inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "addresses.h"
39 #include "basic-block.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "output.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "ira.h"
48 #include "df.h"
49 #include "target.h"
50 #include "emit-rtl.h"
51
52 /* This file contains the reload pass of the compiler, which is
53 run after register allocation has been done. It checks that
54 each insn is valid (operands required to be in registers really
55 are in registers of the proper class) and fixes up invalid ones
56 by copying values temporarily into registers for the insns
57 that need them.
58
59 The results of register allocation are described by the vector
60 reg_renumber; the insns still contain pseudo regs, but reg_renumber
61 can be used to find which hard reg, if any, a pseudo reg is in.
62
63 The technique we always use is to free up a few hard regs that are
64 called ``reload regs'', and for each place where a pseudo reg
65 must be in a hard reg, copy it temporarily into one of the reload regs.
66
67 Reload regs are allocated locally for every instruction that needs
68 reloads. When there are pseudos which are allocated to a register that
69 has been chosen as a reload reg, such pseudos must be ``spilled''.
70 This means that they go to other hard regs, or to stack slots if no other
71 available hard regs can be found. Spilling can invalidate more
72 insns, requiring additional need for reloads, so we must keep checking
73 until the process stabilizes.
74
75 For machines with different classes of registers, we must keep track
76 of the register class needed for each reload, and make sure that
77 we allocate enough reload registers of each class.
78
79 The file reload.c contains the code that checks one insn for
80 validity and reports the reloads that it needs. This file
81 is in charge of scanning the entire rtl code, accumulating the
82 reload needs, spilling, assigning reload registers to use for
83 fixing up each insn, and generating the new insns to copy values
84 into the reload registers. */
85 \f
86 /* During reload_as_needed, element N contains a REG rtx for the hard reg
87 into which reg N has been reloaded (perhaps for a previous insn). */
88 static rtx *reg_last_reload_reg;
89
90 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
91 for an output reload that stores into reg N. */
92 static regset_head reg_has_output_reload;
93
94 /* Indicates which hard regs are reload-registers for an output reload
95 in the current insn. */
96 static HARD_REG_SET reg_is_output_reload;
97
98 /* Element N is the constant value to which pseudo reg N is equivalent,
99 or zero if pseudo reg N is not equivalent to a constant.
100 find_reloads looks at this in order to replace pseudo reg N
101 with the constant it stands for. */
102 rtx *reg_equiv_constant;
103
104 /* Element N is an invariant value to which pseudo reg N is equivalent.
105 eliminate_regs_in_insn uses this to replace pseudos in particular
106 contexts. */
107 rtx *reg_equiv_invariant;
108
109 /* Element N is a memory location to which pseudo reg N is equivalent,
110 prior to any register elimination (such as frame pointer to stack
111 pointer). Depending on whether or not it is a valid address, this value
112 is transferred to either reg_equiv_address or reg_equiv_mem. */
113 rtx *reg_equiv_memory_loc;
114
115 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
116 collector can keep track of what is inside. */
117 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
118
119 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
120 This is used when the address is not valid as a memory address
121 (because its displacement is too big for the machine.) */
122 rtx *reg_equiv_address;
123
124 /* Element N is the memory slot to which pseudo reg N is equivalent,
125 or zero if pseudo reg N is not equivalent to a memory slot. */
126 rtx *reg_equiv_mem;
127
128 /* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
129 alternate representations of the location of pseudo reg N. */
130 rtx *reg_equiv_alt_mem_list;
131
132 /* Widest width in which each pseudo reg is referred to (via subreg). */
133 static unsigned int *reg_max_ref_width;
134
135 /* Element N is the list of insns that initialized reg N from its equivalent
136 constant or memory slot. */
137 rtx *reg_equiv_init;
138 int reg_equiv_init_size;
139
140 /* Vector to remember old contents of reg_renumber before spilling. */
141 static short *reg_old_renumber;
142
143 /* During reload_as_needed, element N contains the last pseudo regno reloaded
144 into hard register N. If that pseudo reg occupied more than one register,
145 reg_reloaded_contents points to that pseudo for each spill register in
146 use; all of these must remain set for an inheritance to occur. */
147 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
148
149 /* During reload_as_needed, element N contains the insn for which
150 hard register N was last used. Its contents are significant only
151 when reg_reloaded_valid is set for this register. */
152 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
153
154 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
155 static HARD_REG_SET reg_reloaded_valid;
156 /* Indicate if the register was dead at the end of the reload.
157 This is only valid if reg_reloaded_contents is set and valid. */
158 static HARD_REG_SET reg_reloaded_dead;
159
160 /* Indicate whether the register's current value is one that is not
161 safe to retain across a call, even for registers that are normally
162 call-saved. This is only meaningful for members of reg_reloaded_valid. */
163 static HARD_REG_SET reg_reloaded_call_part_clobbered;
164
165 /* Number of spill-regs so far; number of valid elements of spill_regs. */
166 static int n_spills;
167
168 /* In parallel with spill_regs, contains REG rtx's for those regs.
169 Holds the last rtx used for any given reg, or 0 if it has never
170 been used for spilling yet. This rtx is reused, provided it has
171 the proper mode. */
172 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
173
174 /* In parallel with spill_regs, contains nonzero for a spill reg
175 that was stored after the last time it was used.
176 The precise value is the insn generated to do the store. */
177 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
178
179 /* This is the register that was stored with spill_reg_store. This is a
180 copy of reload_out / reload_out_reg when the value was stored; if
181 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
182 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
183
184 /* This table is the inverse mapping of spill_regs:
185 indexed by hard reg number,
186 it contains the position of that reg in spill_regs,
187 or -1 for something that is not in spill_regs.
188
189 ?!? This is no longer accurate. */
190 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
191
192 /* This reg set indicates registers that can't be used as spill registers for
193 the currently processed insn. These are the hard registers which are live
194 during the insn, but not allocated to pseudos, as well as fixed
195 registers. */
196 static HARD_REG_SET bad_spill_regs;
197
198 /* These are the hard registers that can't be used as spill register for any
199 insn. This includes registers used for user variables and registers that
200 we can't eliminate. A register that appears in this set also can't be used
201 to retry register allocation. */
202 static HARD_REG_SET bad_spill_regs_global;
203
204 /* Describes order of use of registers for reloading
205 of spilled pseudo-registers. `n_spills' is the number of
206 elements that are actually valid; new ones are added at the end.
207
208 Both spill_regs and spill_reg_order are used on two occasions:
209 once during find_reload_regs, where they keep track of the spill registers
210 for a single insn, but also during reload_as_needed where they show all
211 the registers ever used by reload. For the latter case, the information
212 is calculated during finish_spills. */
213 static short spill_regs[FIRST_PSEUDO_REGISTER];
214
215 /* This vector of reg sets indicates, for each pseudo, which hard registers
216 may not be used for retrying global allocation because the register was
217 formerly spilled from one of them. If we allowed reallocating a pseudo to
218 a register that it was already allocated to, reload might not
219 terminate. */
220 static HARD_REG_SET *pseudo_previous_regs;
221
222 /* This vector of reg sets indicates, for each pseudo, which hard
223 registers may not be used for retrying global allocation because they
224 are used as spill registers during one of the insns in which the
225 pseudo is live. */
226 static HARD_REG_SET *pseudo_forbidden_regs;
227
228 /* All hard regs that have been used as spill registers for any insn are
229 marked in this set. */
230 static HARD_REG_SET used_spill_regs;
231
232 /* Index of last register assigned as a spill register. We allocate in
233 a round-robin fashion. */
234 static int last_spill_reg;
235
236 /* Nonzero if indirect addressing is supported on the machine; this means
237 that spilling (REG n) does not require reloading it into a register in
238 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
239 value indicates the level of indirect addressing supported, e.g., two
240 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
241 a hard register. */
242 static char spill_indirect_levels;
243
244 /* Nonzero if indirect addressing is supported when the innermost MEM is
245 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
246 which these are valid is the same as spill_indirect_levels, above. */
247 char indirect_symref_ok;
248
249 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
250 char double_reg_address_ok;
251
252 /* Record the stack slot for each spilled hard register. */
253 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
254
255 /* Width allocated so far for that stack slot. */
256 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
257
258 /* Record which pseudos needed to be spilled. */
259 static regset_head spilled_pseudos;
260
261 /* Record which pseudos changed their allocation in finish_spills. */
262 static regset_head changed_allocation_pseudos;
263
264 /* Used for communication between order_regs_for_reload and count_pseudo.
265 Used to avoid counting one pseudo twice. */
266 static regset_head pseudos_counted;
267
268 /* First uid used by insns created by reload in this function.
269 Used in find_equiv_reg. */
270 int reload_first_uid;
271
272 /* Flag set by local-alloc or global-alloc if anything is live in
273 a call-clobbered reg across calls. */
274 int caller_save_needed;
275
276 /* Set to 1 while reload_as_needed is operating.
277 Required by some machines to handle any generated moves differently. */
278 int reload_in_progress = 0;
279
280 /* These arrays record the insn_code of insns that may be needed to
281 perform input and output reloads of special objects. They provide a
282 place to pass a scratch register. */
283 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
284 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
285
286 /* This obstack is used for allocation of rtl during register elimination.
287 The allocated storage can be freed once find_reloads has processed the
288 insn. */
289 static struct obstack reload_obstack;
290
291 /* Points to the beginning of the reload_obstack. All insn_chain structures
292 are allocated first. */
293 static char *reload_startobj;
294
295 /* The point after all insn_chain structures. Used to quickly deallocate
296 memory allocated in copy_reloads during calculate_needs_all_insns. */
297 static char *reload_firstobj;
298
299 /* This points before all local rtl generated by register elimination.
300 Used to quickly free all memory after processing one insn. */
301 static char *reload_insn_firstobj;
302
303 /* List of insn_chain instructions, one for every insn that reload needs to
304 examine. */
305 struct insn_chain *reload_insn_chain;
306
307 /* List of all insns needing reloads. */
308 static struct insn_chain *insns_need_reload;
309 \f
310 /* This structure is used to record information about register eliminations.
311 Each array entry describes one possible way of eliminating a register
312 in favor of another. If there is more than one way of eliminating a
313 particular register, the most preferred should be specified first. */
314
315 struct elim_table
316 {
317 int from; /* Register number to be eliminated. */
318 int to; /* Register number used as replacement. */
319 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
320 int can_eliminate; /* Nonzero if this elimination can be done. */
321 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
322 target hook in previous scan over insns
323 made by reload. */
324 HOST_WIDE_INT offset; /* Current offset between the two regs. */
325 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
326 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
327 rtx from_rtx; /* REG rtx for the register to be eliminated.
328 We cannot simply compare the number since
329 we might then spuriously replace a hard
330 register corresponding to a pseudo
331 assigned to the reg to be eliminated. */
332 rtx to_rtx; /* REG rtx for the replacement. */
333 };
334
335 static struct elim_table *reg_eliminate = 0;
336
337 /* This is an intermediate structure to initialize the table. It has
338 exactly the members provided by ELIMINABLE_REGS. */
339 static const struct elim_table_1
340 {
341 const int from;
342 const int to;
343 } reg_eliminate_1[] =
344
345 /* If a set of eliminable registers was specified, define the table from it.
346 Otherwise, default to the normal case of the frame pointer being
347 replaced by the stack pointer. */
348
349 #ifdef ELIMINABLE_REGS
350 ELIMINABLE_REGS;
351 #else
352 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
353 #endif
354
355 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
356
357 /* Record the number of pending eliminations that have an offset not equal
358 to their initial offset. If nonzero, we use a new copy of each
359 replacement result in any insns encountered. */
360 int num_not_at_initial_offset;
361
362 /* Count the number of registers that we may be able to eliminate. */
363 static int num_eliminable;
364 /* And the number of registers that are equivalent to a constant that
365 can be eliminated to frame_pointer / arg_pointer + constant. */
366 static int num_eliminable_invariants;
367
368 /* For each label, we record the offset of each elimination. If we reach
369 a label by more than one path and an offset differs, we cannot do the
370 elimination. This information is indexed by the difference of the
371 number of the label and the first label number. We can't offset the
372 pointer itself as this can cause problems on machines with segmented
373 memory. The first table is an array of flags that records whether we
374 have yet encountered a label and the second table is an array of arrays,
375 one entry in the latter array for each elimination. */
376
377 static int first_label_num;
378 static char *offsets_known_at;
379 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
380
381 /* Number of labels in the current function. */
382
383 static int num_labels;
384 \f
385 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
386 static void maybe_fix_stack_asms (void);
387 static void copy_reloads (struct insn_chain *);
388 static void calculate_needs_all_insns (int);
389 static int find_reg (struct insn_chain *, int);
390 static void find_reload_regs (struct insn_chain *);
391 static void select_reload_regs (void);
392 static void delete_caller_save_insns (void);
393
394 static void spill_failure (rtx, enum reg_class);
395 static void count_spilled_pseudo (int, int, int);
396 static void delete_dead_insn (rtx);
397 static void alter_reg (int, int, bool);
398 static void set_label_offsets (rtx, rtx, int);
399 static void check_eliminable_occurrences (rtx);
400 static void elimination_effects (rtx, enum machine_mode);
401 static int eliminate_regs_in_insn (rtx, int);
402 static void update_eliminable_offsets (void);
403 static void mark_not_eliminable (rtx, const_rtx, void *);
404 static void set_initial_elim_offsets (void);
405 static bool verify_initial_elim_offsets (void);
406 static void set_initial_label_offsets (void);
407 static void set_offsets_for_label (rtx);
408 static void init_elim_table (void);
409 static void update_eliminables (HARD_REG_SET *);
410 static void spill_hard_reg (unsigned int, int);
411 static int finish_spills (int);
412 static void scan_paradoxical_subregs (rtx);
413 static void count_pseudo (int);
414 static void order_regs_for_reload (struct insn_chain *);
415 static void reload_as_needed (int);
416 static void forget_old_reloads_1 (rtx, const_rtx, void *);
417 static void forget_marked_reloads (regset);
418 static int reload_reg_class_lower (const void *, const void *);
419 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
420 enum machine_mode);
421 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
422 enum machine_mode);
423 static int reload_reg_free_p (unsigned int, int, enum reload_type);
424 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
425 rtx, rtx, int, int);
426 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
427 rtx, rtx, int, int);
428 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
429 static int allocate_reload_reg (struct insn_chain *, int, int);
430 static int conflicts_with_override (rtx);
431 static void failed_reload (rtx, int);
432 static int set_reload_reg (int, int);
433 static void choose_reload_regs_init (struct insn_chain *, rtx *);
434 static void choose_reload_regs (struct insn_chain *);
435 static void merge_assigned_reloads (rtx);
436 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
437 rtx, int);
438 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
439 int);
440 static void do_input_reload (struct insn_chain *, struct reload *, int);
441 static void do_output_reload (struct insn_chain *, struct reload *, int);
442 static void emit_reload_insns (struct insn_chain *);
443 static void delete_output_reload (rtx, int, int, rtx);
444 static void delete_address_reloads (rtx, rtx);
445 static void delete_address_reloads_1 (rtx, rtx, rtx);
446 static rtx inc_for_reload (rtx, rtx, rtx, int);
447 #ifdef AUTO_INC_DEC
448 static void add_auto_inc_notes (rtx, rtx);
449 #endif
450 static void copy_eh_notes (rtx, rtx);
451 static void substitute (rtx *, const_rtx, rtx);
452 static bool gen_reload_chain_without_interm_reg_p (int, int);
453 static int reloads_conflict (int, int);
454 static rtx gen_reload (rtx, rtx, int, enum reload_type);
455 static rtx emit_insn_if_valid_for_reload (rtx);
456 \f
457 /* Initialize the reload pass. This is called at the beginning of compilation
458 and may be called again if the target is reinitialized. */
459
460 void
461 init_reload (void)
462 {
463 int i;
464
465 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
466 Set spill_indirect_levels to the number of levels such addressing is
467 permitted, zero if it is not permitted at all. */
468
469 rtx tem
470 = gen_rtx_MEM (Pmode,
471 gen_rtx_PLUS (Pmode,
472 gen_rtx_REG (Pmode,
473 LAST_VIRTUAL_REGISTER + 1),
474 GEN_INT (4)));
475 spill_indirect_levels = 0;
476
477 while (memory_address_p (QImode, tem))
478 {
479 spill_indirect_levels++;
480 tem = gen_rtx_MEM (Pmode, tem);
481 }
482
483 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
484
485 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
486 indirect_symref_ok = memory_address_p (QImode, tem);
487
488 /* See if reg+reg is a valid (and offsettable) address. */
489
490 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
491 {
492 tem = gen_rtx_PLUS (Pmode,
493 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
494 gen_rtx_REG (Pmode, i));
495
496 /* This way, we make sure that reg+reg is an offsettable address. */
497 tem = plus_constant (tem, 4);
498
499 if (memory_address_p (QImode, tem))
500 {
501 double_reg_address_ok = 1;
502 break;
503 }
504 }
505
506 /* Initialize obstack for our rtl allocation. */
507 gcc_obstack_init (&reload_obstack);
508 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
509
510 INIT_REG_SET (&spilled_pseudos);
511 INIT_REG_SET (&changed_allocation_pseudos);
512 INIT_REG_SET (&pseudos_counted);
513 }
514
515 /* List of insn chains that are currently unused. */
516 static struct insn_chain *unused_insn_chains = 0;
517
518 /* Allocate an empty insn_chain structure. */
519 struct insn_chain *
520 new_insn_chain (void)
521 {
522 struct insn_chain *c;
523
524 if (unused_insn_chains == 0)
525 {
526 c = XOBNEW (&reload_obstack, struct insn_chain);
527 INIT_REG_SET (&c->live_throughout);
528 INIT_REG_SET (&c->dead_or_set);
529 }
530 else
531 {
532 c = unused_insn_chains;
533 unused_insn_chains = c->next;
534 }
535 c->is_caller_save_insn = 0;
536 c->need_operand_change = 0;
537 c->need_reload = 0;
538 c->need_elim = 0;
539 return c;
540 }
541
542 /* Small utility function to set all regs in hard reg set TO which are
543 allocated to pseudos in regset FROM. */
544
545 void
546 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
547 {
548 unsigned int regno;
549 reg_set_iterator rsi;
550
551 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
552 {
553 int r = reg_renumber[regno];
554
555 if (r < 0)
556 {
557 /* reload_combine uses the information from DF_LIVE_IN,
558 which might still contain registers that have not
559 actually been allocated since they have an
560 equivalence. */
561 gcc_assert (ira_conflicts_p || reload_completed);
562 }
563 else
564 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
565 }
566 }
567
568 /* Replace all pseudos found in LOC with their corresponding
569 equivalences. */
570
571 static void
572 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
573 {
574 rtx x = *loc;
575 enum rtx_code code;
576 const char *fmt;
577 int i, j;
578
579 if (! x)
580 return;
581
582 code = GET_CODE (x);
583 if (code == REG)
584 {
585 unsigned int regno = REGNO (x);
586
587 if (regno < FIRST_PSEUDO_REGISTER)
588 return;
589
590 x = eliminate_regs (x, mem_mode, usage);
591 if (x != *loc)
592 {
593 *loc = x;
594 replace_pseudos_in (loc, mem_mode, usage);
595 return;
596 }
597
598 if (reg_equiv_constant[regno])
599 *loc = reg_equiv_constant[regno];
600 else if (reg_equiv_mem[regno])
601 *loc = reg_equiv_mem[regno];
602 else if (reg_equiv_address[regno])
603 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
604 else
605 {
606 gcc_assert (!REG_P (regno_reg_rtx[regno])
607 || REGNO (regno_reg_rtx[regno]) != regno);
608 *loc = regno_reg_rtx[regno];
609 }
610
611 return;
612 }
613 else if (code == MEM)
614 {
615 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
616 return;
617 }
618
619 /* Process each of our operands recursively. */
620 fmt = GET_RTX_FORMAT (code);
621 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
622 if (*fmt == 'e')
623 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
624 else if (*fmt == 'E')
625 for (j = 0; j < XVECLEN (x, i); j++)
626 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
627 }
628
629 /* Determine if the current function has an exception receiver block
630 that reaches the exit block via non-exceptional edges */
631
632 static bool
633 has_nonexceptional_receiver (void)
634 {
635 edge e;
636 edge_iterator ei;
637 basic_block *tos, *worklist, bb;
638
639 /* If we're not optimizing, then just err on the safe side. */
640 if (!optimize)
641 return true;
642
643 /* First determine which blocks can reach exit via normal paths. */
644 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
645
646 FOR_EACH_BB (bb)
647 bb->flags &= ~BB_REACHABLE;
648
649 /* Place the exit block on our worklist. */
650 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
651 *tos++ = EXIT_BLOCK_PTR;
652
653 /* Iterate: find everything reachable from what we've already seen. */
654 while (tos != worklist)
655 {
656 bb = *--tos;
657
658 FOR_EACH_EDGE (e, ei, bb->preds)
659 if (!(e->flags & EDGE_ABNORMAL))
660 {
661 basic_block src = e->src;
662
663 if (!(src->flags & BB_REACHABLE))
664 {
665 src->flags |= BB_REACHABLE;
666 *tos++ = src;
667 }
668 }
669 }
670 free (worklist);
671
672 /* Now see if there's a reachable block with an exceptional incoming
673 edge. */
674 FOR_EACH_BB (bb)
675 if (bb->flags & BB_REACHABLE)
676 FOR_EACH_EDGE (e, ei, bb->preds)
677 if (e->flags & EDGE_ABNORMAL)
678 return true;
679
680 /* No exceptional block reached exit unexceptionally. */
681 return false;
682 }
683
684 \f
685 /* Global variables used by reload and its subroutines. */
686
687 /* Set during calculate_needs if an insn needs register elimination. */
688 static int something_needs_elimination;
689 /* Set during calculate_needs if an insn needs an operand changed. */
690 static int something_needs_operands_changed;
691
692 /* Nonzero means we couldn't get enough spill regs. */
693 static int failure;
694
695 /* Temporary array of pseudo-register number. */
696 static int *temp_pseudo_reg_arr;
697
698 /* Main entry point for the reload pass.
699
700 FIRST is the first insn of the function being compiled.
701
702 GLOBAL nonzero means we were called from global_alloc
703 and should attempt to reallocate any pseudoregs that we
704 displace from hard regs we will use for reloads.
705 If GLOBAL is zero, we do not have enough information to do that,
706 so any pseudo reg that is spilled must go to the stack.
707
708 Return value is nonzero if reload failed
709 and we must not do any more for this function. */
710
711 int
712 reload (rtx first, int global)
713 {
714 int i, n;
715 rtx insn;
716 struct elim_table *ep;
717 basic_block bb;
718
719 /* Make sure even insns with volatile mem refs are recognizable. */
720 init_recog ();
721
722 failure = 0;
723
724 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
725
726 /* Make sure that the last insn in the chain
727 is not something that needs reloading. */
728 emit_note (NOTE_INSN_DELETED);
729
730 /* Enable find_equiv_reg to distinguish insns made by reload. */
731 reload_first_uid = get_max_uid ();
732
733 #ifdef SECONDARY_MEMORY_NEEDED
734 /* Initialize the secondary memory table. */
735 clear_secondary_mem ();
736 #endif
737
738 /* We don't have a stack slot for any spill reg yet. */
739 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
740 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
741
742 /* Initialize the save area information for caller-save, in case some
743 are needed. */
744 init_save_areas ();
745
746 /* Compute which hard registers are now in use
747 as homes for pseudo registers.
748 This is done here rather than (eg) in global_alloc
749 because this point is reached even if not optimizing. */
750 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
751 mark_home_live (i);
752
753 /* A function that has a nonlocal label that can reach the exit
754 block via non-exceptional paths must save all call-saved
755 registers. */
756 if (cfun->has_nonlocal_label
757 && has_nonexceptional_receiver ())
758 crtl->saves_all_registers = 1;
759
760 if (crtl->saves_all_registers)
761 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
762 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
763 df_set_regs_ever_live (i, true);
764
765 /* Find all the pseudo registers that didn't get hard regs
766 but do have known equivalent constants or memory slots.
767 These include parameters (known equivalent to parameter slots)
768 and cse'd or loop-moved constant memory addresses.
769
770 Record constant equivalents in reg_equiv_constant
771 so they will be substituted by find_reloads.
772 Record memory equivalents in reg_mem_equiv so they can
773 be substituted eventually by altering the REG-rtx's. */
774
775 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
776 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
777 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
778 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
779 reg_equiv_address = XCNEWVEC (rtx, max_regno);
780 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
781 reg_old_renumber = XCNEWVEC (short, max_regno);
782 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
783 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
784 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
785
786 CLEAR_HARD_REG_SET (bad_spill_regs_global);
787
788 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
789 to. Also find all paradoxical subregs and find largest such for
790 each pseudo. */
791
792 num_eliminable_invariants = 0;
793 for (insn = first; insn; insn = NEXT_INSN (insn))
794 {
795 rtx set = single_set (insn);
796
797 /* We may introduce USEs that we want to remove at the end, so
798 we'll mark them with QImode. Make sure there are no
799 previously-marked insns left by say regmove. */
800 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
801 && GET_MODE (insn) != VOIDmode)
802 PUT_MODE (insn, VOIDmode);
803
804 if (INSN_P (insn))
805 scan_paradoxical_subregs (PATTERN (insn));
806
807 if (set != 0 && REG_P (SET_DEST (set)))
808 {
809 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
810 rtx x;
811
812 if (! note)
813 continue;
814
815 i = REGNO (SET_DEST (set));
816 x = XEXP (note, 0);
817
818 if (i <= LAST_VIRTUAL_REGISTER)
819 continue;
820
821 if (! function_invariant_p (x)
822 || ! flag_pic
823 /* A function invariant is often CONSTANT_P but may
824 include a register. We promise to only pass
825 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
826 || (CONSTANT_P (x)
827 && LEGITIMATE_PIC_OPERAND_P (x)))
828 {
829 /* It can happen that a REG_EQUIV note contains a MEM
830 that is not a legitimate memory operand. As later
831 stages of reload assume that all addresses found
832 in the reg_equiv_* arrays were originally legitimate,
833 we ignore such REG_EQUIV notes. */
834 if (memory_operand (x, VOIDmode))
835 {
836 /* Always unshare the equivalence, so we can
837 substitute into this insn without touching the
838 equivalence. */
839 reg_equiv_memory_loc[i] = copy_rtx (x);
840 }
841 else if (function_invariant_p (x))
842 {
843 if (GET_CODE (x) == PLUS)
844 {
845 /* This is PLUS of frame pointer and a constant,
846 and might be shared. Unshare it. */
847 reg_equiv_invariant[i] = copy_rtx (x);
848 num_eliminable_invariants++;
849 }
850 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
851 {
852 reg_equiv_invariant[i] = x;
853 num_eliminable_invariants++;
854 }
855 else if (LEGITIMATE_CONSTANT_P (x))
856 reg_equiv_constant[i] = x;
857 else
858 {
859 reg_equiv_memory_loc[i]
860 = force_const_mem (GET_MODE (SET_DEST (set)), x);
861 if (! reg_equiv_memory_loc[i])
862 reg_equiv_init[i] = NULL_RTX;
863 }
864 }
865 else
866 {
867 reg_equiv_init[i] = NULL_RTX;
868 continue;
869 }
870 }
871 else
872 reg_equiv_init[i] = NULL_RTX;
873 }
874 }
875
876 if (dump_file)
877 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
878 if (reg_equiv_init[i])
879 {
880 fprintf (dump_file, "init_insns for %u: ", i);
881 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
882 fprintf (dump_file, "\n");
883 }
884
885 init_elim_table ();
886
887 first_label_num = get_first_label_num ();
888 num_labels = max_label_num () - first_label_num;
889
890 /* Allocate the tables used to store offset information at labels. */
891 /* We used to use alloca here, but the size of what it would try to
892 allocate would occasionally cause it to exceed the stack limit and
893 cause a core dump. */
894 offsets_known_at = XNEWVEC (char, num_labels);
895 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
896
897 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
898 stack slots to the pseudos that lack hard regs or equivalents.
899 Do not touch virtual registers. */
900
901 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
902 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
903 temp_pseudo_reg_arr[n++] = i;
904
905 if (ira_conflicts_p)
906 /* Ask IRA to order pseudo-registers for better stack slot
907 sharing. */
908 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
909
910 for (i = 0; i < n; i++)
911 alter_reg (temp_pseudo_reg_arr[i], -1, false);
912
913 /* If we have some registers we think can be eliminated, scan all insns to
914 see if there is an insn that sets one of these registers to something
915 other than itself plus a constant. If so, the register cannot be
916 eliminated. Doing this scan here eliminates an extra pass through the
917 main reload loop in the most common case where register elimination
918 cannot be done. */
919 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
920 if (INSN_P (insn))
921 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
922
923 maybe_fix_stack_asms ();
924
925 insns_need_reload = 0;
926 something_needs_elimination = 0;
927
928 /* Initialize to -1, which means take the first spill register. */
929 last_spill_reg = -1;
930
931 /* Spill any hard regs that we know we can't eliminate. */
932 CLEAR_HARD_REG_SET (used_spill_regs);
933 /* There can be multiple ways to eliminate a register;
934 they should be listed adjacently.
935 Elimination for any register fails only if all possible ways fail. */
936 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
937 {
938 int from = ep->from;
939 int can_eliminate = 0;
940 do
941 {
942 can_eliminate |= ep->can_eliminate;
943 ep++;
944 }
945 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
946 if (! can_eliminate)
947 spill_hard_reg (from, 1);
948 }
949
950 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
951 if (frame_pointer_needed)
952 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
953 #endif
954 finish_spills (global);
955
956 /* From now on, we may need to generate moves differently. We may also
957 allow modifications of insns which cause them to not be recognized.
958 Any such modifications will be cleaned up during reload itself. */
959 reload_in_progress = 1;
960
961 /* This loop scans the entire function each go-round
962 and repeats until one repetition spills no additional hard regs. */
963 for (;;)
964 {
965 int something_changed;
966 int did_spill;
967 HOST_WIDE_INT starting_frame_size;
968
969 starting_frame_size = get_frame_size ();
970
971 set_initial_elim_offsets ();
972 set_initial_label_offsets ();
973
974 /* For each pseudo register that has an equivalent location defined,
975 try to eliminate any eliminable registers (such as the frame pointer)
976 assuming initial offsets for the replacement register, which
977 is the normal case.
978
979 If the resulting location is directly addressable, substitute
980 the MEM we just got directly for the old REG.
981
982 If it is not addressable but is a constant or the sum of a hard reg
983 and constant, it is probably not addressable because the constant is
984 out of range, in that case record the address; we will generate
985 hairy code to compute the address in a register each time it is
986 needed. Similarly if it is a hard register, but one that is not
987 valid as an address register.
988
989 If the location is not addressable, but does not have one of the
990 above forms, assign a stack slot. We have to do this to avoid the
991 potential of producing lots of reloads if, e.g., a location involves
992 a pseudo that didn't get a hard register and has an equivalent memory
993 location that also involves a pseudo that didn't get a hard register.
994
995 Perhaps at some point we will improve reload_when_needed handling
996 so this problem goes away. But that's very hairy. */
997
998 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
999 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
1000 {
1001 rtx x = eliminate_regs (reg_equiv_memory_loc[i], VOIDmode,
1002 NULL_RTX);
1003
1004 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
1005 XEXP (x, 0)))
1006 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
1007 else if (CONSTANT_P (XEXP (x, 0))
1008 || (REG_P (XEXP (x, 0))
1009 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
1010 || (GET_CODE (XEXP (x, 0)) == PLUS
1011 && REG_P (XEXP (XEXP (x, 0), 0))
1012 && (REGNO (XEXP (XEXP (x, 0), 0))
1013 < FIRST_PSEUDO_REGISTER)
1014 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
1015 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
1016 else
1017 {
1018 /* Make a new stack slot. Then indicate that something
1019 changed so we go back and recompute offsets for
1020 eliminable registers because the allocation of memory
1021 below might change some offset. reg_equiv_{mem,address}
1022 will be set up for this pseudo on the next pass around
1023 the loop. */
1024 reg_equiv_memory_loc[i] = 0;
1025 reg_equiv_init[i] = 0;
1026 alter_reg (i, -1, true);
1027 }
1028 }
1029
1030 if (caller_save_needed)
1031 setup_save_areas ();
1032
1033 /* If we allocated another stack slot, redo elimination bookkeeping. */
1034 if (starting_frame_size != get_frame_size ())
1035 continue;
1036 if (starting_frame_size && crtl->stack_alignment_needed)
1037 {
1038 /* If we have a stack frame, we must align it now. The
1039 stack size may be a part of the offset computation for
1040 register elimination. So if this changes the stack size,
1041 then repeat the elimination bookkeeping. We don't
1042 realign when there is no stack, as that will cause a
1043 stack frame when none is needed should
1044 STARTING_FRAME_OFFSET not be already aligned to
1045 STACK_BOUNDARY. */
1046 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
1047 if (starting_frame_size != get_frame_size ())
1048 continue;
1049 }
1050
1051 if (caller_save_needed)
1052 {
1053 save_call_clobbered_regs ();
1054 /* That might have allocated new insn_chain structures. */
1055 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1056 }
1057
1058 calculate_needs_all_insns (global);
1059
1060 if (! ira_conflicts_p)
1061 /* Don't do it for IRA. We need this info because we don't
1062 change live_throughout and dead_or_set for chains when IRA
1063 is used. */
1064 CLEAR_REG_SET (&spilled_pseudos);
1065
1066 did_spill = 0;
1067
1068 something_changed = 0;
1069
1070 /* If we allocated any new memory locations, make another pass
1071 since it might have changed elimination offsets. */
1072 if (starting_frame_size != get_frame_size ())
1073 something_changed = 1;
1074
1075 /* Even if the frame size remained the same, we might still have
1076 changed elimination offsets, e.g. if find_reloads called
1077 force_const_mem requiring the back end to allocate a constant
1078 pool base register that needs to be saved on the stack. */
1079 else if (!verify_initial_elim_offsets ())
1080 something_changed = 1;
1081
1082 {
1083 HARD_REG_SET to_spill;
1084 CLEAR_HARD_REG_SET (to_spill);
1085 update_eliminables (&to_spill);
1086 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
1087
1088 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1089 if (TEST_HARD_REG_BIT (to_spill, i))
1090 {
1091 spill_hard_reg (i, 1);
1092 did_spill = 1;
1093
1094 /* Regardless of the state of spills, if we previously had
1095 a register that we thought we could eliminate, but now can
1096 not eliminate, we must run another pass.
