calls.c (precompute_register_parameters): Use COSTS_N_INSNS, not 2.
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "insn-flags.h"
32 #include "insn-codes.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "regs.h"
37 #include "basic-block.h"
38 #include "reload.h"
39 #include "recog.h"
40 #include "output.h"
41 #include "cselib.h"
42 #include "real.h"
43 #include "toplev.h"
44
45 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
46 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
47 #endif
48
49 /* This file contains the reload pass of the compiler, which is
50 run after register allocation has been done. It checks that
51 each insn is valid (operands required to be in registers really
52 are in registers of the proper class) and fixes up invalid ones
53 by copying values temporarily into registers for the insns
54 that need them.
55
56 The results of register allocation are described by the vector
57 reg_renumber; the insns still contain pseudo regs, but reg_renumber
58 can be used to find which hard reg, if any, a pseudo reg is in.
59
60 The technique we always use is to free up a few hard regs that are
61 called ``reload regs'', and for each place where a pseudo reg
62 must be in a hard reg, copy it temporarily into one of the reload regs.
63
64 Reload regs are allocated locally for every instruction that needs
65 reloads. When there are pseudos which are allocated to a register that
66 has been chosen as a reload reg, such pseudos must be ``spilled''.
67 This means that they go to other hard regs, or to stack slots if no other
68 available hard regs can be found. Spilling can invalidate more
69 insns, requiring additional need for reloads, so we must keep checking
70 until the process stabilizes.
71
72 For machines with different classes of registers, we must keep track
73 of the register class needed for each reload, and make sure that
74 we allocate enough reload registers of each class.
75
76 The file reload.c contains the code that checks one insn for
77 validity and reports the reloads that it needs. This file
78 is in charge of scanning the entire rtl code, accumulating the
79 reload needs, spilling, assigning reload registers to use for
80 fixing up each insn, and generating the new insns to copy values
81 into the reload registers. */
82
83 #ifndef REGISTER_MOVE_COST
84 #define REGISTER_MOVE_COST(x, y) 2
85 #endif
86
87 #ifndef LOCAL_REGNO
88 #define LOCAL_REGNO(REGNO) 0
89 #endif
90 \f
91 /* During reload_as_needed, element N contains a REG rtx for the hard reg
92 into which reg N has been reloaded (perhaps for a previous insn). */
93 static rtx *reg_last_reload_reg;
94
95 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
96 for an output reload that stores into reg N. */
97 static char *reg_has_output_reload;
98
99 /* Indicates which hard regs are reload-registers for an output reload
100 in the current insn. */
101 static HARD_REG_SET reg_is_output_reload;
102
103 /* Element N is the constant value to which pseudo reg N is equivalent,
104 or zero if pseudo reg N is not equivalent to a constant.
105 find_reloads looks at this in order to replace pseudo reg N
106 with the constant it stands for. */
107 rtx *reg_equiv_constant;
108
109 /* Element N is a memory location to which pseudo reg N is equivalent,
110 prior to any register elimination (such as frame pointer to stack
111 pointer). Depending on whether or not it is a valid address, this value
112 is transferred to either reg_equiv_address or reg_equiv_mem. */
113 rtx *reg_equiv_memory_loc;
114
115 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
116 This is used when the address is not valid as a memory address
117 (because its displacement is too big for the machine.) */
118 rtx *reg_equiv_address;
119
120 /* Element N is the memory slot to which pseudo reg N is equivalent,
121 or zero if pseudo reg N is not equivalent to a memory slot. */
122 rtx *reg_equiv_mem;
123
124 /* Widest width in which each pseudo reg is referred to (via subreg). */
125 static unsigned int *reg_max_ref_width;
126
127 /* Element N is the list of insns that initialized reg N from its equivalent
128 constant or memory slot. */
129 static rtx *reg_equiv_init;
130
131 /* Vector to remember old contents of reg_renumber before spilling. */
132 static short *reg_old_renumber;
133
134 /* During reload_as_needed, element N contains the last pseudo regno reloaded
135 into hard register N. If that pseudo reg occupied more than one register,
136 reg_reloaded_contents points to that pseudo for each spill register in
137 use; all of these must remain set for an inheritance to occur. */
138 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
139
140 /* During reload_as_needed, element N contains the insn for which
141 hard register N was last used. Its contents are significant only
142 when reg_reloaded_valid is set for this register. */
143 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
144
145 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
146 static HARD_REG_SET reg_reloaded_valid;
147 /* Indicate if the register was dead at the end of the reload.
148 This is only valid if reg_reloaded_contents is set and valid. */
149 static HARD_REG_SET reg_reloaded_dead;
150
151 /* Number of spill-regs so far; number of valid elements of spill_regs. */
152 static int n_spills;
153
154 /* In parallel with spill_regs, contains REG rtx's for those regs.
155 Holds the last rtx used for any given reg, or 0 if it has never
156 been used for spilling yet. This rtx is reused, provided it has
157 the proper mode. */
158 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
159
160 /* In parallel with spill_regs, contains nonzero for a spill reg
161 that was stored after the last time it was used.
162 The precise value is the insn generated to do the store. */
163 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
164
165 /* This is the register that was stored with spill_reg_store. This is a
166 copy of reload_out / reload_out_reg when the value was stored; if
167 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
168 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
169
170 /* This table is the inverse mapping of spill_regs:
171 indexed by hard reg number,
172 it contains the position of that reg in spill_regs,
173 or -1 for something that is not in spill_regs.
174
175 ?!? This is no longer accurate. */
176 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
177
178 /* This reg set indicates registers that can't be used as spill registers for
179 the currently processed insn. These are the hard registers which are live
180 during the insn, but not allocated to pseudos, as well as fixed
181 registers. */
182 static HARD_REG_SET bad_spill_regs;
183
184 /* These are the hard registers that can't be used as spill register for any
185 insn. This includes registers used for user variables and registers that
186 we can't eliminate. A register that appears in this set also can't be used
187 to retry register allocation. */
188 static HARD_REG_SET bad_spill_regs_global;
189
190 /* Describes order of use of registers for reloading
191 of spilled pseudo-registers. `n_spills' is the number of
192 elements that are actually valid; new ones are added at the end.
193
194 Both spill_regs and spill_reg_order are used on two occasions:
195 once during find_reload_regs, where they keep track of the spill registers
196 for a single insn, but also during reload_as_needed where they show all
197 the registers ever used by reload. For the latter case, the information
198 is calculated during finish_spills. */
199 static short spill_regs[FIRST_PSEUDO_REGISTER];
200
201 /* This vector of reg sets indicates, for each pseudo, which hard registers
202 may not be used for retrying global allocation because the register was
203 formerly spilled from one of them. If we allowed reallocating a pseudo to
204 a register that it was already allocated to, reload might not
205 terminate. */
206 static HARD_REG_SET *pseudo_previous_regs;
207
208 /* This vector of reg sets indicates, for each pseudo, which hard
209 registers may not be used for retrying global allocation because they
210 are used as spill registers during one of the insns in which the
211 pseudo is live. */
212 static HARD_REG_SET *pseudo_forbidden_regs;
213
214 /* All hard regs that have been used as spill registers for any insn are
215 marked in this set. */
216 static HARD_REG_SET used_spill_regs;
217
218 /* Index of last register assigned as a spill register. We allocate in
219 a round-robin fashion. */
220 static int last_spill_reg;
221
222 /* Nonzero if indirect addressing is supported on the machine; this means
223 that spilling (REG n) does not require reloading it into a register in
224 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
225 value indicates the level of indirect addressing supported, e.g., two
226 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
227 a hard register. */
228 static char spill_indirect_levels;
229
230 /* Nonzero if indirect addressing is supported when the innermost MEM is
231 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
232 which these are valid is the same as spill_indirect_levels, above. */
233 char indirect_symref_ok;
234
235 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
236 char double_reg_address_ok;
237
238 /* Record the stack slot for each spilled hard register. */
239 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
240
241 /* Width allocated so far for that stack slot. */
242 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
243
244 /* Record which pseudos needed to be spilled. */
245 static regset_head spilled_pseudos;
246
247 /* Used for communication between order_regs_for_reload and count_pseudo.
248 Used to avoid counting one pseudo twice. */
249 static regset_head pseudos_counted;
250
251 /* First uid used by insns created by reload in this function.
252 Used in find_equiv_reg. */
253 int reload_first_uid;
254
255 /* Flag set by local-alloc or global-alloc if anything is live in
256 a call-clobbered reg across calls. */
257 int caller_save_needed;
258
259 /* Set to 1 while reload_as_needed is operating.
260 Required by some machines to handle any generated moves differently. */
261 int reload_in_progress = 0;
262
263 /* These arrays record the insn_code of insns that may be needed to
264 perform input and output reloads of special objects. They provide a
265 place to pass a scratch register. */
266 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
267 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
268
269 /* This obstack is used for allocation of rtl during register elimination.
270 The allocated storage can be freed once find_reloads has processed the
271 insn. */
272 struct obstack reload_obstack;
273
274 /* Points to the beginning of the reload_obstack. All insn_chain structures
275 are allocated first. */
276 char *reload_startobj;
277
278 /* The point after all insn_chain structures. Used to quickly deallocate
279 memory allocated in copy_reloads during calculate_needs_all_insns. */
280 char *reload_firstobj;
281
282 /* This points before all local rtl generated by register elimination.
283 Used to quickly free all memory after processing one insn. */
284 static char *reload_insn_firstobj;
285
286 #define obstack_chunk_alloc xmalloc
287 #define obstack_chunk_free free
288
289 /* List of insn_chain instructions, one for every insn that reload needs to
290 examine. */
291 struct insn_chain *reload_insn_chain;
292
293 #ifdef TREE_CODE
294 extern tree current_function_decl;
295 #else
296 extern union tree_node *current_function_decl;
297 #endif
298
299 /* List of all insns needing reloads. */
300 static struct insn_chain *insns_need_reload;
301 \f
302 /* This structure is used to record information about register eliminations.
303 Each array entry describes one possible way of eliminating a register
304 in favor of another. If there is more than one way of eliminating a
305 particular register, the most preferred should be specified first. */
306
307 struct elim_table
308 {
309 int from; /* Register number to be eliminated. */
310 int to; /* Register number used as replacement. */
311 int initial_offset; /* Initial difference between values. */
312 int can_eliminate; /* Non-zero if this elimination can be done. */
313 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
314 insns made by reload. */
315 int offset; /* Current offset between the two regs. */
316 int previous_offset; /* Offset at end of previous insn. */
317 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
318 rtx from_rtx; /* REG rtx for the register to be eliminated.
319 We cannot simply compare the number since
320 we might then spuriously replace a hard
321 register corresponding to a pseudo
322 assigned to the reg to be eliminated. */
323 rtx to_rtx; /* REG rtx for the replacement. */
324 };
325
326 static struct elim_table *reg_eliminate = 0;
327
328 /* This is an intermediate structure to initialize the table. It has
329 exactly the members provided by ELIMINABLE_REGS. */
330 static struct elim_table_1
331 {
332 int from;
333 int to;
334 } reg_eliminate_1[] =
335
336 /* If a set of eliminable registers was specified, define the table from it.
337 Otherwise, default to the normal case of the frame pointer being
338 replaced by the stack pointer. */
339
340 #ifdef ELIMINABLE_REGS
341 ELIMINABLE_REGS;
342 #else
343 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
344 #endif
345
346 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
347
348 /* Record the number of pending eliminations that have an offset not equal
349 to their initial offset. If non-zero, we use a new copy of each
350 replacement result in any insns encountered. */
351 int num_not_at_initial_offset;
352
353 /* Count the number of registers that we may be able to eliminate. */
354 static int num_eliminable;
355 /* And the number of registers that are equivalent to a constant that
356 can be eliminated to frame_pointer / arg_pointer + constant. */
357 static int num_eliminable_invariants;
358
359 /* For each label, we record the offset of each elimination. If we reach
360 a label by more than one path and an offset differs, we cannot do the
361 elimination. This information is indexed by the number of the label.
362 The first table is an array of flags that records whether we have yet
363 encountered a label and the second table is an array of arrays, one
364 entry in the latter array for each elimination. */
365
366 static char *offsets_known_at;
367 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
368
369 /* Number of labels in the current function. */
370
371 static int num_labels;
372 \f
373 static void maybe_fix_stack_asms PARAMS ((void));
374 static void copy_reloads PARAMS ((struct insn_chain *));
375 static void calculate_needs_all_insns PARAMS ((int));
376 static int find_reg PARAMS ((struct insn_chain *, int));
377 static void find_reload_regs PARAMS ((struct insn_chain *));
378 static void select_reload_regs PARAMS ((void));
379 static void delete_caller_save_insns PARAMS ((void));
380
381 static void spill_failure PARAMS ((rtx, enum reg_class));
382 static void count_spilled_pseudo PARAMS ((int, int, int));
383 static void delete_dead_insn PARAMS ((rtx));
384 static void alter_reg PARAMS ((int, int));
385 static void set_label_offsets PARAMS ((rtx, rtx, int));
386 static void check_eliminable_occurrences PARAMS ((rtx));
387 static void elimination_effects PARAMS ((rtx, enum machine_mode));
388 static int eliminate_regs_in_insn PARAMS ((rtx, int));
389 static void update_eliminable_offsets PARAMS ((void));
390 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
391 static void set_initial_elim_offsets PARAMS ((void));
392 static void verify_initial_elim_offsets PARAMS ((void));
393 static void set_initial_label_offsets PARAMS ((void));
394 static void set_offsets_for_label PARAMS ((rtx));
395 static void init_elim_table PARAMS ((void));
396 static void update_eliminables PARAMS ((HARD_REG_SET *));
397 static void spill_hard_reg PARAMS ((unsigned int, int));
398 static int finish_spills PARAMS ((int));
399 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
400 static void scan_paradoxical_subregs PARAMS ((rtx));
401 static void count_pseudo PARAMS ((int));
402 static void order_regs_for_reload PARAMS ((struct insn_chain *));
403 static void reload_as_needed PARAMS ((int));
404 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
405 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
406 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
407 enum reload_type,
408 enum machine_mode));
409 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
410 enum reload_type,
411 enum machine_mode));
412 static int reload_reg_free_p PARAMS ((unsigned int, int,
413 enum reload_type));
414 static int reload_reg_free_for_value_p PARAMS ((int, int, enum reload_type,
415 rtx, rtx, int, int));
416 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
417 enum reload_type));
418 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
419 int));
420 static void failed_reload PARAMS ((rtx, int));
421 static int set_reload_reg PARAMS ((int, int));
422 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
423 static void choose_reload_regs PARAMS ((struct insn_chain *));
424 static void merge_assigned_reloads PARAMS ((rtx));
425 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
426 struct reload *, rtx, int));
427 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
428 struct reload *, int));
429 static void do_input_reload PARAMS ((struct insn_chain *,
430 struct reload *, int));
431 static void do_output_reload PARAMS ((struct insn_chain *,
432 struct reload *, int));
433 static void emit_reload_insns PARAMS ((struct insn_chain *));
434 static void delete_output_reload PARAMS ((rtx, int, int));
435 static void delete_address_reloads PARAMS ((rtx, rtx));
436 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
437 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
438 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
439 static void reload_cse_regs_1 PARAMS ((rtx));
440 static int reload_cse_noop_set_p PARAMS ((rtx));
441 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
442 static int reload_cse_simplify_operands PARAMS ((rtx));
443 static void reload_combine PARAMS ((void));
444 static void reload_combine_note_use PARAMS ((rtx *, rtx));
445 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
446 static void reload_cse_move2add PARAMS ((rtx));
447 static void move2add_note_store PARAMS ((rtx, rtx, void *));
448 #ifdef AUTO_INC_DEC
449 static void add_auto_inc_notes PARAMS ((rtx, rtx));
450 #endif
451 static rtx gen_mode_int PARAMS ((enum machine_mode,
452 HOST_WIDE_INT));
453 static void failed_reload PARAMS ((rtx, int));
454 static int set_reload_reg PARAMS ((int, int));
455 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
456 static void reload_cse_simplify PARAMS ((rtx));
457 extern void dump_needs PARAMS ((struct insn_chain *));
458 \f
459 /* Initialize the reload pass once per compilation. */
460
461 void
462 init_reload ()
463 {
464 register int i;
465
466 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
467 Set spill_indirect_levels to the number of levels such addressing is
468 permitted, zero if it is not permitted at all. */
469
470 register rtx tem
471 = gen_rtx_MEM (Pmode,
472 gen_rtx_PLUS (Pmode,
473 gen_rtx_REG (Pmode,
474 LAST_VIRTUAL_REGISTER + 1),
475 GEN_INT (4)));
476 spill_indirect_levels = 0;
477
478 while (memory_address_p (QImode, tem))
479 {
480 spill_indirect_levels++;
481 tem = gen_rtx_MEM (Pmode, tem);
482 }
483
484 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
485
486 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
487 indirect_symref_ok = memory_address_p (QImode, tem);
488
489 /* See if reg+reg is a valid (and offsettable) address. */
490
491 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
492 {
493 tem = gen_rtx_PLUS (Pmode,
494 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
495 gen_rtx_REG (Pmode, i));
496
497 /* This way, we make sure that reg+reg is an offsettable address. */
498 tem = plus_constant (tem, 4);
499
500 if (memory_address_p (QImode, tem))
501 {
502 double_reg_address_ok = 1;
503 break;
504 }
505 }
506
507 /* Initialize obstack for our rtl allocation. */
508 gcc_obstack_init (&reload_obstack);
509 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
510
511 INIT_REG_SET (&spilled_pseudos);
512 INIT_REG_SET (&pseudos_counted);
513 }
514
515 /* List of insn chains that are currently unused. */
516 static struct insn_chain *unused_insn_chains = 0;
517
518 /* Allocate an empty insn_chain structure. */
519 struct insn_chain *
520 new_insn_chain ()
521 {
522 struct insn_chain *c;
523
524 if (unused_insn_chains == 0)
525 {
526 c = (struct insn_chain *)
527 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
528 INIT_REG_SET (&c->live_throughout);
529 INIT_REG_SET (&c->dead_or_set);
530 }
531 else
532 {
533 c = unused_insn_chains;
534 unused_insn_chains = c->next;
535 }
536 c->is_caller_save_insn = 0;
537 c->need_operand_change = 0;
538 c->need_reload = 0;
539 c->need_elim = 0;
540 return c;
541 }
542
543 /* Small utility function to set all regs in hard reg set TO which are
544 allocated to pseudos in regset FROM. */
545
546 void
547 compute_use_by_pseudos (to, from)
548 HARD_REG_SET *to;
549 regset from;
550 {
551 unsigned int regno;
552
553 EXECUTE_IF_SET_IN_REG_SET
554 (from, FIRST_PSEUDO_REGISTER, regno,
555 {
556 int r = reg_renumber[regno];
557 int nregs;
558
559 if (r < 0)
560 {
561 /* reload_combine uses the information from
562 BASIC_BLOCK->global_live_at_start, which might still
563 contain registers that have not actually been allocated
564 since they have an equivalence. */
565 if (! reload_completed)
566 abort ();
567 }
568 else
569 {
570 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
571 while (nregs-- > 0)
572 SET_HARD_REG_BIT (*to, r + nregs);
573 }
574 });
575 }
576 \f
577 /* Global variables used by reload and its subroutines. */
578
579 /* Set during calculate_needs if an insn needs register elimination. */
580 static int something_needs_elimination;
581 /* Set during calculate_needs if an insn needs an operand changed. */
582 int something_needs_operands_changed;
583
584 /* Nonzero means we couldn't get enough spill regs. */
585 static int failure;
586
587 /* Main entry point for the reload pass.
588
589 FIRST is the first insn of the function being compiled.
590
591 GLOBAL nonzero means we were called from global_alloc
592 and should attempt to reallocate any pseudoregs that we
593 displace from hard regs we will use for reloads.
594 If GLOBAL is zero, we do not have enough information to do that,
595 so any pseudo reg that is spilled must go to the stack.
596
597 Return value is nonzero if reload failed
598 and we must not do any more for this function. */
599
600 int
601 reload (first, global)
602 rtx first;
603 int global;
604 {
605 register int i;
606 register rtx insn;
607 register struct elim_table *ep;
608
609 /* The two pointers used to track the true location of the memory used
610 for label offsets. */
611 char *real_known_ptr = NULL_PTR;
612 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
613
614 /* Make sure even insns with volatile mem refs are recognizable. */
615 init_recog ();
616
617 failure = 0;
618
619 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
620
621 /* Make sure that the last insn in the chain
622 is not something that needs reloading. */
623 emit_note (NULL_PTR, NOTE_INSN_DELETED);
624
625 /* Enable find_equiv_reg to distinguish insns made by reload. */
626 reload_first_uid = get_max_uid ();
627
628 #ifdef SECONDARY_MEMORY_NEEDED
629 /* Initialize the secondary memory table. */
630 clear_secondary_mem ();
631 #endif
632
633 /* We don't have a stack slot for any spill reg yet. */
634 bzero ((char *) spill_stack_slot, sizeof spill_stack_slot);
635 bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width);
636
637 /* Initialize the save area information for caller-save, in case some
638 are needed. */
639 init_save_areas ();
640
641 /* Compute which hard registers are now in use
642 as homes for pseudo registers.
643 This is done here rather than (eg) in global_alloc
644 because this point is reached even if not optimizing. */
645 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
646 mark_home_live (i);
647
648 /* A function that receives a nonlocal goto must save all call-saved
649 registers. */
650 if (current_function_has_nonlocal_label)
651 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
652 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
653 regs_ever_live[i] = 1;
654
655 /* Find all the pseudo registers that didn't get hard regs
656 but do have known equivalent constants or memory slots.
657 These include parameters (known equivalent to parameter slots)
658 and cse'd or loop-moved constant memory addresses.
659
660 Record constant equivalents in reg_equiv_constant
661 so they will be substituted by find_reloads.
662 Record memory equivalents in reg_mem_equiv so they can
663 be substituted eventually by altering the REG-rtx's. */
664
665 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
666 reg_equiv_memory_loc = (rtx *) xcalloc (max_regno, sizeof (rtx));
667 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
668 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
669 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
670 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
671 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
672 bcopy ((PTR) reg_renumber, (PTR) reg_old_renumber, max_regno * sizeof (short));
673 pseudo_forbidden_regs
674 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
675 pseudo_previous_regs
676 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
677
678 CLEAR_HARD_REG_SET (bad_spill_regs_global);
679
680 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
681 Also find all paradoxical subregs and find largest such for each pseudo.
682 On machines with small register classes, record hard registers that
683 are used for user variables. These can never be used for spills.
684 Also look for a "constant" NOTE_INSN_SETJMP. This means that all
685 caller-saved registers must be marked live. */
686
687 num_eliminable_invariants = 0;
688 for (insn = first; insn; insn = NEXT_INSN (insn))
689 {
690 rtx set = single_set (insn);
691
692 if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
693 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
694 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
695 if (! call_used_regs[i])
696 regs_ever_live[i] = 1;
697
698 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
699 {
700 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
701 if (note
702 #ifdef LEGITIMATE_PIC_OPERAND_P
703 && (! function_invariant_p (XEXP (note, 0))
704 || ! flag_pic
705 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
706 #endif
707 )
708 {
709 rtx x = XEXP (note, 0);
710 i = REGNO (SET_DEST (set));
711 if (i > LAST_VIRTUAL_REGISTER)
712 {
713 if (GET_CODE (x) == MEM)
714 {
715 /* If the operand is a PLUS, the MEM may be shared,
716 so make sure we have an unshared copy here. */
717 if (GET_CODE (XEXP (x, 0)) == PLUS)
718 x = copy_rtx (x);
719
720 reg_equiv_memory_loc[i] = x;
721 }
722 else if (function_invariant_p (x))
723 {
724 if (GET_CODE (x) == PLUS)
725 {
726 /* This is PLUS of frame pointer and a constant,
727 and might be shared. Unshare it. */
728 reg_equiv_constant[i] = copy_rtx (x);
729 num_eliminable_invariants++;
730 }
731 else if (x == frame_pointer_rtx
732 || x == arg_pointer_rtx)
733 {
734 reg_equiv_constant[i] = x;
735 num_eliminable_invariants++;
736 }
737 else if (LEGITIMATE_CONSTANT_P (x))
738 reg_equiv_constant[i] = x;
739 else
740 reg_equiv_memory_loc[i]
741 = force_const_mem (GET_MODE (SET_DEST (set)), x);
742 }
743 else
744 continue;
745
746 /* If this register is being made equivalent to a MEM
747 and the MEM is not SET_SRC, the equivalencing insn
748 is one with the MEM as a SET_DEST and it occurs later.
749 So don't mark this insn now. */
750 if (GET_CODE (x) != MEM
751 || rtx_equal_p (SET_SRC (set), x))
752 reg_equiv_init[i]
753 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
754 }
755 }
756 }
757
758 /* If this insn is setting a MEM from a register equivalent to it,
759 this is the equivalencing insn. */
760 else if (set && GET_CODE (SET_DEST (set)) == MEM
761 && GET_CODE (SET_SRC (set)) == REG
762 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
763 && rtx_equal_p (SET_DEST (set),
764 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
765 reg_equiv_init[REGNO (SET_SRC (set))]
766 = gen_rtx_INSN_LIST (VOIDmode, insn,
767 reg_equiv_init[REGNO (SET_SRC (set))]);
768
769 if (INSN_P (insn))
770 scan_paradoxical_subregs (PATTERN (insn));
771 }
772
773 init_elim_table ();
774
775 num_labels = max_label_num () - get_first_label_num ();
776
777 /* Allocate the tables used to store offset information at labels. */
778 /* We used to use alloca here, but the size of what it would try to
779 allocate would occasionally cause it to exceed the stack limit and
780 cause a core dump. */
781 real_known_ptr = xmalloc (num_labels);
782 real_at_ptr
783 = (int (*)[NUM_ELIMINABLE_REGS])
784 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
785
786 offsets_known_at = real_known_ptr - get_first_label_num ();
787 offsets_at
788 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
789
790 /* Alter each pseudo-reg rtx to contain its hard reg number.
791 Assign stack slots to the pseudos that lack hard regs or equivalents.
792 Do not touch virtual registers. */
793
794 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
795 alter_reg (i, -1);
796
797 /* If we have some registers we think can be eliminated, scan all insns to
798 see if there is an insn that sets one of these registers to something
799 other than itself plus a constant. If so, the register cannot be
800 eliminated. Doing this scan here eliminates an extra pass through the
801 main reload loop in the most common case where register elimination
802 cannot be done. */
803 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
804 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
805 || GET_CODE (insn) == CALL_INSN)
806 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
807
808 maybe_fix_stack_asms ();
809
810 insns_need_reload = 0;
811 something_needs_elimination = 0;
812
813 /* Initialize to -1, which means take the first spill register. */
814 last_spill_reg = -1;
815
816 /* Spill any hard regs that we know we can't eliminate. */
817 CLEAR_HARD_REG_SET (used_spill_regs);
818 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
819 if (! ep->can_eliminate)
820 spill_hard_reg (ep->from, 1);
821
822 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
823 if (frame_pointer_needed)
824 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
825 #endif
826 finish_spills (global);
827
828 /* From now on, we may need to generate moves differently. We may also
829 allow modifications of insns which cause them to not be recognized.
830 Any such modifications will be cleaned up during reload itself. */
831 reload_in_progress = 1;
832
833 /* This loop scans the entire function each go-round
834 and repeats until one repetition spills no additional hard regs. */
835 for (;;)
836 {
837 int something_changed;
838 int did_spill;
839
840 HOST_WIDE_INT starting_frame_size;
841
842 /* Round size of stack frame to stack_alignment_needed. This must be done
843 here because the stack size may be a part of the offset computation
844 for register elimination, and there might have been new stack slots
845 created in the last iteration of this loop. */
846 if (cfun->stack_alignment_needed)
847 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
848
849 starting_frame_size = get_frame_size ();
850
851 set_initial_elim_offsets ();
852 set_initial_label_offsets ();
853
854 /* For each pseudo register that has an equivalent location defined,
855 try to eliminate any eliminable registers (such as the frame pointer)
856 assuming initial offsets for the replacement register, which
857 is the normal case.
858
859 If the resulting location is directly addressable, substitute
860 the MEM we just got directly for the old REG.
861
862 If it is not addressable but is a constant or the sum of a hard reg
863 and constant, it is probably not addressable because the constant is
864 out of range, in that case record the address; we will generate
865 hairy code to compute the address in a register each time it is
866 needed. Similarly if it is a hard register, but one that is not
867 valid as an address register.
868
869 If the location is not addressable, but does not have one of the
870 above forms, assign a stack slot. We have to do this to avoid the
871 potential of producing lots of reloads if, e.g., a location involves
872 a pseudo that didn't get a hard register and has an equivalent memory
873 location that also involves a pseudo that didn't get a hard register.
874
875 Perhaps at some point we will improve reload_when_needed handling
876 so this problem goes away. But that's very hairy. */
877
878 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
879 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
880 {
881 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
882
883 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
884 XEXP (x, 0)))
885 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
886 else if (CONSTANT_P (XEXP (x, 0))
887 || (GET_CODE (XEXP (x, 0)) == REG
888 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
889 || (GET_CODE (XEXP (x, 0)) == PLUS
890 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
891 && (REGNO (XEXP (XEXP (x, 0), 0))
892 < FIRST_PSEUDO_REGISTER)
893 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
894 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
895 else
896 {
897 /* Make a new stack slot. Then indicate that something
898 changed so we go back and recompute offsets for
899 eliminable registers because the allocation of memory
900 below might change some offset. reg_equiv_{mem,address}
901 will be set up for this pseudo on the next pass around
902 the loop. */
903 reg_equiv_memory_loc[i] = 0;
904 reg_equiv_init[i] = 0;
905 alter_reg (i, -1);
906 }
907 }
908
909 if (caller_save_needed)
910 setup_save_areas ();
911
912 /* If we allocated another stack slot, redo elimination bookkeeping. */
913 if (starting_frame_size != get_frame_size ())
914 continue;
915
916 if (caller_save_needed)
917 {
918 save_call_clobbered_regs ();
919 /* That might have allocated new insn_chain structures. */
920 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
921 }
922
923 calculate_needs_all_insns (global);
924
925 CLEAR_REG_SET (&spilled_pseudos);
926 did_spill = 0;
927
928 something_changed = 0;
929
930 /* If we allocated any new memory locations, make another pass
931 since it might have changed elimination offsets. */
932 if (starting_frame_size != get_frame_size ())
933 something_changed = 1;
934
935 {
936 HARD_REG_SET to_spill;
937 CLEAR_HARD_REG_SET (to_spill);
938 update_eliminables (&to_spill);
939 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
940 if (TEST_HARD_REG_BIT (to_spill, i))
941 {
942 spill_hard_reg (i, 1);
943 did_spill = 1;
944
945 /* Regardless of the state of spills, if we previously had
946 a register that we thought we could eliminate, but no can
947 not eliminate, we must run another pass.
948
949 Consider pseudos which have an entry in reg_equiv_* which
950 reference an eliminable register. We must make another pass
951 to update reg_equiv_* so that we do not substitute in the
952 old value from when we thought the elimination could be
953 performed. */
954 something_changed = 1;
955 }
956 }
957
958 select_reload_regs ();
959 if (failure)
960 goto failed;
961
962 if (insns_need_reload != 0 || did_spill)
963 something_changed |= finish_spills (global);
964
965 if (! something_changed)
966 break;
967
968 if (caller_save_needed)
969 delete_caller_save_insns ();
970
971 obstack_free (&reload_obstack, reload_firstobj);
972 }
973
974 /* If global-alloc was run, notify it of any register eliminations we have
975 done. */
976 if (global)
977 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
978 if (ep->can_eliminate)
979 mark_elimination (ep->from, ep->to);
980
981 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
982 If that insn didn't set the register (i.e., it copied the register to
983 memory), just delete that insn instead of the equivalencing insn plus
984 anything now dead. If we call delete_dead_insn on that insn, we may
985 delete the insn that actually sets the register if the register dies
986 there and that is incorrect. */
987
988 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
989 {
990 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
991 {
992 rtx list;
993 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
994 {
995 rtx equiv_insn = XEXP (list, 0);
996 if (GET_CODE (equiv_insn) == NOTE)
997 continue;
998 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
999 delete_dead_insn (equiv_insn);
1000 else
1001 {
1002 PUT_CODE (equiv_insn, NOTE);
1003 NOTE_SOURCE_FILE (equiv_insn) = 0;
1004 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1005 }
1006 }
1007 }
1008 }
1009
1010 /* Use the reload registers where necessary
1011 by generating move instructions to move the must-be-register
1012 values into or out of the reload registers. */
1013
1014 if (insns_need_reload != 0 || something_needs_elimination
1015 || something_needs_operands_changed)
1016 {
1017 int old_frame_size = get_frame_size ();
1018
1019 reload_as_needed (global);
1020
1021 if (old_frame_size != get_frame_size ())
1022 abort ();
1023
1024 if (num_eliminable)
1025 verify_initial_elim_offsets ();
1026 }
1027
1028 /* If we were able to eliminate the frame pointer, show that it is no
1029 longer live at the start of any basic block. If it ls live by
1030 virtue of being in a pseudo, that pseudo will be marked live
1031 and hence the frame pointer will be known to be live via that
1032 pseudo. */
1033
1034 if (! frame_pointer_needed)
1035 for (i = 0; i < n_basic_blocks; i++)
1036 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
1037 HARD_FRAME_POINTER_REGNUM);
1038
1039 /* Come here (with failure set nonzero) if we can't get enough spill regs
1040 and we decide not to abort about it. */
1041 failed:
1042
1043 CLEAR_REG_SET (&spilled_pseudos);
1044 reload_in_progress = 0;
1045
1046 /* Now eliminate all pseudo regs by modifying them into
1047 their equivalent memory references.
1048 The REG-rtx's for the pseudos are modified in place,
1049 so all insns that used to refer to them now refer to memory.
