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2452 int retval = 0;
2453
2454 this_insn = insn;
2455 n_reloads = 0;
2456 n_replacements = 0;
2457 n_earlyclobbers = 0;
2458 replace_reloads = replace;
2459 hard_regs_live_known = live_known;
2460 static_reload_reg_p = reload_reg_p;
2461
2462 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2463 neither are insns that SET cc0. Insns that use CC0 are not allowed
2464 to have any input reloads. */
2465 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2466 no_output_reloads = 1;
2467
2468 #ifdef HAVE_cc0
2469 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2470 no_input_reloads = 1;
2471 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2472 no_output_reloads = 1;
2473 #endif
2474
2475 #ifdef SECONDARY_MEMORY_NEEDED
2476 /* The eliminated forms of any secondary memory locations are per-insn, so
2477 clear them out here. */
2478
2479 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2480 #endif
2481
2482 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2483 is cheap to move between them. If it is not, there may not be an insn
2484 to do the copy, so we may need a reload. */
2485 if (GET_CODE (body) == SET
2486 && GET_CODE (SET_DEST (body)) == REG
2487 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2488 && GET_CODE (SET_SRC (body)) == REG
2489 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2490 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2491 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2492 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2493 return 0;
2494
2495 extract_insn (insn);
2496
2497 noperands = reload_n_operands = recog_data.n_operands;
2498 n_alternatives = recog_data.n_alternatives;
2499
2500 /* Just return "no reloads" if insn has no operands with constraints. */
2501 if (noperands == 0 || n_alternatives == 0)
2502 return 0;
2503
2504 insn_code_number = INSN_CODE (insn);
2505 this_insn_is_asm = insn_code_number < 0;
2506
2507 memcpy (operand_mode, recog_data.operand_mode,
2508 noperands * sizeof (enum machine_mode));
2509 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2510
2511 commutative = -1;
2512
2513 /* If we will need to know, later, whether some pair of operands
2514 are the same, we must compare them now and save the result.
2515 Reloading the base and index registers will clobber them
2516 and afterward they will fail to match. */
2517
2518 for (i = 0; i < noperands; i++)
2519 {
2520 register char *p;
2521 register int c;
2522
2523 substed_operand[i] = recog_data.operand[i];
2524 p = constraints[i];
2525
2526 modified[i] = RELOAD_READ;
2527
2528 /* Scan this operand's constraint to see if it is an output operand,
2529 an in-out operand, is commutative, or should match another. */
2530
2531 while ((c = *p++))
2532 {
2533 if (c == '=')
2534 modified[i] = RELOAD_WRITE;
2535 else if (c == '+')
2536 modified[i] = RELOAD_READ_WRITE;
2537 else if (c == '%')
2538 {
2539 /* The last operand should not be marked commutative. */
2540 if (i == noperands - 1)
2541 abort ();
2542
2543 commutative = i;
2544 }
2545 else if (c >= '0' && c <= '9')
2546 {
2547 c -= '0';
2548 operands_match[c][i]
2549 = operands_match_p (recog_data.operand[c],
2550 recog_data.operand[i]);
2551
2552 /* An operand may not match itself. */
2553 if (c == i)
2554 abort ();
2555
2556 /* If C can be commuted with C+1, and C might need to match I,
2557 then C+1 might also need to match I. */
2558 if (commutative >= 0)
2559 {
2560 if (c == commutative || c == commutative + 1)
2561 {
2562 int other = c + (c == commutative ? 1 : -1);
2563 operands_match[other][i]
2564 = operands_match_p (recog_data.operand[other],
2565 recog_data.operand[i]);
2566 }
2567 if (i == commutative || i == commutative + 1)
2568 {
2569 int other = i + (i == commutative ? 1 : -1);
2570 operands_match[c][other]
2571 = operands_match_p (recog_data.operand[c],
2572 recog_data.operand[other]);
2573 }
2574 /* Note that C is supposed to be less than I.
2575 No need to consider altering both C and I because in
2576 that case we would alter one into the other. */
2577 }
2578 }
2579 }
2580 }
2581
2582 /* Examine each operand that is a memory reference or memory address
2583 and reload parts of the addresses into index registers.
2584 Also here any references to pseudo regs that didn't get hard regs
2585 but are equivalent to constants get replaced in the insn itself
2586 with those constants. Nobody will ever see them again.
2587
2588 Finally, set up the preferred classes of each operand. */
2589
2590 for (i = 0; i < noperands; i++)
2591 {
2592 register RTX_CODE code = GET_CODE (recog_data.operand[i]);
2593
2594 address_reloaded[i] = 0;
2595 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2596 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2597 : RELOAD_OTHER);
2598 address_type[i]
2599 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2600 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2601 : RELOAD_OTHER);
2602
2603 if (*constraints[i] == 0)
2604 /* Ignore things like match_operator operands. */
2605 ;
2606 else if (constraints[i][0] == 'p')
2607 {
2608 find_reloads_address (VOIDmode, (rtx*)0,
2609 recog_data.operand[i],
2610 recog_data.operand_loc[i],
2611 i, operand_type[i], ind_levels, insn);
2612
2613 /* If we now have a simple operand where we used to have a
2614 PLUS or MULT, re-recognize and try again. */
2615 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2616 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2617 && (GET_CODE (recog_data.operand[i]) == MULT
2618 || GET_CODE (recog_data.operand[i]) == PLUS))
2619 {
2620 INSN_CODE (insn) = -1;
2621 retval = find_reloads (insn, replace, ind_levels, live_known,
2622 reload_reg_p);
2623 return retval;
2624 }
2625
2626 recog_data.operand[i] = *recog_data.operand_loc[i];
2627 substed_operand[i] = recog_data.operand[i];
2628 }
2629 else if (code == MEM)
2630 {
2631 address_reloaded[i]
2632 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2633 recog_data.operand_loc[i],
2634 XEXP (recog_data.operand[i], 0),
2635 &XEXP (recog_data.operand[i], 0),
2636 i, address_type[i], ind_levels, insn);
2637 recog_data.operand[i] = *recog_data.operand_loc[i];
2638 substed_operand[i] = recog_data.operand[i];
2639 }
2640 else if (code == SUBREG)
2641 {
2642 rtx reg = SUBREG_REG (recog_data.operand[i]);
2643 rtx op
2644 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2645 ind_levels,
2646 set != 0
2647 && &SET_DEST (set) == recog_data.operand_loc[i],
2648 insn,
2649 &address_reloaded[i]);
2650
2651 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2652 that didn't get a hard register, emit a USE with a REG_EQUAL
2653 note in front so that we might inherit a previous, possibly
2654 wider reload. */
2655
2656 if (replace
2657 && GET_CODE (op) == MEM
2658 && GET_CODE (reg) == REG
2659 && (GET_MODE_SIZE (GET_MODE (reg))
2660 >= GET_MODE_SIZE (GET_MODE (op))))
2661 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2662 = gen_rtx_EXPR_LIST (REG_EQUAL,
2663 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2664
2665 substed_operand[i] = recog_data.operand[i] = op;
2666 }
2667 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2668 /* We can get a PLUS as an "operand" as a result of register
2669 elimination. See eliminate_regs and gen_reload. We handle
2670 a unary operator by reloading the operand. */
2671 substed_operand[i] = recog_data.operand[i]
2672 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2673 ind_levels, 0, insn,
2674 &address_reloaded[i]);
2675 else if (code == REG)
2676 {
2677 /* This is equivalent to calling find_reloads_toplev.
2678 The code is duplicated for speed.
2679 When we find a pseudo always equivalent to a constant,
2680 we replace it by the constant. We must be sure, however,
2681 that we don't try to replace it in the insn in which it
2682 is being set. */
2683 register int regno = REGNO (recog_data.operand[i]);
2684 if (reg_equiv_constant[regno] != 0
2685 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2686 {
2687 /* Record the existing mode so that the check if constants are
2688 allowed will work when operand_mode isn't specified. */
2689
2690 if (operand_mode[i] == VOIDmode)
2691 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2692
2693 substed_operand[i] = recog_data.operand[i]
2694 = reg_equiv_constant[regno];
2695 }
2696 if (reg_equiv_memory_loc[regno] != 0
2697 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2698 /* We need not give a valid is_set_dest argument since the case
2699 of a constant equivalence was checked above. */
2700 substed_operand[i] = recog_data.operand[i]
2701 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2702 ind_levels, 0, insn,
2703 &address_reloaded[i]);
2704 }
2705 /* If the operand is still a register (we didn't replace it with an
2706 equivalent), get the preferred class to reload it into. */
2707 code = GET_CODE (recog_data.operand[i]);
2708 preferred_class[i]
2709 = ((code == REG && REGNO (recog_data.operand[i])
2710 >= FIRST_PSEUDO_REGISTER)
2711 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2712 : NO_REGS);
2713 pref_or_nothing[i]
2714 = (code == REG
2715 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2716 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2717 }
2718
2719 /* If this is simply a copy from operand 1 to operand 0, merge the
2720 preferred classes for the operands. */
2721 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2722 && recog_data.operand[1] == SET_SRC (set))
2723 {
2724 preferred_class[0] = preferred_class[1]
2725 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2726 pref_or_nothing[0] |= pref_or_nothing[1];
2727 pref_or_nothing[1] |= pref_or_nothing[0];
2728 }
2729
2730 /* Now see what we need for pseudo-regs that didn't get hard regs
2731 or got the wrong kind of hard reg. For this, we must consider
2732 all the operands together against the register constraints. */
2733
2734 best = MAX_RECOG_OPERANDS * 2 + 600;
2735
2736 swapped = 0;
2737 goal_alternative_swapped = 0;
2738 try_swapped:
2739
2740 /* The constraints are made of several alternatives.
2741 Each operand's constraint looks like foo,bar,... with commas
2742 separating the alternatives. The first alternatives for all
2743 operands go together, the second alternatives go together, etc.
2744
2745 First loop over alternatives. */
2746
2747 for (this_alternative_number = 0;
2748 this_alternative_number < n_alternatives;
2749 this_alternative_number++)
2750 {
2751 /* Loop over operands for one constraint alternative. */
2752 /* LOSERS counts those that don't fit this alternative
2753 and would require loading. */
2754 int losers = 0;
2755 /* BAD is set to 1 if it some operand can't fit this alternative
2756 even after reloading. */
2757 int bad = 0;
2758 /* REJECT is a count of how undesirable this alternative says it is
2759 if any reloading is required. If the alternative matches exactly
2760 then REJECT is ignored, but otherwise it gets this much
2761 counted against it in addition to the reloading needed. Each
2762 ? counts three times here since we want the disparaging caused by
2763 a bad register class to only count 1/3 as much. */
2764 int reject = 0;
2765
2766 this_earlyclobber = 0;
2767
2768 for (i = 0; i < noperands; i++)
2769 {
2770 register char *p = constraints[i];
2771 register int win = 0;
2772 int did_match = 0;
2773 /* 0 => this operand can be reloaded somehow for this alternative */
2774 int badop = 1;
2775 /* 0 => this operand can be reloaded if the alternative allows regs. */
2776 int winreg = 0;
2777 int c;
2778 register rtx operand = recog_data.operand[i];
2779 int offset = 0;
2780 /* Nonzero means this is a MEM that must be reloaded into a reg
2781 regardless of what the constraint says. */
2782 int force_reload = 0;
2783 int offmemok = 0;
2784 /* Nonzero if a constant forced into memory would be OK for this
2785 operand. */
2786 int constmemok = 0;
2787 int earlyclobber = 0;
2788
2789 /* If the predicate accepts a unary operator, it means that
2790 we need to reload the operand, but do not do this for
2791 match_operator and friends. */
2792 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2793 operand = XEXP (operand, 0);
2794
2795 /* If the operand is a SUBREG, extract
2796 the REG or MEM (or maybe even a constant) within.
2797 (Constants can occur as a result of reg_equiv_constant.) */
2798
2799 while (GET_CODE (operand) == SUBREG)
2800 {
2801 /* Offset only matters when operand is a REG and
2802 it is a hard reg. This is because it is passed
2803 to reg_fits_class_p if it is a REG and all pseudos
2804 return 0 from that function. */
2805 if (GET_CODE (SUBREG_REG (operand)) == REG
2806 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2807 {
2808 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2809 GET_MODE (SUBREG_REG (operand)),
2810 SUBREG_BYTE (operand),
2811 GET_MODE (operand));
2812 }
2813 operand = SUBREG_REG (operand);
2814 /* Force reload if this is a constant or PLUS or if there may
2815 be a problem accessing OPERAND in the outer mode. */
2816 if (CONSTANT_P (operand)
2817 || GET_CODE (operand) == PLUS
2818 /* We must force a reload of paradoxical SUBREGs
2819 of a MEM because the alignment of the inner value
2820 may not be enough to do the outer reference. On
2821 big-endian machines, it may also reference outside
2822 the object.
2823
2824 On machines that extend byte operations and we have a
2825 SUBREG where both the inner and outer modes are no wider
2826 than a word and the inner mode is narrower, is integral,
2827 and gets extended when loaded from memory, combine.c has
2828 made assumptions about the behavior of the machine in such
2829 register access. If the data is, in fact, in memory we
2830 must always load using the size assumed to be in the
2831 register and let the insn do the different-sized
2832 accesses.
2833
2834 This is doubly true if WORD_REGISTER_OPERATIONS. In
2835 this case eliminate_regs has left non-paradoxical
2836 subregs for push_reloads to see. Make sure it does
2837 by forcing the reload.
2838
2839 ??? When is it right at this stage to have a subreg
2840 of a mem that is _not_ to be handled specialy? IMO
2841 those should have been reduced to just a mem. */
2842 || ((GET_CODE (operand) == MEM
2843 || (GET_CODE (operand)== REG
2844 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2845 #ifndef WORD_REGISTER_OPERATIONS
2846 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2847 < BIGGEST_ALIGNMENT)
2848 && (GET_MODE_SIZE (operand_mode[i])
2849 > GET_MODE_SIZE (GET_MODE (operand))))
2850 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2851 #ifdef LOAD_EXTEND_OP
2852 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2853 && (GET_MODE_SIZE (GET_MODE (operand))
2854 <= UNITS_PER_WORD)
2855 && (GET_MODE_SIZE (operand_mode[i])
2856 > GET_MODE_SIZE (GET_MODE (operand)))
2857 && INTEGRAL_MODE_P (GET_MODE (operand))
2858 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2859 #endif
2860 )
2861 #endif
2862 )
2863 /* This following hunk of code should no longer be
2864 needed at all with SUBREG_BYTE. If you need this
2865 code back, please explain to me why so I can
2866 fix the real problem. -DaveM */
2867 #if 0
2868 /* Subreg of a hard reg which can't handle the subreg's mode
2869 or which would handle that mode in the wrong number of
2870 registers for subregging to work. */
2871 || (GET_CODE (operand) == REG
2872 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2873 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2874 && (GET_MODE_SIZE (GET_MODE (operand))
2875 > UNITS_PER_WORD)
2876 && ((GET_MODE_SIZE (GET_MODE (operand))
2877 / UNITS_PER_WORD)
2878 != HARD_REGNO_NREGS (REGNO (operand),
2879 GET_MODE (operand))))
2880 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2881 operand_mode[i])))
2882 #endif
2883 )
2884 force_reload = 1;
2885 }
2886
2887 this_alternative[i] = (int) NO_REGS;
2888 this_alternative_win[i] = 0;
2889 this_alternative_match_win[i] = 0;
2890 this_alternative_offmemok[i] = 0;
2891 this_alternative_earlyclobber[i] = 0;
2892 this_alternative_matches[i] = -1;
2893
2894 /* An empty constraint or empty alternative
2895 allows anything which matched the pattern. */
2896 if (*p == 0 || *p == ',')
2897 win = 1, badop = 0;
2898
2899 /* Scan this alternative's specs for this operand;
2900 set WIN if the operand fits any letter in this alternative.
2901 Otherwise, clear BADOP if this operand could
2902 fit some letter after reloads,
2903 or set WINREG if this operand could fit after reloads
2904 provided the constraint allows some registers. */
2905
2906 while (*p && (c = *p++) != ',')
2907 switch (c)
2908 {
2909 case '=': case '+': case '*':
2910 break;
2911
2912 case '%':
2913 /* The last operand should not be marked commutative. */
2914 if (i != noperands - 1)
2915 commutative = i;
2916 break;
2917
2918 case '?':
2919 reject += 6;
2920 break;
2921
2922 case '!':
2923 reject = 600;
2924 break;
2925
2926 case '#':
2927 /* Ignore rest of this alternative as far as
2928 reloading is concerned. */
2929 while (*p && *p != ',')
2930 p++;
2931 break;
2932
2933 case '0': case '1': case '2': case '3': case '4':
2934 case '5': case '6': case '7': case '8': case '9':
2935
2936 c -= '0';
2937 this_alternative_matches[i] = c;
2938 /* We are supposed to match a previous operand.
2939 If we do, we win if that one did.
2940 If we do not, count both of the operands as losers.
2941 (This is too conservative, since most of the time
2942 only a single reload insn will be needed to make
2943 the two operands win. As a result, this alternative
2944 may be rejected when it is actually desirable.) */
2945 if ((swapped && (c != commutative || i != commutative + 1))
2946 /* If we are matching as if two operands were swapped,
2947 also pretend that operands_match had been computed
2948 with swapped.