1097
1098 Consider pseudos which have an entry in reg_equiv_* which
1099 reference an eliminable register. We must make another pass
1100 to update reg_equiv_* so that we do not substitute in the
1101 old value from when we thought the elimination could be
1102 performed. */
1103 something_changed = 1;
1104 }
1105 }
1106
1107 select_reload_regs ();
1108 if (failure)
1109 goto failed;
1110
1111 if (insns_need_reload != 0 || did_spill)
1112 something_changed |= finish_spills (global);
1113
1114 if (! something_changed)
1115 break;
1116
1117 if (caller_save_needed)
1118 delete_caller_save_insns ();
1119
1120 obstack_free (&reload_obstack, reload_firstobj);
1121 }
1122
1123 /* If global-alloc was run, notify it of any register eliminations we have
1124 done. */
1125 if (global)
1126 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1127 if (ep->can_eliminate)
1128 mark_elimination (ep->from, ep->to);
1129
1130 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1131 If that insn didn't set the register (i.e., it copied the register to
1132 memory), just delete that insn instead of the equivalencing insn plus
1133 anything now dead. If we call delete_dead_insn on that insn, we may
1134 delete the insn that actually sets the register if the register dies
1135 there and that is incorrect. */
1136
1137 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1138 {
1139 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1140 {
1141 rtx list;
1142 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1143 {
1144 rtx equiv_insn = XEXP (list, 0);
1145
1146 /* If we already deleted the insn or if it may trap, we can't
1147 delete it. The latter case shouldn't happen, but can
1148 if an insn has a variable address, gets a REG_EH_REGION
1149 note added to it, and then gets converted into a load
1150 from a constant address. */
1151 if (NOTE_P (equiv_insn)
1152 || can_throw_internal (equiv_insn))
1153 ;
1154 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1155 delete_dead_insn (equiv_insn);
1156 else
1157 SET_INSN_DELETED (equiv_insn);
1158 }
1159 }
1160 }
1161
1162 /* Use the reload registers where necessary
1163 by generating move instructions to move the must-be-register
1164 values into or out of the reload registers. */
1165
1166 if (insns_need_reload != 0 || something_needs_elimination
1167 || something_needs_operands_changed)
1168 {
1169 HOST_WIDE_INT old_frame_size = get_frame_size ();
1170
1171 reload_as_needed (global);
1172
1173 gcc_assert (old_frame_size == get_frame_size ());
1174
1175 gcc_assert (verify_initial_elim_offsets ());
1176 }
1177
1178 /* If we were able to eliminate the frame pointer, show that it is no
1179 longer live at the start of any basic block. If it ls live by
1180 virtue of being in a pseudo, that pseudo will be marked live
1181 and hence the frame pointer will be known to be live via that
1182 pseudo. */
1183
1184 if (! frame_pointer_needed)
1185 FOR_EACH_BB (bb)
1186 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1187
1188 /* Come here (with failure set nonzero) if we can't get enough spill
1189 regs. */
1190 failed:
1191
1192 CLEAR_REG_SET (&changed_allocation_pseudos);
1193 CLEAR_REG_SET (&spilled_pseudos);
1194 reload_in_progress = 0;
1195
1196 /* Now eliminate all pseudo regs by modifying them into
1197 their equivalent memory references.
1198 The REG-rtx's for the pseudos are modified in place,
1199 so all insns that used to refer to them now refer to memory.
1200
1201 For a reg that has a reg_equiv_address, all those insns
1202 were changed by reloading so that no insns refer to it any longer;
1203 but the DECL_RTL of a variable decl may refer to it,
1204 and if so this causes the debugging info to mention the variable. */
1205
1206 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1207 {
1208 rtx addr = 0;
1209
1210 if (reg_equiv_mem[i])
1211 addr = XEXP (reg_equiv_mem[i], 0);
1212
1213 if (reg_equiv_address[i])
1214 addr = reg_equiv_address[i];
1215
1216 if (addr)
1217 {
1218 if (reg_renumber[i] < 0)
1219 {
1220 rtx reg = regno_reg_rtx[i];
1221
1222 REG_USERVAR_P (reg) = 0;
1223 PUT_CODE (reg, MEM);
1224 XEXP (reg, 0) = addr;
1225 if (reg_equiv_memory_loc[i])
1226 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1227 else
1228 {
1229 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1230 MEM_ATTRS (reg) = 0;
1231 }
1232 MEM_NOTRAP_P (reg) = 1;
1233 }
1234 else if (reg_equiv_mem[i])
1235 XEXP (reg_equiv_mem[i], 0) = addr;
1236 }
1237 }
1238
1239 /* We must set reload_completed now since the cleanup_subreg_operands call
1240 below will re-recognize each insn and reload may have generated insns
1241 which are only valid during and after reload. */
1242 reload_completed = 1;
1243
1244 /* Make a pass over all the insns and delete all USEs which we inserted
1245 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1246 notes. Delete all CLOBBER insns, except those that refer to the return
1247 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1248 from misarranging variable-array code, and simplify (subreg (reg))
1249 operands. Strip and regenerate REG_INC notes that may have been moved
1250 around. */
1251
1252 for (insn = first; insn; insn = NEXT_INSN (insn))
1253 if (INSN_P (insn))
1254 {
1255 rtx *pnote;
1256
1257 if (CALL_P (insn))
1258 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1259 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1260
1261 if ((GET_CODE (PATTERN (insn)) == USE
1262 /* We mark with QImode USEs introduced by reload itself. */
1263 && (GET_MODE (insn) == QImode
1264 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1265 || (GET_CODE (PATTERN (insn)) == CLOBBER
1266 && (!MEM_P (XEXP (PATTERN (insn), 0))
1267 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1268 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1269 && XEXP (XEXP (PATTERN (insn), 0), 0)
1270 != stack_pointer_rtx))
1271 && (!REG_P (XEXP (PATTERN (insn), 0))
1272 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1273 {
1274 delete_insn (insn);
1275 continue;
1276 }
1277
1278 /* Some CLOBBERs may survive until here and still reference unassigned
1279 pseudos with const equivalent, which may in turn cause ICE in later
1280 passes if the reference remains in place. */
1281 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1282 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1283 VOIDmode, PATTERN (insn));
1284
1285 /* Discard obvious no-ops, even without -O. This optimization
1286 is fast and doesn't interfere with debugging. */
1287 if (NONJUMP_INSN_P (insn)
1288 && GET_CODE (PATTERN (insn)) == SET
1289 && REG_P (SET_SRC (PATTERN (insn)))
1290 && REG_P (SET_DEST (PATTERN (insn)))
1291 && (REGNO (SET_SRC (PATTERN (insn)))
1292 == REGNO (SET_DEST (PATTERN (insn)))))
1293 {
1294 delete_insn (insn);
1295 continue;
1296 }
1297
1298 pnote = &REG_NOTES (insn);
1299 while (*pnote != 0)
1300 {
1301 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1302 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1303 || REG_NOTE_KIND (*pnote) == REG_INC)
1304 *pnote = XEXP (*pnote, 1);
1305 else
1306 pnote = &XEXP (*pnote, 1);
1307 }
1308
1309 #ifdef AUTO_INC_DEC
1310 add_auto_inc_notes (insn, PATTERN (insn));
1311 #endif
1312
1313 /* Simplify (subreg (reg)) if it appears as an operand. */
1314 cleanup_subreg_operands (insn);
1315
1316 /* Clean up invalid ASMs so that they don't confuse later passes.
1317 See PR 21299. */
1318 if (asm_noperands (PATTERN (insn)) >= 0)
1319 {
1320 extract_insn (insn);
1321 if (!constrain_operands (1))
1322 {
1323 error_for_asm (insn,
1324 "%<asm%> operand has impossible constraints");
1325 delete_insn (insn);
1326 continue;
1327 }
1328 }
1329 }
1330
1331 /* If we are doing generic stack checking, give a warning if this
1332 function's frame size is larger than we expect. */
1333 if (flag_stack_check == GENERIC_STACK_CHECK)
1334 {
1335 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1336 static int verbose_warned = 0;
1337
1338 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1339 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1340 size += UNITS_PER_WORD;
1341
1342 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1343 {
1344 warning (0, "frame size too large for reliable stack checking");
1345 if (! verbose_warned)
1346 {
1347 warning (0, "try reducing the number of local variables");
1348 verbose_warned = 1;
1349 }
1350 }
1351 }
1352
1353 /* Indicate that we no longer have known memory locations or constants. */
1354 if (reg_equiv_constant)
1355 free (reg_equiv_constant);
1356 if (reg_equiv_invariant)
1357 free (reg_equiv_invariant);
1358 reg_equiv_constant = 0;
1359 reg_equiv_invariant = 0;
1360 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1361 reg_equiv_memory_loc = 0;
1362
1363 free (temp_pseudo_reg_arr);
1364
1365 if (offsets_known_at)
1366 free (offsets_known_at);
1367 if (offsets_at)
1368 free (offsets_at);
1369
1370 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1371 if (reg_equiv_alt_mem_list[i])
1372 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1373 free (reg_equiv_alt_mem_list);
1374
1375 free (reg_equiv_mem);
1376 reg_equiv_init = 0;
1377 free (reg_equiv_address);
1378 free (reg_max_ref_width);
1379 free (reg_old_renumber);
1380 free (pseudo_previous_regs);
1381 free (pseudo_forbidden_regs);
1382
1383 CLEAR_HARD_REG_SET (used_spill_regs);
1384 for (i = 0; i < n_spills; i++)
1385 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1386
1387 /* Free all the insn_chain structures at once. */
1388 obstack_free (&reload_obstack, reload_startobj);
1389 unused_insn_chains = 0;
1390 fixup_abnormal_edges ();
1391
1392 /* Replacing pseudos with their memory equivalents might have
1393 created shared rtx. Subsequent passes would get confused
1394 by this, so unshare everything here. */
1395 unshare_all_rtl_again (first);
1396
1397 #ifdef STACK_BOUNDARY
1398 /* init_emit has set the alignment of the hard frame pointer
1399 to STACK_BOUNDARY. It is very likely no longer valid if
1400 the hard frame pointer was used for register allocation. */
1401 if (!frame_pointer_needed)
1402 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1403 #endif
1404
1405 return failure;
1406 }
1407
1408 /* Yet another special case. Unfortunately, reg-stack forces people to
1409 write incorrect clobbers in asm statements. These clobbers must not
1410 cause the register to appear in bad_spill_regs, otherwise we'll call
1411 fatal_insn later. We clear the corresponding regnos in the live
1412 register sets to avoid this.
1413 The whole thing is rather sick, I'm afraid. */
1414
1415 static void
1416 maybe_fix_stack_asms (void)
1417 {
1418 #ifdef STACK_REGS
1419 const char *constraints[MAX_RECOG_OPERANDS];
1420 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1421 struct insn_chain *chain;
1422
1423 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1424 {
1425 int i, noperands;
1426 HARD_REG_SET clobbered, allowed;
1427 rtx pat;
1428
1429 if (! INSN_P (chain->insn)
1430 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1431 continue;
1432 pat = PATTERN (chain->insn);
1433 if (GET_CODE (pat) != PARALLEL)
1434 continue;
1435
1436 CLEAR_HARD_REG_SET (clobbered);
1437 CLEAR_HARD_REG_SET (allowed);
1438
1439 /* First, make a mask of all stack regs that are clobbered. */
1440 for (i = 0; i < XVECLEN (pat, 0); i++)
1441 {
1442 rtx t = XVECEXP (pat, 0, i);
1443 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1444 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1445 }
1446
1447 /* Get the operand values and constraints out of the insn. */
1448 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1449 constraints, operand_mode, NULL);
1450
1451 /* For every operand, see what registers are allowed. */
1452 for (i = 0; i < noperands; i++)
1453 {
1454 const char *p = constraints[i];
1455 /* For every alternative, we compute the class of registers allowed
1456 for reloading in CLS, and merge its contents into the reg set
1457 ALLOWED. */
1458 int cls = (int) NO_REGS;
1459
1460 for (;;)
1461 {
1462 char c = *p;
1463
1464 if (c == '\0' || c == ',' || c == '#')
1465 {
1466 /* End of one alternative - mark the regs in the current
1467 class, and reset the class. */
1468 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1469 cls = NO_REGS;
1470 p++;
1471 if (c == '#')
1472 do {
1473 c = *p++;
1474 } while (c != '\0' && c != ',');
1475 if (c == '\0')
1476 break;
1477 continue;
1478 }
1479
1480 switch (c)
1481 {
1482 case '=': case '+': case '*': case '%': case '?': case '!':
1483 case '0': case '1': case '2': case '3': case '4': case '<':
1484 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1485 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1486 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1487 case TARGET_MEM_CONSTRAINT:
1488 break;
1489
1490 case 'p':
1491 cls = (int) reg_class_subunion[cls]
1492 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1493 break;
1494
1495 case 'g':
1496 case 'r':
1497 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1498 break;
1499
1500 default:
1501 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1502 cls = (int) reg_class_subunion[cls]
1503 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1504 else
1505 cls = (int) reg_class_subunion[cls]
1506 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1507 }
1508 p += CONSTRAINT_LEN (c, p);
1509 }
1510 }
1511 /* Those of the registers which are clobbered, but allowed by the
1512 constraints, must be usable as reload registers. So clear them
1513 out of the life information. */
1514 AND_HARD_REG_SET (allowed, clobbered);
1515 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1516 if (TEST_HARD_REG_BIT (allowed, i))
1517 {
1518 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1519 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1520 }
1521 }
1522
1523 #endif
1524 }
1525 \f
1526 /* Copy the global variables n_reloads and rld into the corresponding elts
1527 of CHAIN. */
1528 static void
1529 copy_reloads (struct insn_chain *chain)
1530 {
1531 chain->n_reloads = n_reloads;
1532 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1533 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1534 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1535 }
1536
1537 /* Walk the chain of insns, and determine for each whether it needs reloads
1538 and/or eliminations. Build the corresponding insns_need_reload list, and
1539 set something_needs_elimination as appropriate. */
1540 static void
1541 calculate_needs_all_insns (int global)
1542 {
1543 struct insn_chain **pprev_reload = &insns_need_reload;
1544 struct insn_chain *chain, *next = 0;
1545
1546 something_needs_elimination = 0;
1547
1548 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1549 for (chain = reload_insn_chain; chain != 0; chain = next)
1550 {
1551 rtx insn = chain->insn;
1552
1553 next = chain->next;
1554
1555 /* Clear out the shortcuts. */
1556 chain->n_reloads = 0;
1557 chain->need_elim = 0;
1558 chain->need_reload = 0;
1559 chain->need_operand_change = 0;
1560
1561 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1562 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1563 what effects this has on the known offsets at labels. */
1564
1565 if (LABEL_P (insn) || JUMP_P (insn)
1566 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1567 set_label_offsets (insn, insn, 0);
1568
1569 if (INSN_P (insn))
1570 {
1571 rtx old_body = PATTERN (insn);
1572 int old_code = INSN_CODE (insn);
1573 rtx old_notes = REG_NOTES (insn);
1574 int did_elimination = 0;
1575 int operands_changed = 0;
1576 rtx set = single_set (insn);
1577
1578 /* Skip insns that only set an equivalence. */
1579 if (set && REG_P (SET_DEST (set))
1580 && reg_renumber[REGNO (SET_DEST (set))] < 0
1581 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1582 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1583 && reg_equiv_init[REGNO (SET_DEST (set))])
1584 continue;
1585
1586 /* If needed, eliminate any eliminable registers. */
1587 if (num_eliminable || num_eliminable_invariants)
1588 did_elimination = eliminate_regs_in_insn (insn, 0);
1589
1590 /* Analyze the instruction. */
1591 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1592 global, spill_reg_order);
1593
1594 /* If a no-op set needs more than one reload, this is likely
1595 to be something that needs input address reloads. We
1596 can't get rid of this cleanly later, and it is of no use
1597 anyway, so discard it now.
1598 We only do this when expensive_optimizations is enabled,
1599 since this complements reload inheritance / output
1600 reload deletion, and it can make debugging harder. */
1601 if (flag_expensive_optimizations && n_reloads > 1)
1602 {
1603 rtx set = single_set (insn);
1604 if (set
1605 &&
1606 ((SET_SRC (set) == SET_DEST (set)
1607 && REG_P (SET_SRC (set))
1608 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1609 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1610 && reg_renumber[REGNO (SET_SRC (set))] < 0
1611 && reg_renumber[REGNO (SET_DEST (set))] < 0
1612 && reg_equiv_memory_loc[REGNO (SET_SRC (set))] != NULL
1613 && reg_equiv_memory_loc[REGNO (SET_DEST (set))] != NULL
1614 && rtx_equal_p (reg_equiv_memory_loc
1615 [REGNO (SET_SRC (set))],
1616 reg_equiv_memory_loc
1617 [REGNO (SET_DEST (set))]))))
1618 {
1619 if (ira_conflicts_p)
1620 /* Inform IRA about the insn deletion. */
1621 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1622 REGNO (SET_SRC (set)));
1623 delete_insn (insn);
1624 /* Delete it from the reload chain. */
1625 if (chain->prev)
1626 chain->prev->next = next;
1627 else
1628 reload_insn_chain = next;
1629 if (next)
1630 next->prev = chain->prev;
1631 chain->next = unused_insn_chains;
1632 unused_insn_chains = chain;
1633 continue;
1634 }
1635 }
1636 if (num_eliminable)
1637 update_eliminable_offsets ();
1638
1639 /* Remember for later shortcuts which insns had any reloads or
1640 register eliminations. */
1641 chain->need_elim = did_elimination;
1642 chain->need_reload = n_reloads > 0;
1643 chain->need_operand_change = operands_changed;
1644
1645 /* Discard any register replacements done. */
1646 if (did_elimination)
1647 {
1648 obstack_free (&reload_obstack, reload_insn_firstobj);
1649 PATTERN (insn) = old_body;
1650 INSN_CODE (insn) = old_code;
1651 REG_NOTES (insn) = old_notes;
1652 something_needs_elimination = 1;
1653 }
1654
1655 something_needs_operands_changed |= operands_changed;
1656
1657 if (n_reloads != 0)
1658 {
1659 copy_reloads (chain);
1660 *pprev_reload = chain;
1661 pprev_reload = &chain->next_need_reload;
1662 }
1663 }
1664 }
1665 *pprev_reload = 0;
1666 }
1667 \f
1668 /* Comparison function for qsort to decide which of two reloads
1669 should be handled first. *P1 and *P2 are the reload numbers. */
1670
1671 static int
1672 reload_reg_class_lower (const void *r1p, const void *r2p)
1673 {
1674 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1675 int t;
1676
1677 /* Consider required reloads before optional ones. */
1678 t = rld[r1].optional - rld[r2].optional;
1679 if (t != 0)
1680 return t;
1681
1682 /* Count all solitary classes before non-solitary ones. */
1683 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1684 - (reg_class_size[(int) rld[r1].rclass] == 1));
1685 if (t != 0)
1686 return t;
1687
1688 /* Aside from solitaires, consider all multi-reg groups first. */
1689 t = rld[r2].nregs - rld[r1].nregs;
1690 if (t != 0)
1691 return t;
1692
1693 /* Consider reloads in order of increasing reg-class number. */
1694 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1695 if (t != 0)
1696 return t;
1697
1698 /* If reloads are equally urgent, sort by reload number,
1699 so that the results of qsort leave nothing to chance. */
1700 return r1 - r2;
1701 }
1702 \f
1703 /* The cost of spilling each hard reg. */
1704 static int spill_cost[FIRST_PSEUDO_REGISTER];
1705
1706 /* When spilling multiple hard registers, we use SPILL_COST for the first
1707 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1708 only the first hard reg for a multi-reg pseudo. */
1709 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1710
1711 /* Map of hard regno to pseudo regno currently occupying the hard
1712 reg. */
1713 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1714
1715 /* Update the spill cost arrays, considering that pseudo REG is live. */
1716
1717 static void
1718 count_pseudo (int reg)
1719 {
1720 int freq = REG_FREQ (reg);
1721 int r = reg_renumber[reg];
1722 int nregs;
1723
1724 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1725 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1726 /* Ignore spilled pseudo-registers which can be here only if IRA
1727 is used. */
1728 || (ira_conflicts_p && r < 0))
1729 return;
1730
1731 SET_REGNO_REG_SET (&pseudos_counted, reg);
1732
1733 gcc_assert (r >= 0);
1734
1735 spill_add_cost[r] += freq;
1736 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1737 while (nregs-- > 0)
1738 {
1739 hard_regno_to_pseudo_regno[r + nregs] = reg;
1740 spill_cost[r + nregs] += freq;
1741 }
1742 }
1743
1744 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1745 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1746
1747 static void
1748 order_regs_for_reload (struct insn_chain *chain)
1749 {
1750 unsigned i;
1751 HARD_REG_SET used_by_pseudos;
1752 HARD_REG_SET used_by_pseudos2;
1753 reg_set_iterator rsi;
1754
1755 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1756
1757 memset (spill_cost, 0, sizeof spill_cost);
1758 memset (spill_add_cost, 0, sizeof spill_add_cost);
1759 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1760 hard_regno_to_pseudo_regno[i] = -1;
1761
1762 /* Count number of uses of each hard reg by pseudo regs allocated to it
1763 and then order them by decreasing use. First exclude hard registers
1764 that are live in or across this insn. */
1765
1766 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1767 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1768 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1769 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1770
1771 /* Now find out which pseudos are allocated to it, and update
1772 hard_reg_n_uses. */
1773 CLEAR_REG_SET (&pseudos_counted);
1774
1775 EXECUTE_IF_SET_IN_REG_SET
1776 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1777 {
1778 count_pseudo (i);
1779 }
1780 EXECUTE_IF_SET_IN_REG_SET
1781 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1782 {
1783 count_pseudo (i);
1784 }
1785 CLEAR_REG_SET (&pseudos_counted);
1786 }
1787 \f
1788 /* Vector of reload-numbers showing the order in which the reloads should
1789 be processed. */
1790 static short reload_order[MAX_RELOADS];
1791
1792 /* This is used to keep track of the spill regs used in one insn. */
1793 static HARD_REG_SET used_spill_regs_local;
1794
1795 /* We decided to spill hard register SPILLED, which has a size of
1796 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1797 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1798 update SPILL_COST/SPILL_ADD_COST. */
1799
1800 static void
1801 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1802 {
1803 int freq = REG_FREQ (reg);
1804 int r = reg_renumber[reg];
1805 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1806
1807 /* Ignore spilled pseudo-registers which can be here only if IRA is
1808 used. */
1809 if ((ira_conflicts_p && r < 0)
1810 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1811 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1812 return;
1813
1814 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1815
1816 spill_add_cost[r] -= freq;
1817 while (nregs-- > 0)
1818 {
1819 hard_regno_to_pseudo_regno[r + nregs] = -1;
1820 spill_cost[r + nregs] -= freq;
1821 }
1822 }
1823
1824 /* Find reload register to use for reload number ORDER. */
1825
1826 static int
1827 find_reg (struct insn_chain *chain, int order)
1828 {
1829 int rnum = reload_order[order];
1830 struct reload *rl = rld + rnum;
1831 int best_cost = INT_MAX;
1832 int best_reg = -1;
1833 unsigned int i, j, n;
1834 int k;
1835 HARD_REG_SET not_usable;
1836 HARD_REG_SET used_by_other_reload;
1837 reg_set_iterator rsi;
1838 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1839 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1840
1841 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1842 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1843 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1844
1845 CLEAR_HARD_REG_SET (used_by_other_reload);
1846 for (k = 0; k < order; k++)
1847 {
1848 int other = reload_order[k];
1849
1850 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1851 for (j = 0; j < rld[other].nregs; j++)
1852 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1853 }
1854
1855 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1856 {
1857 #ifdef REG_ALLOC_ORDER
1858 unsigned int regno = reg_alloc_order[i];
1859 #else
1860 unsigned int regno = i;
1861 #endif
1862
1863 if (! TEST_HARD_REG_BIT (not_usable, regno)
1864 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1865 && HARD_REGNO_MODE_OK (regno, rl->mode))
1866 {
1867 int this_cost = spill_cost[regno];
1868 int ok = 1;
1869 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1870
1871 for (j = 1; j < this_nregs; j++)
1872 {
1873 this_cost += spill_add_cost[regno + j];
1874 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1875 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1876 ok = 0;
1877 }
1878 if (! ok)
1879 continue;
1880
1881 if (ira_conflicts_p)
1882 {
1883 /* Ask IRA to find a better pseudo-register for
1884 spilling. */
1885 for (n = j = 0; j < this_nregs; j++)
1886 {
1887 int r = hard_regno_to_pseudo_regno[regno + j];
1888
1889 if (r < 0)
1890 continue;
1891 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1892 regno_pseudo_regs[n++] = r;
1893 }
1894 regno_pseudo_regs[n++] = -1;
1895 if (best_reg < 0
1896 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1897 best_regno_pseudo_regs,
1898 rl->in, rl->out,
1899 chain->insn))
1900 {
1901 best_reg = regno;
1902 for (j = 0;; j++)
1903 {
1904 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1905 if (regno_pseudo_regs[j] < 0)
1906 break;
1907 }
1908 }
1909 continue;
1910 }
1911
1912 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1913 this_cost--;
1914 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1915 this_cost--;
1916 if (this_cost < best_cost
1917 /* Among registers with equal cost, prefer caller-saved ones, or
1918 use REG_ALLOC_ORDER if it is defined. */
1919 || (this_cost == best_cost
1920 #ifdef REG_ALLOC_ORDER
1921 && (inv_reg_alloc_order[regno]
1922 < inv_reg_alloc_order[best_reg])
1923 #else
1924 && call_used_regs[regno]
1925 && ! call_used_regs[best_reg]
1926 #endif
1927 ))
1928 {
1929 best_reg = regno;
1930 best_cost = this_cost;
1931 }
1932 }
1933 }
1934 if (best_reg == -1)
1935 return 0;
1936
1937 if (dump_file)
1938 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1939
1940 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1941 rl->regno = best_reg;
1942
1943 EXECUTE_IF_SET_IN_REG_SET
1944 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1945 {
1946 count_spilled_pseudo (best_reg, rl->nregs, j);
1947 }
1948
1949 EXECUTE_IF_SET_IN_REG_SET
1950 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1951 {
1952 count_spilled_pseudo (best_reg, rl->nregs, j);
1953 }
1954
1955 for (i = 0; i < rl->nregs; i++)
1956 {
1957 gcc_assert (spill_cost[best_reg + i] == 0);
1958 gcc_assert (spill_add_cost[best_reg + i] == 0);
1959 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1960 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1961 }
1962 return 1;
1963 }
1964
1965 /* Find more reload regs to satisfy the remaining need of an insn, which
1966 is given by CHAIN.
1967 Do it by ascending class number, since otherwise a reg
1968 might be spilled for a big class and might fail to count
1969 for a smaller class even though it belongs to that class. */
1970
1971 static void
1972 find_reload_regs (struct insn_chain *chain)
1973 {
1974 int i;
1975
1976 /* In order to be certain of getting the registers we need,
1977 we must sort the reloads into order of increasing register class.
1978 Then our grabbing of reload registers will parallel the process
1979 that provided the reload registers. */
1980 for (i = 0; i < chain->n_reloads; i++)
1981 {
1982 /* Show whether this reload already has a hard reg. */
1983 if (chain->rld[i].reg_rtx)
1984 {
1985 int regno = REGNO (chain->rld[i].reg_rtx);
1986 chain->rld[i].regno = regno;
1987 chain->rld[i].nregs
1988 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1989 }
1990 else
1991 chain->rld[i].regno = -1;
1992 reload_order[i] = i;
1993 }
1994
1995 n_reloads = chain->n_reloads;
1996 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1997
1998 CLEAR_HARD_REG_SET (used_spill_regs_local);
1999
2000 if (dump_file)
2001 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2002
2003 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2004
2005 /* Compute the order of preference for hard registers to spill. */
2006
2007 order_regs_for_reload (chain);
2008
2009 for (i = 0; i < n_reloads; i++)
2010 {
2011 int r = reload_order[i];
2012
2013 /* Ignore reloads that got marked inoperative. */
2014 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2015 && ! rld[r].optional
2016 && rld[r].regno == -1)
2017 if (! find_reg (chain, i))
2018 {
2019 if (dump_file)
2020 fprintf (dump_file, "reload failure for reload %d\n", r);
2021 spill_failure (chain->insn, rld[r].rclass);
2022 failure = 1;
2023 return;
2024 }
2025 }
2026
2027 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2028 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2029
2030 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2031 }
2032
2033 static void
2034 select_reload_regs (void)
2035 {
2036 struct insn_chain *chain;
2037
2038 /* Try to satisfy the needs for each insn. */
2039 for (chain = insns_need_reload; chain != 0;
2040 chain = chain->next_need_reload)
2041 find_reload_regs (chain);
2042 }
2043 \f
2044 /* Delete all insns that were inserted by emit_caller_save_insns during
2045 this iteration. */
2046 static void
2047 delete_caller_save_insns (void)
2048 {
2049 struct insn_chain *c = reload_insn_chain;
2050
2051 while (c != 0)
2052 {
2053 while (c != 0 && c->is_caller_save_insn)
2054 {
2055 struct insn_chain *next = c->next;
2056 rtx insn = c->insn;
2057
2058 if (c == reload_insn_chain)
2059 reload_insn_chain = next;
2060 delete_insn (insn);
2061
2062 if (next)
2063 next->prev = c->prev;
2064 if (c->prev)
2065 c->prev->next = next;
2066 c->next = unused_insn_chains;
2067 unused_insn_chains = c;
2068 c = next;
2069 }
2070 if (c != 0)
2071 c = c->next;
2072 }
2073 }
2074 \f
2075 /* Handle the failure to find a register to spill.
2076 INSN should be one of the insns which needed this particular spill reg. */
2077
2078 static void
2079 spill_failure (rtx insn, enum reg_class rclass)
2080 {
2081 if (asm_noperands (PATTERN (insn)) >= 0)
2082 error_for_asm (insn, "can't find a register in class %qs while "
2083 "reloading %<asm%>",
2084 reg_class_names[rclass]);
2085 else
2086 {
2087 error ("unable to find a register to spill in class %qs",
2088 reg_class_names[rclass]);
2089
2090 if (dump_file)
2091 {
2092 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2093 debug_reload_to_stream (dump_file);
2094 }
2095 fatal_insn ("this is the insn:", insn);
2096 }
2097 }
2098 \f
2099 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2100 data that is dead in INSN. */
2101
2102 static void
2103 delete_dead_insn (rtx insn)
2104 {
2105 rtx prev = prev_real_insn (insn);
2106 rtx prev_dest;
2107
2108 /* If the previous insn sets a register that dies in our insn, delete it
2109 too. */
2110 if (prev && GET_CODE (PATTERN (prev)) == SET
2111 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2112 && reg_mentioned_p (prev_dest, PATTERN (insn))
2113 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2114 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2115 delete_dead_insn (prev);
2116
2117 SET_INSN_DELETED (insn);
2118 }
2119
2120 /* Modify the home of pseudo-reg I.
2121 The new home is present in reg_renumber[I].
2122
2123 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2124 or it may be -1, meaning there is none or it is not relevant.
2125 This is used so that all pseudos spilled from a given hard reg
2126 can share one stack slot. */
2127
2128 static void
2129 alter_reg (int i, int from_reg, bool dont_share_p)
2130 {
2131 /* When outputting an inline function, this can happen
2132 for a reg that isn't actually used. */
2133 if (regno_reg_rtx[i] == 0)
2134 return;
2135
2136 /* If the reg got changed to a MEM at rtl-generation time,
2137 ignore it. */
2138 if (!REG_P (regno_reg_rtx[i]))
2139 return;
2140
2141 /* Modify the reg-rtx to contain the new hard reg
2142 number or else to contain its pseudo reg number. */
2143 SET_REGNO (regno_reg_rtx[i],
2144 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2145
2146 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2147 allocate a stack slot for it. */
2148
2149 if (reg_renumber[i] < 0
2150 && REG_N_REFS (i) > 0
2151 && reg_equiv_constant[i] == 0
2152 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
2153 && reg_equiv_memory_loc[i] == 0)
2154 {
2155 rtx x = NULL_RTX;
2156 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2157 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2158 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2159 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2160 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2161 int adjust = 0;
2162
2163 if (ira_conflicts_p)
2164 {
2165 /* Mark the spill for IRA. */
2166 SET_REGNO_REG_SET (&spilled_pseudos, i);
2167 if (!dont_share_p)
2168 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2169 }
2170
2171 if (x)
2172 ;
2173
2174 /* Each pseudo reg has an inherent size which comes from its own mode,
2175 and a total size which provides room for paradoxical subregs
2176 which refer to the pseudo reg in wider modes.
2177
2178 We can use a slot already allocated if it provides both
2179 enough inherent space and enough total space.
2180 Otherwise, we allocate a new slot, making sure that it has no less
2181 inherent space, and no less total space, then the previous slot. */
2182 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2183 {
2184 rtx stack_slot;
2185
2186 /* No known place to spill from => no slot to reuse. */
2187 x = assign_stack_local (mode, total_size,
2188 min_align > inherent_align
2189 || total_size > inherent_size ? -1 : 0);
2190
2191 stack_slot = x;
2192
2193 /* Cancel the big-endian correction done in assign_stack_local.
2194 Get the address of the beginning of the slot. This is so we
2195 can do a big-endian correction unconditionally below. */
2196 if (BYTES_BIG_ENDIAN)
2197 {
2198 adjust = inherent_size - total_size;
2199 if (adjust)
2200 stack_slot
2201 = adjust_address_nv (x, mode_for_size (total_size
2202 * BITS_PER_UNIT,
2203 MODE_INT, 1),
2204 adjust);
2205 }
2206
2207 if (! dont_share_p && ira_conflicts_p)
2208 /* Inform IRA about allocation a new stack slot. */
2209 ira_mark_new_stack_slot (stack_slot, i, total_size);
2210 }
2211
2212 /* Reuse a stack slot if possible. */
2213 else if (spill_stack_slot[from_reg] != 0
2214 && spill_stack_slot_width[from_reg] >= total_size
2215 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2216 >= inherent_size)
2217 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2218 x = spill_stack_slot[from_reg];
2219
2220 /* Allocate a bigger slot. */
2221 else
2222 {
2223 /* Compute maximum size needed, both for inherent size
2224 and for total size. */
2225 rtx stack_slot;
2226
2227 if (spill_stack_slot[from_reg])
2228 {
2229 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2230 > inherent_size)
2231 mode = GET_MODE (spill_stack_slot[from_reg]);
2232 if (spill_stack_slot_width[from_reg] > total_size)
2233 total_size = spill_stack_slot_width[from_reg];
2234 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2235 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2236 }
2237
2238 /* Make a slot with that size. */
2239 x = assign_stack_local (mode, total_size,
2240 min_align > inherent_align
2241 || total_size > inherent_size ? -1 : 0);
2242 stack_slot = x;
2243
2244 /* Cancel the big-endian correction done in assign_stack_local.
2245 Get the address of the beginning of the slot. This is so we
2246 can do a big-endian correction unconditionally below. */
2247 if (BYTES_BIG_ENDIAN)
2248 {
2249 adjust = GET_MODE_SIZE (mode) - total_size;
2250 if (adjust)
2251 stack_slot
2252 = adjust_address_nv (x, mode_for_size (total_size
2253 * BITS_PER_UNIT,
2254 MODE_INT, 1),
2255 adjust);
2256 }
2257
2258 spill_stack_slot[from_reg] = stack_slot;
2259 spill_stack_slot_width[from_reg] = total_size;
2260 }
2261
2262 /* On a big endian machine, the "address" of the slot
2263 is the address of the low part that fits its inherent mode. */
2264 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2265 adjust += (total_size - inherent_size);
2266
2267 /* If we have any adjustment to make, or if the stack slot is the
2268 wrong mode, make a new stack slot. */
2269 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2270
2271 /* Set all of the memory attributes as appropriate for a spill. */
2272 set_mem_attrs_for_spill (x);
2273
2274 /* Save the stack slot for later. */
2275 reg_equiv_memory_loc[i] = x;
2276 }
2277 }
2278
2279 /* Mark the slots in regs_ever_live for the hard regs used by
2280 pseudo-reg number REGNO, accessed in MODE. */
2281
2282 static void
2283 mark_home_live_1 (int regno, enum machine_mode mode)
2284 {
2285 int i, lim;
2286
2287 i = reg_renumber[regno];
2288 if (i < 0)
2289 return;
2290 lim = end_hard_regno (mode, i);
2291 while (i < lim)
2292 df_set_regs_ever_live(i++, true);
2293 }
2294
2295 /* Mark the slots in regs_ever_live for the hard regs
2296 used by pseudo-reg number REGNO. */
2297
2298 void
2299 mark_home_live (int regno)
2300 {
2301 if (reg_renumber[regno] >= 0)
2302 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2303 }
2304 \f
2305 /* This function handles the tracking of elimination offsets around branches.
