calls.c: Fix formatting.
[gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57 NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
72
73 Using a reload register for several reloads in one insn:
74
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
78
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
82
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
86
87 #define REG_OK_STRICT
88
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "expr.h"
95 #include "optabs.h"
96 #include "recog.h"
97 #include "reload.h"
98 #include "regs.h"
99 #include "hard-reg-set.h"
100 #include "flags.h"
101 #include "real.h"
102 #include "output.h"
103 #include "function.h"
104 #include "toplev.h"
105
106 #ifndef REGISTER_MOVE_COST
107 #define REGISTER_MOVE_COST(m, x, y) 2
108 #endif
109
110 #ifndef REGNO_MODE_OK_FOR_BASE_P
111 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112 #endif
113
114 #ifndef REG_MODE_OK_FOR_BASE_P
115 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116 #endif
117 \f
118 /* All reloads of the current insn are recorded here. See reload.h for
119 comments. */
120 int n_reloads;
121 struct reload rld[MAX_RELOADS];
122
123 /* All the "earlyclobber" operands of the current insn
124 are recorded here. */
125 int n_earlyclobbers;
126 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
127
128 int reload_n_operands;
129
130 /* Replacing reloads.
131
132 If `replace_reloads' is nonzero, then as each reload is recorded
133 an entry is made for it in the table `replacements'.
134 Then later `subst_reloads' can look through that table and
135 perform all the replacements needed. */
136
137 /* Nonzero means record the places to replace. */
138 static int replace_reloads;
139
140 /* Each replacement is recorded with a structure like this. */
141 struct replacement
142 {
143 rtx *where; /* Location to store in */
144 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
145 a SUBREG; 0 otherwise. */
146 int what; /* which reload this is for */
147 enum machine_mode mode; /* mode it must have */
148 };
149
150 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
151
152 /* Number of replacements currently recorded. */
153 static int n_replacements;
154
155 /* Used to track what is modified by an operand. */
156 struct decomposition
157 {
158 int reg_flag; /* Nonzero if referencing a register. */
159 int safe; /* Nonzero if this can't conflict with anything. */
160 rtx base; /* Base address for MEM. */
161 HOST_WIDE_INT start; /* Starting offset or register number. */
162 HOST_WIDE_INT end; /* Ending offset or register number. */
163 };
164
165 #ifdef SECONDARY_MEMORY_NEEDED
166
167 /* Save MEMs needed to copy from one class of registers to another. One MEM
168 is used per mode, but normally only one or two modes are ever used.
169
170 We keep two versions, before and after register elimination. The one
171 after register elimination is record separately for each operand. This
172 is done in case the address is not valid to be sure that we separately
173 reload each. */
174
175 static rtx secondary_memlocs[NUM_MACHINE_MODES];
176 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
177 #endif
178
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
182
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
185
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
190
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
196
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
199
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
203
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG \
207 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
209
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
220
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
228
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
237
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *));
242 #endif
243 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int));
244 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
245 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
246 static void combine_reloads PARAMS ((void));
247 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
248 enum reload_type, int, int));
249 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
250 enum machine_mode, enum machine_mode,
251 enum reg_class, int, int));
252 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
253 static struct decomposition decompose PARAMS ((rtx));
254 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
255 static int alternative_allows_memconst PARAMS ((const char *, int));
256 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
257 int, rtx, int *));
258 static rtx make_memloc PARAMS ((rtx, int));
259 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
260 int, enum reload_type, int, rtx));
261 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
262 static rtx subst_indexed_address PARAMS ((rtx));
263 static void update_auto_inc_notes PARAMS ((rtx, int, int));
264 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
265 int, enum reload_type,int, rtx));
266 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
267 enum machine_mode, int,
268 enum reload_type, int));
269 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int, enum reload_type,
270 int, rtx));
271 static int find_inc_amount PARAMS ((rtx, rtx));
272 \f
273 #ifdef HAVE_SECONDARY_RELOADS
274
275 /* Determine if any secondary reloads are needed for loading (if IN_P is
276 non-zero) or storing (if IN_P is zero) X to or from a reload register of
277 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
278 are needed, push them.
279
280 Return the reload number of the secondary reload we made, or -1 if
281 we didn't need one. *PICODE is set to the insn_code to use if we do
282 need a secondary reload. */
283
284 static int
285 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
286 type, picode)
287 int in_p;
288 rtx x;
289 int opnum;
290 int optional;
291 enum reg_class reload_class;
292 enum machine_mode reload_mode;
293 enum reload_type type;
294 enum insn_code *picode;
295 {
296 enum reg_class class = NO_REGS;
297 enum machine_mode mode = reload_mode;
298 enum insn_code icode = CODE_FOR_nothing;
299 enum reg_class t_class = NO_REGS;
300 enum machine_mode t_mode = VOIDmode;
301 enum insn_code t_icode = CODE_FOR_nothing;
302 enum reload_type secondary_type;
303 int s_reload, t_reload = -1;
304
305 if (type == RELOAD_FOR_INPUT_ADDRESS
306 || type == RELOAD_FOR_OUTPUT_ADDRESS
307 || type == RELOAD_FOR_INPADDR_ADDRESS
308 || type == RELOAD_FOR_OUTADDR_ADDRESS)
309 secondary_type = type;
310 else
311 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
312
313 *picode = CODE_FOR_nothing;
314
315 /* If X is a paradoxical SUBREG, use the inner value to determine both the
316 mode and object being reloaded. */
317 if (GET_CODE (x) == SUBREG
318 && (GET_MODE_SIZE (GET_MODE (x))
319 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
320 {
321 x = SUBREG_REG (x);
322 reload_mode = GET_MODE (x);
323 }
324
325 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
326 is still a pseudo-register by now, it *must* have an equivalent MEM
327 but we don't want to assume that), use that equivalent when seeing if
328 a secondary reload is needed since whether or not a reload is needed
329 might be sensitive to the form of the MEM. */
330
331 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
332 && reg_equiv_mem[REGNO (x)] != 0)
333 x = reg_equiv_mem[REGNO (x)];
334
335 #ifdef SECONDARY_INPUT_RELOAD_CLASS
336 if (in_p)
337 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
338 #endif
339
340 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
341 if (! in_p)
342 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
343 #endif
344
345 /* If we don't need any secondary registers, done. */
346 if (class == NO_REGS)
347 return -1;
348
349 /* Get a possible insn to use. If the predicate doesn't accept X, don't
350 use the insn. */
351
352 icode = (in_p ? reload_in_optab[(int) reload_mode]
353 : reload_out_optab[(int) reload_mode]);
354
355 if (icode != CODE_FOR_nothing
356 && insn_data[(int) icode].operand[in_p].predicate
357 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
358 icode = CODE_FOR_nothing;
359
360 /* If we will be using an insn, see if it can directly handle the reload
361 register we will be using. If it can, the secondary reload is for a
362 scratch register. If it can't, we will use the secondary reload for
363 an intermediate register and require a tertiary reload for the scratch
364 register. */
365
366 if (icode != CODE_FOR_nothing)
367 {
368 /* If IN_P is non-zero, the reload register will be the output in
369 operand 0. If IN_P is zero, the reload register will be the input
370 in operand 1. Outputs should have an initial "=", which we must
371 skip. */
372
373 enum reg_class insn_class;
374
375 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
376 insn_class = ALL_REGS;
377 else
378 {
379 char insn_letter
380 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
381 insn_class
382 = (insn_letter == 'r' ? GENERAL_REGS
383 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
384
385 if (insn_class == NO_REGS)
386 abort ();
387 if (in_p
388 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
389 abort ();
390 }
391
392 /* The scratch register's constraint must start with "=&". */
393 if (insn_data[(int) icode].operand[2].constraint[0] != '='
394 || insn_data[(int) icode].operand[2].constraint[1] != '&')
395 abort ();
396
397 if (reg_class_subset_p (reload_class, insn_class))
398 mode = insn_data[(int) icode].operand[2].mode;
399 else
400 {
401 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
402 class = insn_class;
403 t_mode = insn_data[(int) icode].operand[2].mode;
404 t_class = (t_letter == 'r' ? GENERAL_REGS
405 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
406 t_icode = icode;
407 icode = CODE_FOR_nothing;
408 }
409 }
410
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
416
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
421
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
424
425 if (in_p && class == reload_class && icode == CODE_FOR_nothing
426 && t_icode == CODE_FOR_nothing)
427 abort ();
428
429 /* If we need a tertiary reload, see if we have one we can reuse or else
430 make a new one. */
431
432 if (t_class != NO_REGS)
433 {
434 for (t_reload = 0; t_reload < n_reloads; t_reload++)
435 if (rld[t_reload].secondary_p
436 && (reg_class_subset_p (t_class, rld[t_reload].class)
437 || reg_class_subset_p (rld[t_reload].class, t_class))
438 && ((in_p && rld[t_reload].inmode == t_mode)
439 || (! in_p && rld[t_reload].outmode == t_mode))
440 && ((in_p && (rld[t_reload].secondary_in_icode
441 == CODE_FOR_nothing))
442 || (! in_p &&(rld[t_reload].secondary_out_icode
443 == CODE_FOR_nothing)))
444 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
445 && MERGABLE_RELOADS (secondary_type,
446 rld[t_reload].when_needed,
447 opnum, rld[t_reload].opnum))
448 {
449 if (in_p)
450 rld[t_reload].inmode = t_mode;
451 if (! in_p)
452 rld[t_reload].outmode = t_mode;
453
454 if (reg_class_subset_p (t_class, rld[t_reload].class))
455 rld[t_reload].class = t_class;
456
457 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
458 rld[t_reload].optional &= optional;
459 rld[t_reload].secondary_p = 1;
460 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
461 opnum, rld[t_reload].opnum))
462 rld[t_reload].when_needed = RELOAD_OTHER;
463 }
464
465 if (t_reload == n_reloads)
466 {
467 /* We need to make a new tertiary reload for this register class. */
468 rld[t_reload].in = rld[t_reload].out = 0;
469 rld[t_reload].class = t_class;
470 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
471 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
472 rld[t_reload].reg_rtx = 0;
473 rld[t_reload].optional = optional;
474 rld[t_reload].inc = 0;
475 /* Maybe we could combine these, but it seems too tricky. */
476 rld[t_reload].nocombine = 1;
477 rld[t_reload].in_reg = 0;
478 rld[t_reload].out_reg = 0;
479 rld[t_reload].opnum = opnum;
480 rld[t_reload].when_needed = secondary_type;
481 rld[t_reload].secondary_in_reload = -1;
482 rld[t_reload].secondary_out_reload = -1;
483 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
484 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
485 rld[t_reload].secondary_p = 1;
486
487 n_reloads++;
488 }
489 }
490
491 /* See if we can reuse an existing secondary reload. */
492 for (s_reload = 0; s_reload < n_reloads; s_reload++)
493 if (rld[s_reload].secondary_p
494 && (reg_class_subset_p (class, rld[s_reload].class)
495 || reg_class_subset_p (rld[s_reload].class, class))
496 && ((in_p && rld[s_reload].inmode == mode)
497 || (! in_p && rld[s_reload].outmode == mode))
498 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
499 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
500 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
501 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
502 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
503 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
504 opnum, rld[s_reload].opnum))
505 {
506 if (in_p)
507 rld[s_reload].inmode = mode;
508 if (! in_p)
509 rld[s_reload].outmode = mode;
510
511 if (reg_class_subset_p (class, rld[s_reload].class))
512 rld[s_reload].class = class;
513
514 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
515 rld[s_reload].optional &= optional;
516 rld[s_reload].secondary_p = 1;
517 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
518 opnum, rld[s_reload].opnum))
519 rld[s_reload].when_needed = RELOAD_OTHER;
520 }
521
522 if (s_reload == n_reloads)
523 {
524 #ifdef SECONDARY_MEMORY_NEEDED
525 /* If we need a memory location to copy between the two reload regs,
526 set it up now. Note that we do the input case before making
527 the reload and the output case after. This is due to the
528 way reloads are output. */
529
530 if (in_p && icode == CODE_FOR_nothing
531 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
532 {
533 get_secondary_mem (x, reload_mode, opnum, type);
534
535 /* We may have just added new reloads. Make sure we add
536 the new reload at the end. */
537 s_reload = n_reloads;
538 }
539 #endif
540
541 /* We need to make a new secondary reload for this register class. */
542 rld[s_reload].in = rld[s_reload].out = 0;
543 rld[s_reload].class = class;
544
545 rld[s_reload].inmode = in_p ? mode : VOIDmode;
546 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
547 rld[s_reload].reg_rtx = 0;
548 rld[s_reload].optional = optional;
549 rld[s_reload].inc = 0;
550 /* Maybe we could combine these, but it seems too tricky. */
551 rld[s_reload].nocombine = 1;
552 rld[s_reload].in_reg = 0;
553 rld[s_reload].out_reg = 0;
554 rld[s_reload].opnum = opnum;
555 rld[s_reload].when_needed = secondary_type;
556 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
557 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
558 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
559 rld[s_reload].secondary_out_icode
560 = ! in_p ? t_icode : CODE_FOR_nothing;
561 rld[s_reload].secondary_p = 1;
562
563 n_reloads++;
564
565 #ifdef SECONDARY_MEMORY_NEEDED
566 if (! in_p && icode == CODE_FOR_nothing
567 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
568 get_secondary_mem (x, mode, opnum, type);
569 #endif
570 }
571
572 *picode = icode;
573 return s_reload;
574 }
575 #endif /* HAVE_SECONDARY_RELOADS */
576 \f
577 #ifdef SECONDARY_MEMORY_NEEDED
578
579 /* Return a memory location that will be used to copy X in mode MODE.
580 If we haven't already made a location for this mode in this insn,
581 call find_reloads_address on the location being returned. */
582
583 rtx
584 get_secondary_mem (x, mode, opnum, type)
585 rtx x ATTRIBUTE_UNUSED;
586 enum machine_mode mode;
587 int opnum;
588 enum reload_type type;
589 {
590 rtx loc;
591 int mem_valid;
592
593 /* By default, if MODE is narrower than a word, widen it to a word.
594 This is required because most machines that require these memory
595 locations do not support short load and stores from all registers
596 (e.g., FP registers). */
597
598 #ifdef SECONDARY_MEMORY_NEEDED_MODE
599 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
600 #else
601 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
602 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
603 #endif
604
605 /* If we already have made a MEM for this operand in MODE, return it. */
606 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
607 return secondary_memlocs_elim[(int) mode][opnum];
608
609 /* If this is the first time we've tried to get a MEM for this mode,
610 allocate a new one. `something_changed' in reload will get set
611 by noticing that the frame size has changed. */
612
613 if (secondary_memlocs[(int) mode] == 0)
614 {
615 #ifdef SECONDARY_MEMORY_NEEDED_RTX
616 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
617 #else
618 secondary_memlocs[(int) mode]
619 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
620 #endif
621 }
622
623 /* Get a version of the address doing any eliminations needed. If that
624 didn't give us a new MEM, make a new one if it isn't valid. */
625
626 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
627 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
628
629 if (! mem_valid && loc == secondary_memlocs[(int) mode])
630 loc = copy_rtx (loc);
631
632 /* The only time the call below will do anything is if the stack
633 offset is too large. In that case IND_LEVELS doesn't matter, so we
634 can just pass a zero. Adjust the type to be the address of the
635 corresponding object. If the address was valid, save the eliminated
636 address. If it wasn't valid, we need to make a reload each time, so
637 don't save it. */
638
639 if (! mem_valid)
640 {
641 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
642 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
643 : RELOAD_OTHER);
644
645 find_reloads_address (mode, (rtx*)0, XEXP (loc, 0), &XEXP (loc, 0),
646 opnum, type, 0, 0);
647 }
648
649 secondary_memlocs_elim[(int) mode][opnum] = loc;
650 return loc;
651 }
652
653 /* Clear any secondary memory locations we've made. */
654
655 void
656 clear_secondary_mem ()
657 {
658 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
659 }
660 #endif /* SECONDARY_MEMORY_NEEDED */
661 \f
662 /* Find the largest class for which every register number plus N is valid in
663 M1 (if in range). Abort if no such class exists. */
664
665 static enum reg_class
666 find_valid_class (m1, n)
667 enum machine_mode m1 ATTRIBUTE_UNUSED;
668 int n;
669 {
670 int class;
671 int regno;
672 enum reg_class best_class = NO_REGS;
673 unsigned int best_size = 0;
674
675 for (class = 1; class < N_REG_CLASSES; class++)
676 {
677 int bad = 0;
678 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
679 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
680 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
681 && ! HARD_REGNO_MODE_OK (regno + n, m1))
682 bad = 1;
683
684 if (! bad && reg_class_size[class] > best_size)
685 best_class = class, best_size = reg_class_size[class];
686 }
687
688 if (best_size == 0)
689 abort ();
690
691 return best_class;
692 }
693 \f
694 /* Return the number of a previously made reload that can be combined with
695 a new one, or n_reloads if none of the existing reloads can be used.
696 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
697 push_reload, they determine the kind of the new reload that we try to
698 combine. P_IN points to the corresponding value of IN, which can be
699 modified by this function.
700 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
701
702 static int
703 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
704 rtx *p_in, out;
705 enum reg_class class;
706 enum reload_type type;
707 int opnum, dont_share;
708 {
709 rtx in = *p_in;
710 int i;
711 /* We can't merge two reloads if the output of either one is
712 earlyclobbered. */
713
714 if (earlyclobber_operand_p (out))
715 return n_reloads;
716
717 /* We can use an existing reload if the class is right
718 and at least one of IN and OUT is a match
719 and the other is at worst neutral.
720 (A zero compared against anything is neutral.)
721
722 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
723 for the same thing since that can cause us to need more reload registers
724 than we otherwise would. */
725
726 for (i = 0; i < n_reloads; i++)
727 if ((reg_class_subset_p (class, rld[i].class)
728 || reg_class_subset_p (rld[i].class, class))
729 /* If the existing reload has a register, it must fit our class. */
730 && (rld[i].reg_rtx == 0
731 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
732 true_regnum (rld[i].reg_rtx)))
733 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
734 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
735 || (out != 0 && MATCHES (rld[i].out, out)
736 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
737 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
738 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
739 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
740 return i;
741
742 /* Reloading a plain reg for input can match a reload to postincrement
743 that reg, since the postincrement's value is the right value.
744 Likewise, it can match a preincrement reload, since we regard
745 the preincrementation as happening before any ref in this insn
746 to that register. */
747 for (i = 0; i < n_reloads; i++)
748 if ((reg_class_subset_p (class, rld[i].class)
749 || reg_class_subset_p (rld[i].class, class))
750 /* If the existing reload has a register, it must fit our
751 class. */
752 && (rld[i].reg_rtx == 0
753 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
754 true_regnum (rld[i].reg_rtx)))
755 && out == 0 && rld[i].out == 0 && rld[i].in != 0
756 && ((GET_CODE (in) == REG
757 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
758 && MATCHES (XEXP (rld[i].in, 0), in))
759 || (GET_CODE (rld[i].in) == REG
760 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
761 && MATCHES (XEXP (in, 0), rld[i].in)))
762 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
763 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
764 && MERGABLE_RELOADS (type, rld[i].when_needed,
765 opnum, rld[i].opnum))
766 {
767 /* Make sure reload_in ultimately has the increment,
768 not the plain register. */
769 if (GET_CODE (in) == REG)
770 *p_in = rld[i].in;
771 return i;
772 }
773 return n_reloads;
774 }
775
776 /* Return nonzero if X is a SUBREG which will require reloading of its
777 SUBREG_REG expression. */
778
779 static int
780 reload_inner_reg_of_subreg (x, mode)
781 rtx x;
782 enum machine_mode mode;
783 {
784 rtx inner;
785
786 /* Only SUBREGs are problematical. */
787 if (GET_CODE (x) != SUBREG)
788 return 0;
789
790 inner = SUBREG_REG (x);
791
792 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
793 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
794 return 1;
795
796 /* If INNER is not a hard register, then INNER will not need to
797 be reloaded. */
798 if (GET_CODE (inner) != REG
799 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
800 return 0;
801
802 /* If INNER is not ok for MODE, then INNER will need reloading. */
803 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
804 return 1;
805
806 /* If the outer part is a word or smaller, INNER larger than a
807 word and the number of regs for INNER is not the same as the
808 number of words in INNER, then INNER will need reloading. */
809 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
810 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
811 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
812 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
813 }
814
815 /* Record one reload that needs to be performed.
816 IN is an rtx saying where the data are to be found before this instruction.
817 OUT says where they must be stored after the instruction.
818 (IN is zero for data not read, and OUT is zero for data not written.)
819 INLOC and OUTLOC point to the places in the instructions where
820 IN and OUT were found.
821 If IN and OUT are both non-zero, it means the same register must be used
822 to reload both IN and OUT.
823
824 CLASS is a register class required for the reloaded data.
825 INMODE is the machine mode that the instruction requires
826 for the reg that replaces IN and OUTMODE is likewise for OUT.
827
828 If IN is zero, then OUT's location and mode should be passed as
829 INLOC and INMODE.
830
831 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
832
833 OPTIONAL nonzero means this reload does not need to be performed:
834 it can be discarded if that is more convenient.
835
836 OPNUM and TYPE say what the purpose of this reload is.
837
838 The return value is the reload-number for this reload.
839
840 If both IN and OUT are nonzero, in some rare cases we might
841 want to make two separate reloads. (Actually we never do this now.)
842 Therefore, the reload-number for OUT is stored in
843 output_reloadnum when we return; the return value applies to IN.
844 Usually (presently always), when IN and OUT are nonzero,
845 the two reload-numbers are equal, but the caller should be careful to
846 distinguish them. */
847
848 int
849 push_reload (in, out, inloc, outloc, class,
850 inmode, outmode, strict_low, optional, opnum, type)
851 rtx in, out;
852 rtx *inloc, *outloc;
853 enum reg_class class;
854 enum machine_mode inmode, outmode;
855 int strict_low;
856 int optional;
857 int opnum;
858 enum reload_type type;
859 {
860 register int i;
861 int dont_share = 0;
862 int dont_remove_subreg = 0;
863 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
864 int secondary_in_reload = -1, secondary_out_reload = -1;
865 enum insn_code secondary_in_icode = CODE_FOR_nothing;
866 enum insn_code secondary_out_icode = CODE_FOR_nothing;
867
868 /* INMODE and/or OUTMODE could be VOIDmode if no mode
869 has been specified for the operand. In that case,
870 use the operand's mode as the mode to reload. */
871 if (inmode == VOIDmode && in != 0)
872 inmode = GET_MODE (in);
873 if (outmode == VOIDmode && out != 0)
874 outmode = GET_MODE (out);
875
876 /* If IN is a pseudo register everywhere-equivalent to a constant, and
877 it is not in a hard register, reload straight from the constant,
878 since we want to get rid of such pseudo registers.
879 Often this is done earlier, but not always in find_reloads_address. */
880 if (in != 0 && GET_CODE (in) == REG)
881 {
882 register int regno = REGNO (in);
883
884 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
885 && reg_equiv_constant[regno] != 0)
886 in = reg_equiv_constant[regno];
887 }
888
889 /* Likewise for OUT. Of course, OUT will never be equivalent to
890 an actual constant, but it might be equivalent to a memory location
891 (in the case of a parameter). */
892 if (out != 0 && GET_CODE (out) == REG)
893 {
894 register int regno = REGNO (out);
895
896 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
897 && reg_equiv_constant[regno] != 0)
898 out = reg_equiv_constant[regno];
899 }
900
901 /* If we have a read-write operand with an address side-effect,
902 change either IN or OUT so the side-effect happens only once. */
903 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
904 switch (GET_CODE (XEXP (in, 0)))
905 {
906 case POST_INC: case POST_DEC: case POST_MODIFY:
907 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
908 break;
909
910 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
911 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
912 break;
913
914 default:
915 break;
916 }
917
918 /* If we are reloading a (SUBREG constant ...), really reload just the
919 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
920 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
921 a pseudo and hence will become a MEM) with M1 wider than M2 and the
922 register is a pseudo, also reload the inside expression.
923 For machines that extend byte loads, do this for any SUBREG of a pseudo
924 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
925 M2 is an integral mode that gets extended when loaded.
926 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
927 either M1 is not valid for R or M2 is wider than a word but we only
928 need one word to store an M2-sized quantity in R.
929 (However, if OUT is nonzero, we need to reload the reg *and*
930 the subreg, so do nothing here, and let following statement handle it.)
931
932 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
933 we can't handle it here because CONST_INT does not indicate a mode.
934
935 Similarly, we must reload the inside expression if we have a
936 STRICT_LOW_PART (presumably, in == out in the cas).
937
938 Also reload the inner expression if it does not require a secondary
939 reload but the SUBREG does.
940
941 Finally, reload the inner expression if it is a register that is in
942 the class whose registers cannot be referenced in a different size
943 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
944 cannot reload just the inside since we might end up with the wrong
945 register class. But if it is inside a STRICT_LOW_PART, we have
946 no choice, so we hope we do get the right register class there. */
947
948 if (in != 0 && GET_CODE (in) == SUBREG
949 && (subreg_lowpart_p (in) || strict_low)
950 #ifdef CLASS_CANNOT_CHANGE_MODE
951 && (class != CLASS_CANNOT_CHANGE_MODE
952 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
953 #endif
954 && (CONSTANT_P (SUBREG_REG (in))
955 || GET_CODE (SUBREG_REG (in)) == PLUS
956 || strict_low
957 || (((GET_CODE (SUBREG_REG (in)) == REG
958 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
959 || GET_CODE (SUBREG_REG (in)) == MEM)
960 && ((GET_MODE_SIZE (inmode)
961 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
962 #ifdef LOAD_EXTEND_OP
963 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
964 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
965 <= UNITS_PER_WORD)
966 && (GET_MODE_SIZE (inmode)
967 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
968 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
969 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
970 #endif
971 #ifdef WORD_REGISTER_OPERATIONS
972 || ((GET_MODE_SIZE (inmode)
973 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
974 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
975 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
976 / UNITS_PER_WORD)))
977 #endif
978 ))
979 || (GET_CODE (SUBREG_REG (in)) == REG
980 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
981 /* The case where out is nonzero
982 is handled differently in the following statement. */
983 && (out == 0 || subreg_lowpart_p (in))
984 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
985 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
986 > UNITS_PER_WORD)
987 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
988 / UNITS_PER_WORD)
989 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
990 GET_MODE (SUBREG_REG (in)))))
991 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
992 #ifdef SECONDARY_INPUT_RELOAD_CLASS
993 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
994 && (SECONDARY_INPUT_RELOAD_CLASS (class,
995 GET_MODE (SUBREG_REG (in)),
996 SUBREG_REG (in))
997 == NO_REGS))
998 #endif
999 #ifdef CLASS_CANNOT_CHANGE_MODE
1000 || (GET_CODE (SUBREG_REG (in)) == REG
1001 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1002 && (TEST_HARD_REG_BIT
1003 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1004 REGNO (SUBREG_REG (in))))
1005 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1006 inmode))
1007 #endif
1008 ))
1009 {
1010 in_subreg_loc = inloc;
1011 inloc = &SUBREG_REG (in);
1012 in = *inloc;
1013 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1014 if (GET_CODE (in) == MEM)
1015 /* This is supposed to happen only for paradoxical subregs made by
1016 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1017 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1018 abort ();
1019 #endif
1020 inmode = GET_MODE (in);
1021 }
1022
1023 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1024 either M1 is not valid for R or M2 is wider than a word but we only
1025 need one word to store an M2-sized quantity in R.