2949 But if I is the second of those and C is the first,
2950 don't exchange them, because operands_match is valid
2951 only on one side of its diagonal. */
2952 ? (operands_match
2953 [(c == commutative || c == commutative + 1)
2954 ? 2 * commutative + 1 - c : c]
2955 [(i == commutative || i == commutative + 1)
2956 ? 2 * commutative + 1 - i : i])
2957 : operands_match[c][i])
2958 {
2959 /* If we are matching a non-offsettable address where an
2960 offsettable address was expected, then we must reject
2961 this combination, because we can't reload it. */
2962 if (this_alternative_offmemok[c]
2963 && GET_CODE (recog_data.operand[c]) == MEM
2964 && this_alternative[c] == (int) NO_REGS
2965 && ! this_alternative_win[c])
2966 bad = 1;
2967
2968 did_match = this_alternative_win[c];
2969 }
2970 else
2971 {
2972 /* Operands don't match. */
2973 rtx value;
2974 /* Retroactively mark the operand we had to match
2975 as a loser, if it wasn't already. */
2976 if (this_alternative_win[c])
2977 losers++;
2978 this_alternative_win[c] = 0;
2979 if (this_alternative[c] == (int) NO_REGS)
2980 bad = 1;
2981 /* But count the pair only once in the total badness of
2982 this alternative, if the pair can be a dummy reload. */
2983 value
2984 = find_dummy_reload (recog_data.operand[i],
2985 recog_data.operand[c],
2986 recog_data.operand_loc[i],
2987 recog_data.operand_loc[c],
2988 operand_mode[i], operand_mode[c],
2989 this_alternative[c], -1,
2990 this_alternative_earlyclobber[c]);
2991
2992 if (value != 0)
2993 losers--;
2994 }
2995 /* This can be fixed with reloads if the operand
2996 we are supposed to match can be fixed with reloads. */
2997 badop = 0;
2998 this_alternative[i] = this_alternative[c];
2999
3000 /* If we have to reload this operand and some previous
3001 operand also had to match the same thing as this
3002 operand, we don't know how to do that. So reject this
3003 alternative. */
3004 if (! did_match || force_reload)
3005 for (j = 0; j < i; j++)
3006 if (this_alternative_matches[j]
3007 == this_alternative_matches[i])
3008 badop = 1;
3009 break;
3010
3011 case 'p':
3012 /* All necessary reloads for an address_operand
3013 were handled in find_reloads_address. */
3014 this_alternative[i] = (int) BASE_REG_CLASS;
3015 win = 1;
3016 break;
3017
3018 case 'm':
3019 if (force_reload)
3020 break;
3021 if (GET_CODE (operand) == MEM
3022 || (GET_CODE (operand) == REG
3023 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3024 && reg_renumber[REGNO (operand)] < 0))
3025 win = 1;
3026 if (CONSTANT_P (operand)
3027 /* force_const_mem does not accept HIGH. */
3028 && GET_CODE (operand) != HIGH)
3029 badop = 0;
3030 constmemok = 1;
3031 break;
3032
3033 case '<':
3034 if (GET_CODE (operand) == MEM
3035 && ! address_reloaded[i]
3036 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3037 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3038 win = 1;
3039 break;
3040
3041 case '>':
3042 if (GET_CODE (operand) == MEM
3043 && ! address_reloaded[i]
3044 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3045 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3046 win = 1;
3047 break;
3048
3049 /* Memory operand whose address is not offsettable. */
3050 case 'V':
3051 if (force_reload)
3052 break;
3053 if (GET_CODE (operand) == MEM
3054 && ! (ind_levels ? offsettable_memref_p (operand)
3055 : offsettable_nonstrict_memref_p (operand))
3056 /* Certain mem addresses will become offsettable
3057 after they themselves are reloaded. This is important;
3058 we don't want our own handling of unoffsettables
3059 to override the handling of reg_equiv_address. */
3060 && !(GET_CODE (XEXP (operand, 0)) == REG
3061 && (ind_levels == 0
3062 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3063 win = 1;
3064 break;
3065
3066 /* Memory operand whose address is offsettable. */
3067 case 'o':
3068 if (force_reload)
3069 break;
3070 if ((GET_CODE (operand) == MEM
3071 /* If IND_LEVELS, find_reloads_address won't reload a
3072 pseudo that didn't get a hard reg, so we have to
3073 reject that case. */
3074 && ((ind_levels ? offsettable_memref_p (operand)
3075 : offsettable_nonstrict_memref_p (operand))
3076 /* A reloaded address is offsettable because it is now
3077 just a simple register indirect. */
3078 || address_reloaded[i]))
3079 || (GET_CODE (operand) == REG
3080 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3081 && reg_renumber[REGNO (operand)] < 0
3082 /* If reg_equiv_address is nonzero, we will be
3083 loading it into a register; hence it will be
3084 offsettable, but we cannot say that reg_equiv_mem
3085 is offsettable without checking. */
3086 && ((reg_equiv_mem[REGNO (operand)] != 0
3087 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3088 || (reg_equiv_address[REGNO (operand)] != 0))))
3089 win = 1;
3090 /* force_const_mem does not accept HIGH. */
3091 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3092 || GET_CODE (operand) == MEM)
3093 badop = 0;
3094 constmemok = 1;
3095 offmemok = 1;
3096 break;
3097
3098 case '&':
3099 /* Output operand that is stored before the need for the
3100 input operands (and their index registers) is over. */
3101 earlyclobber = 1, this_earlyclobber = 1;
3102 break;
3103
3104 case 'E':
3105 #ifndef REAL_ARITHMETIC
3106 /* Match any floating double constant, but only if
3107 we can examine the bits of it reliably. */
3108 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3109 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3110 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3111 break;
3112 #endif
3113 if (GET_CODE (operand) == CONST_DOUBLE)
3114 win = 1;
3115 break;
3116
3117 case 'F':
3118 if (GET_CODE (operand) == CONST_DOUBLE)
3119 win = 1;
3120 break;
3121
3122 case 'G':
3123 case 'H':
3124 if (GET_CODE (operand) == CONST_DOUBLE
3125 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3126 win = 1;
3127 break;
3128
3129 case 's':
3130 if (GET_CODE (operand) == CONST_INT
3131 || (GET_CODE (operand) == CONST_DOUBLE
3132 && GET_MODE (operand) == VOIDmode))
3133 break;
3134 case 'i':
3135 if (CONSTANT_P (operand)
3136 #ifdef LEGITIMATE_PIC_OPERAND_P
3137 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3138 #endif
3139 )
3140 win = 1;
3141 break;
3142
3143 case 'n':
3144 if (GET_CODE (operand) == CONST_INT
3145 || (GET_CODE (operand) == CONST_DOUBLE
3146 && GET_MODE (operand) == VOIDmode))
3147 win = 1;
3148 break;
3149
3150 case 'I':
3151 case 'J':
3152 case 'K':
3153 case 'L':
3154 case 'M':
3155 case 'N':
3156 case 'O':
3157 case 'P':
3158 if (GET_CODE (operand) == CONST_INT
3159 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3160 win = 1;
3161 break;
3162
3163 case 'X':
3164 win = 1;
3165 break;
3166
3167 case 'g':
3168 if (! force_reload
3169 /* A PLUS is never a valid operand, but reload can make
3170 it from a register when eliminating registers. */
3171 && GET_CODE (operand) != PLUS
3172 /* A SCRATCH is not a valid operand. */
3173 && GET_CODE (operand) != SCRATCH
3174 #ifdef LEGITIMATE_PIC_OPERAND_P
3175 && (! CONSTANT_P (operand)
3176 || ! flag_pic
3177 || LEGITIMATE_PIC_OPERAND_P (operand))
3178 #endif
3179 && (GENERAL_REGS == ALL_REGS
3180 || GET_CODE (operand) != REG
3181 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3182 && reg_renumber[REGNO (operand)] < 0)))
3183 win = 1;
3184 /* Drop through into 'r' case */
3185
3186 case 'r':
3187 this_alternative[i]
3188 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3189 goto reg;
3190
3191 default:
3192 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3193 {
3194 #ifdef EXTRA_CONSTRAINT
3195 if (EXTRA_CONSTRAINT (operand, c))
3196 win = 1;
3197 #endif
3198 break;
3199 }
3200
3201 this_alternative[i]
3202 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3203 reg:
3204 if (GET_MODE (operand) == BLKmode)
3205 break;
3206 winreg = 1;
3207 if (GET_CODE (operand) == REG
3208 && reg_fits_class_p (operand, this_alternative[i],
3209 offset, GET_MODE (recog_data.operand[i])))
3210 win = 1;
3211 break;
3212 }
3213
3214 constraints[i] = p;
3215
3216 /* If this operand could be handled with a reg,
3217 and some reg is allowed, then this operand can be handled. */
3218 if (winreg && this_alternative[i] != (int) NO_REGS)
3219 badop = 0;
3220
3221 /* Record which operands fit this alternative. */
3222 this_alternative_earlyclobber[i] = earlyclobber;
3223 if (win && ! force_reload)
3224 this_alternative_win[i] = 1;
3225 else if (did_match && ! force_reload)
3226 this_alternative_match_win[i] = 1;
3227 else
3228 {
3229 int const_to_mem = 0;
3230
3231 this_alternative_offmemok[i] = offmemok;
3232 losers++;
3233 if (badop)
3234 bad = 1;
3235 /* Alternative loses if it has no regs for a reg operand. */
3236 if (GET_CODE (operand) == REG
3237 && this_alternative[i] == (int) NO_REGS
3238 && this_alternative_matches[i] < 0)
3239 bad = 1;
3240
3241 /* If this is a constant that is reloaded into the desired
3242 class by copying it to memory first, count that as another
3243 reload. This is consistent with other code and is
3244 required to avoid choosing another alternative when
3245 the constant is moved into memory by this function on
3246 an early reload pass. Note that the test here is
3247 precisely the same as in the code below that calls
3248 force_const_mem. */
3249 if (CONSTANT_P (operand)
3250 /* force_const_mem does not accept HIGH. */
3251 && GET_CODE (operand) != HIGH
3252 && ((PREFERRED_RELOAD_CLASS (operand,
3253 (enum reg_class) this_alternative[i])
3254 == NO_REGS)
3255 || no_input_reloads)
3256 && operand_mode[i] != VOIDmode)
3257 {
3258 const_to_mem = 1;
3259 if (this_alternative[i] != (int) NO_REGS)
3260 losers++;
3261 }
3262
3263 /* If we can't reload this value at all, reject this
3264 alternative. Note that we could also lose due to
3265 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3266 here. */
3267
3268 if (! CONSTANT_P (operand)
3269 && (enum reg_class) this_alternative[i] != NO_REGS
3270 && (PREFERRED_RELOAD_CLASS (operand,
3271 (enum reg_class) this_alternative[i])
3272 == NO_REGS))
3273 bad = 1;
3274
3275 /* Alternative loses if it requires a type of reload not
3276 permitted for this insn. We can always reload SCRATCH
3277 and objects with a REG_UNUSED note. */
3278 else if (GET_CODE (operand) != SCRATCH
3279 && modified[i] != RELOAD_READ && no_output_reloads
3280 && ! find_reg_note (insn, REG_UNUSED, operand))
3281 bad = 1;
3282 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3283 && ! const_to_mem)
3284 bad = 1;
3285
3286 /* We prefer to reload pseudos over reloading other things,
3287 since such reloads may be able to be eliminated later.
3288 If we are reloading a SCRATCH, we won't be generating any
3289 insns, just using a register, so it is also preferred.
3290 So bump REJECT in other cases. Don't do this in the
3291 case where we are forcing a constant into memory and
3292 it will then win since we don't want to have a different
3293 alternative match then. */
3294 if (! (GET_CODE (operand) == REG
3295 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3296 && GET_CODE (operand) != SCRATCH
3297 && ! (const_to_mem && constmemok))
3298 reject += 2;
3299
3300 /* Input reloads can be inherited more often than output
3301 reloads can be removed, so penalize output reloads. */
3302 if (operand_type[i] != RELOAD_FOR_INPUT
3303 && GET_CODE (operand) != SCRATCH)
3304 reject++;
3305 }
3306
3307 /* If this operand is a pseudo register that didn't get a hard
3308 reg and this alternative accepts some register, see if the
3309 class that we want is a subset of the preferred class for this
3310 register. If not, but it intersects that class, use the
3311 preferred class instead. If it does not intersect the preferred
3312 class, show that usage of this alternative should be discouraged;
3313 it will be discouraged more still if the register is `preferred
3314 or nothing'. We do this because it increases the chance of
3315 reusing our spill register in a later insn and avoiding a pair
3316 of memory stores and loads.
3317
3318 Don't bother with this if this alternative will accept this
3319 operand.
3320
3321 Don't do this for a multiword operand, since it is only a
3322 small win and has the risk of requiring more spill registers,
3323 which could cause a large loss.
3324
3325 Don't do this if the preferred class has only one register
3326 because we might otherwise exhaust the class. */
3327
3328 if (! win && ! did_match
3329 && this_alternative[i] != (int) NO_REGS
3330 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3331 && reg_class_size[(int) preferred_class[i]] > 1)
3332 {
3333 if (! reg_class_subset_p (this_alternative[i],
3334 preferred_class[i]))
3335 {
3336 /* Since we don't have a way of forming the intersection,
3337 we just do something special if the preferred class
3338 is a subset of the class we have; that's the most
3339 common case anyway. */
3340 if (reg_class_subset_p (preferred_class[i],
3341 this_alternative[i]))
3342 this_alternative[i] = (int) preferred_class[i];
3343 else
3344 reject += (2 + 2 * pref_or_nothing[i]);
3345 }
3346 }
3347 }
3348
3349 /* Now see if any output operands that are marked "earlyclobber"
3350 in this alternative conflict with any input operands
3351 or any memory addresses. */
3352
3353 for (i = 0; i < noperands; i++)
3354 if (this_alternative_earlyclobber[i]
3355 && (this_alternative_win[i] || this_alternative_match_win[i]))
3356 {
3357 struct decomposition early_data;
3358
3359 early_data = decompose (recog_data.operand[i]);
3360
3361 if (modified[i] == RELOAD_READ)
3362 abort ();
3363
3364 if (this_alternative[i] == NO_REGS)
3365 {
3366 this_alternative_earlyclobber[i] = 0;
3367 if (this_insn_is_asm)
3368 error_for_asm (this_insn,
3369 "`&' constraint used with no register class");
3370 else
3371 abort ();
3372 }
3373
3374 for (j = 0; j < noperands; j++)
3375 /* Is this an input operand or a memory ref? */
3376 if ((GET_CODE (recog_data.operand[j]) == MEM
3377 || modified[j] != RELOAD_WRITE)
3378 && j != i
3379 /* Ignore things like match_operator operands. */
3380 && *recog_data.constraints[j] != 0
3381 /* Don't count an input operand that is constrained to match
3382 the early clobber operand. */
3383 && ! (this_alternative_matches[j] == i
3384 && rtx_equal_p (recog_data.operand[i],
3385 recog_data.operand[j]))
3386 /* Is it altered by storing the earlyclobber operand? */
3387 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3388 early_data))
3389 {
3390 /* If the output is in a single-reg class,
3391 it's costly to reload it, so reload the input instead. */
3392 if (reg_class_size[this_alternative[i]] == 1
3393 && (GET_CODE (recog_data.operand[j]) == REG
3394 || GET_CODE (recog_data.operand[j]) == SUBREG))
3395 {
3396 losers++;
3397 this_alternative_win[j] = 0;
3398 this_alternative_match_win[j] = 0;
3399 }
3400 else
3401 break;
3402 }
3403 /* If an earlyclobber operand conflicts with something,
3404 it must be reloaded, so request this and count the cost. */
3405 if (j != noperands)
3406 {
3407 losers++;
3408 this_alternative_win[i] = 0;
3409 this_alternative_match_win[j] = 0;
3410 for (j = 0; j < noperands; j++)
3411 if (this_alternative_matches[j] == i
3412 && this_alternative_match_win[j])
3413 {
3414 this_alternative_win[j] = 0;
3415 this_alternative_match_win[j] = 0;
3416 losers++;
3417 }
3418 }
3419 }
3420
3421 /* If one alternative accepts all the operands, no reload required,
3422 choose that alternative; don't consider the remaining ones. */
3423 if (losers == 0)
3424 {
3425 /* Unswap these so that they are never swapped at `finish'. */
3426 if (commutative >= 0)
3427 {
3428 recog_data.operand[commutative] = substed_operand[commutative];
3429 recog_data.operand[commutative + 1]
3430 = substed_operand[commutative + 1];
3431 }
3432 for (i = 0; i < noperands; i++)
3433 {
3434 goal_alternative_win[i] = this_alternative_win[i];
3435 goal_alternative_match_win[i] = this_alternative_match_win[i];
3436 goal_alternative[i] = this_alternative[i];
3437 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3438 goal_alternative_matches[i] = this_alternative_matches[i];
3439 goal_alternative_earlyclobber[i]
3440 = this_alternative_earlyclobber[i];
3441 }
3442 goal_alternative_number = this_alternative_number;
3443 goal_alternative_swapped = swapped;
3444 goal_earlyclobber = this_earlyclobber;
3445 goto finish;
3446 }
3447
3448 /* REJECT, set by the ! and ? constraint characters and when a register
3449 would be reloaded into a non-preferred class, discourages the use of
3450 this alternative for a reload goal. REJECT is incremented by six
3451 for each ? and two for each non-preferred class. */
3452 losers = losers * 6 + reject;
3453
3454 /* If this alternative can be made to work by reloading,
3455 and it needs less reloading than the others checked so far,
3456 record it as the chosen goal for reloading. */
3457 if (! bad && best > losers)
3458 {
3459 for (i = 0; i < noperands; i++)
3460 {
3461 goal_alternative[i] = this_alternative[i];
3462 goal_alternative_win[i] = this_alternative_win[i];
3463 goal_alternative_match_win[i] = this_alternative_match_win[i];
3464 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3465 goal_alternative_matches[i] = this_alternative_matches[i];
3466 goal_alternative_earlyclobber[i]
3467 = this_alternative_earlyclobber[i];
3468 }
3469 goal_alternative_swapped = swapped;
3470 best = losers;
3471 goal_alternative_number = this_alternative_number;
3472 goal_earlyclobber = this_earlyclobber;
3473 }
3474 }
3475
3476 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3477 then we need to try each alternative twice,
3478 the second time matching those two operands
3479 as if we had exchanged them.