1050
1051 For a reg that has a reg_equiv_address, all those insns
1052 were changed by reloading so that no insns refer to it any longer;
1053 but the DECL_RTL of a variable decl may refer to it,
1054 and if so this causes the debugging info to mention the variable. */
1055
1056 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1057 {
1058 rtx addr = 0;
1059 int in_struct = 0;
1060 int is_scalar = 0;
1061 int is_readonly = 0;
1062
1063 if (reg_equiv_memory_loc[i])
1064 {
1065 in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
1066 is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
1067 is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
1068 }
1069
1070 if (reg_equiv_mem[i])
1071 addr = XEXP (reg_equiv_mem[i], 0);
1072
1073 if (reg_equiv_address[i])
1074 addr = reg_equiv_address[i];
1075
1076 if (addr)
1077 {
1078 if (reg_renumber[i] < 0)
1079 {
1080 rtx reg = regno_reg_rtx[i];
1081 PUT_CODE (reg, MEM);
1082 XEXP (reg, 0) = addr;
1083 REG_USERVAR_P (reg) = 0;
1084 RTX_UNCHANGING_P (reg) = is_readonly;
1085 MEM_IN_STRUCT_P (reg) = in_struct;
1086 MEM_SCALAR_P (reg) = is_scalar;
1087 /* We have no alias information about this newly created
1088 MEM. */
1089 MEM_ALIAS_SET (reg) = 0;
1090 }
1091 else if (reg_equiv_mem[i])
1092 XEXP (reg_equiv_mem[i], 0) = addr;
1093 }
1094 }
1095
1096 /* We must set reload_completed now since the cleanup_subreg_operands call
1097 below will re-recognize each insn and reload may have generated insns
1098 which are only valid during and after reload. */
1099 reload_completed = 1;
1100
1101 /* Make a pass over all the insns and delete all USEs which we inserted
1102 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1103 notes. Delete all CLOBBER insns that don't refer to the return value
1104 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1105 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1106 and regenerate REG_INC notes that may have been moved around. */
1107
1108 for (insn = first; insn; insn = NEXT_INSN (insn))
1109 if (INSN_P (insn))
1110 {
1111 rtx *pnote;
1112
1113 if ((GET_CODE (PATTERN (insn)) == USE
1114 && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1115 || (GET_CODE (PATTERN (insn)) == CLOBBER
1116 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1117 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1118 {
1119 PUT_CODE (insn, NOTE);
1120 NOTE_SOURCE_FILE (insn) = 0;
1121 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1122 continue;
1123 }
1124
1125 pnote = &REG_NOTES (insn);
1126 while (*pnote != 0)
1127 {
1128 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1129 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1130 || REG_NOTE_KIND (*pnote) == REG_INC
1131 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1132 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1133 *pnote = XEXP (*pnote, 1);
1134 else
1135 pnote = &XEXP (*pnote, 1);
1136 }
1137
1138 #ifdef AUTO_INC_DEC
1139 add_auto_inc_notes (insn, PATTERN (insn));
1140 #endif
1141
1142 /* And simplify (subreg (reg)) if it appears as an operand. */
1143 cleanup_subreg_operands (insn);
1144 }
1145
1146 /* If we are doing stack checking, give a warning if this function's
1147 frame size is larger than we expect. */
1148 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1149 {
1150 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1151 static int verbose_warned = 0;
1152
1153 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1154 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1155 size += UNITS_PER_WORD;
1156
1157 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1158 {
1159 warning ("frame size too large for reliable stack checking");
1160 if (! verbose_warned)
1161 {
1162 warning ("try reducing the number of local variables");
1163 verbose_warned = 1;
1164 }
1165 }
1166 }
1167
1168 /* Indicate that we no longer have known memory locations or constants. */
1169 if (reg_equiv_constant)
1170 free (reg_equiv_constant);
1171 reg_equiv_constant = 0;
1172 if (reg_equiv_memory_loc)
1173 free (reg_equiv_memory_loc);
1174 reg_equiv_memory_loc = 0;
1175
1176 if (real_known_ptr)
1177 free (real_known_ptr);
1178 if (real_at_ptr)
1179 free (real_at_ptr);
1180
1181 free (reg_equiv_mem);
1182 free (reg_equiv_init);
1183 free (reg_equiv_address);
1184 free (reg_max_ref_width);
1185 free (reg_old_renumber);
1186 free (pseudo_previous_regs);
1187 free (pseudo_forbidden_regs);
1188
1189 CLEAR_HARD_REG_SET (used_spill_regs);
1190 for (i = 0; i < n_spills; i++)
1191 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1192
1193 /* Free all the insn_chain structures at once. */
1194 obstack_free (&reload_obstack, reload_startobj);
1195 unused_insn_chains = 0;
1196
1197 return failure;
1198 }
1199
1200 /* Yet another special case. Unfortunately, reg-stack forces people to
1201 write incorrect clobbers in asm statements. These clobbers must not
1202 cause the register to appear in bad_spill_regs, otherwise we'll call
1203 fatal_insn later. We clear the corresponding regnos in the live
1204 register sets to avoid this.
1205 The whole thing is rather sick, I'm afraid. */
1206
1207 static void
1208 maybe_fix_stack_asms ()
1209 {
1210 #ifdef STACK_REGS
1211 const char *constraints[MAX_RECOG_OPERANDS];
1212 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1213 struct insn_chain *chain;
1214
1215 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1216 {
1217 int i, noperands;
1218 HARD_REG_SET clobbered, allowed;
1219 rtx pat;
1220
1221 if (! INSN_P (chain->insn)
1222 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1223 continue;
1224 pat = PATTERN (chain->insn);
1225 if (GET_CODE (pat) != PARALLEL)
1226 continue;
1227
1228 CLEAR_HARD_REG_SET (clobbered);
1229 CLEAR_HARD_REG_SET (allowed);
1230
1231 /* First, make a mask of all stack regs that are clobbered. */
1232 for (i = 0; i < XVECLEN (pat, 0); i++)
1233 {
1234 rtx t = XVECEXP (pat, 0, i);
1235 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1236 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1237 }
1238
1239 /* Get the operand values and constraints out of the insn. */
1240 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1241 constraints, operand_mode);
1242
1243 /* For every operand, see what registers are allowed. */
1244 for (i = 0; i < noperands; i++)
1245 {
1246 const char *p = constraints[i];
1247 /* For every alternative, we compute the class of registers allowed
1248 for reloading in CLS, and merge its contents into the reg set
1249 ALLOWED. */
1250 int cls = (int) NO_REGS;
1251
1252 for (;;)
1253 {
1254 char c = *p++;
1255
1256 if (c == '\0' || c == ',' || c == '#')
1257 {
1258 /* End of one alternative - mark the regs in the current
1259 class, and reset the class. */
1260 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1261 cls = NO_REGS;
1262 if (c == '#')
1263 do {
1264 c = *p++;
1265 } while (c != '\0' && c != ',');
1266 if (c == '\0')
1267 break;
1268 continue;
1269 }
1270
1271 switch (c)
1272 {
1273 case '=': case '+': case '*': case '%': case '?': case '!':
1274 case '0': case '1': case '2': case '3': case '4': case 'm':
1275 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1276 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1277 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1278 case 'P':
1279 break;
1280
1281 case 'p':
1282 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1283 break;
1284
1285 case 'g':
1286 case 'r':
1287 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1288 break;
1289
1290 default:
1291 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1292
1293 }
1294 }
1295 }
1296 /* Those of the registers which are clobbered, but allowed by the
1297 constraints, must be usable as reload registers. So clear them
1298 out of the life information. */
1299 AND_HARD_REG_SET (allowed, clobbered);
1300 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1301 if (TEST_HARD_REG_BIT (allowed, i))
1302 {
1303 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1304 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1305 }
1306 }
1307
1308 #endif
1309 }
1310 \f
1311 /* Copy the global variables n_reloads and rld into the corresponding elts
1312 of CHAIN. */
1313 static void
1314 copy_reloads (chain)
1315 struct insn_chain *chain;
1316 {
1317 chain->n_reloads = n_reloads;
1318 chain->rld
1319 = (struct reload *) obstack_alloc (&reload_obstack,
1320 n_reloads * sizeof (struct reload));
1321 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1322 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1323 }
1324
1325 /* Walk the chain of insns, and determine for each whether it needs reloads
1326 and/or eliminations. Build the corresponding insns_need_reload list, and
1327 set something_needs_elimination as appropriate. */
1328 static void
1329 calculate_needs_all_insns (global)
1330 int global;
1331 {
1332 struct insn_chain **pprev_reload = &insns_need_reload;
1333 struct insn_chain *chain;
1334
1335 something_needs_elimination = 0;
1336
1337 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1338 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1339 {
1340 rtx insn = chain->insn;
1341
1342 /* Clear out the shortcuts. */
1343 chain->n_reloads = 0;
1344 chain->need_elim = 0;
1345 chain->need_reload = 0;
1346 chain->need_operand_change = 0;
1347
1348 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1349 include REG_LABEL), we need to see what effects this has on the
1350 known offsets at labels. */
1351
1352 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1353 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1354 set_label_offsets (insn, insn, 0);
1355
1356 if (INSN_P (insn))
1357 {
1358 rtx old_body = PATTERN (insn);
1359 int old_code = INSN_CODE (insn);
1360 rtx old_notes = REG_NOTES (insn);
1361 int did_elimination = 0;
1362 int operands_changed = 0;
1363 rtx set = single_set (insn);
1364
1365 /* Skip insns that only set an equivalence. */
1366 if (set && GET_CODE (SET_DEST (set)) == REG
1367 && reg_renumber[REGNO (SET_DEST (set))] < 0
1368 && reg_equiv_constant[REGNO (SET_DEST (set))])
1369 continue;
1370
1371 /* If needed, eliminate any eliminable registers. */
1372 if (num_eliminable || num_eliminable_invariants)
1373 did_elimination = eliminate_regs_in_insn (insn, 0);
1374
1375 /* Analyze the instruction. */
1376 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1377 global, spill_reg_order);
1378
1379 /* If a no-op set needs more than one reload, this is likely
1380 to be something that needs input address reloads. We
1381 can't get rid of this cleanly later, and it is of no use
1382 anyway, so discard it now.
1383 We only do this when expensive_optimizations is enabled,
1384 since this complements reload inheritance / output
1385 reload deletion, and it can make debugging harder. */
1386 if (flag_expensive_optimizations && n_reloads > 1)
1387 {
1388 rtx set = single_set (insn);
1389 if (set
1390 && SET_SRC (set) == SET_DEST (set)
1391 && GET_CODE (SET_SRC (set)) == REG
1392 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1393 {
1394 PUT_CODE (insn, NOTE);
1395 NOTE_SOURCE_FILE (insn) = 0;
1396 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1397 continue;
1398 }
1399 }
1400 if (num_eliminable)
1401 update_eliminable_offsets ();
1402
1403 /* Remember for later shortcuts which insns had any reloads or
1404 register eliminations. */
1405 chain->need_elim = did_elimination;
1406 chain->need_reload = n_reloads > 0;
1407 chain->need_operand_change = operands_changed;
1408
1409 /* Discard any register replacements done. */
1410 if (did_elimination)
1411 {
1412 obstack_free (&reload_obstack, reload_insn_firstobj);
1413 PATTERN (insn) = old_body;
1414 INSN_CODE (insn) = old_code;
1415 REG_NOTES (insn) = old_notes;
1416 something_needs_elimination = 1;
1417 }
1418
1419 something_needs_operands_changed |= operands_changed;
1420
1421 if (n_reloads != 0)
1422 {
1423 copy_reloads (chain);
1424 *pprev_reload = chain;
1425 pprev_reload = &chain->next_need_reload;
1426 }
1427 }
1428 }
1429 *pprev_reload = 0;
1430 }
1431 \f
1432 /* Comparison function for qsort to decide which of two reloads
1433 should be handled first. *P1 and *P2 are the reload numbers. */
1434
1435 static int
1436 reload_reg_class_lower (r1p, r2p)
1437 const PTR r1p;
1438 const PTR r2p;
1439 {
1440 register int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1441 register int t;
1442
1443 /* Consider required reloads before optional ones. */
1444 t = rld[r1].optional - rld[r2].optional;
1445 if (t != 0)
1446 return t;
1447
1448 /* Count all solitary classes before non-solitary ones. */
1449 t = ((reg_class_size[(int) rld[r2].class] == 1)
1450 - (reg_class_size[(int) rld[r1].class] == 1));
1451 if (t != 0)
1452 return t;
1453
1454 /* Aside from solitaires, consider all multi-reg groups first. */
1455 t = rld[r2].nregs - rld[r1].nregs;
1456 if (t != 0)
1457 return t;
1458
1459 /* Consider reloads in order of increasing reg-class number. */
1460 t = (int) rld[r1].class - (int) rld[r2].class;
1461 if (t != 0)
1462 return t;
1463
1464 /* If reloads are equally urgent, sort by reload number,
1465 so that the results of qsort leave nothing to chance. */
1466 return r1 - r2;
1467 }
1468 \f
1469 /* The cost of spilling each hard reg. */
1470 static int spill_cost[FIRST_PSEUDO_REGISTER];
1471
1472 /* When spilling multiple hard registers, we use SPILL_COST for the first
1473 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1474 only the first hard reg for a multi-reg pseudo. */
1475 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1476
1477 /* Update the spill cost arrays, considering that pseudo REG is live. */
1478
1479 static void
1480 count_pseudo (reg)
1481 int reg;
1482 {
1483 int n_refs = REG_N_REFS (reg);
1484 int r = reg_renumber[reg];
1485 int nregs;
1486
1487 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1488 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1489 return;
1490
1491 SET_REGNO_REG_SET (&pseudos_counted, reg);
1492
1493 if (r < 0)
1494 abort ();
1495
1496 spill_add_cost[r] += n_refs;
1497
1498 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1499 while (nregs-- > 0)
1500 spill_cost[r + nregs] += n_refs;
1501 }
1502
1503 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1504 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1505
1506 static void
1507 order_regs_for_reload (chain)
1508 struct insn_chain *chain;
1509 {
1510 int i;
1511 HARD_REG_SET used_by_pseudos;
1512 HARD_REG_SET used_by_pseudos2;
1513
1514 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1515
1516 memset (spill_cost, 0, sizeof spill_cost);
1517 memset (spill_add_cost, 0, sizeof spill_add_cost);
1518
1519 /* Count number of uses of each hard reg by pseudo regs allocated to it
1520 and then order them by decreasing use. First exclude hard registers
1521 that are live in or across this insn. */
1522
1523 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1524 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1525 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1526 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1527
1528 /* Now find out which pseudos are allocated to it, and update
1529 hard_reg_n_uses. */
1530 CLEAR_REG_SET (&pseudos_counted);
1531
1532 EXECUTE_IF_SET_IN_REG_SET
1533 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1534 {
1535 count_pseudo (i);
1536 });
1537 EXECUTE_IF_SET_IN_REG_SET
1538 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1539 {
1540 count_pseudo (i);
1541 });
1542 CLEAR_REG_SET (&pseudos_counted);
1543 }
1544 \f
1545 /* Vector of reload-numbers showing the order in which the reloads should
1546 be processed. */
1547 static short reload_order[MAX_RELOADS];
1548
1549 /* This is used to keep track of the spill regs used in one insn. */
1550 static HARD_REG_SET used_spill_regs_local;
1551
1552 /* We decided to spill hard register SPILLED, which has a size of
1553 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1554 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1555 update SPILL_COST/SPILL_ADD_COST. */
1556
1557 static void
1558 count_spilled_pseudo (spilled, spilled_nregs, reg)
1559 int spilled, spilled_nregs, reg;
1560 {
1561 int r = reg_renumber[reg];
1562 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1563
1564 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1565 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1566 return;
1567
1568 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1569
1570 spill_add_cost[r] -= REG_N_REFS (reg);
1571 while (nregs-- > 0)
1572 spill_cost[r + nregs] -= REG_N_REFS (reg);
1573 }
1574
1575 /* Find reload register to use for reload number ORDER. */
1576
1577 static int
1578 find_reg (chain, order)
1579 struct insn_chain *chain;
1580 int order;
1581 {
1582 int rnum = reload_order[order];
1583 struct reload *rl = rld + rnum;
1584 int best_cost = INT_MAX;
1585 int best_reg = -1;
1586 unsigned int i, j;
1587 int k;
1588 HARD_REG_SET not_usable;
1589 HARD_REG_SET used_by_other_reload;
1590
1591 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1592 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1593 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1594
1595 CLEAR_HARD_REG_SET (used_by_other_reload);
1596 for (k = 0; k < order; k++)
1597 {
1598 int other = reload_order[k];
1599
1600 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1601 for (j = 0; j < rld[other].nregs; j++)
1602 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1603 }
1604
1605 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1606 {
1607 unsigned int regno = i;
1608
1609 if (! TEST_HARD_REG_BIT (not_usable, regno)
1610 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1611 && HARD_REGNO_MODE_OK (regno, rl->mode))
1612 {
1613 int this_cost = spill_cost[regno];
1614 int ok = 1;
1615 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1616
1617 for (j = 1; j < this_nregs; j++)
1618 {
1619 this_cost += spill_add_cost[regno + j];
1620 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1621 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1622 ok = 0;
1623 }
1624 if (! ok)
1625 continue;
1626 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1627 this_cost--;
1628 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1629 this_cost--;
1630 if (this_cost < best_cost
1631 /* Among registers with equal cost, prefer caller-saved ones, or
1632 use REG_ALLOC_ORDER if it is defined. */
1633 || (this_cost == best_cost
1634 #ifdef REG_ALLOC_ORDER
1635 && (inv_reg_alloc_order[regno]
1636 < inv_reg_alloc_order[best_reg])
1637 #else
1638 && call_used_regs[regno]
1639 && ! call_used_regs[best_reg]
1640 #endif
1641 ))
1642 {
1643 best_reg = regno;
1644 best_cost = this_cost;
1645 }
1646 }
1647 }
1648 if (best_reg == -1)
1649 return 0;
1650
1651 if (rtl_dump_file)
1652 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1653
1654 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1655 rl->regno = best_reg;
1656
1657 EXECUTE_IF_SET_IN_REG_SET
1658 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1659 {
1660 count_spilled_pseudo (best_reg, rl->nregs, j);
1661 });
1662
1663 EXECUTE_IF_SET_IN_REG_SET
1664 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1665 {
1666 count_spilled_pseudo (best_reg, rl->nregs, j);
1667 });
1668
1669 for (i = 0; i < rl->nregs; i++)
1670 {
1671 if (spill_cost[best_reg + i] != 0
1672 || spill_add_cost[best_reg + i] != 0)
1673 abort ();
1674 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1675 }
1676 return 1;
1677 }
1678
1679 /* Find more reload regs to satisfy the remaining need of an insn, which
1680 is given by CHAIN.
1681 Do it by ascending class number, since otherwise a reg
1682 might be spilled for a big class and might fail to count
1683 for a smaller class even though it belongs to that class. */
1684
1685 static void
1686 find_reload_regs (chain)
1687 struct insn_chain *chain;
1688 {
1689 int i;
1690
1691 /* In order to be certain of getting the registers we need,
1692 we must sort the reloads into order of increasing register class.
1693 Then our grabbing of reload registers will parallel the process
1694 that provided the reload registers. */
1695 for (i = 0; i < chain->n_reloads; i++)
1696 {
1697 /* Show whether this reload already has a hard reg. */
1698 if (chain->rld[i].reg_rtx)
1699 {
1700 int regno = REGNO (chain->rld[i].reg_rtx);
1701 chain->rld[i].regno = regno;
1702 chain->rld[i].nregs
1703 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1704 }
1705 else
1706 chain->rld[i].regno = -1;
1707 reload_order[i] = i;
1708 }
1709
1710 n_reloads = chain->n_reloads;
1711 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1712
1713 CLEAR_HARD_REG_SET (used_spill_regs_local);
1714
1715 if (rtl_dump_file)
1716 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1717
1718 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1719
1720 /* Compute the order of preference for hard registers to spill. */
1721
1722 order_regs_for_reload (chain);
1723
1724 for (i = 0; i < n_reloads; i++)
1725 {
1726 int r = reload_order[i];
1727
1728 /* Ignore reloads that got marked inoperative. */
1729 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1730 && ! rld[r].optional
1731 && rld[r].regno == -1)
1732 if (! find_reg (chain, i))
1733 {
1734 spill_failure (chain->insn, rld[r].class);
1735 failure = 1;
1736 return;
1737 }
1738 }
1739
1740 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1741 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1742
1743 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1744 }
1745
1746 static void
1747 select_reload_regs ()
1748 {
1749 struct insn_chain *chain;
1750
1751 /* Try to satisfy the needs for each insn. */
1752 for (chain = insns_need_reload; chain != 0;
1753 chain = chain->next_need_reload)
1754 find_reload_regs (chain);
1755 }
1756 \f
1757 /* Delete all insns that were inserted by emit_caller_save_insns during
1758 this iteration. */
1759 static void
1760 delete_caller_save_insns ()
1761 {
1762 struct insn_chain *c = reload_insn_chain;
1763
1764 while (c != 0)
1765 {
1766 while (c != 0 && c->is_caller_save_insn)
1767 {
1768 struct insn_chain *next = c->next;
1769 rtx insn = c->insn;
1770
1771 if (insn == BLOCK_HEAD (c->block))
1772 BLOCK_HEAD (c->block) = NEXT_INSN (insn);
1773 if (insn == BLOCK_END (c->block))
1774 BLOCK_END (c->block) = PREV_INSN (insn);
1775 if (c == reload_insn_chain)
1776 reload_insn_chain = next;
1777
1778 if (NEXT_INSN (insn) != 0)
1779 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1780 if (PREV_INSN (insn) != 0)
1781 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1782
1783 if (next)
1784 next->prev = c->prev;
1785 if (c->prev)
1786 c->prev->next = next;
1787 c->next = unused_insn_chains;
1788 unused_insn_chains = c;
1789 c = next;
1790 }
1791 if (c != 0)
1792 c = c->next;
1793 }
1794 }
1795 \f
1796 /* Handle the failure to find a register to spill.
1797 INSN should be one of the insns which needed this particular spill reg. */
1798
1799 static void
1800 spill_failure (insn, class)
1801 rtx insn;
1802 enum reg_class class;
1803 {
1804 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1805 if (asm_noperands (PATTERN (insn)) >= 0)
1806 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1807 reg_class_names[class]);
1808 else
1809 {
1810 error ("Unable to find a register to spill in class `%s'.",
1811 reg_class_names[class]);
1812 fatal_insn ("This is the insn:", insn);
1813 }
1814 }
1815 \f
1816 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1817 data that is dead in INSN. */
1818
1819 static void
1820 delete_dead_insn (insn)
1821 rtx insn;
1822 {
1823 rtx prev = prev_real_insn (insn);
1824 rtx prev_dest;
1825
1826 /* If the previous insn sets a register that dies in our insn, delete it
1827 too. */
1828 if (prev && GET_CODE (PATTERN (prev)) == SET
1829 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1830 && reg_mentioned_p (prev_dest, PATTERN (insn))
1831 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1832 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1833 delete_dead_insn (prev);
1834
1835 PUT_CODE (insn, NOTE);
1836 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1837 NOTE_SOURCE_FILE (insn) = 0;
1838 }
1839
1840 /* Modify the home of pseudo-reg I.
1841 The new home is present in reg_renumber[I].
1842
1843 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1844 or it may be -1, meaning there is none or it is not relevant.
1845 This is used so that all pseudos spilled from a given hard reg
1846 can share one stack slot. */
1847
1848 static void
1849 alter_reg (i, from_reg)
1850 register int i;
1851 int from_reg;
1852 {
1853 /* When outputting an inline function, this can happen
1854 for a reg that isn't actually used. */
1855 if (regno_reg_rtx[i] == 0)
1856 return;
1857
1858 /* If the reg got changed to a MEM at rtl-generation time,
1859 ignore it. */
1860 if (GET_CODE (regno_reg_rtx[i]) != REG)
1861 return;
1862
1863 /* Modify the reg-rtx to contain the new hard reg
1864 number or else to contain its pseudo reg number. */
1865 REGNO (regno_reg_rtx[i])
1866 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1867
1868 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1869 allocate a stack slot for it. */
1870
1871 if (reg_renumber[i] < 0
1872 && REG_N_REFS (i) > 0
1873 && reg_equiv_constant[i] == 0
1874 && reg_equiv_memory_loc[i] == 0)
1875 {
1876 register rtx x;
1877 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1878 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1879 int adjust = 0;
1880
1881 /* Each pseudo reg has an inherent size which comes from its own mode,
1882 and a total size which provides room for paradoxical subregs
1883 which refer to the pseudo reg in wider modes.
1884
1885 We can use a slot already allocated if it provides both
1886 enough inherent space and enough total space.
1887 Otherwise, we allocate a new slot, making sure that it has no less
1888 inherent space, and no less total space, then the previous slot. */
1889 if (from_reg == -1)
1890 {
1891 /* No known place to spill from => no slot to reuse. */
1892 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1893 inherent_size == total_size ? 0 : -1);
1894 if (BYTES_BIG_ENDIAN)
1895 /* Cancel the big-endian correction done in assign_stack_local.
1896 Get the address of the beginning of the slot.
1897 This is so we can do a big-endian correction unconditionally
1898 below. */
1899 adjust = inherent_size - total_size;
1900
1901 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1902
1903 /* Nothing can alias this slot except this pseudo. */
1904 MEM_ALIAS_SET (x) = new_alias_set ();
1905 }
1906
1907 /* Reuse a stack slot if possible. */
1908 else if (spill_stack_slot[from_reg] != 0
1909 && spill_stack_slot_width[from_reg] >= total_size
1910 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1911 >= inherent_size))
1912 x = spill_stack_slot[from_reg];
1913
1914 /* Allocate a bigger slot. */
1915 else
1916 {
1917 /* Compute maximum size needed, both for inherent size
1918 and for total size. */
1919 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1920 rtx stack_slot;
1921
1922 if (spill_stack_slot[from_reg])
1923 {
1924 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1925 > inherent_size)
1926 mode = GET_MODE (spill_stack_slot[from_reg]);
1927 if (spill_stack_slot_width[from_reg] > total_size)
1928 total_size = spill_stack_slot_width[from_reg];
1929 }
1930
1931 /* Make a slot with that size. */
1932 x = assign_stack_local (mode, total_size,
1933 inherent_size == total_size ? 0 : -1);
1934 stack_slot = x;
1935
1936 /* All pseudos mapped to this slot can alias each other. */
1937 if (spill_stack_slot[from_reg])
1938 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (spill_stack_slot[from_reg]);
1939 else
1940 MEM_ALIAS_SET (x) = new_alias_set ();
1941
1942 if (BYTES_BIG_ENDIAN)
1943 {
1944 /* Cancel the big-endian correction done in assign_stack_local.
1945 Get the address of the beginning of the slot.
1946 This is so we can do a big-endian correction unconditionally
1947 below. */
1948 adjust = GET_MODE_SIZE (mode) - total_size;
1949 if (adjust)
1950 stack_slot = gen_rtx_MEM (mode_for_size (total_size
1951 * BITS_PER_UNIT,
1952 MODE_INT, 1),
1953 plus_constant (XEXP (x, 0), adjust));
1954 }
1955
1956 spill_stack_slot[from_reg] = stack_slot;
1957 spill_stack_slot_width[from_reg] = total_size;
1958 }
1959
1960 /* On a big endian machine, the "address" of the slot
1961 is the address of the low part that fits its inherent mode. */
1962 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
1963 adjust += (total_size - inherent_size);
1964
1965 /* If we have any adjustment to make, or if the stack slot is the
1966 wrong mode, make a new stack slot. */
1967 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
1968 {
1969 rtx new = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
1970 plus_constant (XEXP (x, 0), adjust));
1971
1972 MEM_COPY_ATTRIBUTES (new, x);
1973 x = new;
1974 }
1975
1976 /* Save the stack slot for later. */
1977 reg_equiv_memory_loc[i] = x;
1978 }
1979 }
1980
1981 /* Mark the slots in regs_ever_live for the hard regs
1982 used by pseudo-reg number REGNO. */
1983
1984 void
1985 mark_home_live (regno)
1986 int regno;
1987 {
1988 register int i, lim;
1989
1990 i = reg_renumber[regno];
1991 if (i < 0)
1992 return;
1993 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
1994 while (i < lim)
1995 regs_ever_live[i++] = 1;
1996 }
1997 \f
1998 /* This function handles the tracking of elimination offsets around branches.
1999
2000 X is a piece of RTL being scanned.
2001
2002 INSN is the insn that it came from, if any.
2003
2004 INITIAL_P is non-zero if we are to set the offset to be the initial
2005 offset and zero if we are setting the offset of the label to be the
2006 current offset. */
2007
2008 static void
2009 set_label_offsets (x, insn, initial_p)
2010 rtx x;
2011 rtx insn;
2012 int initial_p;
2013 {
2014 enum rtx_code code = GET_CODE (x);
2015 rtx tem;
2016 unsigned int i;
2017 struct elim_table *p;
2018
2019 switch (code)
2020 {
2021 case LABEL_REF:
2022 if (LABEL_REF_NONLOCAL_P (x))
2023 return;
2024
2025 x = XEXP (x, 0);
2026
2027 /* ... fall through ... */
2028
2029 case CODE_LABEL:
2030 /* If we know nothing about this label, set the desired offsets. Note
2031 that this sets the offset at a label to be the offset before a label
2032 if we don't know anything about the label. This is not correct for
2033 the label after a BARRIER, but is the best guess we can make. If
2034 we guessed wrong, we will suppress an elimination that might have
2035 been possible had we been able to guess correctly. */
2036
2037 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2038 {
2039 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2040 offsets_at[CODE_LABEL_NUMBER (x)][i]
2041 = (initial_p ? reg_eliminate[i].initial_offset
2042 : reg_eliminate[i].offset);
2043 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2044 }
2045
2046 /* Otherwise, if this is the definition of a label and it is
2047 preceded by a BARRIER, set our offsets to the known offset of
2048 that label. */
2049
2050 else if (x == insn
2051 && (tem = prev_nonnote_insn (insn)) != 0
2052 && GET_CODE (tem) == BARRIER)
2053 set_offsets_for_label (insn);
2054 else
2055 /* If neither of the above cases is true, compare each offset
2056 with those previously recorded and suppress any eliminations
2057 where the offsets disagree. */
2058
2059 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2060 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2061 != (initial_p ? reg_eliminate[i].initial_offset
2062 : reg_eliminate[i].offset))
2063 reg_eliminate[i].can_eliminate = 0;
2064
2065 return;
2066
2067 case JUMP_INSN:
2068 set_label_offsets (PATTERN (insn), insn, initial_p);
2069
2070 /* ... fall through ... */
2071
2072 case INSN:
2073 case CALL_INSN:
2074 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2075 and hence must have all eliminations at their initial offsets. */
2076 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2077 if (REG_NOTE_KIND (tem) == REG_LABEL)
2078 set_label_offsets (XEXP (tem, 0), insn, 1);
2079 return;
2080
2081 case ADDR_VEC:
2082 case ADDR_DIFF_VEC:
2083 /* Each of the labels in the address vector must be at their initial
2084 offsets. We want the first field for ADDR_VEC and the second
2085 field for ADDR_DIFF_VEC. */
2086
2087 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2088 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2089 insn, initial_p);
2090 return;
2091
2092 case SET:
2093 /* We only care about setting PC. If the source is not RETURN,
2094 IF_THEN_ELSE, or a label, disable any eliminations not at
2095 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2096 isn't one of those possibilities. For branches to a label,
2097 call ourselves recursively.
2098
2099 Note that this can disable elimination unnecessarily when we have
2100 a non-local goto since it will look like a non-constant jump to
2101 someplace in the current function. This isn't a significant
2102 problem since such jumps will normally be when all elimination
2103 pairs are back to their initial offsets. */
2104
2105 if (SET_DEST (x) != pc_rtx)
2106 return;
2107
2108 switch (GET_CODE (SET_SRC (x)))
2109 {
2110 case PC:
2111 case RETURN:
2112 return;
2113
2114 case LABEL_REF:
2115 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2116 return;
2117
2118 case IF_THEN_ELSE:
2119 tem = XEXP (SET_SRC (x), 1);
2120 if (GET_CODE (tem) == LABEL_REF)
2121 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2122 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2123 break;
2124
2125 tem = XEXP (SET_SRC (x), 2);
2126 if (GET_CODE (tem) == LABEL_REF)
2127 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2128 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2129 break;
2130 return;
2131
2132 default:
2133 break;
2134 }
2135
2136 /* If we reach here, all eliminations must be at their initial
2137 offset because we are doing a jump to a variable address. */
2138 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2139 if (p->offset != p->initial_offset)
2140 p->can_eliminate = 0;
2141 break;
2142
2143 default:
2144 break;
2145 }
2146 }
2147 \f
2148 /* Scan X and replace any eliminable registers (such as fp) with a
2149 replacement (such as sp), plus an offset.
2150
2151 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2152 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2153 MEM, we are allowed to replace a sum of a register and the constant zero
2154 with the register, which we cannot do outside a MEM. In addition, we need
2155 to record the fact that a register is referenced outside a MEM.
2156
2157 If INSN is an insn, it is the insn containing X. If we replace a REG
2158 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2159 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2160 the REG is being modified.
2161
2162 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2163 That's used when we eliminate in expressions stored in notes.
2164 This means, do not set ref_outside_mem even if the reference
2165 is outside of MEMs.
2166
2167 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2168 replacements done assuming all offsets are at their initial values. If
2169 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2170 encounter, return the actual location so that find_reloads will do
2171 the proper thing. */
2172
2173 rtx
2174 eliminate_regs (x, mem_mode, insn)
2175 rtx x;
2176 enum machine_mode mem_mode;
2177 rtx insn;
2178 {
2179 enum rtx_code code = GET_CODE (x);
2180 struct elim_table *ep;
2181 int regno;
2182 rtx new;
2183 int i, j;
2184 const char *fmt;
2185 int copied = 0;
2186
2187 if (! current_function_decl)
2188 return x;
2189
2190 switch (code)
2191 {
2192 case CONST_INT:
2193 case CONST_DOUBLE:
2194 case CONST:
2195 case SYMBOL_REF:
2196 case CODE_LABEL:
2197 case PC:
2198 case CC0:
2199 case ASM_INPUT:
2200 case ADDR_VEC:
2201 case ADDR_DIFF_VEC:
2202 case RETURN:
2203 return x;
2204
2205 case ADDRESSOF:
2206 /* This is only for the benefit of the debugging backends, which call
2207 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2208 removed after CSE. */
2209 new = eliminate_regs (XEXP (x, 0), 0, insn);
2210 if (GET_CODE (new) == MEM)
2211 return XEXP (new, 0);
2212 return x;
2213
2214 case REG:
2215 regno = REGNO (x);
2216
2217 /* First handle the case where we encounter a bare register that
2218 is eliminable. Replace it with a PLUS. */
2219 if (regno < FIRST_PSEUDO_REGISTER)
2220 {
2221 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2222 ep++)
2223 if (ep->from_rtx == x && ep->can_eliminate)
2224 return plus_constant (ep->to_rtx, ep->previous_offset);
2225
2226 }
2227 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2228 && reg_equiv_constant[regno]
2229 && ! CONSTANT_P (reg_equiv_constant[regno]))
2230 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2231 mem_mode, insn);
2232 return x;
2233
2234 /* You might think handling MINUS in a manner similar to PLUS is a
2235 good idea. It is not. It has been tried multiple times and every
2236 time the change has had to have been reverted.
2237
2238 Other parts of reload know a PLUS is special (gen_reload for example)
2239 and require special code to handle code a reloaded PLUS operand.
2240
2241 Also consider backends where the flags register is clobbered by a
2242 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2243 lea instruction comes to mind). If we try to reload a MINUS, we
2244 may kill the flags register that was holding a useful value.
2245
2246 So, please before trying to handle MINUS, consider reload as a
2247 whole instead of this little section as well as the backend issues. */
2248 case PLUS:
2249 /* If this is the sum of an eliminable register and a constant, rework
2250 the sum. */
2251 if (GET_CODE (XEXP (x, 0)) == REG
2252 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2253 && CONSTANT_P (XEXP (x, 1)))
2254 {
2255 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2256 ep++)
2257 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2258 {
2259 /* The only time we want to replace a PLUS with a REG (this
2260 occurs when the constant operand of the PLUS is the negative
2261 of the offset) is when we are inside a MEM. We won't want
2262 to do so at other times because that would change the
2263 structure of the insn in a way that reload can't handle.
2264 We special-case the commonest situation in
2265 eliminate_regs_in_insn, so just replace a PLUS with a
2266 PLUS here, unless inside a MEM. */
2267 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2268 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2269 return ep->to_rtx;
2270 else
2271 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2272 plus_constant (XEXP (x, 1),
2273 ep->previous_offset));
2274 }
2275
2276 /* If the register is not eliminable, we are done since the other
2277 operand is a constant. */
2278 return x;
2279 }
2280
2281 /* If this is part of an address, we want to bring any constant to the
2282 outermost PLUS. We will do this by doing register replacement in
2283 our operands and seeing if a constant shows up in one of them.
2284
2285 Note that there is no risk of modifying the structure of the insn,
2286 since we only get called for its operands, thus we are either
2287 modifying the address inside a MEM, or something like an address
2288 operand of a load-address insn. */
2289
2290 {
2291 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2292 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2293
2294 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2295 {
2296 /* If one side is a PLUS and the other side is a pseudo that
2297 didn't get a hard register but has a reg_equiv_constant,
2298 we must replace the constant here since it may no longer
2299 be in the position of any operand. */
2300 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2301 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2302 && reg_renumber[REGNO (new1)] < 0
2303 && reg_equiv_constant != 0
2304 && reg_equiv_constant[REGNO (new1)] != 0)
2305 new1 = reg_equiv_constant[REGNO (new1)];
2306 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2307 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2308 && reg_renumber[REGNO (new0)] < 0
2309 && reg_equiv_constant[REGNO (new0)] != 0)
2310 new0 = reg_equiv_constant[REGNO (new0)];
2311
2312 new = form_sum (new0, new1);
2313
2314 /* As above, if we are not inside a MEM we do not want to
2315 turn a PLUS into something else. We might try to do so here
2316 for an addition of 0 if we aren't optimizing. */
2317 if (! mem_mode && GET_CODE (new) != PLUS)
2318 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2319 else
2320 return new;
2321 }
2322 }
2323 return x;
2324
2325 case MULT:
2326 /* If this is the product of an eliminable register and a
2327 constant, apply the distribute law and move the constant out
2328 so that we have (plus (mult ..) ..). This is needed in order
2329 to keep load-address insns valid. This case is pathological.