1026
1027 However, we must reload the inner reg *as well as* the subreg in
1028 that case. */
1029
1030 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1031 code above. This can happen if SUBREG_BYTE != 0. */
1032
1033 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1034 {
1035 enum reg_class in_class = class;
1036
1037 if (GET_CODE (SUBREG_REG (in)) == REG)
1038 in_class
1039 = find_valid_class (inmode,
1040 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1041 GET_MODE (SUBREG_REG (in)),
1042 SUBREG_BYTE (in),
1043 GET_MODE (in)));
1044
1045 /* This relies on the fact that emit_reload_insns outputs the
1046 instructions for input reloads of type RELOAD_OTHER in the same
1047 order as the reloads. Thus if the outer reload is also of type
1048 RELOAD_OTHER, we are guaranteed that this inner reload will be
1049 output before the outer reload. */
1050 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *)0,
1051 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1052 dont_remove_subreg = 1;
1053 }
1054
1055 /* Similarly for paradoxical and problematical SUBREGs on the output.
1056 Note that there is no reason we need worry about the previous value
1057 of SUBREG_REG (out); even if wider than out,
1058 storing in a subreg is entitled to clobber it all
1059 (except in the case of STRICT_LOW_PART,
1060 and in that case the constraint should label it input-output.) */
1061 if (out != 0 && GET_CODE (out) == SUBREG
1062 && (subreg_lowpart_p (out) || strict_low)
1063 #ifdef CLASS_CANNOT_CHANGE_MODE
1064 && (class != CLASS_CANNOT_CHANGE_MODE
1065 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1066 outmode))
1067 #endif
1068 && (CONSTANT_P (SUBREG_REG (out))
1069 || strict_low
1070 || (((GET_CODE (SUBREG_REG (out)) == REG
1071 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1072 || GET_CODE (SUBREG_REG (out)) == MEM)
1073 && ((GET_MODE_SIZE (outmode)
1074 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1075 #ifdef WORD_REGISTER_OPERATIONS
1076 || ((GET_MODE_SIZE (outmode)
1077 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1078 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1079 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1080 / UNITS_PER_WORD)))
1081 #endif
1082 ))
1083 || (GET_CODE (SUBREG_REG (out)) == REG
1084 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1085 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1086 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1087 > UNITS_PER_WORD)
1088 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1089 / UNITS_PER_WORD)
1090 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1091 GET_MODE (SUBREG_REG (out)))))
1092 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1093 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1094 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1095 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1096 GET_MODE (SUBREG_REG (out)),
1097 SUBREG_REG (out))
1098 == NO_REGS))
1099 #endif
1100 #ifdef CLASS_CANNOT_CHANGE_MODE
1101 || (GET_CODE (SUBREG_REG (out)) == REG
1102 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1103 && (TEST_HARD_REG_BIT
1104 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1105 REGNO (SUBREG_REG (out))))
1106 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1107 outmode))
1108 #endif
1109 ))
1110 {
1111 out_subreg_loc = outloc;
1112 outloc = &SUBREG_REG (out);
1113 out = *outloc;
1114 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1115 if (GET_CODE (out) == MEM
1116 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1117 abort ();
1118 #endif
1119 outmode = GET_MODE (out);
1120 }
1121
1122 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1123 either M1 is not valid for R or M2 is wider than a word but we only
1124 need one word to store an M2-sized quantity in R.
1125
1126 However, we must reload the inner reg *as well as* the subreg in
1127 that case. In this case, the inner reg is an in-out reload. */
1128
1129 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1130 {
1131 /* This relies on the fact that emit_reload_insns outputs the
1132 instructions for output reloads of type RELOAD_OTHER in reverse
1133 order of the reloads. Thus if the outer reload is also of type
1134 RELOAD_OTHER, we are guaranteed that this inner reload will be
1135 output after the outer reload. */
1136 dont_remove_subreg = 1;
1137 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1138 &SUBREG_REG (out),
1139 find_valid_class (outmode,
1140 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1141 GET_MODE (SUBREG_REG (out)),
1142 SUBREG_BYTE (out),
1143 GET_MODE (out))),
1144 VOIDmode, VOIDmode, 0, 0,
1145 opnum, RELOAD_OTHER);
1146 }
1147
1148 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1149 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1150 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1151 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1152 dont_share = 1;
1153
1154 /* If IN is a SUBREG of a hard register, make a new REG. This
1155 simplifies some of the cases below. */
1156
1157 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1158 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1159 && ! dont_remove_subreg)
1160 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1161
1162 /* Similarly for OUT. */
1163 if (out != 0 && GET_CODE (out) == SUBREG
1164 && GET_CODE (SUBREG_REG (out)) == REG
1165 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1166 && ! dont_remove_subreg)
1167 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1168
1169 /* Narrow down the class of register wanted if that is
1170 desirable on this machine for efficiency. */
1171 if (in != 0)
1172 class = PREFERRED_RELOAD_CLASS (in, class);
1173
1174 /* Output reloads may need analogous treatment, different in detail. */
1175 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1176 if (out != 0)
1177 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1178 #endif
1179
1180 /* Make sure we use a class that can handle the actual pseudo
1181 inside any subreg. For example, on the 386, QImode regs
1182 can appear within SImode subregs. Although GENERAL_REGS
1183 can handle SImode, QImode needs a smaller class. */
1184 #ifdef LIMIT_RELOAD_CLASS
1185 if (in_subreg_loc)
1186 class = LIMIT_RELOAD_CLASS (inmode, class);
1187 else if (in != 0 && GET_CODE (in) == SUBREG)
1188 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1189
1190 if (out_subreg_loc)
1191 class = LIMIT_RELOAD_CLASS (outmode, class);
1192 if (out != 0 && GET_CODE (out) == SUBREG)
1193 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1194 #endif
1195
1196 /* Verify that this class is at least possible for the mode that
1197 is specified. */
1198 if (this_insn_is_asm)
1199 {
1200 enum machine_mode mode;
1201 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1202 mode = inmode;
1203 else
1204 mode = outmode;
1205 if (mode == VOIDmode)
1206 {
1207 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1208 mode = word_mode;
1209 if (in != 0)
1210 inmode = word_mode;
1211 if (out != 0)
1212 outmode = word_mode;
1213 }
1214 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1215 if (HARD_REGNO_MODE_OK (i, mode)
1216 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1217 {
1218 int nregs = HARD_REGNO_NREGS (i, mode);
1219
1220 int j;
1221 for (j = 1; j < nregs; j++)
1222 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1223 break;
1224 if (j == nregs)
1225 break;
1226 }
1227 if (i == FIRST_PSEUDO_REGISTER)
1228 {
1229 error_for_asm (this_insn, "impossible register constraint in `asm'");
1230 class = ALL_REGS;
1231 }
1232 }
1233
1234 /* Optional output reloads are always OK even if we have no register class,
1235 since the function of these reloads is only to have spill_reg_store etc.
1236 set, so that the storing insn can be deleted later. */
1237 if (class == NO_REGS
1238 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1239 abort ();
1240
1241 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1242
1243 if (i == n_reloads)
1244 {
1245 /* See if we need a secondary reload register to move between CLASS
1246 and IN or CLASS and OUT. Get the icode and push any required reloads
1247 needed for each of them if so. */
1248
1249 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1250 if (in != 0)
1251 secondary_in_reload
1252 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1253 &secondary_in_icode);
1254 #endif
1255
1256 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1257 if (out != 0 && GET_CODE (out) != SCRATCH)
1258 secondary_out_reload
1259 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1260 type, &secondary_out_icode);
1261 #endif
1262
1263 /* We found no existing reload suitable for re-use.
1264 So add an additional reload. */
1265
1266 #ifdef SECONDARY_MEMORY_NEEDED
1267 /* If a memory location is needed for the copy, make one. */
1268 if (in != 0 && GET_CODE (in) == REG
1269 && REGNO (in) < FIRST_PSEUDO_REGISTER
1270 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1271 class, inmode))
1272 get_secondary_mem (in, inmode, opnum, type);
1273 #endif
1274
1275 i = n_reloads;
1276 rld[i].in = in;
1277 rld[i].out = out;
1278 rld[i].class = class;
1279 rld[i].inmode = inmode;
1280 rld[i].outmode = outmode;
1281 rld[i].reg_rtx = 0;
1282 rld[i].optional = optional;
1283 rld[i].inc = 0;
1284 rld[i].nocombine = 0;
1285 rld[i].in_reg = inloc ? *inloc : 0;
1286 rld[i].out_reg = outloc ? *outloc : 0;
1287 rld[i].opnum = opnum;
1288 rld[i].when_needed = type;
1289 rld[i].secondary_in_reload = secondary_in_reload;
1290 rld[i].secondary_out_reload = secondary_out_reload;
1291 rld[i].secondary_in_icode = secondary_in_icode;
1292 rld[i].secondary_out_icode = secondary_out_icode;
1293 rld[i].secondary_p = 0;
1294
1295 n_reloads++;
1296
1297 #ifdef SECONDARY_MEMORY_NEEDED
1298 if (out != 0 && GET_CODE (out) == REG
1299 && REGNO (out) < FIRST_PSEUDO_REGISTER
1300 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1301 outmode))
1302 get_secondary_mem (out, outmode, opnum, type);
1303 #endif
1304 }
1305 else
1306 {
1307 /* We are reusing an existing reload,
1308 but we may have additional information for it.
1309 For example, we may now have both IN and OUT
1310 while the old one may have just one of them. */
1311
1312 /* The modes can be different. If they are, we want to reload in
1313 the larger mode, so that the value is valid for both modes. */
1314 if (inmode != VOIDmode
1315 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1316 rld[i].inmode = inmode;
1317 if (outmode != VOIDmode
1318 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1319 rld[i].outmode = outmode;
1320 if (in != 0)
1321 {
1322 rtx in_reg = inloc ? *inloc : 0;
1323 /* If we merge reloads for two distinct rtl expressions that
1324 are identical in content, there might be duplicate address
1325 reloads. Remove the extra set now, so that if we later find
1326 that we can inherit this reload, we can get rid of the
1327 address reloads altogether.
1328
1329 Do not do this if both reloads are optional since the result
1330 would be an optional reload which could potentially leave
1331 unresolved address replacements.
1332
1333 It is not sufficient to call transfer_replacements since
1334 choose_reload_regs will remove the replacements for address
1335 reloads of inherited reloads which results in the same
1336 problem. */
1337 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1338 && ! (rld[i].optional && optional))
1339 {
1340 /* We must keep the address reload with the lower operand
1341 number alive. */
1342 if (opnum > rld[i].opnum)
1343 {
1344 remove_address_replacements (in);
1345 in = rld[i].in;
1346 in_reg = rld[i].in_reg;
1347 }
1348 else
1349 remove_address_replacements (rld[i].in);
1350 }
1351 rld[i].in = in;
1352 rld[i].in_reg = in_reg;
1353 }
1354 if (out != 0)
1355 {
1356 rld[i].out = out;
1357 rld[i].out_reg = outloc ? *outloc : 0;
1358 }
1359 if (reg_class_subset_p (class, rld[i].class))
1360 rld[i].class = class;
1361 rld[i].optional &= optional;
1362 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1363 opnum, rld[i].opnum))
1364 rld[i].when_needed = RELOAD_OTHER;
1365 rld[i].opnum = MIN (rld[i].opnum, opnum);
1366 }
1367
1368 /* If the ostensible rtx being reloaded differs from the rtx found
1369 in the location to substitute, this reload is not safe to combine
1370 because we cannot reliably tell whether it appears in the insn. */
1371
1372 if (in != 0 && in != *inloc)
1373 rld[i].nocombine = 1;
1374
1375 #if 0
1376 /* This was replaced by changes in find_reloads_address_1 and the new
1377 function inc_for_reload, which go with a new meaning of reload_inc. */
1378
1379 /* If this is an IN/OUT reload in an insn that sets the CC,
1380 it must be for an autoincrement. It doesn't work to store
1381 the incremented value after the insn because that would clobber the CC.
1382 So we must do the increment of the value reloaded from,
1383 increment it, store it back, then decrement again. */
1384 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1385 {
1386 out = 0;
1387 rld[i].out = 0;
1388 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1389 /* If we did not find a nonzero amount-to-increment-by,
1390 that contradicts the belief that IN is being incremented
1391 in an address in this insn. */
1392 if (rld[i].inc == 0)
1393 abort ();
1394 }
1395 #endif
1396
1397 /* If we will replace IN and OUT with the reload-reg,
1398 record where they are located so that substitution need
1399 not do a tree walk. */
1400
1401 if (replace_reloads)
1402 {
1403 if (inloc != 0)
1404 {
1405 register struct replacement *r = &replacements[n_replacements++];
1406 r->what = i;
1407 r->subreg_loc = in_subreg_loc;
1408 r->where = inloc;
1409 r->mode = inmode;
1410 }
1411 if (outloc != 0 && outloc != inloc)
1412 {
1413 register struct replacement *r = &replacements[n_replacements++];
1414 r->what = i;
1415 r->where = outloc;
1416 r->subreg_loc = out_subreg_loc;
1417 r->mode = outmode;
1418 }
1419 }
1420
1421 /* If this reload is just being introduced and it has both
1422 an incoming quantity and an outgoing quantity that are
1423 supposed to be made to match, see if either one of the two
1424 can serve as the place to reload into.
1425
1426 If one of them is acceptable, set rld[i].reg_rtx
1427 to that one. */
1428
1429 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1430 {
1431 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1432 inmode, outmode,
1433 rld[i].class, i,
1434 earlyclobber_operand_p (out));
1435
1436 /* If the outgoing register already contains the same value
1437 as the incoming one, we can dispense with loading it.
1438 The easiest way to tell the caller that is to give a phony
1439 value for the incoming operand (same as outgoing one). */
1440 if (rld[i].reg_rtx == out
1441 && (GET_CODE (in) == REG || CONSTANT_P (in))
1442 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1443 static_reload_reg_p, i, inmode))
1444 rld[i].in = out;
1445 }
1446
1447 /* If this is an input reload and the operand contains a register that
1448 dies in this insn and is used nowhere else, see if it is the right class
1449 to be used for this reload. Use it if so. (This occurs most commonly
1450 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1451 this if it is also an output reload that mentions the register unless
1452 the output is a SUBREG that clobbers an entire register.
1453
1454 Note that the operand might be one of the spill regs, if it is a
1455 pseudo reg and we are in a block where spilling has not taken place.
1456 But if there is no spilling in this block, that is OK.
1457 An explicitly used hard reg cannot be a spill reg. */
1458
1459 if (rld[i].reg_rtx == 0 && in != 0)
1460 {
1461 rtx note;
1462 int regno;
1463 enum machine_mode rel_mode = inmode;
1464
1465 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1466 rel_mode = outmode;
1467
1468 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1469 if (REG_NOTE_KIND (note) == REG_DEAD
1470 && GET_CODE (XEXP (note, 0)) == REG
1471 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1472 && reg_mentioned_p (XEXP (note, 0), in)
1473 && ! refers_to_regno_for_reload_p (regno,
1474 (regno
1475 + HARD_REGNO_NREGS (regno,
1476 rel_mode)),
1477 PATTERN (this_insn), inloc)
1478 /* If this is also an output reload, IN cannot be used as
1479 the reload register if it is set in this insn unless IN
1480 is also OUT. */
1481 && (out == 0 || in == out
1482 || ! hard_reg_set_here_p (regno,
1483 (regno
1484 + HARD_REGNO_NREGS (regno,
1485 rel_mode)),
1486 PATTERN (this_insn)))
1487 /* ??? Why is this code so different from the previous?
1488 Is there any simple coherent way to describe the two together?
1489 What's going on here. */
1490 && (in != out
1491 || (GET_CODE (in) == SUBREG
1492 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1493 / UNITS_PER_WORD)
1494 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1495 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1496 /* Make sure the operand fits in the reg that dies. */
1497 && (GET_MODE_SIZE (rel_mode)
1498 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1499 && HARD_REGNO_MODE_OK (regno, inmode)
1500 && HARD_REGNO_MODE_OK (regno, outmode))
1501 {
1502 unsigned int offs;
1503 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1504 HARD_REGNO_NREGS (regno, outmode));
1505
1506 for (offs = 0; offs < nregs; offs++)
1507 if (fixed_regs[regno + offs]
1508 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1509 regno + offs))
1510 break;
1511
1512 if (offs == nregs)
1513 {
1514 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1515 break;
1516 }
1517 }
1518 }
1519
1520 if (out)
1521 output_reloadnum = i;
1522
1523 return i;
1524 }
1525
1526 /* Record an additional place we must replace a value
1527 for which we have already recorded a reload.
1528 RELOADNUM is the value returned by push_reload
1529 when the reload was recorded.
1530 This is used in insn patterns that use match_dup. */
1531
1532 static void
1533 push_replacement (loc, reloadnum, mode)
1534 rtx *loc;
1535 int reloadnum;
1536 enum machine_mode mode;
1537 {
1538 if (replace_reloads)
1539 {
1540 register struct replacement *r = &replacements[n_replacements++];
1541 r->what = reloadnum;
1542 r->where = loc;
1543 r->subreg_loc = 0;
1544 r->mode = mode;
1545 }
1546 }
1547 \f
1548 /* Transfer all replacements that used to be in reload FROM to be in
1549 reload TO. */
1550
1551 void
1552 transfer_replacements (to, from)
1553 int to, from;
1554 {
1555 int i;
1556
1557 for (i = 0; i < n_replacements; i++)
1558 if (replacements[i].what == from)
1559 replacements[i].what = to;
1560 }
1561 \f
1562 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1563 or a subpart of it. If we have any replacements registered for IN_RTX,
1564 cancel the reloads that were supposed to load them.
1565 Return non-zero if we canceled any reloads. */
1566 int
1567 remove_address_replacements (in_rtx)
1568 rtx in_rtx;
1569 {
1570 int i, j;
1571 char reload_flags[MAX_RELOADS];
1572 int something_changed = 0;
1573
1574 memset (reload_flags, 0, sizeof reload_flags);
1575 for (i = 0, j = 0; i < n_replacements; i++)
1576 {
1577 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1578 reload_flags[replacements[i].what] |= 1;
1579 else
1580 {
1581 replacements[j++] = replacements[i];
1582 reload_flags[replacements[i].what] |= 2;
1583 }
1584 }
1585 /* Note that the following store must be done before the recursive calls. */
1586 n_replacements = j;
1587
1588 for (i = n_reloads - 1; i >= 0; i--)
1589 {
1590 if (reload_flags[i] == 1)
1591 {
1592 deallocate_reload_reg (i);
1593 remove_address_replacements (rld[i].in);
1594 rld[i].in = 0;
1595 something_changed = 1;
1596 }
1597 }
1598 return something_changed;
1599 }
1600 \f
1601 /* If there is only one output reload, and it is not for an earlyclobber
1602 operand, try to combine it with a (logically unrelated) input reload
1603 to reduce the number of reload registers needed.
1604
1605 This is safe if the input reload does not appear in
1606 the value being output-reloaded, because this implies
1607 it is not needed any more once the original insn completes.
1608
1609 If that doesn't work, see we can use any of the registers that
1610 die in this insn as a reload register. We can if it is of the right
1611 class and does not appear in the value being output-reloaded. */
1612
1613 static void
1614 combine_reloads ()
1615 {
1616 int i;
1617 int output_reload = -1;
1618 int secondary_out = -1;
1619 rtx note;
1620
1621 /* Find the output reload; return unless there is exactly one
1622 and that one is mandatory. */
1623
1624 for (i = 0; i < n_reloads; i++)
1625 if (rld[i].out != 0)
1626 {
1627 if (output_reload >= 0)
1628 return;
1629 output_reload = i;
1630 }
1631
1632 if (output_reload < 0 || rld[output_reload].optional)
1633 return;
1634
1635 /* An input-output reload isn't combinable. */
1636
1637 if (rld[output_reload].in != 0)
1638 return;
1639
1640 /* If this reload is for an earlyclobber operand, we can't do anything. */
1641 if (earlyclobber_operand_p (rld[output_reload].out))
1642 return;
1643
1644 /* Check each input reload; can we combine it? */
1645
1646 for (i = 0; i < n_reloads; i++)
1647 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1648 /* Life span of this reload must not extend past main insn. */
1649 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1650 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1651 && rld[i].when_needed != RELOAD_OTHER
1652 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1653 == CLASS_MAX_NREGS (rld[output_reload].class,
1654 rld[output_reload].outmode))
1655 && rld[i].inc == 0
1656 && rld[i].reg_rtx == 0
1657 #ifdef SECONDARY_MEMORY_NEEDED
1658 /* Don't combine two reloads with different secondary
1659 memory locations. */
1660 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1661 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1662 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1663 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1664 #endif
1665 && (SMALL_REGISTER_CLASSES
1666 ? (rld[i].class == rld[output_reload].class)
1667 : (reg_class_subset_p (rld[i].class,
1668 rld[output_reload].class)
1669 || reg_class_subset_p (rld[output_reload].class,
1670 rld[i].class)))
1671 && (MATCHES (rld[i].in, rld[output_reload].out)
1672 /* Args reversed because the first arg seems to be
1673 the one that we imagine being modified
1674 while the second is the one that might be affected. */
1675 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1676 rld[i].in)
1677 /* However, if the input is a register that appears inside
1678 the output, then we also can't share.
1679 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1680 If the same reload reg is used for both reg 69 and the
1681 result to be stored in memory, then that result
1682 will clobber the address of the memory ref. */
1683 && ! (GET_CODE (rld[i].in) == REG
1684 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1685 rld[output_reload].out))))
1686 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1687 && (reg_class_size[(int) rld[i].class]
1688 || SMALL_REGISTER_CLASSES)
1689 /* We will allow making things slightly worse by combining an
1690 input and an output, but no worse than that. */
1691 && (rld[i].when_needed == RELOAD_FOR_INPUT
1692 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1693 {
1694 int j;
1695
1696 /* We have found a reload to combine with! */
1697 rld[i].out = rld[output_reload].out;
1698 rld[i].out_reg = rld[output_reload].out_reg;
1699 rld[i].outmode = rld[output_reload].outmode;
1700 /* Mark the old output reload as inoperative. */
1701 rld[output_reload].out = 0;
1702 /* The combined reload is needed for the entire insn. */
1703 rld[i].when_needed = RELOAD_OTHER;
1704 /* If the output reload had a secondary reload, copy it. */
1705 if (rld[output_reload].secondary_out_reload != -1)
1706 {
1707 rld[i].secondary_out_reload
1708 = rld[output_reload].secondary_out_reload;
1709 rld[i].secondary_out_icode
1710 = rld[output_reload].secondary_out_icode;
1711 }
1712
1713 #ifdef SECONDARY_MEMORY_NEEDED
1714 /* Copy any secondary MEM. */
1715 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1716 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1717 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1718 #endif
1719 /* If required, minimize the register class. */
1720 if (reg_class_subset_p (rld[output_reload].class,
1721 rld[i].class))
1722 rld[i].class = rld[output_reload].class;
1723
1724 /* Transfer all replacements from the old reload to the combined. */
1725 for (j = 0; j < n_replacements; j++)
1726 if (replacements[j].what == output_reload)
1727 replacements[j].what = i;
1728
1729 return;
1730 }
1731
1732 /* If this insn has only one operand that is modified or written (assumed
1733 to be the first), it must be the one corresponding to this reload. It
1734 is safe to use anything that dies in this insn for that output provided
1735 that it does not occur in the output (we already know it isn't an
1736 earlyclobber. If this is an asm insn, give up. */
1737
1738 if (INSN_CODE (this_insn) == -1)
1739 return;
1740
1741 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1742 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1743 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1744 return;
1745
1746 /* See if some hard register that dies in this insn and is not used in
1747 the output is the right class. Only works if the register we pick
1748 up can fully hold our output reload. */
1749 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1750 if (REG_NOTE_KIND (note) == REG_DEAD
1751 && GET_CODE (XEXP (note, 0)) == REG
1752 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1753 rld[output_reload].out)
1754 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1755 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1756 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1757 REGNO (XEXP (note, 0)))
1758 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1759 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1760 /* Ensure that a secondary or tertiary reload for this output
1761 won't want this register. */
1762 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1763 || (! (TEST_HARD_REG_BIT
1764 (reg_class_contents[(int) rld[secondary_out].class],
1765 REGNO (XEXP (note, 0))))
1766 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1767 || ! (TEST_HARD_REG_BIT
1768 (reg_class_contents[(int) rld[secondary_out].class],
1769 REGNO (XEXP (note, 0)))))))
1770 && ! fixed_regs[REGNO (XEXP (note, 0))])
1771 {
1772 rld[output_reload].reg_rtx
1773 = gen_rtx_REG (rld[output_reload].outmode,
1774 REGNO (XEXP (note, 0)));
1775 return;
1776 }
1777 }
1778 \f
1779 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1780 See if one of IN and OUT is a register that may be used;
1781 this is desirable since a spill-register won't be needed.
1782 If so, return the register rtx that proves acceptable.
1783
1784 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1785 CLASS is the register class required for the reload.
1786
1787 If FOR_REAL is >= 0, it is the number of the reload,
1788 and in some cases when it can be discovered that OUT doesn't need
1789 to be computed, clear out rld[FOR_REAL].out.
1790
1791 If FOR_REAL is -1, this should not be done, because this call
1792 is just to see if a register can be found, not to find and install it.
1793
1794 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1795 puts an additional constraint on being able to use IN for OUT since
1796 IN must not appear elsewhere in the insn (it is assumed that IN itself
1797 is safe from the earlyclobber). */
1798
1799 static rtx
1800 find_dummy_reload (real_in, real_out, inloc, outloc,
1801 inmode, outmode, class, for_real, earlyclobber)
1802 rtx real_in, real_out;
1803 rtx *inloc, *outloc;
1804 enum machine_mode inmode, outmode;
1805 enum reg_class class;
1806 int for_real;
1807 int earlyclobber;
1808 {
1809 rtx in = real_in;
1810 rtx out = real_out;
1811 int in_offset = 0;
1812 int out_offset = 0;
1813 rtx value = 0;
1814
1815 /* If operands exceed a word, we can't use either of them
1816 unless they have the same size. */
1817 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1818 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1819 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1820 return 0;
1821
1822 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1823 respectively refers to a hard register. */
1824
1825 /* Find the inside of any subregs. */
1826 while (GET_CODE (out) == SUBREG)
1827 {
1828 if (GET_CODE (SUBREG_REG (out)) == REG
1829 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1830 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1831 GET_MODE (SUBREG_REG (out)),
1832 SUBREG_BYTE (out),
1833 GET_MODE (out));
1834 out = SUBREG_REG (out);
1835 }
1836 while (GET_CODE (in) == SUBREG)
1837 {
1838 if (GET_CODE (SUBREG_REG (in)) == REG
1839 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1840 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1841 GET_MODE (SUBREG_REG (in)),
1842 SUBREG_BYTE (in),
1843 GET_MODE (in));
1844 in = SUBREG_REG (in);
1845 }
1846
1847 /* Narrow down the reg class, the same way push_reload will;
1848 otherwise we might find a dummy now, but push_reload won't. */
1849 class = PREFERRED_RELOAD_CLASS (in, class);
1850
1851 /* See if OUT will do. */
1852 if (GET_CODE (out) == REG
1853 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1854 {
1855 unsigned int regno = REGNO (out) + out_offset;
1856 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1857 rtx saved_rtx;
1858
1859 /* When we consider whether the insn uses OUT,
1860 ignore references within IN. They don't prevent us
1861 from copying IN into OUT, because those refs would
1862 move into the insn that reloads IN.