2306
2307 X is a piece of RTL being scanned.
2308
2309 INSN is the insn that it came from, if any.
2310
2311 INITIAL_P is nonzero if we are to set the offset to be the initial
2312 offset and zero if we are setting the offset of the label to be the
2313 current offset. */
2314
2315 static void
2316 set_label_offsets (rtx x, rtx insn, int initial_p)
2317 {
2318 enum rtx_code code = GET_CODE (x);
2319 rtx tem;
2320 unsigned int i;
2321 struct elim_table *p;
2322
2323 switch (code)
2324 {
2325 case LABEL_REF:
2326 if (LABEL_REF_NONLOCAL_P (x))
2327 return;
2328
2329 x = XEXP (x, 0);
2330
2331 /* ... fall through ... */
2332
2333 case CODE_LABEL:
2334 /* If we know nothing about this label, set the desired offsets. Note
2335 that this sets the offset at a label to be the offset before a label
2336 if we don't know anything about the label. This is not correct for
2337 the label after a BARRIER, but is the best guess we can make. If
2338 we guessed wrong, we will suppress an elimination that might have
2339 been possible had we been able to guess correctly. */
2340
2341 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2342 {
2343 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2344 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2345 = (initial_p ? reg_eliminate[i].initial_offset
2346 : reg_eliminate[i].offset);
2347 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2348 }
2349
2350 /* Otherwise, if this is the definition of a label and it is
2351 preceded by a BARRIER, set our offsets to the known offset of
2352 that label. */
2353
2354 else if (x == insn
2355 && (tem = prev_nonnote_insn (insn)) != 0
2356 && BARRIER_P (tem))
2357 set_offsets_for_label (insn);
2358 else
2359 /* If neither of the above cases is true, compare each offset
2360 with those previously recorded and suppress any eliminations
2361 where the offsets disagree. */
2362
2363 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2364 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2365 != (initial_p ? reg_eliminate[i].initial_offset
2366 : reg_eliminate[i].offset))
2367 reg_eliminate[i].can_eliminate = 0;
2368
2369 return;
2370
2371 case JUMP_INSN:
2372 set_label_offsets (PATTERN (insn), insn, initial_p);
2373
2374 /* ... fall through ... */
2375
2376 case INSN:
2377 case CALL_INSN:
2378 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2379 to indirectly and hence must have all eliminations at their
2380 initial offsets. */
2381 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2382 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2383 set_label_offsets (XEXP (tem, 0), insn, 1);
2384 return;
2385
2386 case PARALLEL:
2387 case ADDR_VEC:
2388 case ADDR_DIFF_VEC:
2389 /* Each of the labels in the parallel or address vector must be
2390 at their initial offsets. We want the first field for PARALLEL
2391 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2392
2393 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2394 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2395 insn, initial_p);
2396 return;
2397
2398 case SET:
2399 /* We only care about setting PC. If the source is not RETURN,
2400 IF_THEN_ELSE, or a label, disable any eliminations not at
2401 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2402 isn't one of those possibilities. For branches to a label,
2403 call ourselves recursively.
2404
2405 Note that this can disable elimination unnecessarily when we have
2406 a non-local goto since it will look like a non-constant jump to
2407 someplace in the current function. This isn't a significant
2408 problem since such jumps will normally be when all elimination
2409 pairs are back to their initial offsets. */
2410
2411 if (SET_DEST (x) != pc_rtx)
2412 return;
2413
2414 switch (GET_CODE (SET_SRC (x)))
2415 {
2416 case PC:
2417 case RETURN:
2418 return;
2419
2420 case LABEL_REF:
2421 set_label_offsets (SET_SRC (x), insn, initial_p);
2422 return;
2423
2424 case IF_THEN_ELSE:
2425 tem = XEXP (SET_SRC (x), 1);
2426 if (GET_CODE (tem) == LABEL_REF)
2427 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2428 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2429 break;
2430
2431 tem = XEXP (SET_SRC (x), 2);
2432 if (GET_CODE (tem) == LABEL_REF)
2433 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2434 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2435 break;
2436 return;
2437
2438 default:
2439 break;
2440 }
2441
2442 /* If we reach here, all eliminations must be at their initial
2443 offset because we are doing a jump to a variable address. */
2444 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2445 if (p->offset != p->initial_offset)
2446 p->can_eliminate = 0;
2447 break;
2448
2449 default:
2450 break;
2451 }
2452 }
2453 \f
2454 /* Scan X and replace any eliminable registers (such as fp) with a
2455 replacement (such as sp), plus an offset.
2456
2457 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2458 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2459 MEM, we are allowed to replace a sum of a register and the constant zero
2460 with the register, which we cannot do outside a MEM. In addition, we need
2461 to record the fact that a register is referenced outside a MEM.
2462
2463 If INSN is an insn, it is the insn containing X. If we replace a REG
2464 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2465 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2466 the REG is being modified.
2467
2468 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2469 That's used when we eliminate in expressions stored in notes.
2470 This means, do not set ref_outside_mem even if the reference
2471 is outside of MEMs.
2472
2473 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2474 replacements done assuming all offsets are at their initial values. If
2475 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2476 encounter, return the actual location so that find_reloads will do
2477 the proper thing. */
2478
2479 static rtx
2480 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2481 bool may_use_invariant)
2482 {
2483 enum rtx_code code = GET_CODE (x);
2484 struct elim_table *ep;
2485 int regno;
2486 rtx new_rtx;
2487 int i, j;
2488 const char *fmt;
2489 int copied = 0;
2490
2491 if (! current_function_decl)
2492 return x;
2493
2494 switch (code)
2495 {
2496 case CONST_INT:
2497 case CONST_DOUBLE:
2498 case CONST_FIXED:
2499 case CONST_VECTOR:
2500 case CONST:
2501 case SYMBOL_REF:
2502 case CODE_LABEL:
2503 case PC:
2504 case CC0:
2505 case ASM_INPUT:
2506 case ADDR_VEC:
2507 case ADDR_DIFF_VEC:
2508 case RETURN:
2509 return x;
2510
2511 case REG:
2512 regno = REGNO (x);
2513
2514 /* First handle the case where we encounter a bare register that
2515 is eliminable. Replace it with a PLUS. */
2516 if (regno < FIRST_PSEUDO_REGISTER)
2517 {
2518 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2519 ep++)
2520 if (ep->from_rtx == x && ep->can_eliminate)
2521 return plus_constant (ep->to_rtx, ep->previous_offset);
2522
2523 }
2524 else if (reg_renumber && reg_renumber[regno] < 0
2525 && reg_equiv_invariant && reg_equiv_invariant[regno])
2526 {
2527 if (may_use_invariant)
2528 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2529 mem_mode, insn, true);
2530 /* There exists at least one use of REGNO that cannot be
2531 eliminated. Prevent the defining insn from being deleted. */
2532 reg_equiv_init[regno] = NULL_RTX;
2533 alter_reg (regno, -1, true);
2534 }
2535 return x;
2536
2537 /* You might think handling MINUS in a manner similar to PLUS is a
2538 good idea. It is not. It has been tried multiple times and every
2539 time the change has had to have been reverted.
2540
2541 Other parts of reload know a PLUS is special (gen_reload for example)
2542 and require special code to handle code a reloaded PLUS operand.
2543
2544 Also consider backends where the flags register is clobbered by a
2545 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2546 lea instruction comes to mind). If we try to reload a MINUS, we
2547 may kill the flags register that was holding a useful value.
2548
2549 So, please before trying to handle MINUS, consider reload as a
2550 whole instead of this little section as well as the backend issues. */
2551 case PLUS:
2552 /* If this is the sum of an eliminable register and a constant, rework
2553 the sum. */
2554 if (REG_P (XEXP (x, 0))
2555 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2556 && CONSTANT_P (XEXP (x, 1)))
2557 {
2558 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2559 ep++)
2560 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2561 {
2562 /* The only time we want to replace a PLUS with a REG (this
2563 occurs when the constant operand of the PLUS is the negative
2564 of the offset) is when we are inside a MEM. We won't want
2565 to do so at other times because that would change the
2566 structure of the insn in a way that reload can't handle.
2567 We special-case the commonest situation in
2568 eliminate_regs_in_insn, so just replace a PLUS with a
2569 PLUS here, unless inside a MEM. */
2570 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2571 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2572 return ep->to_rtx;
2573 else
2574 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2575 plus_constant (XEXP (x, 1),
2576 ep->previous_offset));
2577 }
2578
2579 /* If the register is not eliminable, we are done since the other
2580 operand is a constant. */
2581 return x;
2582 }
2583
2584 /* If this is part of an address, we want to bring any constant to the
2585 outermost PLUS. We will do this by doing register replacement in
2586 our operands and seeing if a constant shows up in one of them.
2587
2588 Note that there is no risk of modifying the structure of the insn,
2589 since we only get called for its operands, thus we are either
2590 modifying the address inside a MEM, or something like an address
2591 operand of a load-address insn. */
2592
2593 {
2594 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2595 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2596
2597 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2598 {
2599 /* If one side is a PLUS and the other side is a pseudo that
2600 didn't get a hard register but has a reg_equiv_constant,
2601 we must replace the constant here since it may no longer
2602 be in the position of any operand. */
2603 if (GET_CODE (new0) == PLUS && REG_P (new1)
2604 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2605 && reg_renumber[REGNO (new1)] < 0
2606 && reg_equiv_constant != 0
2607 && reg_equiv_constant[REGNO (new1)] != 0)
2608 new1 = reg_equiv_constant[REGNO (new1)];
2609 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2610 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2611 && reg_renumber[REGNO (new0)] < 0
2612 && reg_equiv_constant[REGNO (new0)] != 0)
2613 new0 = reg_equiv_constant[REGNO (new0)];
2614
2615 new_rtx = form_sum (new0, new1);
2616
2617 /* As above, if we are not inside a MEM we do not want to
2618 turn a PLUS into something else. We might try to do so here
2619 for an addition of 0 if we aren't optimizing. */
2620 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2621 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2622 else
2623 return new_rtx;
2624 }
2625 }
2626 return x;
2627
2628 case MULT:
2629 /* If this is the product of an eliminable register and a
2630 constant, apply the distribute law and move the constant out
2631 so that we have (plus (mult ..) ..). This is needed in order
2632 to keep load-address insns valid. This case is pathological.
2633 We ignore the possibility of overflow here. */
2634 if (REG_P (XEXP (x, 0))
2635 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2636 && CONST_INT_P (XEXP (x, 1)))
2637 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2638 ep++)
2639 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2640 {
2641 if (! mem_mode
2642 /* Refs inside notes don't count for this purpose. */
2643 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2644 || GET_CODE (insn) == INSN_LIST)))
2645 ep->ref_outside_mem = 1;
2646
2647 return
2648 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2649 ep->previous_offset * INTVAL (XEXP (x, 1)));
2650 }
2651
2652 /* ... fall through ... */
2653
2654 case CALL:
2655 case COMPARE:
2656 /* See comments before PLUS about handling MINUS. */
2657 case MINUS:
2658 case DIV: case UDIV:
2659 case MOD: case UMOD:
2660 case AND: case IOR: case XOR:
2661 case ROTATERT: case ROTATE:
2662 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2663 case NE: case EQ:
2664 case GE: case GT: case GEU: case GTU:
2665 case LE: case LT: case LEU: case LTU:
2666 {
2667 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2668 rtx new1 = XEXP (x, 1)
2669 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2670
2671 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2672 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2673 }
2674 return x;
2675
2676 case EXPR_LIST:
2677 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2678 if (XEXP (x, 0))
2679 {
2680 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2681 if (new_rtx != XEXP (x, 0))
2682 {
2683 /* If this is a REG_DEAD note, it is not valid anymore.
2684 Using the eliminated version could result in creating a
2685 REG_DEAD note for the stack or frame pointer. */
2686 if (REG_NOTE_KIND (x) == REG_DEAD)
2687 return (XEXP (x, 1)
2688 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2689 : NULL_RTX);
2690
2691 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2692 }
2693 }
2694
2695 /* ... fall through ... */
2696
2697 case INSN_LIST:
2698 /* Now do eliminations in the rest of the chain. If this was
2699 an EXPR_LIST, this might result in allocating more memory than is
2700 strictly needed, but it simplifies the code. */
2701 if (XEXP (x, 1))
2702 {
2703 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2704 if (new_rtx != XEXP (x, 1))
2705 return
2706 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2707 }
2708 return x;
2709
2710 case PRE_INC:
2711 case POST_INC:
2712 case PRE_DEC:
2713 case POST_DEC:
2714 /* We do not support elimination of a register that is modified.
2715 elimination_effects has already make sure that this does not
2716 happen. */
2717 return x;
2718
2719 case PRE_MODIFY:
2720 case POST_MODIFY:
2721 /* We do not support elimination of a register that is modified.
2722 elimination_effects has already make sure that this does not
2723 happen. The only remaining case we need to consider here is
2724 that the increment value may be an eliminable register. */
2725 if (GET_CODE (XEXP (x, 1)) == PLUS
2726 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2727 {
2728 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2729 insn, true);
2730
2731 if (new_rtx != XEXP (XEXP (x, 1), 1))
2732 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2733 gen_rtx_PLUS (GET_MODE (x),
2734 XEXP (x, 0), new_rtx));
2735 }
2736 return x;
2737
2738 case STRICT_LOW_PART:
2739 case NEG: case NOT:
2740 case SIGN_EXTEND: case ZERO_EXTEND:
2741 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2742 case FLOAT: case FIX:
2743 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2744 case ABS:
2745 case SQRT:
2746 case FFS:
2747 case CLZ:
2748 case CTZ:
2749 case POPCOUNT:
2750 case PARITY:
2751 case BSWAP:
2752 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2753 if (new_rtx != XEXP (x, 0))
2754 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2755 return x;
2756
2757 case SUBREG:
2758 /* Similar to above processing, but preserve SUBREG_BYTE.
2759 Convert (subreg (mem)) to (mem) if not paradoxical.
2760 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2761 pseudo didn't get a hard reg, we must replace this with the
2762 eliminated version of the memory location because push_reload
2763 may do the replacement in certain circumstances. */
2764 if (REG_P (SUBREG_REG (x))
2765 && (GET_MODE_SIZE (GET_MODE (x))
2766 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2767 && reg_equiv_memory_loc != 0
2768 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2769 {
2770 new_rtx = SUBREG_REG (x);
2771 }
2772 else
2773 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2774
2775 if (new_rtx != SUBREG_REG (x))
2776 {
2777 int x_size = GET_MODE_SIZE (GET_MODE (x));
2778 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2779
2780 if (MEM_P (new_rtx)
2781 && ((x_size < new_size
2782 #ifdef WORD_REGISTER_OPERATIONS
2783 /* On these machines, combine can create rtl of the form
2784 (set (subreg:m1 (reg:m2 R) 0) ...)
2785 where m1 < m2, and expects something interesting to
2786 happen to the entire word. Moreover, it will use the
2787 (reg:m2 R) later, expecting all bits to be preserved.
2788 So if the number of words is the same, preserve the
2789 subreg so that push_reload can see it. */
2790 && ! ((x_size - 1) / UNITS_PER_WORD
2791 == (new_size -1 ) / UNITS_PER_WORD)
2792 #endif
2793 )
2794 || x_size == new_size)
2795 )
2796 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2797 else
2798 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2799 }
2800
2801 return x;
2802
2803 case MEM:
2804 /* Our only special processing is to pass the mode of the MEM to our
2805 recursive call and copy the flags. While we are here, handle this
2806 case more efficiently. */
2807 return
2808 replace_equiv_address_nv (x,
2809 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2810 insn, true));
2811
2812 case USE:
2813 /* Handle insn_list USE that a call to a pure function may generate. */
2814 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false);
2815 if (new_rtx != XEXP (x, 0))
2816 return gen_rtx_USE (GET_MODE (x), new_rtx);
2817 return x;
2818
2819 case CLOBBER:
2820 case ASM_OPERANDS:
2821 case SET:
2822 gcc_unreachable ();
2823
2824 default:
2825 break;
2826 }
2827
2828 /* Process each of our operands recursively. If any have changed, make a
2829 copy of the rtx. */
2830 fmt = GET_RTX_FORMAT (code);
2831 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2832 {
2833 if (*fmt == 'e')
2834 {
2835 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2836 if (new_rtx != XEXP (x, i) && ! copied)
2837 {
2838 x = shallow_copy_rtx (x);
2839 copied = 1;
2840 }
2841 XEXP (x, i) = new_rtx;
2842 }
2843 else if (*fmt == 'E')
2844 {
2845 int copied_vec = 0;
2846 for (j = 0; j < XVECLEN (x, i); j++)
2847 {
2848 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2849 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2850 {
2851 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2852 XVEC (x, i)->elem);
2853 if (! copied)
2854 {
2855 x = shallow_copy_rtx (x);
2856 copied = 1;
2857 }
2858 XVEC (x, i) = new_v;
2859 copied_vec = 1;
2860 }
2861 XVECEXP (x, i, j) = new_rtx;
2862 }
2863 }
2864 }
2865
2866 return x;
2867 }
2868
2869 rtx
2870 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2871 {
2872 return eliminate_regs_1 (x, mem_mode, insn, false);
2873 }
2874
2875 /* Scan rtx X for modifications of elimination target registers. Update
2876 the table of eliminables to reflect the changed state. MEM_MODE is
2877 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2878
2879 static void
2880 elimination_effects (rtx x, enum machine_mode mem_mode)
2881 {
2882 enum rtx_code code = GET_CODE (x);
2883 struct elim_table *ep;
2884 int regno;
2885 int i, j;
2886 const char *fmt;
2887
2888 switch (code)
2889 {
2890 case CONST_INT:
2891 case CONST_DOUBLE:
2892 case CONST_FIXED:
2893 case CONST_VECTOR:
2894 case CONST:
2895 case SYMBOL_REF:
2896 case CODE_LABEL:
2897 case PC:
2898 case CC0:
2899 case ASM_INPUT:
2900 case ADDR_VEC:
2901 case ADDR_DIFF_VEC:
2902 case RETURN:
2903 return;
2904
2905 case REG:
2906 regno = REGNO (x);
2907
2908 /* First handle the case where we encounter a bare register that
2909 is eliminable. Replace it with a PLUS. */
2910 if (regno < FIRST_PSEUDO_REGISTER)
2911 {
2912 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2913 ep++)
2914 if (ep->from_rtx == x && ep->can_eliminate)
2915 {
2916 if (! mem_mode)
2917 ep->ref_outside_mem = 1;
2918 return;
2919 }
2920
2921 }
2922 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2923 && reg_equiv_constant[regno]
2924 && ! function_invariant_p (reg_equiv_constant[regno]))
2925 elimination_effects (reg_equiv_constant[regno], mem_mode);
2926 return;
2927
2928 case PRE_INC:
2929 case POST_INC:
2930 case PRE_DEC:
2931 case POST_DEC:
2932 case POST_MODIFY:
2933 case PRE_MODIFY:
2934 /* If we modify the source of an elimination rule, disable it. */
2935 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2936 if (ep->from_rtx == XEXP (x, 0))
2937 ep->can_eliminate = 0;
2938
2939 /* If we modify the target of an elimination rule by adding a constant,
2940 update its offset. If we modify the target in any other way, we'll
2941 have to disable the rule as well. */
2942 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2943 if (ep->to_rtx == XEXP (x, 0))
2944 {
2945 int size = GET_MODE_SIZE (mem_mode);
2946
2947 /* If more bytes than MEM_MODE are pushed, account for them. */
2948 #ifdef PUSH_ROUNDING
2949 if (ep->to_rtx == stack_pointer_rtx)
2950 size = PUSH_ROUNDING (size);
2951 #endif
2952 if (code == PRE_DEC || code == POST_DEC)
2953 ep->offset += size;
2954 else if (code == PRE_INC || code == POST_INC)
2955 ep->offset -= size;
2956 else if (code == PRE_MODIFY || code == POST_MODIFY)
2957 {
2958 if (GET_CODE (XEXP (x, 1)) == PLUS
2959 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2960 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
2961 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2962 else
2963 ep->can_eliminate = 0;
2964 }
2965 }
2966
2967 /* These two aren't unary operators. */
2968 if (code == POST_MODIFY || code == PRE_MODIFY)
2969 break;
2970
2971 /* Fall through to generic unary operation case. */
2972 case STRICT_LOW_PART:
2973 case NEG: case NOT:
2974 case SIGN_EXTEND: case ZERO_EXTEND:
2975 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2976 case FLOAT: case FIX:
2977 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2978 case ABS:
2979 case SQRT:
2980 case FFS:
2981 case CLZ:
2982 case CTZ:
2983 case POPCOUNT:
2984 case PARITY:
2985 case BSWAP:
2986 elimination_effects (XEXP (x, 0), mem_mode);
2987 return;
2988
2989 case SUBREG:
2990 if (REG_P (SUBREG_REG (x))
2991 && (GET_MODE_SIZE (GET_MODE (x))
2992 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2993 && reg_equiv_memory_loc != 0
2994 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2995 return;
2996
2997 elimination_effects (SUBREG_REG (x), mem_mode);
2998 return;
2999
3000 case USE:
3001 /* If using a register that is the source of an eliminate we still
3002 think can be performed, note it cannot be performed since we don't
3003 know how this register is used. */
3004 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3005 if (ep->from_rtx == XEXP (x, 0))
3006 ep->can_eliminate = 0;
3007
3008 elimination_effects (XEXP (x, 0), mem_mode);
3009 return;
3010
3011 case CLOBBER:
3012 /* If clobbering a register that is the replacement register for an
3013 elimination we still think can be performed, note that it cannot
3014 be performed. Otherwise, we need not be concerned about it. */
3015 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3016 if (ep->to_rtx == XEXP (x, 0))
3017 ep->can_eliminate = 0;
3018
3019 elimination_effects (XEXP (x, 0), mem_mode);
3020 return;
3021
3022 case SET:
3023 /* Check for setting a register that we know about. */
3024 if (REG_P (SET_DEST (x)))
3025 {
3026 /* See if this is setting the replacement register for an
3027 elimination.
3028
3029 If DEST is the hard frame pointer, we do nothing because we
3030 assume that all assignments to the frame pointer are for
3031 non-local gotos and are being done at a time when they are valid
3032 and do not disturb anything else. Some machines want to
3033 eliminate a fake argument pointer (or even a fake frame pointer)
3034 with either the real frame or the stack pointer. Assignments to
3035 the hard frame pointer must not prevent this elimination. */
3036
3037 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3038 ep++)
3039 if (ep->to_rtx == SET_DEST (x)
3040 && SET_DEST (x) != hard_frame_pointer_rtx)
3041 {
3042 /* If it is being incremented, adjust the offset. Otherwise,
3043 this elimination can't be done. */
3044 rtx src = SET_SRC (x);
3045
3046 if (GET_CODE (src) == PLUS
3047 && XEXP (src, 0) == SET_DEST (x)
3048 && CONST_INT_P (XEXP (src, 1)))
3049 ep->offset -= INTVAL (XEXP (src, 1));
3050 else
3051 ep->can_eliminate = 0;
3052 }
3053 }
3054
3055 elimination_effects (SET_DEST (x), VOIDmode);
3056 elimination_effects (SET_SRC (x), VOIDmode);
3057 return;
3058
3059 case MEM:
3060 /* Our only special processing is to pass the mode of the MEM to our
3061 recursive call. */
3062 elimination_effects (XEXP (x, 0), GET_MODE (x));
3063 return;
3064
3065 default:
3066 break;
3067 }
3068
3069 fmt = GET_RTX_FORMAT (code);
3070 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3071 {
3072 if (*fmt == 'e')
3073 elimination_effects (XEXP (x, i), mem_mode);
3074 else if (*fmt == 'E')
3075 for (j = 0; j < XVECLEN (x, i); j++)
3076 elimination_effects (XVECEXP (x, i, j), mem_mode);
3077 }
3078 }
3079
3080 /* Descend through rtx X and verify that no references to eliminable registers
3081 remain. If any do remain, mark the involved register as not
3082 eliminable. */
3083
3084 static void
3085 check_eliminable_occurrences (rtx x)
3086 {
3087 const char *fmt;
3088 int i;
3089 enum rtx_code code;
3090
3091 if (x == 0)
3092 return;
3093
3094 code = GET_CODE (x);
3095
3096 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3097 {
3098 struct elim_table *ep;
3099
3100 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3101 if (ep->from_rtx == x)
3102 ep->can_eliminate = 0;
3103 return;
3104 }
3105
3106 fmt = GET_RTX_FORMAT (code);
3107 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3108 {
3109 if (*fmt == 'e')
3110 check_eliminable_occurrences (XEXP (x, i));
3111 else if (*fmt == 'E')
3112 {
3113 int j;
3114 for (j = 0; j < XVECLEN (x, i); j++)
3115 check_eliminable_occurrences (XVECEXP (x, i, j));
3116 }
3117 }
3118 }
3119 \f
3120 /* Scan INSN and eliminate all eliminable registers in it.
3121
3122 If REPLACE is nonzero, do the replacement destructively. Also
3123 delete the insn as dead it if it is setting an eliminable register.
3124
3125 If REPLACE is zero, do all our allocations in reload_obstack.
3126
3127 If no eliminations were done and this insn doesn't require any elimination
3128 processing (these are not identical conditions: it might be updating sp,
3129 but not referencing fp; this needs to be seen during reload_as_needed so
3130 that the offset between fp and sp can be taken into consideration), zero
3131 is returned. Otherwise, 1 is returned. */
3132
3133 static int
3134 eliminate_regs_in_insn (rtx insn, int replace)
3135 {
3136 int icode = recog_memoized (insn);
3137 rtx old_body = PATTERN (insn);
3138 int insn_is_asm = asm_noperands (old_body) >= 0;
3139 rtx old_set = single_set (insn);
3140 rtx new_body;
3141 int val = 0;
3142 int i;
3143 rtx substed_operand[MAX_RECOG_OPERANDS];
3144 rtx orig_operand[MAX_RECOG_OPERANDS];
3145 struct elim_table *ep;
3146 rtx plus_src, plus_cst_src;
3147
3148 if (! insn_is_asm && icode < 0)
3149 {
3150 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3151 || GET_CODE (PATTERN (insn)) == CLOBBER
3152 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3153 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3154 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3155 return 0;
3156 }
3157
3158 if (old_set != 0 && REG_P (SET_DEST (old_set))
3159 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3160 {
3161 /* Check for setting an eliminable register. */
3162 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3163 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3164 {
3165 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3166 /* If this is setting the frame pointer register to the
3167 hardware frame pointer register and this is an elimination
3168 that will be done (tested above), this insn is really
3169 adjusting the frame pointer downward to compensate for
3170 the adjustment done before a nonlocal goto. */
3171 if (ep->from == FRAME_POINTER_REGNUM
3172 && ep->to == HARD_FRAME_POINTER_REGNUM)
3173 {
3174 rtx base = SET_SRC (old_set);
3175 rtx base_insn = insn;
3176 HOST_WIDE_INT offset = 0;
3177
3178 while (base != ep->to_rtx)
3179 {
3180 rtx prev_insn, prev_set;
3181
3182 if (GET_CODE (base) == PLUS
3183 && CONST_INT_P (XEXP (base, 1)))
3184 {
3185 offset += INTVAL (XEXP (base, 1));
3186 base = XEXP (base, 0);
3187 }
3188 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3189 && (prev_set = single_set (prev_insn)) != 0
3190 && rtx_equal_p (SET_DEST (prev_set), base))
3191 {
3192 base = SET_SRC (prev_set);
3193 base_insn = prev_insn;
3194 }
3195 else
3196 break;
3197 }
3198
3199 if (base == ep->to_rtx)
3200 {
3201 rtx src
3202 = plus_constant (ep->to_rtx, offset - ep->offset);
3203
3204 new_body = old_body;
3205 if (! replace)
3206 {
3207 new_body = copy_insn (old_body);
3208 if (REG_NOTES (insn))
3209 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3210 }
3211 PATTERN (insn) = new_body;
3212 old_set = single_set (insn);
3213
3214 /* First see if this insn remains valid when we
3215 make the change. If not, keep the INSN_CODE
3216 the same and let reload fit it up. */
3217 validate_change (insn, &SET_SRC (old_set), src, 1);
3218 validate_change (insn, &SET_DEST (old_set),
3219 ep->to_rtx, 1);
3220 if (! apply_change_group ())
3221 {
3222 SET_SRC (old_set) = src;
3223 SET_DEST (old_set) = ep->to_rtx;
3224 }
3225
3226 val = 1;
3227 goto done;
3228 }
3229 }
3230 #endif
3231
3232 /* In this case this insn isn't serving a useful purpose. We
3233 will delete it in reload_as_needed once we know that this
3234 elimination is, in fact, being done.
3235
3236 If REPLACE isn't set, we can't delete this insn, but needn't
3237 process it since it won't be used unless something changes. */
3238 if (replace)
3239 {
3240 delete_dead_insn (insn);
3241 return 1;
3242 }
3243 val = 1;
3244 goto done;
3245 }
3246 }
3247
3248 /* We allow one special case which happens to work on all machines we
3249 currently support: a single set with the source or a REG_EQUAL
3250 note being a PLUS of an eliminable register and a constant. */
3251 plus_src = plus_cst_src = 0;
3252 if (old_set && REG_P (SET_DEST (old_set)))
3253 {
3254 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3255 plus_src = SET_SRC (old_set);
3256 /* First see if the source is of the form (plus (...) CST). */
3257 if (plus_src
3258 && CONST_INT_P (XEXP (plus_src, 1)))
3259 plus_cst_src = plus_src;
3260 else if (REG_P (SET_SRC (old_set))
3261 || plus_src)
3262 {
3263 /* Otherwise, see if we have a REG_EQUAL note of the form
3264 (plus (...) CST). */
3265 rtx links;
3266 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3267 {
3268 if ((REG_NOTE_KIND (links) == REG_EQUAL
3269 || REG_NOTE_KIND (links) == REG_EQUIV)
3270 && GET_CODE (XEXP (links, 0)) == PLUS
3271 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3272 {
3273 plus_cst_src = XEXP (links, 0);
3274 break;
3275 }
3276 }
3277 }
3278
3279 /* Check that the first operand of the PLUS is a hard reg or
3280 the lowpart subreg of one. */
3281 if (plus_cst_src)
3282 {
3283 rtx reg = XEXP (plus_cst_src, 0);
3284 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3285 reg = SUBREG_REG (reg);
3286
3287 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3288 plus_cst_src = 0;
3289 }
3290 }
3291 if (plus_cst_src)
3292 {
3293 rtx reg = XEXP (plus_cst_src, 0);
3294 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3295
3296 if (GET_CODE (reg) == SUBREG)
3297 reg = SUBREG_REG (reg);
3298
3299 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3300 if (ep->from_rtx == reg && ep->can_eliminate)
3301 {
3302 rtx to_rtx = ep->to_rtx;
3303 offset += ep->offset;
3304 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3305
3306 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3307 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3308 to_rtx);
3309 /* If we have a nonzero offset, and the source is already
3310 a simple REG, the following transformation would
3311 increase the cost of the insn by replacing a simple REG
3312 with (plus (reg sp) CST). So try only when we already
3313 had a PLUS before. */
3314 if (offset == 0 || plus_src)
3315 {
3316 rtx new_src = plus_constant (to_rtx, offset);
3317
3318 new_body = old_body;
3319 if (! replace)
3320 {
3321 new_body = copy_insn (old_body);
3322 if (REG_NOTES (insn))
3323 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3324 }
3325 PATTERN (insn) = new_body;
3326 old_set = single_set (insn);
3327
3328 /* First see if this insn remains valid when we make the
3329 change. If not, try to replace the whole pattern with
3330 a simple set (this may help if the original insn was a
3331 PARALLEL that was only recognized as single_set due to
3332 REG_UNUSED notes). If this isn't valid either, keep
3333 the INSN_CODE the same and let reload fix it up. */
3334 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3335 {
3336 rtx new_pat = gen_rtx_SET (VOIDmode,
3337 SET_DEST (old_set), new_src);
3338
3339 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3340 SET_SRC (old_set) = new_src;
3341 }
3342 }
3343 else
3344 break;
3345
3346 val = 1;
3347 /* This can't have an effect on elimination offsets, so skip right
3348 to the end. */
3349 goto done;
3350 }
3351 }
3352
3353 /* Determine the effects of this insn on elimination offsets. */
3354 elimination_effects (old_body, VOIDmode);
3355
3356 /* Eliminate all eliminable registers occurring in operands that
3357 can be handled by reload. */
3358 extract_insn (insn);
3359 for (i = 0; i < recog_data.n_operands; i++)
3360 {
3361 orig_operand[i] = recog_data.operand[i];
3362 substed_operand[i] = recog_data.operand[i];
3363
3364 /* For an asm statement, every operand is eliminable. */
3365 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3366 {
3367 bool is_set_src, in_plus;
3368
3369 /* Check for setting a register that we know about. */
3370 if (recog_data.operand_type[i] != OP_IN
3371 && REG_P (orig_operand[i]))
3372 {
3373 /* If we are assigning to a register that can be eliminated, it
3374 must be as part of a PARALLEL, since the code above handles
3375 single SETs. We must indicate that we can no longer
3376 eliminate this reg. */
3377 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3378 ep++)
3379 if (ep->from_rtx == orig_operand[i])
3380 ep->can_eliminate = 0;
3381 }
3382
3383 /* Companion to the above plus substitution, we can allow
3384 invariants as the source of a plain move. */
3385 is_set_src = false;
3386 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3387 is_set_src = true;
3388 in_plus = false;
3389 if (plus_src
3390 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3391 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3392 in_plus = true;
3393
3394 substed_operand[i]
3395 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3396 replace ? insn : NULL_RTX,
3397 is_set_src || in_plus);
3398 if (substed_operand[i] != orig_operand[i])
3399 val = 1;
3400 /* Terminate the search in check_eliminable_occurrences at
3401 this point. */
3402 *recog_data.operand_loc[i] = 0;
3403
3404 /* If an output operand changed from a REG to a MEM and INSN is an
3405 insn, write a CLOBBER insn. */
3406 if (recog_data.operand_type[i] != OP_IN
3407 && REG_P (orig_operand[i])
3408 && MEM_P (substed_operand[i])
3409 && replace)
3410 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3411 }
3412 }
3413
3414 for (i = 0; i < recog_data.n_dups; i++)
3415 *recog_data.dup_loc[i]
3416 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3417
3418 /* If any eliminable remain, they aren't eliminable anymore. */
3419 check_eliminable_occurrences (old_body);
3420
3421 /* Substitute the operands; the new values are in the substed_operand
3422 array. */
3423 for (i = 0; i < recog_data.n_operands; i++)
3424 *recog_data.operand_loc[i] = substed_operand[i];
3425 for (i = 0; i < recog_data.n_dups; i++)
3426 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3427
3428 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3429 re-recognize the insn. We do this in case we had a simple addition
3430 but now can do this as a load-address. This saves an insn in this
3431 common case.