3480 To do this, really exchange them in operands.
3481
3482 If we have just tried the alternatives the second time,
3483 return operands to normal and drop through. */
3484
3485 if (commutative >= 0)
3486 {
3487 swapped = !swapped;
3488 if (swapped)
3489 {
3490 register enum reg_class tclass;
3491 register int t;
3492
3493 recog_data.operand[commutative] = substed_operand[commutative + 1];
3494 recog_data.operand[commutative + 1] = substed_operand[commutative];
3495
3496 tclass = preferred_class[commutative];
3497 preferred_class[commutative] = preferred_class[commutative + 1];
3498 preferred_class[commutative + 1] = tclass;
3499
3500 t = pref_or_nothing[commutative];
3501 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3502 pref_or_nothing[commutative + 1] = t;
3503
3504 memcpy (constraints, recog_data.constraints,
3505 noperands * sizeof (char *));
3506 goto try_swapped;
3507 }
3508 else
3509 {
3510 recog_data.operand[commutative] = substed_operand[commutative];
3511 recog_data.operand[commutative + 1]
3512 = substed_operand[commutative + 1];
3513 }
3514 }
3515
3516 /* The operands don't meet the constraints.
3517 goal_alternative describes the alternative
3518 that we could reach by reloading the fewest operands.
3519 Reload so as to fit it. */
3520
3521 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3522 {
3523 /* No alternative works with reloads?? */
3524 if (insn_code_number >= 0)
3525 fatal_insn ("Unable to generate reloads for:", insn);
3526 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3527 /* Avoid further trouble with this insn. */
3528 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3529 n_reloads = 0;
3530 return 0;
3531 }
3532
3533 /* Jump to `finish' from above if all operands are valid already.
3534 In that case, goal_alternative_win is all 1. */
3535 finish:
3536
3537 /* Right now, for any pair of operands I and J that are required to match,
3538 with I < J,
3539 goal_alternative_matches[J] is I.
3540 Set up goal_alternative_matched as the inverse function:
3541 goal_alternative_matched[I] = J. */
3542
3543 for (i = 0; i < noperands; i++)
3544 goal_alternative_matched[i] = -1;
3545
3546 for (i = 0; i < noperands; i++)
3547 if (! goal_alternative_win[i]
3548 && goal_alternative_matches[i] >= 0)
3549 goal_alternative_matched[goal_alternative_matches[i]] = i;
3550
3551 for (i = 0; i < noperands; i++)
3552 goal_alternative_win[i] |= goal_alternative_match_win[i];
3553
3554 /* If the best alternative is with operands 1 and 2 swapped,
3555 consider them swapped before reporting the reloads. Update the
3556 operand numbers of any reloads already pushed. */
3557
3558 if (goal_alternative_swapped)
3559 {
3560 register rtx tem;
3561
3562 tem = substed_operand[commutative];
3563 substed_operand[commutative] = substed_operand[commutative + 1];
3564 substed_operand[commutative + 1] = tem;
3565 tem = recog_data.operand[commutative];
3566 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3567 recog_data.operand[commutative + 1] = tem;
3568 tem = *recog_data.operand_loc[commutative];
3569 *recog_data.operand_loc[commutative]
3570 = *recog_data.operand_loc[commutative + 1];
3571 *recog_data.operand_loc[commutative + 1] = tem;
3572
3573 for (i = 0; i < n_reloads; i++)
3574 {
3575 if (rld[i].opnum == commutative)
3576 rld[i].opnum = commutative + 1;
3577 else if (rld[i].opnum == commutative + 1)
3578 rld[i].opnum = commutative;
3579 }
3580 }
3581
3582 for (i = 0; i < noperands; i++)
3583 {
3584 operand_reloadnum[i] = -1;
3585
3586 /* If this is an earlyclobber operand, we need to widen the scope.
3587 The reload must remain valid from the start of the insn being
3588 reloaded until after the operand is stored into its destination.
3589 We approximate this with RELOAD_OTHER even though we know that we
3590 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3591
3592 One special case that is worth checking is when we have an
3593 output that is earlyclobber but isn't used past the insn (typically
3594 a SCRATCH). In this case, we only need have the reload live
3595 through the insn itself, but not for any of our input or output
3596 reloads.
3597 But we must not accidentally narrow the scope of an existing
3598 RELOAD_OTHER reload - leave these alone.
3599
3600 In any case, anything needed to address this operand can remain
3601 however they were previously categorized. */
3602
3603 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3604 operand_type[i]
3605 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3606 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3607 }
3608
3609 /* Any constants that aren't allowed and can't be reloaded
3610 into registers are here changed into memory references. */
3611 for (i = 0; i < noperands; i++)
3612 if (! goal_alternative_win[i]
3613 && CONSTANT_P (recog_data.operand[i])
3614 /* force_const_mem does not accept HIGH. */
3615 && GET_CODE (recog_data.operand[i]) != HIGH
3616 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3617 (enum reg_class) goal_alternative[i])
3618 == NO_REGS)
3619 || no_input_reloads)
3620 && operand_mode[i] != VOIDmode)
3621 {
3622 substed_operand[i] = recog_data.operand[i]
3623 = find_reloads_toplev (force_const_mem (operand_mode[i],
3624 recog_data.operand[i]),
3625 i, address_type[i], ind_levels, 0, insn,
3626 NULL);
3627 if (alternative_allows_memconst (recog_data.constraints[i],
3628 goal_alternative_number))
3629 goal_alternative_win[i] = 1;
3630 }
3631
3632 /* Record the values of the earlyclobber operands for the caller. */
3633 if (goal_earlyclobber)
3634 for (i = 0; i < noperands; i++)
3635 if (goal_alternative_earlyclobber[i])
3636 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3637
3638 /* Now record reloads for all the operands that need them. */
3639 for (i = 0; i < noperands; i++)
3640 if (! goal_alternative_win[i])
3641 {
3642 /* Operands that match previous ones have already been handled. */
3643 if (goal_alternative_matches[i] >= 0)
3644 ;
3645 /* Handle an operand with a nonoffsettable address
3646 appearing where an offsettable address will do
3647 by reloading the address into a base register.
3648
3649 ??? We can also do this when the operand is a register and
3650 reg_equiv_mem is not offsettable, but this is a bit tricky,
3651 so we don't bother with it. It may not be worth doing. */
3652 else if (goal_alternative_matched[i] == -1
3653 && goal_alternative_offmemok[i]
3654 && GET_CODE (recog_data.operand[i]) == MEM)
3655 {
3656 operand_reloadnum[i]
3657 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3658 &XEXP (recog_data.operand[i], 0), (rtx*)0,
3659 BASE_REG_CLASS,
3660 GET_MODE (XEXP (recog_data.operand[i], 0)),
3661 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3662 rld[operand_reloadnum[i]].inc
3663 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3664
3665 /* If this operand is an output, we will have made any
3666 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3667 now we are treating part of the operand as an input, so
3668 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3669
3670 if (modified[i] == RELOAD_WRITE)
3671 {
3672 for (j = 0; j < n_reloads; j++)
3673 {
3674 if (rld[j].opnum == i)
3675 {
3676 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3677 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3678 else if (rld[j].when_needed
3679 == RELOAD_FOR_OUTADDR_ADDRESS)
3680 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3681 }
3682 }
3683 }
3684 }
3685 else if (goal_alternative_matched[i] == -1)
3686 {
3687 operand_reloadnum[i]
3688 = push_reload ((modified[i] != RELOAD_WRITE
3689 ? recog_data.operand[i] : 0),
3690 (modified[i] != RELOAD_READ
3691 ? recog_data.operand[i] : 0),
3692 (modified[i] != RELOAD_WRITE
3693 ? recog_data.operand_loc[i] : 0),
3694 (modified[i] != RELOAD_READ
3695 ? recog_data.operand_loc[i] : 0),
3696 (enum reg_class) goal_alternative[i],
3697 (modified[i] == RELOAD_WRITE
3698 ? VOIDmode : operand_mode[i]),
3699 (modified[i] == RELOAD_READ
3700 ? VOIDmode : operand_mode[i]),
3701 (insn_code_number < 0 ? 0
3702 : insn_data[insn_code_number].operand[i].strict_low),
3703 0, i, operand_type[i]);
3704 }
3705 /* In a matching pair of operands, one must be input only
3706 and the other must be output only.
3707 Pass the input operand as IN and the other as OUT. */
3708 else if (modified[i] == RELOAD_READ
3709 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3710 {
3711 operand_reloadnum[i]
3712 = push_reload (recog_data.operand[i],
3713 recog_data.operand[goal_alternative_matched[i]],
3714 recog_data.operand_loc[i],
3715 recog_data.operand_loc[goal_alternative_matched[i]],
3716 (enum reg_class) goal_alternative[i],
3717 operand_mode[i],
3718 operand_mode[goal_alternative_matched[i]],
3719 0, 0, i, RELOAD_OTHER);
3720 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3721 }
3722 else if (modified[i] == RELOAD_WRITE
3723 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3724 {
3725 operand_reloadnum[goal_alternative_matched[i]]
3726 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3727 recog_data.operand[i],
3728 recog_data.operand_loc[goal_alternative_matched[i]],
3729 recog_data.operand_loc[i],
3730 (enum reg_class) goal_alternative[i],
3731 operand_mode[goal_alternative_matched[i]],
3732 operand_mode[i],
3733 0, 0, i, RELOAD_OTHER);
3734 operand_reloadnum[i] = output_reloadnum;
3735 }
3736 else if (insn_code_number >= 0)
3737 abort ();
3738 else
3739 {
3740 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3741 /* Avoid further trouble with this insn. */
3742 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3743 n_reloads = 0;
3744 return 0;
3745 }
3746 }
3747 else if (goal_alternative_matched[i] < 0
3748 && goal_alternative_matches[i] < 0
3749 && optimize)
3750 {
3751 /* For each non-matching operand that's a MEM or a pseudo-register
3752 that didn't get a hard register, make an optional reload.
3753 This may get done even if the insn needs no reloads otherwise. */
3754
3755 rtx operand = recog_data.operand[i];
3756
3757 while (GET_CODE (operand) == SUBREG)
3758 operand = SUBREG_REG (operand);
3759 if ((GET_CODE (operand) == MEM
3760 || (GET_CODE (operand) == REG
3761 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3762 /* If this is only for an output, the optional reload would not
3763 actually cause us to use a register now, just note that
3764 something is stored here. */
3765 && ((enum reg_class) goal_alternative[i] != NO_REGS
3766 || modified[i] == RELOAD_WRITE)
3767 && ! no_input_reloads
3768 /* An optional output reload might allow to delete INSN later.
3769 We mustn't make in-out reloads on insns that are not permitted
3770 output reloads.
3771 If this is an asm, we can't delete it; we must not even call
3772 push_reload for an optional output reload in this case,
3773 because we can't be sure that the constraint allows a register,
3774 and push_reload verifies the constraints for asms. */
3775 && (modified[i] == RELOAD_READ
3776 || (! no_output_reloads && ! this_insn_is_asm)))
3777 operand_reloadnum[i]
3778 = push_reload ((modified[i] != RELOAD_WRITE
3779 ? recog_data.operand[i] : 0),
3780 (modified[i] != RELOAD_READ
3781 ? recog_data.operand[i] : 0),
3782 (modified[i] != RELOAD_WRITE
3783 ? recog_data.operand_loc[i] : 0),
3784 (modified[i] != RELOAD_READ
3785 ? recog_data.operand_loc[i] : 0),
3786 (enum reg_class) goal_alternative[i],
3787 (modified[i] == RELOAD_WRITE
3788 ? VOIDmode : operand_mode[i]),
3789 (modified[i] == RELOAD_READ
3790 ? VOIDmode : operand_mode[i]),
3791 (insn_code_number < 0 ? 0
3792 : insn_data[insn_code_number].operand[i].strict_low),
3793 1, i, operand_type[i]);
3794 /* If a memory reference remains (either as a MEM or a pseudo that
3795 did not get a hard register), yet we can't make an optional
3796 reload, check if this is actually a pseudo register reference;
3797 we then need to emit a USE and/or a CLOBBER so that reload
3798 inheritance will do the right thing. */
3799 else if (replace
3800 && (GET_CODE (operand) == MEM
3801 || (GET_CODE (operand) == REG
3802 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3803 && reg_renumber [REGNO (operand)] < 0)))
3804 {
3805 operand = *recog_data.operand_loc[i];
3806
3807 while (GET_CODE (operand) == SUBREG)
3808 operand = SUBREG_REG (operand);
3809 if (GET_CODE (operand) == REG)
3810 {
3811 if (modified[i] != RELOAD_WRITE)
3812 emit_insn_before (gen_rtx_USE (VOIDmode, operand), insn);
3813 if (modified[i] != RELOAD_READ)
3814 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3815 }
3816 }
3817 }
3818 else if (goal_alternative_matches[i] >= 0
3819 && goal_alternative_win[goal_alternative_matches[i]]
3820 && modified[i] == RELOAD_READ
3821 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3822 && ! no_input_reloads && ! no_output_reloads
3823 && optimize)
3824 {
3825 /* Similarly, make an optional reload for a pair of matching
3826 objects that are in MEM or a pseudo that didn't get a hard reg. */
3827
3828 rtx operand = recog_data.operand[i];
3829
3830 while (GET_CODE (operand) == SUBREG)
3831 operand = SUBREG_REG (operand);
3832 if ((GET_CODE (operand) == MEM
3833 || (GET_CODE (operand) == REG
3834 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3835 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3836 != NO_REGS))
3837 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3838 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3839 recog_data.operand[i],
3840 recog_data.operand_loc[goal_alternative_matches[i]],
3841 recog_data.operand_loc[i],
3842 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3843 operand_mode[goal_alternative_matches[i]],
3844 operand_mode[i],
3845 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3846 }
3847
3848 /* Perform whatever substitutions on the operands we are supposed
3849 to make due to commutativity or replacement of registers
3850 with equivalent constants or memory slots. */
3851
3852 for (i = 0; i < noperands; i++)
3853 {
3854 /* We only do this on the last pass through reload, because it is
3855 possible for some data (like reg_equiv_address) to be changed during
3856 later passes. Moreover, we loose the opportunity to get a useful
3857 reload_{in,out}_reg when we do these replacements. */
3858
3859 if (replace)
3860 {
3861 rtx substitution = substed_operand[i];
3862
3863 *recog_data.operand_loc[i] = substitution;
3864
3865 /* If we're replacing an operand with a LABEL_REF, we need
3866 to make sure that there's a REG_LABEL note attached to
3867 this instruction. */
3868 if (GET_CODE (insn) != JUMP_INSN
3869 && GET_CODE (substitution) == LABEL_REF
3870 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3871 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
3872 XEXP (substitution, 0),
3873 REG_NOTES (insn));
3874 }
3875 else
3876 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3877 }
3878
3879 /* If this insn pattern contains any MATCH_DUP's, make sure that
3880 they will be substituted if the operands they match are substituted.
3881 Also do now any substitutions we already did on the operands.
3882
3883 Don't do this if we aren't making replacements because we might be
3884 propagating things allocated by frame pointer elimination into places
3885 it doesn't expect. */
3886
3887 if (insn_code_number >= 0 && replace)
3888 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3889 {
3890 int opno = recog_data.dup_num[i];
3891 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3892 if (operand_reloadnum[opno] >= 0)
3893 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3894 insn_data[insn_code_number].operand[opno].mode);
3895 }
3896
3897 #if 0
3898 /* This loses because reloading of prior insns can invalidate the equivalence
3899 (or at least find_equiv_reg isn't smart enough to find it any more),
3900 causing this insn to need more reload regs than it needed before.
3901 It may be too late to make the reload regs available.
3902 Now this optimization is done safely in choose_reload_regs. */
3903
3904 /* For each reload of a reg into some other class of reg,
3905 search for an existing equivalent reg (same value now) in the right class.
3906 We can use it as long as we don't need to change its contents. */
3907 for (i = 0; i < n_reloads; i++)
3908 if (rld[i].reg_rtx == 0
3909 && rld[i].in != 0
3910 && GET_CODE (rld[i].in) == REG
3911 && rld[i].out == 0)
3912 {
3913 rld[i].reg_rtx
3914 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3915 static_reload_reg_p, 0, rld[i].inmode);
3916 /* Prevent generation of insn to load the value
3917 because the one we found already has the value. */
3918 if (rld[i].reg_rtx)
3919 rld[i].in = rld[i].reg_rtx;
3920 }
3921 #endif
3922
3923 /* Perhaps an output reload can be combined with another
3924 to reduce needs by one. */
3925 if (!goal_earlyclobber)
3926 combine_reloads ();
3927
3928 /* If we have a pair of reloads for parts of an address, they are reloading
3929 the same object, the operands themselves were not reloaded, and they
3930 are for two operands that are supposed to match, merge the reloads and
3931 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3932
3933 for (i = 0; i < n_reloads; i++)
3934 {
3935 int k;
3936
3937 for (j = i + 1; j < n_reloads; j++)
3938 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3939 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3940 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3941 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3942 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3943 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3944 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3945 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3946 && rtx_equal_p (rld[i].in, rld[j].in)
3947 && (operand_reloadnum[rld[i].opnum] < 0
3948 || rld[operand_reloadnum[rld[i].opnum]].optional)
3949 && (operand_reloadnum[rld[j].opnum] < 0
3950 || rld[operand_reloadnum[rld[j].opnum]].optional)
3951 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3952 || (goal_alternative_matches[rld[j].opnum]
3953 == rld[i].opnum)))
3954 {
3955 for (k = 0; k < n_replacements; k++)
3956 if (replacements[k].what == j)
3957 replacements[k].what = i;
3958
3959 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3960 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3961 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3962 else
3963 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3964 rld[j].in = 0;
3965 }
3966 }
3967
3968 /* Scan all the reloads and update their type.
3969 If a reload is for the address of an operand and we didn't reload
3970 that operand, change the type. Similarly, change the operand number
3971 of a reload when two operands match. If a reload is optional, treat it
3972 as though the operand isn't reloaded.