2330 We ignore the possibility of overflow here. */
2331 if (GET_CODE (XEXP (x, 0)) == REG
2332 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2333 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2334 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2335 ep++)
2336 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2337 {
2338 if (! mem_mode
2339 /* Refs inside notes don't count for this purpose. */
2340 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2341 || GET_CODE (insn) == INSN_LIST)))
2342 ep->ref_outside_mem = 1;
2343
2344 return
2345 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2346 ep->previous_offset * INTVAL (XEXP (x, 1)));
2347 }
2348
2349 /* ... fall through ... */
2350
2351 case CALL:
2352 case COMPARE:
2353 /* See comments before PLUS about handling MINUS. */
2354 case MINUS:
2355 case DIV: case UDIV:
2356 case MOD: case UMOD:
2357 case AND: case IOR: case XOR:
2358 case ROTATERT: case ROTATE:
2359 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2360 case NE: case EQ:
2361 case GE: case GT: case GEU: case GTU:
2362 case LE: case LT: case LEU: case LTU:
2363 {
2364 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2365 rtx new1
2366 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2367
2368 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2369 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2370 }
2371 return x;
2372
2373 case EXPR_LIST:
2374 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2375 if (XEXP (x, 0))
2376 {
2377 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2378 if (new != XEXP (x, 0))
2379 {
2380 /* If this is a REG_DEAD note, it is not valid anymore.
2381 Using the eliminated version could result in creating a
2382 REG_DEAD note for the stack or frame pointer. */
2383 if (GET_MODE (x) == REG_DEAD)
2384 return (XEXP (x, 1)
2385 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2386 : NULL_RTX);
2387
2388 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2389 }
2390 }
2391
2392 /* ... fall through ... */
2393
2394 case INSN_LIST:
2395 /* Now do eliminations in the rest of the chain. If this was
2396 an EXPR_LIST, this might result in allocating more memory than is
2397 strictly needed, but it simplifies the code. */
2398 if (XEXP (x, 1))
2399 {
2400 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2401 if (new != XEXP (x, 1))
2402 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2403 }
2404 return x;
2405
2406 case PRE_INC:
2407 case POST_INC:
2408 case PRE_DEC:
2409 case POST_DEC:
2410 case STRICT_LOW_PART:
2411 case NEG: case NOT:
2412 case SIGN_EXTEND: case ZERO_EXTEND:
2413 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2414 case FLOAT: case FIX:
2415 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2416 case ABS:
2417 case SQRT:
2418 case FFS:
2419 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2420 if (new != XEXP (x, 0))
2421 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2422 return x;
2423
2424 case SUBREG:
2425 /* Similar to above processing, but preserve SUBREG_WORD.
2426 Convert (subreg (mem)) to (mem) if not paradoxical.
2427 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2428 pseudo didn't get a hard reg, we must replace this with the
2429 eliminated version of the memory location because push_reloads
2430 may do the replacement in certain circumstances. */
2431 if (GET_CODE (SUBREG_REG (x)) == REG
2432 && (GET_MODE_SIZE (GET_MODE (x))
2433 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2434 && reg_equiv_memory_loc != 0
2435 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2436 {
2437 new = SUBREG_REG (x);
2438 }
2439 else
2440 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2441
2442 if (new != XEXP (x, 0))
2443 {
2444 int x_size = GET_MODE_SIZE (GET_MODE (x));
2445 int new_size = GET_MODE_SIZE (GET_MODE (new));
2446
2447 if (GET_CODE (new) == MEM
2448 && ((x_size < new_size
2449 #ifdef WORD_REGISTER_OPERATIONS
2450 /* On these machines, combine can create rtl of the form
2451 (set (subreg:m1 (reg:m2 R) 0) ...)
2452 where m1 < m2, and expects something interesting to
2453 happen to the entire word. Moreover, it will use the
2454 (reg:m2 R) later, expecting all bits to be preserved.
2455 So if the number of words is the same, preserve the
2456 subreg so that push_reloads can see it. */
2457 && ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
2458 #endif
2459 )
2460 || (x_size == new_size))
2461 )
2462 {
2463 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2464 enum machine_mode mode = GET_MODE (x);
2465
2466 if (BYTES_BIG_ENDIAN)
2467 offset += (MIN (UNITS_PER_WORD,
2468 GET_MODE_SIZE (GET_MODE (new)))
2469 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2470
2471 PUT_MODE (new, mode);
2472 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2473 return new;
2474 }
2475 else
2476 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x));
2477 }
2478
2479 return x;
2480
2481 case MEM:
2482 /* This is only for the benefit of the debugging backends, which call
2483 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2484 removed after CSE. */
2485 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2486 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2487
2488 /* Our only special processing is to pass the mode of the MEM to our
2489 recursive call and copy the flags. While we are here, handle this
2490 case more efficiently. */
2491 new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
2492 if (new != XEXP (x, 0))
2493 {
2494 new = gen_rtx_MEM (GET_MODE (x), new);
2495 MEM_COPY_ATTRIBUTES (new, x);
2496 return new;
2497 }
2498 else
2499 return x;
2500
2501 case USE:
2502 case CLOBBER:
2503 case ASM_OPERANDS:
2504 case SET:
2505 abort ();
2506
2507 default:
2508 break;
2509 }
2510
2511 /* Process each of our operands recursively. If any have changed, make a
2512 copy of the rtx. */
2513 fmt = GET_RTX_FORMAT (code);
2514 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2515 {
2516 if (*fmt == 'e')
2517 {
2518 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2519 if (new != XEXP (x, i) && ! copied)
2520 {
2521 rtx new_x = rtx_alloc (code);
2522 bcopy ((char *) x, (char *) new_x,
2523 (sizeof (*new_x) - sizeof (new_x->fld)
2524 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2525 x = new_x;
2526 copied = 1;
2527 }
2528 XEXP (x, i) = new;
2529 }
2530 else if (*fmt == 'E')
2531 {
2532 int copied_vec = 0;
2533 for (j = 0; j < XVECLEN (x, i); j++)
2534 {
2535 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2536 if (new != XVECEXP (x, i, j) && ! copied_vec)
2537 {
2538 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2539 XVEC (x, i)->elem);
2540 if (! copied)
2541 {
2542 rtx new_x = rtx_alloc (code);
2543 bcopy ((char *) x, (char *) new_x,
2544 (sizeof (*new_x) - sizeof (new_x->fld)
2545 + (sizeof (new_x->fld[0])
2546 * GET_RTX_LENGTH (code))));
2547 x = new_x;
2548 copied = 1;
2549 }
2550 XVEC (x, i) = new_v;
2551 copied_vec = 1;
2552 }
2553 XVECEXP (x, i, j) = new;
2554 }
2555 }
2556 }
2557
2558 return x;
2559 }
2560
2561 /* Scan rtx X for modifications of elimination target registers. Update
2562 the table of eliminables to reflect the changed state. MEM_MODE is
2563 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2564
2565 static void
2566 elimination_effects (x, mem_mode)
2567 rtx x;
2568 enum machine_mode mem_mode;
2569
2570 {
2571 enum rtx_code code = GET_CODE (x);
2572 struct elim_table *ep;
2573 int regno;
2574 int i, j;
2575 const char *fmt;
2576
2577 switch (code)
2578 {
2579 case CONST_INT:
2580 case CONST_DOUBLE:
2581 case CONST:
2582 case SYMBOL_REF:
2583 case CODE_LABEL:
2584 case PC:
2585 case CC0:
2586 case ASM_INPUT:
2587 case ADDR_VEC:
2588 case ADDR_DIFF_VEC:
2589 case RETURN:
2590 return;
2591
2592 case ADDRESSOF:
2593 abort ();
2594
2595 case REG:
2596 regno = REGNO (x);
2597
2598 /* First handle the case where we encounter a bare register that
2599 is eliminable. Replace it with a PLUS. */
2600 if (regno < FIRST_PSEUDO_REGISTER)
2601 {
2602 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2603 ep++)
2604 if (ep->from_rtx == x && ep->can_eliminate)
2605 {
2606 if (! mem_mode)
2607 ep->ref_outside_mem = 1;
2608 return;
2609 }
2610
2611 }
2612 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2613 && reg_equiv_constant[regno]
2614 && ! CONSTANT_P (reg_equiv_constant[regno]))
2615 elimination_effects (reg_equiv_constant[regno], mem_mode);
2616 return;
2617
2618 case PRE_INC:
2619 case POST_INC:
2620 case PRE_DEC:
2621 case POST_DEC:
2622 case POST_MODIFY:
2623 case PRE_MODIFY:
2624 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2625 if (ep->to_rtx == XEXP (x, 0))
2626 {
2627 int size = GET_MODE_SIZE (mem_mode);
2628
2629 /* If more bytes than MEM_MODE are pushed, account for them. */
2630 #ifdef PUSH_ROUNDING
2631 if (ep->to_rtx == stack_pointer_rtx)
2632 size = PUSH_ROUNDING (size);
2633 #endif
2634 if (code == PRE_DEC || code == POST_DEC)
2635 ep->offset += size;
2636 else if (code == PRE_INC || code == POST_INC)
2637 ep->offset -= size;
2638 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2639 && GET_CODE (XEXP (x, 1)) == PLUS
2640 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2641 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2642 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2643 }
2644
2645 /* These two aren't unary operators. */
2646 if (code == POST_MODIFY || code == PRE_MODIFY)
2647 break;
2648
2649 /* Fall through to generic unary operation case. */
2650 case STRICT_LOW_PART:
2651 case NEG: case NOT:
2652 case SIGN_EXTEND: case ZERO_EXTEND:
2653 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2654 case FLOAT: case FIX:
2655 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2656 case ABS:
2657 case SQRT:
2658 case FFS:
2659 elimination_effects (XEXP (x, 0), mem_mode);
2660 return;
2661
2662 case SUBREG:
2663 if (GET_CODE (SUBREG_REG (x)) == REG
2664 && (GET_MODE_SIZE (GET_MODE (x))
2665 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2666 && reg_equiv_memory_loc != 0
2667 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2668 return;
2669
2670 elimination_effects (SUBREG_REG (x), mem_mode);
2671 return;
2672
2673 case USE:
2674 /* If using a register that is the source of an eliminate we still
2675 think can be performed, note it cannot be performed since we don't
2676 know how this register is used. */
2677 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2678 if (ep->from_rtx == XEXP (x, 0))
2679 ep->can_eliminate = 0;
2680
2681 elimination_effects (XEXP (x, 0), mem_mode);
2682 return;
2683
2684 case CLOBBER:
2685 /* If clobbering a register that is the replacement register for an
2686 elimination we still think can be performed, note that it cannot
2687 be performed. Otherwise, we need not be concerned about it. */
2688 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2689 if (ep->to_rtx == XEXP (x, 0))
2690 ep->can_eliminate = 0;
2691
2692 elimination_effects (XEXP (x, 0), mem_mode);
2693 return;
2694
2695 case SET:
2696 /* Check for setting a register that we know about. */
2697 if (GET_CODE (SET_DEST (x)) == REG)
2698 {
2699 /* See if this is setting the replacement register for an
2700 elimination.
2701
2702 If DEST is the hard frame pointer, we do nothing because we
2703 assume that all assignments to the frame pointer are for
2704 non-local gotos and are being done at a time when they are valid
2705 and do not disturb anything else. Some machines want to
2706 eliminate a fake argument pointer (or even a fake frame pointer)
2707 with either the real frame or the stack pointer. Assignments to
2708 the hard frame pointer must not prevent this elimination. */
2709
2710 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2711 ep++)
2712 if (ep->to_rtx == SET_DEST (x)
2713 && SET_DEST (x) != hard_frame_pointer_rtx)
2714 {
2715 /* If it is being incremented, adjust the offset. Otherwise,
2716 this elimination can't be done. */
2717 rtx src = SET_SRC (x);
2718
2719 if (GET_CODE (src) == PLUS
2720 && XEXP (src, 0) == SET_DEST (x)
2721 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2722 ep->offset -= INTVAL (XEXP (src, 1));
2723 else
2724 ep->can_eliminate = 0;
2725 }
2726 }
2727
2728 elimination_effects (SET_DEST (x), 0);
2729 elimination_effects (SET_SRC (x), 0);
2730 return;
2731
2732 case MEM:
2733 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2734 abort ();
2735
2736 /* Our only special processing is to pass the mode of the MEM to our
2737 recursive call. */
2738 elimination_effects (XEXP (x, 0), GET_MODE (x));
2739 return;
2740
2741 default:
2742 break;
2743 }
2744
2745 fmt = GET_RTX_FORMAT (code);
2746 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2747 {
2748 if (*fmt == 'e')
2749 elimination_effects (XEXP (x, i), mem_mode);
2750 else if (*fmt == 'E')
2751 for (j = 0; j < XVECLEN (x, i); j++)
2752 elimination_effects (XVECEXP (x, i, j), mem_mode);
2753 }
2754 }
2755
2756 /* Descend through rtx X and verify that no references to eliminable registers
2757 remain. If any do remain, mark the involved register as not
2758 eliminable. */
2759
2760 static void
2761 check_eliminable_occurrences (x)
2762 rtx x;
2763 {
2764 const char *fmt;
2765 int i;
2766 enum rtx_code code;
2767
2768 if (x == 0)
2769 return;
2770
2771 code = GET_CODE (x);
2772
2773 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2774 {
2775 struct elim_table *ep;
2776
2777 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2778 if (ep->from_rtx == x && ep->can_eliminate)
2779 ep->can_eliminate = 0;
2780 return;
2781 }
2782
2783 fmt = GET_RTX_FORMAT (code);
2784 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2785 {
2786 if (*fmt == 'e')
2787 check_eliminable_occurrences (XEXP (x, i));
2788 else if (*fmt == 'E')
2789 {
2790 int j;
2791 for (j = 0; j < XVECLEN (x, i); j++)
2792 check_eliminable_occurrences (XVECEXP (x, i, j));
2793 }
2794 }
2795 }
2796 \f
2797 /* Scan INSN and eliminate all eliminable registers in it.
2798
2799 If REPLACE is nonzero, do the replacement destructively. Also
2800 delete the insn as dead it if it is setting an eliminable register.
2801
2802 If REPLACE is zero, do all our allocations in reload_obstack.
2803
2804 If no eliminations were done and this insn doesn't require any elimination
2805 processing (these are not identical conditions: it might be updating sp,
2806 but not referencing fp; this needs to be seen during reload_as_needed so
2807 that the offset between fp and sp can be taken into consideration), zero
2808 is returned. Otherwise, 1 is returned. */
2809
2810 static int
2811 eliminate_regs_in_insn (insn, replace)
2812 rtx insn;
2813 int replace;
2814 {
2815 int icode = recog_memoized (insn);
2816 rtx old_body = PATTERN (insn);
2817 int insn_is_asm = asm_noperands (old_body) >= 0;
2818 rtx old_set = single_set (insn);
2819 rtx new_body;
2820 int val = 0;
2821 int i, any_changes;
2822 rtx substed_operand[MAX_RECOG_OPERANDS];
2823 rtx orig_operand[MAX_RECOG_OPERANDS];
2824 struct elim_table *ep;
2825
2826 if (! insn_is_asm && icode < 0)
2827 {
2828 if (GET_CODE (PATTERN (insn)) == USE
2829 || GET_CODE (PATTERN (insn)) == CLOBBER
2830 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2831 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2832 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2833 return 0;
2834 abort ();
2835 }
2836
2837 if (! replace)
2838 push_obstacks (&reload_obstack, &reload_obstack);
2839
2840 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2841 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2842 {
2843 /* Check for setting an eliminable register. */
2844 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2845 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2846 {
2847 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2848 /* If this is setting the frame pointer register to the
2849 hardware frame pointer register and this is an elimination
2850 that will be done (tested above), this insn is really
2851 adjusting the frame pointer downward to compensate for
2852 the adjustment done before a nonlocal goto. */
2853 if (ep->from == FRAME_POINTER_REGNUM
2854 && ep->to == HARD_FRAME_POINTER_REGNUM)
2855 {
2856 rtx src = SET_SRC (old_set);
2857 int offset = 0, ok = 0;
2858 rtx prev_insn, prev_set;
2859
2860 if (src == ep->to_rtx)
2861 offset = 0, ok = 1;
2862 else if (GET_CODE (src) == PLUS
2863 && GET_CODE (XEXP (src, 0)) == CONST_INT
2864 && XEXP (src, 1) == ep->to_rtx)
2865 offset = INTVAL (XEXP (src, 0)), ok = 1;
2866 else if (GET_CODE (src) == PLUS
2867 && GET_CODE (XEXP (src, 1)) == CONST_INT
2868 && XEXP (src, 0) == ep->to_rtx)
2869 offset = INTVAL (XEXP (src, 1)), ok = 1;
2870 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2871 && (prev_set = single_set (prev_insn)) != 0
2872 && rtx_equal_p (SET_DEST (prev_set), src))
2873 {
2874 src = SET_SRC (prev_set);
2875 if (src == ep->to_rtx)
2876 offset = 0, ok = 1;
2877 else if (GET_CODE (src) == PLUS
2878 && GET_CODE (XEXP (src, 0)) == CONST_INT
2879 && XEXP (src, 1) == ep->to_rtx)
2880 offset = INTVAL (XEXP (src, 0)), ok = 1;
2881 else if (GET_CODE (src) == PLUS
2882 && GET_CODE (XEXP (src, 1)) == CONST_INT
2883 && XEXP (src, 0) == ep->to_rtx)
2884 offset = INTVAL (XEXP (src, 1)), ok = 1;
2885 }
2886
2887 if (ok)
2888 {
2889 if (replace)
2890 {
2891 rtx src
2892 = plus_constant (ep->to_rtx, offset - ep->offset);
2893
2894 /* First see if this insn remains valid when we
2895 make the change. If not, keep the INSN_CODE
2896 the same and let reload fit it up. */
2897 validate_change (insn, &SET_SRC (old_set), src, 1);
2898 validate_change (insn, &SET_DEST (old_set),
2899 ep->to_rtx, 1);
2900 if (! apply_change_group ())
2901 {
2902 SET_SRC (old_set) = src;
2903 SET_DEST (old_set) = ep->to_rtx;
2904 }
2905 }
2906
2907 val = 1;
2908 goto done;
2909 }
2910 }
2911 #endif
2912
2913 /* In this case this insn isn't serving a useful purpose. We
2914 will delete it in reload_as_needed once we know that this
2915 elimination is, in fact, being done.
2916
2917 If REPLACE isn't set, we can't delete this insn, but needn't
2918 process it since it won't be used unless something changes. */
2919 if (replace)
2920 {
2921 delete_dead_insn (insn);
2922 return 1;
2923 }
2924 val = 1;
2925 goto done;
2926 }
2927 }
2928
2929 /* We allow one special case which happens to work on all machines we
2930 currently support: a single set with the source being a PLUS of an
2931 eliminable register and a constant. */
2932 if (old_set
2933 && GET_CODE (SET_SRC (old_set)) == PLUS
2934 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
2935 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2936 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2937 {
2938 rtx reg = XEXP (SET_SRC (old_set), 0);
2939 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
2940
2941 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2942 if (ep->from_rtx == reg && ep->can_eliminate)
2943 {
2944 offset += ep->offset;
2945
2946 if (offset == 0)
2947 {
2948 /* We assume here that we don't need a PARALLEL of
2949 any CLOBBERs for this assignment. There's not
2950 much we can do if we do need it. */
2951 PATTERN (insn) = gen_rtx_SET (VOIDmode,
2952 SET_DEST (old_set),
2953 ep->to_rtx);
2954 INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
2955 if (INSN_CODE (insn) < 0)
2956 abort ();
2957 }
2958 else
2959 {
2960 new_body = old_body;
2961 if (! replace)
2962 {
2963 new_body = copy_insn (old_body);
2964 if (REG_NOTES (insn))
2965 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2966 }
2967 PATTERN (insn) = new_body;
2968 old_set = single_set (insn);
2969
2970 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
2971 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
2972 }
2973 val = 1;
2974 /* This can't have an effect on elimination offsets, so skip right
2975 to the end. */
2976 goto done;
2977 }
2978 }
2979
2980 /* Determine the effects of this insn on elimination offsets. */
2981 elimination_effects (old_body, 0);
2982
2983 /* Eliminate all eliminable registers occurring in operands that
2984 can be handled by reload. */
2985 extract_insn (insn);
2986 any_changes = 0;
2987 for (i = 0; i < recog_data.n_operands; i++)
2988 {
2989 orig_operand[i] = recog_data.operand[i];
2990 substed_operand[i] = recog_data.operand[i];
2991
2992 /* For an asm statement, every operand is eliminable. */
2993 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
2994 {
2995 /* Check for setting a register that we know about. */
2996 if (recog_data.operand_type[i] != OP_IN
2997 && GET_CODE (orig_operand[i]) == REG)
2998 {
2999 /* If we are assigning to a register that can be eliminated, it
3000 must be as part of a PARALLEL, since the code above handles
3001 single SETs. We must indicate that we can no longer
3002 eliminate this reg. */
3003 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3004 ep++)
3005 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3006 ep->can_eliminate = 0;
3007 }
3008
3009 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3010 replace ? insn : NULL_RTX);
3011 if (substed_operand[i] != orig_operand[i])
3012 val = any_changes = 1;
3013 /* Terminate the search in check_eliminable_occurrences at
3014 this point. */
3015 *recog_data.operand_loc[i] = 0;
3016
3017 /* If an output operand changed from a REG to a MEM and INSN is an
3018 insn, write a CLOBBER insn. */
3019 if (recog_data.operand_type[i] != OP_IN
3020 && GET_CODE (orig_operand[i]) == REG
3021 && GET_CODE (substed_operand[i]) == MEM
3022 && replace)
3023 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3024 insn);
3025 }
3026 }
3027
3028 for (i = 0; i < recog_data.n_dups; i++)
3029 *recog_data.dup_loc[i]
3030 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3031
3032 /* If any eliminable remain, they aren't eliminable anymore. */
3033 check_eliminable_occurrences (old_body);
3034
3035 /* Substitute the operands; the new values are in the substed_operand
3036 array. */
3037 for (i = 0; i < recog_data.n_operands; i++)
3038 *recog_data.operand_loc[i] = substed_operand[i];
3039 for (i = 0; i < recog_data.n_dups; i++)
3040 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3041
3042 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3043 re-recognize the insn. We do this in case we had a simple addition
3044 but now can do this as a load-address. This saves an insn in this
3045 common case.
3046 If re-recognition fails, the old insn code number will still be used,
3047 and some register operands may have changed into PLUS expressions.
3048 These will be handled by find_reloads by loading them into a register
3049 again. */
3050
3051 if (val)
3052 {
3053 /* If we aren't replacing things permanently and we changed something,
3054 make another copy to ensure that all the RTL is new. Otherwise
3055 things can go wrong if find_reload swaps commutative operands
3056 and one is inside RTL that has been copied while the other is not. */
3057 new_body = old_body;
3058 if (! replace)
3059 {
3060 new_body = copy_insn (old_body);
3061 if (REG_NOTES (insn))
3062 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3063 }
3064 PATTERN (insn) = new_body;
3065
3066 /* If we had a move insn but now we don't, rerecognize it. This will
3067 cause spurious re-recognition if the old move had a PARALLEL since
3068 the new one still will, but we can't call single_set without
3069 having put NEW_BODY into the insn and the re-recognition won't
3070 hurt in this rare case. */
3071 /* ??? Why this huge if statement - why don't we just rerecognize the
3072 thing always? */
3073 if (! insn_is_asm
3074 && old_set != 0
3075 && ((GET_CODE (SET_SRC (old_set)) == REG
3076 && (GET_CODE (new_body) != SET
3077 || GET_CODE (SET_SRC (new_body)) != REG))
3078 /* If this was a load from or store to memory, compare
3079 the MEM in recog_data.operand to the one in the insn.
3080 If they are not equal, then rerecognize the insn. */
3081 || (old_set != 0
3082 && ((GET_CODE (SET_SRC (old_set)) == MEM
3083 && SET_SRC (old_set) != recog_data.operand[1])
3084 || (GET_CODE (SET_DEST (old_set)) == MEM
3085 && SET_DEST (old_set) != recog_data.operand[0])))
3086 /* If this was an add insn before, rerecognize. */
3087 || GET_CODE (SET_SRC (old_set)) == PLUS))
3088 {
3089 int new_icode = recog (PATTERN (insn), insn, 0);
3090 if (new_icode < 0)
3091 INSN_CODE (insn) = icode;
3092 }
3093 }
3094
3095 /* Restore the old body. If there were any changes to it, we made a copy
3096 of it while the changes were still in place, so we'll correctly return
3097 a modified insn below. */
3098 if (! replace)
3099 {
3100 /* Restore the old body. */
3101 for (i = 0; i < recog_data.n_operands; i++)
3102 *recog_data.operand_loc[i] = orig_operand[i];
3103 for (i = 0; i < recog_data.n_dups; i++)
3104 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3105 }
3106
3107 /* Update all elimination pairs to reflect the status after the current
3108 insn. The changes we make were determined by the earlier call to
3109 elimination_effects.
3110
3111 We also detect a cases where register elimination cannot be done,
3112 namely, if a register would be both changed and referenced outside a MEM
3113 in the resulting insn since such an insn is often undefined and, even if
3114 not, we cannot know what meaning will be given to it. Note that it is
3115 valid to have a register used in an address in an insn that changes it
3116 (presumably with a pre- or post-increment or decrement).
3117
3118 If anything changes, return nonzero. */
3119
3120 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3121 {
3122 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3123 ep->can_eliminate = 0;
3124
3125 ep->ref_outside_mem = 0;
3126
3127 if (ep->previous_offset != ep->offset)
3128 val = 1;
3129 }
3130
3131 done:
3132 /* If we changed something, perform elimination in REG_NOTES. This is
3133 needed even when REPLACE is zero because a REG_DEAD note might refer
3134 to a register that we eliminate and could cause a different number
3135 of spill registers to be needed in the final reload pass than in
3136 the pre-passes. */
3137 if (val && REG_NOTES (insn) != 0)
3138 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3139
3140 if (! replace)
3141 pop_obstacks ();
3142
3143 return val;
3144 }
3145
3146 /* Loop through all elimination pairs.
3147 Recalculate the number not at initial offset.
3148
3149 Compute the maximum offset (minimum offset if the stack does not
3150 grow downward) for each elimination pair. */
3151
3152 static void
3153 update_eliminable_offsets ()
3154 {
3155 struct elim_table *ep;
3156
3157 num_not_at_initial_offset = 0;
3158 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3159 {
3160 ep->previous_offset = ep->offset;
3161 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3162 num_not_at_initial_offset++;
3163 }
3164 }
3165
3166 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3167 replacement we currently believe is valid, mark it as not eliminable if X
3168 modifies DEST in any way other than by adding a constant integer to it.
3169
3170 If DEST is the frame pointer, we do nothing because we assume that
3171 all assignments to the hard frame pointer are nonlocal gotos and are being
3172 done at a time when they are valid and do not disturb anything else.
3173 Some machines want to eliminate a fake argument pointer with either the
3174 frame or stack pointer. Assignments to the hard frame pointer must not
3175 prevent this elimination.
3176
3177 Called via note_stores from reload before starting its passes to scan
3178 the insns of the function. */
3179
3180 static void
3181 mark_not_eliminable (dest, x, data)
3182 rtx dest;
3183 rtx x;
3184 void *data ATTRIBUTE_UNUSED;
3185 {
3186 register unsigned int i;
3187
3188 /* A SUBREG of a hard register here is just changing its mode. We should
3189 not see a SUBREG of an eliminable hard register, but check just in
3190 case. */
3191 if (GET_CODE (dest) == SUBREG)
3192 dest = SUBREG_REG (dest);
3193
3194 if (dest == hard_frame_pointer_rtx)
3195 return;
3196
3197 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3198 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3199 && (GET_CODE (x) != SET
3200 || GET_CODE (SET_SRC (x)) != PLUS
3201 || XEXP (SET_SRC (x), 0) != dest
3202 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3203 {
3204 reg_eliminate[i].can_eliminate_previous
3205 = reg_eliminate[i].can_eliminate = 0;
3206 num_eliminable--;
3207 }
3208 }
3209
3210 /* Verify that the initial elimination offsets did not change since the
3211 last call to set_initial_elim_offsets. This is used to catch cases
3212 where something illegal happened during reload_as_needed that could
3213 cause incorrect code to be generated if we did not check for it. */
3214
3215 static void
3216 verify_initial_elim_offsets ()
3217 {
3218 int t;
3219
3220 #ifdef ELIMINABLE_REGS
3221 struct elim_table *ep;
3222
3223 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3224 {
3225 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3226 if (t != ep->initial_offset)
3227 abort ();
3228 }
3229 #else
3230 INITIAL_FRAME_POINTER_OFFSET (t);
3231 if (t != reg_eliminate[0].initial_offset)
3232 abort ();
3233 #endif
3234 }
3235
3236 /* Reset all offsets on eliminable registers to their initial values. */
3237
3238 static void
3239 set_initial_elim_offsets ()
3240 {
3241 struct elim_table *ep = reg_eliminate;
3242
3243 #ifdef ELIMINABLE_REGS
3244 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3245 {
3246 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3247 ep->previous_offset = ep->offset = ep->initial_offset;
3248 }
3249 #else
3250 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3251 ep->previous_offset = ep->offset = ep->initial_offset;
3252 #endif
3253
3254 num_not_at_initial_offset = 0;
3255 }
3256
3257 /* Initialize the known label offsets.
3258 Set a known offset for each forced label to be at the initial offset
3259 of each elimination. We do this because we assume that all
3260 computed jumps occur from a location where each elimination is
3261 at its initial offset.
3262 For all other labels, show that we don't know the offsets. */
3263
3264 static void
3265 set_initial_label_offsets ()
3266 {
3267 rtx x;
3268 bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels);
3269
3270 for (x = forced_labels; x; x = XEXP (x, 1))
3271 if (XEXP (x, 0))
3272 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3273 }
3274
3275 /* Set all elimination offsets to the known values for the code label given
3276 by INSN. */
3277
3278 static void
3279 set_offsets_for_label (insn)
3280 rtx insn;
3281 {
3282 unsigned int i;
3283 int label_nr = CODE_LABEL_NUMBER (insn);
3284 struct elim_table *ep;
3285
3286 num_not_at_initial_offset = 0;
3287 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3288 {
3289 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3290 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3291 num_not_at_initial_offset++;
3292 }
3293 }
3294
3295 /* See if anything that happened changes which eliminations are valid.
3296 For example, on the Sparc, whether or not the frame pointer can
3297 be eliminated can depend on what registers have been used. We need
3298 not check some conditions again (such as flag_omit_frame_pointer)
3299 since they can't have changed. */
3300
3301 static void
3302 update_eliminables (pset)
3303 HARD_REG_SET *pset;
3304 {
3305 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3306 int previous_frame_pointer_needed = frame_pointer_needed;
3307 #endif
3308 struct elim_table *ep;
3309
3310 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3311 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3312 #ifdef ELIMINABLE_REGS
3313 || ! CAN_ELIMINATE (ep->from, ep->to)
3314 #endif
3315 )
3316 ep->can_eliminate = 0;
3317
3318 /* Look for the case where we have discovered that we can't replace
3319 register A with register B and that means that we will now be
3320 trying to replace register A with register C. This means we can
3321 no longer replace register C with register B and we need to disable
3322 such an elimination, if it exists. This occurs often with A == ap,
3323 B == sp, and C == fp. */
3324
3325 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3326 {
3327 struct elim_table *op;
3328 register int new_to = -1;
3329
3330 if (! ep->can_eliminate && ep->can_eliminate_previous)
3331 {
3332 /* Find the current elimination for ep->from, if there is a
3333 new one. */
3334 for (op = reg_eliminate;
3335 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3336 if (op->from == ep->from && op->can_eliminate)
3337 {
3338 new_to = op->to;
3339 break;
3340 }
3341
3342 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3343 disable it. */
3344 for (op = reg_eliminate;
3345 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3346 if (op->from == new_to && op->to == ep->to)
3347 op->can_eliminate = 0;
3348 }
3349 }
3350
3351 /* See if any registers that we thought we could eliminate the previous
3352 time are no longer eliminable. If so, something has changed and we
3353 must spill the register. Also, recompute the number of eliminable
3354 registers and see if the frame pointer is needed; it is if there is
3355 no elimination of the frame pointer that we can perform. */
3356
3357 frame_pointer_needed = 1;
3358 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3359 {
3360 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3361 && ep->to != HARD_FRAME_POINTER_REGNUM)
3362 frame_pointer_needed = 0;
3363
3364 if (! ep->can_eliminate && ep->can_eliminate_previous)
3365 {
3366 ep->can_eliminate_previous = 0;
3367 SET_HARD_REG_BIT (*pset, ep->from);
3368 num_eliminable--;
3369 }
3370 }
3371
3372 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3373 /* If we didn't need a frame pointer last time, but we do now, spill
3374 the hard frame pointer. */
3375 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3376 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3377 #endif
3378 }
3379
3380 /* Initialize the table of registers to eliminate. */
3381
3382 static void
3383 init_elim_table ()
3384 {
3385 struct elim_table *ep;
3386 #ifdef ELIMINABLE_REGS
3387 struct elim_table_1 *ep1;
3388 #endif
3389
3390 if (!reg_eliminate)
3391 reg_eliminate = (struct elim_table *)
3392 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3393
3394 /* Does this function require a frame pointer? */
3395
3396 frame_pointer_needed = (! flag_omit_frame_pointer
3397 #ifdef EXIT_IGNORE_STACK
3398 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3399 and restore sp for alloca. So we can't eliminate
3400 the frame pointer in that case. At some point,
3401 we should improve this by emitting the
3402 sp-adjusting insns for this case. */
3403 || (current_function_calls_alloca
3404 && EXIT_IGNORE_STACK)
3405 #endif
3406 || FRAME_POINTER_REQUIRED);
3407
3408 num_eliminable = 0;
3409
3410 #ifdef ELIMINABLE_REGS
3411 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3412 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3413 {
3414 ep->from = ep1->from;
3415 ep->to = ep1->to;
3416 ep->can_eliminate = ep->can_eliminate_previous
3417 = (CAN_ELIMINATE (ep->from, ep->to)
3418 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3419 }
3420 #else
3421 reg_eliminate[0].from = reg_eliminate_1[0].from;
3422 reg_eliminate[0].to = reg_eliminate_1[0].to;
3423 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3424 = ! frame_pointer_needed;
3425 #endif
3426
3427 /* Count the number of eliminable registers and build the FROM and TO
3428 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3429 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3430 We depend on this. */
3431 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3432 {
3433 num_eliminable += ep->can_eliminate;
3434 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3435 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3436 }
3437 }
3438 \f
3439 /* Kick all pseudos out of hard register REGNO.
3440
3441 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3442 because we found we can't eliminate some register. In the case, no pseudos
3443 are allowed to be in the register, even if they are only in a block that
3444 doesn't require spill registers, unlike the case when we are spilling this
3445 hard reg to produce another spill register.