3432 If re-recognition fails, the old insn code number will still be used,
3433 and some register operands may have changed into PLUS expressions.
3434 These will be handled by find_reloads by loading them into a register
3435 again. */
3436
3437 if (val)
3438 {
3439 /* If we aren't replacing things permanently and we changed something,
3440 make another copy to ensure that all the RTL is new. Otherwise
3441 things can go wrong if find_reload swaps commutative operands
3442 and one is inside RTL that has been copied while the other is not. */
3443 new_body = old_body;
3444 if (! replace)
3445 {
3446 new_body = copy_insn (old_body);
3447 if (REG_NOTES (insn))
3448 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3449 }
3450 PATTERN (insn) = new_body;
3451
3452 /* If we had a move insn but now we don't, rerecognize it. This will
3453 cause spurious re-recognition if the old move had a PARALLEL since
3454 the new one still will, but we can't call single_set without
3455 having put NEW_BODY into the insn and the re-recognition won't
3456 hurt in this rare case. */
3457 /* ??? Why this huge if statement - why don't we just rerecognize the
3458 thing always? */
3459 if (! insn_is_asm
3460 && old_set != 0
3461 && ((REG_P (SET_SRC (old_set))
3462 && (GET_CODE (new_body) != SET
3463 || !REG_P (SET_SRC (new_body))))
3464 /* If this was a load from or store to memory, compare
3465 the MEM in recog_data.operand to the one in the insn.
3466 If they are not equal, then rerecognize the insn. */
3467 || (old_set != 0
3468 && ((MEM_P (SET_SRC (old_set))
3469 && SET_SRC (old_set) != recog_data.operand[1])
3470 || (MEM_P (SET_DEST (old_set))
3471 && SET_DEST (old_set) != recog_data.operand[0])))
3472 /* If this was an add insn before, rerecognize. */
3473 || GET_CODE (SET_SRC (old_set)) == PLUS))
3474 {
3475 int new_icode = recog (PATTERN (insn), insn, 0);
3476 if (new_icode >= 0)
3477 INSN_CODE (insn) = new_icode;
3478 }
3479 }
3480
3481 /* Restore the old body. If there were any changes to it, we made a copy
3482 of it while the changes were still in place, so we'll correctly return
3483 a modified insn below. */
3484 if (! replace)
3485 {
3486 /* Restore the old body. */
3487 for (i = 0; i < recog_data.n_operands; i++)
3488 *recog_data.operand_loc[i] = orig_operand[i];
3489 for (i = 0; i < recog_data.n_dups; i++)
3490 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3491 }
3492
3493 /* Update all elimination pairs to reflect the status after the current
3494 insn. The changes we make were determined by the earlier call to
3495 elimination_effects.
3496
3497 We also detect cases where register elimination cannot be done,
3498 namely, if a register would be both changed and referenced outside a MEM
3499 in the resulting insn since such an insn is often undefined and, even if
3500 not, we cannot know what meaning will be given to it. Note that it is
3501 valid to have a register used in an address in an insn that changes it
3502 (presumably with a pre- or post-increment or decrement).
3503
3504 If anything changes, return nonzero. */
3505
3506 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3507 {
3508 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3509 ep->can_eliminate = 0;
3510
3511 ep->ref_outside_mem = 0;
3512
3513 if (ep->previous_offset != ep->offset)
3514 val = 1;
3515 }
3516
3517 done:
3518 /* If we changed something, perform elimination in REG_NOTES. This is
3519 needed even when REPLACE is zero because a REG_DEAD note might refer
3520 to a register that we eliminate and could cause a different number
3521 of spill registers to be needed in the final reload pass than in
3522 the pre-passes. */
3523 if (val && REG_NOTES (insn) != 0)
3524 REG_NOTES (insn)
3525 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true);
3526
3527 return val;
3528 }
3529
3530 /* Loop through all elimination pairs.
3531 Recalculate the number not at initial offset.
3532
3533 Compute the maximum offset (minimum offset if the stack does not
3534 grow downward) for each elimination pair. */
3535
3536 static void
3537 update_eliminable_offsets (void)
3538 {
3539 struct elim_table *ep;
3540
3541 num_not_at_initial_offset = 0;
3542 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3543 {
3544 ep->previous_offset = ep->offset;
3545 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3546 num_not_at_initial_offset++;
3547 }
3548 }
3549
3550 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3551 replacement we currently believe is valid, mark it as not eliminable if X
3552 modifies DEST in any way other than by adding a constant integer to it.
3553
3554 If DEST is the frame pointer, we do nothing because we assume that
3555 all assignments to the hard frame pointer are nonlocal gotos and are being
3556 done at a time when they are valid and do not disturb anything else.
3557 Some machines want to eliminate a fake argument pointer with either the
3558 frame or stack pointer. Assignments to the hard frame pointer must not
3559 prevent this elimination.
3560
3561 Called via note_stores from reload before starting its passes to scan
3562 the insns of the function. */
3563
3564 static void
3565 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3566 {
3567 unsigned int i;
3568
3569 /* A SUBREG of a hard register here is just changing its mode. We should
3570 not see a SUBREG of an eliminable hard register, but check just in
3571 case. */
3572 if (GET_CODE (dest) == SUBREG)
3573 dest = SUBREG_REG (dest);
3574
3575 if (dest == hard_frame_pointer_rtx)
3576 return;
3577
3578 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3579 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3580 && (GET_CODE (x) != SET
3581 || GET_CODE (SET_SRC (x)) != PLUS
3582 || XEXP (SET_SRC (x), 0) != dest
3583 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3584 {
3585 reg_eliminate[i].can_eliminate_previous
3586 = reg_eliminate[i].can_eliminate = 0;
3587 num_eliminable--;
3588 }
3589 }
3590
3591 /* Verify that the initial elimination offsets did not change since the
3592 last call to set_initial_elim_offsets. This is used to catch cases
3593 where something illegal happened during reload_as_needed that could
3594 cause incorrect code to be generated if we did not check for it. */
3595
3596 static bool
3597 verify_initial_elim_offsets (void)
3598 {
3599 HOST_WIDE_INT t;
3600
3601 if (!num_eliminable)
3602 return true;
3603
3604 #ifdef ELIMINABLE_REGS
3605 {
3606 struct elim_table *ep;
3607
3608 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3609 {
3610 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3611 if (t != ep->initial_offset)
3612 return false;
3613 }
3614 }
3615 #else
3616 INITIAL_FRAME_POINTER_OFFSET (t);
3617 if (t != reg_eliminate[0].initial_offset)
3618 return false;
3619 #endif
3620
3621 return true;
3622 }
3623
3624 /* Reset all offsets on eliminable registers to their initial values. */
3625
3626 static void
3627 set_initial_elim_offsets (void)
3628 {
3629 struct elim_table *ep = reg_eliminate;
3630
3631 #ifdef ELIMINABLE_REGS
3632 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3633 {
3634 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3635 ep->previous_offset = ep->offset = ep->initial_offset;
3636 }
3637 #else
3638 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3639 ep->previous_offset = ep->offset = ep->initial_offset;
3640 #endif
3641
3642 num_not_at_initial_offset = 0;
3643 }
3644
3645 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3646
3647 static void
3648 set_initial_eh_label_offset (rtx label)
3649 {
3650 set_label_offsets (label, NULL_RTX, 1);
3651 }
3652
3653 /* Initialize the known label offsets.
3654 Set a known offset for each forced label to be at the initial offset
3655 of each elimination. We do this because we assume that all
3656 computed jumps occur from a location where each elimination is
3657 at its initial offset.
3658 For all other labels, show that we don't know the offsets. */
3659
3660 static void
3661 set_initial_label_offsets (void)
3662 {
3663 rtx x;
3664 memset (offsets_known_at, 0, num_labels);
3665
3666 for (x = forced_labels; x; x = XEXP (x, 1))
3667 if (XEXP (x, 0))
3668 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3669
3670 for_each_eh_label (set_initial_eh_label_offset);
3671 }
3672
3673 /* Set all elimination offsets to the known values for the code label given
3674 by INSN. */
3675
3676 static void
3677 set_offsets_for_label (rtx insn)
3678 {
3679 unsigned int i;
3680 int label_nr = CODE_LABEL_NUMBER (insn);
3681 struct elim_table *ep;
3682
3683 num_not_at_initial_offset = 0;
3684 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3685 {
3686 ep->offset = ep->previous_offset
3687 = offsets_at[label_nr - first_label_num][i];
3688 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3689 num_not_at_initial_offset++;
3690 }
3691 }
3692
3693 /* See if anything that happened changes which eliminations are valid.
3694 For example, on the SPARC, whether or not the frame pointer can
3695 be eliminated can depend on what registers have been used. We need
3696 not check some conditions again (such as flag_omit_frame_pointer)
3697 since they can't have changed. */
3698
3699 static void
3700 update_eliminables (HARD_REG_SET *pset)
3701 {
3702 int previous_frame_pointer_needed = frame_pointer_needed;
3703 struct elim_table *ep;
3704
3705 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3706 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3707 && targetm.frame_pointer_required ())
3708 #ifdef ELIMINABLE_REGS
3709 || ! targetm.can_eliminate (ep->from, ep->to)
3710 #endif
3711 )
3712 ep->can_eliminate = 0;
3713
3714 /* Look for the case where we have discovered that we can't replace
3715 register A with register B and that means that we will now be
3716 trying to replace register A with register C. This means we can
3717 no longer replace register C with register B and we need to disable
3718 such an elimination, if it exists. This occurs often with A == ap,
3719 B == sp, and C == fp. */
3720
3721 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3722 {
3723 struct elim_table *op;
3724 int new_to = -1;
3725
3726 if (! ep->can_eliminate && ep->can_eliminate_previous)
3727 {
3728 /* Find the current elimination for ep->from, if there is a
3729 new one. */
3730 for (op = reg_eliminate;
3731 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3732 if (op->from == ep->from && op->can_eliminate)
3733 {
3734 new_to = op->to;
3735 break;
3736 }
3737
3738 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3739 disable it. */
3740 for (op = reg_eliminate;
3741 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3742 if (op->from == new_to && op->to == ep->to)
3743 op->can_eliminate = 0;
3744 }
3745 }
3746
3747 /* See if any registers that we thought we could eliminate the previous
3748 time are no longer eliminable. If so, something has changed and we
3749 must spill the register. Also, recompute the number of eliminable
3750 registers and see if the frame pointer is needed; it is if there is
3751 no elimination of the frame pointer that we can perform. */
3752
3753 frame_pointer_needed = 1;
3754 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3755 {
3756 if (ep->can_eliminate
3757 && ep->from == FRAME_POINTER_REGNUM
3758 && ep->to != HARD_FRAME_POINTER_REGNUM
3759 && (! SUPPORTS_STACK_ALIGNMENT
3760 || ! crtl->stack_realign_needed))
3761 frame_pointer_needed = 0;
3762
3763 if (! ep->can_eliminate && ep->can_eliminate_previous)
3764 {
3765 ep->can_eliminate_previous = 0;
3766 SET_HARD_REG_BIT (*pset, ep->from);
3767 num_eliminable--;
3768 }
3769 }
3770
3771 /* If we didn't need a frame pointer last time, but we do now, spill
3772 the hard frame pointer. */
3773 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3774 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3775 }
3776
3777 /* Return true if X is used as the target register of an elimination. */
3778
3779 bool
3780 elimination_target_reg_p (rtx x)
3781 {
3782 struct elim_table *ep;
3783
3784 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3785 if (ep->to_rtx == x && ep->can_eliminate)
3786 return true;
3787
3788 return false;
3789 }
3790
3791 /* Initialize the table of registers to eliminate.
3792 Pre-condition: global flag frame_pointer_needed has been set before
3793 calling this function. */
3794
3795 static void
3796 init_elim_table (void)
3797 {
3798 struct elim_table *ep;
3799 #ifdef ELIMINABLE_REGS
3800 const struct elim_table_1 *ep1;
3801 #endif
3802
3803 if (!reg_eliminate)
3804 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3805
3806 num_eliminable = 0;
3807
3808 #ifdef ELIMINABLE_REGS
3809 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3810 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3811 {
3812 ep->from = ep1->from;
3813 ep->to = ep1->to;
3814 ep->can_eliminate = ep->can_eliminate_previous
3815 = (targetm.can_eliminate (ep->from, ep->to)
3816 && ! (ep->to == STACK_POINTER_REGNUM
3817 && frame_pointer_needed
3818 && (! SUPPORTS_STACK_ALIGNMENT
3819 || ! stack_realign_fp)));
3820 }
3821 #else
3822 reg_eliminate[0].from = reg_eliminate_1[0].from;
3823 reg_eliminate[0].to = reg_eliminate_1[0].to;
3824 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3825 = ! frame_pointer_needed;
3826 #endif
3827
3828 /* Count the number of eliminable registers and build the FROM and TO
3829 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3830 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3831 We depend on this. */
3832 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3833 {
3834 num_eliminable += ep->can_eliminate;
3835 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3836 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3837 }
3838 }
3839 \f
3840 /* Kick all pseudos out of hard register REGNO.
3841
3842 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3843 because we found we can't eliminate some register. In the case, no pseudos
3844 are allowed to be in the register, even if they are only in a block that
3845 doesn't require spill registers, unlike the case when we are spilling this
3846 hard reg to produce another spill register.
3847
3848 Return nonzero if any pseudos needed to be kicked out. */
3849
3850 static void
3851 spill_hard_reg (unsigned int regno, int cant_eliminate)
3852 {
3853 int i;
3854
3855 if (cant_eliminate)
3856 {
3857 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3858 df_set_regs_ever_live (regno, true);
3859 }
3860
3861 /* Spill every pseudo reg that was allocated to this reg
3862 or to something that overlaps this reg. */
3863
3864 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3865 if (reg_renumber[i] >= 0
3866 && (unsigned int) reg_renumber[i] <= regno
3867 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
3868 SET_REGNO_REG_SET (&spilled_pseudos, i);
3869 }
3870
3871 /* After find_reload_regs has been run for all insn that need reloads,
3872 and/or spill_hard_regs was called, this function is used to actually
3873 spill pseudo registers and try to reallocate them. It also sets up the
3874 spill_regs array for use by choose_reload_regs. */
3875
3876 static int
3877 finish_spills (int global)
3878 {
3879 struct insn_chain *chain;
3880 int something_changed = 0;
3881 unsigned i;
3882 reg_set_iterator rsi;
3883
3884 /* Build the spill_regs array for the function. */
3885 /* If there are some registers still to eliminate and one of the spill regs
3886 wasn't ever used before, additional stack space may have to be
3887 allocated to store this register. Thus, we may have changed the offset
3888 between the stack and frame pointers, so mark that something has changed.
3889
3890 One might think that we need only set VAL to 1 if this is a call-used
3891 register. However, the set of registers that must be saved by the
3892 prologue is not identical to the call-used set. For example, the
3893 register used by the call insn for the return PC is a call-used register,
3894 but must be saved by the prologue. */
3895
3896 n_spills = 0;
3897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3898 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3899 {
3900 spill_reg_order[i] = n_spills;
3901 spill_regs[n_spills++] = i;
3902 if (num_eliminable && ! df_regs_ever_live_p (i))
3903 something_changed = 1;
3904 df_set_regs_ever_live (i, true);
3905 }
3906 else
3907 spill_reg_order[i] = -1;
3908
3909 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3910 if (! ira_conflicts_p || reg_renumber[i] >= 0)
3911 {
3912 /* Record the current hard register the pseudo is allocated to
3913 in pseudo_previous_regs so we avoid reallocating it to the
3914 same hard reg in a later pass. */
3915 gcc_assert (reg_renumber[i] >= 0);
3916
3917 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3918 /* Mark it as no longer having a hard register home. */
3919 reg_renumber[i] = -1;
3920 if (ira_conflicts_p)
3921 /* Inform IRA about the change. */
3922 ira_mark_allocation_change (i);
3923 /* We will need to scan everything again. */
3924 something_changed = 1;
3925 }
3926
3927 /* Retry global register allocation if possible. */
3928 if (global && ira_conflicts_p)
3929 {
3930 unsigned int n;
3931
3932 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3933 /* For every insn that needs reloads, set the registers used as spill
3934 regs in pseudo_forbidden_regs for every pseudo live across the
3935 insn. */
3936 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3937 {
3938 EXECUTE_IF_SET_IN_REG_SET
3939 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3940 {
3941 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3942 chain->used_spill_regs);
3943 }
3944 EXECUTE_IF_SET_IN_REG_SET
3945 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3946 {
3947 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3948 chain->used_spill_regs);
3949 }
3950 }
3951
3952 /* Retry allocating the pseudos spilled in IRA and the
3953 reload. For each reg, merge the various reg sets that
3954 indicate which hard regs can't be used, and call
3955 ira_reassign_pseudos. */
3956 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
3957 if (reg_old_renumber[i] != reg_renumber[i])
3958 {
3959 if (reg_renumber[i] < 0)
3960 temp_pseudo_reg_arr[n++] = i;
3961 else
3962 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3963 }
3964 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
3965 bad_spill_regs_global,
3966 pseudo_forbidden_regs, pseudo_previous_regs,
3967 &spilled_pseudos))
3968 something_changed = 1;
3969 }
3970 /* Fix up the register information in the insn chain.
3971 This involves deleting those of the spilled pseudos which did not get
3972 a new hard register home from the live_{before,after} sets. */
3973 for (chain = reload_insn_chain; chain; chain = chain->next)
3974 {
3975 HARD_REG_SET used_by_pseudos;
3976 HARD_REG_SET used_by_pseudos2;
3977
3978 if (! ira_conflicts_p)
3979 {
3980 /* Don't do it for IRA because IRA and the reload still can
3981 assign hard registers to the spilled pseudos on next
3982 reload iterations. */
3983 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3984 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3985 }
3986 /* Mark any unallocated hard regs as available for spills. That
3987 makes inheritance work somewhat better. */
3988 if (chain->need_reload)
3989 {
3990 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3991 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3992 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3993
3994 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3995 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3996 /* Value of chain->used_spill_regs from previous iteration
3997 may be not included in the value calculated here because
3998 of possible removing caller-saves insns (see function
3999 delete_caller_save_insns. */
4000 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4001 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4002 }
4003 }
4004
4005 CLEAR_REG_SET (&changed_allocation_pseudos);
4006 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4007 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4008 {
4009 int regno = reg_renumber[i];
4010 if (reg_old_renumber[i] == regno)
4011 continue;
4012
4013 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4014
4015 alter_reg (i, reg_old_renumber[i], false);
4016 reg_old_renumber[i] = regno;
4017 if (dump_file)
4018 {
4019 if (regno == -1)
4020 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4021 else
4022 fprintf (dump_file, " Register %d now in %d.\n\n",
4023 i, reg_renumber[i]);
4024 }
4025 }
4026
4027 return something_changed;
4028 }
4029 \f
4030 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4031
4032 static void
4033 scan_paradoxical_subregs (rtx x)
4034 {
4035 int i;
4036 const char *fmt;
4037 enum rtx_code code = GET_CODE (x);
4038
4039 switch (code)
4040 {
4041 case REG:
4042 case CONST_INT:
4043 case CONST:
4044 case SYMBOL_REF:
4045 case LABEL_REF:
4046 case CONST_DOUBLE:
4047 case CONST_FIXED:
4048 case CONST_VECTOR: /* shouldn't happen, but just in case. */
4049 case CC0:
4050 case PC:
4051 case USE:
4052 case CLOBBER:
4053 return;
4054
4055 case SUBREG:
4056 if (REG_P (SUBREG_REG (x))
4057 && (GET_MODE_SIZE (GET_MODE (x))
4058 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4059 {
4060 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4061 = GET_MODE_SIZE (GET_MODE (x));
4062 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4063 }
4064 return;
4065
4066 default:
4067 break;
4068 }
4069
4070 fmt = GET_RTX_FORMAT (code);
4071 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4072 {
4073 if (fmt[i] == 'e')
4074 scan_paradoxical_subregs (XEXP (x, i));
4075 else if (fmt[i] == 'E')
4076 {
4077 int j;
4078 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4079 scan_paradoxical_subregs (XVECEXP (x, i, j));
4080 }
4081 }
4082 }
4083 \f
4084 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4085 examine all of the reload insns between PREV and NEXT exclusive, and
4086 annotate all that may trap. */
4087
4088 static void
4089 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4090 {
4091 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4092 rtx i;
4093
4094 if (note == NULL)
4095 return;
4096
4097 if (! may_trap_p (PATTERN (insn)))
4098 remove_note (insn, note);
4099
4100 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
4101 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
4102 add_reg_note (i, REG_EH_REGION, XEXP (note, 0));
4103 }
4104
4105 /* Reload pseudo-registers into hard regs around each insn as needed.
4106 Additional register load insns are output before the insn that needs it
4107 and perhaps store insns after insns that modify the reloaded pseudo reg.
4108
4109 reg_last_reload_reg and reg_reloaded_contents keep track of
4110 which registers are already available in reload registers.
4111 We update these for the reloads that we perform,
4112 as the insns are scanned. */
4113
4114 static void
4115 reload_as_needed (int live_known)
4116 {
4117 struct insn_chain *chain;
4118 #if defined (AUTO_INC_DEC)
4119 int i;
4120 #endif
4121 rtx x;
4122
4123 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4124 memset (spill_reg_store, 0, sizeof spill_reg_store);
4125 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4126 INIT_REG_SET (&reg_has_output_reload);
4127 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4128 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4129
4130 set_initial_elim_offsets ();
4131
4132 for (chain = reload_insn_chain; chain; chain = chain->next)
4133 {
4134 rtx prev = 0;
4135 rtx insn = chain->insn;
4136 rtx old_next = NEXT_INSN (insn);
4137 #ifdef AUTO_INC_DEC
4138 rtx old_prev = PREV_INSN (insn);
4139 #endif
4140
4141 /* If we pass a label, copy the offsets from the label information
4142 into the current offsets of each elimination. */
4143 if (LABEL_P (insn))
4144 set_offsets_for_label (insn);
4145
4146 else if (INSN_P (insn))
4147 {
4148 regset_head regs_to_forget;
4149 INIT_REG_SET (&regs_to_forget);
4150 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4151
4152 /* If this is a USE and CLOBBER of a MEM, ensure that any
4153 references to eliminable registers have been removed. */
4154
4155 if ((GET_CODE (PATTERN (insn)) == USE
4156 || GET_CODE (PATTERN (insn)) == CLOBBER)
4157 && MEM_P (XEXP (PATTERN (insn), 0)))
4158 XEXP (XEXP (PATTERN (insn), 0), 0)
4159 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4160 GET_MODE (XEXP (PATTERN (insn), 0)),
4161 NULL_RTX);
4162
4163 /* If we need to do register elimination processing, do so.
4164 This might delete the insn, in which case we are done. */
4165 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4166 {
4167 eliminate_regs_in_insn (insn, 1);
4168 if (NOTE_P (insn))
4169 {
4170 update_eliminable_offsets ();
4171 CLEAR_REG_SET (&regs_to_forget);
4172 continue;
4173 }
4174 }
4175
4176 /* If need_elim is nonzero but need_reload is zero, one might think
4177 that we could simply set n_reloads to 0. However, find_reloads
4178 could have done some manipulation of the insn (such as swapping
4179 commutative operands), and these manipulations are lost during
4180 the first pass for every insn that needs register elimination.
4181 So the actions of find_reloads must be redone here. */
4182
4183 if (! chain->need_elim && ! chain->need_reload
4184 && ! chain->need_operand_change)
4185 n_reloads = 0;
4186 /* First find the pseudo regs that must be reloaded for this insn.
4187 This info is returned in the tables reload_... (see reload.h).
4188 Also modify the body of INSN by substituting RELOAD
4189 rtx's for those pseudo regs. */
4190 else
4191 {
4192 CLEAR_REG_SET (&reg_has_output_reload);
4193 CLEAR_HARD_REG_SET (reg_is_output_reload);
4194
4195 find_reloads (insn, 1, spill_indirect_levels, live_known,
4196 spill_reg_order);
4197 }
4198
4199 if (n_reloads > 0)
4200 {
4201 rtx next = NEXT_INSN (insn);
4202 rtx p;
4203
4204 prev = PREV_INSN (insn);
4205
4206 /* Now compute which reload regs to reload them into. Perhaps
4207 reusing reload regs from previous insns, or else output
4208 load insns to reload them. Maybe output store insns too.
4209 Record the choices of reload reg in reload_reg_rtx. */
4210 choose_reload_regs (chain);
4211
4212 /* Merge any reloads that we didn't combine for fear of
4213 increasing the number of spill registers needed but now
4214 discover can be safely merged. */
4215 if (SMALL_REGISTER_CLASSES)
4216 merge_assigned_reloads (insn);
4217
4218 /* Generate the insns to reload operands into or out of
4219 their reload regs. */
4220 emit_reload_insns (chain);
4221
4222 /* Substitute the chosen reload regs from reload_reg_rtx
4223 into the insn's body (or perhaps into the bodies of other
4224 load and store insn that we just made for reloading
4225 and that we moved the structure into). */
4226 subst_reloads (insn);
4227
4228 /* Adjust the exception region notes for loads and stores. */
4229 if (flag_non_call_exceptions && !CALL_P (insn))
4230 fixup_eh_region_note (insn, prev, next);
4231
4232 /* If this was an ASM, make sure that all the reload insns
4233 we have generated are valid. If not, give an error
4234 and delete them. */
4235 if (asm_noperands (PATTERN (insn)) >= 0)
4236 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4237 if (p != insn && INSN_P (p)
4238 && GET_CODE (PATTERN (p)) != USE
4239 && (recog_memoized (p) < 0
4240 || (extract_insn (p), ! constrain_operands (1))))
4241 {
4242 error_for_asm (insn,
4243 "%<asm%> operand requires "
4244 "impossible reload");
4245 delete_insn (p);
4246 }
4247 }
4248
4249 if (num_eliminable && chain->need_elim)
4250 update_eliminable_offsets ();
4251
4252 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4253 is no longer validly lying around to save a future reload.
4254 Note that this does not detect pseudos that were reloaded
4255 for this insn in order to be stored in
4256 (obeying register constraints). That is correct; such reload
4257 registers ARE still valid. */
4258 forget_marked_reloads (&regs_to_forget);
4259 CLEAR_REG_SET (&regs_to_forget);
4260
4261 /* There may have been CLOBBER insns placed after INSN. So scan
4262 between INSN and NEXT and use them to forget old reloads. */
4263 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4264 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4265 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4266
4267 #ifdef AUTO_INC_DEC
4268 /* Likewise for regs altered by auto-increment in this insn.
4269 REG_INC notes have been changed by reloading:
4270 find_reloads_address_1 records substitutions for them,
4271 which have been performed by subst_reloads above. */
4272 for (i = n_reloads - 1; i >= 0; i--)
4273 {
4274 rtx in_reg = rld[i].in_reg;
4275 if (in_reg)
4276 {
4277 enum rtx_code code = GET_CODE (in_reg);
4278 /* PRE_INC / PRE_DEC will have the reload register ending up
4279 with the same value as the stack slot, but that doesn't
4280 hold true for POST_INC / POST_DEC. Either we have to
4281 convert the memory access to a true POST_INC / POST_DEC,
4282 or we can't use the reload register for inheritance. */
4283 if ((code == POST_INC || code == POST_DEC)
4284 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4285 REGNO (rld[i].reg_rtx))
4286 /* Make sure it is the inc/dec pseudo, and not
4287 some other (e.g. output operand) pseudo. */
4288 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4289 == REGNO (XEXP (in_reg, 0))))
4290
4291 {
4292 rtx reload_reg = rld[i].reg_rtx;
4293 enum machine_mode mode = GET_MODE (reload_reg);
4294 int n = 0;
4295 rtx p;
4296
4297 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4298 {
4299 /* We really want to ignore REG_INC notes here, so
4300 use PATTERN (p) as argument to reg_set_p . */
4301 if (reg_set_p (reload_reg, PATTERN (p)))
4302 break;
4303 n = count_occurrences (PATTERN (p), reload_reg, 0);
4304 if (! n)
4305 continue;
4306 if (n == 1)
4307 {
4308 rtx replace_reg
4309 = gen_rtx_fmt_e (code, mode, reload_reg);
4310
4311 validate_replace_rtx_group (reload_reg,
4312 replace_reg, p);
4313 n = verify_changes (0);
4314
4315 /* We must also verify that the constraints
4316 are met after the replacement. Make sure
4317 extract_insn is only called for an insn
4318 where the replacements were found to be
4319 valid so far. */
4320 if (n)
4321 {
4322 extract_insn (p);
4323 n = constrain_operands (1);
4324 }
4325
4326 /* If the constraints were not met, then
4327 undo the replacement, else confirm it. */
4328 if (!n)
4329 cancel_changes (0);
4330 else
4331 confirm_change_group ();
4332 }
4333 break;
4334 }
4335 if (n == 1)
4336 {
4337 add_reg_note (p, REG_INC, reload_reg);
4338 /* Mark this as having an output reload so that the
4339 REG_INC processing code below won't invalidate
4340 the reload for inheritance. */
4341 SET_HARD_REG_BIT (reg_is_output_reload,
4342 REGNO (reload_reg));
4343 SET_REGNO_REG_SET (&reg_has_output_reload,
4344 REGNO (XEXP (in_reg, 0)));
4345 }
4346 else
4347 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4348 NULL);
4349 }
4350 else if ((code == PRE_INC || code == PRE_DEC)
4351 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4352 REGNO (rld[i].reg_rtx))
4353 /* Make sure it is the inc/dec pseudo, and not
4354 some other (e.g. output operand) pseudo. */
4355 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4356 == REGNO (XEXP (in_reg, 0))))
4357 {
4358 SET_HARD_REG_BIT (reg_is_output_reload,
4359 REGNO (rld[i].reg_rtx));
4360 SET_REGNO_REG_SET (&reg_has_output_reload,
4361 REGNO (XEXP (in_reg, 0)));
4362 }
4363 else if (code == PRE_INC || code == PRE_DEC
4364 || code == POST_INC || code == POST_DEC)
4365 {
4366 int in_regno = REGNO (XEXP (in_reg, 0));
4367
4368 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4369 {
4370 int in_hard_regno;
4371 bool forget_p = true;
4372
4373 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4374 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4375 in_hard_regno))
4376 {
4377 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4378 x != old_next;
4379 x = NEXT_INSN (x))
4380 if (x == reg_reloaded_insn[in_hard_regno])
4381 {
4382 forget_p = false;
4383 break;
4384 }
4385 }
4386 /* If for some reasons, we didn't set up
4387 reg_last_reload_reg in this insn,
4388 invalidate inheritance from previous
4389 insns for the incremented/decremented
4390 register. Such registers will be not in
4391 reg_has_output_reload. Invalidate it
4392 also if the corresponding element in
4393 reg_reloaded_insn is also
4394 invalidated. */
4395 if (forget_p)
4396 forget_old_reloads_1 (XEXP (in_reg, 0),
4397 NULL_RTX, NULL);
4398 }
4399 }
4400 }
4401 }
4402 /* If a pseudo that got a hard register is auto-incremented,
4403 we must purge records of copying it into pseudos without
4404 hard registers. */
4405 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4406 if (REG_NOTE_KIND (x) == REG_INC)
4407 {
4408 /* See if this pseudo reg was reloaded in this insn.
4409 If so, its last-reload info is still valid
4410 because it is based on this insn's reload. */
4411 for (i = 0; i < n_reloads; i++)
4412 if (rld[i].out == XEXP (x, 0))
4413 break;
4414
4415 if (i == n_reloads)
4416 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4417 }
4418 #endif
4419 }
4420 /* A reload reg's contents are unknown after a label. */
4421 if (LABEL_P (insn))
4422 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4423
4424 /* Don't assume a reload reg is still good after a call insn
4425 if it is a call-used reg, or if it contains a value that will
4426 be partially clobbered by the call. */
4427 else if (CALL_P (insn))
4428 {
4429 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4430 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4431 }
4432 }
4433
4434 /* Clean up. */
4435 free (reg_last_reload_reg);
4436 CLEAR_REG_SET (&reg_has_output_reload);
4437 }
4438
4439 /* Discard all record of any value reloaded from X,
4440 or reloaded in X from someplace else;
4441 unless X is an output reload reg of the current insn.
4442
4443 X may be a hard reg (the reload reg)
4444 or it may be a pseudo reg that was reloaded from.
4445
4446 When DATA is non-NULL just mark the registers in regset
4447 to be forgotten later. */
4448
4449 static void
4450 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4451 void *data)
4452 {
4453 unsigned int regno;
4454 unsigned int nr;
4455 regset regs = (regset) data;
4456
4457 /* note_stores does give us subregs of hard regs,
4458 subreg_regno_offset requires a hard reg. */
4459 while (GET_CODE (x) == SUBREG)
4460 {
4461 /* We ignore the subreg offset when calculating the regno,
4462 because we are using the entire underlying hard register
4463 below. */
4464 x = SUBREG_REG (x);
4465 }
4466
4467 if (!REG_P (x))
4468 return;
4469
4470 regno = REGNO (x);
4471
4472 if (regno >= FIRST_PSEUDO_REGISTER)
4473 nr = 1;
4474 else
4475 {
4476 unsigned int i;
4477
4478 nr = hard_regno_nregs[regno][GET_MODE (x)];
4479 /* Storing into a spilled-reg invalidates its contents.
4480 This can happen if a block-local pseudo is allocated to that reg
4481 and it wasn't spilled because this block's total need is 0.