3973
3974 ??? This latter case is somewhat odd because if we do the optional
3975 reload, it means the object is hanging around. Thus we need only
3976 do the address reload if the optional reload was NOT done.
3977
3978 Change secondary reloads to be the address type of their operand, not
3979 the normal type.
3980
3981 If an operand's reload is now RELOAD_OTHER, change any
3982 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3983 RELOAD_FOR_OTHER_ADDRESS. */
3984
3985 for (i = 0; i < n_reloads; i++)
3986 {
3987 if (rld[i].secondary_p
3988 && rld[i].when_needed == operand_type[rld[i].opnum])
3989 rld[i].when_needed = address_type[rld[i].opnum];
3990
3991 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3992 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3993 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3994 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3995 && (operand_reloadnum[rld[i].opnum] < 0
3996 || rld[operand_reloadnum[rld[i].opnum]].optional))
3997 {
3998 /* If we have a secondary reload to go along with this reload,
3999 change its type to RELOAD_FOR_OPADDR_ADDR. */
4000
4001 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4002 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4003 && rld[i].secondary_in_reload != -1)
4004 {
4005 int secondary_in_reload = rld[i].secondary_in_reload;
4006
4007 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4008
4009 /* If there's a tertiary reload we have to change it also. */
4010 if (secondary_in_reload > 0
4011 && rld[secondary_in_reload].secondary_in_reload != -1)
4012 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4013 = RELOAD_FOR_OPADDR_ADDR;
4014 }
4015
4016 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4017 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4018 && rld[i].secondary_out_reload != -1)
4019 {
4020 int secondary_out_reload = rld[i].secondary_out_reload;
4021
4022 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4023
4024 /* If there's a tertiary reload we have to change it also. */
4025 if (secondary_out_reload
4026 && rld[secondary_out_reload].secondary_out_reload != -1)
4027 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4028 = RELOAD_FOR_OPADDR_ADDR;
4029 }
4030
4031 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4032 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4033 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4034 else
4035 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4036 }
4037
4038 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4039 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4040 && operand_reloadnum[rld[i].opnum] >= 0
4041 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4042 == RELOAD_OTHER))
4043 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4044
4045 if (goal_alternative_matches[rld[i].opnum] >= 0)
4046 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4047 }
4048
4049 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4050 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4051 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4052
4053 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4054 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4055 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4056 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4057 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4058 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4059 This is complicated by the fact that a single operand can have more
4060 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4061 choose_reload_regs without affecting code quality, and cases that
4062 actually fail are extremely rare, so it turns out to be better to fix
4063 the problem here by not generating cases that choose_reload_regs will
4064 fail for. */
4065 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4066 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4067 a single operand.
4068 We can reduce the register pressure by exploiting that a
4069 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4070 does not conflict with any of them, if it is only used for the first of
4071 the RELOAD_FOR_X_ADDRESS reloads. */
4072 {
4073 int first_op_addr_num = -2;
4074 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4075 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4076 int need_change = 0;
4077 /* We use last_op_addr_reload and the contents of the above arrays
4078 first as flags - -2 means no instance encountered, -1 means exactly
4079 one instance encountered.
4080 If more than one instance has been encountered, we store the reload
4081 number of the first reload of the kind in question; reload numbers
4082 are known to be non-negative. */
4083 for (i = 0; i < noperands; i++)
4084 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4085 for (i = n_reloads - 1; i >= 0; i--)
4086 {
4087 switch (rld[i].when_needed)
4088 {
4089 case RELOAD_FOR_OPERAND_ADDRESS:
4090 if (++first_op_addr_num >= 0)
4091 {
4092 first_op_addr_num = i;
4093 need_change = 1;
4094 }
4095 break;
4096 case RELOAD_FOR_INPUT_ADDRESS:
4097 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4098 {
4099 first_inpaddr_num[rld[i].opnum] = i;
4100 need_change = 1;
4101 }
4102 break;
4103 case RELOAD_FOR_OUTPUT_ADDRESS:
4104 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4105 {
4106 first_outpaddr_num[rld[i].opnum] = i;
4107 need_change = 1;
4108 }
4109 break;
4110 default:
4111 break;
4112 }
4113 }
4114
4115 if (need_change)
4116 {
4117 for (i = 0; i < n_reloads; i++)
4118 {
4119 int first_num;
4120 enum reload_type type;
4121
4122 switch (rld[i].when_needed)
4123 {
4124 case RELOAD_FOR_OPADDR_ADDR:
4125 first_num = first_op_addr_num;
4126 type = RELOAD_FOR_OPERAND_ADDRESS;
4127 break;
4128 case RELOAD_FOR_INPADDR_ADDRESS:
4129 first_num = first_inpaddr_num[rld[i].opnum];
4130 type = RELOAD_FOR_INPUT_ADDRESS;
4131 break;
4132 case RELOAD_FOR_OUTADDR_ADDRESS:
4133 first_num = first_outpaddr_num[rld[i].opnum];
4134 type = RELOAD_FOR_OUTPUT_ADDRESS;
4135 break;
4136 default:
4137 continue;
4138 }
4139 if (first_num < 0)
4140 continue;
4141 else if (i > first_num)
4142 rld[i].when_needed = type;
4143 else
4144 {
4145 /* Check if the only TYPE reload that uses reload I is
4146 reload FIRST_NUM. */
4147 for (j = n_reloads - 1; j > first_num; j--)
4148 {
4149 if (rld[j].when_needed == type
4150 && (rld[i].secondary_p
4151 ? rld[j].secondary_in_reload == i
4152 : reg_mentioned_p (rld[i].in, rld[j].in)))
4153 {
4154 rld[i].when_needed = type;
4155 break;
4156 }
4157 }
4158 }
4159 }
4160 }
4161 }
4162
4163 /* See if we have any reloads that are now allowed to be merged
4164 because we've changed when the reload is needed to
4165 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4166 check for the most common cases. */
4167
4168 for (i = 0; i < n_reloads; i++)
4169 if (rld[i].in != 0 && rld[i].out == 0
4170 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4171 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4172 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4173 for (j = 0; j < n_reloads; j++)
4174 if (i != j && rld[j].in != 0 && rld[j].out == 0
4175 && rld[j].when_needed == rld[i].when_needed
4176 && MATCHES (rld[i].in, rld[j].in)
4177 && rld[i].class == rld[j].class
4178 && !rld[i].nocombine && !rld[j].nocombine
4179 && rld[i].reg_rtx == rld[j].reg_rtx)
4180 {
4181 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4182 transfer_replacements (i, j);
4183 rld[j].in = 0;
4184 }
4185
4186 #ifdef HAVE_cc0
4187 /* If we made any reloads for addresses, see if they violate a
4188 "no input reloads" requirement for this insn. But loads that we
4189 do after the insn (such as for output addresses) are fine. */
4190 if (no_input_reloads)
4191 for (i = 0; i < n_reloads; i++)
4192 if (rld[i].in != 0
4193 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4194 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4195 abort ();
4196 #endif
4197
4198 /* Compute reload_mode and reload_nregs. */
4199 for (i = 0; i < n_reloads; i++)
4200 {
4201 rld[i].mode
4202 = (rld[i].inmode == VOIDmode
4203 || (GET_MODE_SIZE (rld[i].outmode)
4204 > GET_MODE_SIZE (rld[i].inmode)))
4205 ? rld[i].outmode : rld[i].inmode;
4206
4207 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4208 }
4209
4210 return retval;
4211 }
4212
4213 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4214 accepts a memory operand with constant address. */
4215
4216 static int
4217 alternative_allows_memconst (constraint, altnum)
4218 const char *constraint;
4219 int altnum;
4220 {
4221 register int c;
4222 /* Skip alternatives before the one requested. */
4223 while (altnum > 0)
4224 {
4225 while (*constraint++ != ',');
4226 altnum--;
4227 }
4228 /* Scan the requested alternative for 'm' or 'o'.
4229 If one of them is present, this alternative accepts memory constants. */
4230 while ((c = *constraint++) && c != ',' && c != '#')
4231 if (c == 'm' || c == 'o')
4232 return 1;
4233 return 0;
4234 }
4235 \f
4236 /* Scan X for memory references and scan the addresses for reloading.
4237 Also checks for references to "constant" regs that we want to eliminate
4238 and replaces them with the values they stand for.
4239 We may alter X destructively if it contains a reference to such.
4240 If X is just a constant reg, we return the equivalent value
4241 instead of X.
4242
4243 IND_LEVELS says how many levels of indirect addressing this machine
4244 supports.
4245
4246 OPNUM and TYPE identify the purpose of the reload.
4247
4248 IS_SET_DEST is true if X is the destination of a SET, which is not
4249 appropriate to be replaced by a constant.
4250
4251 INSN, if nonzero, is the insn in which we do the reload. It is used
4252 to determine if we may generate output reloads, and where to put USEs
4253 for pseudos that we have to replace with stack slots.
4254
4255 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4256 result of find_reloads_address. */
4257
4258 static rtx
4259 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4260 address_reloaded)
4261 rtx x;
4262 int opnum;
4263 enum reload_type type;
4264 int ind_levels;
4265 int is_set_dest;
4266 rtx insn;
4267 int *address_reloaded;
4268 {
4269 register RTX_CODE code = GET_CODE (x);
4270
4271 register const char *fmt = GET_RTX_FORMAT (code);
4272 register int i;
4273 int copied;
4274
4275 if (code == REG)
4276 {
4277 /* This code is duplicated for speed in find_reloads. */
4278 register int regno = REGNO (x);
4279 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4280 x = reg_equiv_constant[regno];
4281 #if 0
4282 /* This creates (subreg (mem...)) which would cause an unnecessary
4283 reload of the mem. */
4284 else if (reg_equiv_mem[regno] != 0)
4285 x = reg_equiv_mem[regno];
4286 #endif
4287 else if (reg_equiv_memory_loc[regno]
4288 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4289 {
4290 rtx mem = make_memloc (x, regno);
4291 if (reg_equiv_address[regno]
4292 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4293 {
4294 /* If this is not a toplevel operand, find_reloads doesn't see
4295 this substitution. We have to emit a USE of the pseudo so
4296 that delete_output_reload can see it. */
4297 if (replace_reloads && recog_data.operand[opnum] != x)
4298 emit_insn_before (gen_rtx_USE (VOIDmode, x), insn);
4299 x = mem;
4300 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4301 opnum, type, ind_levels, insn);
4302 if (address_reloaded)
4303 *address_reloaded = i;
4304 }
4305 }
4306 return x;
4307 }
4308 if (code == MEM)
4309 {
4310 rtx tem = x;
4311
4312 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4313 opnum, type, ind_levels, insn);
4314 if (address_reloaded)
4315 *address_reloaded = i;
4316
4317 return tem;
4318 }
4319
4320 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4321 {
4322 /* Check for SUBREG containing a REG that's equivalent to a constant.
4323 If the constant has a known value, truncate it right now.
4324 Similarly if we are extracting a single-word of a multi-word
4325 constant. If the constant is symbolic, allow it to be substituted
4326 normally. push_reload will strip the subreg later. If the
4327 constant is VOIDmode, abort because we will lose the mode of
4328 the register (this should never happen because one of the cases
4329 above should handle it). */
4330
4331 register int regno = REGNO (SUBREG_REG (x));
4332 rtx tem;
4333
4334 if (subreg_lowpart_p (x)
4335 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4336 && reg_equiv_constant[regno] != 0
4337 && (tem = gen_lowpart_common (GET_MODE (x),
4338 reg_equiv_constant[regno])) != 0)
4339 return tem;
4340
4341 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4342 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4343 && reg_equiv_constant[regno] != 0
4344 && (tem = operand_subword (reg_equiv_constant[regno],
4345 SUBREG_BYTE (x) / UNITS_PER_WORD, 0,
4346 GET_MODE (SUBREG_REG (x)))) != 0)
4347 {
4348 /* TEM is now a word sized constant for the bits from X that
4349 we wanted. However, TEM may be the wrong representation.
4350
4351 Use gen_lowpart_common to convert a CONST_INT into a
4352 CONST_DOUBLE and vice versa as needed according to by the mode
4353 of the SUBREG. */
4354 tem = gen_lowpart_common (GET_MODE (x), tem);
4355 if (!tem)
4356 abort ();
4357 return tem;
4358 }
4359
4360 /* If the SUBREG is wider than a word, the above test will fail.
4361 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4362 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4363 a 32 bit target. We still can - and have to - handle this
4364 for non-paradoxical subregs of CONST_INTs. */
4365 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4366 && reg_equiv_constant[regno] != 0
4367 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4368 && (GET_MODE_SIZE (GET_MODE (x))
4369 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4370 {
4371 int shift = SUBREG_BYTE (x) * BITS_PER_UNIT;
4372 if (WORDS_BIG_ENDIAN)
4373 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4374 - GET_MODE_BITSIZE (GET_MODE (x))
4375 - shift);
4376 /* Here we use the knowledge that CONST_INTs have a
4377 HOST_WIDE_INT field. */
4378 if (shift >= HOST_BITS_PER_WIDE_INT)
4379 shift = HOST_BITS_PER_WIDE_INT - 1;
4380 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4381 }
4382
4383 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4384 && reg_equiv_constant[regno] != 0
4385 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4386 abort ();
4387
4388 /* If the subreg contains a reg that will be converted to a mem,
4389 convert the subreg to a narrower memref now.
4390 Otherwise, we would get (subreg (mem ...) ...),
4391 which would force reload of the mem.
4392
4393 We also need to do this if there is an equivalent MEM that is
4394 not offsettable. In that case, alter_subreg would produce an
4395 invalid address on big-endian machines.
4396
4397 For machines that extend byte loads, we must not reload using
4398 a wider mode if we have a paradoxical SUBREG. find_reloads will
4399 force a reload in that case. So we should not do anything here. */
4400
4401 else if (regno >= FIRST_PSEUDO_REGISTER
4402 #ifdef LOAD_EXTEND_OP
4403 && (GET_MODE_SIZE (GET_MODE (x))
4404 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4405 #endif
4406 && (reg_equiv_address[regno] != 0
4407 || (reg_equiv_mem[regno] != 0
4408 && (! strict_memory_address_p (GET_MODE (x),
4409 XEXP (reg_equiv_mem[regno], 0))
4410 || ! offsettable_memref_p (reg_equiv_mem[regno])
4411 || num_not_at_initial_offset))))
4412 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4413 insn);
4414 }
4415 else if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM
4416 && (GET_MODE_SIZE (GET_MODE (x))
4417 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4418 && mode_dependent_address_p (XEXP (SUBREG_REG (x), 0)))
4419 {
4420 /* A paradoxical subreg will simply have the mode of the access
4421 changed, so we need to reload such a memory operand to stabilize
4422 the meaning of the memory access. */
4423 enum machine_mode subreg_mode = GET_MODE (SUBREG_REG (x));
4424
4425 /* SUBREG_REG (x) is a MEM, so we cant take the offset, instead we
4426 calculate the register number as :
4427 SUBREG_BYTE (x) / GET_MODE_SIZE (subreg_mode) */
4428 if (is_set_dest)
4429 push_reload (NULL_RTX, SUBREG_REG (x), (rtx*)0, &SUBREG_REG (x),
4430 find_valid_class (subreg_mode,
4431 SUBREG_BYTE (x) / GET_MODE_SIZE (subreg_mode)),
4432 VOIDmode, subreg_mode, 0, 0, opnum, type);
4433 else
4434 push_reload (SUBREG_REG (x), NULL_RTX, &SUBREG_REG (x), (rtx*)0,
4435 find_valid_class (subreg_mode,
4436 SUBREG_BYTE (x) / GET_MODE_SIZE (subreg_mode)),
4437 subreg_mode, VOIDmode, 0, 0, opnum, type);
4438 }
4439
4440 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4441 {
4442 if (fmt[i] == 'e')
4443 {
4444 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4445 ind_levels, is_set_dest, insn,
4446 address_reloaded);
4447 /* If we have replaced a reg with it's equivalent memory loc -
4448 that can still be handled here e.g. if it's in a paradoxical
4449 subreg - we must make the change in a copy, rather than using
4450 a destructive change. This way, find_reloads can still elect
4451 not to do the change. */
4452 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4453 {
4454 x = shallow_copy_rtx (x);
4455 copied = 1;
4456 }
4457 XEXP (x, i) = new_part;
4458 }
4459 }
4460 return x;
4461 }
4462
4463 /* Return a mem ref for the memory equivalent of reg REGNO.
4464 This mem ref is not shared with anything. */
4465
4466 static rtx
4467 make_memloc (ad, regno)
4468 rtx ad;
4469 int regno;
4470 {
4471 /* We must rerun eliminate_regs, in case the elimination
4472 offsets have changed. */
4473 rtx tem
4474 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4475
4476 /* If TEM might contain a pseudo, we must copy it to avoid
4477 modifying it when we do the substitution for the reload. */
4478 if (rtx_varies_p (tem, 0))
4479 tem = copy_rtx (tem);
4480
4481 tem = gen_rtx_MEM (GET_MODE (ad), tem);
4482 MEM_COPY_ATTRIBUTES (tem, reg_equiv_memory_loc[regno]);
4483 return tem;
4484 }
4485
4486 /* Record all reloads needed for handling memory address AD
4487 which appears in *LOC in a memory reference to mode MODE
4488 which itself is found in location *MEMREFLOC.
4489 Note that we take shortcuts assuming that no multi-reg machine mode
4490 occurs as part of an address.
4491
4492 OPNUM and TYPE specify the purpose of this reload.
4493
4494 IND_LEVELS says how many levels of indirect addressing this machine
4495 supports.
4496
4497 INSN, if nonzero, is the insn in which we do the reload. It is used
4498 to determine if we may generate output reloads, and where to put USEs
4499 for pseudos that we have to replace with stack slots.