3446
3447 Return nonzero if any pseudos needed to be kicked out. */
3448
3449 static void
3450 spill_hard_reg (regno, cant_eliminate)
3451 unsigned int regno;
3452 int cant_eliminate;
3453 {
3454 register int i;
3455
3456 if (cant_eliminate)
3457 {
3458 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3459 regs_ever_live[regno] = 1;
3460 }
3461
3462 /* Spill every pseudo reg that was allocated to this reg
3463 or to something that overlaps this reg. */
3464
3465 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3466 if (reg_renumber[i] >= 0
3467 && (unsigned int) reg_renumber[i] <= regno
3468 && ((unsigned int) reg_renumber[i]
3469 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3470 PSEUDO_REGNO_MODE (i))
3471 > regno))
3472 SET_REGNO_REG_SET (&spilled_pseudos, i);
3473 }
3474
3475 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3476 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3477
3478 static void
3479 ior_hard_reg_set (set1, set2)
3480 HARD_REG_SET *set1, *set2;
3481 {
3482 IOR_HARD_REG_SET (*set1, *set2);
3483 }
3484
3485 /* After find_reload_regs has been run for all insn that need reloads,
3486 and/or spill_hard_regs was called, this function is used to actually
3487 spill pseudo registers and try to reallocate them. It also sets up the
3488 spill_regs array for use by choose_reload_regs. */
3489
3490 static int
3491 finish_spills (global)
3492 int global;
3493 {
3494 struct insn_chain *chain;
3495 int something_changed = 0;
3496 int i;
3497
3498 /* Build the spill_regs array for the function. */
3499 /* If there are some registers still to eliminate and one of the spill regs
3500 wasn't ever used before, additional stack space may have to be
3501 allocated to store this register. Thus, we may have changed the offset
3502 between the stack and frame pointers, so mark that something has changed.
3503
3504 One might think that we need only set VAL to 1 if this is a call-used
3505 register. However, the set of registers that must be saved by the
3506 prologue is not identical to the call-used set. For example, the
3507 register used by the call insn for the return PC is a call-used register,
3508 but must be saved by the prologue. */
3509
3510 n_spills = 0;
3511 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3512 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3513 {
3514 spill_reg_order[i] = n_spills;
3515 spill_regs[n_spills++] = i;
3516 if (num_eliminable && ! regs_ever_live[i])
3517 something_changed = 1;
3518 regs_ever_live[i] = 1;
3519 }
3520 else
3521 spill_reg_order[i] = -1;
3522
3523 EXECUTE_IF_SET_IN_REG_SET
3524 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3525 {
3526 /* Record the current hard register the pseudo is allocated to in
3527 pseudo_previous_regs so we avoid reallocating it to the same
3528 hard reg in a later pass. */
3529 if (reg_renumber[i] < 0)
3530 abort ();
3531
3532 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3533 /* Mark it as no longer having a hard register home. */
3534 reg_renumber[i] = -1;
3535 /* We will need to scan everything again. */
3536 something_changed = 1;
3537 });
3538
3539 /* Retry global register allocation if possible. */
3540 if (global)
3541 {
3542 bzero ((char *) pseudo_forbidden_regs, max_regno * sizeof (HARD_REG_SET));
3543 /* For every insn that needs reloads, set the registers used as spill
3544 regs in pseudo_forbidden_regs for every pseudo live across the
3545 insn. */
3546 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3547 {
3548 EXECUTE_IF_SET_IN_REG_SET
3549 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3550 {
3551 ior_hard_reg_set (pseudo_forbidden_regs + i,
3552 &chain->used_spill_regs);
3553 });
3554 EXECUTE_IF_SET_IN_REG_SET
3555 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3556 {
3557 ior_hard_reg_set (pseudo_forbidden_regs + i,
3558 &chain->used_spill_regs);
3559 });
3560 }
3561
3562 /* Retry allocating the spilled pseudos. For each reg, merge the
3563 various reg sets that indicate which hard regs can't be used,
3564 and call retry_global_alloc.
3565 We change spill_pseudos here to only contain pseudos that did not
3566 get a new hard register. */
3567 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3568 if (reg_old_renumber[i] != reg_renumber[i])
3569 {
3570 HARD_REG_SET forbidden;
3571 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3572 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3573 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3574 retry_global_alloc (i, forbidden);
3575 if (reg_renumber[i] >= 0)
3576 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3577 }
3578 }
3579
3580 /* Fix up the register information in the insn chain.
3581 This involves deleting those of the spilled pseudos which did not get
3582 a new hard register home from the live_{before,after} sets. */
3583 for (chain = reload_insn_chain; chain; chain = chain->next)
3584 {
3585 HARD_REG_SET used_by_pseudos;
3586 HARD_REG_SET used_by_pseudos2;
3587
3588 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3589 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3590
3591 /* Mark any unallocated hard regs as available for spills. That
3592 makes inheritance work somewhat better. */
3593 if (chain->need_reload)
3594 {
3595 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3596 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3597 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3598
3599 /* Save the old value for the sanity test below. */
3600 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3601
3602 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3603 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3604 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3605 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3606
3607 /* Make sure we only enlarge the set. */
3608 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3609 abort ();
3610 ok:;
3611 }
3612 }
3613
3614 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3615 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3616 {
3617 int regno = reg_renumber[i];
3618 if (reg_old_renumber[i] == regno)
3619 continue;
3620
3621 alter_reg (i, reg_old_renumber[i]);
3622 reg_old_renumber[i] = regno;
3623 if (rtl_dump_file)
3624 {
3625 if (regno == -1)
3626 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3627 else
3628 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3629 i, reg_renumber[i]);
3630 }
3631 }
3632
3633 return something_changed;
3634 }
3635 \f
3636 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3637 Also mark any hard registers used to store user variables as
3638 forbidden from being used for spill registers. */
3639
3640 static void
3641 scan_paradoxical_subregs (x)
3642 register rtx x;
3643 {
3644 register int i;
3645 register const char *fmt;
3646 register enum rtx_code code = GET_CODE (x);
3647
3648 switch (code)
3649 {
3650 case REG:
3651 #if 0
3652 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3653 && REG_USERVAR_P (x))
3654 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3655 #endif
3656 return;
3657
3658 case CONST_INT:
3659 case CONST:
3660 case SYMBOL_REF:
3661 case LABEL_REF:
3662 case CONST_DOUBLE:
3663 case CC0:
3664 case PC:
3665 case USE:
3666 case CLOBBER:
3667 return;
3668
3669 case SUBREG:
3670 if (GET_CODE (SUBREG_REG (x)) == REG
3671 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3672 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3673 = GET_MODE_SIZE (GET_MODE (x));
3674 return;
3675
3676 default:
3677 break;
3678 }
3679
3680 fmt = GET_RTX_FORMAT (code);
3681 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3682 {
3683 if (fmt[i] == 'e')
3684 scan_paradoxical_subregs (XEXP (x, i));
3685 else if (fmt[i] == 'E')
3686 {
3687 register int j;
3688 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3689 scan_paradoxical_subregs (XVECEXP (x, i, j));
3690 }
3691 }
3692 }
3693 \f
3694 /* Reload pseudo-registers into hard regs around each insn as needed.
3695 Additional register load insns are output before the insn that needs it
3696 and perhaps store insns after insns that modify the reloaded pseudo reg.
3697
3698 reg_last_reload_reg and reg_reloaded_contents keep track of
3699 which registers are already available in reload registers.
3700 We update these for the reloads that we perform,
3701 as the insns are scanned. */
3702
3703 static void
3704 reload_as_needed (live_known)
3705 int live_known;
3706 {
3707 struct insn_chain *chain;
3708 #if defined (AUTO_INC_DEC)
3709 register int i;
3710 #endif
3711 rtx x;
3712
3713 bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx);
3714 bzero ((char *) spill_reg_store, sizeof spill_reg_store);
3715 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3716 reg_has_output_reload = (char *) xmalloc (max_regno);
3717 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3718
3719 set_initial_elim_offsets ();
3720
3721 for (chain = reload_insn_chain; chain; chain = chain->next)
3722 {
3723 rtx prev;
3724 rtx insn = chain->insn;
3725 rtx old_next = NEXT_INSN (insn);
3726
3727 /* If we pass a label, copy the offsets from the label information
3728 into the current offsets of each elimination. */
3729 if (GET_CODE (insn) == CODE_LABEL)
3730 set_offsets_for_label (insn);
3731
3732 else if (INSN_P (insn))
3733 {
3734 rtx oldpat = PATTERN (insn);
3735
3736 /* If this is a USE and CLOBBER of a MEM, ensure that any
3737 references to eliminable registers have been removed. */
3738
3739 if ((GET_CODE (PATTERN (insn)) == USE
3740 || GET_CODE (PATTERN (insn)) == CLOBBER)
3741 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3742 XEXP (XEXP (PATTERN (insn), 0), 0)
3743 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3744 GET_MODE (XEXP (PATTERN (insn), 0)),
3745 NULL_RTX);
3746
3747 /* If we need to do register elimination processing, do so.
3748 This might delete the insn, in which case we are done. */
3749 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3750 {
3751 eliminate_regs_in_insn (insn, 1);
3752 if (GET_CODE (insn) == NOTE)
3753 {
3754 update_eliminable_offsets ();
3755 continue;
3756 }
3757 }
3758
3759 /* If need_elim is nonzero but need_reload is zero, one might think
3760 that we could simply set n_reloads to 0. However, find_reloads
3761 could have done some manipulation of the insn (such as swapping
3762 commutative operands), and these manipulations are lost during
3763 the first pass for every insn that needs register elimination.
3764 So the actions of find_reloads must be redone here. */
3765
3766 if (! chain->need_elim && ! chain->need_reload
3767 && ! chain->need_operand_change)
3768 n_reloads = 0;
3769 /* First find the pseudo regs that must be reloaded for this insn.
3770 This info is returned in the tables reload_... (see reload.h).
3771 Also modify the body of INSN by substituting RELOAD
3772 rtx's for those pseudo regs. */
3773 else
3774 {
3775 bzero (reg_has_output_reload, max_regno);
3776 CLEAR_HARD_REG_SET (reg_is_output_reload);
3777
3778 find_reloads (insn, 1, spill_indirect_levels, live_known,
3779 spill_reg_order);
3780 }
3781
3782 if (num_eliminable && chain->need_elim)
3783 update_eliminable_offsets ();
3784
3785 if (n_reloads > 0)
3786 {
3787 rtx next = NEXT_INSN (insn);
3788 rtx p;
3789
3790 prev = PREV_INSN (insn);
3791
3792 /* Now compute which reload regs to reload them into. Perhaps
3793 reusing reload regs from previous insns, or else output
3794 load insns to reload them. Maybe output store insns too.
3795 Record the choices of reload reg in reload_reg_rtx. */
3796 choose_reload_regs (chain);
3797
3798 /* Merge any reloads that we didn't combine for fear of
3799 increasing the number of spill registers needed but now
3800 discover can be safely merged. */
3801 if (SMALL_REGISTER_CLASSES)
3802 merge_assigned_reloads (insn);
3803
3804 /* Generate the insns to reload operands into or out of
3805 their reload regs. */
3806 emit_reload_insns (chain);
3807
3808 /* Substitute the chosen reload regs from reload_reg_rtx
3809 into the insn's body (or perhaps into the bodies of other
3810 load and store insn that we just made for reloading
3811 and that we moved the structure into). */
3812 subst_reloads ();
3813
3814 /* If this was an ASM, make sure that all the reload insns
3815 we have generated are valid. If not, give an error
3816 and delete them. */
3817
3818 if (asm_noperands (PATTERN (insn)) >= 0)
3819 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3820 if (p != insn && INSN_P (p)
3821 && (recog_memoized (p) < 0
3822 || (extract_insn (p), ! constrain_operands (1))))
3823 {
3824 error_for_asm (insn,
3825 "`asm' operand requires impossible reload");
3826 PUT_CODE (p, NOTE);
3827 NOTE_SOURCE_FILE (p) = 0;
3828 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
3829 }
3830 }
3831 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3832 is no longer validly lying around to save a future reload.
3833 Note that this does not detect pseudos that were reloaded
3834 for this insn in order to be stored in
3835 (obeying register constraints). That is correct; such reload
3836 registers ARE still valid. */
3837 note_stores (oldpat, forget_old_reloads_1, NULL);
3838
3839 /* There may have been CLOBBER insns placed after INSN. So scan
3840 between INSN and NEXT and use them to forget old reloads. */
3841 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3842 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3843 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3844
3845 #ifdef AUTO_INC_DEC
3846 /* Likewise for regs altered by auto-increment in this insn.
3847 REG_INC notes have been changed by reloading:
3848 find_reloads_address_1 records substitutions for them,
3849 which have been performed by subst_reloads above. */
3850 for (i = n_reloads - 1; i >= 0; i--)
3851 {
3852 rtx in_reg = rld[i].in_reg;
3853 if (in_reg)
3854 {
3855 enum rtx_code code = GET_CODE (in_reg);
3856 /* PRE_INC / PRE_DEC will have the reload register ending up
3857 with the same value as the stack slot, but that doesn't
3858 hold true for POST_INC / POST_DEC. Either we have to
3859 convert the memory access to a true POST_INC / POST_DEC,
3860 or we can't use the reload register for inheritance. */
3861 if ((code == POST_INC || code == POST_DEC)
3862 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3863 REGNO (rld[i].reg_rtx))
3864 /* Make sure it is the inc/dec pseudo, and not
3865 some other (e.g. output operand) pseudo. */
3866 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3867 == REGNO (XEXP (in_reg, 0))))
3868
3869 {
3870 rtx reload_reg = rld[i].reg_rtx;
3871 enum machine_mode mode = GET_MODE (reload_reg);
3872 int n = 0;
3873 rtx p;
3874
3875 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3876 {
3877 /* We really want to ignore REG_INC notes here, so
3878 use PATTERN (p) as argument to reg_set_p . */
3879 if (reg_set_p (reload_reg, PATTERN (p)))
3880 break;
3881 n = count_occurrences (PATTERN (p), reload_reg, 0);
3882 if (! n)
3883 continue;
3884 if (n == 1)
3885 {
3886 n = validate_replace_rtx (reload_reg,
3887 gen_rtx (code, mode,
3888 reload_reg),
3889 p);
3890
3891 /* We must also verify that the constraints
3892 are met after the replacement. */
3893 extract_insn (p);
3894 if (n)
3895 n = constrain_operands (1);
3896 else
3897 break;
3898
3899 /* If the constraints were not met, then
3900 undo the replacement. */
3901 if (!n)
3902 {
3903 validate_replace_rtx (gen_rtx (code, mode,
3904 reload_reg),
3905 reload_reg, p);
3906 break;
3907 }
3908
3909 }
3910 break;
3911 }
3912 if (n == 1)
3913 {
3914 REG_NOTES (p)
3915 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3916 REG_NOTES (p));
3917 /* Mark this as having an output reload so that the
3918 REG_INC processing code below won't invalidate
3919 the reload for inheritance. */
3920 SET_HARD_REG_BIT (reg_is_output_reload,
3921 REGNO (reload_reg));
3922 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3923 }
3924 else
3925 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
3926 NULL);
3927 }
3928 else if ((code == PRE_INC || code == PRE_DEC)
3929 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3930 REGNO (rld[i].reg_rtx))
3931 /* Make sure it is the inc/dec pseudo, and not
3932 some other (e.g. output operand) pseudo. */
3933 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3934 == REGNO (XEXP (in_reg, 0))))
3935 {
3936 SET_HARD_REG_BIT (reg_is_output_reload,
3937 REGNO (rld[i].reg_rtx));
3938 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3939 }
3940 }
3941 }
3942 /* If a pseudo that got a hard register is auto-incremented,
3943 we must purge records of copying it into pseudos without
3944 hard registers. */
3945 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
3946 if (REG_NOTE_KIND (x) == REG_INC)
3947 {
3948 /* See if this pseudo reg was reloaded in this insn.
3949 If so, its last-reload info is still valid
3950 because it is based on this insn's reload. */
3951 for (i = 0; i < n_reloads; i++)
3952 if (rld[i].out == XEXP (x, 0))
3953 break;
3954
3955 if (i == n_reloads)
3956 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
3957 }
3958 #endif
3959 }
3960 /* A reload reg's contents are unknown after a label. */
3961 if (GET_CODE (insn) == CODE_LABEL)
3962 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3963
3964 /* Don't assume a reload reg is still good after a call insn
3965 if it is a call-used reg. */
3966 else if (GET_CODE (insn) == CALL_INSN)
3967 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
3968 }
3969
3970 /* Clean up. */
3971 free (reg_last_reload_reg);
3972 free (reg_has_output_reload);
3973 }
3974
3975 /* Discard all record of any value reloaded from X,
3976 or reloaded in X from someplace else;
3977 unless X is an output reload reg of the current insn.
3978
3979 X may be a hard reg (the reload reg)
3980 or it may be a pseudo reg that was reloaded from. */
3981
3982 static void
3983 forget_old_reloads_1 (x, ignored, data)
3984 rtx x;
3985 rtx ignored ATTRIBUTE_UNUSED;
3986 void *data ATTRIBUTE_UNUSED;
3987 {
3988 unsigned int regno;
3989 unsigned int nr;
3990 int offset = 0;
3991
3992 /* note_stores does give us subregs of hard regs. */
3993 while (GET_CODE (x) == SUBREG)
3994 {
3995 offset += SUBREG_WORD (x);
3996 x = SUBREG_REG (x);
3997 }
3998
3999 if (GET_CODE (x) != REG)
4000 return;
4001
4002 regno = REGNO (x) + offset;
4003
4004 if (regno >= FIRST_PSEUDO_REGISTER)
4005 nr = 1;
4006 else
4007 {
4008 unsigned int i;
4009
4010 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4011 /* Storing into a spilled-reg invalidates its contents.
4012 This can happen if a block-local pseudo is allocated to that reg
4013 and it wasn't spilled because this block's total need is 0.
4014 Then some insn might have an optional reload and use this reg. */
4015 for (i = 0; i < nr; i++)
4016 /* But don't do this if the reg actually serves as an output
4017 reload reg in the current instruction. */
4018 if (n_reloads == 0
4019 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4020 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4021 }
4022
4023 /* Since value of X has changed,
4024 forget any value previously copied from it. */
4025
4026 while (nr-- > 0)
4027 /* But don't forget a copy if this is the output reload
4028 that establishes the copy's validity. */
4029 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4030 reg_last_reload_reg[regno + nr] = 0;
4031 }
4032 \f
4033 /* The following HARD_REG_SETs indicate when each hard register is
4034 used for a reload of various parts of the current insn. */
4035
4036 /* If reg is unavailable for all reloads. */
4037 static HARD_REG_SET reload_reg_unavailable;
4038 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4039 static HARD_REG_SET reload_reg_used;
4040 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4041 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4042 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4043 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4044 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4045 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4046 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4047 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4048 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4049 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4050 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4051 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4052 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4053 static HARD_REG_SET reload_reg_used_in_op_addr;
4054 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4055 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4056 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4057 static HARD_REG_SET reload_reg_used_in_insn;
4058 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4059 static HARD_REG_SET reload_reg_used_in_other_addr;
4060
4061 /* If reg is in use as a reload reg for any sort of reload. */
4062 static HARD_REG_SET reload_reg_used_at_all;
4063
4064 /* If reg is use as an inherited reload. We just mark the first register
4065 in the group. */
4066 static HARD_REG_SET reload_reg_used_for_inherit;
4067
4068 /* Records which hard regs are used in any way, either as explicit use or
4069 by being allocated to a pseudo during any point of the current insn. */
4070 static HARD_REG_SET reg_used_in_insn;
4071
4072 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4073 TYPE. MODE is used to indicate how many consecutive regs are
4074 actually used. */
4075
4076 static void
4077 mark_reload_reg_in_use (regno, opnum, type, mode)
4078 unsigned int regno;
4079 int opnum;
4080 enum reload_type type;
4081 enum machine_mode mode;
4082 {
4083 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4084 unsigned int i;
4085
4086 for (i = regno; i < nregs + regno; i++)
4087 {
4088 switch (type)
4089 {
4090 case RELOAD_OTHER:
4091 SET_HARD_REG_BIT (reload_reg_used, i);
4092 break;
4093
4094 case RELOAD_FOR_INPUT_ADDRESS:
4095 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4096 break;
4097
4098 case RELOAD_FOR_INPADDR_ADDRESS:
4099 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4100 break;
4101
4102 case RELOAD_FOR_OUTPUT_ADDRESS:
4103 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4104 break;
4105
4106 case RELOAD_FOR_OUTADDR_ADDRESS:
4107 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4108 break;
4109
4110 case RELOAD_FOR_OPERAND_ADDRESS:
4111 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4112 break;
4113
4114 case RELOAD_FOR_OPADDR_ADDR:
4115 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4116 break;
4117
4118 case RELOAD_FOR_OTHER_ADDRESS:
4119 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4120 break;
4121
4122 case RELOAD_FOR_INPUT:
4123 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4124 break;
4125
4126 case RELOAD_FOR_OUTPUT:
4127 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4128 break;
4129
4130 case RELOAD_FOR_INSN:
4131 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4132 break;
4133 }
4134
4135 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4136 }
4137 }
4138
4139 /* Similarly, but show REGNO is no longer in use for a reload. */
4140
4141 static void
4142 clear_reload_reg_in_use (regno, opnum, type, mode)
4143 unsigned int regno;
4144 int opnum;
4145 enum reload_type type;
4146 enum machine_mode mode;
4147 {
4148 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4149 unsigned int start_regno, end_regno, r;
4150 int i;
4151 /* A complication is that for some reload types, inheritance might
4152 allow multiple reloads of the same types to share a reload register.
4153 We set check_opnum if we have to check only reloads with the same
4154 operand number, and check_any if we have to check all reloads. */
4155 int check_opnum = 0;
4156 int check_any = 0;
4157 HARD_REG_SET *used_in_set;
4158
4159 switch (type)
4160 {
4161 case RELOAD_OTHER:
4162 used_in_set = &reload_reg_used;
4163 break;
4164
4165 case RELOAD_FOR_INPUT_ADDRESS:
4166 used_in_set = &reload_reg_used_in_input_addr[opnum];
4167 break;
4168
4169 case RELOAD_FOR_INPADDR_ADDRESS:
4170 check_opnum = 1;
4171 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4172 break;
4173
4174 case RELOAD_FOR_OUTPUT_ADDRESS:
4175 used_in_set = &reload_reg_used_in_output_addr[opnum];
4176 break;
4177
4178 case RELOAD_FOR_OUTADDR_ADDRESS:
4179 check_opnum = 1;
4180 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4181 break;
4182
4183 case RELOAD_FOR_OPERAND_ADDRESS:
4184 used_in_set = &reload_reg_used_in_op_addr;
4185 break;
4186
4187 case RELOAD_FOR_OPADDR_ADDR:
4188 check_any = 1;
4189 used_in_set = &reload_reg_used_in_op_addr_reload;
4190 break;
4191
4192 case RELOAD_FOR_OTHER_ADDRESS:
4193 used_in_set = &reload_reg_used_in_other_addr;
4194 check_any = 1;
4195 break;
4196
4197 case RELOAD_FOR_INPUT:
4198 used_in_set = &reload_reg_used_in_input[opnum];
4199 break;
4200
4201 case RELOAD_FOR_OUTPUT:
4202 used_in_set = &reload_reg_used_in_output[opnum];
4203 break;
4204
4205 case RELOAD_FOR_INSN:
4206 used_in_set = &reload_reg_used_in_insn;
4207 break;
4208 default:
4209 abort ();
4210 }
4211 /* We resolve conflicts with remaining reloads of the same type by
4212 excluding the intervals of of reload registers by them from the
4213 interval of freed reload registers. Since we only keep track of
4214 one set of interval bounds, we might have to exclude somewhat
4215 more then what would be necessary if we used a HARD_REG_SET here.
4216 But this should only happen very infrequently, so there should
4217 be no reason to worry about it. */
4218
4219 start_regno = regno;
4220 end_regno = regno + nregs;
4221 if (check_opnum || check_any)
4222 {
4223 for (i = n_reloads - 1; i >= 0; i--)
4224 {
4225 if (rld[i].when_needed == type
4226 && (check_any || rld[i].opnum == opnum)
4227 && rld[i].reg_rtx)
4228 {
4229 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4230 unsigned int conflict_end
4231 = (conflict_start
4232 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4233
4234 /* If there is an overlap with the first to-be-freed register,
4235 adjust the interval start. */
4236 if (conflict_start <= start_regno && conflict_end > start_regno)
4237 start_regno = conflict_end;
4238 /* Otherwise, if there is a conflict with one of the other
4239 to-be-freed registers, adjust the interval end. */
4240 if (conflict_start > start_regno && conflict_start < end_regno)
4241 end_regno = conflict_start;
4242 }
4243 }
4244 }
4245
4246 for (r = start_regno; r < end_regno; r++)
4247 CLEAR_HARD_REG_BIT (*used_in_set, r);
4248 }
4249
4250 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4251 specified by OPNUM and TYPE. */
4252
4253 static int
4254 reload_reg_free_p (regno, opnum, type)
4255 unsigned int regno;
4256 int opnum;
4257 enum reload_type type;
4258 {
4259 int i;
4260
4261 /* In use for a RELOAD_OTHER means it's not available for anything. */
4262 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4263 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4264 return 0;
4265
4266 switch (type)
4267 {
4268 case RELOAD_OTHER:
4269 /* In use for anything means we can't use it for RELOAD_OTHER. */
4270 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4271 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4272 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4273 return 0;
4274
4275 for (i = 0; i < reload_n_operands; i++)
4276 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4277 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4278 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4279 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4280 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4281 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4282 return 0;
4283
4284 return 1;
4285
4286 case RELOAD_FOR_INPUT:
4287 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4288 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4289 return 0;
4290
4291 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4292 return 0;
4293
4294 /* If it is used for some other input, can't use it. */
4295 for (i = 0; i < reload_n_operands; i++)
4296 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4297 return 0;
4298
4299 /* If it is used in a later operand's address, can't use it. */
4300 for (i = opnum + 1; i < reload_n_operands; i++)
4301 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4302 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4303 return 0;
4304
4305 return 1;
4306
4307 case RELOAD_FOR_INPUT_ADDRESS:
4308 /* Can't use a register if it is used for an input address for this
4309 operand or used as an input in an earlier one. */
4310 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4311 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4312 return 0;
4313
4314 for (i = 0; i < opnum; i++)
4315 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4316 return 0;
4317
4318 return 1;
4319
4320 case RELOAD_FOR_INPADDR_ADDRESS:
4321 /* Can't use a register if it is used for an input address
4322 for this operand or used as an input in an earlier
4323 one. */
4324 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4325 return 0;
4326
4327 for (i = 0; i < opnum; i++)
4328 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4329 return 0;
4330
4331 return 1;
4332
4333 case RELOAD_FOR_OUTPUT_ADDRESS:
4334 /* Can't use a register if it is used for an output address for this
4335 operand or used as an output in this or a later operand. */
4336 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4337 return 0;
4338
4339 for (i = opnum; i < reload_n_operands; i++)
4340 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4341 return 0;
4342
4343 return 1;
4344
4345 case RELOAD_FOR_OUTADDR_ADDRESS:
4346 /* Can't use a register if it is used for an output address
4347 for this operand or used as an output in this or a
4348 later operand. */
4349 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4350 return 0;
4351
4352 for (i = opnum; i < reload_n_operands; i++)
4353 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4354 return 0;
4355
4356 return 1;
4357
4358 case RELOAD_FOR_OPERAND_ADDRESS:
4359 for (i = 0; i < reload_n_operands; i++)
4360 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4361 return 0;
4362
4363 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4364 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4365
4366 case RELOAD_FOR_OPADDR_ADDR:
4367 for (i = 0; i < reload_n_operands; i++)
4368 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4369 return 0;
4370
4371 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4372
4373 case RELOAD_FOR_OUTPUT:
4374 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4375 outputs, or an operand address for this or an earlier output. */
4376 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4377 return 0;
4378
4379 for (i = 0; i < reload_n_operands; i++)
4380 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4381 return 0;
4382
4383 for (i = 0; i <= opnum; i++)
4384 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4385 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4386 return 0;
4387
4388 return 1;
4389
4390 case RELOAD_FOR_INSN:
4391 for (i = 0; i < reload_n_operands; i++)
4392 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4393 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4394 return 0;
4395
4396 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4397 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4398
4399 case RELOAD_FOR_OTHER_ADDRESS:
4400 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4401 }
4402 abort ();
4403 }
4404
4405 /* Return 1 if the value in reload reg REGNO, as used by a reload
4406 needed for the part of the insn specified by OPNUM and TYPE,
4407 is still available in REGNO at the end of the insn.
4408
4409 We can assume that the reload reg was already tested for availability
4410 at the time it is needed, and we should not check this again,
4411 in case the reg has already been marked in use. */
4412
4413 static int
4414 reload_reg_reaches_end_p (regno, opnum, type)
4415 unsigned int regno;
4416 int opnum;
4417 enum reload_type type;
4418 {
4419 int i;
4420
4421 switch (type)
4422 {
4423 case RELOAD_OTHER:
4424 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4425 its value must reach the end. */
4426 return 1;
4427
4428 /* If this use is for part of the insn,
4429 its value reaches if no subsequent part uses the same register.
4430 Just like the above function, don't try to do this with lots
4431 of fallthroughs. */
4432
4433 case RELOAD_FOR_OTHER_ADDRESS:
4434 /* Here we check for everything else, since these don't conflict
4435 with anything else and everything comes later. */
4436
4437 for (i = 0; i < reload_n_operands; i++)
4438 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4439 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4440 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4441 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4442 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4443 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4444 return 0;
4445
4446 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4447 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4448 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4449
4450 case RELOAD_FOR_INPUT_ADDRESS:
4451 case RELOAD_FOR_INPADDR_ADDRESS:
4452 /* Similar, except that we check only for this and subsequent inputs
4453 and the address of only subsequent inputs and we do not need
4454 to check for RELOAD_OTHER objects since they are known not to
4455 conflict. */
4456
4457 for (i = opnum; i < reload_n_operands; i++)
4458 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4459 return 0;
4460
4461 for (i = opnum + 1; i < reload_n_operands; i++)
4462 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4463 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4464 return 0;
4465
4466 for (i = 0; i < reload_n_operands; i++)
4467 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4468 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4469 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4470 return 0;
4471
4472 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4473 return 0;
4474
4475 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4476 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
4477
4478 case RELOAD_FOR_INPUT:
4479 /* Similar to input address, except we start at the next operand for
4480 both input and input address and we do not check for
4481 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4482 would conflict. */
4483
4484 for (i = opnum + 1; i < reload_n_operands; i++)
4485 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4486 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4487 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4488 return 0;
4489
4490 /* ... fall through ... */
4491
4492 case RELOAD_FOR_OPERAND_ADDRESS:
4493 /* Check outputs and their addresses. */
4494
4495 for (i = 0; i < reload_n_operands; i++)
4496 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4497 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4498 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4499 return 0;
4500
4501 return 1;
4502
4503 case RELOAD_FOR_OPADDR_ADDR:
4504 for (i = 0; i < reload_n_operands; i++)
4505 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4506 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4507 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4508 return 0;
4509
4510 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4511 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
4512
4513 case RELOAD_FOR_INSN:
4514 /* These conflict with other outputs with RELOAD_OTHER. So
4515 we need only check for output addresses. */
4516
4517 opnum = -1;
4518
4519 /* ... fall through ... */
4520
4521 case RELOAD_FOR_OUTPUT:
4522 case RELOAD_FOR_OUTPUT_ADDRESS:
4523 case RELOAD_FOR_OUTADDR_ADDRESS:
4524 /* We already know these can't conflict with a later output. So the
4525 only thing to check are later output addresses. */
4526 for (i = opnum + 1; i < reload_n_operands; i++)
4527 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4528 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4529 return 0;
4530
4531 return 1;
4532 }
4533
4534 abort ();
4535 }
4536 \f
4537 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4538 Return 0 otherwise.
4539
4540 This function uses the same algorithm as reload_reg_free_p above. */
4541
4542 int
4543 reloads_conflict (r1, r2)
4544 int r1, r2;
4545 {
4546 enum reload_type r1_type = rld[r1].when_needed;
4547 enum reload_type r2_type = rld[r2].when_needed;
4548 int r1_opnum = rld[r1].opnum;
4549 int r2_opnum = rld[r2].opnum;
4550
4551 /* RELOAD_OTHER conflicts with everything. */
4552 if (r2_type == RELOAD_OTHER)
4553 return 1;
4554
4555 /* Otherwise, check conflicts differently for each type. */
4556
4557 switch (r1_type)
4558 {
4559 case RELOAD_FOR_INPUT:
4560 return (r2_type == RELOAD_FOR_INSN
4561 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4562 || r2_type == RELOAD_FOR_OPADDR_ADDR
4563 || r2_type == RELOAD_FOR_INPUT
4564 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4565 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4566 && r2_opnum > r1_opnum));
4567
4568 case RELOAD_FOR_INPUT_ADDRESS:
4569 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4570 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4571
4572 case RELOAD_FOR_INPADDR_ADDRESS:
4573 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4574 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4575
4576 case RELOAD_FOR_OUTPUT_ADDRESS:
4577 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4578 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4579
4580 case RELOAD_FOR_OUTADDR_ADDRESS:
4581 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4582 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4583
4584 case RELOAD_FOR_OPERAND_ADDRESS:
4585 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4586 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4587
4588 case RELOAD_FOR_OPADDR_ADDR:
4589 return (r2_type == RELOAD_FOR_INPUT
4590 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4591
4592 case RELOAD_FOR_OUTPUT:
4593 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4594 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4595 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4596 && r2_opnum <= r1_opnum));
4597
4598 case RELOAD_FOR_INSN:
4599 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4600 || r2_type == RELOAD_FOR_INSN
4601 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4602
4603 case RELOAD_FOR_OTHER_ADDRESS:
4604 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4605
4606 case RELOAD_OTHER:
4607 return 1;
4608
4609 default:
4610 abort ();
4611 }
4612 }
4613 \f
4614 /* Indexed by reload number, 1 if incoming value
4615 inherited from previous insns. */
4616 char reload_inherited[MAX_RELOADS];
4617
4618 /* For an inherited reload, this is the insn the reload was inherited from,
4619 if we know it. Otherwise, this is 0. */
4620 rtx reload_inheritance_insn[MAX_RELOADS];
4621
4622 /* If non-zero, this is a place to get the value of the reload,
4623 rather than using reload_in. */
4624 rtx reload_override_in[MAX_RELOADS];
4625
4626 /* For each reload, the hard register number of the register used,
4627 or -1 if we did not need a register for this reload. */
4628 int reload_spill_index[MAX_RELOADS];
4629
4630 /* Return 1 if the value in reload reg REGNO, as used by a reload
4631 needed for the part of the insn specified by OPNUM and TYPE,
4632 may be used to load VALUE into it.
4633
4634 Other read-only reloads with the same value do not conflict
4635 unless OUT is non-zero and these other reloads have to live while
4636 output reloads live.
4637 If OUT is CONST0_RTX, this is a special case: it means that the
4638 test should not be for using register REGNO as reload register, but
4639 for copying from register REGNO into the reload register.
4640
4641 RELOADNUM is the number of the reload we want to load this value for;
4642 a reload does not conflict with itself.
4643
4644 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4645 reloads that load an address for the very reload we are considering.
4646
4647 The caller has to make sure that there is no conflict with the return
4648 register. */
4649 static int
4650 reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
4651 ignore_address_reloads)
4652 int regno;
4653 int opnum;
4654 enum reload_type type;
4655 rtx value, out;
4656 int reloadnum;
4657 int ignore_address_reloads;
4658 {
4659 int time1;
4660 /* Set if we see an input reload that must not share its reload register
4661 with any new earlyclobber, but might otherwise share the reload
4662 register with an output or input-output reload. */
4663 int check_earlyclobber = 0;
4664 int i;
4665 int copy = 0;
4666
4667 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4668 return 0;
4669
4670 if (out == const0_rtx)
4671 {
4672 copy = 1;
4673 out = NULL_RTX;
4674 }
4675
4676 /* We use some pseudo 'time' value to check if the lifetimes of the
4677 new register use would overlap with the one of a previous reload
4678 that is not read-only or uses a different value.