4482 Then some insn might have an optional reload and use this reg. */
4483 if (!regs)
4484 for (i = 0; i < nr; i++)
4485 /* But don't do this if the reg actually serves as an output
4486 reload reg in the current instruction. */
4487 if (n_reloads == 0
4488 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4489 {
4490 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4491 spill_reg_store[regno + i] = 0;
4492 }
4493 }
4494
4495 if (regs)
4496 while (nr-- > 0)
4497 SET_REGNO_REG_SET (regs, regno + nr);
4498 else
4499 {
4500 /* Since value of X has changed,
4501 forget any value previously copied from it. */
4502
4503 while (nr-- > 0)
4504 /* But don't forget a copy if this is the output reload
4505 that establishes the copy's validity. */
4506 if (n_reloads == 0
4507 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4508 reg_last_reload_reg[regno + nr] = 0;
4509 }
4510 }
4511
4512 /* Forget the reloads marked in regset by previous function. */
4513 static void
4514 forget_marked_reloads (regset regs)
4515 {
4516 unsigned int reg;
4517 reg_set_iterator rsi;
4518 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4519 {
4520 if (reg < FIRST_PSEUDO_REGISTER
4521 /* But don't do this if the reg actually serves as an output
4522 reload reg in the current instruction. */
4523 && (n_reloads == 0
4524 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4525 {
4526 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4527 spill_reg_store[reg] = 0;
4528 }
4529 if (n_reloads == 0
4530 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4531 reg_last_reload_reg[reg] = 0;
4532 }
4533 }
4534 \f
4535 /* The following HARD_REG_SETs indicate when each hard register is
4536 used for a reload of various parts of the current insn. */
4537
4538 /* If reg is unavailable for all reloads. */
4539 static HARD_REG_SET reload_reg_unavailable;
4540 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4541 static HARD_REG_SET reload_reg_used;
4542 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4543 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4544 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4545 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4546 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4547 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4548 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4549 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4550 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4551 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4552 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4553 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4554 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4555 static HARD_REG_SET reload_reg_used_in_op_addr;
4556 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4557 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4558 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4559 static HARD_REG_SET reload_reg_used_in_insn;
4560 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4561 static HARD_REG_SET reload_reg_used_in_other_addr;
4562
4563 /* If reg is in use as a reload reg for any sort of reload. */
4564 static HARD_REG_SET reload_reg_used_at_all;
4565
4566 /* If reg is use as an inherited reload. We just mark the first register
4567 in the group. */
4568 static HARD_REG_SET reload_reg_used_for_inherit;
4569
4570 /* Records which hard regs are used in any way, either as explicit use or
4571 by being allocated to a pseudo during any point of the current insn. */
4572 static HARD_REG_SET reg_used_in_insn;
4573
4574 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4575 TYPE. MODE is used to indicate how many consecutive regs are
4576 actually used. */
4577
4578 static void
4579 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4580 enum machine_mode mode)
4581 {
4582 unsigned int nregs = hard_regno_nregs[regno][mode];
4583 unsigned int i;
4584
4585 for (i = regno; i < nregs + regno; i++)
4586 {
4587 switch (type)
4588 {
4589 case RELOAD_OTHER:
4590 SET_HARD_REG_BIT (reload_reg_used, i);
4591 break;
4592
4593 case RELOAD_FOR_INPUT_ADDRESS:
4594 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4595 break;
4596
4597 case RELOAD_FOR_INPADDR_ADDRESS:
4598 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4599 break;
4600
4601 case RELOAD_FOR_OUTPUT_ADDRESS:
4602 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4603 break;
4604
4605 case RELOAD_FOR_OUTADDR_ADDRESS:
4606 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4607 break;
4608
4609 case RELOAD_FOR_OPERAND_ADDRESS:
4610 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4611 break;
4612
4613 case RELOAD_FOR_OPADDR_ADDR:
4614 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4615 break;
4616
4617 case RELOAD_FOR_OTHER_ADDRESS:
4618 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4619 break;
4620
4621 case RELOAD_FOR_INPUT:
4622 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4623 break;
4624
4625 case RELOAD_FOR_OUTPUT:
4626 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4627 break;
4628
4629 case RELOAD_FOR_INSN:
4630 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4631 break;
4632 }
4633
4634 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4635 }
4636 }
4637
4638 /* Similarly, but show REGNO is no longer in use for a reload. */
4639
4640 static void
4641 clear_reload_reg_in_use (unsigned int regno, int opnum,
4642 enum reload_type type, enum machine_mode mode)
4643 {
4644 unsigned int nregs = hard_regno_nregs[regno][mode];
4645 unsigned int start_regno, end_regno, r;
4646 int i;
4647 /* A complication is that for some reload types, inheritance might
4648 allow multiple reloads of the same types to share a reload register.
4649 We set check_opnum if we have to check only reloads with the same
4650 operand number, and check_any if we have to check all reloads. */
4651 int check_opnum = 0;
4652 int check_any = 0;
4653 HARD_REG_SET *used_in_set;
4654
4655 switch (type)
4656 {
4657 case RELOAD_OTHER:
4658 used_in_set = &reload_reg_used;
4659 break;
4660
4661 case RELOAD_FOR_INPUT_ADDRESS:
4662 used_in_set = &reload_reg_used_in_input_addr[opnum];
4663 break;
4664
4665 case RELOAD_FOR_INPADDR_ADDRESS:
4666 check_opnum = 1;
4667 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4668 break;
4669
4670 case RELOAD_FOR_OUTPUT_ADDRESS:
4671 used_in_set = &reload_reg_used_in_output_addr[opnum];
4672 break;
4673
4674 case RELOAD_FOR_OUTADDR_ADDRESS:
4675 check_opnum = 1;
4676 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4677 break;
4678
4679 case RELOAD_FOR_OPERAND_ADDRESS:
4680 used_in_set = &reload_reg_used_in_op_addr;
4681 break;
4682
4683 case RELOAD_FOR_OPADDR_ADDR:
4684 check_any = 1;
4685 used_in_set = &reload_reg_used_in_op_addr_reload;
4686 break;
4687
4688 case RELOAD_FOR_OTHER_ADDRESS:
4689 used_in_set = &reload_reg_used_in_other_addr;
4690 check_any = 1;
4691 break;
4692
4693 case RELOAD_FOR_INPUT:
4694 used_in_set = &reload_reg_used_in_input[opnum];
4695 break;
4696
4697 case RELOAD_FOR_OUTPUT:
4698 used_in_set = &reload_reg_used_in_output[opnum];
4699 break;
4700
4701 case RELOAD_FOR_INSN:
4702 used_in_set = &reload_reg_used_in_insn;
4703 break;
4704 default:
4705 gcc_unreachable ();
4706 }
4707 /* We resolve conflicts with remaining reloads of the same type by
4708 excluding the intervals of reload registers by them from the
4709 interval of freed reload registers. Since we only keep track of
4710 one set of interval bounds, we might have to exclude somewhat
4711 more than what would be necessary if we used a HARD_REG_SET here.
4712 But this should only happen very infrequently, so there should
4713 be no reason to worry about it. */
4714
4715 start_regno = regno;
4716 end_regno = regno + nregs;
4717 if (check_opnum || check_any)
4718 {
4719 for (i = n_reloads - 1; i >= 0; i--)
4720 {
4721 if (rld[i].when_needed == type
4722 && (check_any || rld[i].opnum == opnum)
4723 && rld[i].reg_rtx)
4724 {
4725 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4726 unsigned int conflict_end
4727 = end_hard_regno (rld[i].mode, conflict_start);
4728
4729 /* If there is an overlap with the first to-be-freed register,
4730 adjust the interval start. */
4731 if (conflict_start <= start_regno && conflict_end > start_regno)
4732 start_regno = conflict_end;
4733 /* Otherwise, if there is a conflict with one of the other
4734 to-be-freed registers, adjust the interval end. */
4735 if (conflict_start > start_regno && conflict_start < end_regno)
4736 end_regno = conflict_start;
4737 }
4738 }
4739 }
4740
4741 for (r = start_regno; r < end_regno; r++)
4742 CLEAR_HARD_REG_BIT (*used_in_set, r);
4743 }
4744
4745 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4746 specified by OPNUM and TYPE. */
4747
4748 static int
4749 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4750 {
4751 int i;
4752
4753 /* In use for a RELOAD_OTHER means it's not available for anything. */
4754 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4755 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4756 return 0;
4757
4758 switch (type)
4759 {
4760 case RELOAD_OTHER:
4761 /* In use for anything means we can't use it for RELOAD_OTHER. */
4762 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4763 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4764 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4765 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4766 return 0;
4767
4768 for (i = 0; i < reload_n_operands; i++)
4769 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4770 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4771 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4772 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4773 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4774 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4775 return 0;
4776
4777 return 1;
4778
4779 case RELOAD_FOR_INPUT:
4780 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4781 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4782 return 0;
4783
4784 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4785 return 0;
4786
4787 /* If it is used for some other input, can't use it. */
4788 for (i = 0; i < reload_n_operands; i++)
4789 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4790 return 0;
4791
4792 /* If it is used in a later operand's address, can't use it. */
4793 for (i = opnum + 1; i < reload_n_operands; i++)
4794 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4795 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4796 return 0;
4797
4798 return 1;
4799
4800 case RELOAD_FOR_INPUT_ADDRESS:
4801 /* Can't use a register if it is used for an input address for this
4802 operand or used as an input in an earlier one. */
4803 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4804 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4805 return 0;
4806
4807 for (i = 0; i < opnum; i++)
4808 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4809 return 0;
4810
4811 return 1;
4812
4813 case RELOAD_FOR_INPADDR_ADDRESS:
4814 /* Can't use a register if it is used for an input address
4815 for this operand or used as an input in an earlier
4816 one. */
4817 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4818 return 0;
4819
4820 for (i = 0; i < opnum; i++)
4821 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4822 return 0;
4823
4824 return 1;
4825
4826 case RELOAD_FOR_OUTPUT_ADDRESS:
4827 /* Can't use a register if it is used for an output address for this
4828 operand or used as an output in this or a later operand. Note
4829 that multiple output operands are emitted in reverse order, so
4830 the conflicting ones are those with lower indices. */
4831 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4832 return 0;
4833
4834 for (i = 0; i <= opnum; i++)
4835 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4836 return 0;
4837
4838 return 1;
4839
4840 case RELOAD_FOR_OUTADDR_ADDRESS:
4841 /* Can't use a register if it is used for an output address
4842 for this operand or used as an output in this or a
4843 later operand. Note that multiple output operands are
4844 emitted in reverse order, so the conflicting ones are
4845 those with lower indices. */
4846 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4847 return 0;
4848
4849 for (i = 0; i <= opnum; i++)
4850 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4851 return 0;
4852
4853 return 1;
4854
4855 case RELOAD_FOR_OPERAND_ADDRESS:
4856 for (i = 0; i < reload_n_operands; i++)
4857 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4858 return 0;
4859
4860 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4861 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4862
4863 case RELOAD_FOR_OPADDR_ADDR:
4864 for (i = 0; i < reload_n_operands; i++)
4865 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4866 return 0;
4867
4868 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4869
4870 case RELOAD_FOR_OUTPUT:
4871 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4872 outputs, or an operand address for this or an earlier output.
4873 Note that multiple output operands are emitted in reverse order,
4874 so the conflicting ones are those with higher indices. */
4875 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4876 return 0;
4877
4878 for (i = 0; i < reload_n_operands; i++)
4879 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4880 return 0;
4881
4882 for (i = opnum; i < reload_n_operands; i++)
4883 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4884 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4885 return 0;
4886
4887 return 1;
4888
4889 case RELOAD_FOR_INSN:
4890 for (i = 0; i < reload_n_operands; i++)
4891 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4892 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4893 return 0;
4894
4895 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4896 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4897
4898 case RELOAD_FOR_OTHER_ADDRESS:
4899 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4900
4901 default:
4902 gcc_unreachable ();
4903 }
4904 }
4905
4906 /* Return 1 if the value in reload reg REGNO, as used by a reload
4907 needed for the part of the insn specified by OPNUM and TYPE,
4908 is still available in REGNO at the end of the insn.
4909
4910 We can assume that the reload reg was already tested for availability
4911 at the time it is needed, and we should not check this again,
4912 in case the reg has already been marked in use. */
4913
4914 static int
4915 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4916 {
4917 int i;
4918
4919 switch (type)
4920 {
4921 case RELOAD_OTHER:
4922 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4923 its value must reach the end. */
4924 return 1;
4925
4926 /* If this use is for part of the insn,
4927 its value reaches if no subsequent part uses the same register.
4928 Just like the above function, don't try to do this with lots
4929 of fallthroughs. */
4930
4931 case RELOAD_FOR_OTHER_ADDRESS:
4932 /* Here we check for everything else, since these don't conflict
4933 with anything else and everything comes later. */
4934
4935 for (i = 0; i < reload_n_operands; i++)
4936 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4937 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4938 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4939 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4940 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4941 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4942 return 0;
4943
4944 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4945 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4946 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4947 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4948
4949 case RELOAD_FOR_INPUT_ADDRESS:
4950 case RELOAD_FOR_INPADDR_ADDRESS:
4951 /* Similar, except that we check only for this and subsequent inputs
4952 and the address of only subsequent inputs and we do not need
4953 to check for RELOAD_OTHER objects since they are known not to
4954 conflict. */
4955
4956 for (i = opnum; i < reload_n_operands; i++)
4957 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4958 return 0;
4959
4960 for (i = opnum + 1; i < reload_n_operands; i++)
4961 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4962 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4963 return 0;
4964
4965 for (i = 0; i < reload_n_operands; i++)
4966 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4967 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4968 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4969 return 0;
4970
4971 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4972 return 0;
4973
4974 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4975 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4976 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4977
4978 case RELOAD_FOR_INPUT:
4979 /* Similar to input address, except we start at the next operand for
4980 both input and input address and we do not check for
4981 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4982 would conflict. */
4983
4984 for (i = opnum + 1; i < reload_n_operands; i++)
4985 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4986 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4987 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4988 return 0;
4989
4990 /* ... fall through ... */
4991
4992 case RELOAD_FOR_OPERAND_ADDRESS:
4993 /* Check outputs and their addresses. */
4994
4995 for (i = 0; i < reload_n_operands; i++)
4996 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4997 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4998 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4999 return 0;
5000
5001 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5002
5003 case RELOAD_FOR_OPADDR_ADDR:
5004 for (i = 0; i < reload_n_operands; i++)
5005 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5006 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5007 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5008 return 0;
5009
5010 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5011 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5012 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5013
5014 case RELOAD_FOR_INSN:
5015 /* These conflict with other outputs with RELOAD_OTHER. So
5016 we need only check for output addresses. */
5017
5018 opnum = reload_n_operands;
5019
5020 /* ... fall through ... */
5021
5022 case RELOAD_FOR_OUTPUT:
5023 case RELOAD_FOR_OUTPUT_ADDRESS:
5024 case RELOAD_FOR_OUTADDR_ADDRESS:
5025 /* We already know these can't conflict with a later output. So the
5026 only thing to check are later output addresses.
5027 Note that multiple output operands are emitted in reverse order,
5028 so the conflicting ones are those with lower indices. */
5029 for (i = 0; i < opnum; i++)
5030 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5031 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5032 return 0;
5033
5034 return 1;
5035
5036 default:
5037 gcc_unreachable ();
5038 }
5039 }
5040
5041 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5042 every register in the range [REGNO, REGNO + NREGS). */
5043
5044 static bool
5045 reload_regs_reach_end_p (unsigned int regno, int nregs,
5046 int opnum, enum reload_type type)
5047 {
5048 int i;
5049
5050 for (i = 0; i < nregs; i++)
5051 if (!reload_reg_reaches_end_p (regno + i, opnum, type))
5052 return false;
5053 return true;
5054 }
5055 \f
5056
5057 /* Returns whether R1 and R2 are uniquely chained: the value of one
5058 is used by the other, and that value is not used by any other
5059 reload for this insn. This is used to partially undo the decision
5060 made in find_reloads when in the case of multiple
5061 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5062 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5063 reloads. This code tries to avoid the conflict created by that
5064 change. It might be cleaner to explicitly keep track of which
5065 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5066 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5067 this after the fact. */
5068 static bool
5069 reloads_unique_chain_p (int r1, int r2)
5070 {
5071 int i;
5072
5073 /* We only check input reloads. */
5074 if (! rld[r1].in || ! rld[r2].in)
5075 return false;
5076
5077 /* Avoid anything with output reloads. */
5078 if (rld[r1].out || rld[r2].out)
5079 return false;
5080
5081 /* "chained" means one reload is a component of the other reload,
5082 not the same as the other reload. */
5083 if (rld[r1].opnum != rld[r2].opnum
5084 || rtx_equal_p (rld[r1].in, rld[r2].in)
5085 || rld[r1].optional || rld[r2].optional
5086 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5087 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5088 return false;
5089
5090 for (i = 0; i < n_reloads; i ++)
5091 /* Look for input reloads that aren't our two */
5092 if (i != r1 && i != r2 && rld[i].in)
5093 {
5094 /* If our reload is mentioned at all, it isn't a simple chain. */
5095 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5096 return false;
5097 }
5098 return true;
5099 }
5100
5101
5102 /* The recursive function change all occurrences of WHAT in *WHERE
5103 onto REPL. */
5104 static void
5105 substitute (rtx *where, const_rtx what, rtx repl)
5106 {
5107 const char *fmt;
5108 int i;
5109 enum rtx_code code;
5110
5111 if (*where == 0)
5112 return;
5113
5114 if (*where == what || rtx_equal_p (*where, what))
5115 {
5116 *where = repl;
5117 return;
5118 }
5119
5120 code = GET_CODE (*where);
5121 fmt = GET_RTX_FORMAT (code);
5122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5123 {
5124 if (fmt[i] == 'E')
5125 {
5126 int j;
5127
5128 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5129 substitute (&XVECEXP (*where, i, j), what, repl);
5130 }
5131 else if (fmt[i] == 'e')
5132 substitute (&XEXP (*where, i), what, repl);
5133 }
5134 }
5135
5136 /* The function returns TRUE if chain of reload R1 and R2 (in any
5137 order) can be evaluated without usage of intermediate register for
5138 the reload containing another reload. It is important to see
5139 gen_reload to understand what the function is trying to do. As an
5140 example, let us have reload chain
5141
5142 r2: const
5143 r1: <something> + const
5144
5145 and reload R2 got reload reg HR. The function returns true if
5146 there is a correct insn HR = HR + <something>. Otherwise,
5147 gen_reload will use intermediate register (and this is the reload
5148 reg for R1) to reload <something>.
5149
5150 We need this function to find a conflict for chain reloads. In our
5151 example, if HR = HR + <something> is incorrect insn, then we cannot
5152 use HR as a reload register for R2. If we do use it then we get a
5153 wrong code:
5154
5155 HR = const
5156 HR = <something>
5157 HR = HR + HR
5158
5159 */
5160 static bool
5161 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5162 {
5163 bool result;
5164 int regno, n, code;
5165 rtx out, in, tem, insn;
5166 rtx last = get_last_insn ();
5167
5168 /* Make r2 a component of r1. */
5169 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5170 {
5171 n = r1;
5172 r1 = r2;
5173 r2 = n;
5174 }
5175 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5176 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5177 gcc_assert (regno >= 0);
5178 out = gen_rtx_REG (rld[r1].mode, regno);
5179 in = copy_rtx (rld[r1].in);
5180 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5181
5182 /* If IN is a paradoxical SUBREG, remove it and try to put the
5183 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5184 if (GET_CODE (in) == SUBREG
5185 && (GET_MODE_SIZE (GET_MODE (in))
5186 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
5187 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
5188 in = SUBREG_REG (in), out = tem;
5189
5190 if (GET_CODE (in) == PLUS
5191 && (REG_P (XEXP (in, 0))
5192 || GET_CODE (XEXP (in, 0)) == SUBREG
5193 || MEM_P (XEXP (in, 0)))
5194 && (REG_P (XEXP (in, 1))
5195 || GET_CODE (XEXP (in, 1)) == SUBREG
5196 || CONSTANT_P (XEXP (in, 1))
5197 || MEM_P (XEXP (in, 1))))
5198 {
5199 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5200 code = recog_memoized (insn);
5201 result = false;
5202
5203 if (code >= 0)
5204 {
5205 extract_insn (insn);
5206 /* We want constrain operands to treat this insn strictly in
5207 its validity determination, i.e., the way it would after
5208 reload has completed. */
5209 result = constrain_operands (1);
5210 }
5211
5212 delete_insns_since (last);
5213 return result;
5214 }
5215
5216 /* It looks like other cases in gen_reload are not possible for
5217 chain reloads or do need an intermediate hard registers. */
5218 return true;
5219 }
5220
5221 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5222 Return 0 otherwise.
5223
5224 This function uses the same algorithm as reload_reg_free_p above. */
5225
5226 static int
5227 reloads_conflict (int r1, int r2)
5228 {
5229 enum reload_type r1_type = rld[r1].when_needed;
5230 enum reload_type r2_type = rld[r2].when_needed;
5231 int r1_opnum = rld[r1].opnum;
5232 int r2_opnum = rld[r2].opnum;
5233
5234 /* RELOAD_OTHER conflicts with everything. */
5235 if (r2_type == RELOAD_OTHER)
5236 return 1;
5237
5238 /* Otherwise, check conflicts differently for each type. */
5239
5240 switch (r1_type)
5241 {
5242 case RELOAD_FOR_INPUT:
5243 return (r2_type == RELOAD_FOR_INSN
5244 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5245 || r2_type == RELOAD_FOR_OPADDR_ADDR
5246 || r2_type == RELOAD_FOR_INPUT
5247 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5248 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5249 && r2_opnum > r1_opnum));
5250
5251 case RELOAD_FOR_INPUT_ADDRESS:
5252 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5253 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5254
5255 case RELOAD_FOR_INPADDR_ADDRESS:
5256 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5257 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5258
5259 case RELOAD_FOR_OUTPUT_ADDRESS:
5260 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5261 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5262
5263 case RELOAD_FOR_OUTADDR_ADDRESS:
5264 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5265 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5266
5267 case RELOAD_FOR_OPERAND_ADDRESS:
5268 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5269 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5270 && (!reloads_unique_chain_p (r1, r2)
5271 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5272
5273 case RELOAD_FOR_OPADDR_ADDR:
5274 return (r2_type == RELOAD_FOR_INPUT
5275 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5276
5277 case RELOAD_FOR_OUTPUT:
5278 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5279 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5280 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5281 && r2_opnum >= r1_opnum));
5282
5283 case RELOAD_FOR_INSN:
5284 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5285 || r2_type == RELOAD_FOR_INSN
5286 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5287
5288 case RELOAD_FOR_OTHER_ADDRESS:
5289 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5290
5291 case RELOAD_OTHER:
5292 return 1;
5293
5294 default:
5295 gcc_unreachable ();
5296 }
5297 }
5298 \f
5299 /* Indexed by reload number, 1 if incoming value
5300 inherited from previous insns. */
5301 static char reload_inherited[MAX_RELOADS];
5302
5303 /* For an inherited reload, this is the insn the reload was inherited from,
5304 if we know it. Otherwise, this is 0. */
5305 static rtx reload_inheritance_insn[MAX_RELOADS];
5306
5307 /* If nonzero, this is a place to get the value of the reload,
5308 rather than using reload_in. */
5309 static rtx reload_override_in[MAX_RELOADS];
5310
5311 /* For each reload, the hard register number of the register used,
5312 or -1 if we did not need a register for this reload. */
5313 static int reload_spill_index[MAX_RELOADS];
5314
5315 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5316 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5317
5318 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5319 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5320
5321 /* Subroutine of free_for_value_p, used to check a single register.
5322 START_REGNO is the starting regno of the full reload register
5323 (possibly comprising multiple hard registers) that we are considering. */
5324
5325 static int
5326 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5327 enum reload_type type, rtx value, rtx out,
5328 int reloadnum, int ignore_address_reloads)
5329 {
5330 int time1;
5331 /* Set if we see an input reload that must not share its reload register
5332 with any new earlyclobber, but might otherwise share the reload
5333 register with an output or input-output reload. */
5334 int check_earlyclobber = 0;
5335 int i;
5336 int copy = 0;
5337
5338 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5339 return 0;
5340
5341 if (out == const0_rtx)
5342 {
5343 copy = 1;
5344 out = NULL_RTX;
5345 }
5346
5347 /* We use some pseudo 'time' value to check if the lifetimes of the
5348 new register use would overlap with the one of a previous reload
5349 that is not read-only or uses a different value.
5350 The 'time' used doesn't have to be linear in any shape or form, just
5351 monotonic.
5352 Some reload types use different 'buckets' for each operand.
5353 So there are MAX_RECOG_OPERANDS different time values for each
5354 such reload type.
5355 We compute TIME1 as the time when the register for the prospective
5356 new reload ceases to be live, and TIME2 for each existing
5357 reload as the time when that the reload register of that reload
5358 becomes live.
5359 Where there is little to be gained by exact lifetime calculations,
5360 we just make conservative assumptions, i.e. a longer lifetime;
5361 this is done in the 'default:' cases. */
5362 switch (type)
5363 {
5364 case RELOAD_FOR_OTHER_ADDRESS:
5365 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5366 time1 = copy ? 0 : 1;
5367 break;
5368 case RELOAD_OTHER:
5369 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5370 break;
5371 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5372 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5373 respectively, to the time values for these, we get distinct time
5374 values. To get distinct time values for each operand, we have to
5375 multiply opnum by at least three. We round that up to four because
5376 multiply by four is often cheaper. */
5377 case RELOAD_FOR_INPADDR_ADDRESS:
5378 time1 = opnum * 4 + 2;
5379 break;
5380 case RELOAD_FOR_INPUT_ADDRESS:
5381 time1 = opnum * 4 + 3;
5382 break;
5383 case RELOAD_FOR_INPUT:
5384 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5385 executes (inclusive). */
5386 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5387 break;
5388 case RELOAD_FOR_OPADDR_ADDR:
5389 /* opnum * 4 + 4
5390 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5391 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5392 break;
5393 case RELOAD_FOR_OPERAND_ADDRESS:
5394 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5395 is executed. */
5396 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5397 break;
5398 case RELOAD_FOR_OUTADDR_ADDRESS:
5399 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5400 break;
5401 case RELOAD_FOR_OUTPUT_ADDRESS:
5402 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5403 break;
5404 default:
5405 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5406 }
5407
5408 for (i = 0; i < n_reloads; i++)
5409 {
5410 rtx reg = rld[i].reg_rtx;
5411 if (reg && REG_P (reg)
5412 && ((unsigned) regno - true_regnum (reg)
5413 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5414 && i != reloadnum)
5415 {
5416 rtx other_input = rld[i].in;
5417
5418 /* If the other reload loads the same input value, that
5419 will not cause a conflict only if it's loading it into
5420 the same register. */
5421 if (true_regnum (reg) != start_regno)
5422 other_input = NULL_RTX;
5423 if (! other_input || ! rtx_equal_p (other_input, value)
5424 || rld[i].out || out)
5425 {
5426 int time2;
5427 switch (rld[i].when_needed)
5428 {
5429 case RELOAD_FOR_OTHER_ADDRESS:
5430 time2 = 0;
5431 break;
5432 case RELOAD_FOR_INPADDR_ADDRESS:
5433 /* find_reloads makes sure that a
5434 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5435 by at most one - the first -
5436 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5437 address reload is inherited, the address address reload
5438 goes away, so we can ignore this conflict. */
5439 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5440 && ignore_address_reloads
5441 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5442 Then the address address is still needed to store
5443 back the new address. */
5444 && ! rld[reloadnum].out)
5445 continue;
5446 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5447 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5448 reloads go away. */
5449 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5450 && ignore_address_reloads
5451 /* Unless we are reloading an auto_inc expression. */
5452 && ! rld[reloadnum].out)
5453 continue;
5454 time2 = rld[i].opnum * 4 + 2;
5455 break;
5456 case RELOAD_FOR_INPUT_ADDRESS:
5457 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5458 && ignore_address_reloads
5459 && ! rld[reloadnum].out)
5460 continue;
5461 time2 = rld[i].opnum * 4 + 3;
5462 break;
5463 case RELOAD_FOR_INPUT:
5464 time2 = rld[i].opnum * 4 + 4;
5465 check_earlyclobber = 1;
5466 break;
5467 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5468 == MAX_RECOG_OPERAND * 4 */
5469 case RELOAD_FOR_OPADDR_ADDR:
5470 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5471 && ignore_address_reloads
5472 && ! rld[reloadnum].out)
5473 continue;
5474 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5475 break;
5476 case RELOAD_FOR_OPERAND_ADDRESS:
5477 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5478 check_earlyclobber = 1;
5479 break;
5480 case RELOAD_FOR_INSN:
5481 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5482 break;
5483 case RELOAD_FOR_OUTPUT:
5484 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5485 instruction is executed. */
5486 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5487 break;
5488 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5489 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5490 value. */
5491 case RELOAD_FOR_OUTADDR_ADDRESS:
5492 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5493 && ignore_address_reloads
5494 && ! rld[reloadnum].out)
5495 continue;
5496 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5497 break;
5498 case RELOAD_FOR_OUTPUT_ADDRESS:
5499 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5500 break;
5501 case RELOAD_OTHER:
5502 /* If there is no conflict in the input part, handle this
5503 like an output reload. */
5504 if (! rld[i].in || rtx_equal_p (other_input, value))
5505 {
5506 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5507 /* Earlyclobbered outputs must conflict with inputs. */
5508 if (earlyclobber_operand_p (rld[i].out))
5509 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5510
5511 break;
5512 }
5513 time2 = 1;
5514 /* RELOAD_OTHER might be live beyond instruction execution,
5515 but this is not obvious when we set time2 = 1. So check
5516 here if there might be a problem with the new reload
5517 clobbering the register used by the RELOAD_OTHER. */
5518 if (out)
5519 return 0;
5520 break;
5521 default:
5522 return 0;
5523 }
5524 if ((time1 >= time2
5525 && (! rld[i].in || rld[i].out
5526 || ! rtx_equal_p (other_input, value)))
5527 || (out && rld[reloadnum].out_reg
5528 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5529 return 0;
5530 }
5531 }
5532 }
5533
5534 /* Earlyclobbered outputs must conflict with inputs. */
5535 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5536 return 0;
5537
5538 return 1;
5539 }
5540
5541 /* Return 1 if the value in reload reg REGNO, as used by a reload
5542 needed for the part of the insn specified by OPNUM and TYPE,
5543 may be used to load VALUE into it.
5544
5545 MODE is the mode in which the register is used, this is needed to
5546 determine how many hard regs to test.
5547
5548 Other read-only reloads with the same value do not conflict
5549 unless OUT is nonzero and these other reloads have to live while
5550 output reloads live.
5551 If OUT is CONST0_RTX, this is a special case: it means that the
5552 test should not be for using register REGNO as reload register, but
5553 for copying from register REGNO into the reload register.
5554
5555 RELOADNUM is the number of the reload we want to load this value for;
5556 a reload does not conflict with itself.
5557
5558 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5559 reloads that load an address for the very reload we are considering.
5560
5561 The caller has to make sure that there is no conflict with the return
5562 register. */
5563
5564 static int
5565 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5566 enum reload_type type, rtx value, rtx out, int reloadnum,
5567 int ignore_address_reloads)
5568 {
5569 int nregs = hard_regno_nregs[regno][mode];
5570 while (nregs-- > 0)
5571 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5572 value, out, reloadnum,
5573 ignore_address_reloads))
5574 return 0;
5575 return 1;
5576 }
5577
5578 /* Return nonzero if the rtx X is invariant over the current function. */
5579 /* ??? Actually, the places where we use this expect exactly what is
5580 tested here, and not everything that is function invariant. In
5581 particular, the frame pointer and arg pointer are special cased;
5582 pic_offset_table_rtx is not, and we must not spill these things to
5583 memory. */
5584
5585 int
5586 function_invariant_p (const_rtx x)
5587 {
5588 if (CONSTANT_P (x))
5589 return 1;
5590 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5591 return 1;
5592 if (GET_CODE (x) == PLUS
5593 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5594 && CONSTANT_P (XEXP (x, 1)))
5595 return 1;
5596 return 0;
5597 }
5598
5599 /* Determine whether the reload reg X overlaps any rtx'es used for
5600 overriding inheritance. Return nonzero if so. */
5601
5602 static int
5603 conflicts_with_override (rtx x)
5604 {
5605 int i;
5606 for (i = 0; i < n_reloads; i++)
5607 if (reload_override_in[i]
5608 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5609 return 1;
5610 return 0;
5611 }
5612 \f
5613 /* Give an error message saying we failed to find a reload for INSN,
5614 and clear out reload R. */
5615 static void
5616 failed_reload (rtx insn, int r)
5617 {
5618 if (asm_noperands (PATTERN (insn)) < 0)
5619 /* It's the compiler's fault. */
5620 fatal_insn ("could not find a spill register", insn);
5621
5622 /* It's the user's fault; the operand's mode and constraint
5623 don't match. Disable this reload so we don't crash in final. */
5624 error_for_asm (insn,
5625 "%<asm%> operand constraint incompatible with operand size");
5626 rld[r].in = 0;
5627 rld[r].out = 0;
5628 rld[r].reg_rtx = 0;
5629 rld[r].optional = 1;
5630 rld[r].secondary_p = 1;
5631 }
5632
5633 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5634 for reload R. If it's valid, get an rtx for it. Return nonzero if
5635 successful. */
5636 static int
5637 set_reload_reg (int i, int r)
5638 {
5639 int regno;
5640 rtx reg = spill_reg_rtx[i];
5641
5642 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5643 spill_reg_rtx[i] = reg
5644 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5645
5646 regno = true_regnum (reg);
5647
5648 /* Detect when the reload reg can't hold the reload mode.
5649 This used to be one `if', but Sequent compiler can't handle that. */
5650 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5651 {
5652 enum machine_mode test_mode = VOIDmode;
5653 if (rld[r].in)
5654 test_mode = GET_MODE (rld[r].in);
5655 /* If rld[r].in has VOIDmode, it means we will load it
5656 in whatever mode the reload reg has: to wit, rld[r].mode.
5657 We have already tested that for validity. */
5658 /* Aside from that, we need to test that the expressions
5659 to reload from or into have modes which are valid for this
5660 reload register. Otherwise the reload insns would be invalid. */
5661 if (! (rld[r].in != 0 && test_mode != VOIDmode
5662 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5663 if (! (rld[r].out != 0
5664 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5665 {
5666 /* The reg is OK. */
5667 last_spill_reg = i;
5668
5669 /* Mark as in use for this insn the reload regs we use
5670 for this. */
5671 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5672 rld[r].when_needed, rld[r].mode);
5673
5674 rld[r].reg_rtx = reg;
5675 reload_spill_index[r] = spill_regs[i];
5676 return 1;
5677 }
5678 }
5679 return 0;
5680 }
5681
5682 /* Find a spill register to use as a reload register for reload R.
5683 LAST_RELOAD is nonzero if this is the last reload for the insn being
5684 processed.
5685
5686 Set rld[R].reg_rtx to the register allocated.
5687
5688 We return 1 if successful, or 0 if we couldn't find a spill reg and
5689 we didn't change anything. */
5690
5691 static int
5692 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5693 int last_reload)
5694 {
5695 int i, pass, count;
5696
5697 /* If we put this reload ahead, thinking it is a group,
5698 then insist on finding a group. Otherwise we can grab a
5699 reg that some other reload needs.
5700 (That can happen when we have a 68000 DATA_OR_FP_REG
5701 which is a group of data regs or one fp reg.)
5702 We need not be so restrictive if there are no more reloads
5703 for this insn.
5704
5705 ??? Really it would be nicer to have smarter handling
5706 for that kind of reg class, where a problem like this is normal.
5707 Perhaps those classes should be avoided for reloading
5708 by use of more alternatives. */
5709
5710 int force_group = rld[r].nregs > 1 && ! last_reload;
5711
5712 /* If we want a single register and haven't yet found one,
5713 take any reg in the right class and not in use.
5714 If we want a consecutive group, here is where we look for it.
5715
5716 We use two passes so we can first look for reload regs to
5717 reuse, which are already in use for other reloads in this insn,
5718 and only then use additional registers.
5719 I think that maximizing reuse is needed to make sure we don't
5720 run out of reload regs. Suppose we have three reloads, and
5721 reloads A and B can share regs. These need two regs.
5722 Suppose A and B are given different regs.
5723 That leaves none for C. */
5724 for (pass = 0; pass < 2; pass++)
5725 {
5726 /* I is the index in spill_regs.