1863
1864 However, we only ignore IN in its role as this reload.
1865 If the insn uses IN elsewhere and it contains OUT,
1866 that counts. We can't be sure it's the "same" operand
1867 so it might not go through this reload. */
1868 saved_rtx = *inloc;
1869 *inloc = const0_rtx;
1870
1871 if (regno < FIRST_PSEUDO_REGISTER
1872 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1873 PATTERN (this_insn), outloc))
1874 {
1875 unsigned int i;
1876
1877 for (i = 0; i < nwords; i++)
1878 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1879 regno + i))
1880 break;
1881
1882 if (i == nwords)
1883 {
1884 if (GET_CODE (real_out) == REG)
1885 value = real_out;
1886 else
1887 value = gen_rtx_REG (outmode, regno);
1888 }
1889 }
1890
1891 *inloc = saved_rtx;
1892 }
1893
1894 /* Consider using IN if OUT was not acceptable
1895 or if OUT dies in this insn (like the quotient in a divmod insn).
1896 We can't use IN unless it is dies in this insn,
1897 which means we must know accurately which hard regs are live.
1898 Also, the result can't go in IN if IN is used within OUT,
1899 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1900 if (hard_regs_live_known
1901 && GET_CODE (in) == REG
1902 && REGNO (in) < FIRST_PSEUDO_REGISTER
1903 && (value == 0
1904 || find_reg_note (this_insn, REG_UNUSED, real_out))
1905 && find_reg_note (this_insn, REG_DEAD, real_in)
1906 && !fixed_regs[REGNO (in)]
1907 && HARD_REGNO_MODE_OK (REGNO (in),
1908 /* The only case where out and real_out might
1909 have different modes is where real_out
1910 is a subreg, and in that case, out
1911 has a real mode. */
1912 (GET_MODE (out) != VOIDmode
1913 ? GET_MODE (out) : outmode)))
1914 {
1915 unsigned int regno = REGNO (in) + in_offset;
1916 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1917
1918 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*)0)
1919 && ! hard_reg_set_here_p (regno, regno + nwords,
1920 PATTERN (this_insn))
1921 && (! earlyclobber
1922 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1923 PATTERN (this_insn), inloc)))
1924 {
1925 unsigned int i;
1926
1927 for (i = 0; i < nwords; i++)
1928 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1929 regno + i))
1930 break;
1931
1932 if (i == nwords)
1933 {
1934 /* If we were going to use OUT as the reload reg
1935 and changed our mind, it means OUT is a dummy that
1936 dies here. So don't bother copying value to it. */
1937 if (for_real >= 0 && value == real_out)
1938 rld[for_real].out = 0;
1939 if (GET_CODE (real_in) == REG)
1940 value = real_in;
1941 else
1942 value = gen_rtx_REG (inmode, regno);
1943 }
1944 }
1945 }
1946
1947 return value;
1948 }
1949 \f
1950 /* This page contains subroutines used mainly for determining
1951 whether the IN or an OUT of a reload can serve as the
1952 reload register. */
1953
1954 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1955
1956 int
1957 earlyclobber_operand_p (x)
1958 rtx x;
1959 {
1960 int i;
1961
1962 for (i = 0; i < n_earlyclobbers; i++)
1963 if (reload_earlyclobbers[i] == x)
1964 return 1;
1965
1966 return 0;
1967 }
1968
1969 /* Return 1 if expression X alters a hard reg in the range
1970 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1971 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1972 X should be the body of an instruction. */
1973
1974 static int
1975 hard_reg_set_here_p (beg_regno, end_regno, x)
1976 unsigned int beg_regno, end_regno;
1977 rtx x;
1978 {
1979 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1980 {
1981 register rtx op0 = SET_DEST (x);
1982
1983 while (GET_CODE (op0) == SUBREG)
1984 op0 = SUBREG_REG (op0);
1985 if (GET_CODE (op0) == REG)
1986 {
1987 unsigned int r = REGNO (op0);
1988
1989 /* See if this reg overlaps range under consideration. */
1990 if (r < end_regno
1991 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1992 return 1;
1993 }
1994 }
1995 else if (GET_CODE (x) == PARALLEL)
1996 {
1997 register int i = XVECLEN (x, 0) - 1;
1998
1999 for (; i >= 0; i--)
2000 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2001 return 1;
2002 }
2003
2004 return 0;
2005 }
2006
2007 /* Return 1 if ADDR is a valid memory address for mode MODE,
2008 and check that each pseudo reg has the proper kind of
2009 hard reg. */
2010
2011 int
2012 strict_memory_address_p (mode, addr)
2013 enum machine_mode mode ATTRIBUTE_UNUSED;
2014 register rtx addr;
2015 {
2016 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2017 return 0;
2018
2019 win:
2020 return 1;
2021 }
2022 \f
2023 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2024 if they are the same hard reg, and has special hacks for
2025 autoincrement and autodecrement.
2026 This is specifically intended for find_reloads to use
2027 in determining whether two operands match.
2028 X is the operand whose number is the lower of the two.
2029
2030 The value is 2 if Y contains a pre-increment that matches
2031 a non-incrementing address in X. */
2032
2033 /* ??? To be completely correct, we should arrange to pass
2034 for X the output operand and for Y the input operand.
2035 For now, we assume that the output operand has the lower number
2036 because that is natural in (SET output (... input ...)). */
2037
2038 int
2039 operands_match_p (x, y)
2040 register rtx x, y;
2041 {
2042 register int i;
2043 register RTX_CODE code = GET_CODE (x);
2044 register const char *fmt;
2045 int success_2;
2046
2047 if (x == y)
2048 return 1;
2049 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2050 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2051 && GET_CODE (SUBREG_REG (y)) == REG)))
2052 {
2053 register int j;
2054
2055 if (code == SUBREG)
2056 {
2057 i = REGNO (SUBREG_REG (x));
2058 if (i >= FIRST_PSEUDO_REGISTER)
2059 goto slow;
2060 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2061 GET_MODE (SUBREG_REG (x)),
2062 SUBREG_BYTE (x),
2063 GET_MODE (x));
2064 }
2065 else
2066 i = REGNO (x);
2067
2068 if (GET_CODE (y) == SUBREG)
2069 {
2070 j = REGNO (SUBREG_REG (y));
2071 if (j >= FIRST_PSEUDO_REGISTER)
2072 goto slow;
2073 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2074 GET_MODE (SUBREG_REG (y)),
2075 SUBREG_BYTE (y),
2076 GET_MODE (y));
2077 }
2078 else
2079 j = REGNO (y);
2080
2081 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2082 multiple hard register group, so that for example (reg:DI 0) and
2083 (reg:SI 1) will be considered the same register. */
2084 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2085 && i < FIRST_PSEUDO_REGISTER)
2086 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2087 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2088 && j < FIRST_PSEUDO_REGISTER)
2089 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2090
2091 return i == j;
2092 }
2093 /* If two operands must match, because they are really a single
2094 operand of an assembler insn, then two postincrements are invalid
2095 because the assembler insn would increment only once.
2096 On the other hand, an postincrement matches ordinary indexing
2097 if the postincrement is the output operand. */
2098 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2099 return operands_match_p (XEXP (x, 0), y);
2100 /* Two preincrements are invalid
2101 because the assembler insn would increment only once.
2102 On the other hand, an preincrement matches ordinary indexing
2103 if the preincrement is the input operand.
2104 In this case, return 2, since some callers need to do special
2105 things when this happens. */
2106 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2107 || GET_CODE (y) == PRE_MODIFY)
2108 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2109
2110 slow:
2111
2112 /* Now we have disposed of all the cases
2113 in which different rtx codes can match. */
2114 if (code != GET_CODE (y))
2115 return 0;
2116 if (code == LABEL_REF)
2117 return XEXP (x, 0) == XEXP (y, 0);
2118 if (code == SYMBOL_REF)
2119 return XSTR (x, 0) == XSTR (y, 0);
2120
2121 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2122
2123 if (GET_MODE (x) != GET_MODE (y))
2124 return 0;
2125
2126 /* Compare the elements. If any pair of corresponding elements
2127 fail to match, return 0 for the whole things. */
2128
2129 success_2 = 0;
2130 fmt = GET_RTX_FORMAT (code);
2131 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2132 {
2133 int val, j;
2134 switch (fmt[i])
2135 {
2136 case 'w':
2137 if (XWINT (x, i) != XWINT (y, i))
2138 return 0;
2139 break;
2140
2141 case 'i':
2142 if (XINT (x, i) != XINT (y, i))
2143 return 0;
2144 break;
2145
2146 case 'e':
2147 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2148 if (val == 0)
2149 return 0;
2150 /* If any subexpression returns 2,
2151 we should return 2 if we are successful. */
2152 if (val == 2)
2153 success_2 = 1;
2154 break;
2155
2156 case '0':
2157 break;
2158
2159 case 'E':
2160 if (XVECLEN (x, i) != XVECLEN (y, i))
2161 return 0;
2162 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2163 {
2164 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2165 if (val == 0)
2166 return 0;
2167 if (val == 2)
2168 success_2 = 1;
2169 }
2170 break;
2171
2172 /* It is believed that rtx's at this level will never
2173 contain anything but integers and other rtx's,
2174 except for within LABEL_REFs and SYMBOL_REFs. */
2175 default:
2176 abort ();
2177 }
2178 }
2179 return 1 + success_2;
2180 }
2181 \f
2182 /* Describe the range of registers or memory referenced by X.
2183 If X is a register, set REG_FLAG and put the first register
2184 number into START and the last plus one into END.
2185 If X is a memory reference, put a base address into BASE
2186 and a range of integer offsets into START and END.
2187 If X is pushing on the stack, we can assume it causes no trouble,
2188 so we set the SAFE field. */
2189
2190 static struct decomposition
2191 decompose (x)
2192 rtx x;
2193 {
2194 struct decomposition val;
2195 int all_const = 0;
2196
2197 val.reg_flag = 0;
2198 val.safe = 0;
2199 val.base = 0;
2200 if (GET_CODE (x) == MEM)
2201 {
2202 rtx base = NULL_RTX, offset = 0;
2203 rtx addr = XEXP (x, 0);
2204
2205 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2206 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2207 {
2208 val.base = XEXP (addr, 0);
2209 val.start = -GET_MODE_SIZE (GET_MODE (x));
2210 val.end = GET_MODE_SIZE (GET_MODE (x));
2211 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2212 return val;
2213 }
2214
2215 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2216 {
2217 if (GET_CODE (XEXP (addr, 1)) == PLUS
2218 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2219 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2220 {
2221 val.base = XEXP (addr, 0);
2222 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2223 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2224 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2225 return val;
2226 }
2227 }
2228
2229 if (GET_CODE (addr) == CONST)
2230 {
2231 addr = XEXP (addr, 0);
2232 all_const = 1;
2233 }
2234 if (GET_CODE (addr) == PLUS)
2235 {
2236 if (CONSTANT_P (XEXP (addr, 0)))
2237 {
2238 base = XEXP (addr, 1);
2239 offset = XEXP (addr, 0);
2240 }
2241 else if (CONSTANT_P (XEXP (addr, 1)))
2242 {
2243 base = XEXP (addr, 0);
2244 offset = XEXP (addr, 1);
2245 }
2246 }
2247
2248 if (offset == 0)
2249 {
2250 base = addr;
2251 offset = const0_rtx;
2252 }
2253 if (GET_CODE (offset) == CONST)
2254 offset = XEXP (offset, 0);
2255 if (GET_CODE (offset) == PLUS)
2256 {
2257 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2258 {
2259 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2260 offset = XEXP (offset, 0);
2261 }
2262 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2263 {
2264 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2265 offset = XEXP (offset, 1);
2266 }
2267 else
2268 {
2269 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2270 offset = const0_rtx;
2271 }
2272 }
2273 else if (GET_CODE (offset) != CONST_INT)
2274 {
2275 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2276 offset = const0_rtx;
2277 }
2278
2279 if (all_const && GET_CODE (base) == PLUS)
2280 base = gen_rtx_CONST (GET_MODE (base), base);
2281
2282 if (GET_CODE (offset) != CONST_INT)
2283 abort ();
2284
2285 val.start = INTVAL (offset);
2286 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2287 val.base = base;
2288 return val;
2289 }
2290 else if (GET_CODE (x) == REG)
2291 {
2292 val.reg_flag = 1;
2293 val.start = true_regnum (x);
2294 if (val.start < 0)
2295 {
2296 /* A pseudo with no hard reg. */
2297 val.start = REGNO (x);
2298 val.end = val.start + 1;
2299 }
2300 else
2301 /* A hard reg. */
2302 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2303 }
2304 else if (GET_CODE (x) == SUBREG)
2305 {
2306 if (GET_CODE (SUBREG_REG (x)) != REG)
2307 /* This could be more precise, but it's good enough. */
2308 return decompose (SUBREG_REG (x));
2309 val.reg_flag = 1;
2310 val.start = true_regnum (x);
2311 if (val.start < 0)
2312 return decompose (SUBREG_REG (x));
2313 else
2314 /* A hard reg. */
2315 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2316 }
2317 else if (CONSTANT_P (x)
2318 /* This hasn't been assigned yet, so it can't conflict yet. */
2319 || GET_CODE (x) == SCRATCH)
2320 val.safe = 1;
2321 else
2322 abort ();
2323 return val;
2324 }
2325
2326 /* Return 1 if altering Y will not modify the value of X.
2327 Y is also described by YDATA, which should be decompose (Y). */
2328
2329 static int
2330 immune_p (x, y, ydata)
2331 rtx x, y;
2332 struct decomposition ydata;
2333 {
2334 struct decomposition xdata;
2335
2336 if (ydata.reg_flag)
2337 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*)0);
2338 if (ydata.safe)
2339 return 1;
2340
2341 if (GET_CODE (y) != MEM)
2342 abort ();
2343 /* If Y is memory and X is not, Y can't affect X. */
2344 if (GET_CODE (x) != MEM)
2345 return 1;
2346
2347 xdata = decompose (x);
2348
2349 if (! rtx_equal_p (xdata.base, ydata.base))
2350 {
2351 /* If bases are distinct symbolic constants, there is no overlap. */
2352 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2353 return 1;
2354 /* Constants and stack slots never overlap. */
2355 if (CONSTANT_P (xdata.base)
2356 && (ydata.base == frame_pointer_rtx
2357 || ydata.base == hard_frame_pointer_rtx
2358 || ydata.base == stack_pointer_rtx))
2359 return 1;
2360 if (CONSTANT_P (ydata.base)
2361 && (xdata.base == frame_pointer_rtx
2362 || xdata.base == hard_frame_pointer_rtx
2363 || xdata.base == stack_pointer_rtx))
2364 return 1;
2365 /* If either base is variable, we don't know anything. */
2366 return 0;
2367 }
2368
2369 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2370 }
2371
2372 /* Similar, but calls decompose. */
2373
2374 int
2375 safe_from_earlyclobber (op, clobber)
2376 rtx op, clobber;
2377 {
2378 struct decomposition early_data;
2379
2380 early_data = decompose (clobber);
2381 return immune_p (op, clobber, early_data);
2382 }
2383 \f
2384 /* Main entry point of this file: search the body of INSN
2385 for values that need reloading and record them with push_reload.
2386 REPLACE nonzero means record also where the values occur
2387 so that subst_reloads can be used.
2388
2389 IND_LEVELS says how many levels of indirection are supported by this
2390 machine; a value of zero means that a memory reference is not a valid
2391 memory address.
2392
2393 LIVE_KNOWN says we have valid information about which hard
2394 regs are live at each point in the program; this is true when
2395 we are called from global_alloc but false when stupid register
2396 allocation has been done.
2397
2398 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2399 which is nonnegative if the reg has been commandeered for reloading into.
2400 It is copied into STATIC_RELOAD_REG_P and referenced from there
2401 by various subroutines.
2402
2403 Return TRUE if some operands need to be changed, because of swapping
2404 commutative operands, reg_equiv_address substitution, or whatever. */
2405
2406 int
2407 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2408 rtx insn;
2409 int replace, ind_levels;
2410 int live_known;
2411 short *reload_reg_p;
2412 {
2413 register int insn_code_number;
2414 register int i, j;
2415 int noperands;
2416 /* These start out as the constraints for the insn
2417 and they are chewed up as we consider alternatives. */
2418 char *constraints[MAX_RECOG_OPERANDS];
2419 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2420 a register. */
2421 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2422 char pref_or_nothing[MAX_RECOG_OPERANDS];
2423 /* Nonzero for a MEM operand whose entire address needs a reload. */
2424 int address_reloaded[MAX_RECOG_OPERANDS];
2425 /* Value of enum reload_type to use for operand. */
2426 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2427 /* Value of enum reload_type to use within address of operand. */
2428 enum reload_type address_type[MAX_RECOG_OPERANDS];
2429 /* Save the usage of each operand. */
2430 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2431 int no_input_reloads = 0, no_output_reloads = 0;
2432 int n_alternatives;
2433 int this_alternative[MAX_RECOG_OPERANDS];
2434 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2435 char this_alternative_win[MAX_RECOG_OPERANDS];
2436 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2437 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2438 int this_alternative_matches[MAX_RECOG_OPERANDS];
2439 int swapped;
2440 int goal_alternative[MAX_RECOG_OPERANDS];
2441 int this_alternative_number;
2442 int goal_alternative_number = 0;
2443 int operand_reloadnum[MAX_RECOG_OPERANDS];
2444 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2445 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2446 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2447 char goal_alternative_win[MAX_RECOG_OPERANDS];
2448 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2449 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2450 int goal_alternative_swapped;
2451 int best;
2452 int commutative;
2453 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2454 rtx substed_operand[MAX_RECOG_OPERANDS];
2455 rtx body = PATTERN (insn);
2456 rtx set = single_set (insn);
2457 int goal_earlyclobber = 0, this_earlyclobber;
2458 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2459 int retval = 0;
2460
2461 this_insn = insn;
2462 n_reloads = 0;
2463 n_replacements = 0;
2464 n_earlyclobbers = 0;
2465 replace_reloads = replace;
2466 hard_regs_live_known = live_known;
2467 static_reload_reg_p = reload_reg_p;
2468
2469 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2470 neither are insns that SET cc0. Insns that use CC0 are not allowed
2471 to have any input reloads. */
2472 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2473 no_output_reloads = 1;
2474
2475 #ifdef HAVE_cc0
2476 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2477 no_input_reloads = 1;
2478 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2479 no_output_reloads = 1;
2480 #endif
2481
2482 #ifdef SECONDARY_MEMORY_NEEDED
2483 /* The eliminated forms of any secondary memory locations are per-insn, so
2484 clear them out here. */
2485
2486 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2487 #endif
2488
2489 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2490 is cheap to move between them. If it is not, there may not be an insn
2491 to do the copy, so we may need a reload. */
2492 if (GET_CODE (body) == SET
2493 && GET_CODE (SET_DEST (body)) == REG
2494 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2495 && GET_CODE (SET_SRC (body)) == REG
2496 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2497 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2498 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2499 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2500 return 0;
2501
2502 extract_insn (insn);
2503
2504 noperands = reload_n_operands = recog_data.n_operands;
2505 n_alternatives = recog_data.n_alternatives;
2506
2507 /* Just return "no reloads" if insn has no operands with constraints. */
2508 if (noperands == 0 || n_alternatives == 0)
2509 return 0;
2510
2511 insn_code_number = INSN_CODE (insn);
2512 this_insn_is_asm = insn_code_number < 0;
2513
2514 memcpy (operand_mode, recog_data.operand_mode,
2515 noperands * sizeof (enum machine_mode));
2516 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2517
2518 commutative = -1;
2519
2520 /* If we will need to know, later, whether some pair of operands
2521 are the same, we must compare them now and save the result.
2522 Reloading the base and index registers will clobber them
2523 and afterward they will fail to match. */
2524
2525 for (i = 0; i < noperands; i++)
2526 {
2527 register char *p;
2528 register int c;
2529
2530 substed_operand[i] = recog_data.operand[i];
2531 p = constraints[i];
2532
2533 modified[i] = RELOAD_READ;
2534
2535 /* Scan this operand's constraint to see if it is an output operand,
2536 an in-out operand, is commutative, or should match another. */
2537
2538 while ((c = *p++))
2539 {
2540 if (c == '=')
2541 modified[i] = RELOAD_WRITE;
2542 else if (c == '+')
2543 modified[i] = RELOAD_READ_WRITE;
2544 else if (c == '%')
2545 {
2546 /* The last operand should not be marked commutative. */
2547 if (i == noperands - 1)
2548 abort ();
2549
2550 commutative = i;
2551 }
2552 else if (c >= '0' && c <= '9')
2553 {
2554 c -= '0';
2555 operands_match[c][i]
2556 = operands_match_p (recog_data.operand[c],
2557 recog_data.operand[i]);
2558
2559 /* An operand may not match itself. */
2560 if (c == i)
2561 abort ();
2562
2563 /* If C can be commuted with C+1, and C might need to match I,
2564 then C+1 might also need to match I. */
2565 if (commutative >= 0)
2566 {
2567 if (c == commutative || c == commutative + 1)
2568 {
2569 int other = c + (c == commutative ? 1 : -1);
2570 operands_match[other][i]
2571 = operands_match_p (recog_data.operand[other],
2572 recog_data.operand[i]);
2573 }
2574 if (i == commutative || i == commutative + 1)
2575 {
2576 int other = i + (i == commutative ? 1 : -1);
2577 operands_match[c][other]
2578 = operands_match_p (recog_data.operand[c],
2579 recog_data.operand[other]);
2580 }
2581 /* Note that C is supposed to be less than I.
2582 No need to consider altering both C and I because in
2583 that case we would alter one into the other. */
2584 }
2585 }
2586 }
2587 }
2588
2589 /* Examine each operand that is a memory reference or memory address
2590 and reload parts of the addresses into index registers.
2591 Also here any references to pseudo regs that didn't get hard regs
2592 but are equivalent to constants get replaced in the insn itself
2593 with those constants. Nobody will ever see them again.
2594
2595 Finally, set up the preferred classes of each operand. */
2596
2597 for (i = 0; i < noperands; i++)
2598 {
2599 register RTX_CODE code = GET_CODE (recog_data.operand[i]);
2600
2601 address_reloaded[i] = 0;
2602 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2603 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2604 : RELOAD_OTHER);
2605 address_type[i]
2606 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2607 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2608 : RELOAD_OTHER);
2609
2610 if (*constraints[i] == 0)
2611 /* Ignore things like match_operator operands. */
2612 ;
2613 else if (constraints[i][0] == 'p')
2614 {
2615 find_reloads_address (VOIDmode, (rtx*)0,
2616 recog_data.operand[i],
2617 recog_data.operand_loc[i],
2618 i, operand_type[i], ind_levels, insn);
2619
2620 /* If we now have a simple operand where we used to have a
2621 PLUS or MULT, re-recognize and try again. */
2622 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2623 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2624 && (GET_CODE (recog_data.operand[i]) == MULT
2625 || GET_CODE (recog_data.operand[i]) == PLUS))
2626 {
2627 INSN_CODE (insn) = -1;
2628 retval = find_reloads (insn, replace, ind_levels, live_known,
2629 reload_reg_p);
2630 return retval;
2631 }
2632
2633 recog_data.operand[i] = *recog_data.operand_loc[i];
2634 substed_operand[i] = recog_data.operand[i];
2635 }
2636 else if (code == MEM)
2637 {
2638 address_reloaded[i]
2639 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2640 recog_data.operand_loc[i],
2641 XEXP (recog_data.operand[i], 0),
2642 &XEXP (recog_data.operand[i], 0),
2643 i, address_type[i], ind_levels, insn);
2644 recog_data.operand[i] = *recog_data.operand_loc[i];
2645 substed_operand[i] = recog_data.operand[i];
2646 }
2647 else if (code == SUBREG)
2648 {
2649 rtx reg = SUBREG_REG (recog_data.operand[i]);
2650 rtx op
2651 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2652 ind_levels,
2653 set != 0
2654 && &SET_DEST (set) == recog_data.operand_loc[i],
2655 insn,
2656 &address_reloaded[i]);
2657
2658 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2659 that didn't get a hard register, emit a USE with a REG_EQUAL
2660 note in front so that we might inherit a previous, possibly
2661 wider reload. */
2662
2663 if (replace
2664 && GET_CODE (op) == MEM
2665 && GET_CODE (reg) == REG
2666 && (GET_MODE_SIZE (GET_MODE (reg))
2667 >= GET_MODE_SIZE (GET_MODE (op))))
2668 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2669 = gen_rtx_EXPR_LIST (REG_EQUAL,
2670 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2671
2672 substed_operand[i] = recog_data.operand[i] = op;
2673 }
2674 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2675 /* We can get a PLUS as an "operand" as a result of register
2676 elimination. See eliminate_regs and gen_reload. We handle
2677 a unary operator by reloading the operand. */
2678 substed_operand[i] = recog_data.operand[i]
2679 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2680 ind_levels, 0, insn,
2681 &address_reloaded[i]);
2682 else if (code == REG)
2683 {
2684 /* This is equivalent to calling find_reloads_toplev.