4679 The 'time' used doesn't have to be linear in any shape or form, just
4680 monotonic.
4681 Some reload types use different 'buckets' for each operand.
4682 So there are MAX_RECOG_OPERANDS different time values for each
4683 such reload type.
4684 We compute TIME1 as the time when the register for the prospective
4685 new reload ceases to be live, and TIME2 for each existing
4686 reload as the time when that the reload register of that reload
4687 becomes live.
4688 Where there is little to be gained by exact lifetime calculations,
4689 we just make conservative assumptions, i.e. a longer lifetime;
4690 this is done in the 'default:' cases. */
4691 switch (type)
4692 {
4693 case RELOAD_FOR_OTHER_ADDRESS:
4694 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4695 time1 = copy ? 0 : 1;
4696 break;
4697 case RELOAD_OTHER:
4698 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4699 break;
4700 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4701 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4702 respectively, to the time values for these, we get distinct time
4703 values. To get distinct time values for each operand, we have to
4704 multiply opnum by at least three. We round that up to four because
4705 multiply by four is often cheaper. */
4706 case RELOAD_FOR_INPADDR_ADDRESS:
4707 time1 = opnum * 4 + 2;
4708 break;
4709 case RELOAD_FOR_INPUT_ADDRESS:
4710 time1 = opnum * 4 + 3;
4711 break;
4712 case RELOAD_FOR_INPUT:
4713 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4714 executes (inclusive). */
4715 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4716 break;
4717 case RELOAD_FOR_OPADDR_ADDR:
4718 /* opnum * 4 + 4
4719 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4720 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4721 break;
4722 case RELOAD_FOR_OPERAND_ADDRESS:
4723 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4724 is executed. */
4725 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4726 break;
4727 case RELOAD_FOR_OUTADDR_ADDRESS:
4728 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4729 break;
4730 case RELOAD_FOR_OUTPUT_ADDRESS:
4731 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4732 break;
4733 default:
4734 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4735 }
4736
4737 for (i = 0; i < n_reloads; i++)
4738 {
4739 rtx reg = rld[i].reg_rtx;
4740 if (reg && GET_CODE (reg) == REG
4741 && ((unsigned) regno - true_regnum (reg)
4742 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
4743 && i != reloadnum)
4744 {
4745 if (! rld[i].in || ! rtx_equal_p (rld[i].in, value)
4746 || rld[i].out || out)
4747 {
4748 int time2;
4749 switch (rld[i].when_needed)
4750 {
4751 case RELOAD_FOR_OTHER_ADDRESS:
4752 time2 = 0;
4753 break;
4754 case RELOAD_FOR_INPADDR_ADDRESS:
4755 /* find_reloads makes sure that a
4756 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4757 by at most one - the first -
4758 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4759 address reload is inherited, the address address reload
4760 goes away, so we can ignore this conflict. */
4761 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4762 && ignore_address_reloads
4763 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4764 Then the address address is still needed to store
4765 back the new address. */
4766 && ! rld[reloadnum].out)
4767 continue;
4768 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4769 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4770 reloads go away. */
4771 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4772 && ignore_address_reloads
4773 /* Unless we are reloading an auto_inc expression. */
4774 && ! rld[reloadnum].out)
4775 continue;
4776 time2 = rld[i].opnum * 4 + 2;
4777 break;
4778 case RELOAD_FOR_INPUT_ADDRESS:
4779 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4780 && ignore_address_reloads
4781 && ! rld[reloadnum].out)
4782 continue;
4783 time2 = rld[i].opnum * 4 + 3;
4784 break;
4785 case RELOAD_FOR_INPUT:
4786 time2 = rld[i].opnum * 4 + 4;
4787 check_earlyclobber = 1;
4788 break;
4789 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4790 == MAX_RECOG_OPERAND * 4 */
4791 case RELOAD_FOR_OPADDR_ADDR:
4792 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4793 && ignore_address_reloads
4794 && ! rld[reloadnum].out)
4795 continue;
4796 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4797 break;
4798 case RELOAD_FOR_OPERAND_ADDRESS:
4799 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4800 check_earlyclobber = 1;
4801 break;
4802 case RELOAD_FOR_INSN:
4803 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4804 break;
4805 case RELOAD_FOR_OUTPUT:
4806 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4807 instruction is executed. */
4808 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4809 break;
4810 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4811 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4812 value. */
4813 case RELOAD_FOR_OUTADDR_ADDRESS:
4814 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4815 && ignore_address_reloads
4816 && ! rld[reloadnum].out)
4817 continue;
4818 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4819 break;
4820 case RELOAD_FOR_OUTPUT_ADDRESS:
4821 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4822 break;
4823 case RELOAD_OTHER:
4824 /* If there is no conflict in the input part, handle this
4825 like an output reload. */
4826 if (! rld[i].in || rtx_equal_p (rld[i].in, value))
4827 {
4828 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4829 /* Earlyclobbered outputs must conflict with inputs. */
4830 if (earlyclobber_operand_p (rld[i].out))
4831 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4832
4833 break;
4834 }
4835 time2 = 1;
4836 /* RELOAD_OTHER might be live beyond instruction execution,
4837 but this is not obvious when we set time2 = 1. So check
4838 here if there might be a problem with the new reload
4839 clobbering the register used by the RELOAD_OTHER. */
4840 if (out)
4841 return 0;
4842 break;
4843 default:
4844 return 0;
4845 }
4846 if ((time1 >= time2
4847 && (! rld[i].in || rld[i].out
4848 || ! rtx_equal_p (rld[i].in, value)))
4849 || (out && rld[reloadnum].out_reg
4850 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4851 return 0;
4852 }
4853 }
4854 }
4855
4856 /* Earlyclobbered outputs must conflict with inputs. */
4857 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4858 return 0;
4859
4860 return 1;
4861 }
4862
4863 /* Give an error message saying we failed to find a reload for INSN,
4864 and clear out reload R. */
4865 static void
4866 failed_reload (insn, r)
4867 rtx insn;
4868 int r;
4869 {
4870 if (asm_noperands (PATTERN (insn)) < 0)
4871 /* It's the compiler's fault. */
4872 fatal_insn ("Could not find a spill register", insn);
4873
4874 /* It's the user's fault; the operand's mode and constraint
4875 don't match. Disable this reload so we don't crash in final. */
4876 error_for_asm (insn,
4877 "`asm' operand constraint incompatible with operand size");
4878 rld[r].in = 0;
4879 rld[r].out = 0;
4880 rld[r].reg_rtx = 0;
4881 rld[r].optional = 1;
4882 rld[r].secondary_p = 1;
4883 }
4884
4885 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
4886 for reload R. If it's valid, get an rtx for it. Return nonzero if
4887 successful. */
4888 static int
4889 set_reload_reg (i, r)
4890 int i, r;
4891 {
4892 int regno;
4893 rtx reg = spill_reg_rtx[i];
4894
4895 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
4896 spill_reg_rtx[i] = reg
4897 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
4898
4899 regno = true_regnum (reg);
4900
4901 /* Detect when the reload reg can't hold the reload mode.
4902 This used to be one `if', but Sequent compiler can't handle that. */
4903 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
4904 {
4905 enum machine_mode test_mode = VOIDmode;
4906 if (rld[r].in)
4907 test_mode = GET_MODE (rld[r].in);
4908 /* If rld[r].in has VOIDmode, it means we will load it
4909 in whatever mode the reload reg has: to wit, rld[r].mode.
4910 We have already tested that for validity. */
4911 /* Aside from that, we need to test that the expressions
4912 to reload from or into have modes which are valid for this
4913 reload register. Otherwise the reload insns would be invalid. */
4914 if (! (rld[r].in != 0 && test_mode != VOIDmode
4915 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
4916 if (! (rld[r].out != 0
4917 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
4918 {
4919 /* The reg is OK. */
4920 last_spill_reg = i;
4921
4922 /* Mark as in use for this insn the reload regs we use
4923 for this. */
4924 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
4925 rld[r].when_needed, rld[r].mode);
4926
4927 rld[r].reg_rtx = reg;
4928 reload_spill_index[r] = spill_regs[i];
4929 return 1;
4930 }
4931 }
4932 return 0;
4933 }
4934
4935 /* Find a spill register to use as a reload register for reload R.
4936 LAST_RELOAD is non-zero if this is the last reload for the insn being
4937 processed.
4938
4939 Set rld[R].reg_rtx to the register allocated.
4940
4941 We return 1 if successful, or 0 if we couldn't find a spill reg and
4942 we didn't change anything. */
4943
4944 static int
4945 allocate_reload_reg (chain, r, last_reload)
4946 struct insn_chain *chain ATTRIBUTE_UNUSED;
4947 int r;
4948 int last_reload;
4949 {
4950 int i, pass, count;
4951
4952 /* If we put this reload ahead, thinking it is a group,
4953 then insist on finding a group. Otherwise we can grab a
4954 reg that some other reload needs.
4955 (That can happen when we have a 68000 DATA_OR_FP_REG
4956 which is a group of data regs or one fp reg.)
4957 We need not be so restrictive if there are no more reloads
4958 for this insn.
4959
4960 ??? Really it would be nicer to have smarter handling
4961 for that kind of reg class, where a problem like this is normal.
4962 Perhaps those classes should be avoided for reloading
4963 by use of more alternatives. */
4964
4965 int force_group = rld[r].nregs > 1 && ! last_reload;
4966
4967 /* If we want a single register and haven't yet found one,
4968 take any reg in the right class and not in use.
4969 If we want a consecutive group, here is where we look for it.
4970
4971 We use two passes so we can first look for reload regs to
4972 reuse, which are already in use for other reloads in this insn,
4973 and only then use additional registers.
4974 I think that maximizing reuse is needed to make sure we don't
4975 run out of reload regs. Suppose we have three reloads, and
4976 reloads A and B can share regs. These need two regs.
4977 Suppose A and B are given different regs.
4978 That leaves none for C. */
4979 for (pass = 0; pass < 2; pass++)
4980 {
4981 /* I is the index in spill_regs.
4982 We advance it round-robin between insns to use all spill regs
4983 equally, so that inherited reloads have a chance
4984 of leapfrogging each other. */
4985
4986 i = last_spill_reg;
4987
4988 for (count = 0; count < n_spills; count++)
4989 {
4990 int class = (int) rld[r].class;
4991 int regnum;
4992
4993 i++;
4994 if (i >= n_spills)
4995 i -= n_spills;
4996 regnum = spill_regs[i];
4997
4998 if ((reload_reg_free_p (regnum, rld[r].opnum,
4999 rld[r].when_needed)
5000 || (rld[r].in
5001 /* We check reload_reg_used to make sure we
5002 don't clobber the return register. */
5003 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5004 && reload_reg_free_for_value_p (regnum,
5005 rld[r].opnum,
5006 rld[r].when_needed,
5007 rld[r].in,
5008 rld[r].out, r, 1)))
5009 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5010 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5011 /* Look first for regs to share, then for unshared. But
5012 don't share regs used for inherited reloads; they are
5013 the ones we want to preserve. */
5014 && (pass
5015 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5016 regnum)
5017 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5018 regnum))))
5019 {
5020 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5021 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5022 (on 68000) got us two FP regs. If NR is 1,
5023 we would reject both of them. */
5024 if (force_group)
5025 nr = rld[r].nregs;
5026 /* If we need only one reg, we have already won. */
5027 if (nr == 1)
5028 {
5029 /* But reject a single reg if we demand a group. */
5030 if (force_group)
5031 continue;
5032 break;
5033 }
5034 /* Otherwise check that as many consecutive regs as we need
5035 are available here. */
5036 while (nr > 1)
5037 {
5038 int regno = regnum + nr - 1;
5039 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5040 && spill_reg_order[regno] >= 0
5041 && reload_reg_free_p (regno, rld[r].opnum,
5042 rld[r].when_needed)))
5043 break;
5044 nr--;
5045 }
5046 if (nr == 1)
5047 break;
5048 }
5049 }
5050
5051 /* If we found something on pass 1, omit pass 2. */
5052 if (count < n_spills)
5053 break;
5054 }
5055
5056 /* We should have found a spill register by now. */
5057 if (count >= n_spills)
5058 return 0;
5059
5060 /* I is the index in SPILL_REG_RTX of the reload register we are to
5061 allocate. Get an rtx for it and find its register number. */
5062
5063 return set_reload_reg (i, r);
5064 }
5065 \f
5066 /* Initialize all the tables needed to allocate reload registers.
5067 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5068 is the array we use to restore the reg_rtx field for every reload. */
5069
5070 static void
5071 choose_reload_regs_init (chain, save_reload_reg_rtx)
5072 struct insn_chain *chain;
5073 rtx *save_reload_reg_rtx;
5074 {
5075 int i;
5076
5077 for (i = 0; i < n_reloads; i++)
5078 rld[i].reg_rtx = save_reload_reg_rtx[i];
5079
5080 bzero (reload_inherited, MAX_RELOADS);
5081 bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
5082 bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx));
5083
5084 CLEAR_HARD_REG_SET (reload_reg_used);
5085 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5086 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5087 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5088 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5089 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5090
5091 CLEAR_HARD_REG_SET (reg_used_in_insn);
5092 {
5093 HARD_REG_SET tmp;
5094 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5095 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5096 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5097 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5098 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5099 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5100 }
5101
5102 for (i = 0; i < reload_n_operands; i++)
5103 {
5104 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5105 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5106 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5107 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5108 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5109 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5110 }
5111
5112 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5113
5114 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5115
5116 for (i = 0; i < n_reloads; i++)
5117 /* If we have already decided to use a certain register,
5118 don't use it in another way. */
5119 if (rld[i].reg_rtx)
5120 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5121 rld[i].when_needed, rld[i].mode);
5122 }
5123
5124 /* Assign hard reg targets for the pseudo-registers we must reload
5125 into hard regs for this insn.
5126 Also output the instructions to copy them in and out of the hard regs.
5127
5128 For machines with register classes, we are responsible for
5129 finding a reload reg in the proper class. */
5130
5131 static void
5132 choose_reload_regs (chain)
5133 struct insn_chain *chain;
5134 {
5135 rtx insn = chain->insn;
5136 register int i, j;
5137 unsigned int max_group_size = 1;
5138 enum reg_class group_class = NO_REGS;
5139 int pass, win, inheritance;
5140
5141 rtx save_reload_reg_rtx[MAX_RELOADS];
5142
5143 /* In order to be certain of getting the registers we need,
5144 we must sort the reloads into order of increasing register class.
5145 Then our grabbing of reload registers will parallel the process
5146 that provided the reload registers.
5147
5148 Also note whether any of the reloads wants a consecutive group of regs.
5149 If so, record the maximum size of the group desired and what
5150 register class contains all the groups needed by this insn. */
5151
5152 for (j = 0; j < n_reloads; j++)
5153 {
5154 reload_order[j] = j;
5155 reload_spill_index[j] = -1;
5156
5157 if (rld[j].nregs > 1)
5158 {
5159 max_group_size = MAX (rld[j].nregs, max_group_size);
5160 group_class
5161 = reg_class_superunion[(int) rld[j].class][(int)group_class];
5162 }
5163
5164 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5165 }
5166
5167 if (n_reloads > 1)
5168 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5169
5170 /* If -O, try first with inheritance, then turning it off.
5171 If not -O, don't do inheritance.
5172 Using inheritance when not optimizing leads to paradoxes
5173 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5174 because one side of the comparison might be inherited. */
5175 win = 0;
5176 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5177 {
5178 choose_reload_regs_init (chain, save_reload_reg_rtx);
5179
5180 /* Process the reloads in order of preference just found.
5181 Beyond this point, subregs can be found in reload_reg_rtx.
5182
5183 This used to look for an existing reloaded home for all of the
5184 reloads, and only then perform any new reloads. But that could lose
5185 if the reloads were done out of reg-class order because a later
5186 reload with a looser constraint might have an old home in a register
5187 needed by an earlier reload with a tighter constraint.
5188
5189 To solve this, we make two passes over the reloads, in the order
5190 described above. In the first pass we try to inherit a reload
5191 from a previous insn. If there is a later reload that needs a
5192 class that is a proper subset of the class being processed, we must
5193 also allocate a spill register during the first pass.
5194
5195 Then make a second pass over the reloads to allocate any reloads
5196 that haven't been given registers yet. */
5197
5198 for (j = 0; j < n_reloads; j++)
5199 {
5200 register int r = reload_order[j];
5201 rtx search_equiv = NULL_RTX;
5202
5203 /* Ignore reloads that got marked inoperative. */
5204 if (rld[r].out == 0 && rld[r].in == 0
5205 && ! rld[r].secondary_p)
5206 continue;
5207
5208 /* If find_reloads chose to use reload_in or reload_out as a reload
5209 register, we don't need to chose one. Otherwise, try even if it
5210 found one since we might save an insn if we find the value lying
5211 around.
5212 Try also when reload_in is a pseudo without a hard reg. */
5213 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5214 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5215 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5216 && GET_CODE (rld[r].in) != MEM
5217 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5218 continue;
5219
5220 #if 0 /* No longer needed for correct operation.
5221 It might give better code, or might not; worth an experiment? */
5222 /* If this is an optional reload, we can't inherit from earlier insns
5223 until we are sure that any non-optional reloads have been allocated.
5224 The following code takes advantage of the fact that optional reloads
5225 are at the end of reload_order. */
5226 if (rld[r].optional != 0)
5227 for (i = 0; i < j; i++)
5228 if ((rld[reload_order[i]].out != 0
5229 || rld[reload_order[i]].in != 0
5230 || rld[reload_order[i]].secondary_p)
5231 && ! rld[reload_order[i]].optional
5232 && rld[reload_order[i]].reg_rtx == 0)
5233 allocate_reload_reg (chain, reload_order[i], 0);
5234 #endif
5235
5236 /* First see if this pseudo is already available as reloaded
5237 for a previous insn. We cannot try to inherit for reloads
5238 that are smaller than the maximum number of registers needed
5239 for groups unless the register we would allocate cannot be used
5240 for the groups.
5241
5242 We could check here to see if this is a secondary reload for
5243 an object that is already in a register of the desired class.
5244 This would avoid the need for the secondary reload register.
5245 But this is complex because we can't easily determine what
5246 objects might want to be loaded via this reload. So let a
5247 register be allocated here. In `emit_reload_insns' we suppress
5248 one of the loads in the case described above. */
5249
5250 if (inheritance)
5251 {
5252 int word = 0;
5253 register int regno = -1;
5254 enum machine_mode mode = VOIDmode;
5255
5256 if (rld[r].in == 0)
5257 ;
5258 else if (GET_CODE (rld[r].in) == REG)
5259 {
5260 regno = REGNO (rld[r].in);
5261 mode = GET_MODE (rld[r].in);
5262 }
5263 else if (GET_CODE (rld[r].in_reg) == REG)
5264 {
5265 regno = REGNO (rld[r].in_reg);
5266 mode = GET_MODE (rld[r].in_reg);
5267 }
5268 else if (GET_CODE (rld[r].in_reg) == SUBREG
5269 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5270 {
5271 word = SUBREG_WORD (rld[r].in_reg);
5272 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5273 if (regno < FIRST_PSEUDO_REGISTER)
5274 regno += word;
5275 mode = GET_MODE (rld[r].in_reg);
5276 }
5277 #ifdef AUTO_INC_DEC
5278 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5279 || GET_CODE (rld[r].in_reg) == PRE_DEC
5280 || GET_CODE (rld[r].in_reg) == POST_INC
5281 || GET_CODE (rld[r].in_reg) == POST_DEC)
5282 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5283 {
5284 regno = REGNO (XEXP (rld[r].in_reg, 0));
5285 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5286 rld[r].out = rld[r].in;
5287 }
5288 #endif
5289 #if 0
5290 /* This won't work, since REGNO can be a pseudo reg number.
5291 Also, it takes much more hair to keep track of all the things
5292 that can invalidate an inherited reload of part of a pseudoreg. */
5293 else if (GET_CODE (rld[r].in) == SUBREG
5294 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5295 regno = REGNO (SUBREG_REG (rld[r].in)) + SUBREG_WORD (rld[r].in);
5296 #endif
5297
5298 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5299 {
5300 enum reg_class class = rld[r].class, last_class;
5301 rtx last_reg = reg_last_reload_reg[regno];
5302 enum machine_mode need_mode;
5303
5304 i = REGNO (last_reg) + word;
5305 last_class = REGNO_REG_CLASS (i);
5306
5307 if (word == 0)
5308 need_mode = mode;
5309 else
5310 need_mode
5311 = smallest_mode_for_size (GET_MODE_SIZE (mode)
5312 + word * UNITS_PER_WORD,
5313 GET_MODE_CLASS (mode));
5314
5315 if (
5316 #ifdef CLASS_CANNOT_CHANGE_MODE
5317 (TEST_HARD_REG_BIT
5318 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5319 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5320 need_mode)
5321 : (GET_MODE_SIZE (GET_MODE (last_reg))
5322 >= GET_MODE_SIZE (need_mode)))
5323 #else
5324 (GET_MODE_SIZE (GET_MODE (last_reg))
5325 >= GET_MODE_SIZE (need_mode))
5326 #endif
5327 && reg_reloaded_contents[i] == regno
5328 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5329 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5330 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5331 /* Even if we can't use this register as a reload
5332 register, we might use it for reload_override_in,
5333 if copying it to the desired class is cheap
5334 enough. */
5335 || ((REGISTER_MOVE_COST (last_class, class)
5336 < MEMORY_MOVE_COST (mode, class, 1))
5337 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5338 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5339 last_reg)
5340 == NO_REGS)
5341 #endif
5342 #ifdef SECONDARY_MEMORY_NEEDED
5343 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5344 mode)
5345 #endif
5346 ))
5347
5348 && (rld[r].nregs == max_group_size
5349 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5350 i))
5351 && reload_reg_free_for_value_p (i, rld[r].opnum,
5352 rld[r].when_needed,
5353 rld[r].in,
5354 const0_rtx, r, 1))
5355 {
5356 /* If a group is needed, verify that all the subsequent
5357 registers still have their values intact. */
5358 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5359 int k;
5360
5361 for (k = 1; k < nr; k++)
5362 if (reg_reloaded_contents[i + k] != regno
5363 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5364 break;
5365
5366 if (k == nr)
5367 {
5368 int i1;
5369
5370 last_reg = (GET_MODE (last_reg) == mode
5371 ? last_reg : gen_rtx_REG (mode, i));
5372
5373 /* We found a register that contains the
5374 value we need. If this register is the
5375 same as an `earlyclobber' operand of the
5376 current insn, just mark it as a place to
5377 reload from since we can't use it as the
5378 reload register itself. */
5379
5380 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5381 if (reg_overlap_mentioned_for_reload_p
5382 (reg_last_reload_reg[regno],
5383 reload_earlyclobbers[i1]))
5384 break;
5385
5386 if (i1 != n_earlyclobbers
5387 || ! (reload_reg_free_for_value_p
5388 (i, rld[r].opnum, rld[r].when_needed,
5389 rld[r].in, rld[r].out, r, 1))
5390 /* Don't use it if we'd clobber a pseudo reg. */
5391 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5392 && rld[r].out
5393 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5394 /* Don't clobber the frame pointer. */
5395 || (i == HARD_FRAME_POINTER_REGNUM
5396 && rld[r].out)
5397 /* Don't really use the inherited spill reg
5398 if we need it wider than we've got it. */
5399 || (GET_MODE_SIZE (rld[r].mode)
5400 > GET_MODE_SIZE (mode))
5401 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5402 i)
5403
5404 /* If find_reloads chose reload_out as reload
5405 register, stay with it - that leaves the
5406 inherited register for subsequent reloads. */
5407 || (rld[r].out && rld[r].reg_rtx
5408 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5409 {
5410 reload_override_in[r] = last_reg;
5411 reload_inheritance_insn[r]
5412 = reg_reloaded_insn[i];
5413 }
5414 else
5415 {
5416 int k;
5417 /* We can use this as a reload reg. */
5418 /* Mark the register as in use for this part of
5419 the insn. */
5420 mark_reload_reg_in_use (i,
5421 rld[r].opnum,
5422 rld[r].when_needed,
5423 rld[r].mode);
5424 rld[r].reg_rtx = last_reg;
5425 reload_inherited[r] = 1;
5426 reload_inheritance_insn[r]
5427 = reg_reloaded_insn[i];
5428 reload_spill_index[r] = i;
5429 for (k = 0; k < nr; k++)
5430 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5431 i + k);
5432 }
5433 }
5434 }
5435 }
5436 }
5437
5438 /* Here's another way to see if the value is already lying around. */
5439 if (inheritance
5440 && rld[r].in != 0
5441 && ! reload_inherited[r]
5442 && rld[r].out == 0
5443 && (CONSTANT_P (rld[r].in)
5444 || GET_CODE (rld[r].in) == PLUS
5445 || GET_CODE (rld[r].in) == REG
5446 || GET_CODE (rld[r].in) == MEM)
5447 && (rld[r].nregs == max_group_size
5448 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5449 search_equiv = rld[r].in;
5450 /* If this is an output reload from a simple move insn, look
5451 if an equivalence for the input is available. */
5452 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5453 {
5454 rtx set = single_set (insn);
5455
5456 if (set
5457 && rtx_equal_p (rld[r].out, SET_DEST (set))
5458 && CONSTANT_P (SET_SRC (set)))
5459 search_equiv = SET_SRC (set);
5460 }
5461
5462 if (search_equiv)
5463 {
5464 register rtx equiv
5465 = find_equiv_reg (search_equiv, insn, rld[r].class,
5466 -1, NULL_PTR, 0, rld[r].mode);
5467 int regno = 0;
5468
5469 if (equiv != 0)
5470 {
5471 if (GET_CODE (equiv) == REG)
5472 regno = REGNO (equiv);
5473 else if (GET_CODE (equiv) == SUBREG)
5474 {
5475 /* This must be a SUBREG of a hard register.
5476 Make a new REG since this might be used in an
5477 address and not all machines support SUBREGs
5478 there. */
5479 regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
5480 equiv = gen_rtx_REG (rld[r].mode, regno);
5481 }
5482 else
5483 abort ();
5484 }
5485
5486 /* If we found a spill reg, reject it unless it is free
5487 and of the desired class. */
5488 if (equiv != 0
5489 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5490 && ! reload_reg_free_for_value_p (regno, rld[r].opnum,
5491 rld[r].when_needed,
5492 rld[r].in,
5493 rld[r].out, r, 1))
5494 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5495 regno)))
5496 equiv = 0;
5497
5498 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5499 equiv = 0;
5500
5501 /* We found a register that contains the value we need.
5502 If this register is the same as an `earlyclobber' operand
5503 of the current insn, just mark it as a place to reload from
5504 since we can't use it as the reload register itself. */
5505
5506 if (equiv != 0)
5507 for (i = 0; i < n_earlyclobbers; i++)
5508 if (reg_overlap_mentioned_for_reload_p (equiv,
5509 reload_earlyclobbers[i]))
5510 {
5511 reload_override_in[r] = equiv;
5512 equiv = 0;
5513 break;
5514 }
5515
5516 /* If the equiv register we have found is explicitly clobbered
5517 in the current insn, it depends on the reload type if we
5518 can use it, use it for reload_override_in, or not at all.
5519 In particular, we then can't use EQUIV for a
5520 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5521
5522 if (equiv != 0 && regno_clobbered_p (regno, insn, rld[r].mode))
5523 {
5524 switch (rld[r].when_needed)
5525 {
5526 case RELOAD_FOR_OTHER_ADDRESS:
5527 case RELOAD_FOR_INPADDR_ADDRESS:
5528 case RELOAD_FOR_INPUT_ADDRESS:
5529 case RELOAD_FOR_OPADDR_ADDR:
5530 break;
5531 case RELOAD_OTHER:
5532 case RELOAD_FOR_INPUT:
5533 case RELOAD_FOR_OPERAND_ADDRESS:
5534 reload_override_in[r] = equiv;
5535 /* Fall through. */
5536 default:
5537 equiv = 0;
5538 break;
5539 }
5540 }
5541
5542 /* If we found an equivalent reg, say no code need be generated
5543 to load it, and use it as our reload reg. */
5544 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
5545 {
5546 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5547 int k;
5548 rld[r].reg_rtx = equiv;
5549 reload_inherited[r] = 1;
5550
5551 /* If reg_reloaded_valid is not set for this register,
5552 there might be a stale spill_reg_store lying around.
5553 We must clear it, since otherwise emit_reload_insns
5554 might delete the store. */
5555 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5556 spill_reg_store[regno] = NULL_RTX;
5557 /* If any of the hard registers in EQUIV are spill
5558 registers, mark them as in use for this insn. */
5559 for (k = 0; k < nr; k++)
5560 {
5561 i = spill_reg_order[regno + k];
5562 if (i >= 0)
5563 {
5564 mark_reload_reg_in_use (regno, rld[r].opnum,
5565 rld[r].when_needed,
5566 rld[r].mode);
5567 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5568 regno + k);
5569 }
5570 }
5571 }
5572 }
5573
5574 /* If we found a register to use already, or if this is an optional
5575 reload, we are done. */
5576 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5577 continue;
5578
5579 #if 0
5580 /* No longer needed for correct operation. Might or might
5581 not give better code on the average. Want to experiment? */
5582
5583 /* See if there is a later reload that has a class different from our
5584 class that intersects our class or that requires less register
5585 than our reload. If so, we must allocate a register to this
5586 reload now, since that reload might inherit a previous reload
5587 and take the only available register in our class. Don't do this
5588 for optional reloads since they will force all previous reloads
5589 to be allocated. Also don't do this for reloads that have been
5590 turned off. */
5591
5592 for (i = j + 1; i < n_reloads; i++)
5593 {
5594 int s = reload_order[i];
5595
5596 if ((rld[s].in == 0 && rld[s].out == 0
5597 && ! rld[s].secondary_p)
5598 || rld[s].optional)
5599 continue;
5600
5601 if ((rld[s].class != rld[r].class
5602 && reg_classes_intersect_p (rld[r].class,
5603 rld[s].class))
5604 || rld[s].nregs < rld[r].nregs)
5605 break;
5606 }
5607
5608 if (i == n_reloads)
5609 continue;
5610
5611 allocate_reload_reg (chain, r, j == n_reloads - 1);
5612 #endif
5613 }
5614
5615 /* Now allocate reload registers for anything non-optional that
5616 didn't get one yet. */
5617 for (j = 0; j < n_reloads; j++)
5618 {
5619 register int r = reload_order[j];
5620
5621 /* Ignore reloads that got marked inoperative. */
5622 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5623 continue;
5624
5625 /* Skip reloads that already have a register allocated or are
5626 optional. */
5627 if (rld[r].reg_rtx != 0 || rld[r].optional)
5628 continue;
5629
5630 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5631 break;
5632 }
5633
5634 /* If that loop got all the way, we have won. */
5635 if (j == n_reloads)
5636 {
5637 win = 1;
5638 break;
5639 }
5640
5641 /* Loop around and try without any inheritance. */
5642 }
5643
5644 if (! win)
5645 {
5646 /* First undo everything done by the failed attempt
5647 to allocate with inheritance. */
5648 choose_reload_regs_init (chain, save_reload_reg_rtx);
5649
5650 /* Some sanity tests to verify that the reloads found in the first
5651 pass are identical to the ones we have now. */
5652 if (chain->n_reloads != n_reloads)
5653 abort ();
5654
5655 for (i = 0; i < n_reloads; i++)
5656 {
5657 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5658 continue;
5659 if (chain->rld[i].when_needed != rld[i].when_needed)
5660 abort ();
5661 for (j = 0; j < n_spills; j++)
5662 if (spill_regs[j] == chain->rld[i].regno)
5663 if (! set_reload_reg (j, i))
5664 failed_reload (chain->insn, i);
5665 }
5666 }
5667
5668 /* If we thought we could inherit a reload, because it seemed that
5669 nothing else wanted the same reload register earlier in the insn,
5670 verify that assumption, now that all reloads have been assigned.
5671 Likewise for reloads where reload_override_in has been set. */
5672
5673 /* If doing expensive optimizations, do one preliminary pass that doesn't
5674 cancel any inheritance, but removes reloads that have been needed only
5675 for reloads that we know can be inherited. */
5676 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5677 {
5678 for (j = 0; j < n_reloads; j++)
5679 {
5680 register int r = reload_order[j];
5681 rtx check_reg;
5682 if (reload_inherited[r] && rld[r].reg_rtx)
5683 check_reg = rld[r].reg_rtx;
5684 else if (reload_override_in[r]
5685 && (GET_CODE (reload_override_in[r]) == REG
5686 || GET_CODE (reload_override_in[r]) == SUBREG))
5687 check_reg = reload_override_in[r];
5688 else
5689 continue;
5690 if (! reload_reg_free_for_value_p (true_regnum (check_reg),
5691 rld[r].opnum,
5692 rld[r].when_needed,
5693 rld[r].in,
5694 (reload_inherited[r]
5695 ? rld[r].out : const0_rtx),
5696 r, 1))
5697 {
5698 if (pass)
5699 continue;
5700 reload_inherited[r] = 0;
5701 reload_override_in[r] = 0;
5702 }
5703 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5704 reload_override_in, then we do not need its related
5705 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5706 likewise for other reload types.
5707 We handle this by removing a reload when its only replacement
5708 is mentioned in reload_in of the reload we are going to inherit.
5709 A special case are auto_inc expressions; even if the input is
5710 inherited, we still need the address for the output. We can
5711 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5712 If we suceeded removing some reload and we are doing a preliminary
5713 pass just to remove such reloads, make another pass, since the
5714 removal of one reload might allow us to inherit another one. */
5715 else if (rld[r].in
5716 && rld[r].out != rld[r].in
5717 && remove_address_replacements (rld[r].in) && pass)
5718 pass = 2;
5719 }
5720 }
5721
5722 /* Now that reload_override_in is known valid,
5723 actually override reload_in. */
5724 for (j = 0; j < n_reloads; j++)
5725 if (reload_override_in[j])
5726 rld[j].in = reload_override_in[j];
5727
5728 /* If this reload won't be done because it has been cancelled or is
5729 optional and not inherited, clear reload_reg_rtx so other
5730 routines (such as subst_reloads) don't get confused. */
5731 for (j = 0; j < n_reloads; j++)
5732 if (rld[j].reg_rtx != 0
5733 && ((rld[j].optional && ! reload_inherited[j])
5734 || (rld[j].in == 0 && rld[j].out == 0
5735 && ! rld[j].secondary_p)))
5736 {
5737 int regno = true_regnum (rld[j].reg_rtx);
5738
5739 if (spill_reg_order[regno] >= 0)
5740 clear_reload_reg_in_use (regno, rld[j].opnum,
5741 rld[j].when_needed, rld[j].mode);
5742 rld[j].reg_rtx = 0;
5743 reload_spill_index[j] = -1;
5744 }
5745
5746 /* Record which pseudos and which spill regs have output reloads. */
5747 for (j = 0; j < n_reloads; j++)
5748 {
5749 register int r = reload_order[j];
5750
5751 i = reload_spill_index[r];
5752
5753 /* I is nonneg if this reload uses a register.
5754 If rld[r].reg_rtx is 0, this is an optional reload
5755 that we opted to ignore. */
5756 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5757 && rld[r].reg_rtx != 0)
5758 {
5759 register int nregno = REGNO (rld[r].out_reg);
5760 int nr = 1;
5761
5762 if (nregno < FIRST_PSEUDO_REGISTER)
5763 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5764
5765 while (--nr >= 0)
5766 reg_has_output_reload[nregno + nr] = 1;
5767
5768 if (i >= 0)
5769 {
5770 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5771 while (--nr >= 0)
5772 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5773 }
5774
5775 if (rld[r].when_needed != RELOAD_OTHER
5776 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5777 && rld[r].when_needed != RELOAD_FOR_INSN)
5778 abort ();
5779 }
5780 }
5781 }
5782
5783 /* Deallocate the reload register for reload R. This is called from
5784 remove_address_replacements. */
5785
5786 void
5787 deallocate_reload_reg (r)
5788 int r;
5789 {
5790 int regno;
5791
5792 if (! rld[r].reg_rtx)
5793 return;
5794 regno = true_regnum (rld[r].reg_rtx);
5795 rld[r].reg_rtx = 0;
5796 if (spill_reg_order[regno] >= 0)
5797 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5798 rld[r].mode);
5799 reload_spill_index[r] = -1;
5800 }
5801 \f
5802 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
5803 reloads of the same item for fear that we might not have enough reload
5804 registers. However, normally they will get the same reload register
5805 and hence actually need not be loaded twice.