5727 We advance it round-robin between insns to use all spill regs
5728 equally, so that inherited reloads have a chance
5729 of leapfrogging each other. */
5730
5731 i = last_spill_reg;
5732
5733 for (count = 0; count < n_spills; count++)
5734 {
5735 int rclass = (int) rld[r].rclass;
5736 int regnum;
5737
5738 i++;
5739 if (i >= n_spills)
5740 i -= n_spills;
5741 regnum = spill_regs[i];
5742
5743 if ((reload_reg_free_p (regnum, rld[r].opnum,
5744 rld[r].when_needed)
5745 || (rld[r].in
5746 /* We check reload_reg_used to make sure we
5747 don't clobber the return register. */
5748 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5749 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5750 rld[r].when_needed, rld[r].in,
5751 rld[r].out, r, 1)))
5752 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
5753 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5754 /* Look first for regs to share, then for unshared. But
5755 don't share regs used for inherited reloads; they are
5756 the ones we want to preserve. */
5757 && (pass
5758 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5759 regnum)
5760 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5761 regnum))))
5762 {
5763 int nr = hard_regno_nregs[regnum][rld[r].mode];
5764 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5765 (on 68000) got us two FP regs. If NR is 1,
5766 we would reject both of them. */
5767 if (force_group)
5768 nr = rld[r].nregs;
5769 /* If we need only one reg, we have already won. */
5770 if (nr == 1)
5771 {
5772 /* But reject a single reg if we demand a group. */
5773 if (force_group)
5774 continue;
5775 break;
5776 }
5777 /* Otherwise check that as many consecutive regs as we need
5778 are available here. */
5779 while (nr > 1)
5780 {
5781 int regno = regnum + nr - 1;
5782 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
5783 && spill_reg_order[regno] >= 0
5784 && reload_reg_free_p (regno, rld[r].opnum,
5785 rld[r].when_needed)))
5786 break;
5787 nr--;
5788 }
5789 if (nr == 1)
5790 break;
5791 }
5792 }
5793
5794 /* If we found something on pass 1, omit pass 2. */
5795 if (count < n_spills)
5796 break;
5797 }
5798
5799 /* We should have found a spill register by now. */
5800 if (count >= n_spills)
5801 return 0;
5802
5803 /* I is the index in SPILL_REG_RTX of the reload register we are to
5804 allocate. Get an rtx for it and find its register number. */
5805
5806 return set_reload_reg (i, r);
5807 }
5808 \f
5809 /* Initialize all the tables needed to allocate reload registers.
5810 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5811 is the array we use to restore the reg_rtx field for every reload. */
5812
5813 static void
5814 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5815 {
5816 int i;
5817
5818 for (i = 0; i < n_reloads; i++)
5819 rld[i].reg_rtx = save_reload_reg_rtx[i];
5820
5821 memset (reload_inherited, 0, MAX_RELOADS);
5822 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5823 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5824
5825 CLEAR_HARD_REG_SET (reload_reg_used);
5826 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5827 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5828 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5829 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5830 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5831
5832 CLEAR_HARD_REG_SET (reg_used_in_insn);
5833 {
5834 HARD_REG_SET tmp;
5835 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5836 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5837 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5838 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5839 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5840 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5841 }
5842
5843 for (i = 0; i < reload_n_operands; i++)
5844 {
5845 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5846 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5847 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5848 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5849 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5850 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5851 }
5852
5853 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5854
5855 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5856
5857 for (i = 0; i < n_reloads; i++)
5858 /* If we have already decided to use a certain register,
5859 don't use it in another way. */
5860 if (rld[i].reg_rtx)
5861 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5862 rld[i].when_needed, rld[i].mode);
5863 }
5864
5865 /* Assign hard reg targets for the pseudo-registers we must reload
5866 into hard regs for this insn.
5867 Also output the instructions to copy them in and out of the hard regs.
5868
5869 For machines with register classes, we are responsible for
5870 finding a reload reg in the proper class. */
5871
5872 static void
5873 choose_reload_regs (struct insn_chain *chain)
5874 {
5875 rtx insn = chain->insn;
5876 int i, j;
5877 unsigned int max_group_size = 1;
5878 enum reg_class group_class = NO_REGS;
5879 int pass, win, inheritance;
5880
5881 rtx save_reload_reg_rtx[MAX_RELOADS];
5882
5883 /* In order to be certain of getting the registers we need,
5884 we must sort the reloads into order of increasing register class.
5885 Then our grabbing of reload registers will parallel the process
5886 that provided the reload registers.
5887
5888 Also note whether any of the reloads wants a consecutive group of regs.
5889 If so, record the maximum size of the group desired and what
5890 register class contains all the groups needed by this insn. */
5891
5892 for (j = 0; j < n_reloads; j++)
5893 {
5894 reload_order[j] = j;
5895 if (rld[j].reg_rtx != NULL_RTX)
5896 {
5897 gcc_assert (REG_P (rld[j].reg_rtx)
5898 && HARD_REGISTER_P (rld[j].reg_rtx));
5899 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
5900 }
5901 else
5902 reload_spill_index[j] = -1;
5903
5904 if (rld[j].nregs > 1)
5905 {
5906 max_group_size = MAX (rld[j].nregs, max_group_size);
5907 group_class
5908 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
5909 }
5910
5911 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5912 }
5913
5914 if (n_reloads > 1)
5915 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5916
5917 /* If -O, try first with inheritance, then turning it off.
5918 If not -O, don't do inheritance.
5919 Using inheritance when not optimizing leads to paradoxes
5920 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5921 because one side of the comparison might be inherited. */
5922 win = 0;
5923 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5924 {
5925 choose_reload_regs_init (chain, save_reload_reg_rtx);
5926
5927 /* Process the reloads in order of preference just found.
5928 Beyond this point, subregs can be found in reload_reg_rtx.
5929
5930 This used to look for an existing reloaded home for all of the
5931 reloads, and only then perform any new reloads. But that could lose
5932 if the reloads were done out of reg-class order because a later
5933 reload with a looser constraint might have an old home in a register
5934 needed by an earlier reload with a tighter constraint.
5935
5936 To solve this, we make two passes over the reloads, in the order
5937 described above. In the first pass we try to inherit a reload
5938 from a previous insn. If there is a later reload that needs a
5939 class that is a proper subset of the class being processed, we must
5940 also allocate a spill register during the first pass.
5941
5942 Then make a second pass over the reloads to allocate any reloads
5943 that haven't been given registers yet. */
5944
5945 for (j = 0; j < n_reloads; j++)
5946 {
5947 int r = reload_order[j];
5948 rtx search_equiv = NULL_RTX;
5949
5950 /* Ignore reloads that got marked inoperative. */
5951 if (rld[r].out == 0 && rld[r].in == 0
5952 && ! rld[r].secondary_p)
5953 continue;
5954
5955 /* If find_reloads chose to use reload_in or reload_out as a reload
5956 register, we don't need to chose one. Otherwise, try even if it
5957 found one since we might save an insn if we find the value lying
5958 around.
5959 Try also when reload_in is a pseudo without a hard reg. */
5960 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5961 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5962 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5963 && !MEM_P (rld[r].in)
5964 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5965 continue;
5966
5967 #if 0 /* No longer needed for correct operation.
5968 It might give better code, or might not; worth an experiment? */
5969 /* If this is an optional reload, we can't inherit from earlier insns
5970 until we are sure that any non-optional reloads have been allocated.
5971 The following code takes advantage of the fact that optional reloads
5972 are at the end of reload_order. */
5973 if (rld[r].optional != 0)
5974 for (i = 0; i < j; i++)
5975 if ((rld[reload_order[i]].out != 0
5976 || rld[reload_order[i]].in != 0
5977 || rld[reload_order[i]].secondary_p)
5978 && ! rld[reload_order[i]].optional
5979 && rld[reload_order[i]].reg_rtx == 0)
5980 allocate_reload_reg (chain, reload_order[i], 0);
5981 #endif
5982
5983 /* First see if this pseudo is already available as reloaded
5984 for a previous insn. We cannot try to inherit for reloads
5985 that are smaller than the maximum number of registers needed
5986 for groups unless the register we would allocate cannot be used
5987 for the groups.
5988
5989 We could check here to see if this is a secondary reload for
5990 an object that is already in a register of the desired class.
5991 This would avoid the need for the secondary reload register.
5992 But this is complex because we can't easily determine what
5993 objects might want to be loaded via this reload. So let a
5994 register be allocated here. In `emit_reload_insns' we suppress
5995 one of the loads in the case described above. */
5996
5997 if (inheritance)
5998 {
5999 int byte = 0;
6000 int regno = -1;
6001 enum machine_mode mode = VOIDmode;
6002
6003 if (rld[r].in == 0)
6004 ;
6005 else if (REG_P (rld[r].in))
6006 {
6007 regno = REGNO (rld[r].in);
6008 mode = GET_MODE (rld[r].in);
6009 }
6010 else if (REG_P (rld[r].in_reg))
6011 {
6012 regno = REGNO (rld[r].in_reg);
6013 mode = GET_MODE (rld[r].in_reg);
6014 }
6015 else if (GET_CODE (rld[r].in_reg) == SUBREG
6016 && REG_P (SUBREG_REG (rld[r].in_reg)))
6017 {
6018 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6019 if (regno < FIRST_PSEUDO_REGISTER)
6020 regno = subreg_regno (rld[r].in_reg);
6021 else
6022 byte = SUBREG_BYTE (rld[r].in_reg);
6023 mode = GET_MODE (rld[r].in_reg);
6024 }
6025 #ifdef AUTO_INC_DEC
6026 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6027 && REG_P (XEXP (rld[r].in_reg, 0)))
6028 {
6029 regno = REGNO (XEXP (rld[r].in_reg, 0));
6030 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6031 rld[r].out = rld[r].in;
6032 }
6033 #endif
6034 #if 0
6035 /* This won't work, since REGNO can be a pseudo reg number.
6036 Also, it takes much more hair to keep track of all the things
6037 that can invalidate an inherited reload of part of a pseudoreg. */
6038 else if (GET_CODE (rld[r].in) == SUBREG
6039 && REG_P (SUBREG_REG (rld[r].in)))
6040 regno = subreg_regno (rld[r].in);
6041 #endif
6042
6043 if (regno >= 0
6044 && reg_last_reload_reg[regno] != 0
6045 #ifdef CANNOT_CHANGE_MODE_CLASS
6046 /* Verify that the register it's in can be used in
6047 mode MODE. */
6048 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6049 GET_MODE (reg_last_reload_reg[regno]),
6050 mode)
6051 #endif
6052 )
6053 {
6054 enum reg_class rclass = rld[r].rclass, last_class;
6055 rtx last_reg = reg_last_reload_reg[regno];
6056 enum machine_mode need_mode;
6057
6058 i = REGNO (last_reg);
6059 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6060 last_class = REGNO_REG_CLASS (i);
6061
6062 if (byte == 0)
6063 need_mode = mode;
6064 else
6065 need_mode
6066 = smallest_mode_for_size
6067 (GET_MODE_BITSIZE (mode) + byte * BITS_PER_UNIT,
6068 GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
6069 ? MODE_INT : GET_MODE_CLASS (mode));
6070
6071 if ((GET_MODE_SIZE (GET_MODE (last_reg))
6072 >= GET_MODE_SIZE (need_mode))
6073 && reg_reloaded_contents[i] == regno
6074 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6075 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6076 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6077 /* Even if we can't use this register as a reload
6078 register, we might use it for reload_override_in,
6079 if copying it to the desired class is cheap
6080 enough. */
6081 || ((REGISTER_MOVE_COST (mode, last_class, rclass)
6082 < MEMORY_MOVE_COST (mode, rclass, 1))
6083 && (secondary_reload_class (1, rclass, mode,
6084 last_reg)
6085 == NO_REGS)
6086 #ifdef SECONDARY_MEMORY_NEEDED
6087 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6088 mode)
6089 #endif
6090 ))
6091
6092 && (rld[r].nregs == max_group_size
6093 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6094 i))
6095 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6096 rld[r].when_needed, rld[r].in,
6097 const0_rtx, r, 1))
6098 {
6099 /* If a group is needed, verify that all the subsequent
6100 registers still have their values intact. */
6101 int nr = hard_regno_nregs[i][rld[r].mode];
6102 int k;
6103
6104 for (k = 1; k < nr; k++)
6105 if (reg_reloaded_contents[i + k] != regno
6106 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6107 break;
6108
6109 if (k == nr)
6110 {
6111 int i1;
6112 int bad_for_class;
6113
6114 last_reg = (GET_MODE (last_reg) == mode
6115 ? last_reg : gen_rtx_REG (mode, i));
6116
6117 bad_for_class = 0;
6118 for (k = 0; k < nr; k++)
6119 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6120 i+k);
6121
6122 /* We found a register that contains the
6123 value we need. If this register is the
6124 same as an `earlyclobber' operand of the
6125 current insn, just mark it as a place to
6126 reload from since we can't use it as the
6127 reload register itself. */
6128
6129 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6130 if (reg_overlap_mentioned_for_reload_p
6131 (reg_last_reload_reg[regno],
6132 reload_earlyclobbers[i1]))
6133 break;
6134
6135 if (i1 != n_earlyclobbers
6136 || ! (free_for_value_p (i, rld[r].mode,
6137 rld[r].opnum,
6138 rld[r].when_needed, rld[r].in,
6139 rld[r].out, r, 1))
6140 /* Don't use it if we'd clobber a pseudo reg. */
6141 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6142 && rld[r].out
6143 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6144 /* Don't clobber the frame pointer. */
6145 || (i == HARD_FRAME_POINTER_REGNUM
6146 && frame_pointer_needed
6147 && rld[r].out)
6148 /* Don't really use the inherited spill reg
6149 if we need it wider than we've got it. */
6150 || (GET_MODE_SIZE (rld[r].mode)
6151 > GET_MODE_SIZE (mode))
6152 || bad_for_class
6153
6154 /* If find_reloads chose reload_out as reload
6155 register, stay with it - that leaves the
6156 inherited register for subsequent reloads. */
6157 || (rld[r].out && rld[r].reg_rtx
6158 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6159 {
6160 if (! rld[r].optional)
6161 {
6162 reload_override_in[r] = last_reg;
6163 reload_inheritance_insn[r]
6164 = reg_reloaded_insn[i];
6165 }
6166 }
6167 else
6168 {
6169 int k;
6170 /* We can use this as a reload reg. */
6171 /* Mark the register as in use for this part of
6172 the insn. */
6173 mark_reload_reg_in_use (i,
6174 rld[r].opnum,
6175 rld[r].when_needed,
6176 rld[r].mode);
6177 rld[r].reg_rtx = last_reg;
6178 reload_inherited[r] = 1;
6179 reload_inheritance_insn[r]
6180 = reg_reloaded_insn[i];
6181 reload_spill_index[r] = i;
6182 for (k = 0; k < nr; k++)
6183 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6184 i + k);
6185 }
6186 }
6187 }
6188 }
6189 }
6190
6191 /* Here's another way to see if the value is already lying around. */
6192 if (inheritance
6193 && rld[r].in != 0
6194 && ! reload_inherited[r]
6195 && rld[r].out == 0
6196 && (CONSTANT_P (rld[r].in)
6197 || GET_CODE (rld[r].in) == PLUS
6198 || REG_P (rld[r].in)
6199 || MEM_P (rld[r].in))
6200 && (rld[r].nregs == max_group_size
6201 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6202 search_equiv = rld[r].in;
6203 /* If this is an output reload from a simple move insn, look
6204 if an equivalence for the input is available. */
6205 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
6206 {
6207 rtx set = single_set (insn);
6208
6209 if (set
6210 && rtx_equal_p (rld[r].out, SET_DEST (set))
6211 && CONSTANT_P (SET_SRC (set)))
6212 search_equiv = SET_SRC (set);
6213 }
6214
6215 if (search_equiv)
6216 {
6217 rtx equiv
6218 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6219 -1, NULL, 0, rld[r].mode);
6220 int regno = 0;
6221
6222 if (equiv != 0)
6223 {
6224 if (REG_P (equiv))
6225 regno = REGNO (equiv);
6226 else
6227 {
6228 /* This must be a SUBREG of a hard register.
6229 Make a new REG since this might be used in an
6230 address and not all machines support SUBREGs
6231 there. */
6232 gcc_assert (GET_CODE (equiv) == SUBREG);
6233 regno = subreg_regno (equiv);
6234 equiv = gen_rtx_REG (rld[r].mode, regno);
6235 /* If we choose EQUIV as the reload register, but the
6236 loop below decides to cancel the inheritance, we'll
6237 end up reloading EQUIV in rld[r].mode, not the mode
6238 it had originally. That isn't safe when EQUIV isn't
6239 available as a spill register since its value might
6240 still be live at this point. */
6241 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6242 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6243 equiv = 0;
6244 }
6245 }
6246
6247 /* If we found a spill reg, reject it unless it is free
6248 and of the desired class. */
6249 if (equiv != 0)
6250 {
6251 int regs_used = 0;
6252 int bad_for_class = 0;
6253 int max_regno = regno + rld[r].nregs;
6254
6255 for (i = regno; i < max_regno; i++)
6256 {
6257 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6258 i);
6259 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6260 i);
6261 }
6262
6263 if ((regs_used
6264 && ! free_for_value_p (regno, rld[r].mode,
6265 rld[r].opnum, rld[r].when_needed,
6266 rld[r].in, rld[r].out, r, 1))
6267 || bad_for_class)
6268 equiv = 0;
6269 }
6270
6271 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6272 equiv = 0;
6273
6274 /* We found a register that contains the value we need.
6275 If this register is the same as an `earlyclobber' operand
6276 of the current insn, just mark it as a place to reload from
6277 since we can't use it as the reload register itself. */
6278
6279 if (equiv != 0)
6280 for (i = 0; i < n_earlyclobbers; i++)
6281 if (reg_overlap_mentioned_for_reload_p (equiv,
6282 reload_earlyclobbers[i]))
6283 {
6284 if (! rld[r].optional)
6285 reload_override_in[r] = equiv;
6286 equiv = 0;
6287 break;
6288 }
6289
6290 /* If the equiv register we have found is explicitly clobbered
6291 in the current insn, it depends on the reload type if we
6292 can use it, use it for reload_override_in, or not at all.
6293 In particular, we then can't use EQUIV for a
6294 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6295
6296 if (equiv != 0)
6297 {
6298 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6299 switch (rld[r].when_needed)
6300 {
6301 case RELOAD_FOR_OTHER_ADDRESS:
6302 case RELOAD_FOR_INPADDR_ADDRESS:
6303 case RELOAD_FOR_INPUT_ADDRESS:
6304 case RELOAD_FOR_OPADDR_ADDR:
6305 break;
6306 case RELOAD_OTHER:
6307 case RELOAD_FOR_INPUT:
6308 case RELOAD_FOR_OPERAND_ADDRESS:
6309 if (! rld[r].optional)
6310 reload_override_in[r] = equiv;
6311 /* Fall through. */
6312 default:
6313 equiv = 0;
6314 break;
6315 }
6316 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6317 switch (rld[r].when_needed)
6318 {
6319 case RELOAD_FOR_OTHER_ADDRESS:
6320 case RELOAD_FOR_INPADDR_ADDRESS:
6321 case RELOAD_FOR_INPUT_ADDRESS:
6322 case RELOAD_FOR_OPADDR_ADDR:
6323 case RELOAD_FOR_OPERAND_ADDRESS:
6324 case RELOAD_FOR_INPUT:
6325 break;
6326 case RELOAD_OTHER:
6327 if (! rld[r].optional)
6328 reload_override_in[r] = equiv;
6329 /* Fall through. */
6330 default:
6331 equiv = 0;
6332 break;
6333 }
6334 }
6335
6336 /* If we found an equivalent reg, say no code need be generated
6337 to load it, and use it as our reload reg. */
6338 if (equiv != 0
6339 && (regno != HARD_FRAME_POINTER_REGNUM
6340 || !frame_pointer_needed))
6341 {
6342 int nr = hard_regno_nregs[regno][rld[r].mode];
6343 int k;
6344 rld[r].reg_rtx = equiv;
6345 reload_spill_index[r] = regno;
6346 reload_inherited[r] = 1;
6347
6348 /* If reg_reloaded_valid is not set for this register,
6349 there might be a stale spill_reg_store lying around.
6350 We must clear it, since otherwise emit_reload_insns
6351 might delete the store. */
6352 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6353 spill_reg_store[regno] = NULL_RTX;
6354 /* If any of the hard registers in EQUIV are spill
6355 registers, mark them as in use for this insn. */
6356 for (k = 0; k < nr; k++)
6357 {
6358 i = spill_reg_order[regno + k];
6359 if (i >= 0)
6360 {
6361 mark_reload_reg_in_use (regno, rld[r].opnum,
6362 rld[r].when_needed,
6363 rld[r].mode);
6364 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6365 regno + k);
6366 }
6367 }
6368 }
6369 }
6370
6371 /* If we found a register to use already, or if this is an optional
6372 reload, we are done. */
6373 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6374 continue;
6375
6376 #if 0
6377 /* No longer needed for correct operation. Might or might
6378 not give better code on the average. Want to experiment? */
6379
6380 /* See if there is a later reload that has a class different from our
6381 class that intersects our class or that requires less register
6382 than our reload. If so, we must allocate a register to this
6383 reload now, since that reload might inherit a previous reload
6384 and take the only available register in our class. Don't do this
6385 for optional reloads since they will force all previous reloads
6386 to be allocated. Also don't do this for reloads that have been
6387 turned off. */
6388
6389 for (i = j + 1; i < n_reloads; i++)
6390 {
6391 int s = reload_order[i];
6392
6393 if ((rld[s].in == 0 && rld[s].out == 0
6394 && ! rld[s].secondary_p)
6395 || rld[s].optional)
6396 continue;
6397
6398 if ((rld[s].rclass != rld[r].rclass
6399 && reg_classes_intersect_p (rld[r].rclass,
6400 rld[s].rclass))
6401 || rld[s].nregs < rld[r].nregs)
6402 break;
6403 }
6404
6405 if (i == n_reloads)
6406 continue;
6407
6408 allocate_reload_reg (chain, r, j == n_reloads - 1);
6409 #endif
6410 }
6411
6412 /* Now allocate reload registers for anything non-optional that
6413 didn't get one yet. */
6414 for (j = 0; j < n_reloads; j++)
6415 {
6416 int r = reload_order[j];
6417
6418 /* Ignore reloads that got marked inoperative. */
6419 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6420 continue;
6421
6422 /* Skip reloads that already have a register allocated or are
6423 optional. */
6424 if (rld[r].reg_rtx != 0 || rld[r].optional)
6425 continue;
6426
6427 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6428 break;
6429 }
6430
6431 /* If that loop got all the way, we have won. */
6432 if (j == n_reloads)
6433 {
6434 win = 1;
6435 break;
6436 }
6437
6438 /* Loop around and try without any inheritance. */
6439 }
6440
6441 if (! win)
6442 {
6443 /* First undo everything done by the failed attempt
6444 to allocate with inheritance. */
6445 choose_reload_regs_init (chain, save_reload_reg_rtx);
6446
6447 /* Some sanity tests to verify that the reloads found in the first
6448 pass are identical to the ones we have now. */
6449 gcc_assert (chain->n_reloads == n_reloads);
6450
6451 for (i = 0; i < n_reloads; i++)
6452 {
6453 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6454 continue;
6455 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6456 for (j = 0; j < n_spills; j++)
6457 if (spill_regs[j] == chain->rld[i].regno)
6458 if (! set_reload_reg (j, i))
6459 failed_reload (chain->insn, i);
6460 }
6461 }
6462
6463 /* If we thought we could inherit a reload, because it seemed that
6464 nothing else wanted the same reload register earlier in the insn,
6465 verify that assumption, now that all reloads have been assigned.
6466 Likewise for reloads where reload_override_in has been set. */
6467
6468 /* If doing expensive optimizations, do one preliminary pass that doesn't
6469 cancel any inheritance, but removes reloads that have been needed only
6470 for reloads that we know can be inherited. */
6471 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6472 {
6473 for (j = 0; j < n_reloads; j++)
6474 {
6475 int r = reload_order[j];
6476 rtx check_reg;
6477 if (reload_inherited[r] && rld[r].reg_rtx)
6478 check_reg = rld[r].reg_rtx;
6479 else if (reload_override_in[r]
6480 && (REG_P (reload_override_in[r])
6481 || GET_CODE (reload_override_in[r]) == SUBREG))
6482 check_reg = reload_override_in[r];
6483 else
6484 continue;
6485 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6486 rld[r].opnum, rld[r].when_needed, rld[r].in,
6487 (reload_inherited[r]
6488 ? rld[r].out : const0_rtx),
6489 r, 1))
6490 {
6491 if (pass)
6492 continue;
6493 reload_inherited[r] = 0;
6494 reload_override_in[r] = 0;
6495 }
6496 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6497 reload_override_in, then we do not need its related
6498 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6499 likewise for other reload types.
6500 We handle this by removing a reload when its only replacement
6501 is mentioned in reload_in of the reload we are going to inherit.
6502 A special case are auto_inc expressions; even if the input is
6503 inherited, we still need the address for the output. We can
6504 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6505 If we succeeded removing some reload and we are doing a preliminary
6506 pass just to remove such reloads, make another pass, since the
6507 removal of one reload might allow us to inherit another one. */
6508 else if (rld[r].in
6509 && rld[r].out != rld[r].in
6510 && remove_address_replacements (rld[r].in) && pass)
6511 pass = 2;
6512 }
6513 }
6514
6515 /* Now that reload_override_in is known valid,
6516 actually override reload_in. */
6517 for (j = 0; j < n_reloads; j++)
6518 if (reload_override_in[j])
6519 rld[j].in = reload_override_in[j];
6520
6521 /* If this reload won't be done because it has been canceled or is
6522 optional and not inherited, clear reload_reg_rtx so other
6523 routines (such as subst_reloads) don't get confused. */
6524 for (j = 0; j < n_reloads; j++)
6525 if (rld[j].reg_rtx != 0
6526 && ((rld[j].optional && ! reload_inherited[j])
6527 || (rld[j].in == 0 && rld[j].out == 0
6528 && ! rld[j].secondary_p)))
6529 {
6530 int regno = true_regnum (rld[j].reg_rtx);
6531
6532 if (spill_reg_order[regno] >= 0)
6533 clear_reload_reg_in_use (regno, rld[j].opnum,
6534 rld[j].when_needed, rld[j].mode);
6535 rld[j].reg_rtx = 0;
6536 reload_spill_index[j] = -1;
6537 }
6538
6539 /* Record which pseudos and which spill regs have output reloads. */
6540 for (j = 0; j < n_reloads; j++)
6541 {
6542 int r = reload_order[j];
6543
6544 i = reload_spill_index[r];
6545
6546 /* I is nonneg if this reload uses a register.
6547 If rld[r].reg_rtx is 0, this is an optional reload
6548 that we opted to ignore. */
6549 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6550 && rld[r].reg_rtx != 0)
6551 {
6552 int nregno = REGNO (rld[r].out_reg);
6553 int nr = 1;
6554
6555 if (nregno < FIRST_PSEUDO_REGISTER)
6556 nr = hard_regno_nregs[nregno][rld[r].mode];
6557
6558 while (--nr >= 0)
6559 SET_REGNO_REG_SET (&reg_has_output_reload,
6560 nregno + nr);
6561
6562 if (i >= 0)
6563 {
6564 nr = hard_regno_nregs[i][rld[r].mode];
6565 while (--nr >= 0)
6566 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6567 }
6568
6569 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6570 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6571 || rld[r].when_needed == RELOAD_FOR_INSN);
6572 }
6573 }
6574 }
6575
6576 /* Deallocate the reload register for reload R. This is called from
6577 remove_address_replacements. */
6578
6579 void
6580 deallocate_reload_reg (int r)
6581 {
6582 int regno;
6583
6584 if (! rld[r].reg_rtx)
6585 return;
6586 regno = true_regnum (rld[r].reg_rtx);
6587 rld[r].reg_rtx = 0;
6588 if (spill_reg_order[regno] >= 0)
6589 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6590 rld[r].mode);
6591 reload_spill_index[r] = -1;
6592 }
6593 \f
6594 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6595 reloads of the same item for fear that we might not have enough reload
6596 registers. However, normally they will get the same reload register
6597 and hence actually need not be loaded twice.
6598
6599 Here we check for the most common case of this phenomenon: when we have
6600 a number of reloads for the same object, each of which were allocated
6601 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6602 reload, and is not modified in the insn itself. If we find such,
6603 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6604 This will not increase the number of spill registers needed and will
6605 prevent redundant code. */
6606
6607 static void
6608 merge_assigned_reloads (rtx insn)
6609 {
6610 int i, j;
6611
6612 /* Scan all the reloads looking for ones that only load values and
6613 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6614 assigned and not modified by INSN. */
6615
6616 for (i = 0; i < n_reloads; i++)
6617 {
6618 int conflicting_input = 0;
6619 int max_input_address_opnum = -1;
6620 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6621
6622 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6623 || rld[i].out != 0 || rld[i].reg_rtx == 0
6624 || reg_set_p (rld[i].reg_rtx, insn))
6625 continue;
6626
6627 /* Look at all other reloads. Ensure that the only use of this
6628 reload_reg_rtx is in a reload that just loads the same value
6629 as we do. Note that any secondary reloads must be of the identical
6630 class since the values, modes, and result registers are the
6631 same, so we need not do anything with any secondary reloads. */
6632
6633 for (j = 0; j < n_reloads; j++)
6634 {
6635 if (i == j || rld[j].reg_rtx == 0
6636 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6637 rld[i].reg_rtx))
6638 continue;
6639
6640 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6641 && rld[j].opnum > max_input_address_opnum)
6642 max_input_address_opnum = rld[j].opnum;
6643
6644 /* If the reload regs aren't exactly the same (e.g, different modes)
6645 or if the values are different, we can't merge this reload.
6646 But if it is an input reload, we might still merge
6647 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6648
6649 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6650 || rld[j].out != 0 || rld[j].in == 0
6651 || ! rtx_equal_p (rld[i].in, rld[j].in))
6652 {
6653 if (rld[j].when_needed != RELOAD_FOR_INPUT
6654 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6655 || rld[i].opnum > rld[j].opnum)
6656 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6657 break;
6658 conflicting_input = 1;
6659 if (min_conflicting_input_opnum > rld[j].opnum)
6660 min_conflicting_input_opnum = rld[j].opnum;
6661 }
6662 }
6663
6664 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6665 we, in fact, found any matching reloads. */
6666
6667 if (j == n_reloads
6668 && max_input_address_opnum <= min_conflicting_input_opnum)
6669 {
6670 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6671
6672 for (j = 0; j < n_reloads; j++)
6673 if (i != j && rld[j].reg_rtx != 0
6674 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6675 && (! conflicting_input
6676 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6677 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6678 {
6679 rld[i].when_needed = RELOAD_OTHER;
6680 rld[j].in = 0;
6681 reload_spill_index[j] = -1;
6682 transfer_replacements (i, j);
6683 }
6684
6685 /* If this is now RELOAD_OTHER, look for any reloads that
6686 load parts of this operand and set them to
6687 RELOAD_FOR_OTHER_ADDRESS if they were for inputs,
6688 RELOAD_OTHER for outputs. Note that this test is
6689 equivalent to looking for reloads for this operand
6690 number.
6691
6692 We must take special care with RELOAD_FOR_OUTPUT_ADDRESS;
6693 it may share registers with a RELOAD_FOR_INPUT, so we can
6694 not change it to RELOAD_FOR_OTHER_ADDRESS. We should
6695 never need to, since we do not modify RELOAD_FOR_OUTPUT.