2685 The code is duplicated for speed.
2686 When we find a pseudo always equivalent to a constant,
2687 we replace it by the constant. We must be sure, however,
2688 that we don't try to replace it in the insn in which it
2689 is being set. */
2690 register int regno = REGNO (recog_data.operand[i]);
2691 if (reg_equiv_constant[regno] != 0
2692 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2693 {
2694 /* Record the existing mode so that the check if constants are
2695 allowed will work when operand_mode isn't specified. */
2696
2697 if (operand_mode[i] == VOIDmode)
2698 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2699
2700 substed_operand[i] = recog_data.operand[i]
2701 = reg_equiv_constant[regno];
2702 }
2703 if (reg_equiv_memory_loc[regno] != 0
2704 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2705 /* We need not give a valid is_set_dest argument since the case
2706 of a constant equivalence was checked above. */
2707 substed_operand[i] = recog_data.operand[i]
2708 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2709 ind_levels, 0, insn,
2710 &address_reloaded[i]);
2711 }
2712 /* If the operand is still a register (we didn't replace it with an
2713 equivalent), get the preferred class to reload it into. */
2714 code = GET_CODE (recog_data.operand[i]);
2715 preferred_class[i]
2716 = ((code == REG && REGNO (recog_data.operand[i])
2717 >= FIRST_PSEUDO_REGISTER)
2718 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2719 : NO_REGS);
2720 pref_or_nothing[i]
2721 = (code == REG
2722 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2723 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2724 }
2725
2726 /* If this is simply a copy from operand 1 to operand 0, merge the
2727 preferred classes for the operands. */
2728 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2729 && recog_data.operand[1] == SET_SRC (set))
2730 {
2731 preferred_class[0] = preferred_class[1]
2732 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2733 pref_or_nothing[0] |= pref_or_nothing[1];
2734 pref_or_nothing[1] |= pref_or_nothing[0];
2735 }
2736
2737 /* Now see what we need for pseudo-regs that didn't get hard regs
2738 or got the wrong kind of hard reg. For this, we must consider
2739 all the operands together against the register constraints. */
2740
2741 best = MAX_RECOG_OPERANDS * 2 + 600;
2742
2743 swapped = 0;
2744 goal_alternative_swapped = 0;
2745 try_swapped:
2746
2747 /* The constraints are made of several alternatives.
2748 Each operand's constraint looks like foo,bar,... with commas
2749 separating the alternatives. The first alternatives for all
2750 operands go together, the second alternatives go together, etc.
2751
2752 First loop over alternatives. */
2753
2754 for (this_alternative_number = 0;
2755 this_alternative_number < n_alternatives;
2756 this_alternative_number++)
2757 {
2758 /* Loop over operands for one constraint alternative. */
2759 /* LOSERS counts those that don't fit this alternative
2760 and would require loading. */
2761 int losers = 0;
2762 /* BAD is set to 1 if it some operand can't fit this alternative
2763 even after reloading. */
2764 int bad = 0;
2765 /* REJECT is a count of how undesirable this alternative says it is
2766 if any reloading is required. If the alternative matches exactly
2767 then REJECT is ignored, but otherwise it gets this much
2768 counted against it in addition to the reloading needed. Each
2769 ? counts three times here since we want the disparaging caused by
2770 a bad register class to only count 1/3 as much. */
2771 int reject = 0;
2772
2773 this_earlyclobber = 0;
2774
2775 for (i = 0; i < noperands; i++)
2776 {
2777 register char *p = constraints[i];
2778 register int win = 0;
2779 int did_match = 0;
2780 /* 0 => this operand can be reloaded somehow for this alternative. */
2781 int badop = 1;
2782 /* 0 => this operand can be reloaded if the alternative allows regs. */
2783 int winreg = 0;
2784 int c;
2785 register rtx operand = recog_data.operand[i];
2786 int offset = 0;
2787 /* Nonzero means this is a MEM that must be reloaded into a reg
2788 regardless of what the constraint says. */
2789 int force_reload = 0;
2790 int offmemok = 0;
2791 /* Nonzero if a constant forced into memory would be OK for this
2792 operand. */
2793 int constmemok = 0;
2794 int earlyclobber = 0;
2795
2796 /* If the predicate accepts a unary operator, it means that
2797 we need to reload the operand, but do not do this for
2798 match_operator and friends. */
2799 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2800 operand = XEXP (operand, 0);
2801
2802 /* If the operand is a SUBREG, extract
2803 the REG or MEM (or maybe even a constant) within.
2804 (Constants can occur as a result of reg_equiv_constant.) */
2805
2806 while (GET_CODE (operand) == SUBREG)
2807 {
2808 /* Offset only matters when operand is a REG and
2809 it is a hard reg. This is because it is passed
2810 to reg_fits_class_p if it is a REG and all pseudos
2811 return 0 from that function. */
2812 if (GET_CODE (SUBREG_REG (operand)) == REG
2813 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2814 {
2815 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2816 GET_MODE (SUBREG_REG (operand)),
2817 SUBREG_BYTE (operand),
2818 GET_MODE (operand));
2819 }
2820 operand = SUBREG_REG (operand);
2821 /* Force reload if this is a constant or PLUS or if there may
2822 be a problem accessing OPERAND in the outer mode. */
2823 if (CONSTANT_P (operand)
2824 || GET_CODE (operand) == PLUS
2825 /* We must force a reload of paradoxical SUBREGs
2826 of a MEM because the alignment of the inner value
2827 may not be enough to do the outer reference. On
2828 big-endian machines, it may also reference outside
2829 the object.
2830
2831 On machines that extend byte operations and we have a
2832 SUBREG where both the inner and outer modes are no wider
2833 than a word and the inner mode is narrower, is integral,
2834 and gets extended when loaded from memory, combine.c has
2835 made assumptions about the behavior of the machine in such
2836 register access. If the data is, in fact, in memory we
2837 must always load using the size assumed to be in the
2838 register and let the insn do the different-sized
2839 accesses.
2840
2841 This is doubly true if WORD_REGISTER_OPERATIONS. In
2842 this case eliminate_regs has left non-paradoxical
2843 subregs for push_reloads to see. Make sure it does
2844 by forcing the reload.
2845
2846 ??? When is it right at this stage to have a subreg
2847 of a mem that is _not_ to be handled specialy? IMO
2848 those should have been reduced to just a mem. */
2849 || ((GET_CODE (operand) == MEM
2850 || (GET_CODE (operand)== REG
2851 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2852 #ifndef WORD_REGISTER_OPERATIONS
2853 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2854 < BIGGEST_ALIGNMENT)
2855 && (GET_MODE_SIZE (operand_mode[i])
2856 > GET_MODE_SIZE (GET_MODE (operand))))
2857 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2858 #ifdef LOAD_EXTEND_OP
2859 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2860 && (GET_MODE_SIZE (GET_MODE (operand))
2861 <= UNITS_PER_WORD)
2862 && (GET_MODE_SIZE (operand_mode[i])
2863 > GET_MODE_SIZE (GET_MODE (operand)))
2864 && INTEGRAL_MODE_P (GET_MODE (operand))
2865 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2866 #endif
2867 )
2868 #endif
2869 )
2870 /* This following hunk of code should no longer be
2871 needed at all with SUBREG_BYTE. If you need this
2872 code back, please explain to me why so I can
2873 fix the real problem. -DaveM */
2874 #if 0
2875 /* Subreg of a hard reg which can't handle the subreg's mode
2876 or which would handle that mode in the wrong number of
2877 registers for subregging to work. */
2878 || (GET_CODE (operand) == REG
2879 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2880 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2881 && (GET_MODE_SIZE (GET_MODE (operand))
2882 > UNITS_PER_WORD)
2883 && ((GET_MODE_SIZE (GET_MODE (operand))
2884 / UNITS_PER_WORD)
2885 != HARD_REGNO_NREGS (REGNO (operand),
2886 GET_MODE (operand))))
2887 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2888 operand_mode[i])))
2889 #endif
2890 )
2891 force_reload = 1;
2892 }
2893
2894 this_alternative[i] = (int) NO_REGS;
2895 this_alternative_win[i] = 0;
2896 this_alternative_match_win[i] = 0;
2897 this_alternative_offmemok[i] = 0;
2898 this_alternative_earlyclobber[i] = 0;
2899 this_alternative_matches[i] = -1;
2900
2901 /* An empty constraint or empty alternative
2902 allows anything which matched the pattern. */
2903 if (*p == 0 || *p == ',')
2904 win = 1, badop = 0;
2905
2906 /* Scan this alternative's specs for this operand;
2907 set WIN if the operand fits any letter in this alternative.
2908 Otherwise, clear BADOP if this operand could
2909 fit some letter after reloads,
2910 or set WINREG if this operand could fit after reloads
2911 provided the constraint allows some registers. */
2912
2913 while (*p && (c = *p++) != ',')
2914 switch (c)
2915 {
2916 case '=': case '+': case '*':
2917 break;
2918
2919 case '%':
2920 /* The last operand should not be marked commutative. */
2921 if (i != noperands - 1)
2922 commutative = i;
2923 break;
2924
2925 case '?':
2926 reject += 6;
2927 break;
2928
2929 case '!':
2930 reject = 600;
2931 break;
2932
2933 case '#':
2934 /* Ignore rest of this alternative as far as
2935 reloading is concerned. */
2936 while (*p && *p != ',')
2937 p++;
2938 break;
2939
2940 case '0': case '1': case '2': case '3': case '4':
2941 case '5': case '6': case '7': case '8': case '9':
2942
2943 c -= '0';
2944 this_alternative_matches[i] = c;
2945 /* We are supposed to match a previous operand.
2946 If we do, we win if that one did.
2947 If we do not, count both of the operands as losers.
2948 (This is too conservative, since most of the time
2949 only a single reload insn will be needed to make
2950 the two operands win. As a result, this alternative
2951 may be rejected when it is actually desirable.) */
2952 if ((swapped && (c != commutative || i != commutative + 1))
2953 /* If we are matching as if two operands were swapped,
2954 also pretend that operands_match had been computed
2955 with swapped.
2956 But if I is the second of those and C is the first,
2957 don't exchange them, because operands_match is valid
2958 only on one side of its diagonal. */
2959 ? (operands_match
2960 [(c == commutative || c == commutative + 1)
2961 ? 2 * commutative + 1 - c : c]
2962 [(i == commutative || i == commutative + 1)
2963 ? 2 * commutative + 1 - i : i])
2964 : operands_match[c][i])
2965 {
2966 /* If we are matching a non-offsettable address where an
2967 offsettable address was expected, then we must reject
2968 this combination, because we can't reload it. */
2969 if (this_alternative_offmemok[c]
2970 && GET_CODE (recog_data.operand[c]) == MEM
2971 && this_alternative[c] == (int) NO_REGS
2972 && ! this_alternative_win[c])
2973 bad = 1;
2974
2975 did_match = this_alternative_win[c];
2976 }
2977 else
2978 {
2979 /* Operands don't match. */
2980 rtx value;
2981 /* Retroactively mark the operand we had to match
2982 as a loser, if it wasn't already. */
2983 if (this_alternative_win[c])
2984 losers++;
2985 this_alternative_win[c] = 0;
2986 if (this_alternative[c] == (int) NO_REGS)
2987 bad = 1;
2988 /* But count the pair only once in the total badness of
2989 this alternative, if the pair can be a dummy reload. */
2990 value
2991 = find_dummy_reload (recog_data.operand[i],
2992 recog_data.operand[c],
2993 recog_data.operand_loc[i],
2994 recog_data.operand_loc[c],
2995 operand_mode[i], operand_mode[c],
2996 this_alternative[c], -1,
2997 this_alternative_earlyclobber[c]);
2998
2999 if (value != 0)
3000 losers--;
3001 }
3002 /* This can be fixed with reloads if the operand
3003 we are supposed to match can be fixed with reloads. */
3004 badop = 0;
3005 this_alternative[i] = this_alternative[c];
3006
3007 /* If we have to reload this operand and some previous
3008 operand also had to match the same thing as this
3009 operand, we don't know how to do that. So reject this
3010 alternative. */
3011 if (! did_match || force_reload)
3012 for (j = 0; j < i; j++)
3013 if (this_alternative_matches[j]
3014 == this_alternative_matches[i])
3015 badop = 1;
3016 break;
3017
3018 case 'p':
3019 /* All necessary reloads for an address_operand
3020 were handled in find_reloads_address. */
3021 this_alternative[i] = (int) BASE_REG_CLASS;
3022 win = 1;
3023 break;
3024
3025 case 'm':
3026 if (force_reload)
3027 break;
3028 if (GET_CODE (operand) == MEM
3029 || (GET_CODE (operand) == REG
3030 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3031 && reg_renumber[REGNO (operand)] < 0))
3032 win = 1;
3033 if (CONSTANT_P (operand)
3034 /* force_const_mem does not accept HIGH. */
3035 && GET_CODE (operand) != HIGH)
3036 badop = 0;
3037 constmemok = 1;
3038 break;
3039
3040 case '<':
3041 if (GET_CODE (operand) == MEM
3042 && ! address_reloaded[i]
3043 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3044 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3045 win = 1;
3046 break;
3047
3048 case '>':
3049 if (GET_CODE (operand) == MEM
3050 && ! address_reloaded[i]
3051 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3052 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3053 win = 1;
3054 break;
3055
3056 /* Memory operand whose address is not offsettable. */
3057 case 'V':
3058 if (force_reload)
3059 break;
3060 if (GET_CODE (operand) == MEM
3061 && ! (ind_levels ? offsettable_memref_p (operand)
3062 : offsettable_nonstrict_memref_p (operand))
3063 /* Certain mem addresses will become offsettable
3064 after they themselves are reloaded. This is important;
3065 we don't want our own handling of unoffsettables
3066 to override the handling of reg_equiv_address. */
3067 && !(GET_CODE (XEXP (operand, 0)) == REG
3068 && (ind_levels == 0
3069 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3070 win = 1;
3071 break;
3072
3073 /* Memory operand whose address is offsettable. */
3074 case 'o':
3075 if (force_reload)
3076 break;
3077 if ((GET_CODE (operand) == MEM
3078 /* If IND_LEVELS, find_reloads_address won't reload a
3079 pseudo that didn't get a hard reg, so we have to
3080 reject that case. */
3081 && ((ind_levels ? offsettable_memref_p (operand)
3082 : offsettable_nonstrict_memref_p (operand))
3083 /* A reloaded address is offsettable because it is now
3084 just a simple register indirect. */
3085 || address_reloaded[i]))
3086 || (GET_CODE (operand) == REG
3087 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3088 && reg_renumber[REGNO (operand)] < 0
3089 /* If reg_equiv_address is nonzero, we will be
3090 loading it into a register; hence it will be
3091 offsettable, but we cannot say that reg_equiv_mem
3092 is offsettable without checking. */
3093 && ((reg_equiv_mem[REGNO (operand)] != 0
3094 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3095 || (reg_equiv_address[REGNO (operand)] != 0))))
3096 win = 1;
3097 /* force_const_mem does not accept HIGH. */
3098 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3099 || GET_CODE (operand) == MEM)
3100 badop = 0;
3101 constmemok = 1;
3102 offmemok = 1;
3103 break;
3104
3105 case '&':
3106 /* Output operand that is stored before the need for the
3107 input operands (and their index registers) is over. */
3108 earlyclobber = 1, this_earlyclobber = 1;
3109 break;
3110
3111 case 'E':
3112 #ifndef REAL_ARITHMETIC
3113 /* Match any floating double constant, but only if
3114 we can examine the bits of it reliably. */
3115 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3116 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3117 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3118 break;
3119 #endif
3120 if (GET_CODE (operand) == CONST_DOUBLE)
3121 win = 1;
3122 break;
3123
3124 case 'F':
3125 if (GET_CODE (operand) == CONST_DOUBLE)
3126 win = 1;
3127 break;
3128
3129 case 'G':
3130 case 'H':
3131 if (GET_CODE (operand) == CONST_DOUBLE
3132 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3133 win = 1;
3134 break;
3135
3136 case 's':
3137 if (GET_CODE (operand) == CONST_INT
3138 || (GET_CODE (operand) == CONST_DOUBLE
3139 && GET_MODE (operand) == VOIDmode))
3140 break;
3141 case 'i':
3142 if (CONSTANT_P (operand)
3143 #ifdef LEGITIMATE_PIC_OPERAND_P
3144 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3145 #endif
3146 )
3147 win = 1;
3148 break;
3149
3150 case 'n':
3151 if (GET_CODE (operand) == CONST_INT
3152 || (GET_CODE (operand) == CONST_DOUBLE
3153 && GET_MODE (operand) == VOIDmode))
3154 win = 1;
3155 break;
3156
3157 case 'I':
3158 case 'J':
3159 case 'K':
3160 case 'L':
3161 case 'M':
3162 case 'N':
3163 case 'O':
3164 case 'P':
3165 if (GET_CODE (operand) == CONST_INT
3166 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3167 win = 1;
3168 break;
3169
3170 case 'X':
3171 win = 1;
3172 break;
3173
3174 case 'g':
3175 if (! force_reload
3176 /* A PLUS is never a valid operand, but reload can make
3177 it from a register when eliminating registers. */
3178 && GET_CODE (operand) != PLUS
3179 /* A SCRATCH is not a valid operand. */
3180 && GET_CODE (operand) != SCRATCH
3181 #ifdef LEGITIMATE_PIC_OPERAND_P
3182 && (! CONSTANT_P (operand)
3183 || ! flag_pic
3184 || LEGITIMATE_PIC_OPERAND_P (operand))
3185 #endif
3186 && (GENERAL_REGS == ALL_REGS
3187 || GET_CODE (operand) != REG
3188 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3189 && reg_renumber[REGNO (operand)] < 0)))
3190 win = 1;
3191 /* Drop through into 'r' case. */
3192
3193 case 'r':
3194 this_alternative[i]
3195 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3196 goto reg;
3197
3198 default:
3199 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3200 {
3201 #ifdef EXTRA_CONSTRAINT
3202 if (EXTRA_CONSTRAINT (operand, c))
3203 win = 1;
3204 #endif
3205 break;
3206 }
3207
3208 this_alternative[i]
3209 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3210 reg:
3211 if (GET_MODE (operand) == BLKmode)
3212 break;
3213 winreg = 1;
3214 if (GET_CODE (operand) == REG
3215 && reg_fits_class_p (operand, this_alternative[i],
3216 offset, GET_MODE (recog_data.operand[i])))
3217 win = 1;
3218 break;
3219 }
3220
3221 constraints[i] = p;
3222
3223 /* If this operand could be handled with a reg,
3224 and some reg is allowed, then this operand can be handled. */
3225 if (winreg && this_alternative[i] != (int) NO_REGS)
3226 badop = 0;
3227
3228 /* Record which operands fit this alternative. */
3229 this_alternative_earlyclobber[i] = earlyclobber;
3230 if (win && ! force_reload)
3231 this_alternative_win[i] = 1;
3232 else if (did_match && ! force_reload)
3233 this_alternative_match_win[i] = 1;
3234 else
3235 {
3236 int const_to_mem = 0;
3237
3238 this_alternative_offmemok[i] = offmemok;
3239 losers++;
3240 if (badop)
3241 bad = 1;
3242 /* Alternative loses if it has no regs for a reg operand. */
3243 if (GET_CODE (operand) == REG
3244 && this_alternative[i] == (int) NO_REGS
3245 && this_alternative_matches[i] < 0)
3246 bad = 1;
3247
3248 /* If this is a constant that is reloaded into the desired
3249 class by copying it to memory first, count that as another
3250 reload. This is consistent with other code and is
3251 required to avoid choosing another alternative when
3252 the constant is moved into memory by this function on
3253 an early reload pass. Note that the test here is
3254 precisely the same as in the code below that calls
3255 force_const_mem. */
3256 if (CONSTANT_P (operand)
3257 /* force_const_mem does not accept HIGH. */
3258 && GET_CODE (operand) != HIGH
3259 && ((PREFERRED_RELOAD_CLASS (operand,
3260 (enum reg_class) this_alternative[i])
3261 == NO_REGS)
3262 || no_input_reloads)
3263 && operand_mode[i] != VOIDmode)
3264 {
3265 const_to_mem = 1;
3266 if (this_alternative[i] != (int) NO_REGS)
3267 losers++;
3268 }
3269
3270 /* If we can't reload this value at all, reject this
3271 alternative. Note that we could also lose due to
3272 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3273 here. */
3274
3275 if (! CONSTANT_P (operand)
3276 && (enum reg_class) this_alternative[i] != NO_REGS
3277 && (PREFERRED_RELOAD_CLASS (operand,
3278 (enum reg_class) this_alternative[i])
3279 == NO_REGS))
3280 bad = 1;
3281
3282 /* Alternative loses if it requires a type of reload not
3283 permitted for this insn. We can always reload SCRATCH
3284 and objects with a REG_UNUSED note. */
3285 else if (GET_CODE (operand) != SCRATCH
3286 && modified[i] != RELOAD_READ && no_output_reloads
3287 && ! find_reg_note (insn, REG_UNUSED, operand))
3288 bad = 1;
3289 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3290 && ! const_to_mem)
3291 bad = 1;
3292
3293 /* We prefer to reload pseudos over reloading other things,
3294 since such reloads may be able to be eliminated later.
3295 If we are reloading a SCRATCH, we won't be generating any
3296 insns, just using a register, so it is also preferred.
3297 So bump REJECT in other cases. Don't do this in the
3298 case where we are forcing a constant into memory and
3299 it will then win since we don't want to have a different
3300 alternative match then. */
3301 if (! (GET_CODE (operand) == REG
3302 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3303 && GET_CODE (operand) != SCRATCH
3304 && ! (const_to_mem && constmemok))
3305 reject += 2;
3306
3307 /* Input reloads can be inherited more often than output
3308 reloads can be removed, so penalize output reloads. */
3309 if (operand_type[i] != RELOAD_FOR_INPUT
3310 && GET_CODE (operand) != SCRATCH)
3311 reject++;
3312 }
3313
3314 /* If this operand is a pseudo register that didn't get a hard
3315 reg and this alternative accepts some register, see if the
3316 class that we want is a subset of the preferred class for this
3317 register. If not, but it intersects that class, use the
3318 preferred class instead. If it does not intersect the preferred
3319 class, show that usage of this alternative should be discouraged;
3320 it will be discouraged more still if the register is `preferred
3321 or nothing'. We do this because it increases the chance of
3322 reusing our spill register in a later insn and avoiding a pair
3323 of memory stores and loads.
3324
3325 Don't bother with this if this alternative will accept this
3326 operand.
3327
3328 Don't do this for a multiword operand, since it is only a
3329 small win and has the risk of requiring more spill registers,
3330 which could cause a large loss.
3331
3332 Don't do this if the preferred class has only one register
3333 because we might otherwise exhaust the class. */
3334
3335 if (! win && ! did_match
3336 && this_alternative[i] != (int) NO_REGS
3337 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3338 && reg_class_size[(int) preferred_class[i]] > 1)
3339 {
3340 if (! reg_class_subset_p (this_alternative[i],
3341 preferred_class[i]))
3342 {
3343 /* Since we don't have a way of forming the intersection,
3344 we just do something special if the preferred class
3345 is a subset of the class we have; that's the most
3346 common case anyway. */
3347 if (reg_class_subset_p (preferred_class[i],
3348 this_alternative[i]))
3349 this_alternative[i] = (int) preferred_class[i];
3350 else
3351 reject += (2 + 2 * pref_or_nothing[i]);
3352 }
3353 }
3354 }
3355
3356 /* Now see if any output operands that are marked "earlyclobber"
3357 in this alternative conflict with any input operands
3358 or any memory addresses. */
3359
3360 for (i = 0; i < noperands; i++)
3361 if (this_alternative_earlyclobber[i]
3362 && (this_alternative_win[i] || this_alternative_match_win[i]))
3363 {
3364 struct decomposition early_data;
3365
3366 early_data = decompose (recog_data.operand[i]);
3367
3368 if (modified[i] == RELOAD_READ)
3369 abort ();
3370
3371 if (this_alternative[i] == NO_REGS)
3372 {
3373 this_alternative_earlyclobber[i] = 0;
3374 if (this_insn_is_asm)
3375 error_for_asm (this_insn,
3376 "`&' constraint used with no register class");
3377 else
3378 abort ();
3379 }
3380
3381 for (j = 0; j < noperands; j++)
3382 /* Is this an input operand or a memory ref? */
3383 if ((GET_CODE (recog_data.operand[j]) == MEM
3384 || modified[j] != RELOAD_WRITE)
3385 && j != i
3386 /* Ignore things like match_operator operands. */
3387 && *recog_data.constraints[j] != 0
3388 /* Don't count an input operand that is constrained to match
3389 the early clobber operand. */
3390 && ! (this_alternative_matches[j] == i
3391 && rtx_equal_p (recog_data.operand[i],
3392 recog_data.operand[j]))
3393 /* Is it altered by storing the earlyclobber operand? */
3394 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3395 early_data))
3396 {
3397 /* If the output is in a single-reg class,
3398 it's costly to reload it, so reload the input instead. */
3399 if (reg_class_size[this_alternative[i]] == 1
3400 && (GET_CODE (recog_data.operand[j]) == REG
3401 || GET_CODE (recog_data.operand[j]) == SUBREG))
3402 {
3403 losers++;
3404 this_alternative_win[j] = 0;
3405 this_alternative_match_win[j] = 0;
3406 }
3407 else
3408 break;
3409 }
3410 /* If an earlyclobber operand conflicts with something,
3411 it must be reloaded, so request this and count the cost. */
3412 if (j != noperands)
3413 {
3414 losers++;
3415 this_alternative_win[i] = 0;
3416 this_alternative_match_win[j] = 0;
3417 for (j = 0; j < noperands; j++)
3418 if (this_alternative_matches[j] == i
3419 && this_alternative_match_win[j])
3420 {
3421 this_alternative_win[j] = 0;
3422 this_alternative_match_win[j] = 0;
3423 losers++;
3424 }
3425 }
3426 }
3427
3428 /* If one alternative accepts all the operands, no reload required,
3429 choose that alternative; don't consider the remaining ones. */
3430 if (losers == 0)
3431 {
3432 /* Unswap these so that they are never swapped at `finish'. */
3433 if (commutative >= 0)
3434 {
3435 recog_data.operand[commutative] = substed_operand[commutative];
3436 recog_data.operand[commutative + 1]
3437 = substed_operand[commutative + 1];
3438 }
3439 for (i = 0; i < noperands; i++)
3440 {
3441 goal_alternative_win[i] = this_alternative_win[i];
3442 goal_alternative_match_win[i] = this_alternative_match_win[i];
3443 goal_alternative[i] = this_alternative[i];
3444 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3445 goal_alternative_matches[i] = this_alternative_matches[i];
3446 goal_alternative_earlyclobber[i]
3447 = this_alternative_earlyclobber[i];
3448 }
3449 goal_alternative_number = this_alternative_number;
3450 goal_alternative_swapped = swapped;
3451 goal_earlyclobber = this_earlyclobber;
3452 goto finish;
3453 }
3454
3455 /* REJECT, set by the ! and ? constraint characters and when a register
3456 would be reloaded into a non-preferred class, discourages the use of
3457 this alternative for a reload goal. REJECT is incremented by six
3458 for each ? and two for each non-preferred class. */
3459 losers = losers * 6 + reject;
3460
3461 /* If this alternative can be made to work by reloading,
3462 and it needs less reloading than the others checked so far,
3463 record it as the chosen goal for reloading. */
3464 if (! bad && best > losers)
3465 {
3466 for (i = 0; i < noperands; i++)
3467 {
3468 goal_alternative[i] = this_alternative[i];
3469 goal_alternative_win[i] = this_alternative_win[i];
3470 goal_alternative_match_win[i] = this_alternative_match_win[i];
3471 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3472 goal_alternative_matches[i] = this_alternative_matches[i];
3473 goal_alternative_earlyclobber[i]
3474 = this_alternative_earlyclobber[i];
3475 }
3476 goal_alternative_swapped = swapped;
3477 best = losers;
3478 goal_alternative_number = this_alternative_number;
3479 goal_earlyclobber = this_earlyclobber;
3480 }
3481 }
3482
3483 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3484 then we need to try each alternative twice,
3485 the second time matching those two operands
3486 as if we had exchanged them.