5806
5807 Here we check for the most common case of this phenomenon: when we have
5808 a number of reloads for the same object, each of which were allocated
5809 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5810 reload, and is not modified in the insn itself. If we find such,
5811 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5812 This will not increase the number of spill registers needed and will
5813 prevent redundant code. */
5814
5815 static void
5816 merge_assigned_reloads (insn)
5817 rtx insn;
5818 {
5819 int i, j;
5820
5821 /* Scan all the reloads looking for ones that only load values and
5822 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5823 assigned and not modified by INSN. */
5824
5825 for (i = 0; i < n_reloads; i++)
5826 {
5827 int conflicting_input = 0;
5828 int max_input_address_opnum = -1;
5829 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5830
5831 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
5832 || rld[i].out != 0 || rld[i].reg_rtx == 0
5833 || reg_set_p (rld[i].reg_rtx, insn))
5834 continue;
5835
5836 /* Look at all other reloads. Ensure that the only use of this
5837 reload_reg_rtx is in a reload that just loads the same value
5838 as we do. Note that any secondary reloads must be of the identical
5839 class since the values, modes, and result registers are the
5840 same, so we need not do anything with any secondary reloads. */
5841
5842 for (j = 0; j < n_reloads; j++)
5843 {
5844 if (i == j || rld[j].reg_rtx == 0
5845 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
5846 rld[i].reg_rtx))
5847 continue;
5848
5849 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5850 && rld[j].opnum > max_input_address_opnum)
5851 max_input_address_opnum = rld[j].opnum;
5852
5853 /* If the reload regs aren't exactly the same (e.g, different modes)
5854 or if the values are different, we can't merge this reload.
5855 But if it is an input reload, we might still merge
5856 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
5857
5858 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5859 || rld[j].out != 0 || rld[j].in == 0
5860 || ! rtx_equal_p (rld[i].in, rld[j].in))
5861 {
5862 if (rld[j].when_needed != RELOAD_FOR_INPUT
5863 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
5864 || rld[i].opnum > rld[j].opnum)
5865 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
5866 break;
5867 conflicting_input = 1;
5868 if (min_conflicting_input_opnum > rld[j].opnum)
5869 min_conflicting_input_opnum = rld[j].opnum;
5870 }
5871 }
5872
5873 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
5874 we, in fact, found any matching reloads. */
5875
5876 if (j == n_reloads
5877 && max_input_address_opnum <= min_conflicting_input_opnum)
5878 {
5879 for (j = 0; j < n_reloads; j++)
5880 if (i != j && rld[j].reg_rtx != 0
5881 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5882 && (! conflicting_input
5883 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5884 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
5885 {
5886 rld[i].when_needed = RELOAD_OTHER;
5887 rld[j].in = 0;
5888 reload_spill_index[j] = -1;
5889 transfer_replacements (i, j);
5890 }
5891
5892 /* If this is now RELOAD_OTHER, look for any reloads that load
5893 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
5894 if they were for inputs, RELOAD_OTHER for outputs. Note that
5895 this test is equivalent to looking for reloads for this operand
5896 number. */
5897
5898 if (rld[i].when_needed == RELOAD_OTHER)
5899 for (j = 0; j < n_reloads; j++)
5900 if (rld[j].in != 0
5901 && rld[i].when_needed != RELOAD_OTHER
5902 && reg_overlap_mentioned_for_reload_p (rld[j].in,
5903 rld[i].in))
5904 rld[j].when_needed
5905 = ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
5906 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
5907 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
5908 }
5909 }
5910 }
5911 \f
5912 /* These arrays are filled by emit_reload_insns and its subroutines. */
5913 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
5914 static rtx other_input_address_reload_insns = 0;
5915 static rtx other_input_reload_insns = 0;
5916 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
5917 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
5918 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
5919 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
5920 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
5921 static rtx operand_reload_insns = 0;
5922 static rtx other_operand_reload_insns = 0;
5923 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
5924
5925 /* Values to be put in spill_reg_store are put here first. */
5926 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
5927 static HARD_REG_SET reg_reloaded_died;
5928
5929 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
5930 has the number J. OLD contains the value to be used as input. */
5931
5932 static void
5933 emit_input_reload_insns (chain, rl, old, j)
5934 struct insn_chain *chain;
5935 struct reload *rl;
5936 rtx old;
5937 int j;
5938 {
5939 rtx insn = chain->insn;
5940 register rtx reloadreg = rl->reg_rtx;
5941 rtx oldequiv_reg = 0;
5942 rtx oldequiv = 0;
5943 int special = 0;
5944 enum machine_mode mode;
5945 rtx *where;
5946
5947 /* Determine the mode to reload in.
5948 This is very tricky because we have three to choose from.
5949 There is the mode the insn operand wants (rl->inmode).
5950 There is the mode of the reload register RELOADREG.
5951 There is the intrinsic mode of the operand, which we could find
5952 by stripping some SUBREGs.
5953 It turns out that RELOADREG's mode is irrelevant:
5954 we can change that arbitrarily.
5955
5956 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
5957 then the reload reg may not support QImode moves, so use SImode.
5958 If foo is in memory due to spilling a pseudo reg, this is safe,
5959 because the QImode value is in the least significant part of a
5960 slot big enough for a SImode. If foo is some other sort of
5961 memory reference, then it is impossible to reload this case,
5962 so previous passes had better make sure this never happens.
5963
5964 Then consider a one-word union which has SImode and one of its
5965 members is a float, being fetched as (SUBREG:SF union:SI).
5966 We must fetch that as SFmode because we could be loading into
5967 a float-only register. In this case OLD's mode is correct.
5968
5969 Consider an immediate integer: it has VOIDmode. Here we need
5970 to get a mode from something else.
5971
5972 In some cases, there is a fourth mode, the operand's
5973 containing mode. If the insn specifies a containing mode for
5974 this operand, it overrides all others.
5975
5976 I am not sure whether the algorithm here is always right,
5977 but it does the right things in those cases. */
5978
5979 mode = GET_MODE (old);
5980 if (mode == VOIDmode)
5981 mode = rl->inmode;
5982
5983 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5984 /* If we need a secondary register for this operation, see if
5985 the value is already in a register in that class. Don't
5986 do this if the secondary register will be used as a scratch
5987 register. */
5988
5989 if (rl->secondary_in_reload >= 0
5990 && rl->secondary_in_icode == CODE_FOR_nothing
5991 && optimize)
5992 oldequiv
5993 = find_equiv_reg (old, insn,
5994 rld[rl->secondary_in_reload].class,
5995 -1, NULL_PTR, 0, mode);
5996 #endif
5997
5998 /* If reloading from memory, see if there is a register
5999 that already holds the same value. If so, reload from there.
6000 We can pass 0 as the reload_reg_p argument because
6001 any other reload has either already been emitted,
6002 in which case find_equiv_reg will see the reload-insn,
6003 or has yet to be emitted, in which case it doesn't matter
6004 because we will use this equiv reg right away. */
6005
6006 if (oldequiv == 0 && optimize
6007 && (GET_CODE (old) == MEM
6008 || (GET_CODE (old) == REG
6009 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6010 && reg_renumber[REGNO (old)] < 0)))
6011 oldequiv = find_equiv_reg (old, insn, ALL_REGS,
6012 -1, NULL_PTR, 0, mode);
6013
6014 if (oldequiv)
6015 {
6016 unsigned int regno = true_regnum (oldequiv);
6017
6018 /* Don't use OLDEQUIV if any other reload changes it at an
6019 earlier stage of this insn or at this stage. */
6020 if (! reload_reg_free_for_value_p (regno, rl->opnum,
6021 rl->when_needed,
6022 rl->in, const0_rtx, j,
6023 0))
6024 oldequiv = 0;
6025
6026 /* If it is no cheaper to copy from OLDEQUIV into the
6027 reload register than it would be to move from memory,
6028 don't use it. Likewise, if we need a secondary register
6029 or memory. */
6030
6031 if (oldequiv != 0
6032 && ((REGNO_REG_CLASS (regno) != rl->class
6033 && (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
6034 rl->class)
6035 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6036 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6037 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6038 mode, oldequiv)
6039 != NO_REGS)
6040 #endif
6041 #ifdef SECONDARY_MEMORY_NEEDED
6042 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6043 rl->class,
6044 mode)
6045 #endif
6046 ))
6047 oldequiv = 0;
6048 }
6049
6050 /* delete_output_reload is only invoked properly if old contains
6051 the original pseudo register. Since this is replaced with a
6052 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6053 find the pseudo in RELOAD_IN_REG. */
6054 if (oldequiv == 0
6055 && reload_override_in[j]
6056 && GET_CODE (rl->in_reg) == REG)
6057 {
6058 oldequiv = old;
6059 old = rl->in_reg;
6060 }
6061 if (oldequiv == 0)
6062 oldequiv = old;
6063 else if (GET_CODE (oldequiv) == REG)
6064 oldequiv_reg = oldequiv;
6065 else if (GET_CODE (oldequiv) == SUBREG)
6066 oldequiv_reg = SUBREG_REG (oldequiv);
6067
6068 /* If we are reloading from a register that was recently stored in
6069 with an output-reload, see if we can prove there was
6070 actually no need to store the old value in it. */
6071
6072 if (optimize && GET_CODE (oldequiv) == REG
6073 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6074 && spill_reg_store[REGNO (oldequiv)]
6075 && GET_CODE (old) == REG
6076 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6077 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6078 rl->out_reg)))
6079 delete_output_reload (insn, j, REGNO (oldequiv));
6080
6081 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6082 then load RELOADREG from OLDEQUIV. Note that we cannot use
6083 gen_lowpart_common since it can do the wrong thing when
6084 RELOADREG has a multi-word mode. Note that RELOADREG
6085 must always be a REG here. */
6086
6087 if (GET_MODE (reloadreg) != mode)
6088 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6089 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6090 oldequiv = SUBREG_REG (oldequiv);
6091 if (GET_MODE (oldequiv) != VOIDmode
6092 && mode != GET_MODE (oldequiv))
6093 oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
6094
6095 /* Switch to the right place to emit the reload insns. */
6096 switch (rl->when_needed)
6097 {
6098 case RELOAD_OTHER:
6099 where = &other_input_reload_insns;
6100 break;
6101 case RELOAD_FOR_INPUT:
6102 where = &input_reload_insns[rl->opnum];
6103 break;
6104 case RELOAD_FOR_INPUT_ADDRESS:
6105 where = &input_address_reload_insns[rl->opnum];
6106 break;
6107 case RELOAD_FOR_INPADDR_ADDRESS:
6108 where = &inpaddr_address_reload_insns[rl->opnum];
6109 break;
6110 case RELOAD_FOR_OUTPUT_ADDRESS:
6111 where = &output_address_reload_insns[rl->opnum];
6112 break;
6113 case RELOAD_FOR_OUTADDR_ADDRESS:
6114 where = &outaddr_address_reload_insns[rl->opnum];
6115 break;
6116 case RELOAD_FOR_OPERAND_ADDRESS:
6117 where = &operand_reload_insns;
6118 break;
6119 case RELOAD_FOR_OPADDR_ADDR:
6120 where = &other_operand_reload_insns;
6121 break;
6122 case RELOAD_FOR_OTHER_ADDRESS:
6123 where = &other_input_address_reload_insns;
6124 break;
6125 default:
6126 abort ();
6127 }
6128
6129 push_to_sequence (*where);
6130
6131 /* Auto-increment addresses must be reloaded in a special way. */
6132 if (rl->out && ! rl->out_reg)
6133 {
6134 /* We are not going to bother supporting the case where a
6135 incremented register can't be copied directly from
6136 OLDEQUIV since this seems highly unlikely. */
6137 if (rl->secondary_in_reload >= 0)
6138 abort ();
6139
6140 if (reload_inherited[j])
6141 oldequiv = reloadreg;
6142
6143 old = XEXP (rl->in_reg, 0);
6144
6145 if (optimize && GET_CODE (oldequiv) == REG
6146 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6147 && spill_reg_store[REGNO (oldequiv)]
6148 && GET_CODE (old) == REG
6149 && (dead_or_set_p (insn,
6150 spill_reg_stored_to[REGNO (oldequiv)])
6151 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6152 old)))
6153 delete_output_reload (insn, j, REGNO (oldequiv));
6154
6155 /* Prevent normal processing of this reload. */
6156 special = 1;
6157 /* Output a special code sequence for this case. */
6158 new_spill_reg_store[REGNO (reloadreg)]
6159 = inc_for_reload (reloadreg, oldequiv, rl->out,
6160 rl->inc);
6161 }
6162
6163 /* If we are reloading a pseudo-register that was set by the previous
6164 insn, see if we can get rid of that pseudo-register entirely
6165 by redirecting the previous insn into our reload register. */
6166
6167 else if (optimize && GET_CODE (old) == REG
6168 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6169 && dead_or_set_p (insn, old)
6170 /* This is unsafe if some other reload
6171 uses the same reg first. */
6172 && reload_reg_free_for_value_p (REGNO (reloadreg),
6173 rl->opnum,
6174 rl->when_needed,
6175 old, rl->out,
6176 j, 0))
6177 {
6178 rtx temp = PREV_INSN (insn);
6179 while (temp && GET_CODE (temp) == NOTE)
6180 temp = PREV_INSN (temp);
6181 if (temp
6182 && GET_CODE (temp) == INSN
6183 && GET_CODE (PATTERN (temp)) == SET
6184 && SET_DEST (PATTERN (temp)) == old
6185 /* Make sure we can access insn_operand_constraint. */
6186 && asm_noperands (PATTERN (temp)) < 0
6187 /* This is unsafe if prev insn rejects our reload reg. */
6188 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6189 reloadreg)
6190 /* This is unsafe if operand occurs more than once in current
6191 insn. Perhaps some occurrences aren't reloaded. */
6192 && count_occurrences (PATTERN (insn), old, 0) == 1
6193 /* Don't risk splitting a matching pair of operands. */
6194 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6195 {
6196 /* Store into the reload register instead of the pseudo. */
6197 SET_DEST (PATTERN (temp)) = reloadreg;
6198
6199 /* If the previous insn is an output reload, the source is
6200 a reload register, and its spill_reg_store entry will
6201 contain the previous destination. This is now
6202 invalid. */
6203 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6204 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6205 {
6206 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6207 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6208 }
6209
6210 /* If these are the only uses of the pseudo reg,
6211 pretend for GDB it lives in the reload reg we used. */
6212 if (REG_N_DEATHS (REGNO (old)) == 1
6213 && REG_N_SETS (REGNO (old)) == 1)
6214 {
6215 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6216 alter_reg (REGNO (old), -1);
6217 }
6218 special = 1;
6219 }
6220 }
6221
6222 /* We can't do that, so output an insn to load RELOADREG. */
6223
6224 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6225 /* If we have a secondary reload, pick up the secondary register
6226 and icode, if any. If OLDEQUIV and OLD are different or
6227 if this is an in-out reload, recompute whether or not we
6228 still need a secondary register and what the icode should
6229 be. If we still need a secondary register and the class or
6230 icode is different, go back to reloading from OLD if using
6231 OLDEQUIV means that we got the wrong type of register. We
6232 cannot have different class or icode due to an in-out reload
6233 because we don't make such reloads when both the input and
6234 output need secondary reload registers. */
6235
6236 if (! special && rl->secondary_in_reload >= 0)
6237 {
6238 rtx second_reload_reg = 0;
6239 int secondary_reload = rl->secondary_in_reload;
6240 rtx real_oldequiv = oldequiv;
6241 rtx real_old = old;
6242 rtx tmp;
6243 enum insn_code icode;
6244
6245 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6246 and similarly for OLD.
6247 See comments in get_secondary_reload in reload.c. */
6248 /* If it is a pseudo that cannot be replaced with its
6249 equivalent MEM, we must fall back to reload_in, which
6250 will have all the necessary substitutions registered.
6251 Likewise for a pseudo that can't be replaced with its
6252 equivalent constant.
6253
6254 Take extra care for subregs of such pseudos. Note that
6255 we cannot use reg_equiv_mem in this case because it is
6256 not in the right mode. */
6257
6258 tmp = oldequiv;
6259 if (GET_CODE (tmp) == SUBREG)
6260 tmp = SUBREG_REG (tmp);
6261 if (GET_CODE (tmp) == REG
6262 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6263 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6264 || reg_equiv_constant[REGNO (tmp)] != 0))
6265 {
6266 if (! reg_equiv_mem[REGNO (tmp)]
6267 || num_not_at_initial_offset
6268 || GET_CODE (oldequiv) == SUBREG)
6269 real_oldequiv = rl->in;
6270 else
6271 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6272 }
6273
6274 tmp = old;
6275 if (GET_CODE (tmp) == SUBREG)
6276 tmp = SUBREG_REG (tmp);
6277 if (GET_CODE (tmp) == REG
6278 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6279 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6280 || reg_equiv_constant[REGNO (tmp)] != 0))
6281 {
6282 if (! reg_equiv_mem[REGNO (tmp)]
6283 || num_not_at_initial_offset
6284 || GET_CODE (old) == SUBREG)
6285 real_old = rl->in;
6286 else
6287 real_old = reg_equiv_mem[REGNO (tmp)];
6288 }
6289
6290 second_reload_reg = rld[secondary_reload].reg_rtx;
6291 icode = rl->secondary_in_icode;
6292
6293 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6294 || (rl->in != 0 && rl->out != 0))
6295 {
6296 enum reg_class new_class
6297 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6298 mode, real_oldequiv);
6299
6300 if (new_class == NO_REGS)
6301 second_reload_reg = 0;
6302 else
6303 {
6304 enum insn_code new_icode;
6305 enum machine_mode new_mode;
6306
6307 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6308 REGNO (second_reload_reg)))
6309 oldequiv = old, real_oldequiv = real_old;
6310 else
6311 {
6312 new_icode = reload_in_optab[(int) mode];
6313 if (new_icode != CODE_FOR_nothing
6314 && ((insn_data[(int) new_icode].operand[0].predicate
6315 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6316 (reloadreg, mode)))
6317 || (insn_data[(int) new_icode].operand[1].predicate
6318 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6319 (real_oldequiv, mode)))))
6320 new_icode = CODE_FOR_nothing;
6321
6322 if (new_icode == CODE_FOR_nothing)
6323 new_mode = mode;
6324 else
6325 new_mode = insn_data[(int) new_icode].operand[2].mode;
6326
6327 if (GET_MODE (second_reload_reg) != new_mode)
6328 {
6329 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6330 new_mode))
6331 oldequiv = old, real_oldequiv = real_old;
6332 else
6333 second_reload_reg
6334 = gen_rtx_REG (new_mode,
6335 REGNO (second_reload_reg));
6336 }
6337 }
6338 }
6339 }
6340
6341 /* If we still need a secondary reload register, check
6342 to see if it is being used as a scratch or intermediate
6343 register and generate code appropriately. If we need
6344 a scratch register, use REAL_OLDEQUIV since the form of
6345 the insn may depend on the actual address if it is
6346 a MEM. */
6347
6348 if (second_reload_reg)
6349 {
6350 if (icode != CODE_FOR_nothing)
6351 {
6352 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6353 second_reload_reg));
6354 special = 1;
6355 }
6356 else
6357 {
6358 /* See if we need a scratch register to load the
6359 intermediate register (a tertiary reload). */
6360 enum insn_code tertiary_icode
6361 = rld[secondary_reload].secondary_in_icode;
6362
6363 if (tertiary_icode != CODE_FOR_nothing)
6364 {
6365 rtx third_reload_reg
6366 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6367
6368 emit_insn ((GEN_FCN (tertiary_icode)
6369 (second_reload_reg, real_oldequiv,
6370 third_reload_reg)));
6371 }
6372 else
6373 gen_reload (second_reload_reg, real_oldequiv,
6374 rl->opnum,
6375 rl->when_needed);
6376
6377 oldequiv = second_reload_reg;
6378 }
6379 }
6380 }
6381 #endif
6382
6383 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6384 {
6385 rtx real_oldequiv = oldequiv;
6386
6387 if ((GET_CODE (oldequiv) == REG
6388 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6389 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6390 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6391 || (GET_CODE (oldequiv) == SUBREG
6392 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6393 && (REGNO (SUBREG_REG (oldequiv))
6394 >= FIRST_PSEUDO_REGISTER)
6395 && ((reg_equiv_memory_loc
6396 [REGNO (SUBREG_REG (oldequiv))] != 0)
6397 || (reg_equiv_constant
6398 [REGNO (SUBREG_REG (oldequiv))] != 0))))
6399 real_oldequiv = rl->in;
6400 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6401 rl->when_needed);
6402 }
6403
6404 /* End this sequence. */
6405 *where = get_insns ();
6406 end_sequence ();
6407
6408 /* Update reload_override_in so that delete_address_reloads_1
6409 can see the actual register usage. */
6410 if (oldequiv_reg)
6411 reload_override_in[j] = oldequiv;
6412 }
6413
6414 /* Generate insns to for the output reload RL, which is for the insn described
6415 by CHAIN and has the number J. */
6416 static void
6417 emit_output_reload_insns (chain, rl, j)
6418 struct insn_chain *chain;
6419 struct reload *rl;
6420 int j;
6421 {
6422 rtx reloadreg = rl->reg_rtx;
6423 rtx insn = chain->insn;
6424 int special = 0;
6425 rtx old = rl->out;
6426 enum machine_mode mode = GET_MODE (old);
6427 rtx p;
6428
6429 if (rl->when_needed == RELOAD_OTHER)
6430 start_sequence ();
6431 else
6432 push_to_sequence (output_reload_insns[rl->opnum]);
6433
6434 /* Determine the mode to reload in.
6435 See comments above (for input reloading). */
6436
6437 if (mode == VOIDmode)
6438 {
6439 /* VOIDmode should never happen for an output. */
6440 if (asm_noperands (PATTERN (insn)) < 0)
6441 /* It's the compiler's fault. */
6442 fatal_insn ("VOIDmode on an output", insn);
6443 error_for_asm (insn, "output operand is constant in `asm'");
6444 /* Prevent crash--use something we know is valid. */
6445 mode = word_mode;
6446 old = gen_rtx_REG (mode, REGNO (reloadreg));
6447 }
6448
6449 if (GET_MODE (reloadreg) != mode)
6450 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6451
6452 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6453
6454 /* If we need two reload regs, set RELOADREG to the intermediate
6455 one, since it will be stored into OLD. We might need a secondary
6456 register only for an input reload, so check again here. */
6457
6458 if (rl->secondary_out_reload >= 0)
6459 {
6460 rtx real_old = old;
6461
6462 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6463 && reg_equiv_mem[REGNO (old)] != 0)
6464 real_old = reg_equiv_mem[REGNO (old)];
6465
6466 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6467 mode, real_old)
6468 != NO_REGS))
6469 {
6470 rtx second_reloadreg = reloadreg;
6471 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6472
6473 /* See if RELOADREG is to be used as a scratch register
6474 or as an intermediate register. */
6475 if (rl->secondary_out_icode != CODE_FOR_nothing)
6476 {
6477 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6478 (real_old, second_reloadreg, reloadreg)));
6479 special = 1;
6480 }
6481 else
6482 {
6483 /* See if we need both a scratch and intermediate reload
6484 register. */
6485
6486 int secondary_reload = rl->secondary_out_reload;
6487 enum insn_code tertiary_icode
6488 = rld[secondary_reload].secondary_out_icode;
6489
6490 if (GET_MODE (reloadreg) != mode)
6491 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6492
6493 if (tertiary_icode != CODE_FOR_nothing)
6494 {
6495 rtx third_reloadreg
6496 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6497 rtx tem;
6498
6499 /* Copy primary reload reg to secondary reload reg.
6500 (Note that these have been swapped above, then
6501 secondary reload reg to OLD using our insn. */
6502
6503 /* If REAL_OLD is a paradoxical SUBREG, remove it
6504 and try to put the opposite SUBREG on
6505 RELOADREG. */
6506 if (GET_CODE (real_old) == SUBREG
6507 && (GET_MODE_SIZE (GET_MODE (real_old))
6508 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6509 && 0 != (tem = gen_lowpart_common
6510 (GET_MODE (SUBREG_REG (real_old)),
6511 reloadreg)))
6512 real_old = SUBREG_REG (real_old), reloadreg = tem;
6513
6514 gen_reload (reloadreg, second_reloadreg,
6515 rl->opnum, rl->when_needed);
6516 emit_insn ((GEN_FCN (tertiary_icode)
6517 (real_old, reloadreg, third_reloadreg)));
6518 special = 1;
6519 }
6520
6521 else
6522 /* Copy between the reload regs here and then to
6523 OUT later. */
6524
6525 gen_reload (reloadreg, second_reloadreg,
6526 rl->opnum, rl->when_needed);
6527 }
6528 }
6529 }
6530 #endif
6531
6532 /* Output the last reload insn. */
6533 if (! special)
6534 {
6535 rtx set;
6536
6537 /* Don't output the last reload if OLD is not the dest of
6538 INSN and is in the src and is clobbered by INSN. */
6539 if (! flag_expensive_optimizations
6540 || GET_CODE (old) != REG
6541 || !(set = single_set (insn))
6542 || rtx_equal_p (old, SET_DEST (set))
6543 || !reg_mentioned_p (old, SET_SRC (set))
6544 || !regno_clobbered_p (REGNO (old), insn, rl->mode))
6545 gen_reload (old, reloadreg, rl->opnum,
6546 rl->when_needed);
6547 }
6548
6549 /* Look at all insns we emitted, just to be safe. */
6550 for (p = get_insns (); p; p = NEXT_INSN (p))
6551 if (INSN_P (p))
6552 {
6553 rtx pat = PATTERN (p);
6554
6555 /* If this output reload doesn't come from a spill reg,
6556 clear any memory of reloaded copies of the pseudo reg.
6557 If this output reload comes from a spill reg,
6558 reg_has_output_reload will make this do nothing. */
6559 note_stores (pat, forget_old_reloads_1, NULL);
6560
6561 if (reg_mentioned_p (rl->reg_rtx, pat))
6562 {
6563 rtx set = single_set (insn);
6564 if (reload_spill_index[j] < 0
6565 && set
6566 && SET_SRC (set) == rl->reg_rtx)
6567 {
6568 int src = REGNO (SET_SRC (set));
6569
6570 reload_spill_index[j] = src;
6571 SET_HARD_REG_BIT (reg_is_output_reload, src);
6572 if (find_regno_note (insn, REG_DEAD, src))
6573 SET_HARD_REG_BIT (reg_reloaded_died, src);
6574 }
6575 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6576 {
6577 int s = rl->secondary_out_reload;
6578 set = single_set (p);
6579 /* If this reload copies only to the secondary reload
6580 register, the secondary reload does the actual
6581 store. */
6582 if (s >= 0 && set == NULL_RTX)
6583 /* We can't tell what function the secondary reload
6584 has and where the actual store to the pseudo is
6585 made; leave new_spill_reg_store alone. */
6586 ;
6587 else if (s >= 0
6588 && SET_SRC (set) == rl->reg_rtx
6589 && SET_DEST (set) == rld[s].reg_rtx)
6590 {
6591 /* Usually the next instruction will be the
6592 secondary reload insn; if we can confirm
6593 that it is, setting new_spill_reg_store to
6594 that insn will allow an extra optimization. */
6595 rtx s_reg = rld[s].reg_rtx;
6596 rtx next = NEXT_INSN (p);
6597 rld[s].out = rl->out;
6598 rld[s].out_reg = rl->out_reg;
6599 set = single_set (next);
6600 if (set && SET_SRC (set) == s_reg
6601 && ! new_spill_reg_store[REGNO (s_reg)])
6602 {
6603 SET_HARD_REG_BIT (reg_is_output_reload,
6604 REGNO (s_reg));
6605 new_spill_reg_store[REGNO (s_reg)] = next;
6606 }
6607 }
6608 else
6609 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6610 }
6611 }
6612 }
6613
6614 if (rl->when_needed == RELOAD_OTHER)
6615 {
6616 emit_insns (other_output_reload_insns[rl->opnum]);
6617 other_output_reload_insns[rl->opnum] = get_insns ();
6618 }
6619 else
6620 output_reload_insns[rl->opnum] = get_insns ();
6621
6622 end_sequence ();
6623 }
6624
6625 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6626 and has the number J. */
6627 static void
6628 do_input_reload (chain, rl, j)
6629 struct insn_chain *chain;
6630 struct reload *rl;
6631 int j;
6632 {
6633 int expect_occurrences = 1;
6634 rtx insn = chain->insn;
6635 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6636 ? rl->in_reg : rl->in);
6637
6638 if (old != 0
6639 /* AUTO_INC reloads need to be handled even if inherited. We got an
6640 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6641 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6642 && ! rtx_equal_p (rl->reg_rtx, old)
6643 && rl->reg_rtx != 0)
6644 emit_input_reload_insns (chain, rld + j, old, j);
6645
6646 /* When inheriting a wider reload, we have a MEM in rl->in,
6647 e.g. inheriting a SImode output reload for
6648 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6649 if (optimize && reload_inherited[j] && rl->in
6650 && GET_CODE (rl->in) == MEM
6651 && GET_CODE (rl->in_reg) == MEM
6652 && reload_spill_index[j] >= 0
6653 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6654 {
6655 expect_occurrences
6656 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6657 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6658 }
6659
6660 /* If we are reloading a register that was recently stored in with an
6661 output-reload, see if we can prove there was
6662 actually no need to store the old value in it. */
6663
6664 if (optimize
6665 && (reload_inherited[j] || reload_override_in[j])
6666 && rl->reg_rtx
6667 && GET_CODE (rl->reg_rtx) == REG
6668 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6669 #if 0
6670 /* There doesn't seem to be any reason to restrict this to pseudos
6671 and doing so loses in the case where we are copying from a
6672 register of the wrong class. */
6673 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6674 >= FIRST_PSEUDO_REGISTER)
6675 #endif
6676 /* The insn might have already some references to stackslots
6677 replaced by MEMs, while reload_out_reg still names the
6678 original pseudo. */
6679 && (dead_or_set_p (insn,
6680 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6681 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6682 rl->out_reg)))
6683 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6684 }
6685
6686 /* Do output reloading for reload RL, which is for the insn described by
6687 CHAIN and has the number J.
6688 ??? At some point we need to support handling output reloads of
6689 JUMP_INSNs or insns that set cc0. */
6690 static void
6691 do_output_reload (chain, rl, j)
6692 struct insn_chain *chain;
6693 struct reload *rl;
6694 int j;
6695 {
6696 rtx note, old;
6697 rtx insn = chain->insn;
6698 /* If this is an output reload that stores something that is
6699 not loaded in this same reload, see if we can eliminate a previous
6700 store. */
6701 rtx pseudo = rl->out_reg;
6702
6703 if (pseudo
6704 && GET_CODE (pseudo) == REG
6705 && ! rtx_equal_p (rl->in_reg, pseudo)
6706 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6707 && reg_last_reload_reg[REGNO (pseudo)])
6708 {
6709 int pseudo_no = REGNO (pseudo);
6710 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6711
6712 /* We don't need to test full validity of last_regno for
6713 inherit here; we only want to know if the store actually
6714 matches the pseudo. */
6715 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6716 && reg_reloaded_contents[last_regno] == pseudo_no
6717 && spill_reg_store[last_regno]
6718 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6719 delete_output_reload (insn, j, last_regno);
6720 }
6721
6722 old = rl->out_reg;
6723 if (old == 0
6724 || rl->reg_rtx == old
6725 || rl->reg_rtx == 0)
6726 return;
6727
6728 /* An output operand that dies right away does need a reload,
6729 but need not be copied from it. Show the new location in the
6730 REG_UNUSED note. */
6731 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6732 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6733 {
6734 XEXP (note, 0) = rl->reg_rtx;
6735 return;
6736 }
6737 /* Likewise for a SUBREG of an operand that dies. */
6738 else if (GET_CODE (old) == SUBREG
6739 && GET_CODE (SUBREG_REG (old)) == REG
6740 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6741 SUBREG_REG (old))))
6742 {
6743 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6744 rl->reg_rtx);
6745 return;
6746 }
6747 else if (GET_CODE (old) == SCRATCH)
6748 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6749 but we don't want to make an output reload. */
6750 return;
6751
6752 /* If is a JUMP_INSN, we can't support output reloads yet. */
6753 if (GET_CODE (insn) == JUMP_INSN)
6754 abort ();
6755
6756 emit_output_reload_insns (chain, rld + j, j);
6757 }
6758
6759 /* Output insns to reload values in and out of the chosen reload regs. */
6760
6761 static void
6762 emit_reload_insns (chain)
6763 struct insn_chain *chain;
6764 {
6765 rtx insn = chain->insn;
6766
6767 register int j;
6768 rtx following_insn = NEXT_INSN (insn);
6769 rtx before_insn = PREV_INSN (insn);
6770
6771 CLEAR_HARD_REG_SET (reg_reloaded_died);
6772
6773 for (j = 0; j < reload_n_operands; j++)
6774 input_reload_insns[j] = input_address_reload_insns[j]
6775 = inpaddr_address_reload_insns[j]
6776 = output_reload_insns[j] = output_address_reload_insns[j]
6777 = outaddr_address_reload_insns[j]
6778 = other_output_reload_insns[j] = 0;
6779 other_input_address_reload_insns = 0;
6780 other_input_reload_insns = 0;
6781 operand_reload_insns = 0;
6782 other_operand_reload_insns = 0;
6783
6784 /* Dump reloads into the dump file. */
6785 if (rtl_dump_file)
6786 {
6787 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6788 debug_reload_to_stream (rtl_dump_file);
6789 }
6790
6791 /* Now output the instructions to copy the data into and out of the
6792 reload registers. Do these in the order that the reloads were reported,
6793 since reloads of base and index registers precede reloads of operands
6794 and the operands may need the base and index registers reloaded. */
6795
6796 for (j = 0; j < n_reloads; j++)
6797 {
6798 if (rld[j].reg_rtx
6799 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6800 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6801
6802 do_input_reload (chain, rld + j, j);
6803 do_output_reload (chain, rld + j, j);
6804 }
6805
6806 /* Now write all the insns we made for reloads in the order expected by
6807 the allocation functions. Prior to the insn being reloaded, we write
6808 the following reloads:
6809
6810 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6811
6812 RELOAD_OTHER reloads.
6813
6814 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6815 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6816 RELOAD_FOR_INPUT reload for the operand.
6817
6818 RELOAD_FOR_OPADDR_ADDRS reloads.
6819
6820 RELOAD_FOR_OPERAND_ADDRESS reloads.
6821
6822 After the insn being reloaded, we write the following:
6823
6824 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
6825 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
6826 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
6827 reloads for the operand. The RELOAD_OTHER output reloads are
6828 output in descending order by reload number. */
6829
6830 emit_insns_before (other_input_address_reload_insns, insn);
6831 emit_insns_before (other_input_reload_insns, insn);
6832
6833 for (j = 0; j < reload_n_operands; j++)
6834 {
6835 emit_insns_before (inpaddr_address_reload_insns[j], insn);
6836 emit_insns_before (input_address_reload_insns[j], insn);
6837 emit_insns_before (input_reload_insns[j], insn);
6838 }
6839
6840 emit_insns_before (other_operand_reload_insns, insn);
6841 emit_insns_before (operand_reload_insns, insn);
6842
6843 for (j = 0; j < reload_n_operands; j++)
6844 {
6845 emit_insns_before (outaddr_address_reload_insns[j], following_insn);
6846 emit_insns_before (output_address_reload_insns[j], following_insn);
6847 emit_insns_before (output_reload_insns[j], following_insn);
6848 emit_insns_before (other_output_reload_insns[j], following_insn);
6849 }
6850
6851 /* Keep basic block info up to date. */
6852 if (n_basic_blocks)
6853 {
6854 if (BLOCK_HEAD (chain->block) == insn)
6855 BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
6856 if (BLOCK_END (chain->block) == insn)
6857 BLOCK_END (chain->block) = PREV_INSN (following_insn);
6858 }
6859
6860 /* For all the spill regs newly reloaded in this instruction,
6861 record what they were reloaded from, so subsequent instructions
6862 can inherit the reloads.