4500
4501 Value is nonzero if this address is reloaded or replaced as a whole.
4502 This is interesting to the caller if the address is an autoincrement.
4503
4504 Note that there is no verification that the address will be valid after
4505 this routine does its work. Instead, we rely on the fact that the address
4506 was valid when reload started. So we need only undo things that reload
4507 could have broken. These are wrong register types, pseudos not allocated
4508 to a hard register, and frame pointer elimination. */
4509
4510 static int
4511 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4512 enum machine_mode mode;
4513 rtx *memrefloc;
4514 rtx ad;
4515 rtx *loc;
4516 int opnum;
4517 enum reload_type type;
4518 int ind_levels;
4519 rtx insn;
4520 {
4521 register int regno;
4522 int removed_and = 0;
4523 rtx tem;
4524
4525 /* If the address is a register, see if it is a legitimate address and
4526 reload if not. We first handle the cases where we need not reload
4527 or where we must reload in a non-standard way. */
4528
4529 if (GET_CODE (ad) == REG)
4530 {
4531 regno = REGNO (ad);
4532
4533 /* If the register is equivalent to an invariant expression, substitute
4534 the invariant, and eliminate any eliminable register references. */
4535 tem = reg_equiv_constant[regno];
4536 if (tem != 0
4537 && (tem = eliminate_regs (tem, mode, insn))
4538 && strict_memory_address_p (mode, tem))
4539 {
4540 *loc = ad = tem;
4541 return 0;
4542 }
4543
4544 tem = reg_equiv_memory_loc[regno];
4545 if (tem != 0)
4546 {
4547 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4548 {
4549 tem = make_memloc (ad, regno);
4550 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4551 {
4552 find_reloads_address (GET_MODE (tem), (rtx*)0, XEXP (tem, 0),
4553 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4554 ind_levels, insn);
4555 }
4556 /* We can avoid a reload if the register's equivalent memory
4557 expression is valid as an indirect memory address.
4558 But not all addresses are valid in a mem used as an indirect
4559 address: only reg or reg+constant. */
4560
4561 if (ind_levels > 0
4562 && strict_memory_address_p (mode, tem)
4563 && (GET_CODE (XEXP (tem, 0)) == REG
4564 || (GET_CODE (XEXP (tem, 0)) == PLUS
4565 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4566 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4567 {
4568 /* TEM is not the same as what we'll be replacing the
4569 pseudo with after reload, put a USE in front of INSN
4570 in the final reload pass. */
4571 if (replace_reloads
4572 && num_not_at_initial_offset
4573 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4574 {
4575 *loc = tem;
4576 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4577 /* This doesn't really count as replacing the address
4578 as a whole, since it is still a memory access. */
4579 }
4580 return 0;
4581 }
4582 ad = tem;
4583 }
4584 }
4585
4586 /* The only remaining case where we can avoid a reload is if this is a
4587 hard register that is valid as a base register and which is not the
4588 subject of a CLOBBER in this insn. */
4589
4590 else if (regno < FIRST_PSEUDO_REGISTER
4591 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4592 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4593 return 0;
4594
4595 /* If we do not have one of the cases above, we must do the reload. */
4596 push_reload (ad, NULL_RTX, loc, (rtx*)0, BASE_REG_CLASS,
4597 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4598 return 1;
4599 }
4600
4601 if (strict_memory_address_p (mode, ad))
4602 {
4603 /* The address appears valid, so reloads are not needed.
4604 But the address may contain an eliminable register.
4605 This can happen because a machine with indirect addressing
4606 may consider a pseudo register by itself a valid address even when
4607 it has failed to get a hard reg.
4608 So do a tree-walk to find and eliminate all such regs. */
4609
4610 /* But first quickly dispose of a common case. */
4611 if (GET_CODE (ad) == PLUS
4612 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4613 && GET_CODE (XEXP (ad, 0)) == REG
4614 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4615 return 0;
4616
4617 subst_reg_equivs_changed = 0;
4618 *loc = subst_reg_equivs (ad, insn);
4619
4620 if (! subst_reg_equivs_changed)
4621 return 0;
4622
4623 /* Check result for validity after substitution. */
4624 if (strict_memory_address_p (mode, ad))
4625 return 0;
4626 }
4627
4628 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4629 do
4630 {
4631 if (memrefloc)
4632 {
4633 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4634 ind_levels, win);
4635 }
4636 break;
4637 win:
4638 *memrefloc = copy_rtx (*memrefloc);
4639 XEXP (*memrefloc, 0) = ad;
4640 move_replacements (&ad, &XEXP (*memrefloc, 0));
4641 return 1;
4642 }
4643 while (0);
4644 #endif
4645
4646 /* The address is not valid. We have to figure out why. First see if
4647 we have an outer AND and remove it if so. Then analyze what's inside. */
4648
4649 if (GET_CODE (ad) == AND)
4650 {
4651 removed_and = 1;
4652 loc = &XEXP (ad, 0);
4653 ad = *loc;
4654 }
4655
4656 /* One possibility for why the address is invalid is that it is itself
4657 a MEM. This can happen when the frame pointer is being eliminated, a
4658 pseudo is not allocated to a hard register, and the offset between the
4659 frame and stack pointers is not its initial value. In that case the
4660 pseudo will have been replaced by a MEM referring to the
4661 stack pointer. */
4662 if (GET_CODE (ad) == MEM)
4663 {
4664 /* First ensure that the address in this MEM is valid. Then, unless
4665 indirect addresses are valid, reload the MEM into a register. */
4666 tem = ad;
4667 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4668 opnum, ADDR_TYPE (type),
4669 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4670
4671 /* If tem was changed, then we must create a new memory reference to
4672 hold it and store it back into memrefloc. */
4673 if (tem != ad && memrefloc)
4674 {
4675 *memrefloc = copy_rtx (*memrefloc);
4676 copy_replacements (tem, XEXP (*memrefloc, 0));
4677 loc = &XEXP (*memrefloc, 0);
4678 if (removed_and)
4679 loc = &XEXP (*loc, 0);
4680 }
4681
4682 /* Check similar cases as for indirect addresses as above except
4683 that we can allow pseudos and a MEM since they should have been
4684 taken care of above. */
4685
4686 if (ind_levels == 0
4687 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4688 || GET_CODE (XEXP (tem, 0)) == MEM
4689 || ! (GET_CODE (XEXP (tem, 0)) == REG
4690 || (GET_CODE (XEXP (tem, 0)) == PLUS
4691 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4692 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4693 {
4694 /* Must use TEM here, not AD, since it is the one that will
4695 have any subexpressions reloaded, if needed. */
4696 push_reload (tem, NULL_RTX, loc, (rtx*)0,
4697 BASE_REG_CLASS, GET_MODE (tem),
4698 VOIDmode, 0,
4699 0, opnum, type);
4700 return ! removed_and;
4701 }
4702 else
4703 return 0;
4704 }
4705
4706 /* If we have address of a stack slot but it's not valid because the
4707 displacement is too large, compute the sum in a register.
4708 Handle all base registers here, not just fp/ap/sp, because on some
4709 targets (namely SH) we can also get too large displacements from
4710 big-endian corrections. */
4711 else if (GET_CODE (ad) == PLUS
4712 && GET_CODE (XEXP (ad, 0)) == REG
4713 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4714 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4715 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4716 {
4717 /* Unshare the MEM rtx so we can safely alter it. */
4718 if (memrefloc)
4719 {
4720 *memrefloc = copy_rtx (*memrefloc);
4721 loc = &XEXP (*memrefloc, 0);
4722 if (removed_and)
4723 loc = &XEXP (*loc, 0);
4724 }
4725
4726 if (double_reg_address_ok)
4727 {
4728 /* Unshare the sum as well. */
4729 *loc = ad = copy_rtx (ad);
4730
4731 /* Reload the displacement into an index reg.
4732 We assume the frame pointer or arg pointer is a base reg. */
4733 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4734 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4735 type, ind_levels);
4736 return 0;
4737 }
4738 else
4739 {
4740 /* If the sum of two regs is not necessarily valid,
4741 reload the sum into a base reg.
4742 That will at least work. */
4743 find_reloads_address_part (ad, loc, BASE_REG_CLASS,
4744 Pmode, opnum, type, ind_levels);
4745 }
4746 return ! removed_and;
4747 }
4748
4749 /* If we have an indexed stack slot, there are three possible reasons why
4750 it might be invalid: The index might need to be reloaded, the address
4751 might have been made by frame pointer elimination and hence have a
4752 constant out of range, or both reasons might apply.
4753
4754 We can easily check for an index needing reload, but even if that is the
4755 case, we might also have an invalid constant. To avoid making the
4756 conservative assumption and requiring two reloads, we see if this address
4757 is valid when not interpreted strictly. If it is, the only problem is
4758 that the index needs a reload and find_reloads_address_1 will take care
4759 of it.
4760
4761 If we decide to do something here, it must be that
4762 `double_reg_address_ok' is true and that this address rtl was made by
4763 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4764 rework the sum so that the reload register will be added to the index.
4765 This is safe because we know the address isn't shared.
4766
4767 We check for fp/ap/sp as both the first and second operand of the
4768 innermost PLUS. */
4769
4770 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4771 && GET_CODE (XEXP (ad, 0)) == PLUS
4772 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4773 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4774 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4775 #endif
4776 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4777 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4778 #endif
4779 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4780 && ! memory_address_p (mode, ad))
4781 {
4782 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4783 plus_constant (XEXP (XEXP (ad, 0), 0),
4784 INTVAL (XEXP (ad, 1))),
4785 XEXP (XEXP (ad, 0), 1));
4786 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4787 GET_MODE (ad), opnum, type, ind_levels);
4788 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4789 type, 0, insn);
4790
4791 return 0;
4792 }
4793
4794 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4795 && GET_CODE (XEXP (ad, 0)) == PLUS
4796 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4797 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4798 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4799 #endif
4800 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4801 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4802 #endif
4803 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4804 && ! memory_address_p (mode, ad))
4805 {
4806 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4807 XEXP (XEXP (ad, 0), 0),
4808 plus_constant (XEXP (XEXP (ad, 0), 1),
4809 INTVAL (XEXP (ad, 1))));
4810 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
4811 GET_MODE (ad), opnum, type, ind_levels);
4812 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4813 type, 0, insn);
4814
4815 return 0;
4816 }
4817
4818 /* See if address becomes valid when an eliminable register
4819 in a sum is replaced. */
4820
4821 tem = ad;
4822 if (GET_CODE (ad) == PLUS)
4823 tem = subst_indexed_address (ad);
4824 if (tem != ad && strict_memory_address_p (mode, tem))
4825 {
4826 /* Ok, we win that way. Replace any additional eliminable
4827 registers. */
4828
4829 subst_reg_equivs_changed = 0;
4830 tem = subst_reg_equivs (tem, insn);
4831
4832 /* Make sure that didn't make the address invalid again. */
4833
4834 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4835 {
4836 *loc = tem;
4837 return 0;
4838 }
4839 }
4840
4841 /* If constants aren't valid addresses, reload the constant address
4842 into a register. */
4843 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4844 {
4845 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4846 Unshare it so we can safely alter it. */
4847 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4848 && CONSTANT_POOL_ADDRESS_P (ad))
4849 {
4850 *memrefloc = copy_rtx (*memrefloc);
4851 loc = &XEXP (*memrefloc, 0);
4852 if (removed_and)
4853 loc = &XEXP (*loc, 0);
4854 }
4855
4856 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
4857 ind_levels);
4858 return ! removed_and;
4859 }
4860
4861 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4862 insn);
4863 }
4864 \f
4865 /* Find all pseudo regs appearing in AD
4866 that are eliminable in favor of equivalent values
4867 and do not have hard regs; replace them by their equivalents.
4868 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4869 front of it for pseudos that we have to replace with stack slots. */
4870
4871 static rtx
4872 subst_reg_equivs (ad, insn)
4873 rtx ad;
4874 rtx insn;
4875 {
4876 register RTX_CODE code = GET_CODE (ad);
4877 register int i;
4878 register const char *fmt;
4879
4880 switch (code)
4881 {
4882 case HIGH:
4883 case CONST_INT:
4884 case CONST:
4885 case CONST_DOUBLE:
4886 case SYMBOL_REF:
4887 case LABEL_REF:
4888 case PC:
4889 case CC0:
4890 return ad;
4891
4892 case REG:
4893 {
4894 register int regno = REGNO (ad);
4895
4896 if (reg_equiv_constant[regno] != 0)
4897 {
4898 subst_reg_equivs_changed = 1;
4899 return reg_equiv_constant[regno];
4900 }
4901 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4902 {
4903 rtx mem = make_memloc (ad, regno);
4904 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4905 {
4906 subst_reg_equivs_changed = 1;
4907 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4908 return mem;
4909 }
4910 }
4911 }
4912 return ad;
4913
4914 case PLUS:
4915 /* Quickly dispose of a common case. */
4916 if (XEXP (ad, 0) == frame_pointer_rtx
4917 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4918 return ad;
4919 break;
4920
4921 default:
4922 break;
4923 }
4924
4925 fmt = GET_RTX_FORMAT (code);
4926 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4927 if (fmt[i] == 'e')
4928 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4929 return ad;
4930 }
4931 \f
4932 /* Compute the sum of X and Y, making canonicalizations assumed in an
4933 address, namely: sum constant integers, surround the sum of two
4934 constants with a CONST, put the constant as the second operand, and
4935 group the constant on the outermost sum.
4936
4937 This routine assumes both inputs are already in canonical form. */
4938
4939 rtx
4940 form_sum (x, y)
4941 rtx x, y;
4942 {
4943 rtx tem;
4944 enum machine_mode mode = GET_MODE (x);
4945
4946 if (mode == VOIDmode)
4947 mode = GET_MODE (y);
4948
4949 if (mode == VOIDmode)
4950 mode = Pmode;
4951
4952 if (GET_CODE (x) == CONST_INT)
4953 return plus_constant (y, INTVAL (x));
4954 else if (GET_CODE (y) == CONST_INT)
4955 return plus_constant (x, INTVAL (y));
4956 else if (CONSTANT_P (x))
4957 tem = x, x = y, y = tem;
4958
4959 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4960 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4961
4962 /* Note that if the operands of Y are specified in the opposite
4963 order in the recursive calls below, infinite recursion will occur. */
4964 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4965 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4966
4967 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4968 constant will have been placed second. */
4969 if (CONSTANT_P (x) && CONSTANT_P (y))
4970 {
4971 if (GET_CODE (x) == CONST)
4972 x = XEXP (x, 0);
4973 if (GET_CODE (y) == CONST)
4974 y = XEXP (y, 0);
4975
4976 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4977 }
4978
4979 return gen_rtx_PLUS (mode, x, y);
4980 }
4981 \f
4982 /* If ADDR is a sum containing a pseudo register that should be
4983 replaced with a constant (from reg_equiv_constant),
4984 return the result of doing so, and also apply the associative
4985 law so that the result is more likely to be a valid address.
4986 (But it is not guaranteed to be one.)
4987
4988 Note that at most one register is replaced, even if more are
4989 replaceable. Also, we try to put the result into a canonical form
4990 so it is more likely to be a valid address.
4991
4992 In all other cases, return ADDR. */
4993
4994 static rtx
4995 subst_indexed_address (addr)
4996 rtx addr;
4997 {
4998 rtx op0 = 0, op1 = 0, op2 = 0;
4999 rtx tem;
5000 int regno;
5001
5002 if (GET_CODE (addr) == PLUS)
5003 {
5004 /* Try to find a register to replace. */
5005 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5006 if (GET_CODE (op0) == REG
5007 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5008 && reg_renumber[regno] < 0
5009 && reg_equiv_constant[regno] != 0)
5010 op0 = reg_equiv_constant[regno];
5011 else if (GET_CODE (op1) == REG
5012 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5013 && reg_renumber[regno] < 0
5014 && reg_equiv_constant[regno] != 0)
5015 op1 = reg_equiv_constant[regno];
5016 else if (GET_CODE (op0) == PLUS
5017 && (tem = subst_indexed_address (op0)) != op0)
5018 op0 = tem;
5019 else if (GET_CODE (op1) == PLUS
5020 && (tem = subst_indexed_address (op1)) != op1)
5021 op1 = tem;
5022 else
5023 return addr;
5024
5025 /* Pick out up to three things to add. */
5026 if (GET_CODE (op1) == PLUS)
5027 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5028 else if (GET_CODE (op0) == PLUS)
5029 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5030
5031 /* Compute the sum. */
5032 if (op2 != 0)
5033 op1 = form_sum (op1, op2);
5034 if (op1 != 0)
5035 op0 = form_sum (op0, op1);
5036
5037 return op0;
5038 }
5039 return addr;
5040 }
5041 \f
5042 /* Update the REG_INC notes for an insn. It updates all REG_INC
5043 notes for the instruction which refer to REGNO the to refer
5044 to the reload number.
5045
5046 INSN is the insn for which any REG_INC notes need updating.
5047
5048 REGNO is the register number which has been reloaded.
5049
5050 RELOADNUM is the reload number. */
5051
5052 static void
5053 update_auto_inc_notes (insn, regno, reloadnum)
5054 rtx insn ATTRIBUTE_UNUSED;
5055 int regno ATTRIBUTE_UNUSED;
5056 int reloadnum ATTRIBUTE_UNUSED;
5057 {
5058 #ifdef AUTO_INC_DEC
5059 rtx link;
5060
5061 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5062 if (REG_NOTE_KIND (link) == REG_INC
5063 && REGNO (XEXP (link, 0)) == regno)
5064 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5065 #endif
5066 }
5067 \f
5068 /* Record the pseudo registers we must reload into hard registers in a
5069 subexpression of a would-be memory address, X referring to a value
5070 in mode MODE. (This function is not called if the address we find
5071 is strictly valid.)
5072
5073 CONTEXT = 1 means we are considering regs as index regs,
5074 = 0 means we are considering them as base regs.
5075
5076 OPNUM and TYPE specify the purpose of any reloads made.
5077
5078 IND_LEVELS says how many levels of indirect addressing are
5079 supported at this point in the address.
5080
5081 INSN, if nonzero, is the insn in which we do the reload. It is used
5082 to determine if we may generate output reloads.