3487 To do this, really exchange them in operands.
3488
3489 If we have just tried the alternatives the second time,
3490 return operands to normal and drop through. */
3491
3492 if (commutative >= 0)
3493 {
3494 swapped = !swapped;
3495 if (swapped)
3496 {
3497 register enum reg_class tclass;
3498 register int t;
3499
3500 recog_data.operand[commutative] = substed_operand[commutative + 1];
3501 recog_data.operand[commutative + 1] = substed_operand[commutative];
3502
3503 tclass = preferred_class[commutative];
3504 preferred_class[commutative] = preferred_class[commutative + 1];
3505 preferred_class[commutative + 1] = tclass;
3506
3507 t = pref_or_nothing[commutative];
3508 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3509 pref_or_nothing[commutative + 1] = t;
3510
3511 memcpy (constraints, recog_data.constraints,
3512 noperands * sizeof (char *));
3513 goto try_swapped;
3514 }
3515 else
3516 {
3517 recog_data.operand[commutative] = substed_operand[commutative];
3518 recog_data.operand[commutative + 1]
3519 = substed_operand[commutative + 1];
3520 }
3521 }
3522
3523 /* The operands don't meet the constraints.
3524 goal_alternative describes the alternative
3525 that we could reach by reloading the fewest operands.
3526 Reload so as to fit it. */
3527
3528 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3529 {
3530 /* No alternative works with reloads?? */
3531 if (insn_code_number >= 0)
3532 fatal_insn ("Unable to generate reloads for:", insn);
3533 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3534 /* Avoid further trouble with this insn. */
3535 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3536 n_reloads = 0;
3537 return 0;
3538 }
3539
3540 /* Jump to `finish' from above if all operands are valid already.
3541 In that case, goal_alternative_win is all 1. */
3542 finish:
3543
3544 /* Right now, for any pair of operands I and J that are required to match,
3545 with I < J,
3546 goal_alternative_matches[J] is I.
3547 Set up goal_alternative_matched as the inverse function:
3548 goal_alternative_matched[I] = J. */
3549
3550 for (i = 0; i < noperands; i++)
3551 goal_alternative_matched[i] = -1;
3552
3553 for (i = 0; i < noperands; i++)
3554 if (! goal_alternative_win[i]
3555 && goal_alternative_matches[i] >= 0)
3556 goal_alternative_matched[goal_alternative_matches[i]] = i;
3557
3558 for (i = 0; i < noperands; i++)
3559 goal_alternative_win[i] |= goal_alternative_match_win[i];
3560
3561 /* If the best alternative is with operands 1 and 2 swapped,
3562 consider them swapped before reporting the reloads. Update the
3563 operand numbers of any reloads already pushed. */
3564
3565 if (goal_alternative_swapped)
3566 {
3567 register rtx tem;
3568
3569 tem = substed_operand[commutative];
3570 substed_operand[commutative] = substed_operand[commutative + 1];
3571 substed_operand[commutative + 1] = tem;
3572 tem = recog_data.operand[commutative];
3573 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3574 recog_data.operand[commutative + 1] = tem;
3575 tem = *recog_data.operand_loc[commutative];
3576 *recog_data.operand_loc[commutative]
3577 = *recog_data.operand_loc[commutative + 1];
3578 *recog_data.operand_loc[commutative + 1] = tem;
3579
3580 for (i = 0; i < n_reloads; i++)
3581 {
3582 if (rld[i].opnum == commutative)
3583 rld[i].opnum = commutative + 1;
3584 else if (rld[i].opnum == commutative + 1)
3585 rld[i].opnum = commutative;
3586 }
3587 }
3588
3589 for (i = 0; i < noperands; i++)
3590 {
3591 operand_reloadnum[i] = -1;
3592
3593 /* If this is an earlyclobber operand, we need to widen the scope.
3594 The reload must remain valid from the start of the insn being
3595 reloaded until after the operand is stored into its destination.
3596 We approximate this with RELOAD_OTHER even though we know that we
3597 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3598
3599 One special case that is worth checking is when we have an
3600 output that is earlyclobber but isn't used past the insn (typically
3601 a SCRATCH). In this case, we only need have the reload live
3602 through the insn itself, but not for any of our input or output
3603 reloads.
3604 But we must not accidentally narrow the scope of an existing
3605 RELOAD_OTHER reload - leave these alone.
3606
3607 In any case, anything needed to address this operand can remain
3608 however they were previously categorized. */
3609
3610 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3611 operand_type[i]
3612 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3613 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3614 }
3615
3616 /* Any constants that aren't allowed and can't be reloaded
3617 into registers are here changed into memory references. */
3618 for (i = 0; i < noperands; i++)
3619 if (! goal_alternative_win[i]
3620 && CONSTANT_P (recog_data.operand[i])
3621 /* force_const_mem does not accept HIGH. */
3622 && GET_CODE (recog_data.operand[i]) != HIGH
3623 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3624 (enum reg_class) goal_alternative[i])
3625 == NO_REGS)
3626 || no_input_reloads)
3627 && operand_mode[i] != VOIDmode)
3628 {
3629 substed_operand[i] = recog_data.operand[i]
3630 = find_reloads_toplev (force_const_mem (operand_mode[i],
3631 recog_data.operand[i]),
3632 i, address_type[i], ind_levels, 0, insn,
3633 NULL);
3634 if (alternative_allows_memconst (recog_data.constraints[i],
3635 goal_alternative_number))
3636 goal_alternative_win[i] = 1;
3637 }
3638
3639 /* Record the values of the earlyclobber operands for the caller. */
3640 if (goal_earlyclobber)
3641 for (i = 0; i < noperands; i++)
3642 if (goal_alternative_earlyclobber[i])
3643 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3644
3645 /* Now record reloads for all the operands that need them. */
3646 for (i = 0; i < noperands; i++)
3647 if (! goal_alternative_win[i])
3648 {
3649 /* Operands that match previous ones have already been handled. */
3650 if (goal_alternative_matches[i] >= 0)
3651 ;
3652 /* Handle an operand with a nonoffsettable address
3653 appearing where an offsettable address will do
3654 by reloading the address into a base register.
3655
3656 ??? We can also do this when the operand is a register and
3657 reg_equiv_mem is not offsettable, but this is a bit tricky,
3658 so we don't bother with it. It may not be worth doing. */
3659 else if (goal_alternative_matched[i] == -1
3660 && goal_alternative_offmemok[i]
3661 && GET_CODE (recog_data.operand[i]) == MEM)
3662 {
3663 operand_reloadnum[i]
3664 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3665 &XEXP (recog_data.operand[i], 0), (rtx*)0,
3666 BASE_REG_CLASS,
3667 GET_MODE (XEXP (recog_data.operand[i], 0)),
3668 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3669 rld[operand_reloadnum[i]].inc
3670 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3671
3672 /* If this operand is an output, we will have made any
3673 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3674 now we are treating part of the operand as an input, so
3675 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3676
3677 if (modified[i] == RELOAD_WRITE)
3678 {
3679 for (j = 0; j < n_reloads; j++)
3680 {
3681 if (rld[j].opnum == i)
3682 {
3683 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3684 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3685 else if (rld[j].when_needed
3686 == RELOAD_FOR_OUTADDR_ADDRESS)
3687 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3688 }
3689 }
3690 }
3691 }
3692 else if (goal_alternative_matched[i] == -1)
3693 {
3694 operand_reloadnum[i]
3695 = push_reload ((modified[i] != RELOAD_WRITE
3696 ? recog_data.operand[i] : 0),
3697 (modified[i] != RELOAD_READ
3698 ? recog_data.operand[i] : 0),
3699 (modified[i] != RELOAD_WRITE
3700 ? recog_data.operand_loc[i] : 0),
3701 (modified[i] != RELOAD_READ
3702 ? recog_data.operand_loc[i] : 0),
3703 (enum reg_class) goal_alternative[i],
3704 (modified[i] == RELOAD_WRITE
3705 ? VOIDmode : operand_mode[i]),
3706 (modified[i] == RELOAD_READ
3707 ? VOIDmode : operand_mode[i]),
3708 (insn_code_number < 0 ? 0
3709 : insn_data[insn_code_number].operand[i].strict_low),
3710 0, i, operand_type[i]);
3711 }
3712 /* In a matching pair of operands, one must be input only
3713 and the other must be output only.
3714 Pass the input operand as IN and the other as OUT. */
3715 else if (modified[i] == RELOAD_READ
3716 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3717 {
3718 operand_reloadnum[i]
3719 = push_reload (recog_data.operand[i],
3720 recog_data.operand[goal_alternative_matched[i]],
3721 recog_data.operand_loc[i],
3722 recog_data.operand_loc[goal_alternative_matched[i]],
3723 (enum reg_class) goal_alternative[i],
3724 operand_mode[i],
3725 operand_mode[goal_alternative_matched[i]],
3726 0, 0, i, RELOAD_OTHER);
3727 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3728 }
3729 else if (modified[i] == RELOAD_WRITE
3730 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3731 {
3732 operand_reloadnum[goal_alternative_matched[i]]
3733 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3734 recog_data.operand[i],
3735 recog_data.operand_loc[goal_alternative_matched[i]],
3736 recog_data.operand_loc[i],
3737 (enum reg_class) goal_alternative[i],
3738 operand_mode[goal_alternative_matched[i]],
3739 operand_mode[i],
3740 0, 0, i, RELOAD_OTHER);
3741 operand_reloadnum[i] = output_reloadnum;
3742 }
3743 else if (insn_code_number >= 0)
3744 abort ();
3745 else
3746 {
3747 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3748 /* Avoid further trouble with this insn. */
3749 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3750 n_reloads = 0;
3751 return 0;
3752 }
3753 }
3754 else if (goal_alternative_matched[i] < 0
3755 && goal_alternative_matches[i] < 0
3756 && optimize)
3757 {
3758 /* For each non-matching operand that's a MEM or a pseudo-register
3759 that didn't get a hard register, make an optional reload.
3760 This may get done even if the insn needs no reloads otherwise. */
3761
3762 rtx operand = recog_data.operand[i];
3763
3764 while (GET_CODE (operand) == SUBREG)
3765 operand = SUBREG_REG (operand);
3766 if ((GET_CODE (operand) == MEM
3767 || (GET_CODE (operand) == REG
3768 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3769 /* If this is only for an output, the optional reload would not
3770 actually cause us to use a register now, just note that
3771 something is stored here. */
3772 && ((enum reg_class) goal_alternative[i] != NO_REGS
3773 || modified[i] == RELOAD_WRITE)
3774 && ! no_input_reloads
3775 /* An optional output reload might allow to delete INSN later.
3776 We mustn't make in-out reloads on insns that are not permitted
3777 output reloads.
3778 If this is an asm, we can't delete it; we must not even call
3779 push_reload for an optional output reload in this case,
3780 because we can't be sure that the constraint allows a register,
3781 and push_reload verifies the constraints for asms. */
3782 && (modified[i] == RELOAD_READ
3783 || (! no_output_reloads && ! this_insn_is_asm)))
3784 operand_reloadnum[i]
3785 = push_reload ((modified[i] != RELOAD_WRITE
3786 ? recog_data.operand[i] : 0),
3787 (modified[i] != RELOAD_READ
3788 ? recog_data.operand[i] : 0),
3789 (modified[i] != RELOAD_WRITE
3790 ? recog_data.operand_loc[i] : 0),
3791 (modified[i] != RELOAD_READ
3792 ? recog_data.operand_loc[i] : 0),
3793 (enum reg_class) goal_alternative[i],
3794 (modified[i] == RELOAD_WRITE
3795 ? VOIDmode : operand_mode[i]),
3796 (modified[i] == RELOAD_READ
3797 ? VOIDmode : operand_mode[i]),
3798 (insn_code_number < 0 ? 0
3799 : insn_data[insn_code_number].operand[i].strict_low),
3800 1, i, operand_type[i]);
3801 /* If a memory reference remains (either as a MEM or a pseudo that
3802 did not get a hard register), yet we can't make an optional
3803 reload, check if this is actually a pseudo register reference;
3804 we then need to emit a USE and/or a CLOBBER so that reload
3805 inheritance will do the right thing. */
3806 else if (replace
3807 && (GET_CODE (operand) == MEM
3808 || (GET_CODE (operand) == REG
3809 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3810 && reg_renumber [REGNO (operand)] < 0)))
3811 {
3812 operand = *recog_data.operand_loc[i];
3813
3814 while (GET_CODE (operand) == SUBREG)
3815 operand = SUBREG_REG (operand);
3816 if (GET_CODE (operand) == REG)
3817 {
3818 if (modified[i] != RELOAD_WRITE)
3819 /* We mark the USE with QImode so that we recognize
3820 it as one that can be safely deleted at the end
3821 of reload. */
3822 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3823 insn), QImode);
3824 if (modified[i] != RELOAD_READ)
3825 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3826 }
3827 }
3828 }
3829 else if (goal_alternative_matches[i] >= 0
3830 && goal_alternative_win[goal_alternative_matches[i]]
3831 && modified[i] == RELOAD_READ
3832 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3833 && ! no_input_reloads && ! no_output_reloads
3834 && optimize)
3835 {
3836 /* Similarly, make an optional reload for a pair of matching
3837 objects that are in MEM or a pseudo that didn't get a hard reg. */
3838
3839 rtx operand = recog_data.operand[i];
3840
3841 while (GET_CODE (operand) == SUBREG)
3842 operand = SUBREG_REG (operand);
3843 if ((GET_CODE (operand) == MEM
3844 || (GET_CODE (operand) == REG
3845 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3846 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3847 != NO_REGS))
3848 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3849 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3850 recog_data.operand[i],
3851 recog_data.operand_loc[goal_alternative_matches[i]],
3852 recog_data.operand_loc[i],
3853 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3854 operand_mode[goal_alternative_matches[i]],
3855 operand_mode[i],
3856 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3857 }
3858
3859 /* Perform whatever substitutions on the operands we are supposed
3860 to make due to commutativity or replacement of registers
3861 with equivalent constants or memory slots. */
3862
3863 for (i = 0; i < noperands; i++)
3864 {
3865 /* We only do this on the last pass through reload, because it is
3866 possible for some data (like reg_equiv_address) to be changed during
3867 later passes. Moreover, we loose the opportunity to get a useful
3868 reload_{in,out}_reg when we do these replacements. */
3869
3870 if (replace)
3871 {
3872 rtx substitution = substed_operand[i];
3873
3874 *recog_data.operand_loc[i] = substitution;
3875
3876 /* If we're replacing an operand with a LABEL_REF, we need
3877 to make sure that there's a REG_LABEL note attached to
3878 this instruction. */
3879 if (GET_CODE (insn) != JUMP_INSN
3880 && GET_CODE (substitution) == LABEL_REF
3881 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3882 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3883 XEXP (substitution, 0),
3884 REG_NOTES (insn));
3885 }
3886 else
3887 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3888 }
3889
3890 /* If this insn pattern contains any MATCH_DUP's, make sure that
3891 they will be substituted if the operands they match are substituted.
3892 Also do now any substitutions we already did on the operands.
3893
3894 Don't do this if we aren't making replacements because we might be
3895 propagating things allocated by frame pointer elimination into places
3896 it doesn't expect. */
3897
3898 if (insn_code_number >= 0 && replace)
3899 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3900 {
3901 int opno = recog_data.dup_num[i];
3902 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3903 if (operand_reloadnum[opno] >= 0)
3904 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3905 insn_data[insn_code_number].operand[opno].mode);
3906 }
3907
3908 #if 0
3909 /* This loses because reloading of prior insns can invalidate the equivalence
3910 (or at least find_equiv_reg isn't smart enough to find it any more),
3911 causing this insn to need more reload regs than it needed before.
3912 It may be too late to make the reload regs available.
3913 Now this optimization is done safely in choose_reload_regs. */
3914
3915 /* For each reload of a reg into some other class of reg,
3916 search for an existing equivalent reg (same value now) in the right class.
3917 We can use it as long as we don't need to change its contents. */
3918 for (i = 0; i < n_reloads; i++)
3919 if (rld[i].reg_rtx == 0
3920 && rld[i].in != 0
3921 && GET_CODE (rld[i].in) == REG
3922 && rld[i].out == 0)
3923 {
3924 rld[i].reg_rtx
3925 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3926 static_reload_reg_p, 0, rld[i].inmode);
3927 /* Prevent generation of insn to load the value
3928 because the one we found already has the value. */
3929 if (rld[i].reg_rtx)
3930 rld[i].in = rld[i].reg_rtx;
3931 }
3932 #endif
3933
3934 /* Perhaps an output reload can be combined with another
3935 to reduce needs by one. */
3936 if (!goal_earlyclobber)
3937 combine_reloads ();
3938
3939 /* If we have a pair of reloads for parts of an address, they are reloading
3940 the same object, the operands themselves were not reloaded, and they
3941 are for two operands that are supposed to match, merge the reloads and
3942 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3943
3944 for (i = 0; i < n_reloads; i++)
3945 {
3946 int k;
3947
3948 for (j = i + 1; j < n_reloads; j++)
3949 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3950 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3951 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3952 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3953 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3954 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3955 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3956 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3957 && rtx_equal_p (rld[i].in, rld[j].in)
3958 && (operand_reloadnum[rld[i].opnum] < 0
3959 || rld[operand_reloadnum[rld[i].opnum]].optional)
3960 && (operand_reloadnum[rld[j].opnum] < 0
3961 || rld[operand_reloadnum[rld[j].opnum]].optional)
3962 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3963 || (goal_alternative_matches[rld[j].opnum]
3964 == rld[i].opnum)))
3965 {
3966 for (k = 0; k < n_replacements; k++)
3967 if (replacements[k].what == j)
3968 replacements[k].what = i;
3969
3970 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3971 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3972 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3973 else
3974 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3975 rld[j].in = 0;
3976 }
3977 }
3978
3979 /* Scan all the reloads and update their type.
3980 If a reload is for the address of an operand and we didn't reload
3981 that operand, change the type. Similarly, change the operand number
3982 of a reload when two operands match. If a reload is optional, treat it
3983 as though the operand isn't reloaded.
3984
3985 ??? This latter case is somewhat odd because if we do the optional
3986 reload, it means the object is hanging around. Thus we need only
3987 do the address reload if the optional reload was NOT done.
3988
3989 Change secondary reloads to be the address type of their operand, not
3990 the normal type.
3991
3992 If an operand's reload is now RELOAD_OTHER, change any
3993 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3994 RELOAD_FOR_OTHER_ADDRESS. */
3995
3996 for (i = 0; i < n_reloads; i++)
3997 {
3998 if (rld[i].secondary_p
3999 && rld[i].when_needed == operand_type[rld[i].opnum])
4000 rld[i].when_needed = address_type[rld[i].opnum];
4001
4002 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4003 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4004 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4005 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4006 && (operand_reloadnum[rld[i].opnum] < 0
4007 || rld[operand_reloadnum[rld[i].opnum]].optional))
4008 {
4009 /* If we have a secondary reload to go along with this reload,
4010 change its type to RELOAD_FOR_OPADDR_ADDR. */
4011
4012 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4013 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4014 && rld[i].secondary_in_reload != -1)
4015 {
4016 int secondary_in_reload = rld[i].secondary_in_reload;
4017
4018 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4019
4020 /* If there's a tertiary reload we have to change it also. */
4021 if (secondary_in_reload > 0
4022 && rld[secondary_in_reload].secondary_in_reload != -1)
4023 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4024 = RELOAD_FOR_OPADDR_ADDR;
4025 }
4026
4027 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4028 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4029 && rld[i].secondary_out_reload != -1)
4030 {
4031 int secondary_out_reload = rld[i].secondary_out_reload;
4032
4033 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4034
4035 /* If there's a tertiary reload we have to change it also. */
4036 if (secondary_out_reload
4037 && rld[secondary_out_reload].secondary_out_reload != -1)
4038 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4039 = RELOAD_FOR_OPADDR_ADDR;
4040 }
4041
4042 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4043 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4044 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4045 else
4046 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4047 }
4048
4049 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4050 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4051 && operand_reloadnum[rld[i].opnum] >= 0
4052 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4053 == RELOAD_OTHER))
4054 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4055
4056 if (goal_alternative_matches[rld[i].opnum] >= 0)
4057 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4058 }
4059
4060 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4061 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4062 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4063
4064 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4065 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4066 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4067 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4068 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4069 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4070 This is complicated by the fact that a single operand can have more
4071 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4072 choose_reload_regs without affecting code quality, and cases that
4073 actually fail are extremely rare, so it turns out to be better to fix
4074 the problem here by not generating cases that choose_reload_regs will
4075 fail for. */
4076 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4077 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4078 a single operand.
4079 We can reduce the register pressure by exploiting that a
4080 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4081 does not conflict with any of them, if it is only used for the first of
4082 the RELOAD_FOR_X_ADDRESS reloads. */
4083 {
4084 int first_op_addr_num = -2;
4085 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4086 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4087 int need_change = 0;
4088 /* We use last_op_addr_reload and the contents of the above arrays
4089 first as flags - -2 means no instance encountered, -1 means exactly
4090 one instance encountered.
4091 If more than one instance has been encountered, we store the reload
4092 number of the first reload of the kind in question; reload numbers
4093 are known to be non-negative. */
4094 for (i = 0; i < noperands; i++)
4095 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4096 for (i = n_reloads - 1; i >= 0; i--)
4097 {
4098 switch (rld[i].when_needed)
4099 {
4100 case RELOAD_FOR_OPERAND_ADDRESS:
4101 if (++first_op_addr_num >= 0)
4102 {
4103 first_op_addr_num = i;
4104 need_change = 1;
4105 }
4106 break;
4107 case RELOAD_FOR_INPUT_ADDRESS:
4108 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4109 {
4110 first_inpaddr_num[rld[i].opnum] = i;
4111 need_change = 1;
4112 }
4113 break;
4114 case RELOAD_FOR_OUTPUT_ADDRESS:
4115 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4116 {
4117 first_outpaddr_num[rld[i].opnum] = i;
4118 need_change = 1;
4119 }
4120 break;
4121 default:
4122 break;
4123 }
4124 }
4125
4126 if (need_change)
4127 {
4128 for (i = 0; i < n_reloads; i++)
4129 {
4130 int first_num;
4131 enum reload_type type;
4132
4133 switch (rld[i].when_needed)
4134 {
4135 case RELOAD_FOR_OPADDR_ADDR:
4136 first_num = first_op_addr_num;
4137 type = RELOAD_FOR_OPERAND_ADDRESS;
4138 break;
4139 case RELOAD_FOR_INPADDR_ADDRESS:
4140 first_num = first_inpaddr_num[rld[i].opnum];
4141 type = RELOAD_FOR_INPUT_ADDRESS;
4142 break;
4143 case RELOAD_FOR_OUTADDR_ADDRESS:
4144 first_num = first_outpaddr_num[rld[i].opnum];
4145 type = RELOAD_FOR_OUTPUT_ADDRESS;
4146 break;
4147 default:
4148 continue;
4149 }
4150 if (first_num < 0)
4151 continue;
4152 else if (i > first_num)
4153 rld[i].when_needed = type;
4154 else
4155 {
4156 /* Check if the only TYPE reload that uses reload I is
4157 reload FIRST_NUM. */
4158 for (j = n_reloads - 1; j > first_num; j--)
4159 {
4160 if (rld[j].when_needed == type
4161 && (rld[i].secondary_p
4162 ? rld[j].secondary_in_reload == i
4163 : reg_mentioned_p (rld[i].in, rld[j].in)))
4164 {
4165 rld[i].when_needed = type;
4166 break;
4167 }
4168 }
4169 }
4170 }
4171 }
4172 }
4173
4174 /* See if we have any reloads that are now allowed to be merged
4175 because we've changed when the reload is needed to
4176 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4177 check for the most common cases. */
4178
4179 for (i = 0; i < n_reloads; i++)
4180 if (rld[i].in != 0 && rld[i].out == 0
4181 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4182 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4183 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4184 for (j = 0; j < n_reloads; j++)
4185 if (i != j && rld[j].in != 0 && rld[j].out == 0
4186 && rld[j].when_needed == rld[i].when_needed
4187 && MATCHES (rld[i].in, rld[j].in)
4188 && rld[i].class == rld[j].class
4189 && !rld[i].nocombine && !rld[j].nocombine
4190 && rld[i].reg_rtx == rld[j].reg_rtx)
4191 {
4192 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4193 transfer_replacements (i, j);
4194 rld[j].in = 0;
4195 }
4196
4197 #ifdef HAVE_cc0
4198 /* If we made any reloads for addresses, see if they violate a
4199 "no input reloads" requirement for this insn. But loads that we
4200 do after the insn (such as for output addresses) are fine. */
4201 if (no_input_reloads)
4202 for (i = 0; i < n_reloads; i++)
4203 if (rld[i].in != 0
4204 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4205 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4206 abort ();
4207 #endif
4208
4209 /* Compute reload_mode and reload_nregs. */
4210 for (i = 0; i < n_reloads; i++)
4211 {
4212 rld[i].mode
4213 = (rld[i].inmode == VOIDmode
4214 || (GET_MODE_SIZE (rld[i].outmode)
4215 > GET_MODE_SIZE (rld[i].inmode)))
4216 ? rld[i].outmode : rld[i].inmode;
4217
4218 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4219 }
4220
4221 return retval;
4222 }
4223
4224 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4225 accepts a memory operand with constant address. */
4226
4227 static int
4228 alternative_allows_memconst (constraint, altnum)
4229 const char *constraint;
4230 int altnum;
4231 {
4232 register int c;
4233 /* Skip alternatives before the one requested. */
4234 while (altnum > 0)
4235 {
4236 while (*constraint++ != ',');
4237 altnum--;
4238 }
4239 /* Scan the requested alternative for 'm' or 'o'.
4240 If one of them is present, this alternative accepts memory constants. */
4241 while ((c = *constraint++) && c != ',' && c != '#')
4242 if (c == 'm' || c == 'o')
4243 return 1;
4244 return 0;
4245 }
4246 \f
4247 /* Scan X for memory references and scan the addresses for reloading.
4248 Also checks for references to "constant" regs that we want to eliminate
4249 and replaces them with the values they stand for.
4250 We may alter X destructively if it contains a reference to such.
4251 If X is just a constant reg, we return the equivalent value
4252 instead of X.
4253
4254 IND_LEVELS says how many levels of indirect addressing this machine
4255 supports.
4256
4257 OPNUM and TYPE identify the purpose of the reload.
4258
4259 IS_SET_DEST is true if X is the destination of a SET, which is not
4260 appropriate to be replaced by a constant.