6863
6864 Update spill_reg_store for the reloads of this insn.
6865 Copy the elements that were updated in the loop above. */
6866
6867 for (j = 0; j < n_reloads; j++)
6868 {
6869 register int r = reload_order[j];
6870 register int i = reload_spill_index[r];
6871
6872 /* If this is a non-inherited input reload from a pseudo, we must
6873 clear any memory of a previous store to the same pseudo. Only do
6874 something if there will not be an output reload for the pseudo
6875 being reloaded. */
6876 if (rld[r].in_reg != 0
6877 && ! (reload_inherited[r] || reload_override_in[r]))
6878 {
6879 rtx reg = rld[r].in_reg;
6880
6881 if (GET_CODE (reg) == SUBREG)
6882 reg = SUBREG_REG (reg);
6883
6884 if (GET_CODE (reg) == REG
6885 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
6886 && ! reg_has_output_reload[REGNO (reg)])
6887 {
6888 int nregno = REGNO (reg);
6889
6890 if (reg_last_reload_reg[nregno])
6891 {
6892 int last_regno = REGNO (reg_last_reload_reg[nregno]);
6893
6894 if (reg_reloaded_contents[last_regno] == nregno)
6895 spill_reg_store[last_regno] = 0;
6896 }
6897 }
6898 }
6899
6900 /* I is nonneg if this reload used a register.
6901 If rld[r].reg_rtx is 0, this is an optional reload
6902 that we opted to ignore. */
6903
6904 if (i >= 0 && rld[r].reg_rtx != 0)
6905 {
6906 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
6907 int k;
6908 int part_reaches_end = 0;
6909 int all_reaches_end = 1;
6910
6911 /* For a multi register reload, we need to check if all or part
6912 of the value lives to the end. */
6913 for (k = 0; k < nr; k++)
6914 {
6915 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
6916 rld[r].when_needed))
6917 part_reaches_end = 1;
6918 else
6919 all_reaches_end = 0;
6920 }
6921
6922 /* Ignore reloads that don't reach the end of the insn in
6923 entirety. */
6924 if (all_reaches_end)
6925 {
6926 /* First, clear out memory of what used to be in this spill reg.
6927 If consecutive registers are used, clear them all. */
6928
6929 for (k = 0; k < nr; k++)
6930 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
6931
6932 /* Maybe the spill reg contains a copy of reload_out. */
6933 if (rld[r].out != 0
6934 && (GET_CODE (rld[r].out) == REG
6935 #ifdef AUTO_INC_DEC
6936 || ! rld[r].out_reg
6937 #endif
6938 || GET_CODE (rld[r].out_reg) == REG))
6939 {
6940 rtx out = (GET_CODE (rld[r].out) == REG
6941 ? rld[r].out
6942 : rld[r].out_reg
6943 ? rld[r].out_reg
6944 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
6945 register int nregno = REGNO (out);
6946 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
6947 : HARD_REGNO_NREGS (nregno,
6948 GET_MODE (rld[r].reg_rtx)));
6949
6950 spill_reg_store[i] = new_spill_reg_store[i];
6951 spill_reg_stored_to[i] = out;
6952 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
6953
6954 /* If NREGNO is a hard register, it may occupy more than
6955 one register. If it does, say what is in the
6956 rest of the registers assuming that both registers
6957 agree on how many words the object takes. If not,
6958 invalidate the subsequent registers. */
6959
6960 if (nregno < FIRST_PSEUDO_REGISTER)
6961 for (k = 1; k < nnr; k++)
6962 reg_last_reload_reg[nregno + k]
6963 = (nr == nnr
6964 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
6965 REGNO (rld[r].reg_rtx) + k)
6966 : 0);
6967
6968 /* Now do the inverse operation. */
6969 for (k = 0; k < nr; k++)
6970 {
6971 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
6972 reg_reloaded_contents[i + k]
6973 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
6974 ? nregno
6975 : nregno + k);
6976 reg_reloaded_insn[i + k] = insn;
6977 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
6978 }
6979 }
6980
6981 /* Maybe the spill reg contains a copy of reload_in. Only do
6982 something if there will not be an output reload for
6983 the register being reloaded. */
6984 else if (rld[r].out_reg == 0
6985 && rld[r].in != 0
6986 && ((GET_CODE (rld[r].in) == REG
6987 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
6988 && ! reg_has_output_reload[REGNO (rld[r].in)])
6989 || (GET_CODE (rld[r].in_reg) == REG
6990 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
6991 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
6992 {
6993 register int nregno;
6994 int nnr;
6995
6996 if (GET_CODE (rld[r].in) == REG
6997 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
6998 nregno = REGNO (rld[r].in);
6999 else if (GET_CODE (rld[r].in_reg) == REG)
7000 nregno = REGNO (rld[r].in_reg);
7001 else
7002 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7003
7004 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7005 : HARD_REGNO_NREGS (nregno,
7006 GET_MODE (rld[r].reg_rtx)));
7007
7008 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7009
7010 if (nregno < FIRST_PSEUDO_REGISTER)
7011 for (k = 1; k < nnr; k++)
7012 reg_last_reload_reg[nregno + k]
7013 = (nr == nnr
7014 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7015 REGNO (rld[r].reg_rtx) + k)
7016 : 0);
7017
7018 /* Unless we inherited this reload, show we haven't
7019 recently done a store.
7020 Previous stores of inherited auto_inc expressions
7021 also have to be discarded. */
7022 if (! reload_inherited[r]
7023 || (rld[r].out && ! rld[r].out_reg))
7024 spill_reg_store[i] = 0;
7025
7026 for (k = 0; k < nr; k++)
7027 {
7028 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7029 reg_reloaded_contents[i + k]
7030 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7031 ? nregno
7032 : nregno + k);
7033 reg_reloaded_insn[i + k] = insn;
7034 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7035 }
7036 }
7037 }
7038
7039 /* However, if part of the reload reaches the end, then we must
7040 invalidate the old info for the part that survives to the end. */
7041 else if (part_reaches_end)
7042 {
7043 for (k = 0; k < nr; k++)
7044 if (reload_reg_reaches_end_p (i + k,
7045 rld[r].opnum,
7046 rld[r].when_needed))
7047 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7048 }
7049 }
7050
7051 /* The following if-statement was #if 0'd in 1.34 (or before...).
7052 It's reenabled in 1.35 because supposedly nothing else
7053 deals with this problem. */
7054
7055 /* If a register gets output-reloaded from a non-spill register,
7056 that invalidates any previous reloaded copy of it.
7057 But forget_old_reloads_1 won't get to see it, because
7058 it thinks only about the original insn. So invalidate it here. */
7059 if (i < 0 && rld[r].out != 0
7060 && (GET_CODE (rld[r].out) == REG
7061 || (GET_CODE (rld[r].out) == MEM
7062 && GET_CODE (rld[r].out_reg) == REG)))
7063 {
7064 rtx out = (GET_CODE (rld[r].out) == REG
7065 ? rld[r].out : rld[r].out_reg);
7066 register int nregno = REGNO (out);
7067 if (nregno >= FIRST_PSEUDO_REGISTER)
7068 {
7069 rtx src_reg, store_insn = NULL_RTX;
7070
7071 reg_last_reload_reg[nregno] = 0;
7072
7073 /* If we can find a hard register that is stored, record
7074 the storing insn so that we may delete this insn with
7075 delete_output_reload. */
7076 src_reg = rld[r].reg_rtx;
7077
7078 /* If this is an optional reload, try to find the source reg
7079 from an input reload. */
7080 if (! src_reg)
7081 {
7082 rtx set = single_set (insn);
7083 if (set && SET_DEST (set) == rld[r].out)
7084 {
7085 int k;
7086
7087 src_reg = SET_SRC (set);
7088 store_insn = insn;
7089 for (k = 0; k < n_reloads; k++)
7090 {
7091 if (rld[k].in == src_reg)
7092 {
7093 src_reg = rld[k].reg_rtx;
7094 break;
7095 }
7096 }
7097 }
7098 }
7099 else
7100 store_insn = new_spill_reg_store[REGNO (src_reg)];
7101 if (src_reg && GET_CODE (src_reg) == REG
7102 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7103 {
7104 int src_regno = REGNO (src_reg);
7105 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7106 /* The place where to find a death note varies with
7107 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7108 necessarily checked exactly in the code that moves
7109 notes, so just check both locations. */
7110 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7111 if (! note)
7112 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7113 while (nr-- > 0)
7114 {
7115 spill_reg_store[src_regno + nr] = store_insn;
7116 spill_reg_stored_to[src_regno + nr] = out;
7117 reg_reloaded_contents[src_regno + nr] = nregno;
7118 reg_reloaded_insn[src_regno + nr] = store_insn;
7119 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7120 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7121 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7122 if (note)
7123 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7124 else
7125 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7126 }
7127 reg_last_reload_reg[nregno] = src_reg;
7128 }
7129 }
7130 else
7131 {
7132 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7133
7134 while (num_regs-- > 0)
7135 reg_last_reload_reg[nregno + num_regs] = 0;
7136 }
7137 }
7138 }
7139 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7140 }
7141 \f
7142 /* Emit code to perform a reload from IN (which may be a reload register) to
7143 OUT (which may also be a reload register). IN or OUT is from operand
7144 OPNUM with reload type TYPE.
7145
7146 Returns first insn emitted. */
7147
7148 rtx
7149 gen_reload (out, in, opnum, type)
7150 rtx out;
7151 rtx in;
7152 int opnum;
7153 enum reload_type type;
7154 {
7155 rtx last = get_last_insn ();
7156 rtx tem;
7157
7158 /* If IN is a paradoxical SUBREG, remove it and try to put the
7159 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7160 if (GET_CODE (in) == SUBREG
7161 && (GET_MODE_SIZE (GET_MODE (in))
7162 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7163 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7164 in = SUBREG_REG (in), out = tem;
7165 else if (GET_CODE (out) == SUBREG
7166 && (GET_MODE_SIZE (GET_MODE (out))
7167 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7168 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7169 out = SUBREG_REG (out), in = tem;
7170
7171 /* How to do this reload can get quite tricky. Normally, we are being
7172 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7173 register that didn't get a hard register. In that case we can just
7174 call emit_move_insn.
7175
7176 We can also be asked to reload a PLUS that adds a register or a MEM to
7177 another register, constant or MEM. This can occur during frame pointer
7178 elimination and while reloading addresses. This case is handled by
7179 trying to emit a single insn to perform the add. If it is not valid,
7180 we use a two insn sequence.
7181
7182 Finally, we could be called to handle an 'o' constraint by putting
7183 an address into a register. In that case, we first try to do this
7184 with a named pattern of "reload_load_address". If no such pattern
7185 exists, we just emit a SET insn and hope for the best (it will normally
7186 be valid on machines that use 'o').
7187
7188 This entire process is made complex because reload will never
7189 process the insns we generate here and so we must ensure that
7190 they will fit their constraints and also by the fact that parts of
7191 IN might be being reloaded separately and replaced with spill registers.
7192 Because of this, we are, in some sense, just guessing the right approach
7193 here. The one listed above seems to work.
7194
7195 ??? At some point, this whole thing needs to be rethought. */
7196
7197 if (GET_CODE (in) == PLUS
7198 && (GET_CODE (XEXP (in, 0)) == REG
7199 || GET_CODE (XEXP (in, 0)) == SUBREG
7200 || GET_CODE (XEXP (in, 0)) == MEM)
7201 && (GET_CODE (XEXP (in, 1)) == REG
7202 || GET_CODE (XEXP (in, 1)) == SUBREG
7203 || CONSTANT_P (XEXP (in, 1))
7204 || GET_CODE (XEXP (in, 1)) == MEM))
7205 {
7206 /* We need to compute the sum of a register or a MEM and another
7207 register, constant, or MEM, and put it into the reload
7208 register. The best possible way of doing this is if the machine
7209 has a three-operand ADD insn that accepts the required operands.
7210
7211 The simplest approach is to try to generate such an insn and see if it
7212 is recognized and matches its constraints. If so, it can be used.
7213
7214 It might be better not to actually emit the insn unless it is valid,
7215 but we need to pass the insn as an operand to `recog' and
7216 `extract_insn' and it is simpler to emit and then delete the insn if
7217 not valid than to dummy things up. */
7218
7219 rtx op0, op1, tem, insn;
7220 int code;
7221
7222 op0 = find_replacement (&XEXP (in, 0));
7223 op1 = find_replacement (&XEXP (in, 1));
7224
7225 /* Since constraint checking is strict, commutativity won't be
7226 checked, so we need to do that here to avoid spurious failure
7227 if the add instruction is two-address and the second operand
7228 of the add is the same as the reload reg, which is frequently
7229 the case. If the insn would be A = B + A, rearrange it so
7230 it will be A = A + B as constrain_operands expects. */
7231
7232 if (GET_CODE (XEXP (in, 1)) == REG
7233 && REGNO (out) == REGNO (XEXP (in, 1)))
7234 tem = op0, op0 = op1, op1 = tem;
7235
7236 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7237 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7238
7239 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7240 code = recog_memoized (insn);
7241
7242 if (code >= 0)
7243 {
7244 extract_insn (insn);
7245 /* We want constrain operands to treat this insn strictly in
7246 its validity determination, i.e., the way it would after reload
7247 has completed. */
7248 if (constrain_operands (1))
7249 return insn;
7250 }
7251
7252 delete_insns_since (last);
7253
7254 /* If that failed, we must use a conservative two-insn sequence.
7255
7256 Use a move to copy one operand into the reload register. Prefer
7257 to reload a constant, MEM or pseudo since the move patterns can
7258 handle an arbitrary operand. If OP1 is not a constant, MEM or
7259 pseudo and OP1 is not a valid operand for an add instruction, then
7260 reload OP1.
7261
7262 After reloading one of the operands into the reload register, add
7263 the reload register to the output register.
7264
7265 If there is another way to do this for a specific machine, a
7266 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7267 we emit below. */
7268
7269 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7270
7271 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7272 || (GET_CODE (op1) == REG
7273 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7274 || (code != CODE_FOR_nothing
7275 && ! ((*insn_data[code].operand[2].predicate)
7276 (op1, insn_data[code].operand[2].mode))))
7277 tem = op0, op0 = op1, op1 = tem;
7278
7279 gen_reload (out, op0, opnum, type);
7280
7281 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7282 This fixes a problem on the 32K where the stack pointer cannot
7283 be used as an operand of an add insn. */
7284
7285 if (rtx_equal_p (op0, op1))
7286 op1 = out;
7287
7288 insn = emit_insn (gen_add2_insn (out, op1));
7289
7290 /* If that failed, copy the address register to the reload register.
7291 Then add the constant to the reload register. */
7292
7293 code = recog_memoized (insn);
7294
7295 if (code >= 0)
7296 {
7297 extract_insn (insn);
7298 /* We want constrain operands to treat this insn strictly in
7299 its validity determination, i.e., the way it would after reload
7300 has completed. */
7301 if (constrain_operands (1))
7302 {
7303 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7304 REG_NOTES (insn)
7305 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7306 return insn;
7307 }
7308 }
7309
7310 delete_insns_since (last);
7311
7312 gen_reload (out, op1, opnum, type);
7313 insn = emit_insn (gen_add2_insn (out, op0));
7314 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7315 }
7316
7317 #ifdef SECONDARY_MEMORY_NEEDED
7318 /* If we need a memory location to do the move, do it that way. */
7319 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7320 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7321 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7322 REGNO_REG_CLASS (REGNO (out)),
7323 GET_MODE (out)))
7324 {
7325 /* Get the memory to use and rewrite both registers to its mode. */
7326 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7327
7328 if (GET_MODE (loc) != GET_MODE (out))
7329 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7330
7331 if (GET_MODE (loc) != GET_MODE (in))
7332 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7333
7334 gen_reload (loc, in, opnum, type);
7335 gen_reload (out, loc, opnum, type);
7336 }
7337 #endif
7338
7339 /* If IN is a simple operand, use gen_move_insn. */
7340 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7341 emit_insn (gen_move_insn (out, in));
7342
7343 #ifdef HAVE_reload_load_address
7344 else if (HAVE_reload_load_address)
7345 emit_insn (gen_reload_load_address (out, in));
7346 #endif
7347
7348 /* Otherwise, just write (set OUT IN) and hope for the best. */
7349 else
7350 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7351
7352 /* Return the first insn emitted.
7353 We can not just return get_last_insn, because there may have
7354 been multiple instructions emitted. Also note that gen_move_insn may
7355 emit more than one insn itself, so we can not assume that there is one
7356 insn emitted per emit_insn_before call. */
7357
7358 return last ? NEXT_INSN (last) : get_insns ();
7359 }
7360 \f
7361 /* Delete a previously made output-reload
7362 whose result we now believe is not needed.
7363 First we double-check.
7364
7365 INSN is the insn now being processed.
7366 LAST_RELOAD_REG is the hard register number for which we want to delete
7367 the last output reload.
7368 J is the reload-number that originally used REG. The caller has made
7369 certain that reload J doesn't use REG any longer for input. */
7370
7371 static void
7372 delete_output_reload (insn, j, last_reload_reg)
7373 rtx insn;
7374 int j;
7375 int last_reload_reg;
7376 {
7377 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7378 rtx reg = spill_reg_stored_to[last_reload_reg];
7379 int k;
7380 int n_occurrences;
7381 int n_inherited = 0;
7382 register rtx i1;
7383 rtx substed;
7384
7385 /* Get the raw pseudo-register referred to. */
7386
7387 while (GET_CODE (reg) == SUBREG)
7388 reg = SUBREG_REG (reg);
7389 substed = reg_equiv_memory_loc[REGNO (reg)];
7390
7391 /* This is unsafe if the operand occurs more often in the current
7392 insn than it is inherited. */
7393 for (k = n_reloads - 1; k >= 0; k--)
7394 {
7395 rtx reg2 = rld[k].in;
7396 if (! reg2)
7397 continue;
7398 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7399 reg2 = rld[k].in_reg;
7400 #ifdef AUTO_INC_DEC
7401 if (rld[k].out && ! rld[k].out_reg)
7402 reg2 = XEXP (rld[k].in_reg, 0);
7403 #endif
7404 while (GET_CODE (reg2) == SUBREG)
7405 reg2 = SUBREG_REG (reg2);
7406 if (rtx_equal_p (reg2, reg))
7407 {
7408 if (reload_inherited[k] || reload_override_in[k] || k == j)
7409 {
7410 n_inherited++;
7411 reg2 = rld[k].out_reg;
7412 if (! reg2)
7413 continue;
7414 while (GET_CODE (reg2) == SUBREG)
7415 reg2 = XEXP (reg2, 0);
7416 if (rtx_equal_p (reg2, reg))
7417 n_inherited++;
7418 }
7419 else
7420 return;
7421 }
7422 }
7423 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7424 if (substed)
7425 n_occurrences += count_occurrences (PATTERN (insn), substed, 0);
7426 if (n_occurrences > n_inherited)
7427 return;
7428
7429 /* If the pseudo-reg we are reloading is no longer referenced
7430 anywhere between the store into it and here,
7431 and no jumps or labels intervene, then the value can get
7432 here through the reload reg alone.
7433 Otherwise, give up--return. */
7434 for (i1 = NEXT_INSN (output_reload_insn);
7435 i1 != insn; i1 = NEXT_INSN (i1))
7436 {
7437 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7438 return;
7439 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7440 && reg_mentioned_p (reg, PATTERN (i1)))
7441 {
7442 /* If this is USE in front of INSN, we only have to check that
7443 there are no more references than accounted for by inheritance. */
7444 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7445 {
7446 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7447 i1 = NEXT_INSN (i1);
7448 }
7449 if (n_occurrences <= n_inherited && i1 == insn)
7450 break;
7451 return;
7452 }
7453 }
7454
7455 /* The caller has already checked that REG dies or is set in INSN.
7456 It has also checked that we are optimizing, and thus some inaccurancies
7457 in the debugging information are acceptable.
7458 So we could just delete output_reload_insn.
7459 But in some cases we can improve the debugging information without
7460 sacrificing optimization - maybe even improving the code:
7461 See if the pseudo reg has been completely replaced
7462 with reload regs. If so, delete the store insn
7463 and forget we had a stack slot for the pseudo. */
7464 if (rld[j].out != rld[j].in
7465 && REG_N_DEATHS (REGNO (reg)) == 1
7466 && REG_N_SETS (REGNO (reg)) == 1
7467 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7468 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7469 {
7470 rtx i2;
7471
7472 /* We know that it was used only between here
7473 and the beginning of the current basic block.
7474 (We also know that the last use before INSN was
7475 the output reload we are thinking of deleting, but never mind that.)
7476 Search that range; see if any ref remains. */
7477 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7478 {
7479 rtx set = single_set (i2);
7480
7481 /* Uses which just store in the pseudo don't count,
7482 since if they are the only uses, they are dead. */
7483 if (set != 0 && SET_DEST (set) == reg)
7484 continue;
7485 if (GET_CODE (i2) == CODE_LABEL
7486 || GET_CODE (i2) == JUMP_INSN)
7487 break;
7488 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7489 && reg_mentioned_p (reg, PATTERN (i2)))
7490 {
7491 /* Some other ref remains; just delete the output reload we
7492 know to be dead. */
7493 delete_address_reloads (output_reload_insn, insn);
7494 PUT_CODE (output_reload_insn, NOTE);
7495 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7496 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7497 return;
7498 }
7499 }
7500
7501 /* Delete the now-dead stores into this pseudo. */
7502 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7503 {
7504 rtx set = single_set (i2);
7505
7506 if (set != 0 && SET_DEST (set) == reg)
7507 {
7508 delete_address_reloads (i2, insn);
7509 /* This might be a basic block head,
7510 thus don't use delete_insn. */
7511 PUT_CODE (i2, NOTE);
7512 NOTE_SOURCE_FILE (i2) = 0;
7513 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
7514 }
7515 if (GET_CODE (i2) == CODE_LABEL
7516 || GET_CODE (i2) == JUMP_INSN)
7517 break;
7518 }
7519
7520 /* For the debugging info,
7521 say the pseudo lives in this reload reg. */
7522 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7523 alter_reg (REGNO (reg), -1);
7524 }
7525 delete_address_reloads (output_reload_insn, insn);
7526 PUT_CODE (output_reload_insn, NOTE);
7527 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7528 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7529
7530 }
7531
7532 /* We are going to delete DEAD_INSN. Recursively delete loads of
7533 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7534 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7535 static void
7536 delete_address_reloads (dead_insn, current_insn)
7537 rtx dead_insn, current_insn;
7538 {
7539 rtx set = single_set (dead_insn);
7540 rtx set2, dst, prev, next;
7541 if (set)
7542 {
7543 rtx dst = SET_DEST (set);
7544 if (GET_CODE (dst) == MEM)
7545 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7546 }
7547 /* If we deleted the store from a reloaded post_{in,de}c expression,
7548 we can delete the matching adds. */
7549 prev = PREV_INSN (dead_insn);
7550 next = NEXT_INSN (dead_insn);
7551 if (! prev || ! next)
7552 return;
7553 set = single_set (next);
7554 set2 = single_set (prev);
7555 if (! set || ! set2
7556 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7557 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7558 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7559 return;
7560 dst = SET_DEST (set);
7561 if (! rtx_equal_p (dst, SET_DEST (set2))
7562 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7563 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7564 || (INTVAL (XEXP (SET_SRC (set), 1))
7565 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7566 return;
7567 delete_insn (prev);
7568 delete_insn (next);
7569 }
7570
7571 /* Subfunction of delete_address_reloads: process registers found in X. */
7572 static void
7573 delete_address_reloads_1 (dead_insn, x, current_insn)
7574 rtx dead_insn, x, current_insn;
7575 {
7576 rtx prev, set, dst, i2;
7577 int i, j;
7578 enum rtx_code code = GET_CODE (x);
7579
7580 if (code != REG)
7581 {
7582 const char *fmt = GET_RTX_FORMAT (code);
7583 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7584 {
7585 if (fmt[i] == 'e')
7586 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7587 else if (fmt[i] == 'E')
7588 {
7589 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7590 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7591 current_insn);
7592 }
7593 }
7594 return;
7595 }
7596
7597 if (spill_reg_order[REGNO (x)] < 0)
7598 return;
7599
7600 /* Scan backwards for the insn that sets x. This might be a way back due
7601 to inheritance. */
7602 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7603 {
7604 code = GET_CODE (prev);
7605 if (code == CODE_LABEL || code == JUMP_INSN)
7606 return;
7607 if (GET_RTX_CLASS (code) != 'i')
7608 continue;
7609 if (reg_set_p (x, PATTERN (prev)))
7610 break;
7611 if (reg_referenced_p (x, PATTERN (prev)))
7612 return;
7613 }
7614 if (! prev || INSN_UID (prev) < reload_first_uid)
7615 return;
7616 /* Check that PREV only sets the reload register. */
7617 set = single_set (prev);
7618 if (! set)
7619 return;
7620 dst = SET_DEST (set);
7621 if (GET_CODE (dst) != REG
7622 || ! rtx_equal_p (dst, x))
7623 return;
7624 if (! reg_set_p (dst, PATTERN (dead_insn)))
7625 {
7626 /* Check if DST was used in a later insn -
7627 it might have been inherited. */
7628 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7629 {
7630 if (GET_CODE (i2) == CODE_LABEL)
7631 break;
7632 if (! INSN_P (i2))
7633 continue;
7634 if (reg_referenced_p (dst, PATTERN (i2)))
7635 {
7636 /* If there is a reference to the register in the current insn,
7637 it might be loaded in a non-inherited reload. If no other
7638 reload uses it, that means the register is set before
7639 referenced. */
7640 if (i2 == current_insn)
7641 {
7642 for (j = n_reloads - 1; j >= 0; j--)
7643 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7644 || reload_override_in[j] == dst)
7645 return;
7646 for (j = n_reloads - 1; j >= 0; j--)
7647 if (rld[j].in && rld[j].reg_rtx == dst)
7648 break;
7649 if (j >= 0)
7650 break;
7651 }
7652 return;
7653 }
7654 if (GET_CODE (i2) == JUMP_INSN)
7655 break;
7656 /* If DST is still live at CURRENT_INSN, check if it is used for
7657 any reload. Note that even if CURRENT_INSN sets DST, we still
7658 have to check the reloads. */
7659 if (i2 == current_insn)
7660 {
7661 for (j = n_reloads - 1; j >= 0; j--)
7662 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7663 || reload_override_in[j] == dst)
7664 return;
7665 /* ??? We can't finish the loop here, because dst might be
7666 allocated to a pseudo in this block if no reload in this
7667 block needs any of the clsses containing DST - see
7668 spill_hard_reg. There is no easy way to tell this, so we
7669 have to scan till the end of the basic block. */
7670 }
7671 if (reg_set_p (dst, PATTERN (i2)))
7672 break;
7673 }
7674 }
7675 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7676 reg_reloaded_contents[REGNO (dst)] = -1;
7677 /* Can't use delete_insn here because PREV might be a basic block head. */
7678 PUT_CODE (prev, NOTE);
7679 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
7680 NOTE_SOURCE_FILE (prev) = 0;
7681 }
7682 \f
7683 /* Output reload-insns to reload VALUE into RELOADREG.
7684 VALUE is an autoincrement or autodecrement RTX whose operand
7685 is a register or memory location;
7686 so reloading involves incrementing that location.
7687 IN is either identical to VALUE, or some cheaper place to reload from.
7688
7689 INC_AMOUNT is the number to increment or decrement by (always positive).
7690 This cannot be deduced from VALUE.
7691
7692 Return the instruction that stores into RELOADREG. */
7693
7694 static rtx
7695 inc_for_reload (reloadreg, in, value, inc_amount)
7696 rtx reloadreg;
7697 rtx in, value;
7698 int inc_amount;
7699 {
7700 /* REG or MEM to be copied and incremented. */
7701 rtx incloc = XEXP (value, 0);
7702 /* Nonzero if increment after copying. */
7703 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7704 rtx last;
7705 rtx inc;
7706 rtx add_insn;
7707 int code;
7708 rtx store;
7709 rtx real_in = in == value ? XEXP (in, 0) : in;
7710
7711 /* No hard register is equivalent to this register after
7712 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7713 we could inc/dec that register as well (maybe even using it for
7714 the source), but I'm not sure it's worth worrying about. */
7715 if (GET_CODE (incloc) == REG)
7716 reg_last_reload_reg[REGNO (incloc)] = 0;
7717
7718 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7719 inc_amount = -inc_amount;
7720
7721 inc = GEN_INT (inc_amount);
7722
7723 /* If this is post-increment, first copy the location to the reload reg. */
7724 if (post && real_in != reloadreg)
7725 emit_insn (gen_move_insn (reloadreg, real_in));
7726
7727 if (in == value)
7728 {
7729 /* See if we can directly increment INCLOC. Use a method similar to
7730 that in gen_reload. */
7731
7732 last = get_last_insn ();
7733 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7734 gen_rtx_PLUS (GET_MODE (incloc),
7735 incloc, inc)));
7736
7737 code = recog_memoized (add_insn);
7738 if (code >= 0)
7739 {
7740 extract_insn (add_insn);
7741 if (constrain_operands (1))
7742 {
7743 /* If this is a pre-increment and we have incremented the value
7744 where it lives, copy the incremented value to RELOADREG to
7745 be used as an address. */
7746
7747 if (! post)
7748 emit_insn (gen_move_insn (reloadreg, incloc));
7749
7750 return add_insn;
7751 }
7752 }
7753 delete_insns_since (last);
7754 }
7755
7756 /* If couldn't do the increment directly, must increment in RELOADREG.
7757 The way we do this depends on whether this is pre- or post-increment.
7758 For pre-increment, copy INCLOC to the reload register, increment it
7759 there, then save back. */
7760
7761 if (! post)
7762 {
7763 if (in != reloadreg)
7764 emit_insn (gen_move_insn (reloadreg, real_in));
7765 emit_insn (gen_add2_insn (reloadreg, inc));
7766 store = emit_insn (gen_move_insn (incloc, reloadreg));
7767 }
7768 else
7769 {
7770 /* Postincrement.
7771 Because this might be a jump insn or a compare, and because RELOADREG
7772 may not be available after the insn in an input reload, we must do
7773 the incrementation before the insn being reloaded for.
7774
7775 We have already copied IN to RELOADREG. Increment the copy in
7776 RELOADREG, save that back, then decrement RELOADREG so it has
7777 the original value. */
7778
7779 emit_insn (gen_add2_insn (reloadreg, inc));
7780 store = emit_insn (gen_move_insn (incloc, reloadreg));
7781 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7782 }
7783
7784 return store;
7785 }
7786 \f
7787 /* Return 1 if we are certain that the constraint-string STRING allows
7788 the hard register REG. Return 0 if we can't be sure of this. */
7789
7790 static int
7791 constraint_accepts_reg_p (string, reg)
7792 const char *string;
7793 rtx reg;
7794 {
7795 int value = 0;
7796 int regno = true_regnum (reg);
7797 int c;
7798
7799 /* Initialize for first alternative. */
7800 value = 0;
7801 /* Check that each alternative contains `g' or `r'. */
7802 while (1)
7803 switch (c = *string++)
7804 {
7805 case 0:
7806 /* If an alternative lacks `g' or `r', we lose. */
7807 return value;
7808 case ',':
7809 /* If an alternative lacks `g' or `r', we lose. */
7810 if (value == 0)
7811 return 0;
7812 /* Initialize for next alternative. */
7813 value = 0;
7814 break;
7815 case 'g':
7816 case 'r':
7817 /* Any general reg wins for this alternative. */
7818 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7819 value = 1;
7820 break;
7821 default:
7822 /* Any reg in specified class wins for this alternative. */
7823 {
7824 enum reg_class class = REG_CLASS_FROM_LETTER (c);
7825
7826 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
7827 value = 1;
7828 }
7829 }
7830 }
7831 \f
7832 /* INSN is a no-op; delete it.
7833 If this sets the return value of the function, we must keep a USE around,
7834 in case this is in a different basic block than the final USE. Otherwise,
7835 we could loose important register lifeness information on
7836 SMALL_REGISTER_CLASSES machines, where return registers might be used as
7837 spills: subsequent passes assume that spill registers are dead at the end
7838 of a basic block.
7839 VALUE must be the return value in such a case, NULL otherwise. */
7840 static void
7841 reload_cse_delete_noop_set (insn, value)
7842 rtx insn, value;
7843 {
7844 if (value)
7845 {
7846 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
7847 INSN_CODE (insn) = -1;
7848 REG_NOTES (insn) = NULL_RTX;
7849 }
7850 else
7851 {
7852 PUT_CODE (insn, NOTE);
7853 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7854 NOTE_SOURCE_FILE (insn) = 0;
7855 }
7856 }
7857
7858 /* See whether a single set SET is a noop. */
7859 static int
7860 reload_cse_noop_set_p (set)
7861 rtx set;
7862 {
7863 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
7864 }
7865
7866 /* Try to simplify INSN. */
7867 static void
7868 reload_cse_simplify (insn)
7869 rtx insn;
7870 {
7871 rtx body = PATTERN (insn);
7872
7873 if (GET_CODE (body) == SET)
7874 {
7875 int count = 0;
7876 if (reload_cse_noop_set_p (body))
7877 {
7878 rtx value = SET_DEST (body);
7879 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
7880 value = 0;
7881 reload_cse_delete_noop_set (insn, value);
7882 return;
7883 }
7884
7885 /* It's not a no-op, but we can try to simplify it. */
7886 count += reload_cse_simplify_set (body, insn);
7887
7888 if (count > 0)
7889 apply_change_group ();
7890 else
7891 reload_cse_simplify_operands (insn);
7892 }
7893 else if (GET_CODE (body) == PARALLEL)
7894 {
7895 int i;
7896 int count = 0;
7897 rtx value = NULL_RTX;
7898
7899 /* If every action in a PARALLEL is a noop, we can delete
7900 the entire PARALLEL. */
7901 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
7902 {
7903 rtx part = XVECEXP (body, 0, i);
7904 if (GET_CODE (part) == SET)
7905 {
7906 if (! reload_cse_noop_set_p (part))
7907 break;
7908 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
7909 {
7910 if (value)
7911 break;
7912 value = SET_DEST (part);
7913 }
7914 }
7915 else if (GET_CODE (part) != CLOBBER)
7916 break;
7917 }
7918
7919 if (i < 0)
7920 {
7921 reload_cse_delete_noop_set (insn, value);
7922 /* We're done with this insn. */
7923 return;
7924 }
7925
7926 /* It's not a no-op, but we can try to simplify it. */
7927 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
7928 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
7929 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
7930
7931 if (count > 0)
7932 apply_change_group ();
7933 else
7934 reload_cse_simplify_operands (insn);
7935 }
7936 }
7937
7938 /* Do a very simple CSE pass over the hard registers.
7939
7940 This function detects no-op moves where we happened to assign two
7941 different pseudo-registers to the same hard register, and then
7942 copied one to the other. Reload will generate a useless
7943 instruction copying a register to itself.
7944
7945 This function also detects cases where we load a value from memory
7946 into two different registers, and (if memory is more expensive than
7947 registers) changes it to simply copy the first register into the
7948 second register.