5083
5084 We return nonzero if X, as a whole, is reloaded or replaced. */
5085
5086 /* Note that we take shortcuts assuming that no multi-reg machine mode
5087 occurs as part of an address.
5088 Also, this is not fully machine-customizable; it works for machines
5089 such as vaxes and 68000's and 32000's, but other possible machines
5090 could have addressing modes that this does not handle right. */
5091
5092 static int
5093 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5094 enum machine_mode mode;
5095 rtx x;
5096 int context;
5097 rtx *loc;
5098 int opnum;
5099 enum reload_type type;
5100 int ind_levels;
5101 rtx insn;
5102 {
5103 register RTX_CODE code = GET_CODE (x);
5104
5105 switch (code)
5106 {
5107 case PLUS:
5108 {
5109 register rtx orig_op0 = XEXP (x, 0);
5110 register rtx orig_op1 = XEXP (x, 1);
5111 register RTX_CODE code0 = GET_CODE (orig_op0);
5112 register RTX_CODE code1 = GET_CODE (orig_op1);
5113 register rtx op0 = orig_op0;
5114 register rtx op1 = orig_op1;
5115
5116 if (GET_CODE (op0) == SUBREG)
5117 {
5118 op0 = SUBREG_REG (op0);
5119 code0 = GET_CODE (op0);
5120 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5121 op0 = gen_rtx_REG (word_mode,
5122 (REGNO (op0) +
5123 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5124 GET_MODE (SUBREG_REG (orig_op0)),
5125 SUBREG_BYTE (orig_op0),
5126 GET_MODE (orig_op0))));
5127 }
5128
5129 if (GET_CODE (op1) == SUBREG)
5130 {
5131 op1 = SUBREG_REG (op1);
5132 code1 = GET_CODE (op1);
5133 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5134 /* ??? Why is this given op1's mode and above for
5135 ??? op0 SUBREGs we use word_mode? */
5136 op1 = gen_rtx_REG (GET_MODE (op1),
5137 (REGNO (op1) +
5138 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5139 GET_MODE (SUBREG_REG (orig_op1)),
5140 SUBREG_BYTE (orig_op1),
5141 GET_MODE (orig_op1))));
5142 }
5143
5144 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5145 || code0 == ZERO_EXTEND || code1 == MEM)
5146 {
5147 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5148 type, ind_levels, insn);
5149 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5150 type, ind_levels, insn);
5151 }
5152
5153 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5154 || code1 == ZERO_EXTEND || code0 == MEM)
5155 {
5156 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5157 type, ind_levels, insn);
5158 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5159 type, ind_levels, insn);
5160 }
5161
5162 else if (code0 == CONST_INT || code0 == CONST
5163 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5164 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5165 type, ind_levels, insn);
5166
5167 else if (code1 == CONST_INT || code1 == CONST
5168 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5169 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5170 type, ind_levels, insn);
5171
5172 else if (code0 == REG && code1 == REG)
5173 {
5174 if (REG_OK_FOR_INDEX_P (op0)
5175 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5176 return 0;
5177 else if (REG_OK_FOR_INDEX_P (op1)
5178 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5179 return 0;
5180 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5181 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5182 type, ind_levels, insn);
5183 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5184 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5185 type, ind_levels, insn);
5186 else if (REG_OK_FOR_INDEX_P (op1))
5187 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5188 type, ind_levels, insn);
5189 else if (REG_OK_FOR_INDEX_P (op0))
5190 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5191 type, ind_levels, insn);
5192 else
5193 {
5194 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5195 type, ind_levels, insn);
5196 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5197 type, ind_levels, insn);
5198 }
5199 }
5200
5201 else if (code0 == REG)
5202 {
5203 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5204 type, ind_levels, insn);
5205 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5206 type, ind_levels, insn);
5207 }
5208
5209 else if (code1 == REG)
5210 {
5211 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5212 type, ind_levels, insn);
5213 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5214 type, ind_levels, insn);
5215 }
5216 }
5217
5218 return 0;
5219
5220 case POST_MODIFY:
5221 case PRE_MODIFY:
5222 {
5223 rtx op0 = XEXP (x, 0);
5224 rtx op1 = XEXP (x, 1);
5225
5226 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5227 return 0;
5228
5229 /* Currently, we only support {PRE,POST}_MODIFY constructs
5230 where a base register is {inc,dec}remented by the contents
5231 of another register or by a constant value. Thus, these
5232 operands must match. */
5233 if (op0 != XEXP (op1, 0))
5234 abort ();
5235
5236 /* Require index register (or constant). Let's just handle the
5237 register case in the meantime... If the target allows
5238 auto-modify by a constant then we could try replacing a pseudo
5239 register with its equivalent constant where applicable. */
5240 if (REG_P (XEXP (op1, 1)))
5241 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5242 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5243 opnum, type, ind_levels, insn);
5244
5245 if (REG_P (XEXP (op1, 0)))
5246 {
5247 int regno = REGNO (XEXP (op1, 0));
5248 int reloadnum;
5249
5250 /* A register that is incremented cannot be constant! */
5251 if (regno >= FIRST_PSEUDO_REGISTER
5252 && reg_equiv_constant[regno] != 0)
5253 abort ();
5254
5255 /* Handle a register that is equivalent to a memory location
5256 which cannot be addressed directly. */
5257 if (reg_equiv_memory_loc[regno] != 0
5258 && (reg_equiv_address[regno] != 0
5259 || num_not_at_initial_offset))
5260 {
5261 rtx tem = make_memloc (XEXP (x, 0), regno);
5262
5263 if (reg_equiv_address[regno]
5264 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5265 {
5266 /* First reload the memory location's address.
5267 We can't use ADDR_TYPE (type) here, because we need to
5268 write back the value after reading it, hence we actually
5269 need two registers. */
5270 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5271 &XEXP (tem, 0), opnum,
5272 RELOAD_OTHER,
5273 ind_levels, insn);
5274
5275 /* Then reload the memory location into a base
5276 register. */
5277 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5278 &XEXP (op1, 0), BASE_REG_CLASS,
5279 GET_MODE (x), GET_MODE (x), 0,
5280 0, opnum, RELOAD_OTHER);
5281
5282 update_auto_inc_notes (this_insn, regno, reloadnum);
5283 return 0;
5284 }
5285 }
5286
5287 if (reg_renumber[regno] >= 0)
5288 regno = reg_renumber[regno];
5289
5290 /* We require a base register here... */
5291 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5292 {
5293 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5294 &XEXP (op1, 0), &XEXP (x, 0),
5295 BASE_REG_CLASS,
5296 GET_MODE (x), GET_MODE (x), 0, 0,
5297 opnum, RELOAD_OTHER);
5298
5299 update_auto_inc_notes (this_insn, regno, reloadnum);
5300 return 0;
5301 }
5302 }
5303 else
5304 abort ();
5305 }
5306 return 0;
5307
5308 case POST_INC:
5309 case POST_DEC:
5310 case PRE_INC:
5311 case PRE_DEC:
5312 if (GET_CODE (XEXP (x, 0)) == REG)
5313 {
5314 register int regno = REGNO (XEXP (x, 0));
5315 int value = 0;
5316 rtx x_orig = x;
5317
5318 /* A register that is incremented cannot be constant! */
5319 if (regno >= FIRST_PSEUDO_REGISTER
5320 && reg_equiv_constant[regno] != 0)
5321 abort ();
5322
5323 /* Handle a register that is equivalent to a memory location
5324 which cannot be addressed directly. */
5325 if (reg_equiv_memory_loc[regno] != 0
5326 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5327 {
5328 rtx tem = make_memloc (XEXP (x, 0), regno);
5329 if (reg_equiv_address[regno]
5330 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5331 {
5332 /* First reload the memory location's address.
5333 We can't use ADDR_TYPE (type) here, because we need to
5334 write back the value after reading it, hence we actually
5335 need two registers. */
5336 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5337 &XEXP (tem, 0), opnum, type,
5338 ind_levels, insn);
5339 /* Put this inside a new increment-expression. */
5340 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5341 /* Proceed to reload that, as if it contained a register. */
5342 }
5343 }
5344
5345 /* If we have a hard register that is ok as an index,
5346 don't make a reload. If an autoincrement of a nice register
5347 isn't "valid", it must be that no autoincrement is "valid".
5348 If that is true and something made an autoincrement anyway,
5349 this must be a special context where one is allowed.
5350 (For example, a "push" instruction.)
5351 We can't improve this address, so leave it alone. */
5352
5353 /* Otherwise, reload the autoincrement into a suitable hard reg
5354 and record how much to increment by. */
5355
5356 if (reg_renumber[regno] >= 0)
5357 regno = reg_renumber[regno];
5358 if ((regno >= FIRST_PSEUDO_REGISTER
5359 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5360 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5361 {
5362 int reloadnum;
5363
5364 /* If we can output the register afterwards, do so, this
5365 saves the extra update.
5366 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5367 CALL_INSN - and it does not set CC0.
5368 But don't do this if we cannot directly address the
5369 memory location, since this will make it harder to
5370 reuse address reloads, and increases register pressure.
5371 Also don't do this if we can probably update x directly. */
5372 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5373 ? XEXP (x, 0)
5374 : reg_equiv_mem[regno]);
5375 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5376 if (insn && GET_CODE (insn) == INSN && equiv
5377 && memory_operand (equiv, GET_MODE (equiv))
5378 #ifdef HAVE_cc0
5379 && ! sets_cc0_p (PATTERN (insn))
5380 #endif
5381 && ! (icode != CODE_FOR_nothing
5382 && ((*insn_data[icode].operand[0].predicate)
5383 (equiv, Pmode))
5384 && ((*insn_data[icode].operand[1].predicate)
5385 (equiv, Pmode))))
5386 {
5387 /* We use the original pseudo for loc, so that
5388 emit_reload_insns() knows which pseudo this
5389 reload refers to and updates the pseudo rtx, not
5390 its equivalent memory location, as well as the
5391 corresponding entry in reg_last_reload_reg. */
5392 loc = &XEXP (x_orig, 0);
5393 x = XEXP (x, 0);
5394 reloadnum
5395 = push_reload (x, x, loc, loc,
5396 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5397 GET_MODE (x), GET_MODE (x), 0, 0,
5398 opnum, RELOAD_OTHER);
5399 }
5400 else
5401 {
5402 reloadnum
5403 = push_reload (x, NULL_RTX, loc, (rtx*)0,
5404 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5405 GET_MODE (x), GET_MODE (x), 0, 0,
5406 opnum, type);
5407 rld[reloadnum].inc
5408 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5409
5410 value = 1;
5411 }
5412
5413 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5414 reloadnum);
5415 }
5416 return value;
5417 }
5418
5419 else if (GET_CODE (XEXP (x, 0)) == MEM)
5420 {
5421 /* This is probably the result of a substitution, by eliminate_regs,
5422 of an equivalent address for a pseudo that was not allocated to a
5423 hard register. Verify that the specified address is valid and
5424 reload it into a register. */
5425 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5426 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5427 register rtx link;
5428 int reloadnum;
5429
5430 /* Since we know we are going to reload this item, don't decrement
5431 for the indirection level.
5432
5433 Note that this is actually conservative: it would be slightly
5434 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5435 reload1.c here. */
5436 /* We can't use ADDR_TYPE (type) here, because we need to
5437 write back the value after reading it, hence we actually
5438 need two registers. */
5439 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5440 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5441 opnum, type, ind_levels, insn);
5442
5443 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*)0,
5444 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5445 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5446 rld[reloadnum].inc
5447 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5448
5449 link = FIND_REG_INC_NOTE (this_insn, tem);
5450 if (link != 0)
5451 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5452
5453 return 1;
5454 }
5455 return 0;
5456
5457 case MEM:
5458 /* This is probably the result of a substitution, by eliminate_regs, of
5459 an equivalent address for a pseudo that was not allocated to a hard
5460 register. Verify that the specified address is valid and reload it
5461 into a register.
5462
5463 Since we know we are going to reload this item, don't decrement for
5464 the indirection level.
5465
5466 Note that this is actually conservative: it would be slightly more
5467 efficient to use the value of SPILL_INDIRECT_LEVELS from
5468 reload1.c here. */
5469
5470 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5471 opnum, ADDR_TYPE (type), ind_levels, insn);
5472 push_reload (*loc, NULL_RTX, loc, (rtx*)0,
5473 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5474 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5475 return 1;
5476
5477 case REG:
5478 {
5479 register int regno = REGNO (x);
5480
5481 if (reg_equiv_constant[regno] != 0)
5482 {
5483 find_reloads_address_part (reg_equiv_constant[regno], loc,
5484 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5485 GET_MODE (x), opnum, type, ind_levels);
5486 return 1;
5487 }
5488
5489 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5490 that feeds this insn. */
5491 if (reg_equiv_mem[regno] != 0)
5492 {
5493 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*)0,
5494 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5495 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5496 return 1;
5497 }
5498 #endif
5499
5500 if (reg_equiv_memory_loc[regno]
5501 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5502 {
5503 rtx tem = make_memloc (x, regno);
5504 if (reg_equiv_address[regno] != 0
5505 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5506 {
5507 x = tem;
5508 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5509 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5510 ind_levels, insn);
5511 }
5512 }
5513
5514 if (reg_renumber[regno] >= 0)
5515 regno = reg_renumber[regno];
5516
5517 if ((regno >= FIRST_PSEUDO_REGISTER
5518 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5519 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5520 {
5521 push_reload (x, NULL_RTX, loc, (rtx*)0,
5522 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5523 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5524 return 1;
5525 }
5526
5527 /* If a register appearing in an address is the subject of a CLOBBER
5528 in this insn, reload it into some other register to be safe.
5529 The CLOBBER is supposed to make the register unavailable
5530 from before this insn to after it. */
5531 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5532 {
5533 push_reload (x, NULL_RTX, loc, (rtx*)0,
5534 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5535 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5536 return 1;
5537 }
5538 }
5539 return 0;
5540
5541 case SUBREG:
5542 if (GET_CODE (SUBREG_REG (x)) == REG)
5543 {
5544 /* If this is a SUBREG of a hard register and the resulting register
5545 is of the wrong class, reload the whole SUBREG. This avoids
5546 needless copies if SUBREG_REG is multi-word. */
5547 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5548 {
5549 int regno = subreg_regno (x);
5550
5551 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5552 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5553 {
5554 push_reload (x, NULL_RTX, loc, (rtx*)0,
5555 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5556 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5557 return 1;
5558 }
5559 }
5560 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5561 is larger than the class size, then reload the whole SUBREG. */
5562 else
5563 {
5564 enum reg_class class = (context ? INDEX_REG_CLASS
5565 : BASE_REG_CLASS);
5566 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5567 > reg_class_size[class])
5568 {
5569 x = find_reloads_subreg_address (x, 0, opnum, type,
5570 ind_levels, insn);
5571 push_reload (x, NULL_RTX, loc, (rtx*)0, class,
5572 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5573 return 1;
5574 }
5575 }
5576 }
5577 break;
5578
5579 default:
5580 break;
5581 }
5582
5583 {
5584 register const char *fmt = GET_RTX_FORMAT (code);
5585 register int i;
5586
5587 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5588 {
5589 if (fmt[i] == 'e')
5590 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5591 opnum, type, ind_levels, insn);
5592 }
5593 }
5594
5595 return 0;
5596 }
5597 \f
5598 /* X, which is found at *LOC, is a part of an address that needs to be
5599 reloaded into a register of class CLASS. If X is a constant, or if
5600 X is a PLUS that contains a constant, check that the constant is a
5601 legitimate operand and that we are supposed to be able to load
5602 it into the register.
5603
5604 If not, force the constant into memory and reload the MEM instead.
5605
5606 MODE is the mode to use, in case X is an integer constant.
5607
5608 OPNUM and TYPE describe the purpose of any reloads made.
5609
5610 IND_LEVELS says how many levels of indirect addressing this machine
5611 supports. */
5612
5613 static void
5614 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5615 rtx x;
5616 rtx *loc;
5617 enum reg_class class;
5618 enum machine_mode mode;
5619 int opnum;
5620 enum reload_type type;
5621 int ind_levels;
5622 {
5623 if (CONSTANT_P (x)
5624 && (! LEGITIMATE_CONSTANT_P (x)
5625 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5626 {
5627 rtx tem;
5628
5629 tem = x = force_const_mem (mode, x);
5630 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5631 opnum, type, ind_levels, 0);
5632 }
5633
5634 else if (GET_CODE (x) == PLUS
5635 && CONSTANT_P (XEXP (x, 1))
5636 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5637 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5638 {
5639 rtx tem;
5640
5641 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5642 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5643 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5644 opnum, type, ind_levels, 0);
5645 }
5646
5647 push_reload (x, NULL_RTX, loc, (rtx*)0, class,
5648 mode, VOIDmode, 0, 0, opnum, type);
5649 }
5650 \f
5651 /* X, a subreg of a pseudo, is a part of an address that needs to be
5652 reloaded.
5653
5654 If the pseudo is equivalent to a memory location that cannot be directly
5655 addressed, make the necessary address reloads.
5656
5657 If address reloads have been necessary, or if the address is changed
5658 by register elimination, return the rtx of the memory location;
5659 otherwise, return X.
5660
5661 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5662 memory location.
5663
5664 OPNUM and TYPE identify the purpose of the reload.
5665
5666 IND_LEVELS says how many levels of indirect addressing are
5667 supported at this point in the address.