6696
6697 It is possible that the RELOAD_FOR_OPERAND_ADDRESS
6698 instruction is assigned the same register as the earlier
6699 RELOAD_FOR_OTHER_ADDRESS instruction. Merging these two
6700 instructions will cause the RELOAD_FOR_OTHER_ADDRESS
6701 instruction to be deleted later on. */
6702
6703 if (rld[i].when_needed == RELOAD_OTHER)
6704 for (j = 0; j < n_reloads; j++)
6705 if (rld[j].in != 0
6706 && rld[j].when_needed != RELOAD_OTHER
6707 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6708 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6709 && rld[j].when_needed != RELOAD_FOR_OPERAND_ADDRESS
6710 && (! conflicting_input
6711 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6712 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6713 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6714 rld[i].in))
6715 {
6716 int k;
6717
6718 rld[j].when_needed
6719 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6720 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6721 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6722
6723 /* Check to see if we accidentally converted two
6724 reloads that use the same reload register with
6725 different inputs to the same type. If so, the
6726 resulting code won't work. */
6727 if (rld[j].reg_rtx)
6728 for (k = 0; k < j; k++)
6729 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6730 || rld[k].when_needed != rld[j].when_needed
6731 || !rtx_equal_p (rld[k].reg_rtx,
6732 rld[j].reg_rtx)
6733 || rtx_equal_p (rld[k].in,
6734 rld[j].in));
6735 }
6736 }
6737 }
6738 }
6739 \f
6740 /* These arrays are filled by emit_reload_insns and its subroutines. */
6741 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6742 static rtx other_input_address_reload_insns = 0;
6743 static rtx other_input_reload_insns = 0;
6744 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6745 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6746 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6747 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6748 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6749 static rtx operand_reload_insns = 0;
6750 static rtx other_operand_reload_insns = 0;
6751 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6752
6753 /* Values to be put in spill_reg_store are put here first. */
6754 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6755 static HARD_REG_SET reg_reloaded_died;
6756
6757 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6758 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6759 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6760 adjusted register, and return true. Otherwise, return false. */
6761 static bool
6762 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6763 enum reg_class new_class,
6764 enum machine_mode new_mode)
6765
6766 {
6767 rtx reg;
6768
6769 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6770 {
6771 unsigned regno = REGNO (reg);
6772
6773 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6774 continue;
6775 if (GET_MODE (reg) != new_mode)
6776 {
6777 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6778 continue;
6779 if (hard_regno_nregs[regno][new_mode]
6780 > hard_regno_nregs[regno][GET_MODE (reg)])
6781 continue;
6782 reg = reload_adjust_reg_for_mode (reg, new_mode);
6783 }
6784 *reload_reg = reg;
6785 return true;
6786 }
6787 return false;
6788 }
6789
6790 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6791 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6792 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6793 adjusted register, and return true. Otherwise, return false. */
6794 static bool
6795 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6796 enum insn_code icode)
6797
6798 {
6799 enum reg_class new_class = scratch_reload_class (icode);
6800 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6801
6802 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6803 new_class, new_mode);
6804 }
6805
6806 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6807 has the number J. OLD contains the value to be used as input. */
6808
6809 static void
6810 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6811 rtx old, int j)
6812 {
6813 rtx insn = chain->insn;
6814 rtx reloadreg;
6815 rtx oldequiv_reg = 0;
6816 rtx oldequiv = 0;
6817 int special = 0;
6818 enum machine_mode mode;
6819 rtx *where;
6820
6821 /* delete_output_reload is only invoked properly if old contains
6822 the original pseudo register. Since this is replaced with a
6823 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6824 find the pseudo in RELOAD_IN_REG. */
6825 if (reload_override_in[j]
6826 && REG_P (rl->in_reg))
6827 {
6828 oldequiv = old;
6829 old = rl->in_reg;
6830 }
6831 if (oldequiv == 0)
6832 oldequiv = old;
6833 else if (REG_P (oldequiv))
6834 oldequiv_reg = oldequiv;
6835 else if (GET_CODE (oldequiv) == SUBREG)
6836 oldequiv_reg = SUBREG_REG (oldequiv);
6837
6838 reloadreg = reload_reg_rtx_for_input[j];
6839 mode = GET_MODE (reloadreg);
6840
6841 /* If we are reloading from a register that was recently stored in
6842 with an output-reload, see if we can prove there was
6843 actually no need to store the old value in it. */
6844
6845 if (optimize && REG_P (oldequiv)
6846 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6847 && spill_reg_store[REGNO (oldequiv)]
6848 && REG_P (old)
6849 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6850 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6851 rl->out_reg)))
6852 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6853
6854 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
6855 OLDEQUIV. */
6856
6857 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6858 oldequiv = SUBREG_REG (oldequiv);
6859 if (GET_MODE (oldequiv) != VOIDmode
6860 && mode != GET_MODE (oldequiv))
6861 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6862
6863 /* Switch to the right place to emit the reload insns. */
6864 switch (rl->when_needed)
6865 {
6866 case RELOAD_OTHER:
6867 where = &other_input_reload_insns;
6868 break;
6869 case RELOAD_FOR_INPUT:
6870 where = &input_reload_insns[rl->opnum];
6871 break;
6872 case RELOAD_FOR_INPUT_ADDRESS:
6873 where = &input_address_reload_insns[rl->opnum];
6874 break;
6875 case RELOAD_FOR_INPADDR_ADDRESS:
6876 where = &inpaddr_address_reload_insns[rl->opnum];
6877 break;
6878 case RELOAD_FOR_OUTPUT_ADDRESS:
6879 where = &output_address_reload_insns[rl->opnum];
6880 break;
6881 case RELOAD_FOR_OUTADDR_ADDRESS:
6882 where = &outaddr_address_reload_insns[rl->opnum];
6883 break;
6884 case RELOAD_FOR_OPERAND_ADDRESS:
6885 where = &operand_reload_insns;
6886 break;
6887 case RELOAD_FOR_OPADDR_ADDR:
6888 where = &other_operand_reload_insns;
6889 break;
6890 case RELOAD_FOR_OTHER_ADDRESS:
6891 where = &other_input_address_reload_insns;
6892 break;
6893 default:
6894 gcc_unreachable ();
6895 }
6896
6897 push_to_sequence (*where);
6898
6899 /* Auto-increment addresses must be reloaded in a special way. */
6900 if (rl->out && ! rl->out_reg)
6901 {
6902 /* We are not going to bother supporting the case where a
6903 incremented register can't be copied directly from
6904 OLDEQUIV since this seems highly unlikely. */
6905 gcc_assert (rl->secondary_in_reload < 0);
6906
6907 if (reload_inherited[j])
6908 oldequiv = reloadreg;
6909
6910 old = XEXP (rl->in_reg, 0);
6911
6912 if (optimize && REG_P (oldequiv)
6913 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6914 && spill_reg_store[REGNO (oldequiv)]
6915 && REG_P (old)
6916 && (dead_or_set_p (insn,
6917 spill_reg_stored_to[REGNO (oldequiv)])
6918 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6919 old)))
6920 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6921
6922 /* Prevent normal processing of this reload. */
6923 special = 1;
6924 /* Output a special code sequence for this case. */
6925 new_spill_reg_store[REGNO (reloadreg)]
6926 = inc_for_reload (reloadreg, oldequiv, rl->out,
6927 rl->inc);
6928 }
6929
6930 /* If we are reloading a pseudo-register that was set by the previous
6931 insn, see if we can get rid of that pseudo-register entirely
6932 by redirecting the previous insn into our reload register. */
6933
6934 else if (optimize && REG_P (old)
6935 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6936 && dead_or_set_p (insn, old)
6937 /* This is unsafe if some other reload
6938 uses the same reg first. */
6939 && ! conflicts_with_override (reloadreg)
6940 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6941 rl->when_needed, old, rl->out, j, 0))
6942 {
6943 rtx temp = PREV_INSN (insn);
6944 while (temp && NOTE_P (temp))
6945 temp = PREV_INSN (temp);
6946 if (temp
6947 && NONJUMP_INSN_P (temp)
6948 && GET_CODE (PATTERN (temp)) == SET
6949 && SET_DEST (PATTERN (temp)) == old
6950 /* Make sure we can access insn_operand_constraint. */
6951 && asm_noperands (PATTERN (temp)) < 0
6952 /* This is unsafe if operand occurs more than once in current
6953 insn. Perhaps some occurrences aren't reloaded. */
6954 && count_occurrences (PATTERN (insn), old, 0) == 1)
6955 {
6956 rtx old = SET_DEST (PATTERN (temp));
6957 /* Store into the reload register instead of the pseudo. */
6958 SET_DEST (PATTERN (temp)) = reloadreg;
6959
6960 /* Verify that resulting insn is valid. */
6961 extract_insn (temp);
6962 if (constrain_operands (1))
6963 {
6964 /* If the previous insn is an output reload, the source is
6965 a reload register, and its spill_reg_store entry will
6966 contain the previous destination. This is now
6967 invalid. */
6968 if (REG_P (SET_SRC (PATTERN (temp)))
6969 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6970 {
6971 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6972 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6973 }
6974
6975 /* If these are the only uses of the pseudo reg,
6976 pretend for GDB it lives in the reload reg we used. */
6977 if (REG_N_DEATHS (REGNO (old)) == 1
6978 && REG_N_SETS (REGNO (old)) == 1)
6979 {
6980 reg_renumber[REGNO (old)] = REGNO (reloadreg);
6981 if (ira_conflicts_p)
6982 /* Inform IRA about the change. */
6983 ira_mark_allocation_change (REGNO (old));
6984 alter_reg (REGNO (old), -1, false);
6985 }
6986 special = 1;
6987 }
6988 else
6989 {
6990 SET_DEST (PATTERN (temp)) = old;
6991 }
6992 }
6993 }
6994
6995 /* We can't do that, so output an insn to load RELOADREG. */
6996
6997 /* If we have a secondary reload, pick up the secondary register
6998 and icode, if any. If OLDEQUIV and OLD are different or
6999 if this is an in-out reload, recompute whether or not we
7000 still need a secondary register and what the icode should
7001 be. If we still need a secondary register and the class or
7002 icode is different, go back to reloading from OLD if using
7003 OLDEQUIV means that we got the wrong type of register. We
7004 cannot have different class or icode due to an in-out reload
7005 because we don't make such reloads when both the input and
7006 output need secondary reload registers. */
7007
7008 if (! special && rl->secondary_in_reload >= 0)
7009 {
7010 rtx second_reload_reg = 0;
7011 rtx third_reload_reg = 0;
7012 int secondary_reload = rl->secondary_in_reload;
7013 rtx real_oldequiv = oldequiv;
7014 rtx real_old = old;
7015 rtx tmp;
7016 enum insn_code icode;
7017 enum insn_code tertiary_icode = CODE_FOR_nothing;
7018
7019 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7020 and similarly for OLD.
7021 See comments in get_secondary_reload in reload.c. */
7022 /* If it is a pseudo that cannot be replaced with its
7023 equivalent MEM, we must fall back to reload_in, which
7024 will have all the necessary substitutions registered.
7025 Likewise for a pseudo that can't be replaced with its
7026 equivalent constant.
7027
7028 Take extra care for subregs of such pseudos. Note that
7029 we cannot use reg_equiv_mem in this case because it is
7030 not in the right mode. */
7031
7032 tmp = oldequiv;
7033 if (GET_CODE (tmp) == SUBREG)
7034 tmp = SUBREG_REG (tmp);
7035 if (REG_P (tmp)
7036 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7037 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
7038 || reg_equiv_constant[REGNO (tmp)] != 0))
7039 {
7040 if (! reg_equiv_mem[REGNO (tmp)]
7041 || num_not_at_initial_offset
7042 || GET_CODE (oldequiv) == SUBREG)
7043 real_oldequiv = rl->in;
7044 else
7045 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
7046 }
7047
7048 tmp = old;
7049 if (GET_CODE (tmp) == SUBREG)
7050 tmp = SUBREG_REG (tmp);
7051 if (REG_P (tmp)
7052 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7053 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
7054 || reg_equiv_constant[REGNO (tmp)] != 0))
7055 {
7056 if (! reg_equiv_mem[REGNO (tmp)]
7057 || num_not_at_initial_offset
7058 || GET_CODE (old) == SUBREG)
7059 real_old = rl->in;
7060 else
7061 real_old = reg_equiv_mem[REGNO (tmp)];
7062 }
7063
7064 second_reload_reg = rld[secondary_reload].reg_rtx;
7065 if (rld[secondary_reload].secondary_in_reload >= 0)
7066 {
7067 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7068
7069 third_reload_reg = rld[tertiary_reload].reg_rtx;
7070 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7071 /* We'd have to add more code for quartary reloads. */
7072 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7073 }
7074 icode = rl->secondary_in_icode;
7075
7076 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7077 || (rl->in != 0 && rl->out != 0))
7078 {
7079 secondary_reload_info sri, sri2;
7080 enum reg_class new_class, new_t_class;
7081
7082 sri.icode = CODE_FOR_nothing;
7083 sri.prev_sri = NULL;
7084 new_class = targetm.secondary_reload (1, real_oldequiv, rl->rclass,
7085 mode, &sri);
7086
7087 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7088 second_reload_reg = 0;
7089 else if (new_class == NO_REGS)
7090 {
7091 if (reload_adjust_reg_for_icode (&second_reload_reg,
7092 third_reload_reg,
7093 (enum insn_code) sri.icode))
7094 {
7095 icode = (enum insn_code) sri.icode;
7096 third_reload_reg = 0;
7097 }
7098 else
7099 {
7100 oldequiv = old;
7101 real_oldequiv = real_old;
7102 }
7103 }
7104 else if (sri.icode != CODE_FOR_nothing)
7105 /* We currently lack a way to express this in reloads. */
7106 gcc_unreachable ();
7107 else
7108 {
7109 sri2.icode = CODE_FOR_nothing;
7110 sri2.prev_sri = &sri;
7111 new_t_class = targetm.secondary_reload (1, real_oldequiv,
7112 new_class, mode, &sri);
7113 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7114 {
7115 if (reload_adjust_reg_for_temp (&second_reload_reg,
7116 third_reload_reg,
7117 new_class, mode))
7118 {
7119 third_reload_reg = 0;
7120 tertiary_icode = (enum insn_code) sri2.icode;
7121 }
7122 else
7123 {
7124 oldequiv = old;
7125 real_oldequiv = real_old;
7126 }
7127 }
7128 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7129 {
7130 rtx intermediate = second_reload_reg;
7131
7132 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7133 new_class, mode)
7134 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7135 ((enum insn_code)
7136 sri2.icode)))
7137 {
7138 second_reload_reg = intermediate;
7139 tertiary_icode = (enum insn_code) sri2.icode;
7140 }
7141 else
7142 {
7143 oldequiv = old;
7144 real_oldequiv = real_old;
7145 }
7146 }
7147 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7148 {
7149 rtx intermediate = second_reload_reg;
7150
7151 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7152 new_class, mode)
7153 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7154 new_t_class, mode))
7155 {
7156 second_reload_reg = intermediate;
7157 tertiary_icode = (enum insn_code) sri2.icode;
7158 }
7159 else
7160 {
7161 oldequiv = old;
7162 real_oldequiv = real_old;
7163 }
7164 }
7165 else
7166 {
7167 /* This could be handled more intelligently too. */
7168 oldequiv = old;
7169 real_oldequiv = real_old;
7170 }
7171 }
7172 }
7173
7174 /* If we still need a secondary reload register, check
7175 to see if it is being used as a scratch or intermediate
7176 register and generate code appropriately. If we need
7177 a scratch register, use REAL_OLDEQUIV since the form of
7178 the insn may depend on the actual address if it is
7179 a MEM. */
7180
7181 if (second_reload_reg)
7182 {
7183 if (icode != CODE_FOR_nothing)
7184 {
7185 /* We'd have to add extra code to handle this case. */
7186 gcc_assert (!third_reload_reg);
7187
7188 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7189 second_reload_reg));
7190 special = 1;
7191 }
7192 else
7193 {
7194 /* See if we need a scratch register to load the
7195 intermediate register (a tertiary reload). */
7196 if (tertiary_icode != CODE_FOR_nothing)
7197 {
7198 emit_insn ((GEN_FCN (tertiary_icode)
7199 (second_reload_reg, real_oldequiv,
7200 third_reload_reg)));
7201 }
7202 else if (third_reload_reg)
7203 {
7204 gen_reload (third_reload_reg, real_oldequiv,
7205 rl->opnum,
7206 rl->when_needed);
7207 gen_reload (second_reload_reg, third_reload_reg,
7208 rl->opnum,
7209 rl->when_needed);
7210 }
7211 else
7212 gen_reload (second_reload_reg, real_oldequiv,
7213 rl->opnum,
7214 rl->when_needed);
7215
7216 oldequiv = second_reload_reg;
7217 }
7218 }
7219 }
7220
7221 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7222 {
7223 rtx real_oldequiv = oldequiv;
7224
7225 if ((REG_P (oldequiv)
7226 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7227 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
7228 || reg_equiv_constant[REGNO (oldequiv)] != 0))
7229 || (GET_CODE (oldequiv) == SUBREG
7230 && REG_P (SUBREG_REG (oldequiv))
7231 && (REGNO (SUBREG_REG (oldequiv))
7232 >= FIRST_PSEUDO_REGISTER)
7233 && ((reg_equiv_memory_loc
7234 [REGNO (SUBREG_REG (oldequiv))] != 0)
7235 || (reg_equiv_constant
7236 [REGNO (SUBREG_REG (oldequiv))] != 0)))
7237 || (CONSTANT_P (oldequiv)
7238 && (PREFERRED_RELOAD_CLASS (oldequiv,
7239 REGNO_REG_CLASS (REGNO (reloadreg)))
7240 == NO_REGS)))
7241 real_oldequiv = rl->in;
7242 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7243 rl->when_needed);
7244 }
7245
7246 if (flag_non_call_exceptions)
7247 copy_eh_notes (insn, get_insns ());
7248
7249 /* End this sequence. */
7250 *where = get_insns ();
7251 end_sequence ();
7252
7253 /* Update reload_override_in so that delete_address_reloads_1
7254 can see the actual register usage. */
7255 if (oldequiv_reg)
7256 reload_override_in[j] = oldequiv;
7257 }
7258
7259 /* Generate insns to for the output reload RL, which is for the insn described
7260 by CHAIN and has the number J. */
7261 static void
7262 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7263 int j)
7264 {
7265 rtx reloadreg;
7266 rtx insn = chain->insn;
7267 int special = 0;
7268 rtx old = rl->out;
7269 enum machine_mode mode;
7270 rtx p;
7271 rtx rl_reg_rtx;
7272
7273 if (rl->when_needed == RELOAD_OTHER)
7274 start_sequence ();
7275 else
7276 push_to_sequence (output_reload_insns[rl->opnum]);
7277
7278 rl_reg_rtx = reload_reg_rtx_for_output[j];
7279 mode = GET_MODE (rl_reg_rtx);
7280
7281 reloadreg = rl_reg_rtx;
7282
7283 /* If we need two reload regs, set RELOADREG to the intermediate
7284 one, since it will be stored into OLD. We might need a secondary
7285 register only for an input reload, so check again here. */
7286
7287 if (rl->secondary_out_reload >= 0)
7288 {
7289 rtx real_old = old;
7290 int secondary_reload = rl->secondary_out_reload;
7291 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7292
7293 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7294 && reg_equiv_mem[REGNO (old)] != 0)
7295 real_old = reg_equiv_mem[REGNO (old)];
7296
7297 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7298 {
7299 rtx second_reloadreg = reloadreg;
7300 reloadreg = rld[secondary_reload].reg_rtx;
7301
7302 /* See if RELOADREG is to be used as a scratch register
7303 or as an intermediate register. */
7304 if (rl->secondary_out_icode != CODE_FOR_nothing)
7305 {
7306 /* We'd have to add extra code to handle this case. */
7307 gcc_assert (tertiary_reload < 0);
7308
7309 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7310 (real_old, second_reloadreg, reloadreg)));
7311 special = 1;
7312 }
7313 else
7314 {
7315 /* See if we need both a scratch and intermediate reload
7316 register. */
7317
7318 enum insn_code tertiary_icode
7319 = rld[secondary_reload].secondary_out_icode;
7320
7321 /* We'd have to add more code for quartary reloads. */
7322 gcc_assert (tertiary_reload < 0
7323 || rld[tertiary_reload].secondary_out_reload < 0);
7324
7325 if (GET_MODE (reloadreg) != mode)
7326 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7327
7328 if (tertiary_icode != CODE_FOR_nothing)
7329 {
7330 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7331 rtx tem;
7332
7333 /* Copy primary reload reg to secondary reload reg.
7334 (Note that these have been swapped above, then
7335 secondary reload reg to OLD using our insn.) */
7336
7337 /* If REAL_OLD is a paradoxical SUBREG, remove it
7338 and try to put the opposite SUBREG on
7339 RELOADREG. */
7340 if (GET_CODE (real_old) == SUBREG
7341 && (GET_MODE_SIZE (GET_MODE (real_old))
7342 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
7343 && 0 != (tem = gen_lowpart_common
7344 (GET_MODE (SUBREG_REG (real_old)),
7345 reloadreg)))
7346 real_old = SUBREG_REG (real_old), reloadreg = tem;
7347
7348 gen_reload (reloadreg, second_reloadreg,
7349 rl->opnum, rl->when_needed);
7350 emit_insn ((GEN_FCN (tertiary_icode)
7351 (real_old, reloadreg, third_reloadreg)));
7352 special = 1;
7353 }
7354
7355 else
7356 {
7357 /* Copy between the reload regs here and then to
7358 OUT later. */
7359
7360 gen_reload (reloadreg, second_reloadreg,
7361 rl->opnum, rl->when_needed);
7362 if (tertiary_reload >= 0)
7363 {
7364 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7365
7366 gen_reload (third_reloadreg, reloadreg,
7367 rl->opnum, rl->when_needed);
7368 reloadreg = third_reloadreg;
7369 }
7370 }
7371 }
7372 }
7373 }
7374
7375 /* Output the last reload insn. */
7376 if (! special)
7377 {
7378 rtx set;
7379
7380 /* Don't output the last reload if OLD is not the dest of
7381 INSN and is in the src and is clobbered by INSN. */
7382 if (! flag_expensive_optimizations
7383 || !REG_P (old)
7384 || !(set = single_set (insn))
7385 || rtx_equal_p (old, SET_DEST (set))
7386 || !reg_mentioned_p (old, SET_SRC (set))
7387 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7388 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7389 gen_reload (old, reloadreg, rl->opnum,
7390 rl->when_needed);
7391 }
7392
7393 /* Look at all insns we emitted, just to be safe. */
7394 for (p = get_insns (); p; p = NEXT_INSN (p))
7395 if (INSN_P (p))
7396 {
7397 rtx pat = PATTERN (p);
7398
7399 /* If this output reload doesn't come from a spill reg,
7400 clear any memory of reloaded copies of the pseudo reg.
7401 If this output reload comes from a spill reg,
7402 reg_has_output_reload will make this do nothing. */
7403 note_stores (pat, forget_old_reloads_1, NULL);
7404
7405 if (reg_mentioned_p (rl_reg_rtx, pat))
7406 {
7407 rtx set = single_set (insn);
7408 if (reload_spill_index[j] < 0
7409 && set
7410 && SET_SRC (set) == rl_reg_rtx)
7411 {
7412 int src = REGNO (SET_SRC (set));
7413
7414 reload_spill_index[j] = src;
7415 SET_HARD_REG_BIT (reg_is_output_reload, src);
7416 if (find_regno_note (insn, REG_DEAD, src))
7417 SET_HARD_REG_BIT (reg_reloaded_died, src);
7418 }
7419 if (HARD_REGISTER_P (rl_reg_rtx))
7420 {
7421 int s = rl->secondary_out_reload;
7422 set = single_set (p);
7423 /* If this reload copies only to the secondary reload
7424 register, the secondary reload does the actual
7425 store. */
7426 if (s >= 0 && set == NULL_RTX)
7427 /* We can't tell what function the secondary reload
7428 has and where the actual store to the pseudo is
7429 made; leave new_spill_reg_store alone. */
7430 ;
7431 else if (s >= 0
7432 && SET_SRC (set) == rl_reg_rtx
7433 && SET_DEST (set) == rld[s].reg_rtx)
7434 {
7435 /* Usually the next instruction will be the
7436 secondary reload insn; if we can confirm
7437 that it is, setting new_spill_reg_store to
7438 that insn will allow an extra optimization. */
7439 rtx s_reg = rld[s].reg_rtx;
7440 rtx next = NEXT_INSN (p);
7441 rld[s].out = rl->out;
7442 rld[s].out_reg = rl->out_reg;
7443 set = single_set (next);
7444 if (set && SET_SRC (set) == s_reg
7445 && ! new_spill_reg_store[REGNO (s_reg)])
7446 {
7447 SET_HARD_REG_BIT (reg_is_output_reload,
7448 REGNO (s_reg));
7449 new_spill_reg_store[REGNO (s_reg)] = next;
7450 }
7451 }
7452 else
7453 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7454 }
7455 }
7456 }
7457
7458 if (rl->when_needed == RELOAD_OTHER)
7459 {
7460 emit_insn (other_output_reload_insns[rl->opnum]);
7461 other_output_reload_insns[rl->opnum] = get_insns ();
7462 }
7463 else
7464 output_reload_insns[rl->opnum] = get_insns ();
7465
7466 if (flag_non_call_exceptions)
7467 copy_eh_notes (insn, get_insns ());
7468
7469 end_sequence ();
7470 }
7471
7472 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7473 and has the number J. */
7474 static void
7475 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7476 {
7477 rtx insn = chain->insn;
7478 rtx old = (rl->in && MEM_P (rl->in)
7479 ? rl->in_reg : rl->in);
7480 rtx reg_rtx = rl->reg_rtx;
7481
7482 if (old && reg_rtx)
7483 {
7484 enum machine_mode mode;
7485
7486 /* Determine the mode to reload in.
7487 This is very tricky because we have three to choose from.
7488 There is the mode the insn operand wants (rl->inmode).
7489 There is the mode of the reload register RELOADREG.
7490 There is the intrinsic mode of the operand, which we could find
7491 by stripping some SUBREGs.
7492 It turns out that RELOADREG's mode is irrelevant:
7493 we can change that arbitrarily.
7494
7495 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7496 then the reload reg may not support QImode moves, so use SImode.
7497 If foo is in memory due to spilling a pseudo reg, this is safe,
7498 because the QImode value is in the least significant part of a
7499 slot big enough for a SImode. If foo is some other sort of
7500 memory reference, then it is impossible to reload this case,
7501 so previous passes had better make sure this never happens.
7502
7503 Then consider a one-word union which has SImode and one of its
7504 members is a float, being fetched as (SUBREG:SF union:SI).
7505 We must fetch that as SFmode because we could be loading into
7506 a float-only register. In this case OLD's mode is correct.
7507
7508 Consider an immediate integer: it has VOIDmode. Here we need
7509 to get a mode from something else.
7510
7511 In some cases, there is a fourth mode, the operand's
7512 containing mode. If the insn specifies a containing mode for
7513 this operand, it overrides all others.
7514
7515 I am not sure whether the algorithm here is always right,
7516 but it does the right things in those cases. */
7517
7518 mode = GET_MODE (old);
7519 if (mode == VOIDmode)
7520 mode = rl->inmode;
7521
7522 /* We cannot use gen_lowpart_common since it can do the wrong thing
7523 when REG_RTX has a multi-word mode. Note that REG_RTX must
7524 always be a REG here. */
7525 if (GET_MODE (reg_rtx) != mode)
7526 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7527 }
7528 reload_reg_rtx_for_input[j] = reg_rtx;
7529
7530 if (old != 0
7531 /* AUTO_INC reloads need to be handled even if inherited. We got an
7532 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7533 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7534 && ! rtx_equal_p (reg_rtx, old)
7535 && reg_rtx != 0)
7536 emit_input_reload_insns (chain, rld + j, old, j);
7537
7538 /* When inheriting a wider reload, we have a MEM in rl->in,
7539 e.g. inheriting a SImode output reload for
7540 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7541 if (optimize && reload_inherited[j] && rl->in
7542 && MEM_P (rl->in)
7543 && MEM_P (rl->in_reg)
7544 && reload_spill_index[j] >= 0
7545 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7546 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7547
7548 /* If we are reloading a register that was recently stored in with an
7549 output-reload, see if we can prove there was
7550 actually no need to store the old value in it. */
7551
7552 if (optimize
7553 && (reload_inherited[j] || reload_override_in[j])
7554 && reg_rtx
7555 && REG_P (reg_rtx)
7556 && spill_reg_store[REGNO (reg_rtx)] != 0
7557 #if 0
7558 /* There doesn't seem to be any reason to restrict this to pseudos
7559 and doing so loses in the case where we are copying from a
7560 register of the wrong class. */
7561 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7562 #endif
7563 /* The insn might have already some references to stackslots
7564 replaced by MEMs, while reload_out_reg still names the
7565 original pseudo. */
7566 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7567 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7568 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7569 }
7570
7571 /* Do output reloading for reload RL, which is for the insn described by
7572 CHAIN and has the number J.
7573 ??? At some point we need to support handling output reloads of
7574 JUMP_INSNs or insns that set cc0. */
7575 static void
7576 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7577 {
7578 rtx note, old;
7579 rtx insn = chain->insn;
7580 /* If this is an output reload that stores something that is
7581 not loaded in this same reload, see if we can eliminate a previous
7582 store. */
7583 rtx pseudo = rl->out_reg;
7584 rtx reg_rtx = rl->reg_rtx;
7585
7586 if (rl->out && reg_rtx)
7587 {
7588 enum machine_mode mode;
7589
7590 /* Determine the mode to reload in.
7591 See comments above (for input reloading). */
7592 mode = GET_MODE (rl->out);
7593 if (mode == VOIDmode)
7594 {
7595 /* VOIDmode should never happen for an output. */
7596 if (asm_noperands (PATTERN (insn)) < 0)
7597 /* It's the compiler's fault. */
7598 fatal_insn ("VOIDmode on an output", insn);
7599 error_for_asm (insn, "output operand is constant in %<asm%>");
7600 /* Prevent crash--use something we know is valid. */
7601 mode = word_mode;
7602 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7603 }
7604 if (GET_MODE (reg_rtx) != mode)
7605 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7606 }
7607 reload_reg_rtx_for_output[j] = reg_rtx;
7608
7609 if (pseudo
7610 && optimize
7611 && REG_P (pseudo)
7612 && ! rtx_equal_p (rl->in_reg, pseudo)
7613 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7614 && reg_last_reload_reg[REGNO (pseudo)])
7615 {
7616 int pseudo_no = REGNO (pseudo);
7617 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7618
7619 /* We don't need to test full validity of last_regno for
7620 inherit here; we only want to know if the store actually
7621 matches the pseudo. */
7622 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7623 && reg_reloaded_contents[last_regno] == pseudo_no
7624 && spill_reg_store[last_regno]
7625 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7626 delete_output_reload (insn, j, last_regno, reg_rtx);
7627 }
7628
7629 old = rl->out_reg;
7630 if (old == 0
7631 || reg_rtx == 0
7632 || rtx_equal_p (old, reg_rtx))
7633 return;
7634
7635 /* An output operand that dies right away does need a reload,
7636 but need not be copied from it. Show the new location in the
7637 REG_UNUSED note. */
7638 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7639 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7640 {
7641 XEXP (note, 0) = reg_rtx;
7642 return;
7643 }
7644 /* Likewise for a SUBREG of an operand that dies. */
7645 else if (GET_CODE (old) == SUBREG
7646 && REG_P (SUBREG_REG (old))
7647 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7648 SUBREG_REG (old))))
7649 {
7650 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7651 return;
7652 }
7653 else if (GET_CODE (old) == SCRATCH)
7654 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7655 but we don't want to make an output reload. */
7656 return;
7657
7658 /* If is a JUMP_INSN, we can't support output reloads yet. */
7659 gcc_assert (NONJUMP_INSN_P (insn));
7660
7661 emit_output_reload_insns (chain, rld + j, j);
7662 }
7663
7664 /* A reload copies values of MODE from register SRC to register DEST.
7665 Return true if it can be treated for inheritance purposes like a
7666 group of reloads, each one reloading a single hard register. The
7667 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7668 occupy the same number of hard registers. */
7669
7670 static bool
7671 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7672 int src ATTRIBUTE_UNUSED,
7673 enum machine_mode mode ATTRIBUTE_UNUSED)
7674 {
7675 #ifdef CANNOT_CHANGE_MODE_CLASS
7676 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7677 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7678 #else
7679 return true;
7680 #endif
7681 }
7682
7683 /* Output insns to reload values in and out of the chosen reload regs. */
7684
7685 static void
7686 emit_reload_insns (struct insn_chain *chain)
7687 {
7688 rtx insn = chain->insn;
7689
7690 int j;
7691
7692 CLEAR_HARD_REG_SET (reg_reloaded_died);
7693
7694 for (j = 0; j < reload_n_operands; j++)
7695 input_reload_insns[j] = input_address_reload_insns[j]
7696 = inpaddr_address_reload_insns[j]
7697 = output_reload_insns[j] = output_address_reload_insns[j]
7698 = outaddr_address_reload_insns[j]
7699 = other_output_reload_insns[j] = 0;
7700 other_input_address_reload_insns = 0;
7701 other_input_reload_insns = 0;
7702 operand_reload_insns = 0;
7703 other_operand_reload_insns = 0;
7704
7705 /* Dump reloads into the dump file. */
7706 if (dump_file)
7707 {
7708 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7709 debug_reload_to_stream (dump_file);
7710 }
7711
7712 /* Now output the instructions to copy the data into and out of the
7713 reload registers. Do these in the order that the reloads were reported,
7714 since reloads of base and index registers precede reloads of operands
7715 and the operands may need the base and index registers reloaded. */
7716
7717 for (j = 0; j < n_reloads; j++)
7718 {
7719 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7720 {
7721 unsigned int i;
7722
7723 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7724 new_spill_reg_store[i] = 0;
7725 }
7726
7727 do_input_reload (chain, rld + j, j);
7728 do_output_reload (chain, rld + j, j);
7729 }
7730
7731 /* Now write all the insns we made for reloads in the order expected by
7732 the allocation functions. Prior to the insn being reloaded, we write
7733 the following reloads:
7734
7735 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7736
7737 RELOAD_OTHER reloads.
7738
7739 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7740 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7741 RELOAD_FOR_INPUT reload for the operand.
7742
7743 RELOAD_FOR_OPADDR_ADDRS reloads.
7744
7745 RELOAD_FOR_OPERAND_ADDRESS reloads.
7746
7747 After the insn being reloaded, we write the following:
7748
7749 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7750 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7751 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7752 reloads for the operand. The RELOAD_OTHER output reloads are
7753 output in descending order by reload number. */
7754
7755 emit_insn_before (other_input_address_reload_insns, insn);
7756 emit_insn_before (other_input_reload_insns, insn);
7757
7758 for (j = 0; j < reload_n_operands; j++)
7759 {
7760 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7761 emit_insn_before (input_address_reload_insns[j], insn);
7762 emit_insn_before (input_reload_insns[j], insn);
7763 }
7764
7765 emit_insn_before (other_operand_reload_insns, insn);
7766 emit_insn_before (operand_reload_insns, insn);
7767
7768 for (j = 0; j < reload_n_operands; j++)
7769 {
7770 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7771 x = emit_insn_after (output_address_reload_insns[j], x);
7772 x = emit_insn_after (output_reload_insns[j], x);
7773 emit_insn_after (other_output_reload_insns[j], x);
7774 }
7775
7776 /* For all the spill regs newly reloaded in this instruction,
7777 record what they were reloaded from, so subsequent instructions
7778 can inherit the reloads.
7779
7780 Update spill_reg_store for the reloads of this insn.
7781 Copy the elements that were updated in the loop above. */
7782
7783 for (j = 0; j < n_reloads; j++)
7784 {
7785 int r = reload_order[j];
7786 int i = reload_spill_index[r];
7787
7788 /* If this is a non-inherited input reload from a pseudo, we must
7789 clear any memory of a previous store to the same pseudo. Only do
7790 something if there will not be an output reload for the pseudo
7791 being reloaded. */
7792 if (rld[r].in_reg != 0
7793 && ! (reload_inherited[r] || reload_override_in[r]))
7794 {
7795 rtx reg = rld[r].in_reg;
7796
7797 if (GET_CODE (reg) == SUBREG)
7798 reg = SUBREG_REG (reg);
7799
7800 if (REG_P (reg)
7801 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7802 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7803 {
7804 int nregno = REGNO (reg);
7805
7806 if (reg_last_reload_reg[nregno])
7807 {
7808 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7809
7810 if (reg_reloaded_contents[last_regno] == nregno)
7811 spill_reg_store[last_regno] = 0;
7812 }
7813 }
7814 }
7815
7816 /* I is nonneg if this reload used a register.