7949
7950 Another optimization is performed that scans the operands of each
7951 instruction to see whether the value is already available in a
7952 hard register. It then replaces the operand with the hard register
7953 if possible, much like an optional reload would. */
7954
7955 static void
7956 reload_cse_regs_1 (first)
7957 rtx first;
7958 {
7959 rtx insn;
7960
7961 cselib_init ();
7962 init_alias_analysis ();
7963
7964 for (insn = first; insn; insn = NEXT_INSN (insn))
7965 {
7966 if (INSN_P (insn))
7967 reload_cse_simplify (insn);
7968
7969 cselib_process_insn (insn);
7970 }
7971
7972 /* Clean up. */
7973 end_alias_analysis ();
7974 cselib_finish ();
7975 }
7976
7977 /* Call cse / combine like post-reload optimization phases.
7978 FIRST is the first instruction. */
7979 void
7980 reload_cse_regs (first)
7981 rtx first;
7982 {
7983 reload_cse_regs_1 (first);
7984 reload_combine ();
7985 reload_cse_move2add (first);
7986 if (flag_expensive_optimizations)
7987 reload_cse_regs_1 (first);
7988 }
7989
7990 /* Try to simplify a single SET instruction. SET is the set pattern.
7991 INSN is the instruction it came from.
7992 This function only handles one case: if we set a register to a value
7993 which is not a register, we try to find that value in some other register
7994 and change the set into a register copy. */
7995
7996 static int
7997 reload_cse_simplify_set (set, insn)
7998 rtx set;
7999 rtx insn;
8000 {
8001 int did_change = 0;
8002 int dreg;
8003 rtx src;
8004 enum reg_class dclass;
8005 int old_cost;
8006 cselib_val *val;
8007 struct elt_loc_list *l;
8008
8009 dreg = true_regnum (SET_DEST (set));
8010 if (dreg < 0)
8011 return 0;
8012
8013 src = SET_SRC (set);
8014 if (side_effects_p (src) || true_regnum (src) >= 0)
8015 return 0;
8016
8017 dclass = REGNO_REG_CLASS (dreg);
8018
8019 /* If memory loads are cheaper than register copies, don't change them. */
8020 if (GET_CODE (src) == MEM)
8021 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8022 else if (CONSTANT_P (src))
8023 old_cost = rtx_cost (src, SET);
8024 else if (GET_CODE (src) == REG)
8025 old_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (src)), dclass);
8026 else
8027 /* ??? */
8028 old_cost = rtx_cost (src, SET);
8029
8030 val = cselib_lookup (src, VOIDmode, 0);
8031 if (! val)
8032 return 0;
8033 for (l = val->locs; l; l = l->next)
8034 {
8035 int this_cost;
8036 if (CONSTANT_P (l->loc) && ! references_value_p (l->loc, 0))
8037 this_cost = rtx_cost (l->loc, SET);
8038 else if (GET_CODE (l->loc) == REG)
8039 this_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (l->loc)),
8040 dclass);
8041 else
8042 continue;
8043 /* If equal costs, prefer registers over anything else. That tends to
8044 lead to smaller instructions on some machines. */
8045 if ((this_cost < old_cost
8046 || (this_cost == old_cost
8047 && GET_CODE (l->loc) == REG
8048 && GET_CODE (SET_SRC (set)) != REG))
8049 && validate_change (insn, &SET_SRC (set), copy_rtx (l->loc), 1))
8050 old_cost = this_cost, did_change = 1;
8051 }
8052
8053 return did_change;
8054 }
8055
8056 /* Try to replace operands in INSN with equivalent values that are already
8057 in registers. This can be viewed as optional reloading.
8058
8059 For each non-register operand in the insn, see if any hard regs are
8060 known to be equivalent to that operand. Record the alternatives which
8061 can accept these hard registers. Among all alternatives, select the
8062 ones which are better or equal to the one currently matching, where
8063 "better" is in terms of '?' and '!' constraints. Among the remaining
8064 alternatives, select the one which replaces most operands with
8065 hard registers. */
8066
8067 static int
8068 reload_cse_simplify_operands (insn)
8069 rtx insn;
8070 {
8071 int i, j;
8072
8073 /* For each operand, all registers that are equivalent to it. */
8074 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8075
8076 const char *constraints[MAX_RECOG_OPERANDS];
8077
8078 /* Vector recording how bad an alternative is. */
8079 int *alternative_reject;
8080 /* Vector recording how many registers can be introduced by choosing
8081 this alternative. */
8082 int *alternative_nregs;
8083 /* Array of vectors recording, for each operand and each alternative,
8084 which hard register to substitute, or -1 if the operand should be
8085 left as it is. */
8086 int *op_alt_regno[MAX_RECOG_OPERANDS];
8087 /* Array of alternatives, sorted in order of decreasing desirability. */
8088 int *alternative_order;
8089 rtx reg = gen_rtx_REG (VOIDmode, -1);
8090
8091 extract_insn (insn);
8092
8093 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8094 return 0;
8095
8096 /* Figure out which alternative currently matches. */
8097 if (! constrain_operands (1))
8098 fatal_insn_not_found (insn);
8099
8100 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8101 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8102 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8103 bzero ((char *)alternative_reject, recog_data.n_alternatives * sizeof (int));
8104 bzero ((char *)alternative_nregs, recog_data.n_alternatives * sizeof (int));
8105
8106 /* For each operand, find out which regs are equivalent. */
8107 for (i = 0; i < recog_data.n_operands; i++)
8108 {
8109 cselib_val *v;
8110 struct elt_loc_list *l;
8111
8112 CLEAR_HARD_REG_SET (equiv_regs[i]);
8113
8114 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8115 right, so avoid the problem here. */
8116 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL)
8117 continue;
8118
8119 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8120 if (! v)
8121 continue;
8122
8123 for (l = v->locs; l; l = l->next)
8124 if (GET_CODE (l->loc) == REG)
8125 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8126 }
8127
8128 for (i = 0; i < recog_data.n_operands; i++)
8129 {
8130 enum machine_mode mode;
8131 int regno;
8132 const char *p;
8133
8134 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8135 for (j = 0; j < recog_data.n_alternatives; j++)
8136 op_alt_regno[i][j] = -1;
8137
8138 p = constraints[i] = recog_data.constraints[i];
8139 mode = recog_data.operand_mode[i];
8140
8141 /* Add the reject values for each alternative given by the constraints
8142 for this operand. */
8143 j = 0;
8144 while (*p != '\0')
8145 {
8146 char c = *p++;
8147 if (c == ',')
8148 j++;
8149 else if (c == '?')
8150 alternative_reject[j] += 3;
8151 else if (c == '!')
8152 alternative_reject[j] += 300;
8153 }
8154
8155 /* We won't change operands which are already registers. We
8156 also don't want to modify output operands. */
8157 regno = true_regnum (recog_data.operand[i]);
8158 if (regno >= 0
8159 || constraints[i][0] == '='
8160 || constraints[i][0] == '+')
8161 continue;
8162
8163 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8164 {
8165 int class = (int) NO_REGS;
8166
8167 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8168 continue;
8169
8170 REGNO (reg) = regno;
8171 PUT_MODE (reg, mode);
8172
8173 /* We found a register equal to this operand. Now look for all
8174 alternatives that can accept this register and have not been
8175 assigned a register they can use yet. */
8176 j = 0;
8177 p = constraints[i];
8178 for (;;)
8179 {
8180 char c = *p++;
8181
8182 switch (c)
8183 {
8184 case '=': case '+': case '?':
8185 case '#': case '&': case '!':
8186 case '*': case '%':
8187 case '0': case '1': case '2': case '3': case '4':
8188 case '5': case '6': case '7': case '8': case '9':
8189 case 'm': case '<': case '>': case 'V': case 'o':
8190 case 'E': case 'F': case 'G': case 'H':
8191 case 's': case 'i': case 'n':
8192 case 'I': case 'J': case 'K': case 'L':
8193 case 'M': case 'N': case 'O': case 'P':
8194 case 'p': case 'X':
8195 /* These don't say anything we care about. */
8196 break;
8197
8198 case 'g': case 'r':
8199 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8200 break;
8201
8202 default:
8203 class
8204 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
8205 break;
8206
8207 case ',': case '\0':
8208 /* See if REGNO fits this alternative, and set it up as the
8209 replacement register if we don't have one for this
8210 alternative yet and the operand being replaced is not
8211 a cheap CONST_INT. */
8212 if (op_alt_regno[i][j] == -1
8213 && reg_fits_class_p (reg, class, 0, mode)
8214 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8215 || (rtx_cost (recog_data.operand[i], SET)
8216 > rtx_cost (reg, SET))))
8217 {
8218 alternative_nregs[j]++;
8219 op_alt_regno[i][j] = regno;
8220 }
8221 j++;
8222 break;
8223 }
8224
8225 if (c == '\0')
8226 break;
8227 }
8228 }
8229 }
8230
8231 /* Record all alternatives which are better or equal to the currently
8232 matching one in the alternative_order array. */
8233 for (i = j = 0; i < recog_data.n_alternatives; i++)
8234 if (alternative_reject[i] <= alternative_reject[which_alternative])
8235 alternative_order[j++] = i;
8236 recog_data.n_alternatives = j;
8237
8238 /* Sort it. Given a small number of alternatives, a dumb algorithm
8239 won't hurt too much. */
8240 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8241 {
8242 int best = i;
8243 int best_reject = alternative_reject[alternative_order[i]];
8244 int best_nregs = alternative_nregs[alternative_order[i]];
8245 int tmp;
8246
8247 for (j = i + 1; j < recog_data.n_alternatives; j++)
8248 {
8249 int this_reject = alternative_reject[alternative_order[j]];
8250 int this_nregs = alternative_nregs[alternative_order[j]];
8251
8252 if (this_reject < best_reject
8253 || (this_reject == best_reject && this_nregs < best_nregs))
8254 {
8255 best = j;
8256 best_reject = this_reject;
8257 best_nregs = this_nregs;
8258 }
8259 }
8260
8261 tmp = alternative_order[best];
8262 alternative_order[best] = alternative_order[i];
8263 alternative_order[i] = tmp;
8264 }
8265
8266 /* Substitute the operands as determined by op_alt_regno for the best
8267 alternative. */
8268 j = alternative_order[0];
8269
8270 for (i = 0; i < recog_data.n_operands; i++)
8271 {
8272 enum machine_mode mode = recog_data.operand_mode[i];
8273 if (op_alt_regno[i][j] == -1)
8274 continue;
8275
8276 validate_change (insn, recog_data.operand_loc[i],
8277 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8278 }
8279
8280 for (i = recog_data.n_dups - 1; i >= 0; i--)
8281 {
8282 int op = recog_data.dup_num[i];
8283 enum machine_mode mode = recog_data.operand_mode[op];
8284
8285 if (op_alt_regno[op][j] == -1)
8286 continue;
8287
8288 validate_change (insn, recog_data.dup_loc[i],
8289 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8290 }
8291
8292 return apply_change_group ();
8293 }
8294 \f
8295 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8296 addressing now.
8297 This code might also be useful when reload gave up on reg+reg addresssing
8298 because of clashes between the return register and INDEX_REG_CLASS. */
8299
8300 /* The maximum number of uses of a register we can keep track of to
8301 replace them with reg+reg addressing. */
8302 #define RELOAD_COMBINE_MAX_USES 6
8303
8304 /* INSN is the insn where a register has ben used, and USEP points to the
8305 location of the register within the rtl. */
8306 struct reg_use { rtx insn, *usep; };
8307
8308 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8309 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8310 indicates where it becomes live again.
8311 Otherwise, USE_INDEX is the index of the last encountered use of the
8312 register (which is first among these we have seen since we scan backwards),
8313 OFFSET contains the constant offset that is added to the register in
8314 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8315 last, of these uses.
8316 STORE_RUID is always meaningful if we only want to use a value in a
8317 register in a different place: it denotes the next insn in the insn
8318 stream (i.e. the last ecountered) that sets or clobbers the register. */
8319 static struct
8320 {
8321 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8322 int use_index;
8323 rtx offset;
8324 int store_ruid;
8325 int use_ruid;
8326 } reg_state[FIRST_PSEUDO_REGISTER];
8327
8328 /* Reverse linear uid. This is increased in reload_combine while scanning
8329 the instructions from last to first. It is used to set last_label_ruid
8330 and the store_ruid / use_ruid fields in reg_state. */
8331 static int reload_combine_ruid;
8332
8333 #define LABEL_LIVE(LABEL) \
8334 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8335
8336 static void
8337 reload_combine ()
8338 {
8339 rtx insn, set;
8340 int first_index_reg = 1, last_index_reg = 0;
8341 int i;
8342 unsigned int r;
8343 int last_label_ruid;
8344 int min_labelno, n_labels;
8345 HARD_REG_SET ever_live_at_start, *label_live;
8346
8347 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8348 reload has already used it where appropriate, so there is no use in
8349 trying to generate it now. */
8350 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8351 return;
8352
8353 /* To avoid wasting too much time later searching for an index register,
8354 determine the minimum and maximum index register numbers. */
8355 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8356 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8357 {
8358 if (! first_index_reg)
8359 first_index_reg = r;
8360
8361 last_index_reg = r;
8362 }
8363
8364 /* If no index register is available, we can quit now. */
8365 if (first_index_reg > last_index_reg)
8366 return;
8367
8368 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8369 information is a bit fuzzy immediately after reload, but it's
8370 still good enough to determine which registers are live at a jump
8371 destination. */
8372 min_labelno = get_first_label_num ();
8373 n_labels = max_label_num () - min_labelno;
8374 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8375 CLEAR_HARD_REG_SET (ever_live_at_start);
8376
8377 for (i = n_basic_blocks - 1; i >= 0; i--)
8378 {
8379 insn = BLOCK_HEAD (i);
8380 if (GET_CODE (insn) == CODE_LABEL)
8381 {
8382 HARD_REG_SET live;
8383
8384 REG_SET_TO_HARD_REG_SET (live,
8385 BASIC_BLOCK (i)->global_live_at_start);
8386 compute_use_by_pseudos (&live,
8387 BASIC_BLOCK (i)->global_live_at_start);
8388 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8389 IOR_HARD_REG_SET (ever_live_at_start, live);
8390 }
8391 }
8392
8393 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8394 last_label_ruid = reload_combine_ruid = 0;
8395 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8396 {
8397 reg_state[r].store_ruid = reload_combine_ruid;
8398 if (fixed_regs[r])
8399 reg_state[r].use_index = -1;
8400 else
8401 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8402 }
8403
8404 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8405 {
8406 rtx note;
8407
8408 /* We cannot do our optimization across labels. Invalidating all the use
8409 information we have would be costly, so we just note where the label
8410 is and then later disable any optimization that would cross it. */
8411 if (GET_CODE (insn) == CODE_LABEL)
8412 last_label_ruid = reload_combine_ruid;
8413 else if (GET_CODE (insn) == BARRIER)
8414 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8415 if (! fixed_regs[r])
8416 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8417
8418 if (! INSN_P (insn))
8419 continue;
8420
8421 reload_combine_ruid++;
8422
8423 /* Look for (set (REGX) (CONST_INT))
8424 (set (REGX) (PLUS (REGX) (REGY)))
8425 ...
8426 ... (MEM (REGX)) ...
8427 and convert it to
8428 (set (REGZ) (CONST_INT))
8429 ...
8430 ... (MEM (PLUS (REGZ) (REGY)))... .
8431
8432 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8433 and that we know all uses of REGX before it dies. */
8434 set = single_set (insn);
8435 if (set != NULL_RTX
8436 && GET_CODE (SET_DEST (set)) == REG
8437 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8438 GET_MODE (SET_DEST (set)))
8439 == 1)
8440 && GET_CODE (SET_SRC (set)) == PLUS
8441 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8442 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8443 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8444 {
8445 rtx reg = SET_DEST (set);
8446 rtx plus = SET_SRC (set);
8447 rtx base = XEXP (plus, 1);
8448 rtx prev = prev_nonnote_insn (insn);
8449 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8450 unsigned int regno = REGNO (reg);
8451 rtx const_reg = NULL_RTX;
8452 rtx reg_sum = NULL_RTX;
8453
8454 /* Now, we need an index register.
8455 We'll set index_reg to this index register, const_reg to the
8456 register that is to be loaded with the constant
8457 (denoted as REGZ in the substitution illustration above),
8458 and reg_sum to the register-register that we want to use to
8459 substitute uses of REG (typically in MEMs) with.
8460 First check REG and BASE for being index registers;
8461 we can use them even if they are not dead. */
8462 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8463 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8464 REGNO (base)))
8465 {
8466 const_reg = reg;
8467 reg_sum = plus;
8468 }
8469 else
8470 {
8471 /* Otherwise, look for a free index register. Since we have
8472 checked above that neiter REG nor BASE are index registers,
8473 if we find anything at all, it will be different from these
8474 two registers. */
8475 for (i = first_index_reg; i <= last_index_reg; i++)
8476 {
8477 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8478 i)
8479 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8480 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8481 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8482 {
8483 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8484
8485 const_reg = index_reg;
8486 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8487 break;
8488 }
8489 }
8490 }
8491
8492 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8493 (REGY), i.e. BASE, is not clobbered before the last use we'll
8494 create. */
8495 if (prev_set != 0
8496 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8497 && rtx_equal_p (SET_DEST (prev_set), reg)
8498 && reg_state[regno].use_index >= 0
8499 && (reg_state[REGNO (base)].store_ruid
8500 <= reg_state[regno].use_ruid)
8501 && reg_sum != 0)
8502 {
8503 int i;
8504
8505 /* Change destination register and, if necessary, the
8506 constant value in PREV, the constant loading instruction. */
8507 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8508 if (reg_state[regno].offset != const0_rtx)
8509 validate_change (prev,
8510 &SET_SRC (prev_set),
8511 GEN_INT (INTVAL (SET_SRC (prev_set))
8512 + INTVAL (reg_state[regno].offset)),
8513 1);
8514
8515 /* Now for every use of REG that we have recorded, replace REG
8516 with REG_SUM. */
8517 for (i = reg_state[regno].use_index;
8518 i < RELOAD_COMBINE_MAX_USES; i++)
8519 validate_change (reg_state[regno].reg_use[i].insn,
8520 reg_state[regno].reg_use[i].usep,
8521 reg_sum, 1);
8522
8523 if (apply_change_group ())
8524 {
8525 rtx *np;
8526
8527 /* Delete the reg-reg addition. */
8528 PUT_CODE (insn, NOTE);
8529 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8530 NOTE_SOURCE_FILE (insn) = 0;
8531
8532 if (reg_state[regno].offset != const0_rtx)
8533 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8534 are now invalid. */
8535 for (np = &REG_NOTES (prev); *np;)
8536 {
8537 if (REG_NOTE_KIND (*np) == REG_EQUAL
8538 || REG_NOTE_KIND (*np) == REG_EQUIV)
8539 *np = XEXP (*np, 1);
8540 else
8541 np = &XEXP (*np, 1);
8542 }
8543
8544 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8545 reg_state[REGNO (const_reg)].store_ruid
8546 = reload_combine_ruid;
8547 continue;
8548 }
8549 }
8550 }
8551
8552 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8553
8554 if (GET_CODE (insn) == CALL_INSN)
8555 {
8556 rtx link;
8557
8558 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8559 if (call_used_regs[r])
8560 {
8561 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8562 reg_state[r].store_ruid = reload_combine_ruid;
8563 }
8564
8565 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8566 link = XEXP (link, 1))
8567 if (GET_CODE (XEXP (XEXP (link, 0), 0)) == REG)
8568 {
8569 unsigned int regno = REGNO (XEXP (XEXP (link, 0), 0));
8570
8571 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8572 {
8573 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8574 reg_state[regno].store_ruid = reload_combine_ruid;
8575 }
8576 else
8577 reg_state[regno].use_index = -1;
8578 }
8579 }
8580
8581 else if (GET_CODE (insn) == JUMP_INSN
8582 && GET_CODE (PATTERN (insn)) != RETURN)
8583 {
8584 /* Non-spill registers might be used at the call destination in
8585 some unknown fashion, so we have to mark the unknown use. */
8586 HARD_REG_SET *live;
8587
8588 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8589 && JUMP_LABEL (insn))
8590 live = &LABEL_LIVE (JUMP_LABEL (insn));
8591 else
8592 live = &ever_live_at_start;
8593
8594 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8595 if (TEST_HARD_REG_BIT (*live, i))
8596 reg_state[i].use_index = -1;
8597 }
8598
8599 reload_combine_note_use (&PATTERN (insn), insn);
8600 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8601 {
8602 if (REG_NOTE_KIND (note) == REG_INC
8603 && GET_CODE (XEXP (note, 0)) == REG)
8604 {
8605 int regno = REGNO (XEXP (note, 0));
8606
8607 reg_state[regno].store_ruid = reload_combine_ruid;
8608 reg_state[regno].use_index = -1;
8609 }
8610 }
8611 }
8612
8613 free (label_live);
8614 }
8615
8616 /* Check if DST is a register or a subreg of a register; if it is,
8617 update reg_state[regno].store_ruid and reg_state[regno].use_index
8618 accordingly. Called via note_stores from reload_combine. */
8619
8620 static void
8621 reload_combine_note_store (dst, set, data)
8622 rtx dst, set;
8623 void *data ATTRIBUTE_UNUSED;
8624 {
8625 int regno = 0;
8626 int i;
8627 enum machine_mode mode = GET_MODE (dst);
8628
8629 if (GET_CODE (dst) == SUBREG)
8630 {
8631 regno = SUBREG_WORD (dst);
8632 dst = SUBREG_REG (dst);
8633 }
8634 if (GET_CODE (dst) != REG)
8635 return;
8636 regno += REGNO (dst);
8637
8638 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8639 careful with registers / register parts that are not full words.
8640
8641 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8642 if (GET_CODE (set) != SET
8643 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8644 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8645 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8646 {
8647 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8648 {
8649 reg_state[i].use_index = -1;
8650 reg_state[i].store_ruid = reload_combine_ruid;
8651 }
8652 }
8653 else
8654 {
8655 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8656 {
8657 reg_state[i].store_ruid = reload_combine_ruid;
8658 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8659 }
8660 }
8661 }
8662
8663 /* XP points to a piece of rtl that has to be checked for any uses of
8664 registers.
8665 *XP is the pattern of INSN, or a part of it.
8666 Called from reload_combine, and recursively by itself. */
8667 static void
8668 reload_combine_note_use (xp, insn)
8669 rtx *xp, insn;
8670 {
8671 rtx x = *xp;
8672 enum rtx_code code = x->code;
8673 const char *fmt;
8674 int i, j;
8675 rtx offset = const0_rtx; /* For the REG case below. */
8676
8677 switch (code)
8678 {
8679 case SET:
8680 if (GET_CODE (SET_DEST (x)) == REG)
8681 {
8682 reload_combine_note_use (&SET_SRC (x), insn);
8683 return;
8684 }
8685 break;
8686
8687 case USE:
8688 /* If this is the USE of a return value, we can't change it. */
8689 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8690 {
8691 /* Mark the return register as used in an unknown fashion. */
8692 rtx reg = XEXP (x, 0);
8693 int regno = REGNO (reg);
8694 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8695
8696 while (--nregs >= 0)
8697 reg_state[regno + nregs].use_index = -1;
8698 return;
8699 }
8700 break;
8701
8702 case CLOBBER:
8703 if (GET_CODE (SET_DEST (x)) == REG)
8704 return;
8705 break;
8706
8707 case PLUS:
8708 /* We are interested in (plus (reg) (const_int)) . */
8709 if (GET_CODE (XEXP (x, 0)) != REG
8710 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8711 break;
8712 offset = XEXP (x, 1);
8713 x = XEXP (x, 0);
8714 /* Fall through. */
8715 case REG:
8716 {
8717 int regno = REGNO (x);
8718 int use_index;
8719 int nregs;
8720
8721 /* Some spurious USEs of pseudo registers might remain.
8722 Just ignore them. */
8723 if (regno >= FIRST_PSEUDO_REGISTER)
8724 return;
8725
8726 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8727
8728 /* We can't substitute into multi-hard-reg uses. */
8729 if (nregs > 1)
8730 {
8731 while (--nregs >= 0)
8732 reg_state[regno + nregs].use_index = -1;
8733 return;
8734 }
8735
8736 /* If this register is already used in some unknown fashion, we
8737 can't do anything.
8738 If we decrement the index from zero to -1, we can't store more
8739 uses, so this register becomes used in an unknown fashion. */
8740 use_index = --reg_state[regno].use_index;
8741 if (use_index < 0)
8742 return;
8743
8744 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
8745 {
8746 /* We have found another use for a register that is already
8747 used later. Check if the offsets match; if not, mark the
8748 register as used in an unknown fashion. */
8749 if (! rtx_equal_p (offset, reg_state[regno].offset))
8750 {
8751 reg_state[regno].use_index = -1;
8752 return;
8753 }
8754 }
8755 else
8756 {
8757 /* This is the first use of this register we have seen since we
8758 marked it as dead. */
8759 reg_state[regno].offset = offset;
8760 reg_state[regno].use_ruid = reload_combine_ruid;
8761 }
8762 reg_state[regno].reg_use[use_index].insn = insn;
8763 reg_state[regno].reg_use[use_index].usep = xp;
8764 return;
8765 }
8766
8767 default:
8768 break;
8769 }
8770
8771 /* Recursively process the components of X. */
8772 fmt = GET_RTX_FORMAT (code);
8773 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8774 {
8775 if (fmt[i] == 'e')
8776 reload_combine_note_use (&XEXP (x, i), insn);
8777 else if (fmt[i] == 'E')
8778 {
8779 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8780 reload_combine_note_use (&XVECEXP (x, i, j), insn);
8781 }
8782 }
8783 }
8784 \f
8785 /* See if we can reduce the cost of a constant by replacing a move with
8786 an add. */
8787 /* We cannot do our optimization across labels. Invalidating all the
8788 information about register contents we have would be costly, so we
8789 use last_label_luid (local variable of reload_cse_move2add) to note
8790 where the label is and then later disable any optimization that would
8791 cross it.
8792 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
8793 reg_set_luid[n] is larger than last_label_luid[n] . */
8794 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
8795
8796 /* reg_offset[n] has to be CONST_INT for it and reg_base_reg[n] /
8797 reg_mode[n] to be valid.
8798 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is negative, register n
8799 has been set to reg_offset[n] in mode reg_mode[n] .
8800 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is non-negative,
8801 register n has been set to the sum of reg_offset[n] and register
8802 reg_base_reg[n], calculated in mode reg_mode[n] . */
8803 static rtx reg_offset[FIRST_PSEUDO_REGISTER];
8804 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
8805 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
8806
8807 /* move2add_luid is linearily increased while scanning the instructions
8808 from first to last. It is used to set reg_set_luid in
8809 reload_cse_move2add and move2add_note_store. */
8810 static int move2add_luid;
8811
8812 /* Generate a CONST_INT and force it in the range of MODE. */
8813
8814 static rtx
8815 gen_mode_int (mode, value)
8816 enum machine_mode mode;
8817 HOST_WIDE_INT value;
8818 {
8819 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
8820 int width = GET_MODE_BITSIZE (mode);
8821
8822 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
8823 sign extend it. */
8824 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8825 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
8826 cval |= (HOST_WIDE_INT) -1 << width;
8827
8828 return GEN_INT (cval);
8829 }
8830
8831 static void
8832 reload_cse_move2add (first)
8833 rtx first;
8834 {
8835 int i;
8836 rtx insn;
8837 int last_label_luid;
8838
8839 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
8840 reg_set_luid[i] = 0;
8841
8842 last_label_luid = 0;
8843 move2add_luid = 1;
8844 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
8845 {
8846 rtx pat, note;
8847
8848 if (GET_CODE (insn) == CODE_LABEL)
8849 last_label_luid = move2add_luid;
8850 if (! INSN_P (insn))
8851 continue;
8852 pat = PATTERN (insn);
8853 /* For simplicity, we only perform this optimization on
8854 straightforward SETs. */
8855 if (GET_CODE (pat) == SET
8856 && GET_CODE (SET_DEST (pat)) == REG)
8857 {
8858 rtx reg = SET_DEST (pat);
8859 int regno = REGNO (reg);
8860 rtx src = SET_SRC (pat);
8861
8862 /* Check if we have valid information on the contents of this
8863 register in the mode of REG. */
8864 /* ??? We don't know how zero / sign extension is handled, hence
8865 we can't go from a narrower to a wider mode. */
8866 if (reg_set_luid[regno] > last_label_luid
8867 && ((GET_MODE_SIZE (GET_MODE (reg))
8868 == GET_MODE_SIZE (reg_mode[regno]))
8869 || ((GET_MODE_SIZE (GET_MODE (reg))
8870 <= GET_MODE_SIZE (reg_mode[regno]))
8871 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (reg)),
8872 GET_MODE_BITSIZE (reg_mode[regno]))))
8873 && GET_CODE (reg_offset[regno]) == CONST_INT)
8874 {
8875 /* Try to transform (set (REGX) (CONST_INT A))
8876 ...
8877 (set (REGX) (CONST_INT B))
8878 to
8879 (set (REGX) (CONST_INT A))
8880 ...
8881 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8882
8883 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
8884 {
8885 int success = 0;
8886 rtx new_src
8887 = gen_mode_int (GET_MODE (reg),
8888 INTVAL (src) - INTVAL (reg_offset[regno]));
8889 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
8890 use (set (reg) (reg)) instead.
8891 We don't delete this insn, nor do we convert it into a
8892 note, to avoid losing register notes or the return
8893 value flag. jump2 already knowns how to get rid of
8894 no-op moves. */
8895 if (new_src == const0_rtx)
8896 success = validate_change (insn, &SET_SRC (pat), reg, 0);
8897 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
8898 && have_add2_insn (GET_MODE (reg)))
8899 success = validate_change (insn, &PATTERN (insn),
8900 gen_add2_insn (reg, new_src), 0);
8901 reg_set_luid[regno] = move2add_luid;
8902 reg_mode[regno] = GET_MODE (reg);
8903 reg_offset[regno] = src;
8904 continue;
8905 }
8906
8907 /* Try to transform (set (REGX) (REGY))
8908 (set (REGX) (PLUS (REGX) (CONST_INT A)))
8909 ...
8910 (set (REGX) (REGY))
8911 (set (REGX) (PLUS (REGX) (CONST_INT B)))
8912 to
8913 (REGX) (REGY))
8914 (set (REGX) (PLUS (REGX) (CONST_INT A)))
8915 ...
8916 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8917 else if (GET_CODE (src) == REG
8918 && reg_base_reg[regno] == (int) REGNO (src)
8919 && reg_set_luid[regno] > reg_set_luid[REGNO (src)])
8920 {
8921 rtx next = next_nonnote_insn (insn);
8922 rtx set = NULL_RTX;
8923 if (next)
8924 set = single_set (next);
8925 if (next
8926 && set
8927 && SET_DEST (set) == reg
8928 && GET_CODE (SET_SRC (set)) == PLUS
8929 && XEXP (SET_SRC (set), 0) == reg
8930 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
8931 {
8932 rtx src3 = XEXP (SET_SRC (set), 1);
8933 rtx new_src
8934 = gen_mode_int (GET_MODE (reg),
8935 INTVAL (src3)
8936 - INTVAL (reg_offset[regno]));
8937 int success = 0;
8938
8939 if (new_src == const0_rtx)
8940 /* See above why we create (set (reg) (reg)) here. */
8941 success
8942 = validate_change (next, &SET_SRC (set), reg, 0);
8943 else if ((rtx_cost (new_src, PLUS)
8944 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
8945 && have_add2_insn (GET_MODE (reg)))
8946 success
8947 = validate_change (next, &PATTERN (next),
8948 gen_add2_insn (reg, new_src), 0);
8949 if (success)
8950 {
8951 /* INSN might be the first insn in a basic block
8952 if the preceding insn is a conditional jump
8953 or a possible-throwing call. */
8954 PUT_CODE (insn, NOTE);
8955 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8956 NOTE_SOURCE_FILE (insn) = 0;
8957 }
8958 insn = next;
8959 reg_set_luid[regno] = move2add_luid;
8960 reg_mode[regno] = GET_MODE (reg);
8961 reg_offset[regno] = src3;
8962 continue;
8963 }
8964 }
8965 }
8966 }
8967
8968 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8969 {
8970 if (REG_NOTE_KIND (note) == REG_INC
8971 && GET_CODE (XEXP (note, 0)) == REG)
8972 {
8973 /* Indicate that this register has been recently written to,
8974 but the exact contents are not available. */
8975 int regno = REGNO (XEXP (note, 0));
8976 if (regno < FIRST_PSEUDO_REGISTER)
8977 {
8978 reg_set_luid[regno] = move2add_luid;
8979 reg_offset[regno] = note;
8980 }
8981 }
8982 }
8983 note_stores (PATTERN (insn), move2add_note_store, NULL);
8984 /* If this is a CALL_INSN, all call used registers are stored with
8985 unknown values. */
8986 if (GET_CODE (insn) == CALL_INSN)
8987 {
8988 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
8989 {
8990 if (call_used_regs[i])
8991 {
8992 reg_set_luid[i] = move2add_luid;
8993 reg_offset[i] = insn; /* Invalidate contents. */
8994 }
8995 }
8996 }
8997 }
8998 }
8999
9000 /* SET is a SET or CLOBBER that sets DST.
9001 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9002 Called from reload_cse_move2add via note_stores. */
9003
9004 static void
9005 move2add_note_store (dst, set, data)
9006 rtx dst, set;
9007 void *data ATTRIBUTE_UNUSED;
9008 {
9009 unsigned int regno = 0;
9010 unsigned int i;
9011 enum machine_mode mode = GET_MODE (dst);
9012
9013 if (GET_CODE (dst) == SUBREG)
9014 {
9015 regno = SUBREG_WORD (dst);
9016 dst = SUBREG_REG (dst);
9017 }
9018
9019 if (GET_CODE (dst) != REG)
9020 return;
9021
9022 regno += REGNO (dst);
9023
9024 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9025 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9026 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9027 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9028 {
9029 rtx src = SET_SRC (set);
9030
9031 reg_mode[regno] = mode;
9032 switch (GET_CODE (src))
9033 {
9034 case PLUS:
9035 {
9036 rtx src0 = XEXP (src, 0);
9037
9038 if (GET_CODE (src0) == REG)
9039 {
9040 if (REGNO (src0) != regno
9041 || reg_offset[regno] != const0_rtx)
9042 {
9043 reg_base_reg[regno] = REGNO (src0);
9044 reg_set_luid[regno] = move2add_luid;
9045 }
9046
9047 reg_offset[regno] = XEXP (src, 1);
9048 break;
9049 }
9050
9051 reg_set_luid[regno] = move2add_luid;
9052 reg_offset[regno] = set; /* Invalidate contents. */
9053 break;
9054 }
9055
9056 case REG:
9057 reg_base_reg[regno] = REGNO (SET_SRC (set));
9058 reg_offset[regno] = const0_rtx;
9059 reg_set_luid[regno] = move2add_luid;
9060 break;
9061
9062 default:
9063 reg_base_reg[regno] = -1;
9064 reg_offset[regno] = SET_SRC (set);
9065 reg_set_luid[regno] = move2add_luid;
9066 break;
9067 }
9068 }
9069 else
9070 {
9071 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9072
9073 for (i = regno; i < endregno; i++)
9074 {
9075 /* Indicate that this register has been recently written to,
9076 but the exact contents are not available. */
9077 reg_set_luid[i] = move2add_luid;
9078 reg_offset[i] = dst;
9079 }
9080 }
9081 }
9082
9083 #ifdef AUTO_INC_DEC
9084 static void
9085 add_auto_inc_notes (insn, x)
9086 rtx insn;
9087 rtx x;
9088 {
9089 enum rtx_code code = GET_CODE (x);
9090 const char *fmt;
9091 int i, j;
9092
9093 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9094 {
9095 REG_NOTES (insn)
9096 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9097 return;
9098 }
9099
9100 /* Scan all the operand sub-expressions. */
9101 fmt = GET_RTX_FORMAT (code);
9102 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9103 {
9104 if (fmt[i] == 'e')
9105 add_auto_inc_notes (insn, XEXP (x, i));
9106 else if (fmt[i] == 'E')
9107 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9108 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9109 }
9110 }
9111 #endif