5668
5669 INSN, if nonzero, is the insn in which we do the reload. It is used
5670 to determine where to put USEs for pseudos that we have to replace with
5671 stack slots. */
5672
5673 static rtx
5674 find_reloads_subreg_address (x, force_replace, opnum, type,
5675 ind_levels, insn)
5676 rtx x;
5677 int force_replace;
5678 int opnum;
5679 enum reload_type type;
5680 int ind_levels;
5681 rtx insn;
5682 {
5683 int regno = REGNO (SUBREG_REG (x));
5684
5685 if (reg_equiv_memory_loc[regno])
5686 {
5687 /* If the address is not directly addressable, or if the address is not
5688 offsettable, then it must be replaced. */
5689 if (! force_replace
5690 && (reg_equiv_address[regno]
5691 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5692 force_replace = 1;
5693
5694 if (force_replace || num_not_at_initial_offset)
5695 {
5696 rtx tem = make_memloc (SUBREG_REG (x), regno);
5697
5698 /* If the address changes because of register elimination, then
5699 it must be replaced. */
5700 if (force_replace
5701 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5702 {
5703 int offset = SUBREG_BYTE (x);
5704 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5705 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5706
5707 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5708 PUT_MODE (tem, GET_MODE (x));
5709
5710 /* If this was a paradoxical subreg that we replaced, the
5711 resulting memory must be sufficiently aligned to allow
5712 us to widen the mode of the memory. */
5713 if (outer_size > inner_size && STRICT_ALIGNMENT)
5714 {
5715 rtx base;
5716
5717 base = XEXP (tem, 0);
5718 if (GET_CODE (base) == PLUS)
5719 {
5720 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5721 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5722 return x;
5723 base = XEXP (base, 0);
5724 }
5725 if (GET_CODE (base) != REG
5726 || (REGNO_POINTER_ALIGN (REGNO (base))
5727 < outer_size * BITS_PER_UNIT))
5728 return x;
5729 }
5730
5731 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5732 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5733 ind_levels, insn);
5734
5735 /* If this is not a toplevel operand, find_reloads doesn't see
5736 this substitution. We have to emit a USE of the pseudo so
5737 that delete_output_reload can see it. */
5738 if (replace_reloads && recog_data.operand[opnum] != x)
5739 emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn);
5740 x = tem;
5741 }
5742 }
5743 }
5744 return x;
5745 }
5746 \f
5747 /* Substitute into the current INSN the registers into which we have reloaded
5748 the things that need reloading. The array `replacements'
5749 contains the locations of all pointers that must be changed
5750 and says what to replace them with.
5751
5752 Return the rtx that X translates into; usually X, but modified. */
5753
5754 void
5755 subst_reloads (insn)
5756 rtx insn;
5757 {
5758 register int i;
5759
5760 for (i = 0; i < n_replacements; i++)
5761 {
5762 register struct replacement *r = &replacements[i];
5763 register rtx reloadreg = rld[r->what].reg_rtx;
5764 if (reloadreg)
5765 {
5766 /* If we're replacing a LABEL_REF with a register, add a
5767 REG_LABEL note to indicate to flow which label this
5768 register refers to. */
5769 if (GET_CODE (*r->where) == LABEL_REF
5770 && GET_CODE (insn) == JUMP_INSN)
5771 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
5772 XEXP (*r->where, 0),
5773 REG_NOTES (insn));
5774
5775 /* Encapsulate RELOADREG so its machine mode matches what
5776 used to be there. Note that gen_lowpart_common will
5777 do the wrong thing if RELOADREG is multi-word. RELOADREG
5778 will always be a REG here. */
5779 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5780 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5781
5782 /* If we are putting this into a SUBREG and RELOADREG is a
5783 SUBREG, we would be making nested SUBREGs, so we have to fix
5784 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5785
5786 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5787 {
5788 if (GET_MODE (*r->subreg_loc)
5789 == GET_MODE (SUBREG_REG (reloadreg)))
5790 *r->subreg_loc = SUBREG_REG (reloadreg);
5791 else
5792 {
5793 int final_offset =
5794 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5795
5796 /* When working with SUBREGs the rule is that the byte
5797 offset must be a multiple of the SUBREG's mode. */
5798 final_offset = (final_offset /
5799 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5800 final_offset = (final_offset *
5801 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5802
5803 *r->where = SUBREG_REG (reloadreg);
5804 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5805 }
5806 }
5807 else
5808 *r->where = reloadreg;
5809 }
5810 /* If reload got no reg and isn't optional, something's wrong. */
5811 else if (! rld[r->what].optional)
5812 abort ();
5813 }
5814 }
5815 \f
5816 /* Make a copy of any replacements being done into X and move those copies
5817 to locations in Y, a copy of X. We only look at the highest level of
5818 the RTL. */
5819
5820 void
5821 copy_replacements (x, y)
5822 rtx x;
5823 rtx y;
5824 {
5825 int i, j;
5826 enum rtx_code code = GET_CODE (x);
5827 const char *fmt = GET_RTX_FORMAT (code);
5828 struct replacement *r;
5829
5830 /* We can't support X being a SUBREG because we might then need to know its
5831 location if something inside it was replaced. */
5832 if (code == SUBREG)
5833 abort ();
5834
5835 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5836 if (fmt[i] == 'e')
5837 for (j = 0; j < n_replacements; j++)
5838 {
5839 if (replacements[j].subreg_loc == &XEXP (x, i))
5840 {
5841 r = &replacements[n_replacements++];
5842 r->where = replacements[j].where;
5843 r->subreg_loc = &XEXP (y, i);
5844 r->what = replacements[j].what;
5845 r->mode = replacements[j].mode;
5846 }
5847 else if (replacements[j].where == &XEXP (x, i))
5848 {
5849 r = &replacements[n_replacements++];
5850 r->where = &XEXP (y, i);
5851 r->subreg_loc = 0;
5852 r->what = replacements[j].what;
5853 r->mode = replacements[j].mode;
5854 }
5855 }
5856 }
5857
5858 /* Change any replacements being done to *X to be done to *Y */
5859
5860 void
5861 move_replacements (x, y)
5862 rtx *x;
5863 rtx *y;
5864 {
5865 int i;
5866
5867 for (i = 0; i < n_replacements; i++)
5868 if (replacements[i].subreg_loc == x)
5869 replacements[i].subreg_loc = y;
5870 else if (replacements[i].where == x)
5871 {
5872 replacements[i].where = y;
5873 replacements[i].subreg_loc = 0;
5874 }
5875 }
5876 \f
5877 /* If LOC was scheduled to be replaced by something, return the replacement.
5878 Otherwise, return *LOC. */
5879
5880 rtx
5881 find_replacement (loc)
5882 rtx *loc;
5883 {
5884 struct replacement *r;
5885
5886 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5887 {
5888 rtx reloadreg = rld[r->what].reg_rtx;
5889
5890 if (reloadreg && r->where == loc)
5891 {
5892 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5893 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5894
5895 return reloadreg;
5896 }
5897 else if (reloadreg && r->subreg_loc == loc)
5898 {
5899 /* RELOADREG must be either a REG or a SUBREG.
5900
5901 ??? Is it actually still ever a SUBREG? If so, why? */
5902
5903 if (GET_CODE (reloadreg) == REG)
5904 return gen_rtx_REG (GET_MODE (*loc),
5905 (REGNO (reloadreg) +
5906 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
5907 GET_MODE (SUBREG_REG (*loc)),
5908 SUBREG_BYTE (*loc),
5909 GET_MODE (*loc))));
5910 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5911 return reloadreg;
5912 else
5913 {
5914 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
5915
5916 /* When working with SUBREGs the rule is that the byte
5917 offset must be a multiple of the SUBREG's mode. */
5918 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
5919 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
5920 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5921 final_offset);
5922 }
5923 }
5924 }
5925
5926 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5927 what's inside and make a new rtl if so. */
5928 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5929 || GET_CODE (*loc) == MULT)
5930 {
5931 rtx x = find_replacement (&XEXP (*loc, 0));
5932 rtx y = find_replacement (&XEXP (*loc, 1));
5933
5934 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5935 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5936 }
5937
5938 return *loc;
5939 }
5940 \f
5941 /* Return nonzero if register in range [REGNO, ENDREGNO)
5942 appears either explicitly or implicitly in X
5943 other than being stored into (except for earlyclobber operands).
5944
5945 References contained within the substructure at LOC do not count.
5946 LOC may be zero, meaning don't ignore anything.
5947
5948 This is similar to refers_to_regno_p in rtlanal.c except that we
5949 look at equivalences for pseudos that didn't get hard registers. */
5950
5951 int
5952 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5953 unsigned int regno, endregno;
5954 rtx x;
5955 rtx *loc;
5956 {
5957 int i;
5958 unsigned int r;
5959 RTX_CODE code;
5960 const char *fmt;
5961
5962 if (x == 0)
5963 return 0;
5964
5965 repeat:
5966 code = GET_CODE (x);
5967
5968 switch (code)
5969 {
5970 case REG:
5971 r = REGNO (x);
5972
5973 /* If this is a pseudo, a hard register must not have been allocated.
5974 X must therefore either be a constant or be in memory. */
5975 if (r >= FIRST_PSEUDO_REGISTER)
5976 {
5977 if (reg_equiv_memory_loc[r])
5978 return refers_to_regno_for_reload_p (regno, endregno,
5979 reg_equiv_memory_loc[r],
5980 (rtx*)0);
5981
5982 if (reg_equiv_constant[r])
5983 return 0;
5984
5985 abort ();
5986 }
5987
5988 return (endregno > r
5989 && regno < r + (r < FIRST_PSEUDO_REGISTER
5990 ? HARD_REGNO_NREGS (r, GET_MODE (x))
5991 : 1));
5992
5993 case SUBREG:
5994 /* If this is a SUBREG of a hard reg, we can see exactly which
5995 registers are being modified. Otherwise, handle normally. */
5996 if (GET_CODE (SUBREG_REG (x)) == REG
5997 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5998 {
5999 unsigned int inner_regno = subreg_regno (x);
6000 unsigned int inner_endregno
6001 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6002 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6003
6004 return endregno > inner_regno && regno < inner_endregno;
6005 }
6006 break;
6007
6008 case CLOBBER:
6009 case SET:
6010 if (&SET_DEST (x) != loc
6011 /* Note setting a SUBREG counts as referring to the REG it is in for
6012 a pseudo but not for hard registers since we can
6013 treat each word individually. */
6014 && ((GET_CODE (SET_DEST (x)) == SUBREG
6015 && loc != &SUBREG_REG (SET_DEST (x))
6016 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6017 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6018 && refers_to_regno_for_reload_p (regno, endregno,
6019 SUBREG_REG (SET_DEST (x)),
6020 loc))
6021 /* If the output is an earlyclobber operand, this is
6022 a conflict. */
6023 || ((GET_CODE (SET_DEST (x)) != REG
6024 || earlyclobber_operand_p (SET_DEST (x)))
6025 && refers_to_regno_for_reload_p (regno, endregno,
6026 SET_DEST (x), loc))))
6027 return 1;
6028
6029 if (code == CLOBBER || loc == &SET_SRC (x))
6030 return 0;
6031 x = SET_SRC (x);
6032 goto repeat;
6033
6034 default:
6035 break;
6036 }
6037
6038 /* X does not match, so try its subexpressions. */
6039
6040 fmt = GET_RTX_FORMAT (code);
6041 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6042 {
6043 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6044 {
6045 if (i == 0)
6046 {
6047 x = XEXP (x, 0);
6048 goto repeat;
6049 }
6050 else
6051 if (refers_to_regno_for_reload_p (regno, endregno,
6052 XEXP (x, i), loc))
6053 return 1;
6054 }
6055 else if (fmt[i] == 'E')
6056 {
6057 register int j;
6058 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6059 if (loc != &XVECEXP (x, i, j)
6060 && refers_to_regno_for_reload_p (regno, endregno,
6061 XVECEXP (x, i, j), loc))
6062 return 1;
6063 }
6064 }
6065 return 0;
6066 }
6067
6068 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6069 we check if any register number in X conflicts with the relevant register
6070 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6071 contains a MEM (we don't bother checking for memory addresses that can't
6072 conflict because we expect this to be a rare case.
6073
6074 This function is similar to reg_overlap_mention_p in rtlanal.c except
6075 that we look at equivalences for pseudos that didn't get hard registers. */
6076
6077 int
6078 reg_overlap_mentioned_for_reload_p (x, in)
6079 rtx x, in;
6080 {
6081 int regno, endregno;
6082
6083 /* Overly conservative. */
6084 if (GET_CODE (x) == STRICT_LOW_PART)
6085 x = XEXP (x, 0);
6086
6087 /* If either argument is a constant, then modifying X can not affect IN. */
6088 if (CONSTANT_P (x) || CONSTANT_P (in))
6089 return 0;
6090 else if (GET_CODE (x) == SUBREG)
6091 {
6092 regno = REGNO (SUBREG_REG (x));
6093 if (regno < FIRST_PSEUDO_REGISTER)
6094 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6095 GET_MODE (SUBREG_REG (x)),
6096 SUBREG_BYTE (x),
6097 GET_MODE (x));
6098 }
6099 else if (GET_CODE (x) == REG)
6100 {
6101 regno = REGNO (x);
6102
6103 /* If this is a pseudo, it must not have been assigned a hard register.
6104 Therefore, it must either be in memory or be a constant. */
6105
6106 if (regno >= FIRST_PSEUDO_REGISTER)
6107 {
6108 if (reg_equiv_memory_loc[regno])
6109 return refers_to_mem_for_reload_p (in);
6110 else if (reg_equiv_constant[regno])
6111 return 0;
6112 abort ();
6113 }
6114 }
6115 else if (GET_CODE (x) == MEM)
6116 return refers_to_mem_for_reload_p (in);
6117 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6118 || GET_CODE (x) == CC0)
6119 return reg_mentioned_p (x, in);
6120 else
6121 abort ();
6122
6123 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6124 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6125
6126 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*)0);
6127 }
6128
6129 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6130 registers. */
6131
6132 int
6133 refers_to_mem_for_reload_p (x)
6134 rtx x;
6135 {
6136 const char *fmt;
6137 int i;
6138
6139 if (GET_CODE (x) == MEM)
6140 return 1;
6141
6142 if (GET_CODE (x) == REG)
6143 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6144 && reg_equiv_memory_loc[REGNO (x)]);
6145
6146 fmt = GET_RTX_FORMAT (GET_CODE (x));
6147 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6148 if (fmt[i] == 'e'
6149 && (GET_CODE (XEXP (x, i)) == MEM
6150 || refers_to_mem_for_reload_p (XEXP (x, i))))
6151 return 1;
6152
6153 return 0;
6154 }
6155 \f
6156 /* Check the insns before INSN to see if there is a suitable register
6157 containing the same value as GOAL.
6158 If OTHER is -1, look for a register in class CLASS.
6159 Otherwise, just see if register number OTHER shares GOAL's value.
6160
6161 Return an rtx for the register found, or zero if none is found.
6162
6163 If RELOAD_REG_P is (short *)1,
6164 we reject any hard reg that appears in reload_reg_rtx
6165 because such a hard reg is also needed coming into this insn.
6166
6167 If RELOAD_REG_P is any other nonzero value,
6168 it is a vector indexed by hard reg number
6169 and we reject any hard reg whose element in the vector is nonnegative
6170 as well as any that appears in reload_reg_rtx.
6171
6172 If GOAL is zero, then GOALREG is a register number; we look
6173 for an equivalent for that register.
6174
6175 MODE is the machine mode of the value we want an equivalence for.
6176 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6177
6178 This function is used by jump.c as well as in the reload pass.
6179
6180 If GOAL is the sum of the stack pointer and a constant, we treat it
6181 as if it were a constant except that sp is required to be unchanging. */
6182
6183 rtx
6184 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6185 register rtx goal;
6186 rtx insn;
6187 enum reg_class class;
6188 register int other;
6189 short *reload_reg_p;
6190 int goalreg;
6191 enum machine_mode mode;
6192 {
6193 register rtx p = insn;
6194 rtx goaltry, valtry, value, where;
6195 register rtx pat;
6196 register int regno = -1;
6197 int valueno;
6198 int goal_mem = 0;
6199 int goal_const = 0;
6200 int goal_mem_addr_varies = 0;
6201 int need_stable_sp = 0;
6202 int nregs;
6203 int valuenregs;
6204
6205 if (goal == 0)
6206 regno = goalreg;
6207 else if (GET_CODE (goal) == REG)
6208 regno = REGNO (goal);
6209 else if (GET_CODE (goal) == MEM)
6210 {
6211 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6212 if (MEM_VOLATILE_P (goal))
6213 return 0;
6214 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6215 return 0;
6216 /* An address with side effects must be reexecuted. */
6217 switch (code)
6218 {
6219 case POST_INC:
6220 case PRE_INC:
6221 case POST_DEC:
6222 case PRE_DEC:
6223 case POST_MODIFY:
6224 case PRE_MODIFY:
6225 return 0;
6226 default:
6227 break;
6228 }
6229 goal_mem = 1;
6230 }
6231 else if (CONSTANT_P (goal))
6232 goal_const = 1;
6233 else if (GET_CODE (goal) == PLUS
6234 && XEXP (goal, 0) == stack_pointer_rtx
6235 && CONSTANT_P (XEXP (goal, 1)))
6236 goal_const = need_stable_sp = 1;
6237 else if (GET_CODE (goal) == PLUS
6238 && XEXP (goal, 0) == frame_pointer_rtx
6239 && CONSTANT_P (XEXP (goal, 1)))
6240 goal_const = 1;
6241 else
6242 return 0;
6243
6244 /* Scan insns back from INSN, looking for one that copies
6245 a value into or out of GOAL.
6246 Stop and give up if we reach a label. */
6247
6248 while (1)
6249 {
6250 p = PREV_INSN (p);
6251 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6252 return 0;
6253
6254 if (GET_CODE (p) == INSN
6255 /* If we don't want spill regs ... */
6256 && (! (reload_reg_p != 0
6257 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6258 /* ... then ignore insns introduced by reload; they aren't
6259 useful and can cause results in reload_as_needed to be
6260 different from what they were when calculating the need for
6261 spills. If we notice an input-reload insn here, we will
6262 reject it below, but it might hide a usable equivalent.