4261
4262 INSN, if nonzero, is the insn in which we do the reload. It is used
4263 to determine if we may generate output reloads, and where to put USEs
4264 for pseudos that we have to replace with stack slots.
4265
4266 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4267 result of find_reloads_address. */
4268
4269 static rtx
4270 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4271 address_reloaded)
4272 rtx x;
4273 int opnum;
4274 enum reload_type type;
4275 int ind_levels;
4276 int is_set_dest;
4277 rtx insn;
4278 int *address_reloaded;
4279 {
4280 register RTX_CODE code = GET_CODE (x);
4281
4282 register const char *fmt = GET_RTX_FORMAT (code);
4283 register int i;
4284 int copied;
4285
4286 if (code == REG)
4287 {
4288 /* This code is duplicated for speed in find_reloads. */
4289 register int regno = REGNO (x);
4290 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4291 x = reg_equiv_constant[regno];
4292 #if 0
4293 /* This creates (subreg (mem...)) which would cause an unnecessary
4294 reload of the mem. */
4295 else if (reg_equiv_mem[regno] != 0)
4296 x = reg_equiv_mem[regno];
4297 #endif
4298 else if (reg_equiv_memory_loc[regno]
4299 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4300 {
4301 rtx mem = make_memloc (x, regno);
4302 if (reg_equiv_address[regno]
4303 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4304 {
4305 /* If this is not a toplevel operand, find_reloads doesn't see
4306 this substitution. We have to emit a USE of the pseudo so
4307 that delete_output_reload can see it. */
4308 if (replace_reloads && recog_data.operand[opnum] != x)
4309 /* We mark the USE with QImode so that we recognize it
4310 as one that can be safely deleted at the end of
4311 reload. */
4312 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4313 QImode);
4314 x = mem;
4315 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4316 opnum, type, ind_levels, insn);
4317 if (address_reloaded)
4318 *address_reloaded = i;
4319 }
4320 }
4321 return x;
4322 }
4323 if (code == MEM)
4324 {
4325 rtx tem = x;
4326
4327 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4328 opnum, type, ind_levels, insn);
4329 if (address_reloaded)
4330 *address_reloaded = i;
4331
4332 return tem;
4333 }
4334
4335 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4336 {
4337 /* Check for SUBREG containing a REG that's equivalent to a constant.
4338 If the constant has a known value, truncate it right now.
4339 Similarly if we are extracting a single-word of a multi-word
4340 constant. If the constant is symbolic, allow it to be substituted
4341 normally. push_reload will strip the subreg later. If the
4342 constant is VOIDmode, abort because we will lose the mode of
4343 the register (this should never happen because one of the cases
4344 above should handle it). */
4345
4346 register int regno = REGNO (SUBREG_REG (x));
4347 rtx tem;
4348
4349 if (subreg_lowpart_p (x)
4350 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4351 && reg_equiv_constant[regno] != 0
4352 && (tem = gen_lowpart_common (GET_MODE (x),
4353 reg_equiv_constant[regno])) != 0)
4354 return tem;
4355
4356 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4357 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4358 && reg_equiv_constant[regno] != 0
4359 && (tem = operand_subword (reg_equiv_constant[regno],
4360 SUBREG_BYTE (x) / UNITS_PER_WORD, 0,
4361 GET_MODE (SUBREG_REG (x)))) != 0)
4362 {
4363 /* TEM is now a word sized constant for the bits from X that
4364 we wanted. However, TEM may be the wrong representation.
4365
4366 Use gen_lowpart_common to convert a CONST_INT into a
4367 CONST_DOUBLE and vice versa as needed according to by the mode
4368 of the SUBREG. */
4369 tem = gen_lowpart_common (GET_MODE (x), tem);
4370 if (!tem)
4371 abort ();
4372 return tem;
4373 }
4374
4375 /* If the SUBREG is wider than a word, the above test will fail.
4376 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4377 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4378 a 32 bit target. We still can - and have to - handle this
4379 for non-paradoxical subregs of CONST_INTs. */
4380 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4381 && reg_equiv_constant[regno] != 0
4382 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4383 && (GET_MODE_SIZE (GET_MODE (x))
4384 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4385 {
4386 int shift = SUBREG_BYTE (x) * BITS_PER_UNIT;
4387 if (WORDS_BIG_ENDIAN)
4388 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4389 - GET_MODE_BITSIZE (GET_MODE (x))
4390 - shift);
4391 /* Here we use the knowledge that CONST_INTs have a
4392 HOST_WIDE_INT field. */
4393 if (shift >= HOST_BITS_PER_WIDE_INT)
4394 shift = HOST_BITS_PER_WIDE_INT - 1;
4395 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4396 }
4397
4398 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4399 && reg_equiv_constant[regno] != 0
4400 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4401 abort ();
4402
4403 /* If the subreg contains a reg that will be converted to a mem,
4404 convert the subreg to a narrower memref now.
4405 Otherwise, we would get (subreg (mem ...) ...),
4406 which would force reload of the mem.
4407
4408 We also need to do this if there is an equivalent MEM that is
4409 not offsettable. In that case, alter_subreg would produce an
4410 invalid address on big-endian machines.
4411
4412 For machines that extend byte loads, we must not reload using
4413 a wider mode if we have a paradoxical SUBREG. find_reloads will
4414 force a reload in that case. So we should not do anything here. */
4415
4416 else if (regno >= FIRST_PSEUDO_REGISTER
4417 #ifdef LOAD_EXTEND_OP
4418 && (GET_MODE_SIZE (GET_MODE (x))
4419 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4420 #endif
4421 && (reg_equiv_address[regno] != 0
4422 || (reg_equiv_mem[regno] != 0
4423 && (! strict_memory_address_p (GET_MODE (x),
4424 XEXP (reg_equiv_mem[regno], 0))
4425 || ! offsettable_memref_p (reg_equiv_mem[regno])
4426 || num_not_at_initial_offset))))
4427 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4428 insn);
4429 }
4430
4431 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4432 {
4433 if (fmt[i] == 'e')
4434 {
4435 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4436 ind_levels, is_set_dest, insn,
4437 address_reloaded);
4438 /* If we have replaced a reg with it's equivalent memory loc -
4439 that can still be handled here e.g. if it's in a paradoxical
4440 subreg - we must make the change in a copy, rather than using
4441 a destructive change. This way, find_reloads can still elect
4442 not to do the change. */
4443 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4444 {
4445 x = shallow_copy_rtx (x);
4446 copied = 1;
4447 }
4448 XEXP (x, i) = new_part;
4449 }
4450 }
4451 return x;
4452 }
4453
4454 /* Return a mem ref for the memory equivalent of reg REGNO.
4455 This mem ref is not shared with anything. */
4456
4457 static rtx
4458 make_memloc (ad, regno)
4459 rtx ad;
4460 int regno;
4461 {
4462 /* We must rerun eliminate_regs, in case the elimination
4463 offsets have changed. */
4464 rtx tem
4465 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4466
4467 /* If TEM might contain a pseudo, we must copy it to avoid
4468 modifying it when we do the substitution for the reload. */
4469 if (rtx_varies_p (tem, 0))
4470 tem = copy_rtx (tem);
4471
4472 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4473 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4474
4475 /* Copy the result if it's still the same as the equivalence, to avoid
4476 modifying it when we do the substitution for the reload. */
4477 if (tem == reg_equiv_memory_loc[regno])
4478 tem = copy_rtx (tem);
4479 return tem;
4480 }
4481
4482 /* Record all reloads needed for handling memory address AD
4483 which appears in *LOC in a memory reference to mode MODE
4484 which itself is found in location *MEMREFLOC.
4485 Note that we take shortcuts assuming that no multi-reg machine mode
4486 occurs as part of an address.
4487
4488 OPNUM and TYPE specify the purpose of this reload.
4489
4490 IND_LEVELS says how many levels of indirect addressing this machine
4491 supports.
4492
4493 INSN, if nonzero, is the insn in which we do the reload. It is used
4494 to determine if we may generate output reloads, and where to put USEs
4495 for pseudos that we have to replace with stack slots.
4496
4497 Value is nonzero if this address is reloaded or replaced as a whole.
4498 This is interesting to the caller if the address is an autoincrement.
4499
4500 Note that there is no verification that the address will be valid after
4501 this routine does its work. Instead, we rely on the fact that the address
4502 was valid when reload started. So we need only undo things that reload
4503 could have broken. These are wrong register types, pseudos not allocated
4504 to a hard register, and frame pointer elimination. */
4505
4506 static int
4507 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4508 enum machine_mode mode;
4509 rtx *memrefloc;
4510 rtx ad;
4511 rtx *loc;
4512 int opnum;
4513 enum reload_type type;
4514 int ind_levels;
4515 rtx insn;
4516 {
4517 register int regno;
4518 int removed_and = 0;
4519 rtx tem;
4520
4521 /* If the address is a register, see if it is a legitimate address and
4522 reload if not. We first handle the cases where we need not reload
4523 or where we must reload in a non-standard way. */
4524
4525 if (GET_CODE (ad) == REG)
4526 {
4527 regno = REGNO (ad);
4528
4529 /* If the register is equivalent to an invariant expression, substitute
4530 the invariant, and eliminate any eliminable register references. */
4531 tem = reg_equiv_constant[regno];
4532 if (tem != 0
4533 && (tem = eliminate_regs (tem, mode, insn))
4534 && strict_memory_address_p (mode, tem))
4535 {
4536 *loc = ad = tem;
4537 return 0;
4538 }
4539
4540 tem = reg_equiv_memory_loc[regno];
4541 if (tem != 0)
4542 {
4543 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4544 {
4545 tem = make_memloc (ad, regno);
4546 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4547 {
4548 find_reloads_address (GET_MODE (tem), (rtx*)0, XEXP (tem, 0),
4549 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4550 ind_levels, insn);
4551 }
4552 /* We can avoid a reload if the register's equivalent memory
4553 expression is valid as an indirect memory address.
4554 But not all addresses are valid in a mem used as an indirect
4555 address: only reg or reg+constant. */
4556
4557 if (ind_levels > 0
4558 && strict_memory_address_p (mode, tem)
4559 && (GET_CODE (XEXP (tem, 0)) == REG
4560 || (GET_CODE (XEXP (tem, 0)) == PLUS
4561 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4562 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4563 {
4564 /* TEM is not the same as what we'll be replacing the
4565 pseudo with after reload, put a USE in front of INSN
4566 in the final reload pass. */
4567 if (replace_reloads
4568 && num_not_at_initial_offset
4569 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4570 {
4571 *loc = tem;
4572 /* We mark the USE with QImode so that we
4573 recognize it as one that can be safely
4574 deleted at the end of reload. */
4575 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4576 insn), QImode);
4577
4578 /* This doesn't really count as replacing the address
4579 as a whole, since it is still a memory access. */
4580 }
4581 return 0;
4582 }
4583 ad = tem;
4584 }
4585 }
4586
4587 /* The only remaining case where we can avoid a reload is if this is a
4588 hard register that is valid as a base register and which is not the
4589 subject of a CLOBBER in this insn. */
4590
4591 else if (regno < FIRST_PSEUDO_REGISTER
4592 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4593 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4594 return 0;
4595
4596 /* If we do not have one of the cases above, we must do the reload. */
4597 push_reload (ad, NULL_RTX, loc, (rtx*)0, BASE_REG_CLASS,
4598 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4599 return 1;
4600 }
4601
4602 if (strict_memory_address_p (mode, ad))
4603 {
4604 /* The address appears valid, so reloads are not needed.
4605 But the address may contain an eliminable register.
4606 This can happen because a machine with indirect addressing
4607 may consider a pseudo register by itself a valid address even when
4608 it has failed to get a hard reg.
4609 So do a tree-walk to find and eliminate all such regs. */
4610
4611 /* But first quickly dispose of a common case. */
4612 if (GET_CODE (ad) == PLUS
4613 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4614 && GET_CODE (XEXP (ad, 0)) == REG
4615 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4616 return 0;
4617
4618 subst_reg_equivs_changed = 0;
4619 *loc = subst_reg_equivs (ad, insn);
4620
4621 if (! subst_reg_equivs_changed)
4622 return 0;
4623
4624 /* Check result for validity after substitution. */
4625 if (strict_memory_address_p (mode, ad))
4626 return 0;
4627 }
4628
4629 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4630 do
4631 {
4632 if (memrefloc)
4633 {
4634 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4635 ind_levels, win);
4636 }
4637 break;
4638 win:
4639 *memrefloc = copy_rtx (*memrefloc);
4640 XEXP (*memrefloc, 0) = ad;
4641 move_replacements (&ad, &XEXP (*memrefloc, 0));
4642 return 1;
4643 }
4644 while (0);
4645 #endif
4646
4647 /* The address is not valid. We have to figure out why. First see if
4648 we have an outer AND and remove it if so. Then analyze what's inside. */
4649
4650 if (GET_CODE (ad) == AND)
4651 {
4652 removed_and = 1;
4653 loc = &XEXP (ad, 0);
4654 ad = *loc;
4655 }
4656
4657 /* One possibility for why the address is invalid is that it is itself
4658 a MEM. This can happen when the frame pointer is being eliminated, a
4659 pseudo is not allocated to a hard register, and the offset between the
4660 frame and stack pointers is not its initial value. In that case the
4661 pseudo will have been replaced by a MEM referring to the
4662 stack pointer. */
4663 if (GET_CODE (ad) == MEM)
4664 {
4665 /* First ensure that the address in this MEM is valid. Then, unless
4666 indirect addresses are valid, reload the MEM into a register. */
4667 tem = ad;
4668 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4669 opnum, ADDR_TYPE (type),
4670 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4671
4672 /* If tem was changed, then we must create a new memory reference to
4673 hold it and store it back into memrefloc. */
4674 if (tem != ad && memrefloc)
4675 {
4676 *memrefloc = copy_rtx (*memrefloc);
4677 copy_replacements (tem, XEXP (*memrefloc, 0));
4678 loc = &XEXP (*memrefloc, 0);
4679 if (removed_and)
4680 loc = &XEXP (*loc, 0);
4681 }
4682
4683 /* Check similar cases as for indirect addresses as above except
4684 that we can allow pseudos and a MEM since they should have been
4685 taken care of above. */
4686
4687 if (ind_levels == 0
4688 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4689 || GET_CODE (XEXP (tem, 0)) == MEM
4690 || ! (GET_CODE (XEXP (tem, 0)) == REG
4691 || (GET_CODE (XEXP (tem, 0)) == PLUS
4692 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4693 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4694 {
4695 /* Must use TEM here, not AD, since it is the one that will
4696 have any subexpressions reloaded, if needed. */
4697 push_reload (tem, NULL_RTX, loc, (rtx*)0,
4698 BASE_REG_CLASS, GET_MODE (tem),
4699 VOIDmode, 0,
4700 0, opnum, type);
4701 return ! removed_and;
4702 }
4703 else
4704 return 0;
4705 }
4706
4707 /* If we have address of a stack slot but it's not valid because the
4708 displacement is too large, compute the sum in a register.
4709 Handle all base registers here, not just fp/ap/sp, because on some
4710 targets (namely SH) we can also get too large displacements from
4711 big-endian corrections. */
4712 else if (GET_CODE (ad) == PLUS
4713 && GET_CODE (XEXP (ad, 0)) == REG
4714 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4715 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4716 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4717 {
4718 /* Unshare the MEM rtx so we can safely alter it. */
4719 if (memrefloc)
4720 {
4721 *memrefloc = copy_rtx (*memrefloc);
4722 loc = &XEXP (*memrefloc, 0);
4723 if (removed_and)
4724 loc = &XEXP (*loc, 0);
4725 }
4726
4727 if (double_reg_address_ok)
4728 {
4729 /* Unshare the sum as well. */
4730 *loc = ad = copy_rtx (ad);
4731
4732 /* Reload the displacement into an index reg.
4733 We assume the frame pointer or arg pointer is a base reg. */
4734 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4735 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4736 type, ind_levels);
4737 return 0;
4738 }
4739 else
4740 {
4741 /* If the sum of two regs is not necessarily valid,
4742 reload the sum into a base reg.
4743 That will at least work. */
4744 find_reloads_address_part (ad, loc, BASE_REG_CLASS,
4745 Pmode, opnum, type, ind_levels);
4746 }
4747 return ! removed_and;
4748 }
4749
4750 /* If we have an indexed stack slot, there are three possible reasons why
4751 it might be invalid: The index might need to be reloaded, the address
4752 might have been made by frame pointer elimination and hence have a
4753 constant out of range, or both reasons might apply.
4754
4755 We can easily check for an index needing reload, but even if that is the
4756 case, we might also have an invalid constant. To avoid making the
4757 conservative assumption and requiring two reloads, we see if this address
4758 is valid when not interpreted strictly. If it is, the only problem is
4759 that the index needs a reload and find_reloads_address_1 will take care
4760 of it.
4761
4762 If we decide to do something here, it must be that
4763 `double_reg_address_ok' is true and that this address rtl was made by
4764 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4765 rework the sum so that the reload register will be added to the index.
4766 This is safe because we know the address isn't shared.
4767
4768 We check for fp/ap/sp as both the first and second operand of the
4769 innermost PLUS. */
4770
4771 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4772 && GET_CODE (XEXP (ad, 0)) == PLUS
4773 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4774 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4775 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4776 #endif
4777 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4778 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4779 #endif
4780 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4781 && ! memory_address_p (mode, ad))
4782 {
4783 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4784 plus_constant (XEXP (XEXP (ad, 0), 0),
4785 INTVAL (XEXP (ad, 1))),
4786 XEXP (XEXP (ad, 0), 1));
4787 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4788 GET_MODE (ad), opnum, type, ind_levels);
4789 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4790 type, 0, insn);
4791
4792 return 0;
4793 }
4794
4795 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4796 && GET_CODE (XEXP (ad, 0)) == PLUS
4797 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4798 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4799 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4800 #endif
4801 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4802 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4803 #endif
4804 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4805 && ! memory_address_p (mode, ad))
4806 {
4807 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4808 XEXP (XEXP (ad, 0), 0),
4809 plus_constant (XEXP (XEXP (ad, 0), 1),
4810 INTVAL (XEXP (ad, 1))));
4811 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
4812 GET_MODE (ad), opnum, type, ind_levels);
4813 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4814 type, 0, insn);
4815
4816 return 0;
4817 }
4818
4819 /* See if address becomes valid when an eliminable register
4820 in a sum is replaced. */
4821
4822 tem = ad;
4823 if (GET_CODE (ad) == PLUS)
4824 tem = subst_indexed_address (ad);
4825 if (tem != ad && strict_memory_address_p (mode, tem))
4826 {
4827 /* Ok, we win that way. Replace any additional eliminable
4828 registers. */
4829
4830 subst_reg_equivs_changed = 0;
4831 tem = subst_reg_equivs (tem, insn);
4832
4833 /* Make sure that didn't make the address invalid again. */
4834
4835 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4836 {
4837 *loc = tem;
4838 return 0;
4839 }
4840 }
4841
4842 /* If constants aren't valid addresses, reload the constant address
4843 into a register. */
4844 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4845 {
4846 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4847 Unshare it so we can safely alter it. */
4848 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4849 && CONSTANT_POOL_ADDRESS_P (ad))
4850 {
4851 *memrefloc = copy_rtx (*memrefloc);
4852 loc = &XEXP (*memrefloc, 0);
4853 if (removed_and)
4854 loc = &XEXP (*loc, 0);
4855 }
4856
4857 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
4858 ind_levels);
4859 return ! removed_and;
4860 }
4861
4862 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4863 insn);
4864 }
4865 \f
4866 /* Find all pseudo regs appearing in AD
4867 that are eliminable in favor of equivalent values
4868 and do not have hard regs; replace them by their equivalents.
4869 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4870 front of it for pseudos that we have to replace with stack slots. */
4871
4872 static rtx
4873 subst_reg_equivs (ad, insn)
4874 rtx ad;
4875 rtx insn;
4876 {
4877 register RTX_CODE code = GET_CODE (ad);
4878 register int i;
4879 register const char *fmt;
4880
4881 switch (code)
4882 {
4883 case HIGH:
4884 case CONST_INT:
4885 case CONST:
4886 case CONST_DOUBLE:
4887 case SYMBOL_REF:
4888 case LABEL_REF:
4889 case PC:
4890 case CC0:
4891 return ad;
4892
4893 case REG:
4894 {
4895 register int regno = REGNO (ad);
4896
4897 if (reg_equiv_constant[regno] != 0)
4898 {
4899 subst_reg_equivs_changed = 1;
4900 return reg_equiv_constant[regno];
4901 }
4902 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4903 {
4904 rtx mem = make_memloc (ad, regno);
4905 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4906 {
4907 subst_reg_equivs_changed = 1;
4908 /* We mark the USE with QImode so that we recognize it
4909 as one that can be safely deleted at the end of
4910 reload. */
4911 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
4912 QImode);
4913 return mem;
4914 }
4915 }
4916 }
4917 return ad;
4918
4919 case PLUS:
4920 /* Quickly dispose of a common case. */
4921 if (XEXP (ad, 0) == frame_pointer_rtx
4922 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4923 return ad;
4924 break;
4925
4926 default:
4927 break;
4928 }
4929
4930 fmt = GET_RTX_FORMAT (code);
4931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4932 if (fmt[i] == 'e')
4933 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4934 return ad;
4935 }
4936 \f
4937 /* Compute the sum of X and Y, making canonicalizations assumed in an
4938 address, namely: sum constant integers, surround the sum of two
4939 constants with a CONST, put the constant as the second operand, and
4940 group the constant on the outermost sum.
4941
4942 This routine assumes both inputs are already in canonical form. */
4943
4944 rtx
4945 form_sum (x, y)
4946 rtx x, y;
4947 {
4948 rtx tem;
4949 enum machine_mode mode = GET_MODE (x);
4950
4951 if (mode == VOIDmode)
4952 mode = GET_MODE (y);
4953
4954 if (mode == VOIDmode)
4955 mode = Pmode;
4956
4957 if (GET_CODE (x) == CONST_INT)
4958 return plus_constant (y, INTVAL (x));
4959 else if (GET_CODE (y) == CONST_INT)
4960 return plus_constant (x, INTVAL (y));
4961 else if (CONSTANT_P (x))
4962 tem = x, x = y, y = tem;
4963
4964 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4965 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4966
4967 /* Note that if the operands of Y are specified in the opposite
4968 order in the recursive calls below, infinite recursion will occur. */
4969 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4970 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4971
4972 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4973 constant will have been placed second. */
4974 if (CONSTANT_P (x) && CONSTANT_P (y))
4975 {
4976 if (GET_CODE (x) == CONST)
4977 x = XEXP (x, 0);
4978 if (GET_CODE (y) == CONST)
4979 y = XEXP (y, 0);
4980
4981 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4982 }
4983
4984 return gen_rtx_PLUS (mode, x, y);
4985 }
4986 \f
4987 /* If ADDR is a sum containing a pseudo register that should be
4988 replaced with a constant (from reg_equiv_constant),
4989 return the result of doing so, and also apply the associative
4990 law so that the result is more likely to be a valid address.
4991 (But it is not guaranteed to be one.)
4992
4993 Note that at most one register is replaced, even if more are
4994 replaceable. Also, we try to put the result into a canonical form
4995 so it is more likely to be a valid address.
4996
4997 In all other cases, return ADDR. */
4998
4999 static rtx
5000 subst_indexed_address (addr)
5001 rtx addr;
5002 {
5003 rtx op0 = 0, op1 = 0, op2 = 0;
5004 rtx tem;
5005 int regno;
5006
5007 if (GET_CODE (addr) == PLUS)
5008 {
5009 /* Try to find a register to replace. */
5010 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5011 if (GET_CODE (op0) == REG
5012 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5013 && reg_renumber[regno] < 0
5014 && reg_equiv_constant[regno] != 0)
5015 op0 = reg_equiv_constant[regno];
5016 else if (GET_CODE (op1) == REG
5017 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5018 && reg_renumber[regno] < 0
5019 && reg_equiv_constant[regno] != 0)
5020 op1 = reg_equiv_constant[regno];
5021 else if (GET_CODE (op0) == PLUS
5022 && (tem = subst_indexed_address (op0)) != op0)
5023 op0 = tem;
5024 else if (GET_CODE (op1) == PLUS
5025 && (tem = subst_indexed_address (op1)) != op1)
5026 op1 = tem;
5027 else
5028 return addr;
5029
5030 /* Pick out up to three things to add. */
5031 if (GET_CODE (op1) == PLUS)
5032 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5033 else if (GET_CODE (op0) == PLUS)
5034 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5035
5036 /* Compute the sum. */
5037 if (op2 != 0)
5038 op1 = form_sum (op1, op2);
5039 if (op1 != 0)
5040 op0 = form_sum (op0, op1);
5041
5042 return op0;
5043 }
5044 return addr;
5045 }
5046 \f
5047 /* Update the REG_INC notes for an insn. It updates all REG_INC
5048 notes for the instruction which refer to REGNO the to refer
5049 to the reload number.
5050
5051 INSN is the insn for which any REG_INC notes need updating.
5052
5053 REGNO is the register number which has been reloaded.
5054
5055 RELOADNUM is the reload number. */
5056
5057 static void
5058 update_auto_inc_notes (insn, regno, reloadnum)
5059 rtx insn ATTRIBUTE_UNUSED;
5060 int regno ATTRIBUTE_UNUSED;
5061 int reloadnum ATTRIBUTE_UNUSED;
5062 {
5063 #ifdef AUTO_INC_DEC
5064 rtx link;
5065
5066 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5067 if (REG_NOTE_KIND (link) == REG_INC
5068 && REGNO (XEXP (link, 0)) == regno)
5069 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5070 #endif
5071 }
5072 \f
5073 /* Record the pseudo registers we must reload into hard registers in a
5074 subexpression of a would-be memory address, X referring to a value
5075 in mode MODE. (This function is not called if the address we find
5076 is strictly valid.)
5077
5078 CONTEXT = 1 means we are considering regs as index regs,
5079 = 0 means we are considering them as base regs.
5080
5081 OPNUM and TYPE specify the purpose of any reloads made.
5082
5083 IND_LEVELS says how many levels of indirect addressing are
5084 supported at this point in the address.
5085
5086 INSN, if nonzero, is the insn in which we do the reload. It is used
5087 to determine if we may generate output reloads.
5088
5089 We return nonzero if X, as a whole, is reloaded or replaced. */
5090
5091 /* Note that we take shortcuts assuming that no multi-reg machine mode
5092 occurs as part of an address.