7817 If rld[r].reg_rtx is 0, this is an optional reload
7818 that we opted to ignore. */
7819
7820 if (i >= 0 && rld[r].reg_rtx != 0)
7821 {
7822 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7823 int k;
7824
7825 /* For a multi register reload, we need to check if all or part
7826 of the value lives to the end. */
7827 for (k = 0; k < nr; k++)
7828 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7829 rld[r].when_needed))
7830 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7831
7832 /* Maybe the spill reg contains a copy of reload_out. */
7833 if (rld[r].out != 0
7834 && (REG_P (rld[r].out)
7835 #ifdef AUTO_INC_DEC
7836 || ! rld[r].out_reg
7837 #endif
7838 || REG_P (rld[r].out_reg)))
7839 {
7840 rtx reg;
7841 enum machine_mode mode;
7842 int regno, nregs;
7843
7844 reg = reload_reg_rtx_for_output[r];
7845 mode = GET_MODE (reg);
7846 regno = REGNO (reg);
7847 nregs = hard_regno_nregs[regno][mode];
7848 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7849 rld[r].when_needed))
7850 {
7851 rtx out = (REG_P (rld[r].out)
7852 ? rld[r].out
7853 : rld[r].out_reg
7854 ? rld[r].out_reg
7855 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7856 int out_regno = REGNO (out);
7857 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
7858 : hard_regno_nregs[out_regno][mode]);
7859 bool piecemeal;
7860
7861 spill_reg_store[regno] = new_spill_reg_store[regno];
7862 spill_reg_stored_to[regno] = out;
7863 reg_last_reload_reg[out_regno] = reg;
7864
7865 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
7866 && nregs == out_nregs
7867 && inherit_piecemeal_p (out_regno, regno, mode));
7868
7869 /* If OUT_REGNO is a hard register, it may occupy more than
7870 one register. If it does, say what is in the
7871 rest of the registers assuming that both registers
7872 agree on how many words the object takes. If not,
7873 invalidate the subsequent registers. */
7874
7875 if (HARD_REGISTER_NUM_P (out_regno))
7876 for (k = 1; k < out_nregs; k++)
7877 reg_last_reload_reg[out_regno + k]
7878 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
7879
7880 /* Now do the inverse operation. */
7881 for (k = 0; k < nregs; k++)
7882 {
7883 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7884 reg_reloaded_contents[regno + k]
7885 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
7886 ? out_regno
7887 : out_regno + k);
7888 reg_reloaded_insn[regno + k] = insn;
7889 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7890 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7891 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7892 regno + k);
7893 else
7894 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7895 regno + k);
7896 }
7897 }
7898 }
7899 /* Maybe the spill reg contains a copy of reload_in. Only do
7900 something if there will not be an output reload for
7901 the register being reloaded. */
7902 else if (rld[r].out_reg == 0
7903 && rld[r].in != 0
7904 && ((REG_P (rld[r].in)
7905 && !HARD_REGISTER_P (rld[r].in)
7906 && !REGNO_REG_SET_P (&reg_has_output_reload,
7907 REGNO (rld[r].in)))
7908 || (REG_P (rld[r].in_reg)
7909 && !REGNO_REG_SET_P (&reg_has_output_reload,
7910 REGNO (rld[r].in_reg))))
7911 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
7912 {
7913 rtx reg;
7914 enum machine_mode mode;
7915 int regno, nregs;
7916
7917 reg = reload_reg_rtx_for_input[r];
7918 mode = GET_MODE (reg);
7919 regno = REGNO (reg);
7920 nregs = hard_regno_nregs[regno][mode];
7921 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7922 rld[r].when_needed))
7923 {
7924 int in_regno;
7925 int in_nregs;
7926 rtx in;
7927 bool piecemeal;
7928
7929 if (REG_P (rld[r].in)
7930 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7931 in = rld[r].in;
7932 else if (REG_P (rld[r].in_reg))
7933 in = rld[r].in_reg;
7934 else
7935 in = XEXP (rld[r].in_reg, 0);
7936 in_regno = REGNO (in);
7937
7938 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
7939 : hard_regno_nregs[in_regno][mode]);
7940
7941 reg_last_reload_reg[in_regno] = reg;
7942
7943 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
7944 && nregs == in_nregs
7945 && inherit_piecemeal_p (regno, in_regno, mode));
7946
7947 if (HARD_REGISTER_NUM_P (in_regno))
7948 for (k = 1; k < in_nregs; k++)
7949 reg_last_reload_reg[in_regno + k]
7950 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
7951
7952 /* Unless we inherited this reload, show we haven't
7953 recently done a store.
7954 Previous stores of inherited auto_inc expressions
7955 also have to be discarded. */
7956 if (! reload_inherited[r]
7957 || (rld[r].out && ! rld[r].out_reg))
7958 spill_reg_store[regno] = 0;
7959
7960 for (k = 0; k < nregs; k++)
7961 {
7962 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7963 reg_reloaded_contents[regno + k]
7964 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
7965 ? in_regno
7966 : in_regno + k);
7967 reg_reloaded_insn[regno + k] = insn;
7968 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7969 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7970 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7971 regno + k);
7972 else
7973 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7974 regno + k);
7975 }
7976 }
7977 }
7978 }
7979
7980 /* The following if-statement was #if 0'd in 1.34 (or before...).
7981 It's reenabled in 1.35 because supposedly nothing else
7982 deals with this problem. */
7983
7984 /* If a register gets output-reloaded from a non-spill register,
7985 that invalidates any previous reloaded copy of it.
7986 But forget_old_reloads_1 won't get to see it, because
7987 it thinks only about the original insn. So invalidate it here.
7988 Also do the same thing for RELOAD_OTHER constraints where the
7989 output is discarded. */
7990 if (i < 0
7991 && ((rld[r].out != 0
7992 && (REG_P (rld[r].out)
7993 || (MEM_P (rld[r].out)
7994 && REG_P (rld[r].out_reg))))
7995 || (rld[r].out == 0 && rld[r].out_reg
7996 && REG_P (rld[r].out_reg))))
7997 {
7998 rtx out = ((rld[r].out && REG_P (rld[r].out))
7999 ? rld[r].out : rld[r].out_reg);
8000 int out_regno = REGNO (out);
8001 enum machine_mode mode = GET_MODE (out);
8002
8003 /* REG_RTX is now set or clobbered by the main instruction.
8004 As the comment above explains, forget_old_reloads_1 only
8005 sees the original instruction, and there is no guarantee
8006 that the original instruction also clobbered REG_RTX.
8007 For example, if find_reloads sees that the input side of
8008 a matched operand pair dies in this instruction, it may
8009 use the input register as the reload register.
8010
8011 Calling forget_old_reloads_1 is a waste of effort if
8012 REG_RTX is also the output register.
8013
8014 If we know that REG_RTX holds the value of a pseudo
8015 register, the code after the call will record that fact. */
8016 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8017 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8018
8019 if (!HARD_REGISTER_NUM_P (out_regno))
8020 {
8021 rtx src_reg, store_insn = NULL_RTX;
8022
8023 reg_last_reload_reg[out_regno] = 0;
8024
8025 /* If we can find a hard register that is stored, record
8026 the storing insn so that we may delete this insn with
8027 delete_output_reload. */
8028 src_reg = reload_reg_rtx_for_output[r];
8029
8030 /* If this is an optional reload, try to find the source reg
8031 from an input reload. */
8032 if (! src_reg)
8033 {
8034 rtx set = single_set (insn);
8035 if (set && SET_DEST (set) == rld[r].out)
8036 {
8037 int k;
8038
8039 src_reg = SET_SRC (set);
8040 store_insn = insn;
8041 for (k = 0; k < n_reloads; k++)
8042 {
8043 if (rld[k].in == src_reg)
8044 {
8045 src_reg = reload_reg_rtx_for_input[k];
8046 break;
8047 }
8048 }
8049 }
8050 }
8051 else
8052 store_insn = new_spill_reg_store[REGNO (src_reg)];
8053 if (src_reg && REG_P (src_reg)
8054 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8055 {
8056 int src_regno, src_nregs, k;
8057 rtx note;
8058
8059 gcc_assert (GET_MODE (src_reg) == mode);
8060 src_regno = REGNO (src_reg);
8061 src_nregs = hard_regno_nregs[src_regno][mode];
8062 /* The place where to find a death note varies with
8063 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8064 necessarily checked exactly in the code that moves
8065 notes, so just check both locations. */
8066 note = find_regno_note (insn, REG_DEAD, src_regno);
8067 if (! note && store_insn)
8068 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8069 for (k = 0; k < src_nregs; k++)
8070 {
8071 spill_reg_store[src_regno + k] = store_insn;
8072 spill_reg_stored_to[src_regno + k] = out;
8073 reg_reloaded_contents[src_regno + k] = out_regno;
8074 reg_reloaded_insn[src_regno + k] = store_insn;
8075 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8076 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8077 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8078 mode))
8079 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8080 src_regno + k);
8081 else
8082 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8083 src_regno + k);
8084 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8085 if (note)
8086 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8087 else
8088 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8089 }
8090 reg_last_reload_reg[out_regno] = src_reg;
8091 /* We have to set reg_has_output_reload here, or else
8092 forget_old_reloads_1 will clear reg_last_reload_reg
8093 right away. */
8094 SET_REGNO_REG_SET (&reg_has_output_reload,
8095 out_regno);
8096 }
8097 }
8098 else
8099 {
8100 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8101
8102 for (k = 0; k < out_nregs; k++)
8103 reg_last_reload_reg[out_regno + k] = 0;
8104 }
8105 }
8106 }
8107 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8108 }
8109 \f
8110 /* Go through the motions to emit INSN and test if it is strictly valid.
8111 Return the emitted insn if valid, else return NULL. */
8112
8113 static rtx
8114 emit_insn_if_valid_for_reload (rtx insn)
8115 {
8116 rtx last = get_last_insn ();
8117 int code;
8118
8119 insn = emit_insn (insn);
8120 code = recog_memoized (insn);
8121
8122 if (code >= 0)
8123 {
8124 extract_insn (insn);
8125 /* We want constrain operands to treat this insn strictly in its
8126 validity determination, i.e., the way it would after reload has
8127 completed. */
8128 if (constrain_operands (1))
8129 return insn;
8130 }
8131
8132 delete_insns_since (last);
8133 return NULL;
8134 }
8135
8136 /* Emit code to perform a reload from IN (which may be a reload register) to
8137 OUT (which may also be a reload register). IN or OUT is from operand
8138 OPNUM with reload type TYPE.
8139
8140 Returns first insn emitted. */
8141
8142 static rtx
8143 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8144 {
8145 rtx last = get_last_insn ();
8146 rtx tem;
8147
8148 /* If IN is a paradoxical SUBREG, remove it and try to put the
8149 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8150 if (GET_CODE (in) == SUBREG
8151 && (GET_MODE_SIZE (GET_MODE (in))
8152 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
8153 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
8154 in = SUBREG_REG (in), out = tem;
8155 else if (GET_CODE (out) == SUBREG
8156 && (GET_MODE_SIZE (GET_MODE (out))
8157 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
8158 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
8159 out = SUBREG_REG (out), in = tem;
8160
8161 /* How to do this reload can get quite tricky. Normally, we are being
8162 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8163 register that didn't get a hard register. In that case we can just
8164 call emit_move_insn.
8165
8166 We can also be asked to reload a PLUS that adds a register or a MEM to
8167 another register, constant or MEM. This can occur during frame pointer
8168 elimination and while reloading addresses. This case is handled by
8169 trying to emit a single insn to perform the add. If it is not valid,
8170 we use a two insn sequence.
8171
8172 Or we can be asked to reload an unary operand that was a fragment of
8173 an addressing mode, into a register. If it isn't recognized as-is,
8174 we try making the unop operand and the reload-register the same:
8175 (set reg:X (unop:X expr:Y))
8176 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8177
8178 Finally, we could be called to handle an 'o' constraint by putting
8179 an address into a register. In that case, we first try to do this
8180 with a named pattern of "reload_load_address". If no such pattern
8181 exists, we just emit a SET insn and hope for the best (it will normally
8182 be valid on machines that use 'o').
8183
8184 This entire process is made complex because reload will never
8185 process the insns we generate here and so we must ensure that
8186 they will fit their constraints and also by the fact that parts of
8187 IN might be being reloaded separately and replaced with spill registers.
8188 Because of this, we are, in some sense, just guessing the right approach
8189 here. The one listed above seems to work.
8190
8191 ??? At some point, this whole thing needs to be rethought. */
8192
8193 if (GET_CODE (in) == PLUS
8194 && (REG_P (XEXP (in, 0))
8195 || GET_CODE (XEXP (in, 0)) == SUBREG
8196 || MEM_P (XEXP (in, 0)))
8197 && (REG_P (XEXP (in, 1))
8198 || GET_CODE (XEXP (in, 1)) == SUBREG
8199 || CONSTANT_P (XEXP (in, 1))
8200 || MEM_P (XEXP (in, 1))))
8201 {
8202 /* We need to compute the sum of a register or a MEM and another
8203 register, constant, or MEM, and put it into the reload
8204 register. The best possible way of doing this is if the machine
8205 has a three-operand ADD insn that accepts the required operands.
8206
8207 The simplest approach is to try to generate such an insn and see if it
8208 is recognized and matches its constraints. If so, it can be used.
8209
8210 It might be better not to actually emit the insn unless it is valid,
8211 but we need to pass the insn as an operand to `recog' and
8212 `extract_insn' and it is simpler to emit and then delete the insn if
8213 not valid than to dummy things up. */
8214
8215 rtx op0, op1, tem, insn;
8216 int code;
8217
8218 op0 = find_replacement (&XEXP (in, 0));
8219 op1 = find_replacement (&XEXP (in, 1));
8220
8221 /* Since constraint checking is strict, commutativity won't be
8222 checked, so we need to do that here to avoid spurious failure
8223 if the add instruction is two-address and the second operand
8224 of the add is the same as the reload reg, which is frequently
8225 the case. If the insn would be A = B + A, rearrange it so
8226 it will be A = A + B as constrain_operands expects. */
8227
8228 if (REG_P (XEXP (in, 1))
8229 && REGNO (out) == REGNO (XEXP (in, 1)))
8230 tem = op0, op0 = op1, op1 = tem;
8231
8232 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8233 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8234
8235 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8236 if (insn)
8237 return insn;
8238
8239 /* If that failed, we must use a conservative two-insn sequence.
8240
8241 Use a move to copy one operand into the reload register. Prefer
8242 to reload a constant, MEM or pseudo since the move patterns can
8243 handle an arbitrary operand. If OP1 is not a constant, MEM or
8244 pseudo and OP1 is not a valid operand for an add instruction, then
8245 reload OP1.
8246
8247 After reloading one of the operands into the reload register, add
8248 the reload register to the output register.
8249
8250 If there is another way to do this for a specific machine, a
8251 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8252 we emit below. */
8253
8254 code = (int) optab_handler (add_optab, GET_MODE (out))->insn_code;
8255
8256 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8257 || (REG_P (op1)
8258 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8259 || (code != CODE_FOR_nothing
8260 && ! ((*insn_data[code].operand[2].predicate)
8261 (op1, insn_data[code].operand[2].mode))))
8262 tem = op0, op0 = op1, op1 = tem;
8263
8264 gen_reload (out, op0, opnum, type);
8265
8266 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8267 This fixes a problem on the 32K where the stack pointer cannot
8268 be used as an operand of an add insn. */
8269
8270 if (rtx_equal_p (op0, op1))
8271 op1 = out;
8272
8273 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8274 if (insn)
8275 {
8276 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8277 set_unique_reg_note (insn, REG_EQUIV, in);
8278 return insn;
8279 }
8280
8281 /* If that failed, copy the address register to the reload register.
8282 Then add the constant to the reload register. */
8283
8284 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8285 gen_reload (out, op1, opnum, type);
8286 insn = emit_insn (gen_add2_insn (out, op0));
8287 set_unique_reg_note (insn, REG_EQUIV, in);
8288 }
8289
8290 #ifdef SECONDARY_MEMORY_NEEDED
8291 /* If we need a memory location to do the move, do it that way. */
8292 else if ((REG_P (in)
8293 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
8294 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8295 && (REG_P (out)
8296 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
8297 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8298 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8299 REGNO_REG_CLASS (reg_or_subregno (out)),
8300 GET_MODE (out)))
8301 {
8302 /* Get the memory to use and rewrite both registers to its mode. */
8303 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8304
8305 if (GET_MODE (loc) != GET_MODE (out))
8306 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
8307
8308 if (GET_MODE (loc) != GET_MODE (in))
8309 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
8310
8311 gen_reload (loc, in, opnum, type);
8312 gen_reload (out, loc, opnum, type);
8313 }
8314 #endif
8315 else if (REG_P (out) && UNARY_P (in))
8316 {
8317 rtx insn;
8318 rtx op1;
8319 rtx out_moded;
8320 rtx set;
8321
8322 op1 = find_replacement (&XEXP (in, 0));
8323 if (op1 != XEXP (in, 0))
8324 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8325
8326 /* First, try a plain SET. */
8327 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8328 if (set)
8329 return set;
8330
8331 /* If that failed, move the inner operand to the reload
8332 register, and try the same unop with the inner expression
8333 replaced with the reload register. */
8334
8335 if (GET_MODE (op1) != GET_MODE (out))
8336 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8337 else
8338 out_moded = out;
8339
8340 gen_reload (out_moded, op1, opnum, type);
8341
8342 insn
8343 = gen_rtx_SET (VOIDmode, out,
8344 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8345 out_moded));
8346 insn = emit_insn_if_valid_for_reload (insn);
8347 if (insn)
8348 {
8349 set_unique_reg_note (insn, REG_EQUIV, in);
8350 return insn;
8351 }
8352
8353 fatal_insn ("Failure trying to reload:", set);
8354 }
8355 /* If IN is a simple operand, use gen_move_insn. */
8356 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8357 {
8358 tem = emit_insn (gen_move_insn (out, in));
8359 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8360 mark_jump_label (in, tem, 0);
8361 }
8362
8363 #ifdef HAVE_reload_load_address
8364 else if (HAVE_reload_load_address)
8365 emit_insn (gen_reload_load_address (out, in));
8366 #endif
8367
8368 /* Otherwise, just write (set OUT IN) and hope for the best. */
8369 else
8370 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8371
8372 /* Return the first insn emitted.
8373 We can not just return get_last_insn, because there may have
8374 been multiple instructions emitted. Also note that gen_move_insn may
8375 emit more than one insn itself, so we can not assume that there is one
8376 insn emitted per emit_insn_before call. */
8377
8378 return last ? NEXT_INSN (last) : get_insns ();
8379 }
8380 \f
8381 /* Delete a previously made output-reload whose result we now believe
8382 is not needed. First we double-check.
8383
8384 INSN is the insn now being processed.
8385 LAST_RELOAD_REG is the hard register number for which we want to delete
8386 the last output reload.
8387 J is the reload-number that originally used REG. The caller has made
8388 certain that reload J doesn't use REG any longer for input.
8389 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8390
8391 static void
8392 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8393 {
8394 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8395 rtx reg = spill_reg_stored_to[last_reload_reg];
8396 int k;
8397 int n_occurrences;
8398 int n_inherited = 0;
8399 rtx i1;
8400 rtx substed;
8401
8402 /* It is possible that this reload has been only used to set another reload
8403 we eliminated earlier and thus deleted this instruction too. */
8404 if (INSN_DELETED_P (output_reload_insn))
8405 return;
8406
8407 /* Get the raw pseudo-register referred to. */
8408
8409 while (GET_CODE (reg) == SUBREG)
8410 reg = SUBREG_REG (reg);
8411 substed = reg_equiv_memory_loc[REGNO (reg)];
8412
8413 /* This is unsafe if the operand occurs more often in the current
8414 insn than it is inherited. */
8415 for (k = n_reloads - 1; k >= 0; k--)
8416 {
8417 rtx reg2 = rld[k].in;
8418 if (! reg2)
8419 continue;
8420 if (MEM_P (reg2) || reload_override_in[k])
8421 reg2 = rld[k].in_reg;
8422 #ifdef AUTO_INC_DEC
8423 if (rld[k].out && ! rld[k].out_reg)
8424 reg2 = XEXP (rld[k].in_reg, 0);
8425 #endif
8426 while (GET_CODE (reg2) == SUBREG)
8427 reg2 = SUBREG_REG (reg2);
8428 if (rtx_equal_p (reg2, reg))
8429 {
8430 if (reload_inherited[k] || reload_override_in[k] || k == j)
8431 n_inherited++;
8432 else
8433 return;
8434 }
8435 }
8436 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8437 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8438 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8439 reg, 0);
8440 if (substed)
8441 n_occurrences += count_occurrences (PATTERN (insn),
8442 eliminate_regs (substed, VOIDmode,
8443 NULL_RTX), 0);
8444 for (i1 = reg_equiv_alt_mem_list[REGNO (reg)]; i1; i1 = XEXP (i1, 1))
8445 {
8446 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8447 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8448 }
8449 if (n_occurrences > n_inherited)
8450 return;
8451
8452 /* If the pseudo-reg we are reloading is no longer referenced
8453 anywhere between the store into it and here,
8454 and we're within the same basic block, then the value can only
8455 pass through the reload reg and end up here.
8456 Otherwise, give up--return. */
8457 for (i1 = NEXT_INSN (output_reload_insn);
8458 i1 != insn; i1 = NEXT_INSN (i1))
8459 {
8460 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8461 return;
8462 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8463 && reg_mentioned_p (reg, PATTERN (i1)))
8464 {
8465 /* If this is USE in front of INSN, we only have to check that
8466 there are no more references than accounted for by inheritance. */
8467 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8468 {
8469 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8470 i1 = NEXT_INSN (i1);
8471 }
8472 if (n_occurrences <= n_inherited && i1 == insn)
8473 break;
8474 return;
8475 }
8476 }
8477
8478 /* We will be deleting the insn. Remove the spill reg information. */
8479 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8480 {
8481 spill_reg_store[last_reload_reg + k] = 0;
8482 spill_reg_stored_to[last_reload_reg + k] = 0;
8483 }
8484
8485 /* The caller has already checked that REG dies or is set in INSN.
8486 It has also checked that we are optimizing, and thus some
8487 inaccuracies in the debugging information are acceptable.
8488 So we could just delete output_reload_insn. But in some cases
8489 we can improve the debugging information without sacrificing
8490 optimization - maybe even improving the code: See if the pseudo
8491 reg has been completely replaced with reload regs. If so, delete
8492 the store insn and forget we had a stack slot for the pseudo. */
8493 if (rld[j].out != rld[j].in
8494 && REG_N_DEATHS (REGNO (reg)) == 1
8495 && REG_N_SETS (REGNO (reg)) == 1
8496 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8497 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8498 {
8499 rtx i2;
8500
8501 /* We know that it was used only between here and the beginning of
8502 the current basic block. (We also know that the last use before
8503 INSN was the output reload we are thinking of deleting, but never
8504 mind that.) Search that range; see if any ref remains. */
8505 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8506 {
8507 rtx set = single_set (i2);
8508
8509 /* Uses which just store in the pseudo don't count,
8510 since if they are the only uses, they are dead. */
8511 if (set != 0 && SET_DEST (set) == reg)
8512 continue;
8513 if (LABEL_P (i2)
8514 || JUMP_P (i2))
8515 break;
8516 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8517 && reg_mentioned_p (reg, PATTERN (i2)))
8518 {
8519 /* Some other ref remains; just delete the output reload we
8520 know to be dead. */
8521 delete_address_reloads (output_reload_insn, insn);
8522 delete_insn (output_reload_insn);
8523 return;
8524 }
8525 }
8526
8527 /* Delete the now-dead stores into this pseudo. Note that this
8528 loop also takes care of deleting output_reload_insn. */
8529 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8530 {
8531 rtx set = single_set (i2);
8532
8533 if (set != 0 && SET_DEST (set) == reg)
8534 {
8535 delete_address_reloads (i2, insn);
8536 delete_insn (i2);
8537 }
8538 if (LABEL_P (i2)
8539 || JUMP_P (i2))
8540 break;
8541 }
8542
8543 /* For the debugging info, say the pseudo lives in this reload reg. */
8544 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8545 if (ira_conflicts_p)
8546 /* Inform IRA about the change. */
8547 ira_mark_allocation_change (REGNO (reg));
8548 alter_reg (REGNO (reg), -1, false);
8549 }
8550 else
8551 {
8552 delete_address_reloads (output_reload_insn, insn);
8553 delete_insn (output_reload_insn);
8554 }
8555 }
8556
8557 /* We are going to delete DEAD_INSN. Recursively delete loads of
8558 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8559 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8560 static void
8561 delete_address_reloads (rtx dead_insn, rtx current_insn)
8562 {
8563 rtx set = single_set (dead_insn);
8564 rtx set2, dst, prev, next;
8565 if (set)
8566 {
8567 rtx dst = SET_DEST (set);
8568 if (MEM_P (dst))
8569 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8570 }
8571 /* If we deleted the store from a reloaded post_{in,de}c expression,
8572 we can delete the matching adds. */
8573 prev = PREV_INSN (dead_insn);
8574 next = NEXT_INSN (dead_insn);
8575 if (! prev || ! next)
8576 return;
8577 set = single_set (next);
8578 set2 = single_set (prev);
8579 if (! set || ! set2
8580 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8581 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8582 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8583 return;
8584 dst = SET_DEST (set);
8585 if (! rtx_equal_p (dst, SET_DEST (set2))
8586 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8587 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8588 || (INTVAL (XEXP (SET_SRC (set), 1))
8589 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8590 return;
8591 delete_related_insns (prev);
8592 delete_related_insns (next);
8593 }
8594
8595 /* Subfunction of delete_address_reloads: process registers found in X. */
8596 static void
8597 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8598 {
8599 rtx prev, set, dst, i2;
8600 int i, j;
8601 enum rtx_code code = GET_CODE (x);
8602
8603 if (code != REG)
8604 {
8605 const char *fmt = GET_RTX_FORMAT (code);
8606 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8607 {
8608 if (fmt[i] == 'e')
8609 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8610 else if (fmt[i] == 'E')
8611 {
8612 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8613 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8614 current_insn);
8615 }
8616 }
8617 return;
8618 }
8619
8620 if (spill_reg_order[REGNO (x)] < 0)
8621 return;
8622
8623 /* Scan backwards for the insn that sets x. This might be a way back due
8624 to inheritance. */
8625 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8626 {
8627 code = GET_CODE (prev);
8628 if (code == CODE_LABEL || code == JUMP_INSN)
8629 return;
8630 if (!INSN_P (prev))
8631 continue;
8632 if (reg_set_p (x, PATTERN (prev)))
8633 break;
8634 if (reg_referenced_p (x, PATTERN (prev)))
8635 return;
8636 }
8637 if (! prev || INSN_UID (prev) < reload_first_uid)
8638 return;
8639 /* Check that PREV only sets the reload register. */
8640 set = single_set (prev);
8641 if (! set)
8642 return;
8643 dst = SET_DEST (set);
8644 if (!REG_P (dst)
8645 || ! rtx_equal_p (dst, x))
8646 return;
8647 if (! reg_set_p (dst, PATTERN (dead_insn)))
8648 {
8649 /* Check if DST was used in a later insn -
8650 it might have been inherited. */
8651 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8652 {
8653 if (LABEL_P (i2))
8654 break;
8655 if (! INSN_P (i2))
8656 continue;
8657 if (reg_referenced_p (dst, PATTERN (i2)))
8658 {
8659 /* If there is a reference to the register in the current insn,
8660 it might be loaded in a non-inherited reload. If no other
8661 reload uses it, that means the register is set before
8662 referenced. */
8663 if (i2 == current_insn)
8664 {
8665 for (j = n_reloads - 1; j >= 0; j--)
8666 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8667 || reload_override_in[j] == dst)
8668 return;
8669 for (j = n_reloads - 1; j >= 0; j--)
8670 if (rld[j].in && rld[j].reg_rtx == dst)
8671 break;
8672 if (j >= 0)
8673 break;
8674 }
8675 return;
8676 }
8677 if (JUMP_P (i2))
8678 break;
8679 /* If DST is still live at CURRENT_INSN, check if it is used for
8680 any reload. Note that even if CURRENT_INSN sets DST, we still
8681 have to check the reloads. */
8682 if (i2 == current_insn)
8683 {
8684 for (j = n_reloads - 1; j >= 0; j--)
8685 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8686 || reload_override_in[j] == dst)
8687 return;
8688 /* ??? We can't finish the loop here, because dst might be
8689 allocated to a pseudo in this block if no reload in this
8690 block needs any of the classes containing DST - see
8691 spill_hard_reg. There is no easy way to tell this, so we
8692 have to scan till the end of the basic block. */
8693 }
8694 if (reg_set_p (dst, PATTERN (i2)))
8695 break;
8696 }
8697 }
8698 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8699 reg_reloaded_contents[REGNO (dst)] = -1;
8700 delete_insn (prev);
8701 }
8702 \f
8703 /* Output reload-insns to reload VALUE into RELOADREG.
8704 VALUE is an autoincrement or autodecrement RTX whose operand
8705 is a register or memory location;
8706 so reloading involves incrementing that location.
8707 IN is either identical to VALUE, or some cheaper place to reload from.
8708
8709 INC_AMOUNT is the number to increment or decrement by (always positive).
8710 This cannot be deduced from VALUE.
8711
8712 Return the instruction that stores into RELOADREG. */
8713
8714 static rtx
8715 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8716 {
8717 /* REG or MEM to be copied and incremented. */
8718 rtx incloc = find_replacement (&XEXP (value, 0));
8719 /* Nonzero if increment after copying. */
8720 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8721 || GET_CODE (value) == POST_MODIFY);
8722 rtx last;
8723 rtx inc;
8724 rtx add_insn;
8725 int code;
8726 rtx store;
8727 rtx real_in = in == value ? incloc : in;
8728
8729 /* No hard register is equivalent to this register after
8730 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8731 we could inc/dec that register as well (maybe even using it for
8732 the source), but I'm not sure it's worth worrying about. */
8733 if (REG_P (incloc))
8734 reg_last_reload_reg[REGNO (incloc)] = 0;
8735
8736 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8737 {
8738 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8739 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8740 }
8741 else
8742 {
8743 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8744 inc_amount = -inc_amount;
8745
8746 inc = GEN_INT (inc_amount);
8747 }
8748
8749 /* If this is post-increment, first copy the location to the reload reg. */
8750 if (post && real_in != reloadreg)
8751 emit_insn (gen_move_insn (reloadreg, real_in));
8752
8753 if (in == value)
8754 {
8755 /* See if we can directly increment INCLOC. Use a method similar to
8756 that in gen_reload. */
8757
8758 last = get_last_insn ();
8759 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8760 gen_rtx_PLUS (GET_MODE (incloc),
8761 incloc, inc)));
8762
8763 code = recog_memoized (add_insn);
8764 if (code >= 0)
8765 {
8766 extract_insn (add_insn);
8767 if (constrain_operands (1))
8768 {
8769 /* If this is a pre-increment and we have incremented the value
8770 where it lives, copy the incremented value to RELOADREG to
8771 be used as an address. */
8772
8773 if (! post)
8774 emit_insn (gen_move_insn (reloadreg, incloc));
8775
8776 return add_insn;
8777 }
8778 }
8779 delete_insns_since (last);
8780 }
8781
8782 /* If couldn't do the increment directly, must increment in RELOADREG.
8783 The way we do this depends on whether this is pre- or post-increment.
8784 For pre-increment, copy INCLOC to the reload register, increment it
8785 there, then save back. */
8786
8787 if (! post)
8788 {
8789 if (in != reloadreg)
8790 emit_insn (gen_move_insn (reloadreg, real_in));
8791 emit_insn (gen_add2_insn (reloadreg, inc));
8792 store = emit_insn (gen_move_insn (incloc, reloadreg));
8793 }
8794 else
8795 {
8796 /* Postincrement.
8797 Because this might be a jump insn or a compare, and because RELOADREG
8798 may not be available after the insn in an input reload, we must do
8799 the incrementation before the insn being reloaded for.
8800
8801 We have already copied IN to RELOADREG. Increment the copy in
8802 RELOADREG, save that back, then decrement RELOADREG so it has
8803 the original value. */
8804
8805 emit_insn (gen_add2_insn (reloadreg, inc));
8806 store = emit_insn (gen_move_insn (incloc, reloadreg));
8807 if (CONST_INT_P (inc))
8808 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
8809 else
8810 emit_insn (gen_sub2_insn (reloadreg, inc));
8811 }
8812
8813 return store;
8814 }
8815 \f
8816 #ifdef AUTO_INC_DEC
8817 static void
8818 add_auto_inc_notes (rtx insn, rtx x)
8819 {
8820 enum rtx_code code = GET_CODE (x);
8821 const char *fmt;
8822 int i, j;
8823
8824 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8825 {
8826 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
8827 return;
8828 }
8829
8830 /* Scan all the operand sub-expressions. */
8831 fmt = GET_RTX_FORMAT (code);
8832 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8833 {
8834 if (fmt[i] == 'e')
8835 add_auto_inc_notes (insn, XEXP (x, i));
8836 else if (fmt[i] == 'E')
8837 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8838 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8839 }
8840 }
8841 #endif
8842
8843 /* Copy EH notes from an insn to its reloads. */
8844 static void
8845 copy_eh_notes (rtx insn, rtx x)
8846 {
8847 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8848 if (eh_note)
8849 {
8850 for (; x != 0; x = NEXT_INSN (x))
8851 {
8852 if (may_trap_p (PATTERN (x)))
8853 add_reg_note (x, REG_EH_REGION, XEXP (eh_note, 0));
8854 }
8855 }
8856 }
8857
8858 /* This is used by reload pass, that does emit some instructions after
8859 abnormal calls moving basic block end, but in fact it wants to emit
8860 them on the edge. Looks for abnormal call edges, find backward the
8861 proper call and fix the damage.
8862
8863 Similar handle instructions throwing exceptions internally. */
8864 void
8865 fixup_abnormal_edges (void)
8866 {
8867 bool inserted = false;
8868 basic_block bb;
8869
8870 FOR_EACH_BB (bb)
8871 {
8872 edge e;
8873 edge_iterator ei;
8874
8875 /* Look for cases we are interested in - calls or instructions causing
8876 exceptions. */
8877 FOR_EACH_EDGE (e, ei, bb->succs)
8878 {
8879 if (e->flags & EDGE_ABNORMAL_CALL)
8880 break;
8881 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8882 == (EDGE_ABNORMAL | EDGE_EH))
8883 break;
8884 }
8885 if (e && !CALL_P (BB_END (bb))
8886 && !can_throw_internal (BB_END (bb)))
8887 {
8888 rtx insn;
8889
8890 /* Get past the new insns generated. Allow notes, as the insns
8891 may be already deleted. */
8892 insn = BB_END (bb);
8893 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8894 && !can_throw_internal (insn)
8895 && insn != BB_HEAD (bb))
8896 insn = PREV_INSN (insn);
8897
8898 if (CALL_P (insn) || can_throw_internal (insn))
8899 {
8900 rtx stop, next;
8901
8902 stop = NEXT_INSN (BB_END (bb));
8903 BB_END (bb) = insn;
8904 insn = NEXT_INSN (insn);
8905
8906 FOR_EACH_EDGE (e, ei, bb->succs)
8907 if (e->flags & EDGE_FALLTHRU)
8908 break;
8909
8910 while (insn && insn != stop)
8911 {
8912 next = NEXT_INSN (insn);
8913 if (INSN_P (insn))
8914 {
8915 delete_insn (insn);
8916
8917 /* Sometimes there's still the return value USE.
8918 If it's placed after a trapping call (i.e. that
8919 call is the last insn anyway), we have no fallthru
8920 edge. Simply delete this use and don't try to insert
8921 on the non-existent edge. */
8922 if (GET_CODE (PATTERN (insn)) != USE)
8923 {
8924 /* We're not deleting it, we're moving it. */
8925 INSN_DELETED_P (insn) = 0;
8926 PREV_INSN (insn) = NULL_RTX;
8927 NEXT_INSN (insn) = NULL_RTX;
8928
8929 insert_insn_on_edge (insn, e);
8930 inserted = true;
8931 }
8932 }
8933 else if (!BARRIER_P (insn))
8934 set_block_for_insn (insn, NULL);
8935 insn = next;
8936 }
8937 }
8938
8939 /* It may be that we don't find any such trapping insn. In this
8940 case we discovered quite late that the insn that had been
8941 marked as can_throw_internal in fact couldn't trap at all.
8942 So we should in fact delete the EH edges out of the block. */
8943 else
8944 purge_dead_edges (bb);
8945 }
8946 }
8947
8948 /* We've possibly turned single trapping insn into multiple ones. */
8949 if (flag_non_call_exceptions)
8950 {
8951 sbitmap blocks;
8952 blocks = sbitmap_alloc (last_basic_block);
8953 sbitmap_ones (blocks);
8954 find_many_sub_basic_blocks (blocks);
8955 sbitmap_free (blocks);
8956 }
8957
8958 if (inserted)
8959 commit_edge_insertions ();
8960
8961 #ifdef ENABLE_CHECKING
8962 /* Verify that we didn't turn one trapping insn into many, and that
8963 we found and corrected all of the problems wrt fixups on the
8964 fallthru edge. */
8965 verify_flow_info ();
8966 #endif
8967 }