6263 That makes bad code. It may even abort: perhaps no reg was
6264 spilled for this insn because it was assumed we would find
6265 that equivalent. */
6266 || INSN_UID (p) < reload_first_uid))
6267 {
6268 rtx tem;
6269 pat = single_set (p);
6270
6271 /* First check for something that sets some reg equal to GOAL. */
6272 if (pat != 0
6273 && ((regno >= 0
6274 && true_regnum (SET_SRC (pat)) == regno
6275 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6276 ||
6277 (regno >= 0
6278 && true_regnum (SET_DEST (pat)) == regno
6279 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6280 ||
6281 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6282 /* When looking for stack pointer + const,
6283 make sure we don't use a stack adjust. */
6284 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6285 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6286 || (goal_mem
6287 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6288 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6289 || (goal_mem
6290 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6291 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6292 /* If we are looking for a constant,
6293 and something equivalent to that constant was copied
6294 into a reg, we can use that reg. */
6295 || (goal_const && REG_NOTES (p) != 0
6296 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6297 && ((rtx_equal_p (XEXP (tem, 0), goal)
6298 && (valueno
6299 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6300 || (GET_CODE (SET_DEST (pat)) == REG
6301 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6302 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6303 == MODE_FLOAT)
6304 && GET_CODE (goal) == CONST_INT
6305 && 0 != (goaltry
6306 = operand_subword (XEXP (tem, 0), 0, 0,
6307 VOIDmode))
6308 && rtx_equal_p (goal, goaltry)
6309 && (valtry
6310 = operand_subword (SET_DEST (pat), 0, 0,
6311 VOIDmode))
6312 && (valueno = true_regnum (valtry)) >= 0)))
6313 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6314 NULL_RTX))
6315 && GET_CODE (SET_DEST (pat)) == REG
6316 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6317 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6318 == MODE_FLOAT)
6319 && GET_CODE (goal) == CONST_INT
6320 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6321 VOIDmode))
6322 && rtx_equal_p (goal, goaltry)
6323 && (valtry
6324 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6325 && (valueno = true_regnum (valtry)) >= 0)))
6326 {
6327 if (other >= 0)
6328 {
6329 if (valueno != other)
6330 continue;
6331 }
6332 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6333 continue;
6334 else
6335 {
6336 int i;
6337
6338 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6339 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6340 valueno + i))
6341 break;
6342 if (i >= 0)
6343 continue;
6344 }
6345 value = valtry;
6346 where = p;
6347 break;
6348 }
6349 }
6350 }
6351
6352 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6353 (or copying VALUE into GOAL, if GOAL is also a register).
6354 Now verify that VALUE is really valid. */
6355
6356 /* VALUENO is the register number of VALUE; a hard register. */
6357
6358 /* Don't try to re-use something that is killed in this insn. We want
6359 to be able to trust REG_UNUSED notes. */
6360 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6361 return 0;
6362
6363 /* If we propose to get the value from the stack pointer or if GOAL is
6364 a MEM based on the stack pointer, we need a stable SP. */
6365 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6366 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6367 goal)))
6368 need_stable_sp = 1;
6369
6370 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6371 if (GET_MODE (value) != mode)
6372 return 0;
6373
6374 /* Reject VALUE if it was loaded from GOAL
6375 and is also a register that appears in the address of GOAL. */
6376
6377 if (goal_mem && value == SET_DEST (single_set (where))
6378 && refers_to_regno_for_reload_p (valueno,
6379 (valueno
6380 + HARD_REGNO_NREGS (valueno, mode)),
6381 goal, (rtx*)0))
6382 return 0;
6383
6384 /* Reject registers that overlap GOAL. */
6385
6386 if (!goal_mem && !goal_const
6387 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6388 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6389 return 0;
6390
6391 nregs = HARD_REGNO_NREGS (regno, mode);
6392 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6393
6394 /* Reject VALUE if it is one of the regs reserved for reloads.
6395 Reload1 knows how to reuse them anyway, and it would get
6396 confused if we allocated one without its knowledge.
6397 (Now that insns introduced by reload are ignored above,
6398 this case shouldn't happen, but I'm not positive.) */
6399
6400 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6401 {
6402 int i;
6403 for (i = 0; i < valuenregs; ++i)
6404 if (reload_reg_p[valueno + i] >= 0)
6405 return 0;
6406 }
6407
6408 /* Reject VALUE if it is a register being used for an input reload
6409 even if it is not one of those reserved. */
6410
6411 if (reload_reg_p != 0)
6412 {
6413 int i;
6414 for (i = 0; i < n_reloads; i++)
6415 if (rld[i].reg_rtx != 0 && rld[i].in)
6416 {
6417 int regno1 = REGNO (rld[i].reg_rtx);
6418 int nregs1 = HARD_REGNO_NREGS (regno1,
6419 GET_MODE (rld[i].reg_rtx));
6420 if (regno1 < valueno + valuenregs
6421 && regno1 + nregs1 > valueno)
6422 return 0;
6423 }
6424 }
6425
6426 if (goal_mem)
6427 /* We must treat frame pointer as varying here,
6428 since it can vary--in a nonlocal goto as generated by expand_goto. */
6429 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6430
6431 /* Now verify that the values of GOAL and VALUE remain unaltered
6432 until INSN is reached. */
6433
6434 p = insn;
6435 while (1)
6436 {
6437 p = PREV_INSN (p);
6438 if (p == where)
6439 return value;
6440
6441 /* Don't trust the conversion past a function call
6442 if either of the two is in a call-clobbered register, or memory. */
6443 if (GET_CODE (p) == CALL_INSN)
6444 {
6445 int i;
6446
6447 if (goal_mem || need_stable_sp)
6448 return 0;
6449
6450 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6451 for (i = 0; i < nregs; ++i)
6452 if (call_used_regs[regno + i])
6453 return 0;
6454
6455 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6456 for (i = 0; i < valuenregs; ++i)
6457 if (call_used_regs[valueno + i])
6458 return 0;
6459 }
6460
6461 #ifdef NON_SAVING_SETJMP
6462 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
6463 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
6464 return 0;
6465 #endif
6466
6467 if (INSN_P (p))
6468 {
6469 pat = PATTERN (p);
6470
6471 /* Watch out for unspec_volatile, and volatile asms. */
6472 if (volatile_insn_p (pat))
6473 return 0;
6474
6475 /* If this insn P stores in either GOAL or VALUE, return 0.
6476 If GOAL is a memory ref and this insn writes memory, return 0.
6477 If GOAL is a memory ref and its address is not constant,
6478 and this insn P changes a register used in GOAL, return 0. */
6479
6480 if (GET_CODE (pat) == COND_EXEC)
6481 pat = COND_EXEC_CODE (pat);
6482 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6483 {
6484 register rtx dest = SET_DEST (pat);
6485 while (GET_CODE (dest) == SUBREG
6486 || GET_CODE (dest) == ZERO_EXTRACT
6487 || GET_CODE (dest) == SIGN_EXTRACT
6488 || GET_CODE (dest) == STRICT_LOW_PART)
6489 dest = XEXP (dest, 0);
6490 if (GET_CODE (dest) == REG)
6491 {
6492 register int xregno = REGNO (dest);
6493 int xnregs;
6494 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6495 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6496 else
6497 xnregs = 1;
6498 if (xregno < regno + nregs && xregno + xnregs > regno)
6499 return 0;
6500 if (xregno < valueno + valuenregs
6501 && xregno + xnregs > valueno)
6502 return 0;
6503 if (goal_mem_addr_varies
6504 && reg_overlap_mentioned_for_reload_p (dest, goal))
6505 return 0;
6506 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6507 return 0;
6508 }
6509 else if (goal_mem && GET_CODE (dest) == MEM
6510 && ! push_operand (dest, GET_MODE (dest)))
6511 return 0;
6512 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6513 && reg_equiv_memory_loc[regno] != 0)
6514 return 0;
6515 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6516 return 0;
6517 }
6518 else if (GET_CODE (pat) == PARALLEL)
6519 {
6520 register int i;
6521 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6522 {
6523 register rtx v1 = XVECEXP (pat, 0, i);
6524 if (GET_CODE (v1) == COND_EXEC)
6525 v1 = COND_EXEC_CODE (v1);
6526 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6527 {
6528 register rtx dest = SET_DEST (v1);
6529 while (GET_CODE (dest) == SUBREG
6530 || GET_CODE (dest) == ZERO_EXTRACT
6531 || GET_CODE (dest) == SIGN_EXTRACT
6532 || GET_CODE (dest) == STRICT_LOW_PART)
6533 dest = XEXP (dest, 0);
6534 if (GET_CODE (dest) == REG)
6535 {
6536 register int xregno = REGNO (dest);
6537 int xnregs;
6538 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6539 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6540 else
6541 xnregs = 1;
6542 if (xregno < regno + nregs
6543 && xregno + xnregs > regno)
6544 return 0;
6545 if (xregno < valueno + valuenregs
6546 && xregno + xnregs > valueno)
6547 return 0;
6548 if (goal_mem_addr_varies
6549 && reg_overlap_mentioned_for_reload_p (dest,
6550 goal))
6551 return 0;
6552 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6553 return 0;
6554 }
6555 else if (goal_mem && GET_CODE (dest) == MEM
6556 && ! push_operand (dest, GET_MODE (dest)))
6557 return 0;
6558 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6559 && reg_equiv_memory_loc[regno] != 0)
6560 return 0;
6561 else if (need_stable_sp
6562 && push_operand (dest, GET_MODE (dest)))
6563 return 0;
6564 }
6565 }
6566 }
6567
6568 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6569 {
6570 rtx link;
6571
6572 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6573 link = XEXP (link, 1))
6574 {
6575 pat = XEXP (link, 0);
6576 if (GET_CODE (pat) == CLOBBER)
6577 {
6578 register rtx dest = SET_DEST (pat);
6579
6580 if (GET_CODE (dest) == REG)
6581 {
6582 register int xregno = REGNO (dest);
6583 int xnregs
6584 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6585
6586 if (xregno < regno + nregs
6587 && xregno + xnregs > regno)
6588 return 0;
6589 else if (xregno < valueno + valuenregs
6590 && xregno + xnregs > valueno)
6591 return 0;
6592 else if (goal_mem_addr_varies
6593 && reg_overlap_mentioned_for_reload_p (dest,
6594 goal))
6595 return 0;
6596 }
6597
6598 else if (goal_mem && GET_CODE (dest) == MEM
6599 && ! push_operand (dest, GET_MODE (dest)))
6600 return 0;
6601 else if (need_stable_sp
6602 && push_operand (dest, GET_MODE (dest)))
6603 return 0;
6604 }
6605 }
6606 }
6607
6608 #ifdef AUTO_INC_DEC
6609 /* If this insn auto-increments or auto-decrements
6610 either regno or valueno, return 0 now.
6611 If GOAL is a memory ref and its address is not constant,
6612 and this insn P increments a register used in GOAL, return 0. */
6613 {
6614 register rtx link;
6615
6616 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6617 if (REG_NOTE_KIND (link) == REG_INC
6618 && GET_CODE (XEXP (link, 0)) == REG)
6619 {
6620 register int incno = REGNO (XEXP (link, 0));
6621 if (incno < regno + nregs && incno >= regno)
6622 return 0;
6623 if (incno < valueno + valuenregs && incno >= valueno)
6624 return 0;
6625 if (goal_mem_addr_varies
6626 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6627 goal))
6628 return 0;
6629 }
6630 }
6631 #endif
6632 }
6633 }
6634 }
6635 \f
6636 /* Find a place where INCED appears in an increment or decrement operator
6637 within X, and return the amount INCED is incremented or decremented by.
6638 The value is always positive. */
6639
6640 static int
6641 find_inc_amount (x, inced)
6642 rtx x, inced;
6643 {
6644 register enum rtx_code code = GET_CODE (x);
6645 register const char *fmt;
6646 register int i;
6647
6648 if (code == MEM)
6649 {
6650 register rtx addr = XEXP (x, 0);
6651 if ((GET_CODE (addr) == PRE_DEC
6652 || GET_CODE (addr) == POST_DEC
6653 || GET_CODE (addr) == PRE_INC
6654 || GET_CODE (addr) == POST_INC)
6655 && XEXP (addr, 0) == inced)
6656 return GET_MODE_SIZE (GET_MODE (x));
6657 else if ((GET_CODE (addr) == PRE_MODIFY
6658 || GET_CODE (addr) == POST_MODIFY)
6659 && GET_CODE (XEXP (addr, 1)) == PLUS
6660 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6661 && XEXP (addr, 0) == inced
6662 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6663 {
6664 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6665 return i < 0 ? -i : i;
6666 }
6667 }
6668
6669 fmt = GET_RTX_FORMAT (code);
6670 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6671 {
6672 if (fmt[i] == 'e')
6673 {
6674 register int tem = find_inc_amount (XEXP (x, i), inced);
6675 if (tem != 0)
6676 return tem;
6677 }
6678 if (fmt[i] == 'E')
6679 {
6680 register int j;
6681 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6682 {
6683 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6684 if (tem != 0)
6685 return tem;
6686 }
6687 }
6688 }
6689
6690 return 0;
6691 }
6692 \f
6693 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6694 If SETS is nonzero, also consider SETs. */
6695
6696 int
6697 regno_clobbered_p (regno, insn, mode, sets)
6698 unsigned int regno;
6699 rtx insn;
6700 enum machine_mode mode;
6701 int sets;
6702 {
6703 int nregs = HARD_REGNO_NREGS (regno, mode);
6704 int endregno = regno + nregs;
6705
6706 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6707 || (sets && GET_CODE (PATTERN (insn)) == SET))
6708 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6709 {
6710 int test = REGNO (XEXP (PATTERN (insn), 0));
6711
6712 return test >= regno && test < endregno;
6713 }
6714
6715 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6716 {
6717 int i = XVECLEN (PATTERN (insn), 0) - 1;
6718
6719 for (; i >= 0; i--)
6720 {
6721 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6722 if ((GET_CODE (elt) == CLOBBER
6723 || (sets && GET_CODE (PATTERN (insn)) == SET))
6724 && GET_CODE (XEXP (elt, 0)) == REG)
6725 {
6726 int test = REGNO (XEXP (elt, 0));
6727
6728 if (test >= regno && test < endregno)
6729 return 1;
6730 }
6731 }
6732 }
6733
6734 return 0;
6735 }
6736
6737 static const char *reload_when_needed_name[] =
6738 {
6739 "RELOAD_FOR_INPUT",
6740 "RELOAD_FOR_OUTPUT",
6741 "RELOAD_FOR_INSN",
6742 "RELOAD_FOR_INPUT_ADDRESS",
6743 "RELOAD_FOR_INPADDR_ADDRESS",
6744 "RELOAD_FOR_OUTPUT_ADDRESS",
6745 "RELOAD_FOR_OUTADDR_ADDRESS",
6746 "RELOAD_FOR_OPERAND_ADDRESS",
6747 "RELOAD_FOR_OPADDR_ADDR",
6748 "RELOAD_OTHER",
6749 "RELOAD_FOR_OTHER_ADDRESS"
6750 };
6751
6752 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6753
6754 /* These functions are used to print the variables set by 'find_reloads' */
6755
6756 void
6757 debug_reload_to_stream (f)
6758 FILE *f;
6759 {
6760 int r;
6761 const char *prefix;
6762
6763 if (! f)
6764 f = stderr;
6765 for (r = 0; r < n_reloads; r++)
6766 {
6767 fprintf (f, "Reload %d: ", r);
6768
6769 if (rld[r].in != 0)
6770 {
6771 fprintf (f, "reload_in (%s) = ",
6772 GET_MODE_NAME (rld[r].inmode));
6773 print_inline_rtx (f, rld[r].in, 24);
6774 fprintf (f, "\n\t");
6775 }
6776
6777 if (rld[r].out != 0)
6778 {
6779 fprintf (f, "reload_out (%s) = ",
6780 GET_MODE_NAME (rld[r].outmode));
6781 print_inline_rtx (f, rld[r].out, 24);
6782 fprintf (f, "\n\t");
6783 }
6784
6785 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6786
6787 fprintf (f, "%s (opnum = %d)",
6788 reload_when_needed_name[(int) rld[r].when_needed],
6789 rld[r].opnum);
6790
6791 if (rld[r].optional)
6792 fprintf (f, ", optional");
6793
6794 if (rld[r].nongroup)
6795 fprintf (f, ", nongroup");
6796
6797 if (rld[r].inc != 0)
6798 fprintf (f, ", inc by %d", rld[r].inc);
6799
6800 if (rld[r].nocombine)
6801 fprintf (f, ", can't combine");
6802
6803 if (rld[r].secondary_p)
6804 fprintf (f, ", secondary_reload_p");
6805
6806 if (rld[r].in_reg != 0)
6807 {
6808 fprintf (f, "\n\treload_in_reg: ");
6809 print_inline_rtx (f, rld[r].in_reg, 24);
6810 }
6811
6812 if (rld[r].out_reg != 0)
6813 {
6814 fprintf (f, "\n\treload_out_reg: ");
6815 print_inline_rtx (f, rld[r].out_reg, 24);
6816 }
6817
6818 if (rld[r].reg_rtx != 0)
6819 {
6820 fprintf (f, "\n\treload_reg_rtx: ");
6821 print_inline_rtx (f, rld[r].reg_rtx, 24);
6822 }
6823
6824 prefix = "\n\t";
6825 if (rld[r].secondary_in_reload != -1)
6826 {
6827 fprintf (f, "%ssecondary_in_reload = %d",
6828 prefix, rld[r].secondary_in_reload);
6829 prefix = ", ";
6830 }
6831
6832 if (rld[r].secondary_out_reload != -1)
6833 fprintf (f, "%ssecondary_out_reload = %d\n",
6834 prefix, rld[r].secondary_out_reload);
6835
6836 prefix = "\n\t";
6837 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6838 {
6839 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6840 insn_data[rld[r].secondary_in_icode].name);
6841 prefix = ", ";
6842 }
6843
6844 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6845 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6846 insn_data[rld[r].secondary_out_icode].name);
6847
6848 fprintf (f, "\n");
6849 }
6850 }
6851
6852 void
6853 debug_reload ()
6854 {
6855 debug_reload_to_stream (stderr);
6856 }