5093 Also, this is not fully machine-customizable; it works for machines
5094 such as VAXen and 68000's and 32000's, but other possible machines
5095 could have addressing modes that this does not handle right. */
5096
5097 static int
5098 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5099 enum machine_mode mode;
5100 rtx x;
5101 int context;
5102 rtx *loc;
5103 int opnum;
5104 enum reload_type type;
5105 int ind_levels;
5106 rtx insn;
5107 {
5108 register RTX_CODE code = GET_CODE (x);
5109
5110 switch (code)
5111 {
5112 case PLUS:
5113 {
5114 register rtx orig_op0 = XEXP (x, 0);
5115 register rtx orig_op1 = XEXP (x, 1);
5116 register RTX_CODE code0 = GET_CODE (orig_op0);
5117 register RTX_CODE code1 = GET_CODE (orig_op1);
5118 register rtx op0 = orig_op0;
5119 register rtx op1 = orig_op1;
5120
5121 if (GET_CODE (op0) == SUBREG)
5122 {
5123 op0 = SUBREG_REG (op0);
5124 code0 = GET_CODE (op0);
5125 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5126 op0 = gen_rtx_REG (word_mode,
5127 (REGNO (op0) +
5128 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5129 GET_MODE (SUBREG_REG (orig_op0)),
5130 SUBREG_BYTE (orig_op0),
5131 GET_MODE (orig_op0))));
5132 }
5133
5134 if (GET_CODE (op1) == SUBREG)
5135 {
5136 op1 = SUBREG_REG (op1);
5137 code1 = GET_CODE (op1);
5138 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5139 /* ??? Why is this given op1's mode and above for
5140 ??? op0 SUBREGs we use word_mode? */
5141 op1 = gen_rtx_REG (GET_MODE (op1),
5142 (REGNO (op1) +
5143 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5144 GET_MODE (SUBREG_REG (orig_op1)),
5145 SUBREG_BYTE (orig_op1),
5146 GET_MODE (orig_op1))));
5147 }
5148
5149 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5150 || code0 == ZERO_EXTEND || code1 == MEM)
5151 {
5152 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5153 type, ind_levels, insn);
5154 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5155 type, ind_levels, insn);
5156 }
5157
5158 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5159 || code1 == ZERO_EXTEND || code0 == MEM)
5160 {
5161 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5162 type, ind_levels, insn);
5163 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5164 type, ind_levels, insn);
5165 }
5166
5167 else if (code0 == CONST_INT || code0 == CONST
5168 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5169 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5170 type, ind_levels, insn);
5171
5172 else if (code1 == CONST_INT || code1 == CONST
5173 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5174 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5175 type, ind_levels, insn);
5176
5177 else if (code0 == REG && code1 == REG)
5178 {
5179 if (REG_OK_FOR_INDEX_P (op0)
5180 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5181 return 0;
5182 else if (REG_OK_FOR_INDEX_P (op1)
5183 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5184 return 0;
5185 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5186 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5187 type, ind_levels, insn);
5188 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5189 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5190 type, ind_levels, insn);
5191 else if (REG_OK_FOR_INDEX_P (op1))
5192 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5193 type, ind_levels, insn);
5194 else if (REG_OK_FOR_INDEX_P (op0))
5195 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5196 type, ind_levels, insn);
5197 else
5198 {
5199 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5200 type, ind_levels, insn);
5201 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5202 type, ind_levels, insn);
5203 }
5204 }
5205
5206 else if (code0 == REG)
5207 {
5208 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5209 type, ind_levels, insn);
5210 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5211 type, ind_levels, insn);
5212 }
5213
5214 else if (code1 == REG)
5215 {
5216 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5217 type, ind_levels, insn);
5218 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5219 type, ind_levels, insn);
5220 }
5221 }
5222
5223 return 0;
5224
5225 case POST_MODIFY:
5226 case PRE_MODIFY:
5227 {
5228 rtx op0 = XEXP (x, 0);
5229 rtx op1 = XEXP (x, 1);
5230
5231 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5232 return 0;
5233
5234 /* Currently, we only support {PRE,POST}_MODIFY constructs
5235 where a base register is {inc,dec}remented by the contents
5236 of another register or by a constant value. Thus, these
5237 operands must match. */
5238 if (op0 != XEXP (op1, 0))
5239 abort ();
5240
5241 /* Require index register (or constant). Let's just handle the
5242 register case in the meantime... If the target allows
5243 auto-modify by a constant then we could try replacing a pseudo
5244 register with its equivalent constant where applicable. */
5245 if (REG_P (XEXP (op1, 1)))
5246 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5247 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5248 opnum, type, ind_levels, insn);
5249
5250 if (REG_P (XEXP (op1, 0)))
5251 {
5252 int regno = REGNO (XEXP (op1, 0));
5253 int reloadnum;
5254
5255 /* A register that is incremented cannot be constant! */
5256 if (regno >= FIRST_PSEUDO_REGISTER
5257 && reg_equiv_constant[regno] != 0)
5258 abort ();
5259
5260 /* Handle a register that is equivalent to a memory location
5261 which cannot be addressed directly. */
5262 if (reg_equiv_memory_loc[regno] != 0
5263 && (reg_equiv_address[regno] != 0
5264 || num_not_at_initial_offset))
5265 {
5266 rtx tem = make_memloc (XEXP (x, 0), regno);
5267
5268 if (reg_equiv_address[regno]
5269 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5270 {
5271 /* First reload the memory location's address.
5272 We can't use ADDR_TYPE (type) here, because we need to
5273 write back the value after reading it, hence we actually
5274 need two registers. */
5275 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5276 &XEXP (tem, 0), opnum,
5277 RELOAD_OTHER,
5278 ind_levels, insn);
5279
5280 /* Then reload the memory location into a base
5281 register. */
5282 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5283 &XEXP (op1, 0), BASE_REG_CLASS,
5284 GET_MODE (x), GET_MODE (x), 0,
5285 0, opnum, RELOAD_OTHER);
5286
5287 update_auto_inc_notes (this_insn, regno, reloadnum);
5288 return 0;
5289 }
5290 }
5291
5292 if (reg_renumber[regno] >= 0)
5293 regno = reg_renumber[regno];
5294
5295 /* We require a base register here... */
5296 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5297 {
5298 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5299 &XEXP (op1, 0), &XEXP (x, 0),
5300 BASE_REG_CLASS,
5301 GET_MODE (x), GET_MODE (x), 0, 0,
5302 opnum, RELOAD_OTHER);
5303
5304 update_auto_inc_notes (this_insn, regno, reloadnum);
5305 return 0;
5306 }
5307 }
5308 else
5309 abort ();
5310 }
5311 return 0;
5312
5313 case POST_INC:
5314 case POST_DEC:
5315 case PRE_INC:
5316 case PRE_DEC:
5317 if (GET_CODE (XEXP (x, 0)) == REG)
5318 {
5319 register int regno = REGNO (XEXP (x, 0));
5320 int value = 0;
5321 rtx x_orig = x;
5322
5323 /* A register that is incremented cannot be constant! */
5324 if (regno >= FIRST_PSEUDO_REGISTER
5325 && reg_equiv_constant[regno] != 0)
5326 abort ();
5327
5328 /* Handle a register that is equivalent to a memory location
5329 which cannot be addressed directly. */
5330 if (reg_equiv_memory_loc[regno] != 0
5331 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5332 {
5333 rtx tem = make_memloc (XEXP (x, 0), regno);
5334 if (reg_equiv_address[regno]
5335 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5336 {
5337 /* First reload the memory location's address.
5338 We can't use ADDR_TYPE (type) here, because we need to
5339 write back the value after reading it, hence we actually
5340 need two registers. */
5341 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5342 &XEXP (tem, 0), opnum, type,
5343 ind_levels, insn);
5344 /* Put this inside a new increment-expression. */
5345 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5346 /* Proceed to reload that, as if it contained a register. */
5347 }
5348 }
5349
5350 /* If we have a hard register that is ok as an index,
5351 don't make a reload. If an autoincrement of a nice register
5352 isn't "valid", it must be that no autoincrement is "valid".
5353 If that is true and something made an autoincrement anyway,
5354 this must be a special context where one is allowed.
5355 (For example, a "push" instruction.)
5356 We can't improve this address, so leave it alone. */
5357
5358 /* Otherwise, reload the autoincrement into a suitable hard reg
5359 and record how much to increment by. */
5360
5361 if (reg_renumber[regno] >= 0)
5362 regno = reg_renumber[regno];
5363 if ((regno >= FIRST_PSEUDO_REGISTER
5364 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5365 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5366 {
5367 int reloadnum;
5368
5369 /* If we can output the register afterwards, do so, this
5370 saves the extra update.
5371 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5372 CALL_INSN - and it does not set CC0.
5373 But don't do this if we cannot directly address the
5374 memory location, since this will make it harder to
5375 reuse address reloads, and increases register pressure.
5376 Also don't do this if we can probably update x directly. */
5377 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5378 ? XEXP (x, 0)
5379 : reg_equiv_mem[regno]);
5380 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5381 if (insn && GET_CODE (insn) == INSN && equiv
5382 && memory_operand (equiv, GET_MODE (equiv))
5383 #ifdef HAVE_cc0
5384 && ! sets_cc0_p (PATTERN (insn))
5385 #endif
5386 && ! (icode != CODE_FOR_nothing
5387 && ((*insn_data[icode].operand[0].predicate)
5388 (equiv, Pmode))
5389 && ((*insn_data[icode].operand[1].predicate)
5390 (equiv, Pmode))))
5391 {
5392 /* We use the original pseudo for loc, so that
5393 emit_reload_insns() knows which pseudo this
5394 reload refers to and updates the pseudo rtx, not
5395 its equivalent memory location, as well as the
5396 corresponding entry in reg_last_reload_reg. */
5397 loc = &XEXP (x_orig, 0);
5398 x = XEXP (x, 0);
5399 reloadnum
5400 = push_reload (x, x, loc, loc,
5401 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5402 GET_MODE (x), GET_MODE (x), 0, 0,
5403 opnum, RELOAD_OTHER);
5404 }
5405 else
5406 {
5407 reloadnum
5408 = push_reload (x, NULL_RTX, loc, (rtx*)0,
5409 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5410 GET_MODE (x), GET_MODE (x), 0, 0,
5411 opnum, type);
5412 rld[reloadnum].inc
5413 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5414
5415 value = 1;
5416 }
5417
5418 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5419 reloadnum);
5420 }
5421 return value;
5422 }
5423
5424 else if (GET_CODE (XEXP (x, 0)) == MEM)
5425 {
5426 /* This is probably the result of a substitution, by eliminate_regs,
5427 of an equivalent address for a pseudo that was not allocated to a
5428 hard register. Verify that the specified address is valid and
5429 reload it into a register. */
5430 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5431 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5432 register rtx link;
5433 int reloadnum;
5434
5435 /* Since we know we are going to reload this item, don't decrement
5436 for the indirection level.
5437
5438 Note that this is actually conservative: it would be slightly
5439 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5440 reload1.c here. */
5441 /* We can't use ADDR_TYPE (type) here, because we need to
5442 write back the value after reading it, hence we actually
5443 need two registers. */
5444 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5445 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5446 opnum, type, ind_levels, insn);
5447
5448 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*)0,
5449 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5450 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5451 rld[reloadnum].inc
5452 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5453
5454 link = FIND_REG_INC_NOTE (this_insn, tem);
5455 if (link != 0)
5456 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5457
5458 return 1;
5459 }
5460 return 0;
5461
5462 case MEM:
5463 /* This is probably the result of a substitution, by eliminate_regs, of
5464 an equivalent address for a pseudo that was not allocated to a hard
5465 register. Verify that the specified address is valid and reload it
5466 into a register.
5467
5468 Since we know we are going to reload this item, don't decrement for
5469 the indirection level.
5470
5471 Note that this is actually conservative: it would be slightly more
5472 efficient to use the value of SPILL_INDIRECT_LEVELS from
5473 reload1.c here. */
5474
5475 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5476 opnum, ADDR_TYPE (type), ind_levels, insn);
5477 push_reload (*loc, NULL_RTX, loc, (rtx*)0,
5478 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5479 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5480 return 1;
5481
5482 case REG:
5483 {
5484 register int regno = REGNO (x);
5485
5486 if (reg_equiv_constant[regno] != 0)
5487 {
5488 find_reloads_address_part (reg_equiv_constant[regno], loc,
5489 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5490 GET_MODE (x), opnum, type, ind_levels);
5491 return 1;
5492 }
5493
5494 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5495 that feeds this insn. */
5496 if (reg_equiv_mem[regno] != 0)
5497 {
5498 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*)0,
5499 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5500 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5501 return 1;
5502 }
5503 #endif
5504
5505 if (reg_equiv_memory_loc[regno]
5506 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5507 {
5508 rtx tem = make_memloc (x, regno);
5509 if (reg_equiv_address[regno] != 0
5510 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5511 {
5512 x = tem;
5513 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5514 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5515 ind_levels, insn);
5516 }
5517 }
5518
5519 if (reg_renumber[regno] >= 0)
5520 regno = reg_renumber[regno];
5521
5522 if ((regno >= FIRST_PSEUDO_REGISTER
5523 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5524 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5525 {
5526 push_reload (x, NULL_RTX, loc, (rtx*)0,
5527 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5528 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5529 return 1;
5530 }
5531
5532 /* If a register appearing in an address is the subject of a CLOBBER
5533 in this insn, reload it into some other register to be safe.
5534 The CLOBBER is supposed to make the register unavailable
5535 from before this insn to after it. */
5536 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5537 {
5538 push_reload (x, NULL_RTX, loc, (rtx*)0,
5539 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5540 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5541 return 1;
5542 }
5543 }
5544 return 0;
5545
5546 case SUBREG:
5547 if (GET_CODE (SUBREG_REG (x)) == REG)
5548 {
5549 /* If this is a SUBREG of a hard register and the resulting register
5550 is of the wrong class, reload the whole SUBREG. This avoids
5551 needless copies if SUBREG_REG is multi-word. */
5552 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5553 {
5554 int regno = subreg_regno (x);
5555
5556 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5557 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5558 {
5559 push_reload (x, NULL_RTX, loc, (rtx*)0,
5560 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5561 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5562 return 1;
5563 }
5564 }
5565 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5566 is larger than the class size, then reload the whole SUBREG. */
5567 else
5568 {
5569 enum reg_class class = (context ? INDEX_REG_CLASS
5570 : BASE_REG_CLASS);
5571 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5572 > reg_class_size[class])
5573 {
5574 x = find_reloads_subreg_address (x, 0, opnum, type,
5575 ind_levels, insn);
5576 push_reload (x, NULL_RTX, loc, (rtx*)0, class,
5577 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5578 return 1;
5579 }
5580 }
5581 }
5582 break;
5583
5584 default:
5585 break;
5586 }
5587
5588 {
5589 register const char *fmt = GET_RTX_FORMAT (code);
5590 register int i;
5591
5592 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5593 {
5594 if (fmt[i] == 'e')
5595 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5596 opnum, type, ind_levels, insn);
5597 }
5598 }
5599
5600 return 0;
5601 }
5602 \f
5603 /* X, which is found at *LOC, is a part of an address that needs to be
5604 reloaded into a register of class CLASS. If X is a constant, or if
5605 X is a PLUS that contains a constant, check that the constant is a
5606 legitimate operand and that we are supposed to be able to load
5607 it into the register.
5608
5609 If not, force the constant into memory and reload the MEM instead.
5610
5611 MODE is the mode to use, in case X is an integer constant.
5612
5613 OPNUM and TYPE describe the purpose of any reloads made.
5614
5615 IND_LEVELS says how many levels of indirect addressing this machine
5616 supports. */
5617
5618 static void
5619 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5620 rtx x;
5621 rtx *loc;
5622 enum reg_class class;
5623 enum machine_mode mode;
5624 int opnum;
5625 enum reload_type type;
5626 int ind_levels;
5627 {
5628 if (CONSTANT_P (x)
5629 && (! LEGITIMATE_CONSTANT_P (x)
5630 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5631 {
5632 rtx tem;
5633
5634 tem = x = force_const_mem (mode, x);
5635 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5636 opnum, type, ind_levels, 0);
5637 }
5638
5639 else if (GET_CODE (x) == PLUS
5640 && CONSTANT_P (XEXP (x, 1))
5641 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5642 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5643 {
5644 rtx tem;
5645
5646 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5647 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5648 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5649 opnum, type, ind_levels, 0);
5650 }
5651
5652 push_reload (x, NULL_RTX, loc, (rtx*)0, class,
5653 mode, VOIDmode, 0, 0, opnum, type);
5654 }
5655 \f
5656 /* X, a subreg of a pseudo, is a part of an address that needs to be
5657 reloaded.
5658
5659 If the pseudo is equivalent to a memory location that cannot be directly
5660 addressed, make the necessary address reloads.
5661
5662 If address reloads have been necessary, or if the address is changed
5663 by register elimination, return the rtx of the memory location;
5664 otherwise, return X.
5665
5666 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5667 memory location.
5668
5669 OPNUM and TYPE identify the purpose of the reload.
5670
5671 IND_LEVELS says how many levels of indirect addressing are
5672 supported at this point in the address.
5673
5674 INSN, if nonzero, is the insn in which we do the reload. It is used
5675 to determine where to put USEs for pseudos that we have to replace with
5676 stack slots. */
5677
5678 static rtx
5679 find_reloads_subreg_address (x, force_replace, opnum, type,
5680 ind_levels, insn)
5681 rtx x;
5682 int force_replace;
5683 int opnum;
5684 enum reload_type type;
5685 int ind_levels;
5686 rtx insn;
5687 {
5688 int regno = REGNO (SUBREG_REG (x));
5689
5690 if (reg_equiv_memory_loc[regno])
5691 {
5692 /* If the address is not directly addressable, or if the address is not
5693 offsettable, then it must be replaced. */
5694 if (! force_replace
5695 && (reg_equiv_address[regno]
5696 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5697 force_replace = 1;
5698
5699 if (force_replace || num_not_at_initial_offset)
5700 {
5701 rtx tem = make_memloc (SUBREG_REG (x), regno);
5702
5703 /* If the address changes because of register elimination, then
5704 it must be replaced. */
5705 if (force_replace
5706 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5707 {
5708 int offset = SUBREG_BYTE (x);
5709 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5710 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5711
5712 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5713 PUT_MODE (tem, GET_MODE (x));
5714
5715 /* If this was a paradoxical subreg that we replaced, the
5716 resulting memory must be sufficiently aligned to allow
5717 us to widen the mode of the memory. */
5718 if (outer_size > inner_size && STRICT_ALIGNMENT)
5719 {
5720 rtx base;
5721
5722 base = XEXP (tem, 0);
5723 if (GET_CODE (base) == PLUS)
5724 {
5725 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5726 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5727 return x;
5728 base = XEXP (base, 0);
5729 }
5730 if (GET_CODE (base) != REG
5731 || (REGNO_POINTER_ALIGN (REGNO (base))
5732 < outer_size * BITS_PER_UNIT))
5733 return x;
5734 }
5735
5736 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5737 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5738 ind_levels, insn);
5739
5740 /* If this is not a toplevel operand, find_reloads doesn't see
5741 this substitution. We have to emit a USE of the pseudo so
5742 that delete_output_reload can see it. */
5743 if (replace_reloads && recog_data.operand[opnum] != x)
5744 /* We mark the USE with QImode so that we recognize it
5745 as one that can be safely deleted at the end of
5746 reload. */
5747 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5748 SUBREG_REG (x)),
5749 insn), QImode);
5750 x = tem;
5751 }
5752 }
5753 }
5754 return x;
5755 }
5756 \f
5757 /* Substitute into the current INSN the registers into which we have reloaded
5758 the things that need reloading. The array `replacements'
5759 contains the locations of all pointers that must be changed
5760 and says what to replace them with.
5761
5762 Return the rtx that X translates into; usually X, but modified. */
5763
5764 void
5765 subst_reloads (insn)
5766 rtx insn;
5767 {
5768 register int i;
5769
5770 for (i = 0; i < n_replacements; i++)
5771 {
5772 register struct replacement *r = &replacements[i];
5773 register rtx reloadreg = rld[r->what].reg_rtx;
5774 if (reloadreg)
5775 {
5776 #ifdef ENABLE_CHECKING
5777 /* Internal consistency test. Check that we don't modify
5778 anything in the equivalence arrays. Whenever something from
5779 those arrays needs to be reloaded, it must be unshared before
5780 being substituted into; the equivalence must not be modified.
5781 Otherwise, if the equivalence is used after that, it will
5782 have been modified, and the thing substituted (probably a
5783 register) is likely overwritten and not a usable equivalence. */
5784 int check_regno;
5785
5786 for (check_regno = 0; check_regno < max_regno; check_regno++)
5787 {
5788 #define CHECK_MODF(ARRAY) \
5789 if (ARRAY[check_regno] \
5790 && loc_mentioned_in_p (r->where, \
5791 ARRAY[check_regno])) \
5792 abort ()
5793
5794 CHECK_MODF (reg_equiv_constant);
5795 CHECK_MODF (reg_equiv_memory_loc);
5796 CHECK_MODF (reg_equiv_address);
5797 CHECK_MODF (reg_equiv_mem);
5798 #undef CHECK_MODF
5799 }
5800 #endif /* ENABLE_CHECKING */
5801
5802 /* If we're replacing a LABEL_REF with a register, add a
5803 REG_LABEL note to indicate to flow which label this
5804 register refers to. */
5805 if (GET_CODE (*r->where) == LABEL_REF
5806 && GET_CODE (insn) == JUMP_INSN)
5807 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5808 XEXP (*r->where, 0),
5809 REG_NOTES (insn));
5810
5811 /* Encapsulate RELOADREG so its machine mode matches what
5812 used to be there. Note that gen_lowpart_common will
5813 do the wrong thing if RELOADREG is multi-word. RELOADREG
5814 will always be a REG here. */
5815 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5816 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5817
5818 /* If we are putting this into a SUBREG and RELOADREG is a
5819 SUBREG, we would be making nested SUBREGs, so we have to fix
5820 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5821
5822 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5823 {
5824 if (GET_MODE (*r->subreg_loc)
5825 == GET_MODE (SUBREG_REG (reloadreg)))
5826 *r->subreg_loc = SUBREG_REG (reloadreg);
5827 else
5828 {
5829 int final_offset =
5830 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5831
5832 /* When working with SUBREGs the rule is that the byte
5833 offset must be a multiple of the SUBREG's mode. */
5834 final_offset = (final_offset /
5835 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5836 final_offset = (final_offset *
5837 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5838
5839 *r->where = SUBREG_REG (reloadreg);
5840 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5841 }
5842 }
5843 else
5844 *r->where = reloadreg;
5845 }
5846 /* If reload got no reg and isn't optional, something's wrong. */
5847 else if (! rld[r->what].optional)
5848 abort ();
5849 }
5850 }
5851 \f
5852 /* Make a copy of any replacements being done into X and move those copies
5853 to locations in Y, a copy of X. We only look at the highest level of
5854 the RTL. */
5855
5856 void
5857 copy_replacements (x, y)
5858 rtx x;
5859 rtx y;
5860 {
5861 int i, j;
5862 enum rtx_code code = GET_CODE (x);
5863 const char *fmt = GET_RTX_FORMAT (code);
5864 struct replacement *r;
5865
5866 /* We can't support X being a SUBREG because we might then need to know its
5867 location if something inside it was replaced. */
5868 if (code == SUBREG)
5869 abort ();
5870
5871 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5872 if (fmt[i] == 'e')
5873 for (j = 0; j < n_replacements; j++)
5874 {
5875 if (replacements[j].subreg_loc == &XEXP (x, i))
5876 {
5877 r = &replacements[n_replacements++];
5878 r->where = replacements[j].where;
5879 r->subreg_loc = &XEXP (y, i);
5880 r->what = replacements[j].what;
5881 r->mode = replacements[j].mode;
5882 }
5883 else if (replacements[j].where == &XEXP (x, i))
5884 {
5885 r = &replacements[n_replacements++];
5886 r->where = &XEXP (y, i);
5887 r->subreg_loc = 0;
5888 r->what = replacements[j].what;
5889 r->mode = replacements[j].mode;
5890 }
5891 }
5892 }
5893
5894 /* Change any replacements being done to *X to be done to *Y */
5895
5896 void
5897 move_replacements (x, y)
5898 rtx *x;
5899 rtx *y;
5900 {
5901 int i;
5902
5903 for (i = 0; i < n_replacements; i++)
5904 if (replacements[i].subreg_loc == x)
5905 replacements[i].subreg_loc = y;
5906 else if (replacements[i].where == x)
5907 {
5908 replacements[i].where = y;
5909 replacements[i].subreg_loc = 0;
5910 }
5911 }
5912 \f
5913 /* If LOC was scheduled to be replaced by something, return the replacement.
5914 Otherwise, return *LOC. */
5915
5916 rtx
5917 find_replacement (loc)
5918 rtx *loc;
5919 {
5920 struct replacement *r;
5921
5922 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5923 {
5924 rtx reloadreg = rld[r->what].reg_rtx;
5925
5926 if (reloadreg && r->where == loc)
5927 {
5928 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5929 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5930
5931 return reloadreg;
5932 }
5933 else if (reloadreg && r->subreg_loc == loc)
5934 {
5935 /* RELOADREG must be either a REG or a SUBREG.
5936
5937 ??? Is it actually still ever a SUBREG? If so, why? */
5938
5939 if (GET_CODE (reloadreg) == REG)
5940 return gen_rtx_REG (GET_MODE (*loc),
5941 (REGNO (reloadreg) +
5942 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
5943 GET_MODE (SUBREG_REG (*loc)),
5944 SUBREG_BYTE (*loc),
5945 GET_MODE (*loc))));
5946 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5947 return reloadreg;
5948 else
5949 {
5950 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
5951
5952 /* When working with SUBREGs the rule is that the byte
5953 offset must be a multiple of the SUBREG's mode. */
5954 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
5955 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
5956 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5957 final_offset);
5958 }
5959 }
5960 }
5961
5962 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5963 what's inside and make a new rtl if so. */
5964 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5965 || GET_CODE (*loc) == MULT)
5966 {
5967 rtx x = find_replacement (&XEXP (*loc, 0));
5968 rtx y = find_replacement (&XEXP (*loc, 1));
5969
5970 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5971 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5972 }
5973
5974 return *loc;
5975 }
5976 \f
5977 /* Return nonzero if register in range [REGNO, ENDREGNO)
5978 appears either explicitly or implicitly in X
5979 other than being stored into (except for earlyclobber operands).
5980
5981 References contained within the substructure at LOC do not count.
5982 LOC may be zero, meaning don't ignore anything.
5983
5984 This is similar to refers_to_regno_p in rtlanal.c except that we
5985 look at equivalences for pseudos that didn't get hard registers. */
5986
5987 int
5988 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5989 unsigned int regno, endregno;
5990 rtx x;
5991 rtx *loc;
5992 {
5993 int i;
5994 unsigned int r;
5995 RTX_CODE code;
5996 const char *fmt;
5997
5998 if (x == 0)
5999 return 0;
6000
6001 repeat:
6002 code = GET_CODE (x);
6003
6004 switch (code)
6005 {
6006 case REG:
6007 r = REGNO (x);
6008
6009 /* If this is a pseudo, a hard register must not have been allocated.
6010 X must therefore either be a constant or be in memory. */
6011 if (r >= FIRST_PSEUDO_REGISTER)
6012 {
6013 if (reg_equiv_memory_loc[r])
6014 return refers_to_regno_for_reload_p (regno, endregno,
6015 reg_equiv_memory_loc[r],
6016 (rtx*)0);
6017
6018 if (reg_equiv_constant[r])
6019 return 0;
6020
6021 abort ();
6022 }
6023
6024 return (endregno > r
6025 && regno < r + (r < FIRST_PSEUDO_REGISTER
6026 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6027 : 1));
6028
6029 case SUBREG:
6030 /* If this is a SUBREG of a hard reg, we can see exactly which
6031 registers are being modified. Otherwise, handle normally. */
6032 if (GET_CODE (SUBREG_REG (x)) == REG
6033 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6034 {
6035 unsigned int inner_regno = subreg_regno (x);
6036 unsigned int inner_endregno
6037 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6038 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6039
6040 return endregno > inner_regno && regno < inner_endregno;
6041 }
6042 break;
6043
6044 case CLOBBER:
6045 case SET:
6046 if (&SET_DEST (x) != loc
6047 /* Note setting a SUBREG counts as referring to the REG it is in for
6048 a pseudo but not for hard registers since we can
6049 treat each word individually. */
6050 && ((GET_CODE (SET_DEST (x)) == SUBREG
6051 && loc != &SUBREG_REG (SET_DEST (x))
6052 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6053 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6054 && refers_to_regno_for_reload_p (regno, endregno,
6055 SUBREG_REG (SET_DEST (x)),
6056 loc))
6057 /* If the output is an earlyclobber operand, this is
6058 a conflict. */
6059 || ((GET_CODE (SET_DEST (x)) != REG
6060 || earlyclobber_operand_p (SET_DEST (x)))
6061 && refers_to_regno_for_reload_p (regno, endregno,
6062 SET_DEST (x), loc))))
6063 return 1;
6064
6065 if (code == CLOBBER || loc == &SET_SRC (x))
6066 return 0;
6067 x = SET_SRC (x);
6068 goto repeat;
6069
6070 default:
6071 break;
6072 }
6073
6074 /* X does not match, so try its subexpressions. */
6075
6076 fmt = GET_RTX_FORMAT (code);
6077 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6078 {
6079 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6080 {
6081 if (i == 0)
6082 {
6083 x = XEXP (x, 0);
6084 goto repeat;
6085 }
6086 else
6087 if (refers_to_regno_for_reload_p (regno, endregno,
6088 XEXP (x, i), loc))
6089 return 1;
6090 }
6091 else if (fmt[i] == 'E')
6092 {
6093 register int j;
6094 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6095 if (loc != &XVECEXP (x, i, j)
6096 && refers_to_regno_for_reload_p (regno, endregno,
6097 XVECEXP (x, i, j), loc))
6098 return 1;
6099 }
6100 }
6101 return 0;
6102 }
6103
6104 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6105 we check if any register number in X conflicts with the relevant register
6106 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6107 contains a MEM (we don't bother checking for memory addresses that can't
6108 conflict because we expect this to be a rare case.
6109
6110 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6111 that we look at equivalences for pseudos that didn't get hard registers. */
6112
6113 int
6114 reg_overlap_mentioned_for_reload_p (x, in)
6115 rtx x, in;
6116 {
6117 int regno, endregno;
6118
6119 /* Overly conservative. */
6120 if (GET_CODE (x) == STRICT_LOW_PART)
6121 x = XEXP (x, 0);
6122
6123 /* If either argument is a constant, then modifying X can not affect IN. */
6124 if (CONSTANT_P (x) || CONSTANT_P (in))
6125 return 0;
6126 else if (GET_CODE (x) == SUBREG)
6127 {
6128 regno = REGNO (SUBREG_REG (x));
6129 if (regno < FIRST_PSEUDO_REGISTER)
6130 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6131 GET_MODE (SUBREG_REG (x)),
6132 SUBREG_BYTE (x),
6133 GET_MODE (x));
6134 }
6135 else if (GET_CODE (x) == REG)
6136 {
6137 regno = REGNO (x);
6138
6139 /* If this is a pseudo, it must not have been assigned a hard register.
6140 Therefore, it must either be in memory or be a constant. */
6141
6142 if (regno >= FIRST_PSEUDO_REGISTER)
6143 {
6144 if (reg_equiv_memory_loc[regno])
6145 return refers_to_mem_for_reload_p (in);
6146 else if (reg_equiv_constant[regno])
6147 return 0;
6148 abort ();
6149 }
6150 }
6151 else if (GET_CODE (x) == MEM)
6152 return refers_to_mem_for_reload_p (in);
6153 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6154 || GET_CODE (x) == CC0)
6155 return reg_mentioned_p (x, in);
6156 else
6157 abort ();
6158
6159 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6160 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6161
6162 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*)0);
6163 }
6164
6165 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6166 registers. */
6167
6168 int
6169 refers_to_mem_for_reload_p (x)
6170 rtx x;
6171 {
6172 const char *fmt;
6173 int i;
6174
6175 if (GET_CODE (x) == MEM)
6176 return 1;
6177
6178 if (GET_CODE (x) == REG)
6179 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6180 && reg_equiv_memory_loc[REGNO (x)]);
6181
6182 fmt = GET_RTX_FORMAT (GET_CODE (x));
6183 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6184 if (fmt[i] == 'e'
6185 && (GET_CODE (XEXP (x, i)) == MEM
6186 || refers_to_mem_for_reload_p (XEXP (x, i))))
6187 return 1;
6188
6189 return 0;
6190 }
6191 \f
6192 /* Check the insns before INSN to see if there is a suitable register
6193 containing the same value as GOAL.
6194 If OTHER is -1, look for a register in class CLASS.
6195 Otherwise, just see if register number OTHER shares GOAL's value.
6196
6197 Return an rtx for the register found, or zero if none is found.
6198
6199 If RELOAD_REG_P is (short *)1,
6200 we reject any hard reg that appears in reload_reg_rtx
6201 because such a hard reg is also needed coming into this insn.
6202
6203 If RELOAD_REG_P is any other nonzero value,
6204 it is a vector indexed by hard reg number
6205 and we reject any hard reg whose element in the vector is nonnegative
6206 as well as any that appears in reload_reg_rtx.
6207
6208 If GOAL is zero, then GOALREG is a register number; we look
6209 for an equivalent for that register.
6210
6211 MODE is the machine mode of the value we want an equivalence for.
6212 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6213
6214 This function is used by jump.c as well as in the reload pass.
6215
6216 If GOAL is the sum of the stack pointer and a constant, we treat it
6217 as if it were a constant except that sp is required to be unchanging. */
6218
6219 rtx
6220 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6221 register rtx goal;
6222 rtx insn;
6223 enum reg_class class;
6224 register int other;
6225 short *reload_reg_p;
6226 int goalreg;
6227 enum machine_mode mode;
6228 {
6229 register rtx p = insn;
6230 rtx goaltry, valtry, value, where;
6231 register rtx pat;
6232 register int regno = -1;
6233 int valueno;
6234 int goal_mem = 0;
6235 int goal_const = 0;
6236 int goal_mem_addr_varies = 0;
6237 int need_stable_sp = 0;
6238 int nregs;
6239 int valuenregs;
6240
6241 if (goal == 0)
6242 regno = goalreg;
6243 else if (GET_CODE (goal) == REG)
6244 regno = REGNO (goal);
6245 else if (GET_CODE (goal) == MEM)
6246 {
6247 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6248 if (MEM_VOLATILE_P (goal))
6249 return 0;
6250 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6251 return 0;
6252 /* An address with side effects must be reexecuted. */
6253 switch (code)
6254 {
6255 case POST_INC:
6256 case PRE_INC:
6257 case POST_DEC:
6258 case PRE_DEC:
6259 case POST_MODIFY:
6260 case PRE_MODIFY:
6261 return 0;
6262 default:
6263 break;
6264 }
6265 goal_mem = 1;
6266 }
6267 else if (CONSTANT_P (goal))
6268 goal_const = 1;
6269 else if (GET_CODE (goal) == PLUS
6270 && XEXP (goal, 0) == stack_pointer_rtx
6271 && CONSTANT_P (XEXP (goal, 1)))
6272 goal_const = need_stable_sp = 1;
6273 else if (GET_CODE (goal) == PLUS
6274 && XEXP (goal, 0) == frame_pointer_rtx
6275 && CONSTANT_P (XEXP (goal, 1)))
6276 goal_const = 1;
6277 else
6278 return 0;
6279
6280 /* Scan insns back from INSN, looking for one that copies
6281 a value into or out of GOAL.
6282 Stop and give up if we reach a label. */
6283
6284 while (1)
6285 {
6286 p = PREV_INSN (p);
6287 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6288 return 0;
6289
6290 if (GET_CODE (p) == INSN
6291 /* If we don't want spill regs ... */
6292 && (! (reload_reg_p != 0
6293 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6294 /* ... then ignore insns introduced by reload; they aren't
6295 useful and can cause results in reload_as_needed to be
6296 different from what they were when calculating the need for
6297 spills. If we notice an input-reload insn here, we will
6298 reject it below, but it might hide a usable equivalent.
6299 That makes bad code. It may even abort: perhaps no reg was
6300 spilled for this insn because it was assumed we would find
6301 that equivalent. */
6302 || INSN_UID (p) < reload_first_uid))
6303 {
6304 rtx tem;
6305 pat = single_set (p);
6306
6307 /* First check for something that sets some reg equal to GOAL. */
6308 if (pat != 0
6309 && ((regno >= 0
6310 && true_regnum (SET_SRC (pat)) == regno
6311 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6312 ||
6313 (regno >= 0
6314 && true_regnum (SET_DEST (pat)) == regno
6315 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6316 ||
6317 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6318 /* When looking for stack pointer + const,
6319 make sure we don't use a stack adjust. */
6320 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6321 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6322 || (goal_mem
6323 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6324 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6325 || (goal_mem
6326 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6327 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6328 /* If we are looking for a constant,
6329 and something equivalent to that constant was copied
6330 into a reg, we can use that reg. */
6331 || (goal_const && REG_NOTES (p) != 0
6332 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6333 && ((rtx_equal_p (XEXP (tem, 0), goal)
6334 && (valueno
6335 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6336 || (GET_CODE (SET_DEST (pat)) == REG
6337 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6338 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6339 == MODE_FLOAT)
6340 && GET_CODE (goal) == CONST_INT
6341 && 0 != (goaltry
6342 = operand_subword (XEXP (tem, 0), 0, 0,
6343 VOIDmode))
6344 && rtx_equal_p (goal, goaltry)
6345 && (valtry
6346 = operand_subword (SET_DEST (pat), 0, 0,
6347 VOIDmode))
6348 && (valueno = true_regnum (valtry)) >= 0)))
6349 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6350 NULL_RTX))
6351 && GET_CODE (SET_DEST (pat)) == REG
6352 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6353 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6354 == MODE_FLOAT)
6355 && GET_CODE (goal) == CONST_INT
6356 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6357 VOIDmode))
6358 && rtx_equal_p (goal, goaltry)
6359 && (valtry
6360 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6361 && (valueno = true_regnum (valtry)) >= 0)))
6362 {
6363 if (other >= 0)
6364 {
6365 if (valueno != other)
6366 continue;
6367 }
6368 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6369 continue;
6370 else
6371 {
6372 int i;
6373
6374 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6375 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6376 valueno + i))
6377 break;
6378 if (i >= 0)
6379 continue;
6380 }
6381 value = valtry;
6382 where = p;
6383 break;
6384 }
6385 }
6386 }
6387
6388 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6389 (or copying VALUE into GOAL, if GOAL is also a register).
6390 Now verify that VALUE is really valid. */
6391
6392 /* VALUENO is the register number of VALUE; a hard register. */
6393
6394 /* Don't try to re-use something that is killed in this insn. We want
6395 to be able to trust REG_UNUSED notes. */
6396 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6397 return 0;
6398
6399 /* If we propose to get the value from the stack pointer or if GOAL is
6400 a MEM based on the stack pointer, we need a stable SP. */
6401 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6402 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6403 goal)))
6404 need_stable_sp = 1;
6405
6406 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6407 if (GET_MODE (value) != mode)
6408 return 0;
6409
6410 /* Reject VALUE if it was loaded from GOAL
6411 and is also a register that appears in the address of GOAL. */
6412
6413 if (goal_mem && value == SET_DEST (single_set (where))
6414 && refers_to_regno_for_reload_p (valueno,
6415 (valueno
6416 + HARD_REGNO_NREGS (valueno, mode)),
6417 goal, (rtx*)0))
6418 return 0;
6419
6420 /* Reject registers that overlap GOAL. */
6421
6422 if (!goal_mem && !goal_const
6423 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6424 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6425 return 0;
6426
6427 nregs = HARD_REGNO_NREGS (regno, mode);
6428 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6429
6430 /* Reject VALUE if it is one of the regs reserved for reloads.
6431 Reload1 knows how to reuse them anyway, and it would get
6432 confused if we allocated one without its knowledge.
6433 (Now that insns introduced by reload are ignored above,
6434 this case shouldn't happen, but I'm not positive.) */
6435
6436 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6437 {
6438 int i;
6439 for (i = 0; i < valuenregs; ++i)
6440 if (reload_reg_p[valueno + i] >= 0)
6441 return 0;
6442 }
6443
6444 /* Reject VALUE if it is a register being used for an input reload
6445 even if it is not one of those reserved. */
6446
6447 if (reload_reg_p != 0)
6448 {
6449 int i;
6450 for (i = 0; i < n_reloads; i++)
6451 if (rld[i].reg_rtx != 0 && rld[i].in)
6452 {
6453 int regno1 = REGNO (rld[i].reg_rtx);
6454 int nregs1 = HARD_REGNO_NREGS (regno1,
6455 GET_MODE (rld[i].reg_rtx));
6456 if (regno1 < valueno + valuenregs
6457 && regno1 + nregs1 > valueno)
6458 return 0;
6459 }
6460 }
6461
6462 if (goal_mem)
6463 /* We must treat frame pointer as varying here,
6464 since it can vary--in a nonlocal goto as generated by expand_goto. */
6465 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6466
6467 /* Now verify that the values of GOAL and VALUE remain unaltered
6468 until INSN is reached. */
6469
6470 p = insn;
6471 while (1)
6472 {
6473 p = PREV_INSN (p);
6474 if (p == where)
6475 return value;
6476
6477 /* Don't trust the conversion past a function call
6478 if either of the two is in a call-clobbered register, or memory. */
6479 if (GET_CODE (p) == CALL_INSN)
6480 {
6481 int i;
6482
6483 if (goal_mem || need_stable_sp)
6484 return 0;
6485
6486 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6487 for (i = 0; i < nregs; ++i)
6488 if (call_used_regs[regno + i])
6489 return 0;
6490
6491 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6492 for (i = 0; i < valuenregs; ++i)
6493 if (call_used_regs[valueno + i])
6494 return 0;
6495 #ifdef NON_SAVING_SETJMP
6496 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6497 return 0;
6498 #endif
6499 }
6500
6501 if (INSN_P (p))
6502 {
6503 pat = PATTERN (p);
6504
6505 /* Watch out for unspec_volatile, and volatile asms. */
6506 if (volatile_insn_p (pat))
6507 return 0;
6508
6509 /* If this insn P stores in either GOAL or VALUE, return 0.
6510 If GOAL is a memory ref and this insn writes memory, return 0.
6511 If GOAL is a memory ref and its address is not constant,
6512 and this insn P changes a register used in GOAL, return 0. */
6513
6514 if (GET_CODE (pat) == COND_EXEC)
6515 pat = COND_EXEC_CODE (pat);
6516 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6517 {
6518 register rtx dest = SET_DEST (pat);
6519 while (GET_CODE (dest) == SUBREG
6520 || GET_CODE (dest) == ZERO_EXTRACT
6521 || GET_CODE (dest) == SIGN_EXTRACT
6522 || GET_CODE (dest) == STRICT_LOW_PART)
6523 dest = XEXP (dest, 0);
6524 if (GET_CODE (dest) == REG)
6525 {
6526 register int xregno = REGNO (dest);
6527 int xnregs;
6528 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6529 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6530 else
6531 xnregs = 1;
6532 if (xregno < regno + nregs && xregno + xnregs > regno)
6533 return 0;
6534 if (xregno < valueno + valuenregs
6535 && xregno + xnregs > valueno)
6536 return 0;
6537 if (goal_mem_addr_varies
6538 && reg_overlap_mentioned_for_reload_p (dest, goal))
6539 return 0;
6540 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6541 return 0;
6542 }
6543 else if (goal_mem && GET_CODE (dest) == MEM
6544 && ! push_operand (dest, GET_MODE (dest)))
6545 return 0;
6546 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6547 && reg_equiv_memory_loc[regno] != 0)
6548 return 0;
6549 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6550 return 0;
6551 }
6552 else if (GET_CODE (pat) == PARALLEL)
6553 {
6554 register int i;
6555 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6556 {
6557 register rtx v1 = XVECEXP (pat, 0, i);
6558 if (GET_CODE (v1) == COND_EXEC)
6559 v1 = COND_EXEC_CODE (v1);
6560 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6561 {
6562 register rtx dest = SET_DEST (v1);
6563 while (GET_CODE (dest) == SUBREG
6564 || GET_CODE (dest) == ZERO_EXTRACT
6565 || GET_CODE (dest) == SIGN_EXTRACT
6566 || GET_CODE (dest) == STRICT_LOW_PART)
6567 dest = XEXP (dest, 0);
6568 if (GET_CODE (dest) == REG)
6569 {
6570 register int xregno = REGNO (dest);
6571 int xnregs;
6572 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6573 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6574 else
6575 xnregs = 1;
6576 if (xregno < regno + nregs
6577 && xregno + xnregs > regno)
6578 return 0;
6579 if (xregno < valueno + valuenregs
6580 && xregno + xnregs > valueno)
6581 return 0;
6582 if (goal_mem_addr_varies
6583 && reg_overlap_mentioned_for_reload_p (dest,
6584 goal))
6585 return 0;
6586 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6587 return 0;
6588 }
6589 else if (goal_mem && GET_CODE (dest) == MEM
6590 && ! push_operand (dest, GET_MODE (dest)))
6591 return 0;
6592 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6593 && reg_equiv_memory_loc[regno] != 0)
6594 return 0;
6595 else if (need_stable_sp
6596 && push_operand (dest, GET_MODE (dest)))
6597 return 0;
6598 }
6599 }
6600 }
6601
6602 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6603 {
6604 rtx link;
6605
6606 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6607 link = XEXP (link, 1))
6608 {
6609 pat = XEXP (link, 0);
6610 if (GET_CODE (pat) == CLOBBER)
6611 {
6612 register rtx dest = SET_DEST (pat);
6613
6614 if (GET_CODE (dest) == REG)
6615 {
6616 register int xregno = REGNO (dest);
6617 int xnregs
6618 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6619
6620 if (xregno < regno + nregs
6621 && xregno + xnregs > regno)
6622 return 0;
6623 else if (xregno < valueno + valuenregs
6624 && xregno + xnregs > valueno)
6625 return 0;
6626 else if (goal_mem_addr_varies
6627 && reg_overlap_mentioned_for_reload_p (dest,
6628 goal))
6629 return 0;
6630 }
6631
6632 else if (goal_mem && GET_CODE (dest) == MEM
6633 && ! push_operand (dest, GET_MODE (dest)))
6634 return 0;
6635 else if (need_stable_sp
6636 && push_operand (dest, GET_MODE (dest)))
6637 return 0;
6638 }
6639 }
6640 }
6641
6642 #ifdef AUTO_INC_DEC
6643 /* If this insn auto-increments or auto-decrements
6644 either regno or valueno, return 0 now.
6645 If GOAL is a memory ref and its address is not constant,
6646 and this insn P increments a register used in GOAL, return 0. */
6647 {
6648 register rtx link;
6649
6650 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6651 if (REG_NOTE_KIND (link) == REG_INC
6652 && GET_CODE (XEXP (link, 0)) == REG)
6653 {
6654 register int incno = REGNO (XEXP (link, 0));
6655 if (incno < regno + nregs && incno >= regno)
6656 return 0;
6657 if (incno < valueno + valuenregs && incno >= valueno)
6658 return 0;
6659 if (goal_mem_addr_varies
6660 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6661 goal))
6662 return 0;
6663 }
6664 }
6665 #endif
6666 }
6667 }
6668 }
6669 \f
6670 /* Find a place where INCED appears in an increment or decrement operator
6671 within X, and return the amount INCED is incremented or decremented by.
6672 The value is always positive. */
6673
6674 static int
6675 find_inc_amount (x, inced)
6676 rtx x, inced;
6677 {
6678 register enum rtx_code code = GET_CODE (x);
6679 register const char *fmt;
6680 register int i;
6681
6682 if (code == MEM)
6683 {
6684 register rtx addr = XEXP (x, 0);
6685 if ((GET_CODE (addr) == PRE_DEC
6686 || GET_CODE (addr) == POST_DEC
6687 || GET_CODE (addr) == PRE_INC
6688 || GET_CODE (addr) == POST_INC)
6689 && XEXP (addr, 0) == inced)
6690 return GET_MODE_SIZE (GET_MODE (x));
6691 else if ((GET_CODE (addr) == PRE_MODIFY
6692 || GET_CODE (addr) == POST_MODIFY)
6693 && GET_CODE (XEXP (addr, 1)) == PLUS
6694 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6695 && XEXP (addr, 0) == inced
6696 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6697 {
6698 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6699 return i < 0 ? -i : i;
6700 }
6701 }
6702
6703 fmt = GET_RTX_FORMAT (code);
6704 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6705 {
6706 if (fmt[i] == 'e')
6707 {
6708 register int tem = find_inc_amount (XEXP (x, i), inced);
6709 if (tem != 0)
6710 return tem;
6711 }
6712 if (fmt[i] == 'E')
6713 {
6714 register int j;
6715 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6716 {
6717 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6718 if (tem != 0)
6719 return tem;
6720 }
6721 }
6722 }
6723
6724 return 0;
6725 }
6726 \f
6727 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6728 If SETS is nonzero, also consider SETs. */
6729
6730 int
6731 regno_clobbered_p (regno, insn, mode, sets)
6732 unsigned int regno;
6733 rtx insn;
6734 enum machine_mode mode;
6735 int sets;
6736 {
6737 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6738 unsigned int endregno = regno + nregs;
6739
6740 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6741 || (sets && GET_CODE (PATTERN (insn)) == SET))
6742 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6743 {
6744 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6745
6746 return test >= regno && test < endregno;
6747 }
6748
6749 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6750 {
6751 int i = XVECLEN (PATTERN (insn), 0) - 1;
6752
6753 for (; i >= 0; i--)
6754 {
6755 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6756 if ((GET_CODE (elt) == CLOBBER
6757 || (sets && GET_CODE (PATTERN (insn)) == SET))
6758 && GET_CODE (XEXP (elt, 0)) == REG)
6759 {
6760 unsigned int test = REGNO (XEXP (elt, 0));
6761
6762 if (test >= regno && test < endregno)
6763 return 1;
6764 }
6765 }
6766 }
6767
6768 return 0;
6769 }
6770
6771 static const char *const reload_when_needed_name[] =
6772 {
6773 "RELOAD_FOR_INPUT",
6774 "RELOAD_FOR_OUTPUT",
6775 "RELOAD_FOR_INSN",
6776 "RELOAD_FOR_INPUT_ADDRESS",
6777 "RELOAD_FOR_INPADDR_ADDRESS",
6778 "RELOAD_FOR_OUTPUT_ADDRESS",
6779 "RELOAD_FOR_OUTADDR_ADDRESS",
6780 "RELOAD_FOR_OPERAND_ADDRESS",
6781 "RELOAD_FOR_OPADDR_ADDR",
6782 "RELOAD_OTHER",
6783 "RELOAD_FOR_OTHER_ADDRESS"
6784 };
6785
6786 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6787
6788 /* These functions are used to print the variables set by 'find_reloads' */
6789
6790 void
6791 debug_reload_to_stream (f)
6792 FILE *f;
6793 {
6794 int r;
6795 const char *prefix;
6796
6797 if (! f)
6798 f = stderr;
6799 for (r = 0; r < n_reloads; r++)
6800 {
6801 fprintf (f, "Reload %d: ", r);
6802
6803 if (rld[r].in != 0)
6804 {
6805 fprintf (f, "reload_in (%s) = ",
6806 GET_MODE_NAME (rld[r].inmode));
6807 print_inline_rtx (f, rld[r].in, 24);
6808 fprintf (f, "\n\t");
6809 }
6810
6811 if (rld[r].out != 0)
6812 {
6813 fprintf (f, "reload_out (%s) = ",
6814 GET_MODE_NAME (rld[r].outmode));
6815 print_inline_rtx (f, rld[r].out, 24);
6816 fprintf (f, "\n\t");
6817 }
6818
6819 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6820
6821 fprintf (f, "%s (opnum = %d)",
6822 reload_when_needed_name[(int) rld[r].when_needed],
6823 rld[r].opnum);
6824
6825 if (rld[r].optional)
6826 fprintf (f, ", optional");
6827
6828 if (rld[r].nongroup)
6829 fprintf (f, ", nongroup");
6830
6831 if (rld[r].inc != 0)
6832 fprintf (f, ", inc by %d", rld[r].inc);
6833
6834 if (rld[r].nocombine)
6835 fprintf (f, ", can't combine");
6836
6837 if (rld[r].secondary_p)
6838 fprintf (f, ", secondary_reload_p");
6839
6840 if (rld[r].in_reg != 0)
6841 {
6842 fprintf (f, "\n\treload_in_reg: ");
6843 print_inline_rtx (f, rld[r].in_reg, 24);
6844 }
6845
6846 if (rld[r].out_reg != 0)
6847 {
6848 fprintf (f, "\n\treload_out_reg: ");
6849 print_inline_rtx (f, rld[r].out_reg, 24);
6850 }
6851
6852 if (rld[r].reg_rtx != 0)
6853 {
6854 fprintf (f, "\n\treload_reg_rtx: ");
6855 print_inline_rtx (f, rld[r].reg_rtx, 24);
6856 }
6857
6858 prefix = "\n\t";
6859 if (rld[r].secondary_in_reload != -1)
6860 {
6861 fprintf (f, "%ssecondary_in_reload = %d",
6862 prefix, rld[r].secondary_in_reload);
6863 prefix = ", ";
6864 }
6865
6866 if (rld[r].secondary_out_reload != -1)
6867 fprintf (f, "%ssecondary_out_reload = %d\n",
6868 prefix, rld[r].secondary_out_reload);
6869
6870 prefix = "\n\t";
6871 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6872 {
6873 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6874 insn_data[rld[r].secondary_in_icode].name);
6875 prefix = ", ";
6876 }
6877
6878 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6879 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6880 insn_data[rld[r].secondary_out_icode].name);
6881
6882 fprintf (f, "\n");
6883 }
6884 }
6885
6886 void
6887 debug_reload ()
6888 {
6889 debug_reload_to_stream (stderr);
6890 }